Science.gov

Sample records for plants dna-binding properties

  1. POT1 proteins in green algae and land plants: DNA-binding properties and evidence of co-evolution with telomeric DNA

    PubMed Central

    Shakirov, Eugene V.; Song, Xiangyu; Joseph, Jessica A.; Shippen, Dorothy E.

    2009-01-01

    Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins varied in their minimal DNA-binding sites and nucleotide recognition properties. Green alga POT1 exhibited a strong preference for the canonical plant telomere repeat sequence TTTAGGG with no detectable binding to hexanucleotide telomere repeat TTAGGG found in vertebrates and some plants, including Asparagus. In contrast, POT1 proteins from maize and Asparagus bound TTAGGG repeats with only slightly reduced affinity relative to the TTTAGGG sequence. We conclude that the nucleic acid binding site in plant POT1 proteins is evolving rapidly, and that the recent acquisition of TTAGGG telomere repeats in Asparagus appears to have co-evolved with changes in POT1 DNA sequence recognition. PMID:19783822

  2. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  3. Preparation and DNA-binding properties of substituted triostin antibiotics.

    PubMed

    Cornish, A; Fox, K R; Waring, M J

    1983-02-01

    Novel derivatives of the triostin group of antibiotics were prepared by supplementing cultures of the producing organism Streptomyces triostinicus with a variety of aromatic carboxylic acids. Five new antibiotics, each having both the natural quinoxaline chromophores replaced by a substituted ring system, were purified to homogeneity and characterized by high-pressure liquid chromatography and nuclear magnetic resonance. Their antibacterial activities and DNA-binding properties were investigated. Addition of a halogen atom at position 6 of the quinoxaline ring or an amino group at position 3 had little effect on either the biological activity or the DNA-binding characteristics. The bis-3-amino derivative is fluorescent, and its fluorescence is strongly quenched by calf thymus DNA and polydeoxyguanylate-polydeoxycytidylate but not by polydeoxyadenylate-polydeoxythymidylate, suggesting that it binds preferentially to guanosine-cytosine-rich sequences in natural DNA. Binding constants for the bis-6-chloro and bis-3-amino derivatives do not differ greatly from those of unsubstituted triostin A. The analogs having two quinoline chromophores or a chlorine atom in position 7 of the quinoxaline ring display little or no detectable antibacterial activity, in marked contrast to the other congeners. Bis-7-chloro-triostin A binds conspicuously more tightly to polydeoxyadenylate-polydeoxythymidylate than to any other polynucleotide tested.

  4. Cytotoxic activity and DNA-binding properties of isoeuxanthone derivatives.

    PubMed

    Wang, Hui Fang; Yan, Hong; Gao, Xianghua; Niu, Baolong; Guo, Ruijie; Wei, Liqiao; Xu, Bingshe; Tang, Ning

    2014-01-01

    In this study, the interactions of different groups substituted isoeuxanthone derivatives with calf thymus DNA (ct DNA) were investigated by spectrophotometric methods and viscosity measurements. Results indicated that the xanthone derivatives could intercalate into the DNA base pairs by the plane of xanthone ring and the various substituents may influence the binding affinity with DNA according to the calculated quenching constant values. Furthermore, two tumor cell lines including the human cervical cancer cell line (HeLa) and human hepatocellular liver carcinoma cell line (HepG2) were used to evaluate the cytotoxic activities of xanthone derivatives by acid phosphatase assay. Analyses showed that the oxiranylmethoxy substituted xanthone exhibited more effective cytotoxic activity against the cancer cells than the other substituted xanthones. The effects on the inhibition of tumor cells in vitro agreed with the studies of DNA-binding. PMID:24583780

  5. Nucleoside triphosphate-dependent DNA-binding properties of mos protein.

    PubMed Central

    Seth, A; Priel, E; Vande Woude, G F

    1987-01-01

    We have previously shown that the mos gene product, p40mos, produced in Escherichia coli binds ATP and has ATPase activity. In the present study, we investigated the DNA-binding properties of p40mos and two mos deletion mutant proteins. Nitrocellulose blot protein-DNA binding assays showed that p40mos binds DNA in the presence of Mg2+-ATP and certain other nucleoside triphosphates. Ninety percent of the p40mos-bound DNA is dissociated if the complex is washed in the presence of 1 M NaCl or in the absence of ATP. p40mos-DNA binding is not observed in the presence of AMP or the nonhydrolyzable ATP analog adenosine 5'-[beta, gamma-methylene]-triphosphate; however, in the presence of ADP, p40mos binds DNA at 20% of the level that is observed with ATP. An N-terminal-deletion mutant protein, p19mos, has no DNA-binding activity, whereas a C-terminal-deletion mutant protein, p25mos, does. p25mos contains the ATP-binding domain, binds DNA in the presence of either ADP or ATP, and shows 5% and 45% binding (relative to that in the presence of ATP) in the presence of AMP and adenosine 5'-[beta, gamma-methylene]triphosphate, respectively. These results suggest that the N-terminal domain of p40mos is responsible for nucleoside triphosphate-mediated DNA binding. We also observed differential histone-DNA binding in the presence and absence of ATP. Images PMID:3035537

  6. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    SciTech Connect

    Cuthill, S.; Poellinger, L.

    1988-04-19

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant (/sup 3/H)dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin.

  7. Flow cytometric assays for interrogating LAGLIDADG homing endonuclease DNA-binding and cleavage properties.

    PubMed

    Baxter, Sarah K; Lambert, Abigail R; Scharenberg, Andrew M; Jarjour, Jordan

    2013-01-01

    A fast, easy, and scalable method to assess the properties of site-specific nucleases is crucial to -understanding their in cellulo behavior in genome engineering or population-level gene drive applications. Here we describe an analytical platform that enables high-throughput, semiquantitative interrogation of the DNA-binding and catalytic properties of LAGLIDADG homing endonucleases (LHEs). Using this platform, natural or engineered LHEs are expressed on the surface of Saccharomyces cerevisiae yeast where they can be rapidly evaluated against synthetic DNA target sequences using flow cytometry.

  8. DNA-binding and fluorescence properties of the DNA bisintercalating purple oxazole dimer POPO-1

    NASA Astrophysics Data System (ADS)

    Winter, Stefan; Loeber, Gunter

    1997-01-01

    Dimers of the fluorescent DNA intercalators oxazole yellow and thiazole orange are used for high-sensitivity DNA detection due to their excellent fluorescence properties. Fluorescence lifetime techniques and absorption spectroscopy were used to investigate the DNA binding properties of POPO- 1 [4,4,8,8-tetramethyl-4,8-diazaundecamethylene)bis-4-(3- methyl-2,3-dihydrobenzo-1,3-oxazolyl)-2-methylidene] with the double-stranded homopurine-homopyrimidine polynucleotides poly(dA(DOT)dT), poly(dG(DOT)dC) and calf thymus DNA. The coexistence of different binding modes of POPO-1 with polynucleotides such as bisintercalation and monointercalation was found in connection with minor groove binding as well as electrostatic attachment. At high excess of polynucleotides, bisintercalation is the only existing form of binding whereas an increasing amount of POPO-1 leads to the coexistence of bis- and monointercalated dye molecules. The amount of bound dye increases with decreasing ionic strength of the buffer and is dependent on the polynucleotide itself. The best binding conditions were found with calf thymus DNA, followed by poly(dA(DOT)dT) and poly(dG(DOT)dC).

  9. Domain analysis of the plant DNA-binding protein GT1a: requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region.

    PubMed Central

    Lam, E

    1995-01-01

    Light is an important environmental signal that can influence diverse developmental processes in plants. Many plant nuclear genes respond to light at the level of transcription initiation. GT-1 and GT2 are nuclear factors which interact with DNA sequences in many light-responsive gene promoters. cDNA clones which encode proteins with sequence binding specificities similar to those of these two factors have been isolated. They show significant amino acid sequence similarities within three closely spaced, putative alpha-helices that were predicted by secondary structure analysis but do not show significant homologies with any other reported DNA-binding protein. In this work, N- and C-terminal deletions of tobacco GT1a were generated by in vitro transcription and translation, and their DNA-binding activities and subunit structures were studied. The results suggest that the C-terminal domain of GT1a is critical for protein oligomerization, while a region predicted to contain four closely spaced alpha-helices is required for DNA binding. Direct chemical cross-linking and gel filtration analyses of full-length and truncated derivatives of GT1a suggest that this factor can exist in solution as a homotetramer and that oligomerization is independent of DNA binding. This study thus establishes two independent functional domains in this class of eukaryotic trans-acting factors. Possible implications of the multimeric nature of GT1a in relation to the known characteristics of light-responsive promoter architecture are discussed. PMID:7823917

  10. Interaction of a rhizobial DNA-binding protein with the promoter region of a plant leghemoglobin gene

    SciTech Connect

    Welters, P.; Metz, B.; Felix, G.; Palme, K. ); Szczyglowski, K. ); Bruijn, F.J. de Michigan State Univ., East Lansing, MI )

    1993-08-01

    A nucleotide sequence was identified approximately 650 bp upstream of the Sesbania rostrata leghemoglobin gene Srglb3 start codon, which interacts specifically with a proteinaceous DNA-binding factor found in nodule extracts but not in extracts from leaves or root. The binding site for this factor was delimited using footprinting techniques. The DNA-binding activity of this factor was found to be heat stable, dependent on divalent cations, and derived from the (infecting) Azorhizobium caulinodans bacteria or bacteroids (A. caulinodans bacterial binding factor 1, AcBBF1). A 9- to 10-kD protein was isolated from a free-living culture of A. caulinodans that co-purifies with the DNA-binding activity (A. caulinodans bacterial binding protein 1, AcBBP1) and interacts specifically with its target (S. rostrata bacterial binding site 1, SrBBS1). The amino acid sequence of the N-terminal 27 residues of AcBBP1 was determined and was found to share significant similarity (46% identity; 68% similarity) with a domain of the herpes simplex virus major DNA-binding protein infected cell protein 8(ICP8). An insertion mutation in the SrBBS1 was found to result in a substantial reduction of the expression of a Srglb3-gus reporter gene fusion in nodules of transgenic Lotus corniculatus plants, suggesting a role for this element in Srglb3 promoter activity. Based on these results, the authors propose that (a) bacterial transacting factor(s) may play a role in infected cell-specific expression of the symbiotically induced plant lb genes. 70 refs., 11 figs.

  11. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  12. Preliminary study on the DNA-binding properties of phage ΦC31 integrase.

    PubMed

    Li, Zhihui; Fang, Yuxiang; Wang, Rencheng; Xue, Jinglun; Chen, Jinzhong

    2011-09-15

    ΦC31 integrase is a member of the large serine subfamily and is required for the recombination of the phage genome into the host chromosome, either to establish or exit from the lysogenic state. This enzyme can also mediate site-specific integration in mammalian cells in a cofactor-independent manner and has been considered as a potentially powerful tool for gene therapy. It has previously been reported that DAXX interacts with ΦC31 integrase and markedly inhibits its integration efficiency, and the 451RFGK454 tetramer of ΦC31 integrase has been identified as the interacting motif. Here, we report that both the deletion of the tetramer or the replacement of Arg with His greatly reduced the recombination activity of the ΦC31 integrase. Electrophoretic mobility shift assays further demonstrated that the DNA-binding ability and binding specificity of the two mutants were dramatically reduced. Bioinformatic analysis indicated a probable helix-turn-helix-like DNA-binding motif between residues 415-525, a region that contains the tetramer motif. However, neither truncated Int(415-525) nor Int(△415-525) alone could bind to the attB target sequence. Results of a circular dichroism spectroscopy assay indicated that Int(415-525) did not fold correctly into a helix-turn-helix-like structure, which may be one of the reasons for its lack of DNA-binding ability. Thus, the identification and confirmation of four key amino acids in the DNA-binding specificity and recombination activity of ΦC31 integrase provide information about the domain structure and function of the large C-terminal region and suggest important implications for the more efficient use of integrase in gene transfer and gene therapy. PMID:21679753

  13. The physical interaction of Mcm10 with Cdc45 modulates their DNA-binding properties.

    PubMed

    Di Perna, Roberta; Aria, Valentina; De Falco, Mariarosaria; Sannino, Vincenzo; Okorokov, Andrei L; Pisani, Francesca M; De Felice, Mariarita

    2013-09-01

    The eukaryotic DNA replication protein Mcm10 (mini-chromosome maintenance 10) associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Another essential component of the eukaryotic replication fork is Cdc45 (cell division cycle 45), which is required for both initiation and elongation of DNA replication. In the present study we characterize, for the first time, the physical and functional interactions of human Mcm10 and Cdc45. First we demonstrated that Mcm10 and Cdc45 interact in cell-free extracts. We then analysed the role of each of the Mcm10 domains: N-terminal, internal and C-terminal (NTD, ID and CTD respectively). We have detected a direct physical interaction between CTD and Cdc45 by both in vitro co-immunoprecipitation and surface plasmon resonance experiments. On the other hand, we have found that the interaction of the Mcm10 ID with Cdc45 takes place only in the presence of DNA. Furthermore, we found that the isolated ID and CTD domains are fully functional, retaining DNA-binding capability with a clear preference for bubble and fork structures, and that they both enhance Cdc45 DNA-binding affinity. The results of the present study demonstrate that human Mcm10 and Cdc45 directly interact and establish a mutual co-operation in DNA binding.

  14. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  15. DNA-binding properties of the Drosophila melanogaster zeste gene product

    SciTech Connect

    Mansukhani, A.; Crickmore, A.; Sherwood, P.W.; Goldberg, M.L.

    1988-02-01

    The ability of the zeste moiety of ..beta..-galactosidase-zeste fusion proteins synthesized in Escherichia coli to bind specific DNA sequences was examined. Such fusion proteins recognize a region of the white locus upstream of the start of transcription; this region has previously been shown to be required for genetic interaction between the zeste and white loci. Another strong biding site was localized to a region between 50 and 205 nucleotides before the start of the Ubx transcriptional unit; expression of the bithorax complex is also known to be influenced by the zeste locus. Weaker binding sites were also seen in the vicinity of the bxd and Sgs-4 genes, but it is currently unclear whether these binding sites play a role in transvection effects. The DNA-binding activity of the zeste protein is restricted to a domain of approximately 90 amino acids near the N terminus. This domain does not appear to contain homebox or zinc finger motifs found in other DNA-binding proteins. The DNA-binding domain is not disrupted by any currently characterized zeste mutations.

  16. Amino substituted benzimidazo[1,2-a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties.

    PubMed

    Perin, Nataša; Nhili, Raja; Cindrić, Maja; Bertoša, Branimir; Vušak, Darko; Martin-Kleiner, Irena; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2016-10-21

    We describe the synthesis, 3D-derived quantitative structure-activity relationship (QSAR), antiproliferative activity and DNA binding properties of a series of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinolines prepared by environmentally friendly uncatalyzed microwave assisted amination. The antiproliferative activities were assessed in vitro against colon, lung and breast carcinoma cell lines; activities ranged from submicromolar to micromolar. The strongest antiproliferative activity was demonstrated by 2-amino-substituted analogues, whereas 5-amino and or 2,5-diamino substituted derivatives resulted in much less activity. Derivatives bearing 4-methyl- or 3,5-dimethyl-1-piperazinyl substituents emerged as the most active. DNA binding properties and the mode of interaction of chosen substituted benzimidazo[1,2-a]quinolines prepared herein were studied using melting temperature studies, a series of spectroscopic studies (UV/Visible, fluorescence, and circular dichroism), and biochemical experiments (topoisomerase I-mediated DNA relaxation and DNase I footprinting experiments). Both compound 36 and its bis-quaternary iodide salt 37 intercalate between adjacent base pairs of the DNA helix while compound 33 presented a very weak topoisomerase I poisoning activity. A 3D-QSAR analysis was performed to identify hydrogen bonding properties, hydrophobicity, molecular flexibility and distribution of hydrophobic regions as these molecular properties had the highest impact on the antiproliferative activity against the three cell lines. PMID:27448912

  17. Amino substituted benzimidazo[1,2-a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties.

    PubMed

    Perin, Nataša; Nhili, Raja; Cindrić, Maja; Bertoša, Branimir; Vušak, Darko; Martin-Kleiner, Irena; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2016-10-21

    We describe the synthesis, 3D-derived quantitative structure-activity relationship (QSAR), antiproliferative activity and DNA binding properties of a series of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinolines prepared by environmentally friendly uncatalyzed microwave assisted amination. The antiproliferative activities were assessed in vitro against colon, lung and breast carcinoma cell lines; activities ranged from submicromolar to micromolar. The strongest antiproliferative activity was demonstrated by 2-amino-substituted analogues, whereas 5-amino and or 2,5-diamino substituted derivatives resulted in much less activity. Derivatives bearing 4-methyl- or 3,5-dimethyl-1-piperazinyl substituents emerged as the most active. DNA binding properties and the mode of interaction of chosen substituted benzimidazo[1,2-a]quinolines prepared herein were studied using melting temperature studies, a series of spectroscopic studies (UV/Visible, fluorescence, and circular dichroism), and biochemical experiments (topoisomerase I-mediated DNA relaxation and DNase I footprinting experiments). Both compound 36 and its bis-quaternary iodide salt 37 intercalate between adjacent base pairs of the DNA helix while compound 33 presented a very weak topoisomerase I poisoning activity. A 3D-QSAR analysis was performed to identify hydrogen bonding properties, hydrophobicity, molecular flexibility and distribution of hydrophobic regions as these molecular properties had the highest impact on the antiproliferative activity against the three cell lines.

  18. Conjugation of Benzylvanillin and Benzimidazole Structure Improves DNA Binding with Enhanced Antileukemic Properties

    PubMed Central

    Al-Mudarris, Ban A.; Chen, Shih-Hsun; Liang, Po-Huang; Osman, Hasnah; Jamal Din, Shah Kamal Khan; Abdul Majid, Amin M. S.

    2013-01-01

    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the

  19. Characterization of DNA Binding Property of the HIV-1 Host Factor and Tumor Suppressor Protein Integrase Interactor 1 (INI1/hSNF5)

    PubMed Central

    Das, Supratik; Thangamuniyandi, Muruganandan; Dasgupta, Saumya; Chongdar, Nipa; Kumar, Gopinatha Suresh; Basu, Gautam

    2013-01-01

    Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105–183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd  = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K’d1 = 222 µM and K’d2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = –29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH’1 = 115.7 KJ/mole, TΔS’1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH’2 = –106.3 KJ/mole, TΔS’2 = –75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1. PMID:23861745

  20. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators.

    PubMed

    Hosoda, Kazuo; Imamura, Aya; Katoh, Etsuko; Hatta, Tomohisa; Tachiki, Mari; Yamada, Hisami; Mizuno, Takeshi; Yamazaki, Toshimasa

    2002-09-01

    The B motif is a signature of type-B response regulators (ARRs) involved in His-to-Asp phosphorelay signal transduction systems in Arabidopsis. Homologous motifs occur widely in the GARP family of plant transcription factors. To gain general insight into the structure and function of B motifs (or GARP motifs), we characterized the B motif derived from a representative ARR, ARR10, which led to a number of intriguing findings. First, the B motif of ARR10 (named ARR10-B and extending from Thr-179 to Ser-242) possesses a nuclear localization signal, as indicated by the intracellular localization of a green fluorescent protein-ARR10-B fusion protein in onion epidermal cells. Second, the purified ARR10-B molecule binds specifically in vitro to DNA with the core sequence AGATT. This was demonstrated by several in vitro approaches, including PCR-assisted DNA binding site selection, gel retardation assays, and surface plasmon resonance analysis. Finally, the three-dimensional structure of ARR10-B in solution was determined by NMR spectroscopy, showing that it contains a helix-turn-helix structure. Furthermore, the mode of interaction between ARR10-B and the target DNA was assessed extensively by NMR spectroscopy. Together, these results lead us to propose that the mechanism of DNA recognition by ARR10-B is essentially the same as that of homeodomains. We conclude that the B motif is a multifunctional domain responsible for both nuclear localization and DNA binding and suggest that these insights could be applicable generally to the large GARP family of plant transcription factors. PMID:12215502

  1. Regulating the anticancer properties of organometallic dendrimers using pyridylferrocene entities: synthesis, cytotoxicity and DNA binding studies.

    PubMed

    Govender, Preshendren; Riedel, Tina; Dyson, Paul J; Smith, Gregory S

    2016-06-21

    A new series of eight first- and second-generation heterometallic ferrocenyl-derived metal-arene metallodendrimers, containing ruthenium(ii)-p-cymene, ruthenium(ii)-hexamethylbenzene, rhodium(iii)-cyclopentadienyl or iridium(iii)-cyclopentadienyl moieties have been prepared. The metallodendrimers were synthesized by first reacting DAB-(NH2)n (where n = 4 or 8, DAB = diaminobutane) with salicylaldehyde, and then the Schiff-base dendritic ligands were reacted in a one-pot reaction with the appropriate [(η(6)-p-iPrC6H4Me)RuCl2]2, [(η(6)-C6Me6)RuCl2]2, [(η(5)-C5Me5)IrCl2]2 or [(η(5)-C5Me5)RhCl2]2 dimers, in the presence of 4-pyridylferrocene. Heterometallic binuclear analogues were prepared as models of the larger metallodendrimers. All complexes have been characterized using analytical and spectroscopic methods. The cytotoxicity of the heterometallic metallodendrimers and their binuclear analogues were evaluated against A2780 cisplatin-sensitive and A2780cisR cisplatin-resistant human ovarian cancer cell lines and against a non-tumorigenic HEK-293 human embryonic kidney cell line. The second generation Ru(ii)-η(6)-C6Me6 metallodendrimer is the most cytotoxic and selective compound. DNA binding experiments reveal that a possible mode-of-action of these compounds involves non-covalent interactions with DNA. PMID:27193373

  2. (Analysis of proteins essential for Agrobacterium mediated DNA transfer to plant cells). [Single-stranded DNA binding proteins

    SciTech Connect

    Not Available

    1989-12-14

    The tumor inducing (Ti) plasmid of Agrobacterium contains two regions important for infection and transformation of plant cells. One region, the T-DNA, is transferred as a single strand into the plant cell, while the virulence (vir) region is responsible for recognition of susceptible cells, synthesis of the T-DNA single strand (T-strand), formation of a T-strand protein complex and transfer of this complex into susceptible cells. A DNA binding protein, VirE2, was identified as a product of the vir region. Sequencing of the 9000 kilobase pair virB region has been completed. Expression of 10 of the predicted 11 open reading frames (ORFs) was demonstrated in Escherichia coli. Translational coupling was demonstrated for 5 ORFs. Hydropathy analysis indicates that 9 of 11 ORFs have hydrophobic regions that could permit membrane channel formation. In related work, analysis of protons that potentiate movement of plant viruses was discussed, with indications that the tobacco mosaic virus (TMV) protein P30 may mediate transfer of TMV RNA through plasmadesmata. Also, using the T-DNA element as a marker, genes responsible for abnormal flower development are being cloned and isolated. 3 refs. (MHB)

  3. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells.

    PubMed

    Sundberg, C; Meek, L; Carroll, K; Das, A; Ream, W

    1996-02-01

    Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1. PMID:8576060

  4. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells.

    PubMed Central

    Sundberg, C; Meek, L; Carroll, K; Das, A; Ream, W

    1996-01-01

    Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1. PMID:8576060

  5. A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c-MYB specificity.

    PubMed

    Solano, R; Fuertes, A; Sánchez-Pulido, L; Valencia, A; Paz-Ares, J

    1997-01-31

    Transcription factor MYB.Ph3 from Petunia binds to two types of sequences, MBSI and MBSII, whereas murine c-MYB only binds to MBSI, and Am305 from Antirrhinum only binds to MBSII. DNA binding studies with hybrids of these proteins pointed to the N-terminal repeat (R2) as the most involved in determining binding to MBSI and/or MBSII, although some influence of the C-terminal repeat (R3) was also evident. Furthermore, a single residue substitution (Leu71 --> Glu) in MYB.Ph3 changed its specificity to that of c-MYB, and c-MYB with the reciprocal substitution (Glu132 --> Leu) essentially gained the MYB.Ph3 specificity. Molecular modeling and DNA binding studies with site-specific MYB.Ph3 mutants strongly supported the notion that the drastic changes in DNA binding specificity caused by the Leu --> Glu substitution reflect the fact that certain residues influence this property both directly, through base contacts, and indirectly, through interactions with other base-contacting residues, and that a single residue may establish alternative base contacts in different targets. Additionally, differential effects of mutations at non-base-contacting residues in MYB.Ph3 and c-MYB were observed, reflecting the importance of protein context on DNA binding properties of MYB proteins.

  6. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    PubMed

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  7. Elucidation of the DNA binding specificity of the natural plant alkaloid chelerythrine: a biophysical approach.

    PubMed

    Basu, Pritha; Suresh Kumar, Gopinatha

    2014-09-01

    Interaction of the anticancer plant alkaloid chelerythrine with four sequence specific synthetic polynucleotides was studied by spectroscopy and calorimetry experiments. The binding resulted in strong hypochromic and bathochromic effects in the absorption spectrum of the alkaloid, enhancement in the fluorescence with the AT polynucleotides and the homo-GC polynucleotide and quenching with the hetero-GC polynucleotide. Cooperative binding was observed with all the polynucleotides. Fluorescence polarization anisotropy, iodide quenching and viscosity results confirmed intercalative binding of the alkaloid. The binding resulted in the thermal stabilization of the polynucleotides and moderate perturbations in the B-conformation of the DNA. The high binding affinity values (∼10(6) M(-1)) evaluated from the spectroscopic data was in excellent agreement with those obtained from calorimetry. The binding was exothermic and favoured by negative standard molar enthalpy and positive standard molar entropic contributions in all cases other than homo-AT polynucleotide, where it was endothermic and entropy driven. Salt-dependent calorimetry data revealed that the binding reaction was driven mostly by non-polyelectrolytic forces. The magnitude of the negative heat capacity values confirmed the role of significant hydrophobic effects in the interaction profile of the alkaloid with the polynucleotides. The results revealed the specificity of chelerythrine to follow homo-GC>hetero-GC>hetero-AT=homo-AT polynucleotide. PMID:25010289

  8. The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome

    PubMed Central

    Pevala, Vladimír; Truban, Dominika; Bauer, Jacob A.; Košťan, Július; Kunová, Nina; Bellová, Jana; Brandstetter, Marlene; Marini, Victoria; Krejčí, Lumír; Tomáška, Ľubomír; Nosek, Jozef; Kutejová, Eva

    2016-01-01

    To study the mechanisms involved in the maintenance of a linear mitochondrial genome we investigated the biochemical properties of the recombination protein Mgm101 from Candida parapsilosis. We show that CpMgm101 complements defects associated with the Saccharomyces cerevisiae mgm101–1ts mutation and that it is present in both the nucleus and mitochondrial nucleoids of C. parapsilosis. Unlike its S. cerevisiae counterpart, CpMgm101 is associated with the entire nucleoid population and is able to bind to a broad range of DNA substrates in a non-sequence specific manner. CpMgm101 is also able to catalyze strand annealing and D-loop formation. CpMgm101 forms a roughly C-shaped trimer in solution according to SAXS. Electron microscopy of a complex of CpMgm101 with a model mitochondrial telomere revealed homogeneous, ring-shaped structures at the telomeric single-stranded overhangs. The DNA-binding properties of CpMgm101, together with its DNA recombination properties, suggest that it can play a number of possible roles in the replication of the mitochondrial genome and the maintenance of its telomeres. PMID:26743001

  9. A novel abscisic acid- and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA-binding activity.

    PubMed

    Phillips, Jonathan R; Hilbricht, Tobias; Salamini, Francesco; Bartels, Dorothea

    2002-06-01

    In the desiccation-tolerant resurrection plant Craterostigma plantagineum Hochst. the chloroplasts undergo major ultrastructural changes during dehydration, which are reversible upon rehydration. Such alterations argue the need for efficient protective/stabilising mechanisms to exist. Here we describe a novel gene family that is rapidly and transiently expressed in response to both dehydration and exogenously applied abscisic acid, mostly in the chloroplast-rich palisade layer on the adaxial side of the leaf. Analysis of the putative coding region suggests that the resulting protein is plastid-targeted. This was confirmed using a chimeric green fluorescent protein (GFP) reporter construct in transgenic tobacco plants - hence the gene family is termed Plastid Targeted Protein ( CpPTP). Fluorescence microscopy also revealed that CpPTP was localised in structures similar to proplastid nucleoids in transgenic tobacco ( Nicotiana tabacum L.) BY-2 cells. The ability of CpPTP to interact with DNA was demonstrated through a DNaseI protection assay. A structure-prediction programme suggests that the mature CpPTP is composed almost entirely of a pattern of hydrophobic and hydrophilic residues that form heptad repeats, which are the hallmarks of a coiled-coil domain. Given the localisation and DNA-binding property of the protein, we propose that CpPTP plays a role during the early stages of dehydration-induced chloroplast remodelling.

  10. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet

    2015-12-01

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated.

  11. Synthesis, antiproliferative activity and DNA binding properties of novel 5-aminobenzimidazo[1,2-a]quinoline-6-carbonitriles.

    PubMed

    Perin, Nataša; Nhili, Raja; Ester, Katja; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2014-06-10

    The synthesis of 5-amino substituted benzimidazo[1,2-a]quinolines prepared by microwave assisted amination from halogeno substituted precursor was described. The majority of compounds were active at micromolar concentrations against colon, lung and breast carcinoma cell lines in vitro. The N,N-dimethylaminopropyl 9 and piperazinyl substituted derivative 19 showed the most pronounced activity towards all of the three tested tumor cell lines, which could be correlated to the presence of another N heteroatom and its potential interactions with biological targets. The DNA binding studies, consisting of UV/Visible absorbency, melting temperature studies, and fluorescence and circular dichroism titrations, revealed that compounds 9, 19 and 20 bind to DNA as strong intercalators. The cellular distribution analysis, based on compounds' intrinsic fluorescence, showed that compound 20 does not enter the cell, while compounds 9 and 19 do, which is in agreement with their cytotoxic effects. Compound 9 efficiently targets the nucleus whereas 19, which also showed DNA intercalating properties in vitro, was mostly localised in the cytoplasm suggesting that the antitumor mechanism of action is DNA-independent. PMID:24780599

  12. Synthesis, DNA-binding and spectral properties of novel complexes [RuL 2(idpq)] 2+ (L = bpy, phen) with embedded C dbnd O

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Xu, Lian-Cai; Li, Hong; Chao, Hui; Zheng, Kang-Cheng; Ji, Liang-Nian

    2009-02-01

    A novel ligand idpq with embedded C dbnd O and its two complexes, [Ru(bpy) 2(idpq)] 2+1 and [Ru(phen) 2(idpq)] 2+2 (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; idpq = indeno[1,2- b]dipyrido [3,2- f:2',3'- h]-quinoxaline-6-one), have been synthesized and characterized by elemental analysis, ES-MS, 1H NMR, UV-vis and CV. The DNA-binding behaviors of both complexes were studied by spectroscopic methods and viscosity measurements. The results indicate that the two complexes can all bind to CT-DNA in an intercalative mode, and they have rather high DNA-binding constants, which are (1.7 ± 0.4) × 10 6 M -1 and (4.0 ± 0.6) × 10 6 M -1, respectively. The results also show that these two Ru(II) complexes can promote photocleavage of pBR322 DNA. Their DNA-binding and electronic absorption-spectral properties were further studied by the DFT/TDDFT methods. The DNA-binding behaviors and difference of these complexes were reasonably explained, and the simulated absorption spectra were in good agreement with the experimental ones.

  13. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  14. Anticancer activity and DNA-binding properties of novel cationic Pt(II) complexes.

    PubMed

    Jamshidi, Mehrnaz; Yousefi, Reza; Nabavizadeh, Seyed Masoud; Rashidi, Mehdi; Haghighi, Mohsen Golbon; Niazi, Ali; Moosavi-Movahedi, Ali-Akbar

    2014-05-01

    In this study, three structurally related cationic Pt complexes, [Pt(ppy)(dppe)]CF3CO2: C1, [Pt(bhq)(dppe)]CF3CO2: C2, and [Pt(bhq)(dppf)]CF3CO2: C3, in which ppy=deprotonated 2-phenylpyridine, bhq=deprotonated benzo[h]quinoline, dppe=bis(diphenylphosphino)ethane and dppf=1,1'-bis(diphenylphosphino)ferrocene, were used for the assessment of their anticancer activities against Jurkat and MCF-7 cancer cell lines. The Pt complexes (C1-C3) demonstrated significant level of anticancer properties, as measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Moreover, the changes in nuclear morphology with Acridine Orange (AO) staining reveal that these complexes are capable to induce apoptosis, and only C1 stimulates activity of Caspase-3 in Jurkat cancer cells. To get a better insight into the nature of binding between these cationic Pt complexes and DNA, different spectroscopic techniques and gel electrophoresis were applied. On the basis of the results of UV/vis absorption spectroscopy, CD experiment and fluorescence quenching of ethidium bromide (EB)-DNA, the interaction between DNA and the Pt complexes is likely to occur through a mixed-binding mode. Overall, the present work suggests that a controlled modification could result in new potentially antitumor complexes which can survive the repair mechanism and induce facile apoptosis. PMID:24530367

  15. New metal based drugs: spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties.

    PubMed

    Çeşme, Mustafa; Gölcü, Aysegul; Demirtaş, Ibrahim

    2015-01-25

    The NSAID piroxicam (PRX) drug was used for complex formation reactions with Cu(II), Zn(II) and Pt(II) metal salts have been synthesized. Then, these complexes have been characterized by spectroscopic and analytical techniques. Thermal behavior of the complexes were also investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSFSdsDNA) with UV spectroscopy. UV studies of the interaction of the PRX and its complexes with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. The morphology of the FSdsDNA, PRX, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with FSdsDNA has been studied by means of differential pulse voltammetry (DPV) at FSdsDNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. The effect of proliferation PRX and complexes were examined on the HeLA and C6 cells using real-time cell analyzer with four different concentrations.

  16. New metal based drugs: Spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties

    NASA Astrophysics Data System (ADS)

    Çeşme, Mustafa; Gölcü, Aysegul; Demirtaş, Ibrahim

    2015-01-01

    The NSAID piroxicam (PRX) drug was used for complex formation reactions with Cu(II), Zn(II) and Pt(II) metal salts have been synthesized. Then, these complexes have been characterized by spectroscopic and analytical techniques. Thermal behavior of the complexes were also investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSFSdsDNA) with UV spectroscopy. UV studies of the interaction of the PRX and its complexes with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. The morphology of the FSdsDNA, PRX, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with FSdsDNA has been studied by means of differential pulse voltammetry (DPV) at FSdsDNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. The effect of proliferation PRX and complexes were examined on the HeLA and C6 cells using real-time cell analyzer with four different concentrations.

  17. The new generation drug candidate molecules: Spectral, electrochemical, DNA-binding and anticancer activity properties

    NASA Astrophysics Data System (ADS)

    Gölcü, Ayşegül; Muslu, Harun; Kılıçaslan, Derya; Çeşme, Mustafa; Eren, Özge; Ataş, Fatma; Demirtaş, İbrahim

    2016-09-01

    The new generation drug candidate molecules [Cu(5-Fu)2Cl2H2O] (NGDCM1) and [Zn(5-Fu)2(CH3COO)2] (NGDCM2) were obtained from the reaction of copper(II) and zinc(II) salts with the anticancer drug 5-fluoracil (5-Fu). These compounds have been characterized by spectroscopic and analytical techniques. Thermal behavior of the compounds were also investigated. The electrochemical properties of the compounds have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the NGDCM1 and NGDCM2 has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSdsDNA) with UV spectroscopy. UV studies of the interaction of the 5-Fu and metal derivatives with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. Thermal decomposition of the compounds lead to the formation of CuO and ZnO as final products. The effect of proliferation 5-Fu, NGDCM1 and NGDCM2 were examined on the HeLa cells using real-time cell analyzer with three different concentrations.

  18. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. PMID:25555321

  19. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells.

  20. Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties.

    PubMed

    Kulaksiz, Gülnihal; Reardon, Joyce T; Sancar, Aziz

    2005-11-01

    Xeroderma pigmentosum is characterized by increased sensitivity of the affected individuals to sunlight and light-induced skin cancers and, in some cases, to neurological abnormalities. The disease is caused by a mutation in genes XPA through XPG and the XP variant (XPV) gene. The proteins encoded by the XPA, -B, -C, -D, -F, and -G genes are required for nucleotide excision repair, and the XPV gene encodes DNA polymerase eta, which carries out translesion DNA synthesis. In contrast, the mechanism by which the XPE gene product prevents sunlight-induced cancers is not known. The gene (XPE/DDB2) encodes the small subunit of a heterodimeric DNA binding protein with high affinity to UV-damaged DNA (UV-damaged DNA binding protein [UV-DDB]). The DDB2 protein exists in at least four forms in the cell: monomeric DDB2, DDB1-DDB2 heterodimer (UV-DDB), and as a protein associated with both the Cullin 4A (CUL4A) complex and the COP9 signalosome. To better define the role of DDB2 in the cellular response to DNA damage, we purified all four forms of DDB2 and analyzed their DNA binding properties and their effects on mammalian nucleotide excision repair. We find that DDB2 has an intrinsic damaged DNA binding activity and that under our assay conditions neither DDB2 nor complexes that contain DDB2 (UV-DDB, CUL4A, and COP9) participate in nucleotide excision repair carried out by the six-factor human excision nuclease. PMID:16260596

  1. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core.

    PubMed Central

    Morris, J F; Hromas, R; Rauscher, F J

    1994-01-01

    The myeloid zinc finger gene 1, MZF1, encodes a transcription factor which is expressed in hematopoietic progenitor cells that are committed to myeloid lineage differentiation. MZF1 contains 13 C2H2 zinc fingers arranged in two domains which are separated by a short glycine- and proline-rich sequence. The first domain consists of zinc fingers 1 to 4, and the second domain is formed by zinc fingers 5 to 13. We have determined that both sets of zinc finger domains bind DNA. Purified, recombinant MZF1 proteins containing either the first set of zinc fingers or the second set were prepared and used to affinity select DNA sequences from a library of degenerate oligonucleotides by using successive rounds of gel shift followed by PCR amplification. Surprisingly, both DNA-binding domains of MZF1 selected similar DNA-binding consensus sequences containing a core of four or five guanine residues, reminiscent of an NF-kappa B half-site: 1-4, 5'-AGTGGGGA-3'; 5-13, 5'-CGGGnGAGGGGGAA-3'. The full-length MZF1 protein containing both sets of zinc finger DNA-binding domains recognizes synthetic oligonucleotides containing either the 1-4 or 5-13 consensus binding sites in gel shift assays. Thus, we have identified the core DNA consensus binding sites for each of the two DNA-binding domains of a myeloid-specific zinc finger transcription factor. Identification of these DNA-binding sites will allow us to identify target genes regulated by MZF1 and to assess the role of MZF1 as a transcriptional regulator of hematopoiesis. Images PMID:8114711

  2. The effects of grafting of 2-pyridyl to [Ru(bpy)(2)(Hpip)](2+) on acid-base and DNA-binding properties: experimental and DFT studies.

    PubMed

    Zhang, An-Guo; Yang, Huai-Xia; Yang, Ke-Zhi

    2011-06-01

    A new Ru(II) complex of [Ru(bpy)(2)(Hpip)](2+) {bpy = 2,2'bipyridine; Hppip = 2-(4-(pyridin-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)(2)(Hpip)](2+) {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}. The acid-base properties of [Ru(bpy)(2)(Hpip)](2+) studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)(2)(Hpip)](2+) that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) x 10(5) M-1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.

  3. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  4. DNA Binding and Photocleavage Properties, Cellular Uptake and Localization, and in-Vitro Cytotoxicity of Dinuclear Ruthenium(II) Complexes with Varying Lengths in Bridging Alkyl Linkers.

    PubMed

    Liu, Ping; Wu, Bao-Yan; Liu, Jin; Dai, Yong-Cheng; Wang, You-Jun; Wang, Ke-Zhi

    2016-02-15

    Two new dinuclear Ru(II) polypyridyl complexes containing three and ten methylene chains in their bridging linkers are synthesized and characterized. Their calf thymus DNA-binding and plasmid DNA photocleavage behaviors are comparatively studied with a previously reported, six-methylene-containing analog by absorption and luminescence spectroscopy, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, DNA viscosity measurements, DNA thermal denaturation, and agarose gel electrophoresis analyses. Theoretical calculations applying the density functional theory (DFT) method for the three complexes are also performed to understand experimentally observed DNA binding properties. The results show that the two complexes partially intercalate between the base pairs of DNA. Cellular uptake and colocalization studies have demonstrated that the complexes could enter HeLa cells efficiently and localize within lysosomes. The in-vitro antitumor activity against HeLa and MCF-7 tumor cells of the complexes are studied by MTT cytotoxic analysis. A new method, high-content analysis (HCA), is also used to assess cytotoxicity, apoptosis and cell cycle arrest of the three complexes. The results show that the lengths of the alkyl linkers could effectively tune their biological properties and that HCA is suitable for rapidly identifying cytotoxicity and can be substituted for MTT assays to evaluate the cell cytotoxicity of chemotherapeutic agents.

  5. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    PubMed

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  6. Solution Structure and DNA-binding Properties of the Winged Helix Domain of the Meiotic Recombination HOP2 Protein*

    PubMed Central

    Moktan, Hem; Guiraldelli, Michel F.; Eyster, Craig A.; Zhao, Weixing; Lee, Chih-Ying; Mather, Timothy; Camerini-Otero, R. Daniel; Sung, Patrick; Zhou, Donghua H.; Pezza, Roberto J.

    2014-01-01

    The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination. PMID:24711446

  7. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31.

    PubMed

    Wilson, S E; Smith, M C

    1998-05-15

    Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.

  8. Fluorescent and photochemical properties of a single zinc finger conjugated to a fluorescent DNA-binding probe.

    PubMed

    Thompson, M; Woodbury, N W

    2000-04-18

    A single zinc finger derived from the DNA-binding domain of the glucocorticoid receptor (GR) has been tethered to the intercalating fluorophore thiazole orange, and the DNA recognition characteristics of the conjugate have been examined. DNA sequence specificity for the peptide-dye conjugate, determined by steady-state fluorescence measurements and photoactivated DNA cleavage experiments, reproduce the binding features of response element recognition found in the native GR. The thiazole orange is able to intercalate and fluoresce when the conjugate binds, at concentrations where little fluorescence is observed from either the conjugate alone or the conjugate mixed with DNA lacking the zinc finger target sequence. The conjugate preferentially targets a 5'-TGTTCT-3' sequence (the native glucocorticoid receptor element) with a dissociation constant of about 25 nM. Lower binding affinities (up to 10-fold) are observed for single site variants of this sequence, and much lower affinity (40-50-fold) is observed for binding to the estrogen response element (which differs from the glucocorticoid receptor element at two positions) as well as to nonspecific DNA. Footprinting reactions show a 4-6 base pair region that is protected by the zinc finger moiety. Photocleavage assays reveal a several base pair region flanking the recognition sequence where the tethered thiazole orange moiety is able to intercalate and subsequently cleave DNA upon visible light exposure. Thiazole orange is also shown to oxidize the 5'-G of remote GG sequences, depending on the details of the intervening DNA sequence. Small synthetic protein-dye conjugates such as this one are potentially useful for a variety of purposes including sequence-specific probes that work under physiological conditions (without melting and hybridization of DNA), sequence-specific photocleavage agents, and self-assembling components in electron and energy transfer systems that utilize DNA as a scaffold and/or photochemical

  9. MSH1 is a plant organellar DNA binding and thylakoid protein under precise spatial regulation to alter development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As metabolic centers, plant organelles participate in maintenance, defense and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We inve...

  10. Synthesis, structure, DNA-binding properties and antioxidant activity of a nickel(II) complex with bis(N-allylbenzimidazol-2-ylmethyl)benzylamine.

    PubMed

    Wu, Huilu; Yuan, Jingkun; Bai, Ying; Pan, Guolong; Wang, Hua; Shu, Xingbin

    2012-02-01

    A V-shape ligand bis(N-allylbenzimidazol-2-ylmethyl)benzylamine (babb) and its nickel complex, [Ni(babb)(2)](pic)(2) (pic=picrate), have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray revealed that the coordination sphere around Ni(II) is distorted octahedral with a N(6) ligand set, in which six nitrogen atoms were afforded by two tridentate ligand babb. The DNA-binding properties of the free ligand babb and Ni(II) complex have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that babb and Ni(II) complex both bind to DNA via an intercalative binding mode, and the affinity for DNA is more strong in case of Ni(II) complex when compared with babb. The intrinsic binding constants (K(b)) of the Ni(II) complex and ligand with DNA were 3.65×10(4) M(-1) and 2.26×10(3) M(-1), respectively. Additionally, Ni(II) complex also exhibited potential antioxidant properties in vitro studies. PMID:22226085

  11. The effects of linear assembly of two carbazole groups on acid-base and DNA-binding properties of a ruthenium(II) complex.

    PubMed

    Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi

    2013-07-01

    A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy=2,2-bipyridine, Hbcpip=2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5±1.4)×10(5) M(-1) in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived.

  12. The effects of linear assembly of two carbazole groups on acid-base and DNA-binding properties of a ruthenium(II) complex

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi

    2013-07-01

    A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy = 2,2-bipyridine, Hbcpip = 2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5 ± 1.4) × 105 M-1 in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived.

  13. Novel substituted benzothiophene and thienothiophene carboxanilides and quinolones: synthesis, photochemical synthesis, DNA-binding properties, antitumor evaluation and 3D-derived QSAR analysis.

    PubMed

    Aleksić, Maja; Bertoša, Branimir; Nhili, Raja; Uzelac, Lidija; Jarak, Ivana; Depauw, Sabine; David-Cordonnier, Marie-Hélène; Kralj, Marijeta; Tomić, Sanja; Karminski-Zamola, Grace

    2012-06-14

    A series of new N,N-dimethylaminopropyl- and 2-imidazolinyl-substituted derivatives of benzo[b]thienyl- and thieno[2,3-b]thienylcarboxanilides and benzo[b]thieno[2,3-c]- and thieno[3',2':4,5]thieno[2,3-c]quinolones were prepared. Quinolones were prepared by the reaction of photochemical dehydrohalogenation of corresponding anilides. Carboxanilides and quinolones were tested for the antiproliferative activity. 2-Imidazolinyl-substituted derivatives showed very prominent activity. By use of the experimentally obtained antitumor measurements, 3D-derived QSAR analysis was performed for the set of compounds. Highly predictive 3D-derived QSAR models were obtained, and molecular properties that have the highest impact on antitumor activity were identified. Carboxanilides 6a-c and quinolones 9a-c and 11a were evaluated for DNA binding propensities and topoisomerases I and II inhibition as part of their mechanism of action assessment. The evaluated differences in the mode of action nicely correlate with the results of the 3D-QSAR analysis. Taken together, the results indicate which modifications of the compounds from the series should further improve their anticancer properties.

  14. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.

    PubMed

    Kuznetsov, Igor B; Gou, Zhenkun; Li, Run; Hwang, Seungwoo

    2006-07-01

    Proteins that interact with DNA are involved in a number of fundamental biological activities such as DNA replication, transcription, and repair. A reliable identification of DNA-binding sites in DNA-binding proteins is important for functional annotation, site-directed mutagenesis, and modeling protein-DNA interactions. We apply Support Vector Machine (SVM), a supervised pattern recognition method, to predict DNA-binding sites in DNA-binding proteins using the following features: amino acid sequence, profile of evolutionary conservation of sequence positions, and low-resolution structural information. We use a rigorous statistical approach to study the performance of predictors that utilize different combinations of features and how this performance is affected by structural and sequence properties of proteins. Our results indicate that an SVM predictor based on a properly scaled profile of evolutionary conservation in the form of a position specific scoring matrix (PSSM) significantly outperforms a PSSM-based neural network predictor. The highest accuracy is achieved by SVM predictor that combines the profile of evolutionary conservation with low-resolution structural information. Our results also show that knowledge-based predictors of DNA-binding sites perform significantly better on proteins from mainly-alpha structural class and that the performance of these predictors is significantly correlated with certain structural and sequence properties of proteins. These observations suggest that it may be possible to assign a reliability index to the overall accuracy of the prediction of DNA-binding sites in any given protein using its sequence and structural properties. A web-server implementation of the predictors is freely available online at http://lcg.rit.albany.edu/dp-bind/.

  15. Characterization of the DNA binding protein encoded by the N-specific filamentous Escherichia coli phage IKe. Binding properties of the protein and nucleotide sequence of the gene.

    PubMed

    Peeters, B P; Konings, R N; Schoenmakers, J G

    1983-09-01

    A DNA binding protein encoded by the filamentous single-stranded DNA phage IKe has been isolated from IKe-infected Escherichia coli cells. Fluorescence and in vitro binding studies have shown that the protein binds co-operatively and with a high specificity to single-stranded but not to double-stranded DNA. From titration of the protein to poly(dA) it has been calculated that approximately four bases of the DNA are covered by one monomer of protein. These binding characteristics closely resemble those of gene V protein encoded by the F-specific filamentous phages M13 and fd. The nucleotide sequence of the gene specifying the IKe DNA binding protein has been established. When compared to the nucleotide sequence of gene V of phage M13 it shows an homology of 58%, indicating that these two phages are evolutionarily related. The IKe DNA binding protein is 88 amino acids long which is one amino acid residue larger than the gene V protein sequence. When the IKe DNA binding protein sequence is compared with that of gene V protein it was found that 39 amino acid residues have identical positions in both proteins. The positions of all five tyrosine residues, a number of which are known to be involved in DNA binding, are conserved. Secondary structure predictions indicate that the two proteins contain similar structural domains. It is proposed that the tyrosine residues which are involved in DNA binding are the ones in or next to a beta-turn, at positions 26, 41 and 56 in gene V protein and at positions 27, 42 and 57 in the IKe DNA binding protein.

  16. Antioxidation and DNA-binding properties of binuclear lanthanide(III) complexes with a Schiff base ligand derived from 8-hydroxyquinoline-7-carboxaldehyde and benzoylhydrazine.

    PubMed

    Liu, Yongchun; Zhang, Kejun; Wu, Yun; Zhao, Junying; Liu, Jianning

    2012-08-01

    8-Hydroxyquinoline-7-carboxaldehyde (8-HQ-7-CA), Schiff-base ligand 8-hydroxyquinoline-7-carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO(3))(H(2)O)(2)](2) were prepared from the ligand and equivalent molar amounts of Ln(NO(3))·6H(2)O (Ln=La(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+), Ho(3+), Er(3+), Yb(3+), resp.). Ligand acts as dibasic tetradentates, binding to Ln(III) through the phenolate O-atom, N-atom of quinolinato unit, and C=N and -O-C=N- groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O-atoms leading to a central four-membered (LnO)(2) ring. Ligand and all of the Ln(III) complexes can strongly bind to CT-DNA through intercalation with the binding constants at 10(5)-10(6) M(-1). Moreover, ligand and all of the Ln(III) complexes have strong abilities of scavenging effects for hydroxyl (HO·) radicals. Both the antioxidation and DNA-binding properties of Ln(III) complexes are much better than that of ligand.

  17. Multiple forms of the human gene-specific transcription factor USF. II. DNA binding properties and transcriptional activity of the purified HeLa USF.

    PubMed

    Sawadogo, M

    1988-08-25

    The gene-specific upstream stimulatory transcription factor (USF) is required for maximal expression of the adenovirus major late promoter in vivo as well as in vitro. We have examined the DNA binding and transcriptional properties of USF purified to near-homogeneity from HeLa cell nuclei (Sawadogo, M., Van Dyke, M. W., Gregor, P. D., and Roeder, R. G. (1988) J. Biol. Chem. 263, 11985-11993). The 44-and 43,000-dalton forms of USF displayed identical affinities for the major late promoter upstream sequence. Specific binding parameters were greatly influenced by neighboring sequences, but not by the topological state of the DNA. The dissociation rate was highly dependent upon the concentration of competitor DNA, indicating that USF can efficiently transfer from one binding site to another by passing through a doubly bound intermediate state (direct transfer mechanism). Transcription stimulation by purified USF showed titration curves identical to those observed with cruder preparations of the transcription factor. However, the overall stimulation observed at saturating USF concentration was significantly lower with the purified protein. By contrast, interaction with TATA box-binding RNA polymerase II transcription factor D was observed with both USF-containing fractions. This could suggest the existence of two different mechanisms for upstream sequence-dependent transcription stimulation, where one critical component (or some necessary modification of the upstream factor itself) may be missing in reactions reconstituted with purified USF.

  18. New metal based drug as a therapeutic agent: Spectral, electrochemical, DNA-binding, surface morphology and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Muslu, Harun; Gölcü, Ayşegül

    2015-07-01

    Cu(II) complexes of non-steroidal anti-inflammatory drug (NSAID) Meloxicam (H2MLX) was synthesized and characterized via spectroscopic and analytical techniques. The thermal behavior of the complex was also analyzed. The photoluminescence properties of the compounds were analyzed under different conditions. The electrochemical properties of both ligand and complex have been analyzed by Cyclic Voltammetry (CV) using glassy carbon electrode. The biological activities of the compounds were evaluated through examining their capacity to bind to fish sperm double strand DNA (FSdsDNA) with absorption spectroscopy and differential pulse voltammetry (DPV). Absorption studies of the interaction of the H2MLX and its Cu(II) complex with FSdsDNA have indicated that these compounds could bind to FSdsDNA, and the binding constants were calculated. The morphology of the FSdsDNA, H2MLX, and Cu(II) complex were analyzed thanks to using scanning electron microscopy (SEM). In the DPV technique, pencil graphite electrode was used as a working electrode. The decrease in the intensity of the guanine oxidation signals was used as an indicator for the interaction mechanism.

  19. A beta-D-allopyranoside-grafted Ru(II) complex: synthesis and acid-base and DNA-binding properties.

    PubMed

    Ma, Yan-Zi; Yin, Hong-Ju; Wang, Ke-Zhi

    2009-08-01

    A new ruthenium(II) complex grafted with beta-d-allopyranoside, Ru(bpy)(2)(Happip)(ClO(4))(2) (where bpy = 2,2'-bipyridine; Happip = 2-(4-(beta-d-allopyranoside)phenyl)imidazo[4,5-f][1,10]phenanthroline), has been synthesized and characterized by elemental analysis, (1)H NMR spectroscopy, and mass spectrometry. The acid-base properties of the complex have been studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state ionization constants have been derived. The Ru(II) complex functions as a DNA intercalator as revealed by UV-visible and emission titrations, salt effects, steady-state emission quenching by [Fe(CN)(6)](4-), DNA competitive binding with ethidium bromide, DNA melting experiment, and viscosity measurements.

  20. Fluorescence studies, DNA binding properties and antimicrobial activity of a dysprosium(III) complex containing 1,10-phenanthroline.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-10-01

    Luminescence and binding properties of dysprosium(III) complex containing 1,10-phenanthroline (phen), [Dy(phen)2(OH2)3Cl]Cl2⋅H2O with DNA has been studied by electronic absorption, emission spectroscopy and viscosity measurement. The thermodynamic studies suggest that the interaction process to be endothermic and entropically driven, which indicates that the dysprosium(III) complex might interact with DNA by a non intercalation binding mode. Additionally, the competitive fluorescence study with ethidium bromide and also the effect of iodide ion and salt concentration on fluorescence of the complex-DNA system is investigated. Experimental results indicate that the Dy(III) complex strongly binds to DNA, presumably via groove binding mode. Furthermore, the complex shows a potent antibacterial activity and DNA cleavage ability.

  1. Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids

    PubMed Central

    Bakkaiova, Jana; Marini, Victoria; Willcox, Smaranda; Nosek, Jozef; Griffith, Jack D.; Krejci, Lumir; Tomaska, Lubomir

    2015-01-01

    Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species. PMID:26647378

  2. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma.

    PubMed Central

    Bailly, R A; Bosselut, R; Zucman, J; Cormier, F; Delattre, O; Roussel, M; Thomas, G; Ghysdael, J

    1994-01-01

    The 5' half of the EWS gene has recently been described to be fused to the 3' regions of genes encoding the DNA-binding domain of several transcriptional regulators, including ATF1, FLI-1, and ERG, in several human tumors. The most frequent occurrence of this situation results from the t(11;22)(q24;q12) chromosome translocation specific for Ewing sarcoma (ES) and related tumors which joins EWS sequences to the 3' half of FLI-1, which encodes a member of the Ets family of transcriptional regulators. We show here that this chimeric gene encodes an EWS-FLI-1 nuclear protein which binds DNA with the same sequence specificity as the wild-type parental FLI-1 protein. We further show that EWS-FLI-1 is an efficient sequence-specific transcriptional activator of model promoters containing FLI-1 (Ets)-binding sites, a property which is strictly dependent on the presence of its EWS domain. Comparison of the properties of the N-terminal activation domain of FLI-1 to those of the EWS domain of the fusion protein indicates that EWS-FLI-1 has altered transcriptional activation properties compared with FLI-1. These results suggest that EWS-FLI-1 contributes to the transformed phenotype of ES tumor cells by inducing the deregulated and/or unscheduled activation of genes normally responsive to FLI-1 or to other close members of the Ets family. ES and related tumors are characterized by an elevated level of c-myc expression. We show that EWS-FLI-1 is a transactivator of the c-myc promoter, suggesting that upregulation of c-myc expression is under control of EWS-FLI-1. Images PMID:8164678

  3. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  4. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties.

    PubMed

    Hussein, Mouayed A; Guan, Teoh S; Haque, Rosenani A; Khadeer Ahamed, Mohamed B; Abdul Majid, Amin M S

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.

  5. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties

    NASA Astrophysics Data System (ADS)

    Hussein, Mouayed A.; Guan, Teoh S.; Haque, Rosenani A.; Khadeer Ahamed, Mohamed B.; Abdul Majid, Amin M. S.

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3 μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.

  6. The effects of structural variations of thiophene-containing Ru(II) complexes on the acid-base and DNA binding properties.

    PubMed

    Yuan, Cui-Li; Zhang, An-Guo; Zheng, Ze-Bo; Wang, Ke-Zhi

    2013-03-01

    A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)₂(Hbptip)](PF₆)₂ {bpy = 2,2'-bipyridine, Hbptip = 2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, ¹H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid-base properties of the complex were studied by UV-visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK(a1) = 1.31 ± 0.09 and pK(a2) = 5.71 ± 0.11 with the pK(a2) associated deprotonation/protonation process occurring over 3 pK(a) units more acidic than thiophenyl-free parent complex of [Ru(bpy)₂(Hpip)]²⁺ {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)₂(Hbptip)]²⁺ in Tris-HCl buffer (pH 7.1 and 50 mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV-visible and emission spectroscopy techniques of UV-visible and luminescence titrations, steady-state emission quenching by [Fe(CN)₆]⁴⁻, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)₂(Hip)]²⁺, [Ru(bpy)₂(Htip)]²⁺, and [Ru(bpy)₂(Haptip)]²⁺ {Hip = 1H-imidazo[4,5-f][1,10]phenanthroline, Htip = 2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip = 2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.

  7. Expression of the varicella-zoster virus origin-binding protein and analysis of its site-specific DNA-binding properties.

    PubMed Central

    Chen, D; Olivo, P D

    1994-01-01

    The varicella-zoster virus (VZV) genome contains homologs to each of the seven herpes simplex virus (HSV) genes that are required for viral DNA synthesis. VZV gene 51 is homologous to HSV UL9, which encodes an origin of DNA replication binding protein (OBP). It was previously shown, by using a protein A fusion protein, that the product of gene 51 is a site-specific DNA-binding protein which binds to sequences within the VZV origin (Stow et al., Virology 177:570-577, 1990). In this report, gene 51 was expressed in an in vitro translation system. Rabbit antiserum raised against the carboxyl-terminal 20 amino acids was used to confirm expression of the full-length gene 51 protein, and site-specific DNA-binding activity was demonstrated in a gel retardation assay. The origin-binding domain was located within a 263-amino-acid region of the carboxyl terminus by using a series of deletion mutants. The affinity of binding of the VZV OBP to the three binding sites in the VZV origin was found to be similar. In addition, as with UL9, a CGC triplet within a 10-bp consensus sequence is critical to the interaction between the OBP and the origin. The HSV and VZV OBPs, therefore, appear to have virtually identical recognition sequences despite only 33% identity and 44% similarity in the primary structure of their site-specific DNA-binding domains. Images PMID:8189521

  8. The DNA binding property of PML/RARA but not the integrity of PML nuclear bodies is indispensable for leukemic transformation.

    PubMed

    Liu, Xi; Yuan, Hao; Peres, Laurent; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun

    2014-01-01

    PML/RARA is the oncoprotein driving acute promyelocytic leukemia (APL). It suppresses genes expression by recruitment of a number of transcriptional repressors, resulting in differentiation block and malignant transformation of hematopoietic cells. Here, we found that mice primary hematopoietic progenitor cells (HPCs), transduced by DNA-binding-defective PML/RARA mutants, were deficient in colony formation. Further experiments showed that DNA-binding-defective PML/RARA mutants could not repress the transcription of retinoic acid regulated genes. Intriguingly, there were no significant differences of the micro-speckled intracellular distribution between the mutants and wild-type PML/RARA. Some retinoic acid target genes regulated by PML/RARA are involved in not only differentiation block but also hematopoietic cell self-renewal. Altogether, our data demonstrate that direct DNA-binding is essential for PML/RARA to immortalize hematopoietic cells, while disruption of PML-nuclear body does not seem to be a prerequisite for hematopoietic cell transformation.

  9. A novel class of achiral seco-analogs of CC-1065 and the duocarmycins: design, synthesis, DNA binding, and anticancer properties.

    PubMed

    Kupchinsky, Stanley; Centioni, Sara; Howard, Tiffany; Trzupek, John; Roller, Shane; Carnahan, Virginia; Townes, Heather; Purnell, Bethany; Price, Carly; Handl, Heather; Summerville, Kaitlin; Johnson, Kimberly; Toth, James; Hudson, Stephen; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2004-12-01

    The synthesis, DNA binding properties, and in vitro and in vivo anticancer activity of fifteen achiral seco-cyclopropylindoline (or achiral seco-CI) analogs (5a-o) of CC-1065 and the duocarmycins are described. The achiral seco-CI analogs contain a 4-hydroxyphenethyl halide moiety that is attached to a wide range of indole, benzimidazole, pyrrole, and pyridyl-containing noncovalent binding components. The 4-hydroxyphenethyl halide moiety represents the simplest mimic of the seco-cyclopropylpyrroloindoline (seco-CPI) pharmacophore found in the natural products, and it lacks a chiral center. The sequence and minor groove specificity of the achiral compounds was ascertained using a Taq DNA polymerase stop assay and a thermal induced DNA cleavage experiment using either a fragment of pBR322 or pUC18 plasmid DNA. For example, seco-CI-InBf (5a) and seco-CI-TMI (5c) demonstrated specificity for AT-rich sequences, particularly by reacting with the underlined adenine-N3 position of 5'-AAAAA(865)-3'. This is also the sequence that CC-1065 and adozelesin prefer to alkylate. The achiral seco-CI compounds were subjected to cytotoxicity studies against several human (K562, LS174T, PC3, and MCF-7) and murine cancer cell lines (L1210 and P815). Following continuous drug exposure, the achiral compounds were found to be cytotoxic, with IC(50) values in the muM range. Interestingly, the carbamate protected compound 5p was significantly less cytotoxic than agent 5c, supporting the hypothesis that loss of HCl and formation of a spiro[2,5]cyclopropylcyclohexadienone intermediate is necessary for biological activity. The achiral seco-CI compounds 5a and 5c were submitted to the National Cancer Institute for further cytotoxicity screening against a panel of 60 different human cancer cell lines. Both compounds showed significant activity, particularly against several solid tumor cell lines. Flow cytometry studies of P815 cells that were incubated with compound 5c at its IC(50

  10. V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities.

    PubMed

    Wu, Huilu; Yang, Zaihui; Wang, Fei; Peng, Hongping; Zhang, Han; Wang, Cuiping; Wang, Kaitong

    2015-07-01

    A V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane (bebt) and its transition metal complexes, [Mn(bebt)(pic)2]·CH3OH (pic=picrate) 1, [Co(bebt)2](pic)22 and [Cu(bebt)2](pic)2·2DMF 3, have been synthesized and characterized. The coordinate forms of complexes 1 and 2 are basically alike, which can be described as six-coordinated distorted octahedron. The geometric structure around Cu(II) atom can be described as distorted tetrahedral in complex 3. The DNA-binding properties of the ligand bebt and complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that bebt and complexes bind to DNA via an intercalative binding mode and the order of the binding affinity is 1<2<3DNA-binding properties are also discussed. Moreover, the complex 3 possess significant antioxidant activity against superoxide and hydroxyl radicals, and the scavenging effects of it are stronger than standard mannitol and vitamin C.

  11. Mammalian Argonaute-DNA binding?

    PubMed

    Smalheiser, Neil R; Gomes, Octavio L A

    2015-01-01

    When a field shares the consensus that a particular phenomenon does NOT occur, this may reflect extensive experimental investigations with negative outcomes, or may represent the "common sense" position based on current knowledge and established ways of thinking. The current consensus of the RNA field is that eukaryotic Argonaute (Ago) proteins employ RNA guides and target other RNAs. The alternative -- that eukaryotic Ago has biologically important interactions with DNA in vivo - has not been seriously considered, in part because the only role contemplated for DNA was as a guide strand, and in part because it did not seem plausible that any natural source of suitable DNAs exists in eukaryotic cells. However, eukaryotic Argonaute domains bind DNA in the test tube, and several articles report that small inhibitory double-stranded DNAs do have the ability to silence target RNAs in a sequence-dependent (though poorly characterized) manner. A search of the literature identified potential DNA binding partners for Ago, including (among others) single-stranded DNAs residing in extracellular vesicles, and cytoplasmic satellite-repeat DNA fragments that are associated with the plasma membrane and transcribed by Pol II. It is interesting to note that both cytoplasmic and extracellular vesicle DNA are expressed at greatly elevated levels in cancer cells relative to normal cells. In such a pathological scenario, if not under normal conditions, there may be appreciable binding of Ago to DNA despite its lower affinity compared to RNA. If so, DNA might displace Ago from binding to its normal partners (miRNAs, siRNAs and other short ncRNAs), disrupting tightly controlled post-transcriptional gene silencing processes that are vital to correct functioning of a normal cell. The possible contribution to cancer pathogenesis is a strong motivator for further investigation of Ago-DNA binding. More generally, this case underscores the need for better informatics tools to allow

  12. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide.

    PubMed

    Satam, Vijay; Babu, Balaji; Patil, Pravin; Brien, Kimberly A; Olson, Kevin; Savagian, Mia; Lee, Megan; Mepham, Andrew; Jobe, Laura Beth; Bingham, John P; Pett, Luke; Wang, Shuo; Ferrara, Maddi; Bruce, Chrystal D; Wilson, W David; Lee, Moses; Hartley, John A; Kiakos, Konstantinos

    2015-09-01

    The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)).

  13. Rhodopsin targeted transcriptional silencing by DNA-binding

    PubMed Central

    Botta, Salvatore; Marrocco, Elena; de Prisco, Nicola; Curion, Fabiola; Renda, Mario; Sofia, Martina; Lupo, Mariangela; Carissimo, Annamaria; Bacci, Maria Laura; Gesualdo, Carlo; Rossi, Settimio; Simonelli, Francesca; Surace, Enrico Maria

    2016-01-01

    Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO) gain-of-function mutations we engineered the ZF6-DNA-binding protein (ZF6-DB) that targets 20 base pairs (bp) of a RHOcis-regulatory element (CRE) and demonstrate Rho specific transcriptional silencing upon adeno-associated viral (AAV) vector-mediated expression in photoreceptors. The data show that the 20 bp-long genomic DNA sequence is necessary for RHO expression and that photoreceptor delivery of the corresponding cognate synthetic trans-acting factor ZF6-DB without the intrinsic transcriptional repression properties of the canonical ED blocks Rho expression with negligible genome-wide transcript perturbations. The data support DNA-binding-mediated silencing as a novel mode to treat gain-of-function mutations. DOI: http://dx.doi.org/10.7554/eLife.12242.001 PMID:26974343

  14. Metal replacement in "zinc finger" and its effect on DNA binding.

    PubMed Central

    Predki, P F; Sarkar, B

    1994-01-01

    Metal replacement studies were used to investigate the metal requirement of a bacterially expressed polypeptide encoding the zinc finger DNA binding domain of the estrogen receptor. Apopolypeptide was generated by dialysis of native polypeptide against low-pH buffer under reducing conditions. Specific DNA binding can be restored by refolding the apopolypeptide in the presence of ionic zinc, cadmium, or cobalt. However, refolding in the presence of copper or nickel fails to regenerate DNA binding activity. While cobalt-reconstituted polypeptide has a reduced affinity for its AGGTCA-binding site compared to zinc- or cadmium-polypeptide, it has the surprising property of increased cooperative DNA binding. Our work indicates that metal substitution results in a range of effects upon DNA binding in vitro. The potential biological significance of metal substitution in vivo is discussed. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7843097

  15. New DNA-binding radioprotectors

    NASA Astrophysics Data System (ADS)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  16. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  17. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    PubMed

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. PMID:26700936

  18. Thiazole orange-peptide conjugates: sensitivity of DNA binding to chemical structure.

    PubMed

    Carreon, Jay R; Mahon, Kerry P; Kelley, Shana O

    2004-02-19

    [structure: see text] Derivatives of the highly fluorescent and DNA-binding dye thiazole orange (TO) are described that feature appended peptides. Functionalization of TO can be achieved at either of the endocyclic nitrogens, and the photophysical properties and DNA-binding modes are sensitive to the position of the tethered peptide. A series of TO-peptide conjugates are described, demonstrating the utility of a solid-phase synthesis approach to their preparation and illustrating how the photophysical and DNA-binding properties of the compounds are influenced by chemical structure.

  19. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA.

  20. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  1. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  2. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness.

    PubMed Central

    Weisshaar, B; Armstrong, G A; Block, A; da Costa e Silva, O; Hahlbrock, K

    1991-01-01

    Four cis-acting elements, designated as Boxes I, II, III and IV, have previously been identified as functionally relevant components of the light-responsive chalcone synthase (CHS) promoter in parsley (Petroselinum crispum). This paper describes the isolation of three cDNAs encoding proteins which bind specifically to Box II, one of two cis-acting elements found within a 52 bp CHS promoter region shown here to be sufficient for light responsiveness in parsley. The deduced amino acid sequences of all three proteins reveal conserved basic and leucine zipper domains characteristic of transcription factors of the bZIP class. Nucleotide sequences recognized by these factors contain an ACGT motif common to many cis-acting elements. Therefore, we have termed the proteins CPRF-1, -2 and -3 (Common Plant Regulatory Factor). The characteristics of CPRF-1 binding to Box II and the timing of transient CPRF-1 mRNA accumulation during light exposure of previously dark-grown parsley cells are consistent with the hypothesis that this factor participates in the light-mediated activation of the CHS gene in parsley. Images PMID:2050115

  3. DNA binding activities of the Caenorhabditis elegans Tc3 transposase.

    PubMed Central

    Colloms, S D; van Luenen, H G; Plasterk, R H

    1994-01-01

    Tc3 is a member of the Tc1/mariner family of transposable elements. All these elements have terminal inverted repeats, encode related transposases and insert exclusively into TA dinucleotides. We have studied the DNA binding properties of Tc3 transposase and found that an N-terminal domain of 65 amino acids binds specifically to two regions within the 462 bp Tc3 inverted repeat; one region is located at the end of the inverted repeat, the other is located approximately 180 bp from the end. Methylation interference experiments indicate that this N-terminal DNA binding domain of the Tc3 transposase interacts with nucleotides on one face of the DNA helix over adjacent major and minor grooves. Images PMID:7838706

  4. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    PubMed

    Morris, Gavin; Fanucchi, Sylvia

    2016-04-01

    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.

  5. Anilides and quinolones with nitrogen-bearing substituents from benzothiophene and thienothiophene series: synthesis, photochemical synthesis, cytostatic evaluation, 3D-derived QSAR analysis and DNA-binding properties.

    PubMed

    Aleksić, Maja; Bertoša, Branimir; Nhili, Raja; Depauw, Sabine; Martin-Kleiner, Irena; David-Cordonnier, Marie-Hélène; Tomić, Sanja; Kralj, Marijeta; Karminski-Zamola, Grace

    2014-01-01

    A series of new anilides (2a-c, 4-7, 17a-c, 18) and quinolones (3a-b, 8a-b, 9a-b, 10-15, 19) with nitrogen-bearing substituents from benzo[b]thiophene and thieno[2,3-c]thiophene series are prepared. Benzo[b]thieno[2,3-c]- and thieno[3',2':4,5]thieno[2,3-c]quinolones (3a-b, 8a-b) are synthesized by the reaction of photochemical dehydrohalogenation from corresponding anilides. Anilides and quinolones were tested for the antiproliferative activity. Fused quinolones bearing protonated aminium group, quaternary ammonium group, N-methylated and protonated aminium group, amino and protonated amino group (8a, 9b, 10-12) showed very prominent anticancer activity, whereby the hydrochloride salt of N',N'-dimethylaminopropyl-substituted quinolone (14) was the most active one, having the IC50 concentration at submicromolar range in accordance with previous QSAR predictions. On the other hand, flexible anilides were among the less active. Chemometric analysis of investigated compounds was performed. 3D-derived QSAR analysis identified solubility, metabolitic stability and the possibility of the compound to be ionized at pH 4-8 as molecular properties that are positively correlated with anticancer activity of investigated compounds, while molecular flexibility, polarizability and sum of hydrophobic surface areas were found to be negatively correlated. Anilides 2a-b, 4-7 and quinolones 3a-b, 8a-b, 9b and 10-14 were evaluated for DNA binding propensities and topoisomerases I/II inhibition as part of their mechanism of action. Among the anilides, only compound 7 presented some DNA binding propensity whereas the quinolones 8b, 9b and 10-14 intercalate in the DNA base pairs, compounds 8b, 9b and 14 being the most efficient ones. The strongest DNA intercalators, compounds 8b, 9b and 14, were clearly distinguished from the other compounds according to their molecular descriptors by the PCA and PLS analysis.

  6. Synthesis and Characterisation of Copper(II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application.

    PubMed

    Hazra, Madhumita; Dolai, Tanushree; Pandey, Akhil; Dey, Subrata Kumar; Patra, Animesh

    2014-01-01

    The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2) HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.

  7. Synthesis and Characterisation of Copper(II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    PubMed Central

    Hazra, Madhumita; Dolai, Tanushree; Pandey, Akhil; Dey, Subrata Kumar; Patra, Animesh

    2014-01-01

    The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2) HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand. PMID:25386109

  8. A novel trimeric Zn (II) complex based on 8-hydroxyquinoline with trifluoromethylbenzene group: Synthesis, crystal structure, photophysical properties and DNA binding

    NASA Astrophysics Data System (ADS)

    Huo, Yanping; Wang, Chunquan; Lu, Jiguo; Hu, Sheng; Li, Xiaoyang; Zhang, Li

    2015-10-01

    A novel 2-substituted-8-hydroxyquinoline ligand (E)-2-[2-(4-trifluoromethylphenyl)ethenyl]-8-hydroxyquinoline (3, HL) was synthesized and characterized by ESI-MS, NMR spectroscopy and elemental analysis. Using solvothermal method, a trimeric complex [Zn3L6] (4) was fabricated by self-assembly of Zn(II) ions with 3. X-ray structural analysis shows that 4 exhibits a trinuclear core, which was bridged and encapsulated by six 8-hydroxyquinolinate-based ligands. The supramolecular structure of 4 features a lamellar solid constructed by aromatic stacking interactions and nonclassical C-H···F hydrogen bonds derived from 4-trifluoromethylphenyl group of the 3. The coordination behavior of zinc salt and 3 in solution was performed by 1H NMR, UV-vis and Photoluminescence (PL). The experimental results show that the complex 4 emits yellow luminescence in the solid state. To investigate its properties further, we also studied the thermal stability, photophysical properties (fluorescent emission, lifetime) of complex 4, and the interactions between 4 and C60 or EtBr-DNA system.

  9. Synthesis, Characterization and Fluorescence Properties of Zn(II) and Cu(II) Complexes: DNA Binding Study of Zn(II) Complex.

    PubMed

    Lavaee, Parirokh; Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Mague, Joel T; Esmaeili, Abbas Ali; Abnous, Khalil

    2016-01-01

    Zinc(II) and copper(II) complexes containing Schiff base, 2- methoxy-6((E)-(phenylimino) methyl) phenol ligand (HL) were synthesized and characterized by elemental analysis, IR, NMR, and single crystal X-ray diffraction technique. The fluorescence properties and quantum yield of zinc complex were studied. Our data showed that Zn complex could bind to DNA grooves with Kb = 10(4) M(-1). Moreover, Zn complex could successfully be used in staining of DNA following agarose gel electrophoresis. MTT assay showed that Zn complex was not cytotoxic in MCF-7 cell line. Here, we introduce a newly synthesized fluorescence probe that can be used for single and double stranded DNA detection in both solution and agarose gels.

  10. Synthesis, Characterization and Fluorescence Properties of Zn(II) and Cu(II) Complexes: DNA Binding Study of Zn(II) Complex.

    PubMed

    Lavaee, Parirokh; Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Mague, Joel T; Esmaeili, Abbas Ali; Abnous, Khalil

    2016-01-01

    Zinc(II) and copper(II) complexes containing Schiff base, 2- methoxy-6((E)-(phenylimino) methyl) phenol ligand (HL) were synthesized and characterized by elemental analysis, IR, NMR, and single crystal X-ray diffraction technique. The fluorescence properties and quantum yield of zinc complex were studied. Our data showed that Zn complex could bind to DNA grooves with Kb = 10(4) M(-1). Moreover, Zn complex could successfully be used in staining of DNA following agarose gel electrophoresis. MTT assay showed that Zn complex was not cytotoxic in MCF-7 cell line. Here, we introduce a newly synthesized fluorescence probe that can be used for single and double stranded DNA detection in both solution and agarose gels. PMID:26538363

  11. Synthesis, structural characterization, DNA binding studies and antitumor properties of tin(II)-oxydiacetate complexes containing α-diimine as auxiliary ligand.

    PubMed

    Siddiqi, Zafar A; Sharma, Prashant K; Shahid, M; Khalid, Mohd

    2013-08-01

    Metal directed supra molecular assemblies with interesting topologies have been widely used as models for metallo-enzymes and in development of metallo-pharmaceuticals. Two novel tin(II)-oxydiacetate complexes with α-diimine (1,10-phenanthroline or 2,2'-bipyridine) as auxiliary ligand were synthesized and characterized by elemental analysis, FT-IR, (1)H-, (13)C- and (119)Sn-NMR and single crystal X-ray crystallography. The spectral investigations and X-ray data show that {Sn} is hepta coordinated with pentagonal bipyramidal (pbp) geometry of the complexes. The in vitro binding and cleavage studies using CT DNA by UV-visible, fluorescence and agarose gel electrophoresis techniques revealed that both complexes bind DNA via intercalation. The observed magnitudes of Kb for complexes (1) and (2) are 2.517×10(4) and 5.35×10(3), respectively, which suggest that (1) has strong binding affinity for CT DNA as compared to (2). The complexes were tested for antitumor properties and found highly active at 10(-4)M concentration against P388, HL-60 and A-549 cell lines.

  12. Cytotoxic Activities and DNA Binding Properties of 1-Methyl-7H-indeno[1,2-b]Quinolinium-7-(4-dimethylamino) Benzylidene Triflate

    PubMed Central

    Li, Wen; Ji, Yuan Yuan

    2012-01-01

    The interaction of calf thymus DNA (ct-DNA) with a novel synthesized pyrazolo[1,5-a]indole compound 1-methyl-7H-indeno[1,2-b]quinolinium-7-(4-dimethylamino) benzylidene triflate (MIDBT) was extensively studied by various spectroscopic techniques, viscosity measurements, and gel electrophoresis. The UV-visible observation implied that the compound interacted with ct-DNA by two binding modes, intercalating into the DNA base pairs and attaching to the helix exterior of DNA. The results of the fluorescent quenching and viscosity measurements showed that MIDBT could intercalate into DNA base pairs deeply in a classical intercalative mode. Circular dichroism results showed that the binding of MIDBT shifted ct-DNA conformation from B to A at low concentrations. In the gel electrophoresis, the compound was found to promote the cleavage of plasmid pBR 322 DNA effectively. Furthermore, cytotoxic studies of this compound against eleven selected tumor cell lines have been done. The values of 50% cytotoxic concentration (IC50) were in the range of 1.09–18.84 μM, exhibiting the potent cytotoxic properties. PMID:22277048

  13. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Barbieux, Claire; Bacharouche, Jalal; Soussen, Charles; Hupont, Sébastien; Razafitianamaharavo, Angélina; Klotz, Rémi; Pannequin, Rémi; Brie, David; Bécuwe, Philippe; Francius, Grégory; Grandemange, Stéphanie

    2016-02-01

    DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.

  14. DNA-binding properties of gene-5 protein encoded by bacteriophage M13. 2. Further characterization of the different binding modes for poly- and oligodeoxynucleic acids.

    PubMed

    Bulsink, H; Harmsen, B J; Hilbers, C W

    1988-10-01

    The binding of gene-5 protein, encoded by bacteriophage M13, to oligodeoxynucleic acids was studied by means of fluorescence binding experiments, fluorescence depolarization measurements and irreversible dissociation kinetics of the protein.nucleotide complexes with salt. The binding properties thus obtained are compared with those of the binding to polynucleotides, especially at very low salt concentration. It appears that the binding to oligonucleotides is always characterized by a stoichiometry (n) of 2-3 nucleotides/protein, and the absence of cooperativity. In contrast the protein can bind to polynucleotides in two different modes, one with a stoichiometry of n = 3 in the absence of salt and another with n = 4 at moderate salt concentrations. Both modes have a high intramode cooperativity (omega about 500) but are non-interacting and mutually exclusive. For deoxynucleic acids with a chain length of 25-30 residues a transition from oligonucleotide to polynucleotide binding is observed at increasing nucleotide/protein ratio in the solution. The n = 3 polynucleotide binding is very sensitive to the ionic strength and is only detectable at very low salt concentrations. The ionic strength dependency per nucleotide of the n = 4 binding is much less and is comparable with the salt dependency of the oligonucleotide binding. Furthermore it appears that the influence of the salt concentration on the oligonucleotide binding constant is to about the same degree determined by the effect of salt on the association and dissociation rate constants. Model calculations indicate that the fluorescence depolarization titration curves can only be explained by a model for oligonucleotide binding in which a protein dimer binds with its two dimer halves to the same strand. In addition it is only possible to explain the observed effect of the chain length of the oligonucleotide on both the apparent binding constant and the dissociation rate by assuming the existence of interactions

  15. Conserved Cysteine Residue in the DNA-Binding Domain of the Bovine Papillomavirus Type 1 E2 Protein Confers Redox Regulation of the DNA- Binding Activity in Vitro

    NASA Astrophysics Data System (ADS)

    McBride, Alison A.; Klausner, Richard D.; Howley, Peter M.

    1992-08-01

    The bovine papillomavirus type 1 E2 open reading frame encodes three proteins involved in viral DNA replication and transcriptional regulation. These polypeptides share a carboxyl-terminal domain with a specific DNA-binding activity; through this domain the E2 polypeptides form dimers. In this study, we demonstrate the inhibition of E2 DNA binding in vitro by reagents that oxidize or otherwise chemically modify the free sulfydryl groups of reactive cysteine residues. However, these reagents had no effect on DNA-binding activity when the E2 polypeptide was first bound to DNA, suggesting that the free sulfydryl group(s) may be protected by DNA binding. Sensitivity to sulfydryl modification was mapped to a cysteine residue at position 340 in the E2 DNA-binding domain, an amino acid that is highly conserved among the E2 proteins of different papillomaviruses. Replacement of this residue with other amino acids abrogated the sensitivity to oxidation-reduction changes but did not affect the DNA-binding property of the E2 protein. These results suggest that papillomavirus DNA replication and transcriptional regulation could be modulated through the E2 proteins by changes in the intracellular redox environment. Furthermore, a motif consisting of a reactive cysteine residue carboxyl-terminal to a lysine residue in a basic region of the DNA-binding domain is a feature common to a number of transcriptional regulatory proteins that, like E2, are subject to redox regulation. Thus, posttranslational regulation of the activity of these proteins by the intracellular redox environment may be a general phenomenon.

  16. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  17. Molecular beacons for detecting DNA binding proteins.

    PubMed

    Heyduk, Tomasz; Heyduk, Ewa

    2002-02-01

    We report here a simple, rapid, homogeneous fluorescence assay, the molecular beacon assay, for the detection and quantification of sequence-specific DNA-binding proteins. The central feature of the assay is the protein-dependent association of two DNA fragments each containing about half of a DNA sequence defining a protein-binding site. Protein-dependent association of DNA fragments can be detected by any proximity-based spectroscopic signal, such as fluorescence resonance energy transfer (FRET) between fluorochromes introduced into these DNA molecules. The assay is fully homogeneous and requires no manipulations aside from mixing of the sample and the test solution. It offers flexibility with respect to the mode of signal detection and the fluorescence probe, and is compatible with multicolor simultaneous detection of several proteins. The assay can be used in research and medical diagnosis and for high-throughput screening of drugs targeted to DNA-binding proteins.

  18. The effect of novel rhenium compounds on lymphosarcoma, PC-3 prostate and myeloid leukemia cancer cell lines and an investigation on the DNA binding properties of one of these compounds through electronic spectroscopy

    PubMed Central

    Parson, Carl; Smith, Valerie; Krauss, Christopher; Banerjee, Hirendra N.; Reilly, Christopher; Krause, Jeanette A.; Wachira, James M.; Giri, Dipak; Winstead, Angela; Mandal, Santosh K.

    2014-01-01

    Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination (formation of covalent bond) of the metal (platinum) to the nitrogen bases of DNA cause the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Many of them are in clinical trials now. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1–PC6). The rhenium atom in each compound is coordinated (bonded) to a planar polypyridyl aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. We have investigated the DNA binding properties of one of the PC-series of compounds (PC6) using electronic spectroscopy. The UV absorption titration of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is therefore likely that the other PC-series of compounds will behave in a similar manner. Thus it is expected that these compounds will exhibit negligible or no side effect. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2±2.6 µM), PC-3 prostate (average GI50 ≈ 3±2.8 µM) and myeloid leukemia (average GI50 ≈ 3±2.8 µM) cancer cell lines. The average GI50 values of the PC-series of compounds are 2–3 less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells. PMID:25221731

  19. A novel polynuclear Cu(I)-sulfur cluster with 1,2-dithiolate-o-carborane ligands as a potential in vitro antitumour agent and its DNA binding properties.

    PubMed

    Han, Zhong; Jiang, Jin; Lu, Jing; Li, Dacheng; Cheng, Shuang; Dou, Jianmin

    2013-04-14

    A novel polynuclear Cu(I)-sulfur cluster, (C54H62B30Cu6N8S6), bearing 1,2-dithiolate-o-carborane and 1,10-phenanthroline ligands was synthesized. The complex displayed rapid, low micromolar in vitro cytotoxicity against a range of epithelial tumour cells and efficient CT-DNA binding. PMID:23426331

  20. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.

    PubMed Central

    Ohme-Takagi, M; Shinshi, H

    1995-01-01

    We demonstrated that the GCC box, which is an 11-bp sequence (TAAGAGCCGCC) conserved in the 5' upstream region of ethylene-inducible pathogenesis-related protein genes in Nicotiana spp and in some other plants, is the sequence that is essential for ethylene responsiveness when incorporated into a heterologous promoter. Competitive gel retardation assays showed DNA binding activities to be specific to the GCC box sequence in tobacco nuclear extracts. Four different cDNAs encoding DNA binding proteins specific for the GCC box sequence were isolated, and their products were designated ethylene-responsive element binding proteins (EREBPs). The deduced amino acid sequences of EREBPs exhibited no homology with those of known DNA binding proteins or transcription factors; neither did the deduced proteins contain a basic leucine zipper or zinc finger motif. The DNA binding domain was identified within a region of 59 amino acid residues that was common to all four deduced EREBPs. Regions highly homologous to the DNA binding domain of EREBPs were found in proteins deduced from the cDNAs of various plants, suggesting that this domain is evolutionarily conserved in plants. RNA gel blot analysis revealed that accumulation of mRNAs for EREBPs was induced by ethylene, but individual EREBPs exhibited different patterns of expression. PMID:7756828

  1. Molecular Dynamics Simulations of p53 DNA-Binding Domain

    PubMed Central

    Lu, Qiang; Tan, Yu-Hong; Luo, Ray

    2008-01-01

    We have studied room-temperature structural and dynamic properties of the p53 DNA-binding domain in both DNA-bound and DNA-free states. A cumulative 55ns of explicit solvent molecular dynamics simulations with the Particle Mesh Ewald treatment of electrostatics were performed. It is found that the mean structures in the production portions of the trajectories agree well with the crystal structure: backbone root-mean squared deviations are in the range of 1.6Å and 2.0Å. In both simulations, noticeable backbone deviations from the crystal structure are observed only in loop L6, due to the lack of crystal packing in the simulations. More deviations are observed in the DNA-free simulation, apparently due to the absence of DNA. Computed backbone B-factor is also in qualitative agreement with the crystal structure. Interestingly little backbone structural change was observed between the mean simulated DNA-bound and DNA-free structures. Notable difference is only observed at the DNA-binding interface. The correlation between native contacts and inactivation mechanisms of tumor mutations is also discussed. In the H2 region, tumor mutations at sites D281, R282, E285, and E286 may weaken five key interactions that stabilize H2, indicating that their inactivation mechanisms may be related to the loss of local structure around H2, which in turn may reduce the overall stability to a measurable amount. In the L2 region, tumor mutations at sites Y163, K164, E171, V173, L194, R249, I251 and E271 are likely to be responsible for the loss of stability in the protein. In addition to apparent DNA contacts that are related to DNA binding, interactions R175/S183, S183/R196, and E198/N235 are highly occupied only in the DNA-bound form, indicating that they are more likely to be responsible for DNA binding. PMID:17824689

  2. DBSI: DNA-binding site identifier

    PubMed Central

    Zhu, Xiaolei; Ericksen, Spencer S.; Mitchell, Julie C.

    2013-01-01

    In this study, we present the DNA-Binding Site Identifier (DBSI), a new structure-based method for predicting protein interaction sites for DNA binding. DBSI was trained and validated on a data set of 263 proteins (TRAIN-263), tested on an independent set of protein-DNA complexes (TEST-206) and data sets of 29 unbound (APO-29) and 30 bound (HOLO-30) protein structures distinct from the training data. We computed 480 candidate features for identifying protein residues that bind DNA, including new features that capture the electrostatic microenvironment within shells near the protein surface. Our iterative feature selection process identified features important in other models, as well as features unique to the DBSI model, such as a banded electrostatic feature with spatial separation comparable with the canonical width of the DNA minor groove. Validations and comparisons with established methods using a range of performance metrics clearly demonstrate the predictive advantage of DBSI, and its comparable performance on unbound (APO-29) and bound (HOLO-30) conformations demonstrates robustness to binding-induced protein conformational changes. Finally, we offer our feature data table to others for integration into their own models or for testing improved feature selection and model training strategies based on DBSI. PMID:23873960

  3. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis.

    PubMed

    Zazopoulos, E; Lalli, E; Stocco, D M; Sassone-Corsi, P

    1997-11-20

    Mutations in the DAX-1 gene are responsible for congenital X-linked adrenal hypoplasia, a disease that is associated with hypogonadotropic hypogonadism. DAX-1 expression is tissue-specific and is finely regulated throughout development, suggesting that it has a role in both adrenal and gonadal function. DAX-1 is an unusual member of the nuclear-receptor superfamily of transcription factors which contains no canonical zinc-finger or any other known DNA-binding motif. Binding sites for DAX-1 are found in the promoters of the dax-1 and StAR (for steroidogenic acute regulatory protein) genes. Here we show that DAX-1 binds DNA and acts as a powerful transcriptional repressor of StAR gene expression, leading to a drastic decrease in steroid production. We provide in vitro and in vivo evidence that DAX-1 binds to DNA hairpin structures. Our results establish DAX-1 as the first member of the nuclear receptor superfamily with novel DNA-binding features and reveal that it has regulatory properties critical to the understanding of its physiological functions. PMID:9384387

  4. Two hypervariable minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Swenson, G; Moore, P D

    1991-06-25

    Hypervariable minisatellite DNA sequences are short, tandemly repeated sequences present at numerous loci in eukaryotes. They stimulate intermolecular homologous recombination up to 13-fold in human cells in culture and may be specific sites for the initiation of recombination in the eukaryotic genome (Wahls, W.P., Wallace, L.J., & Moore, P.D. (1990) Cell 60, 95-103). Reported here is the detection and partial purification of two hypervariable minisatellite DNA binding proteins, called Msbp-2 and Msbp-3, present in the nuclear extracts of human HeLa cells. The proteins elute from a gel filtration column with a native mass of 200-250 kDa and have sizes of 77 kDa and 115 kDa respectively. PMID:2062643

  5. Metal-catalyzed uncaging of DNA-binding agents in living cells

    PubMed Central

    Sánchez, Mateo I.; Penas, Cristina; Vázquez, M. Eugenio; Mascareñas, José L.

    2014-01-01

    Attachment of alloc protecting groups to the amidine units of fluorogenic DNA-binding bisbenzamidines or to the amino groups of ethidium bromide leads to a significant reduction of their DNA affinity. More importantly, the active DNA-binding species can be readily regenerated by treatment with ruthenium catalysts in aqueous conditions, even in cell cultures. The catalytic chemical uncaging can be easily monitored by fluorescence microscopy, because the protected products display both different emission properties and cell distribution to the parent compounds. PMID:24955233

  6. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex.

    PubMed

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-12-06

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel 'recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4-Met28-Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity.

  7. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates.

    PubMed

    Mosquera, Jesús; Sánchez, Mateo I; Valero, Julián; de Mendoza, Javier; Vázquez, M Eugenio; Mascareñas, José L

    2015-03-21

    Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract. In addition to stabilizing the complex with the target DNA, the oligoguanidinium unit also endows the conjugate with cell internalization properties.

  8. Inhibition of Pseudomonas aeruginosa ExsA DNA-Binding Activity by N-Hydroxybenzimidazoles

    PubMed Central

    Marsden, Anne E.; King, Jessica M.; Spies, M. Ashley; Kim, Oak K.

    2015-01-01

    The Pseudomonas aeruginosa type III secretion system (T3SS) is a primary virulence determinant and a potential target for antivirulence drugs. One candidate target is ExsA, a member of the AraC family of DNA-binding proteins required for expression of the T3SS. A previous study identified small molecules based on an N-hydroxybenzimidazole scaffold that inhibit the DNA-binding activity of several AraC proteins, including ExsA. In this study, we further characterized a panel of N-hydroxybenzimidazoles. The half-maximal inhibitory concentrations (IC50s) for the tested N-hydroxybenzimidazoles ranged from 8 to 45 μM in DNA-binding assays. Each of the N-hydroxybenzimidazoles protected mammalian cells from T3SS-dependent cytotoxicity, and protection correlated with reduced T3SS gene expression in a coculture infection model. Binding studies with the purified ExsA DNA-binding domain (i.e., lacking the amino-terminal self-association domain) confirmed that the activity of N-hydroxybenzimidazoles results from interactions with the DNA-binding domain. The interaction is specific, as an unrelated DNA-binding protein (Vfr) was unaffected by N-hydroxybenzimidazoles. ExsA homologs that control T3SS gene expression in Yersinia pestis, Aeromonas hydrophila, and Vibrio parahaemolyticus were also sensitive to N-hydroxybenzimidazoles. Although ExsA and Y. pestis LcrF share 79% sequence identity in the DNA-binding domain, differential sensitivities to several of the N-hydroxybenzimidazoles were observed. Site-directed mutagenesis based on in silico docking of inhibitors to the DNA-binding domain, and on amino acid differences between ExsA and LcrF, resulted in the identification of several substitutions that altered the sensitivity of ExsA to N-hydroxybenzimidazoles. Development of second-generation compounds targeted to the same binding pocket could lead to drugs with improved pharmacological properties. PMID:26574012

  9. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering. PMID:27094297

  10. DNA Binding Proteins and Drug Delivery Vehicles: Tales of Elephants and Snakes.

    PubMed

    Karpel, Richard L

    2015-01-01

    We compare the DNA-interactive properties of bacteriophage T4 gene 32 protein (gp32) with those of crotamine, a component of the venom of the South American rattlesnake. Gene 32 protein is a classical single-stranded DNA binding protein that has served as a model for this class of proteins. We discuss its biological functions, structure, binding specificities, and how it controls its own expression. In addition, we delineate the roles of the structural domains of gp32 and how they regulate the protein's various activities. Crotamine, a component of the venom of the South American rattlesnake, is probably not a DNA binding protein in nature, but clearly shows significant DNA binding in vitro. Crotamine has been shown to selectively disrupt rapidly dividing cells and this specificity has been demonstrated for crotamine-facilitated delivery of plasmid DNA Thus, crotamine, or a variant of the protein, could have important clinical and/or diagnostic roles. Understanding its DNA binding properties may therefore lead to more effective drug delivery vehicles.

  11. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    PubMed Central

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; Gomes da Silva, Lúcia Patrícia Bezerra; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Gois Ruiz, Ana Lucia Tasca; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a–h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N-(4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  12. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives.

    PubMed

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; da Silva, Lúcia Patrícia Bezerra Gomes; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a-h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 10(4) to 1.0 × 10(6) M(-1) and quenching constants from -0.2 × 10(4) to 2.18 × 10(4) M(-1) indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N- (4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  13. A threading-based method for the prediction of DNA-binding proteins with application to the human genome.

    PubMed

    Gao, Mu; Skolnick, Jeffrey

    2009-11-01

    Diverse mechanisms for DNA-protein recognition have been elucidated in numerous atomic complex structures from various protein families. These structural data provide an invaluable knowledge base not only for understanding DNA-protein interactions, but also for developing specialized methods that predict the DNA-binding function from protein structure. While such methods are useful, a major limitation is that they require an experimental structure of the target as input. To overcome this obstacle, we develop a threading-based method, DNA-Binding-Domain-Threader (DBD-Threader), for the prediction of DNA-binding domains and associated DNA-binding protein residues. Our method, which uses a template library composed of DNA-protein complex structures, requires only the target protein's sequence. In our approach, fold similarity and DNA-binding propensity are employed as two functional discriminating properties. In benchmark tests on 179 DNA-binding and 3,797 non-DNA-binding proteins, using templates whose sequence identity is less than 30% to the target, DBD-Threader achieves a sensitivity/precision of 56%/86%. This performance is considerably better than the standard sequence comparison method PSI-BLAST and is comparable to DBD-Hunter, which requires an experimental structure as input. Moreover, for over 70% of predicted DNA-binding domains, the backbone Root Mean Square Deviations (RMSDs) of the top-ranked structural models are within 6.5 A of their experimental structures, with their associated DNA-binding sites identified at satisfactory accuracy. Additionally, DBD-Threader correctly assigned the SCOP superfamily for most predicted domains. To demonstrate that DBD-Threader is useful for automatic function annotation on a large-scale, DBD-Threader was applied to 18,631 protein sequences from the human genome; 1,654 proteins are predicted to have DNA-binding function. Comparison with existing Gene Ontology (GO) annotations suggests that approximately 30% of our

  14. DNA binding activity of Ku during chemotherapeutic agent-induced early apoptosis.

    PubMed

    Iuchi, Katsuya; Yagura, Tatsuo

    2016-03-15

    Ku protein is a heterodimer composed of two subunits, and is capable of both sequence-independent and sequence-specific DNA binding. The former mode of DNA binding plays a crucial role in DNA repair. The biological role of Ku protein during apoptosis remains unclear. Here, we show characterization of Ku protein during apoptosis. In order to study the DNA binding properties of Ku, we used two methods for the electrophoresis mobility shift assay (EMSA). One method, RI-EMSA, which is commonly used, employed radiolabeled DNA probes. The other method, WB-EMSA, employed unlabeled DNA followed by western blot and detection with anti-Ku antiserum. In this study, Ku-DNA probe binding activity was found to dramatically decrease upon etoposide treatment, when examined by the RI-EMSA method. In addition, pre-treatment with apoptotic cell extracts inhibited Ku-DNA probe binding activity in the non-treated cell extract. The inhibitory effect of the apoptotic cell extract was reduced by DNase I treatment. WB-EMSA showed that the Ku in the apoptotic cell extract bound to fragmented endogenous DNA. Interestingly, Ku in the apoptotic cell extract purified by the Resource Q column bound 15-bp DNA in both RI-EMSA and WB-EMSA, whereas Ku in unpurified apoptotic cell extracts did not bind additional DNA. These results suggest that Ku binds cleaved chromosomal DNA and/or nucleosomes in apoptotic cells. In conclusion, Ku is intact and retains DNA binding activity in early apoptotic cells.

  15. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    SciTech Connect

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.; Llinás, Manuel

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened or eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.

  16. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  17. Synthesis, Fluorescence Spectra, Redox Property and the DNA Binding Studies of 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride: Evidences of the Formation of Neutral Radical Analogue.

    PubMed

    Kundu, Suman; Banerjee, Ananya; De, Arpan; Khan, Asma Yasmeen; Kumar, Gopinatha Suresh; Bhadra, Ranjan; Ghosh, Prasanta

    2015-11-01

    Reaction of acenaphthoquinone with N-phenyl-o-phenylenediamine in methanol in presence of HCl yielded 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride, [1][Cl]. [1][Cl] is brightly fluorescencent in dichloromethane (λex = 403 nm and λem = 442, 464, 488 nm) and water (λex = 408 nm and λem = 545 nm). Density functional theory (DFT) and time dependent (TD) DFT calculations on [1](+) at the B3LYP level of the theory elucidated that the origin of the lower energy excitation at around 400 nm is due to π → π(*) transition. [1](+) is redox active and exhibits a reversible cathodic wave at -0.66 V referenced to Fc(+)/Fc couple due to [1](+)/[1](•) redox couple. Electrogenerated neutral radical analogue [1](•) was characterized by electron paramagnetic resonance (EPR), UV-vis spectra and DFT calculations. DNA binding studies using the techniques of UV-vis absorption, fluorescence, circular dichroism (CD) spectra, viscosity, gel electrophoresis, hydrodynamic, isothermal titration calorimetry (ITC) and UV optical melting studies of [1][Cl] revealed that [1](+) is a strong DNA intercalator obeying neighbor exclusion principle. ITC experiment authenticated that the binding of [1](+) to DNA is entropy driven. PMID:26399541

  18. Synthesis, Fluorescence Spectra, Redox Property and the DNA Binding Studies of 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride: Evidences of the Formation of Neutral Radical Analogue.

    PubMed

    Kundu, Suman; Banerjee, Ananya; De, Arpan; Khan, Asma Yasmeen; Kumar, Gopinatha Suresh; Bhadra, Ranjan; Ghosh, Prasanta

    2015-11-01

    Reaction of acenaphthoquinone with N-phenyl-o-phenylenediamine in methanol in presence of HCl yielded 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride, [1][Cl]. [1][Cl] is brightly fluorescencent in dichloromethane (λex = 403 nm and λem = 442, 464, 488 nm) and water (λex = 408 nm and λem = 545 nm). Density functional theory (DFT) and time dependent (TD) DFT calculations on [1](+) at the B3LYP level of the theory elucidated that the origin of the lower energy excitation at around 400 nm is due to π → π(*) transition. [1](+) is redox active and exhibits a reversible cathodic wave at -0.66 V referenced to Fc(+)/Fc couple due to [1](+)/[1](•) redox couple. Electrogenerated neutral radical analogue [1](•) was characterized by electron paramagnetic resonance (EPR), UV-vis spectra and DFT calculations. DNA binding studies using the techniques of UV-vis absorption, fluorescence, circular dichroism (CD) spectra, viscosity, gel electrophoresis, hydrodynamic, isothermal titration calorimetry (ITC) and UV optical melting studies of [1][Cl] revealed that [1](+) is a strong DNA intercalator obeying neighbor exclusion principle. ITC experiment authenticated that the binding of [1](+) to DNA is entropy driven.

  19. Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops.

    PubMed

    Invernizzi, Gaetano; Tiberti, Matteo; Lambrughi, Matteo; Lindorff-Larsen, Kresten; Papaleo, Elena

    2014-09-01

    ARID is a DNA-binding domain involved in several transcriptional regulatory processes, including cell-cycle regulation and embryonic development. ARID domains are also targets of the Human Cancer Protein Interaction Network. Little is known about the molecular mechanisms related to conformational changes in the family of ARID domains. Thus, we have examined their structural dynamics to enrich the knowledge on this important family of regulatory proteins. In particular, we used an approach that integrates atomistic simulations and methods inspired by graph theory. To relate these properties to protein function we studied both the free and DNA-bound forms. The interaction with DNA not only stabilizes the conformations of the DNA-binding loops, but also strengthens pre-existing paths in the native ARID ensemble for long-range communication to those loops. Residues in helix 5 are identified as critical mediators for intramolecular communication to the DNA-binding regions. In particular, we identified a distal tyrosine that plays a key role in long-range communication to the DNA-binding loops and that is experimentally known to impair DNA-binding. Mutations at this tyrosine and in other residues of helix 5 are also demonstrated, by our approach, to affect the paths of communication to the DNA-binding loops and alter their native dynamics. Overall, our results are in agreement with a scenario in which ARID domains exist as an ensemble of substates, which are shifted by external perturbation, such as the interaction with DNA. Conformational changes at the DNA-binding loops are transmitted long-range by intramolecular paths, which have their heart in helix 5.

  20. Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein.

    PubMed

    Das, A

    1988-05-01

    The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmid are essential for transformation of plant cells. Overproduction of a virE-encoded gene product in Escherichia coli was achieved by construction of an operon fusion with the E. coli tryptophan (trp) operon. The virE2 gene product in E. coli partitioned into the insoluble membrane fraction. The protein was solubilized by treatment with 4 M urea at 0 degree C. DNA-protein binding experiments showed that a strong single-stranded (ss) DNA-binding activity was present in protein fractions containing the virE2 gene product. The binding was highly specific with little or no binding observed with either double-stranded DNA or ssRNA. No significant binding to Ti plasmid DNA sequences was observed. Protein blotting studies indicated that the ssDNA-binding activity was associated with the 68-kDa virE2 polypeptide. PMID:2452439

  1. MCM ring hexamerization is a prerequisite for DNA-binding

    SciTech Connect

    Froelich, Clifford A.; Nourse, Amanda; Enemark, Eric J.

    2015-09-13

    The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings to show that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in the hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.

  2. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  3. MCM ring hexamerization is a prerequisite for DNA-binding

    DOE PAGESBeta

    Froelich, Clifford A.; Nourse, Amanda; Enemark, Eric J.

    2015-09-13

    The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings to show that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in themore » hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.« less

  4. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs

    PubMed Central

    de Vega, Miguel; Lázaro, José M.; Mencía, Mario; Blanco, Luis; Salas, Margarita

    2010-01-01

    Bacteriophage φ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of φ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)2] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique φ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make φ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics. PMID:20823261

  5. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.

    PubMed

    de Vega, Miguel; Lázaro, José M; Mencía, Mario; Blanco, Luis; Salas, Margarita

    2010-09-21

    Bacteriophage ϕ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of ϕ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)(2)] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique ϕ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make ϕ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics. PMID:20823261

  6. Early diagnosis of systemic lupus erythmatosus using ANN models of dsDNA binding antibody sequence data.

    PubMed

    Bahari, Mohamad Hasan; Mahmoudi, Mahmoud; Azemi, Asad; Mirsalehi, Mir Mojtaba; Khademi, Morteza

    2010-01-01

    In this paper a new method based on artificial neural networks (ANN), is introduced for identifying pathogenic antibodies in Systemic Lupus Erythmatosus (SLE). dsDNA binding antibodies have been implicated in the pathogenesis of this autoimmune disease. In order to identify these dsDNA binding antibodies, the protein sequences of 42 dsDNA binding and 608 non-dsDNA binding antibodies were extracted from Kabat database and encoded using a physicochemical property of their amino acids namely Hydrophilicity. Encoded antibodies were used as the training patterns of a general regression neural network (GRNN). Simulation results show that the accuracy of proposed method in recognizing dsDNA binding antibodies is 83.2%. We have also investigated the roles of the light and heavy chains of anti-dsDNA antibodies in binding to DNA. Simulation results concur with the published experimental findings that in binding to DNA, the heavy chain of anti-dsDNA is more important than their light chain. PMID:21346864

  7. Visually Relating Gene Expression and in vivo DNA Binding Data

    SciTech Connect

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  8. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use. PMID:26443210

  9. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.

  10. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  11. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    SciTech Connect

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.

  12. 14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4*

    PubMed Central

    Silhan, Jan; Vacha, Petr; Strnadova, Pavla; Vecer, Jaroslav; Herman, Petr; Sulc, Miroslav; Teisinger, Jan; Obsilova, Veronika; Obsil, Tomas

    2009-01-01

    The role of 14-3-3 proteins in the regulation of FOXO forkhead transcription factors is at least 2-fold. First, the 14-3-3 binding inhibits the interaction between the FOXO and the target DNA. Second, the 14-3-3 proteins prevent nuclear reimport of FOXO factors by masking their nuclear localization signal. The exact mechanisms of these processes are still unclear, mainly due to the lack of structural data. In this work, we used fluorescence spectroscopy to investigate the mechanism of the 14-3-3 protein-dependent inhibition of FOXO4 DNA-binding properties. Time-resolved fluorescence measurements revealed that the 14-3-3 binding affects fluorescence properties of 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid moiety attached at four sites within the forkhead domain of FOXO4 that represent important parts of the DNA binding interface. Observed changes in 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid fluorescence strongly suggest physical contacts between the 14-3-3 protein and labeled parts of the FOXO4 DNA binding interface. The 14-3-3 protein binding, however, does not cause any dramatic conformational change of FOXO4 as documented by the results of tryptophan fluorescence experiments. To build a realistic model of the FOXO4·14-3-3 complex, we measured six distances between 14-3-3 and FOXO4 using Förster resonance energy transfer time-resolved fluorescence experiments. The model of the complex suggests that the forkhead domain of FOXO4 is docked within the central channel of the 14-3-3 protein dimer, consistent with our hypothesis that 14-3-3 masks the DNA binding interface of FOXO4. PMID:19416966

  13. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  14. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  15. Thiazole orange as the fluorescent intercalator in a high resolution fid assay for determining DNA binding affinity and sequence selectivity of small molecules.

    PubMed

    Boger, D L; Tse, W C

    2001-09-01

    The viability of using thiazole orange as an alternative to ethidium bromide in a fluorescent intercalator displacement (FID) assay is explored by profiling the DNA binding affinity and sequence selectivity of netropsin. Utilizing a library of hairpin deoxyoligonucleotides containing all possible four base-pair sequences, the method provides a high resolution profile of the DNA binding properties of small molecules in a high throughput format.

  16. Structural basis for DNA binding by replication initiator Mcm10

    SciTech Connect

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin; Greer, Briana; Bielinsky, Anja-Katrin; Chazin, Walter J.; Eichman, Brandt F.

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae result in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.

  17. Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2.

    PubMed

    Dombek, P; Ream, W

    1997-02-01

    The transferred DNA (T-DNA) portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid enters infected plant cells and integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events liberate the lower strand of the T-DNA from the Ti plasmid, producing single-stranded DNA molecules (T strands) that are covalently linked to VirD2 at their 5' ends. A. tumefaciens appears to transfer T-DNA into plant cells as a T-strand-VirD2 complex. The bacterium also transports VirE2, a cooperative single-stranded DNA-binding protein, into plant cells during infection. Both VirD2 and VirE2 contain nuclear localization signals that may direct these proteins, and bound T strands, into plant nuclei. Here we report the locations of functional regions of VirE2 identified by eight insertions of XhoI linker oligonucleotides, and one deletion mutation, throughout virE2. We examined the effects of these mutations on virulence, single-stranded DNA (ssDNA) binding, and accumulation of VirE2 in A. tumefaciens. Two of the mutations in the C-terminal half of VirE2 eliminated ssDNA binding, whereas two insertions in the N-terminal half altered cooperativity. Four of the mutations, distributed throughout virE2, decreased the stability of VirE2 in A. tumefaciens. In addition, we isolated a mutation in the central region of VirE2 that decreased tumorigenicity but did not affect ssDNA binding or VirE2 accumulation. This mutation may affect export of VirE2 into plant cells or nuclear localization of VirE2, or it may affect an uncharacterized activity of VirE2. PMID:9023198

  18. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    PubMed

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  19. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication

    PubMed Central

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and

  20. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    PubMed

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  1. Refined structure, DNA binding studies, and dynamics of the bacteriophage Pf3 encoded single-stranded DNA binding protein.

    PubMed

    Folmer, R H; Nilges, M; Papavoine, C H; Harmsen, B J; Konings, R N; Hilbers, C W

    1997-07-29

    The solution structure of the 18-kDa single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been refined using 40 ms 15N- and 13C-edited NOESY spectra and many homo- and heteronuclear J-couplings. The structures are highly precise, but some variation was found in the orientation of the beta-hairpin denoted the DNA binding wing with respect to the core of the protein. Backbone dynamics of the protein was investigated in the presence and absence of DNA by measuring the R1 and R2 relaxation rates of the 15N nuclei and the 15N-1H NOE. It was found that the DNA binding wing is much more flexible than the rest of the protein, but its mobility is largely arrested upon binding of the protein to d(A)6. This confirms earlier hypotheses on the role of this hairpin in the function of the protein, as will be discussed. Furthermore, the complete DNA binding domain of the protein has been mapped by recording two-dimensional TOCSY spectra of the protein in the presence and absence of a small amount of spin-labeled oligonucleotide. The roles of specific residues in DNA binding were assessed by stoichiometric titration of d(A)6, which indicated for instance that Phe43 forms base stacking interactions with the single-stranded DNA. Finally, all results were combined to form a set of experimental restraints, which were subsequently used in restrained molecular dynamics calculations aimed at building a model for the Pf3 nucleoprotein complex. Implying in addition some similarities to the well-studied M13 complex, a plausible model could be constructed that is in accordance with the experimental data.

  2. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    PubMed

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.

  3. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  4. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    PubMed

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.

  5. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    PubMed

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  6. The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains.

    PubMed

    Pedone, P V; Omichinski, J G; Nony, P; Trainor, C; Gronenborn, A M; Clore, G M; Felsenfeld, G

    1997-05-15

    The GATA family of vertebrate DNA binding regulatory proteins are expressed in diverse tissues and at different times of development. However, the DNA binding regions of these proteins possess considerable homology and recognize a rather similar range of DNA sequence motifs. DNA binding is mediated through two domains, each containing a zinc finger. Previous results have led to the conclusion that although in some cases the N-terminal finger can contribute to specificity and strength of binding, it does not bind independently, whereas the C-terminal finger is both necessary and sufficient for binding. Here we show that although this is true for the N-terminal finger of GATA-1, those of GATA-2 and GATA-3 are capable of strong independent binding with a preference for the motif GATC. Binding requires the presence of two basic regions located on either side of the N-terminal finger. The absence of one of these near the GATA-1 N-terminal finger probably accounts for its inability to bind. The combination of a single finger and two basic regions is a new variant of a motif that has been previously found in the binding domains of other finger proteins. Our results suggest that the DNA binding properties of the N-terminal finger may help distinguish GATA-2 and GATA-3 from GATA-1 and the other GATA family members in their selective regulatory roles in vivo. PMID:9184231

  7. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-01

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.

  8. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-01

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site. PMID:10037146

  9. A Ru(II) complex with 2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5- f][1,10]phenanthroline: Synthesis, characterization, and acid-base and DNA-binding properties

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Wang, Zhi-Ping; Yuan, Cui-Li; Jia, Hai-Shun; Wang, Ke-Zhi

    2011-09-01

    A new Ru(II) complex of [Ru(bpy) 2(Hmspip)]Cl 2 {in which bpy = 2,2'-bipyridine, Hmspip = 2-(4-(methylsulfonyl)phenyl)-1 H-imidazo[4,5- f][1,10]phenanthroline} have been synthesized and characterized. The ground- and excited-state acid-base properties of [Ru(bpy) 2(Hmspip)]Cl 2 and its parent complex of [Ru(bpy) 2(Hpip)]Cl 2 {Hpip = 2-phenyl-1H-imidazo[4,5- f][1,10]phenanthroline} have been studied by UV-visible (UV-vis) and emission spectrophotometric pH titrations. [Ru(bpy) 2(Hmspip)]Cl 2 acts as a calf thymus DNA intercalators with a binding constant of 4.0 × 10 5 M -1 in buffered 50 mM NaCl, as evidenced by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN) 6] 4-, DNA competitive binding with ethidium bromide, reverse salt titrations and viscosity measurements.

  10. A Ru(II) complex with 2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline: synthesis, characterization, and acid-base and DNA-binding properties.

    PubMed

    Gao, Jie; Wang, Zhi-Ping; Yuan, Cui-Li; Jia, Hai-Shun; Wang, Ke-Zhi

    2011-09-01

    A new Ru(II) complex of [Ru(bpy)2(Hmspip)]Cl2 {in which bpy=2,2'-bipyridine, Hmspip=2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} have been synthesized and characterized. The ground- and excited-state acid-base properties of [Ru(bpy)2(Hmspip)]Cl2 and its parent complex of [Ru(bpy)2(Hpip)]Cl2 {Hpip=2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline} have been studied by UV-visible (UV-vis) and emission spectrophotometric pH titrations. [Ru(bpy)2(Hmspip)]Cl2 acts as a calf thymus DNA intercalators with a binding constant of 4.0×10(5) M(-1) in buffered 50 mM NaCl, as evidenced by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, reverse salt titrations and viscosity measurements.

  11. dimerization and DNA binding alter phosphorylation of Fos and Jun

    SciTech Connect

    Abate, C.; Baker, S.J.; Curran, T. ); Lees-Miller, S.P.; Anderson, C.W. ); Marshak, D.R. )

    1993-07-15

    Fos and Jun form dimeric complexes that bind to activator protein 1 (AP-1) DNA sequences and regulate gene expression. The levels of expression and activities of these proteins are regulated by a variety of extracellular stimuli. They are thought to function in nuclear signal transduction processes in many different cell types. The role of Fos and Jun in gene transcription is complex and may be regulated in several ways including association with different dimerization partners, interactions with other transcription factors, effects on DNA topology, and reduction/oxidation of a conserved cysteine residue in the DNA-binding domain. In addition, phosphorylation has been suggested to control the activity of Fos and Jun. Here the authors show that phosphorylation of Fos and Jun by several protein kinases is affected by dimerization and binding to DNA. Jun homodimers are phosphorylated efficiently by casein kinase II, whereas Fos-Jun heterodimers are not. DNA binding also reduces phosphorylation of Jun by casein kinase II, p34[sup cdc2] (cdc2) kinase, and protein kinase C. Phosphorylation of Fos by cAMP-dependent protein kinase and cdc2 is relatively insensitive to dimerization and DNA binding, whereas phosphorylation of Fos and Jun by DNA-dependent protein kinase is dramatically stimulated by binding to the AP-1 site. These results imply that different protein kinases can distinguish among Fos and Jun proteins in the form of monomers, homodimers, and heterodimers and between DNA-bound and non-DNA-bound proteins. Thus, potentially, these different states of Fos and Jun can be recognized and regulated independently by phosphorylation. 44 refs., 4 figs.

  12. Combining Microarray and Genomic Data to Predict DNA Binding Motifs

    SciTech Connect

    Mao, Linyong; Mackenzie, Ronald C.; Roh, J. H.; Eraso, Jesus M.; Kaplan, Samuel; Resat, Haluk

    2005-10-01

    The ability to detect regulatory elements within genome sequences is important in understanding how gene expression is controlled in biological systems. In this work, we combine microarray data analysis with genome sequence analysis to predict DNA sequences in the photosynthetic bacterium Rhodobacter sphaeroides that bind the regulators PrrA, PpsR and FnrL. These predictions were made by using hierarchical clustering to detect genes that share similar expression patterns. The DNA sequences upstream of these genes were then searched for possible transcription factor recognition motifs that may be involved in their co-regulation. The approach used promises to be widely applicable for the prediction of cis-acting DNA binding elements. Using this method we were independently able to detect and extend the previously described consensus sequences that have been suggested to bind FnrL and PpsR. In addition we have predicted sequences that may be recognized by the global regulator PrrA. Our results support the earlier suggestions that the DNA binding sequence of PrrA may have a variable sized gap between its conserved block elements. Using the predicted DNA binding sequences, we have performed a whole genome scale analysis to determine the relative importance of the interplay between these three regulators PpsR, FnrL and PrrA. Results of this analysis showed that, compared to the regulation by PpsR and FnrL, a much larger number of genes are candidates to be regulated by PrrA. Our study demonstrates by example that integration of multiple data types can be a powerful approach for inferring transcriptional regulatory patterns in microbial systems, and it allowed us to detect the photosynthesis related regulatory patterns in R. sphaeroides.

  13. DNA binding to SMC ATPases-trapped for release.

    PubMed

    Schüler, Herwig; Sjögren, Camilla

    2016-04-01

    The SMC/Rad50/RecN proteins are universal DNA‐associated ABC‐type ATPases with crucial functions in genome maintenance. New insights into Rad50-DNA complex structure and cohesin regulation inspire a speculative look at the entire superfamily. Identification of a continuous DNA binding site across the Rad50 dimer interface (Liu et al, 2016; Seifert et al, 2016) suggests a similar site in cohesin. The localization of this site hints a DNA-activated mechanism for cohesin removal from chromosomes.

  14. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). PMID:23375483

  15. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1).

  16. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.

    PubMed

    Zhu, Yuan; Zhou, Weiqiang; Dai, Dao-Qing; Yan, Hong

    2013-01-01

    Interactions between biomolecules play an essential role in various biological processes. For predicting DNA-binding or protein-binding proteins, many machine-learning-based techniques have used various types of features to represent the interface of the complexes, but they only deal with the properties of a single atom in the interface and do not take into account the information of neighborhood atoms directly. This paper proposes a new feature representation method for biomolecular interfaces based on the theory of graph wavelet. The enhanced graph wavelet features (EGWF) provides an effective way to characterize interface feature through adding physicochemical features and exploiting a graph wavelet formulation. Particularly, graph wavelet condenses the information around the center atom, and thus enhances the discrimination of features of biomolecule binding proteins in the feature space. Experiment results show that EGWF performs effectively for predicting DNA-binding and protein-binding proteins in terms of Matthew's correlation coefficient (MCC) score and the area value under the receiver operating characteristic curve (AUC). PMID:24334394

  17. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions.

    PubMed

    Holguera, Isabel; Redrejo-Rodríguez, Modesto; Salas, Margarita; Muñoz-Espín, Daniel

    2014-01-01

    Protein-primed DNA replication constitutes a strategy to initiate viral DNA synthesis in a variety of prokaryotic and eukaryotic organisms. Although the main function of viral terminal proteins (TPs) is to provide a free hydroxyl group to start initiation of DNA replication, there are compelling evidences that TPs can also play other biological roles. In the case of Bacillus subtilis bacteriophage ϕ29, the N-terminal domain of the TP organizes viral DNA replication at the bacterial nucleoid being essential for an efficient phage DNA replication, and it contains a nuclear localization signal (NLS) that is functional in eukaryotes. Here we provide information about the structural properties of the ϕ29 TP N-terminal domain, which possesses sequence-independent DNA-binding capacity, and dissect the amino acid residues important for its biological function. By mutating all the basic residues of the TP N-terminal domain we identify the amino acids responsible for its interaction with the B. subtilis genome, establishing a correlation between the capacity of DNA-binding and nucleoid localization of the protein. Significantly, these residues are important to recruit the DNA polymerase at the bacterial nucleoid and, subsequently, for an efficient phage DNA replication.

  18. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma.

    PubMed

    Ritz, Olga; Guiter, Chrystelle; Castellano, Flavia; Dorsch, Karola; Melzner, Julia; Jais, Jean-Philippe; Dubois, Gwendoline; Gaulard, Philippe; Möller, Peter; Leroy, Karen

    2009-08-01

    Primary mediastinal B-cell lymphoma (PMBL) is a separate entity of aggressive B-cell lymphoma, characterized by a constitutive activation of janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, also observed in Hodgkin lymphoma. Although many cancers exhibit constitutive JAK-STAT pathway activation, mutations of STAT genes have not been reported in neoplasms. Here, we show that MedB-1 PMBL-derived and L1236 Hodgkin-derived cell lines and 20 of 55 (36%) PMBL cases harbor heterozygous missense mutations in STAT6 DNA binding domain, whereas no mutation was found in 25 diffuse large B-cell lymphoma samples. In 3 cases, somatic origin was indicated by the absence of the mutations in the nontumoral tissue. The pattern of STAT6 mutations was different from the classical features of somatic hypermutations. The mutant STAT6 proteins showed a decreased DNA binding ability in transfected HEK cells, but no decrease in expression of STAT6 canonical target genes was observed in PMBL cases with a mutated STAT6 gene. Although the oncogenic properties of STAT6 mutant proteins remain to be determined, their recurrent selection in PMBL strongly argues for their involvement in the pathogenesis of this aggressive B-cell lymphoma. PMID:19423726

  19. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    SciTech Connect

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean; Isern, Nancy G.; Chen, Yuan

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We have solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.

  20. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA

    SciTech Connect

    Sharma A.; Heroux A.; Jenkins K. R.; Bowman G. D.

    2011-12-09

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.

  1. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  2. Inhibition of Estrogen Receptor-DNA Binding by the "Pure" Antiestrogen ICI 164,384 Appears to be Mediated by Impaired Receptor Dimerization

    NASA Astrophysics Data System (ADS)

    Fawell, Stephen E.; White, Roger; Hoare, Susan; Sydenham, Mark; Page, Martin; Parker, Malcolm G.

    1990-09-01

    Many estrogen-antagonist and -agonist ligands have been synthesized, some of which have proved clinically important in the treatment of hormone-dependent breast tumors and endocrine disorders. Here we show that the "pure" antiestrogen ICI 164,384 inhibits mouse estrogen receptor-DNA binding in vitro. The effects of this steroid on DNA binding can be overcome by addition of an anti-receptor antibody whose epitope lies N-terminal to the receptor DNA-binding domain. Since this antibody is also capable of restoring DNA-binding activity to receptor mutants that either lack the dimerization domain or bear deleterious mutations within it, we propose that ICI 164,384 reduces DNA binding by interfering with receptor dimerization. In contrast, when complexed with the antagonist/partial agonist tamoxifen, the estrogen receptor is capable of binding to DNA in vitro, but tamoxifen does not promote the agonist-induced conformational change obtained with estradiol. The implications of these data are discussed in relation to the in vivo properties of these drugs.

  3. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    SciTech Connect

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  4. gDNA-Prot: Predict DNA-binding proteins by employing support vector machine and a novel numerical characterization of protein sequence.

    PubMed

    Zhang, Yan-Ping; Wuyunqiqige; Zheng, Wei; Liu, Shuyi; Zhao, Chunguang

    2016-10-01

    DNA-binding proteins are the functional proteins in cells, which play an important role in various essential biological activities. An effective and fast computational method gDNA-Prot is proposed to predict DNA-binding proteins in this paper, which is a DNA-binding predictor that combines the support vector machine classifier and a novel kind of feature called graphical representation. The DNA-binding protein sequence information was described with the 20 probabilities of amino acids and the 23 new numerical graphical representation features of a protein sequence, based on 23 physicochemical properties of 20 amino acids. The Principal Components Analysis (PCA) was employed as feature selection method for removing the irrelevant features and reducing redundant features. The Sigmod function and Min-max normalization methods for PCA were applied to accelerate the training speed and obtain higher accuracy. Experiments demonstrated that the Principal Components Analysis with Sigmod function generated the best performance. The gDNA-Prot method was also compared with the DNAbinder, iDNA-Prot and DNA-Prot. The results suggested that gDNA-Prot outperformed the DNAbinder and iDNA-Prot. Although the DNA-Prot outperformed gDNA-Prot, gDNA-Prot was faster and convenient to predict the DNA-binding proteins. Additionally, the proposed gNDA-Prot method is available at http://sourceforge.net/projects/gdnaprot.

  5. Solution structure of the single-stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: similarity to other proteins binding to single-stranded nucleic acids.

    PubMed Central

    Folmer, R H; Nilges, M; Konings, R N; Hilbers, C W

    1995-01-01

    The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins. Images PMID:7556054

  6. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris.

    PubMed

    Leßmeier, Lennart; Alkhateeb, Rabeaa S; Schulte, Fabian; Steffens, Tim; Loka, Tobias Pascal; Pühler, Alfred; Niehaus, Karsten; Vorhölter, Frank-Jörg

    2016-08-20

    At a molecular level, the regulation of many important cellular processes is still obscure in xanthomonads, a bacterial group of outstanding relevance as world-wide plant pathogens and important for biotechnology as producers of the polysaccharide xanthan. Transcriptome analysis indicated a sucrose-dependent regulation of 18 genes in Xanthomonas campestris pv. campestris (Xcc) B100. The expression of 12 of these genes was clearly increased in the presence of sucrose. Only part of these genes was obviously involved in sucrose utilization. To identify regulatory proteins involved in transcriptional regulation, a DNA fragment-specific pull-down approach was established for Xcc. Putative promoter regions were identified and used to isolate DNA-binding proteins, which were separated by SDS PAGE and identified by MALDI-TOF mass spectrometry. This led to the identification of four transcriptional regulators, among them the global transcriptional regulator Clp and a previously identified regulator of sucrose utilization, SuxR, plus a third DNA-binding transcriptional regulator encoded by xcc-b100_2861 and recently shown to interact with a cyclic di-GMP-binding protein. The fourth regulatory protein was encoded by xcc-b100_2791. These results indicate DNA fragment-specific pull-down experiments as promising approaches to screen for specific DNA-binding regulatory proteins in Xcc. PMID:27060555

  7. Functional analysis of an auxin-inducible DNA-binding protein gene

    PubMed Central

    Bernstein, Any; Mangeon, Amanda; Almeida-Engler, Janice; Engler, Gilbert; Montagu, Marc Van; Sachetto-Martins, Gilberto; de Oliveira, Dulce Eleonora

    2015-01-01

    Over the past decades, several studies indicate a correlation between the phytohormone auxin and cell division. The molecular players of this signaling pathway are now being uncovered. DNA Binding Protein1 from Arabidopsis (AtDBP1) is an auxin-inducible gene able to bind DNA non-specifically. In this work the tissue-expression pattern of this gene was investigated. Promoter-GUS analysis demonstrated that the AtDBP1 promoter is active in regions exhibiting intense cell division such as meristems and nematode feeding sites. Also, the promoter expression was modulated upon incubation with cell cycle blockers, indicating a potential role in cell division for this gene. Lastly, AtDBP1 antisense plants presented a higher insensitivity to auxin, and interfered negatively with auxin–induced callus formation and reduced apical dominance. PMID:25482757

  8. Functional analysis of an auxin-inducible DNA-binding protein gene.

    PubMed

    Bernstein, Any; Mangeon, Amanda; Almeida-Engler, Janice; Engler, Gilbert; Van Montagu, Marc; Sachetto-Martins, Gilberto; de Oliveira, Dulce Eleonora

    2015-01-01

    Over the past decades, several studies indicate a correlation between the phytohormone auxin and cell division. The molecular players of this signaling pathway are now being uncovered. DNA Binding Protein1 from Arabidopsis (AtDBP1) is an auxin-inducible gene able to bind DNA non-specifically. In this work the tissue-expression pattern of this gene was investigated. Promoter-GUS analysis demonstrated that the AtDBP1 promoter is active in regions exhibiting intense cell division such as meristems and nematode feeding sites. Also, the promoter expression was modulated upon incubation with cell cycle blockers, indicating a potential role in cell division for this gene. Lastly, AtDBP1 antisense plants presented a higher insensitivity to auxin, and interfered negatively with auxin-induced callus formation and reduced apical dominance.

  9. DNA-binding affinity and sequence permutation preference of the telomere protein from Euplotes crassus

    PubMed Central

    Suzuki, Takahito; McKenzie, Margaret; Ott, Elizabeth; Ilkun, Olesya; Horvath, Martin P.

    2008-01-01

    Telomere end binding proteins from diverse organisms use various forms of an ancient protein structure to recognize and bind with single strand DNA found at the ends of telomeres. To further understand the biochemistry and evolution of these proteins we have characterized the DNA-binding properties of the telomere end binding protein from Euplotes crassus (EcTEBP). EcTEBP and its predicted amino-terminal DNA-binding domain, EcTEBP-N, were expressed in E. coli and purified. Each protein formed stoichiometric (1:1) complexes with single strand DNA oligos derived from the precisely defined d(TTTTGGGGTTTTGG) sequence found at DNA termini in Euplotes. Dissociation constants for DNA•EcTEBP and DNA•EcTEBP-N were comparable, with KD-DNA = 38 ± 2 nM for the full-length protein and KD-DNA = 60 ± 4 nM for the N-terminal domain, indicating that the N-terminal domain retains high affinity for DNA even in the absence of potentially stabilizing moieties located in the C-terminal domain. Rate constants for DNA association and DNA dissociation corroborated a slightly improved DNA binding performance for the full-length protein (ka = 45 ± 4 μM-1 s-1, kd = 0.10 ± 0.02 s-1) relative to the N-terminal domain (ka = 18 ± 1 μM-1 s-1, kd = 0.15 ± 0.01 s-1). Equilibrium dissociation constants measured for sequence permutations of the telomere repeat spanned a 55 – 1400 nM range, with EcTEBP and EcTEBP-N binding most tightly to d(TTGGGGTTTTGG) — the sequence corresponding with that of mature DNA termini. Additionally, competition experiments showed that EcTEBP recognizes and binds the telomere-derived 14-nucleotide DNA in preference to shorter 5′ -truncation variants. Compared with multi-subunit complexes assembled with telomere single strand DNA from Oxytricha nova, our results highlight the relative simplicity of the Euplotes crassus system where a telomere end binding protein has biochemical properties indicating one protein subunit caps the single strand DNA. PMID

  10. Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA-DNA pairing.

    PubMed

    Lin, Jiangguo; Countryman, Preston; Chen, Haijiang; Pan, Hai; Fan, Yanlin; Jiang, Yunyun; Kaur, Parminder; Miao, Wang; Gurgel, Gisele; You, Changjiang; Piehler, Jacob; Kad, Neil M; Riehn, Robert; Opresko, Patricia L; Smith, Susan; Tao, Yizhi Jane; Wang, Hong

    2016-07-27

    Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding. PMID:27298259

  11. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition.

    PubMed

    Thakur, Meghna; Seo, Eun Joo; Dever, Thomas E

    2014-02-01

    Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.

  12. N-terminal DNA-binding domains contribute to differential DNA-binding specificities of NF-kappa B p50 and p65.

    PubMed Central

    Toledano, M B; Ghosh, D; Trinh, F; Leonard, W J

    1993-01-01

    We previously reported that either oxidation or alkylation of NF-kappa B in vitro abrogates DNA binding. We used this phenomenon to help elucidate structural determinants of NF-kappa B binding. We now demonstrate that Cys-62 of NF-kappa B p50 mediates the redox effect and lies within an N-terminal region required for DNA binding but not for dimerization. Several point mutations in this region confer a transdominant negative binding phenotype to p50. The region is highly conserved in all Rel family proteins, and we have determined that it is also critical for DNA binding of NF-kappa B p65. Replacement of the N-terminal region of p65 with the corresponding region from p50 changes its DNA-binding specificity towards that of p50. These data suggest that the N-terminal regions of p50 and p65 are critical for DNA binding and help determine the DNA-binding specificities of p50 and p65. We have defined within the N-terminal region a sequence motif, R(F/G)(R/K)YXCE, which is present in Rel family proteins and also in zinc finger proteins capable of binding to kappa B sites. The potential significance of this finding is discussed. Images PMID:8423807

  13. Novel method for identifying sequence-specific DNA-binding proteins.

    PubMed Central

    Levens, D; Howley, P M

    1985-01-01

    We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene. Images PMID:3016526

  14. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    PubMed Central

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  15. Protein−DNA binding in the absence of specific base-pair recognition

    PubMed Central

    Afek, Ariel; Schipper, Joshua L.; Horton, John; Gordân, Raluca; Lukatsky, David B.

    2014-01-01

    Until now, it has been reasonably assumed that specific base-pair recognition is the only mechanism controlling the specificity of transcription factor (TF)−DNA binding. Contrary to this assumption, here we show that nonspecific DNA sequences possessing certain repeat symmetries, when present outside of specific TF binding sites (TFBSs), statistically control TF−DNA binding preferences. We used high-throughput protein−DNA binding assays to measure the binding levels and free energies of binding for several human TFs to tens of thousands of short DNA sequences with varying repeat symmetries. Based on statistical mechanics modeling, we identify a new protein−DNA binding mechanism induced by DNA sequence symmetry in the absence of specific base-pair recognition, and experimentally demonstrate that this mechanism indeed governs protein−DNA binding preferences. PMID:25313048

  16. Survey of variation in human transcription factors reveals prevalent DNA binding changes

    PubMed Central

    Barrera, Luis A.; Rogers, Julia M.; Gisselbrecht, Stephen S.; Rossin, Elizabeth J.; Woodard, Jaie; Mariani, Luca; Kock, Kian Hong; Inukai, Sachi; Siggers, Trevor; Shokri, Leila; Gordân, Raluca; Sahni, Nidhi; Cotsapas, Chris; Hao, Tong; Yi, Song; Kellis, Manolis; Daly, Mark J.; Vidal, Marc; Hill, David E.; Bulyk, Martha L.

    2016-01-01

    Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA-binding activity and used universal protein binding microarrays to assay sequence-specific DNA-binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA-binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA-binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA-binding activities, which may contribute to phenotypic variation. PMID:27013732

  17. [Pseudo-furocoumarin: synthesis, DNA-binding behavior and cytotoxicity].

    PubMed

    Xie, Li-Juan; Chen, Zhuo

    2014-11-01

    Furocoumarin shows some antitumor activity when it is radiated by the UV light. In order to improve the antitumor activity of furocoumarin under standard environment conditions, the "minimal DNA-intercalating" hypothesis was firstly introduced to the structural modification of furocoumarin, which resulted in the design of pseudo-furocoumarin. The pseudo-furocoumarin was synthesized by two-step reaction including Pechmann reaction catalyzed by conc. H2SO4 and Suzuki coupling reaction catalyzed by Pd(PPh3)4. The structural character of the pseudo-furocoumarin is that the bonding mode of furan ring fused to the coumarin is replaced by a chemical single bond between furan ring and coumarin. The interaction of the pseudo-furocoumarin with calf thymus DNA (CT-DNA) has been respectively investigated by using DNA melting curve, UV-Vis absorption spectra, fluorescence spectra and viscosity titration, and the modes of DNA-binding for the pseudo-furocoumarin have been proposed. Based on the results of DNA melting curve, spectra and viscosity titration, it was suggested that 5a and 5b bind to DNA by the partial intercalation and classical intercalation, respectively. The DNA-binding behaviors of 5c and 5d have been rarely reported in literature and may be interpreted in terms of bridge-structure. All target compounds, except 5b, show a decreasing capability of intercalation to DNA. Further, the antiproliferative activities of the pseudo-furocoumarin on human lung adenocarcinoma (A549), human breast cancer (MCF-7) and human ovarian carcinoma cell line (SKOV-3) in vitro were evaluated using the sulforhodamine B (SRB) protein statin assay. All pseudo-furocoumarin exhibited an improved anti-proliferative activity as compared with the control compound psoralen (PS, a linear furocoumarin). Interestingly the pseudo-furocoumarin binding to DNA by a non-classical intercalation mode showed a stronger anti-proliferative activity than PS. The present study extended the applied areas of

  18. A tobacco DNA binding protein that interacts with a light-responsive box II element.

    PubMed Central

    Perisic, O; Lam, E

    1992-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase plays a key role in photosynthetic carbon fixation in higher plants. The small subunit of this chloroplast enzyme (rbcS), encoded by a family of nuclear genes, is regulated at the transcriptional level by light. Promoter analyses have previously identified the box II sequence as a cis element critical for the light-regulated expression of rbcS genes. Nuclear factor GT-1 binds specifically to this element and is one of the plant nuclear factors that has been detected and studied in great detail. Here we describe the cloning and characterization of a tobacco cDNA encoding a protein, designated B2F (Box II Factor), with similar binding specificity and mobility in gel retardation assays as nuclear GT-1. Steady state levels of mRNA encoding B2F do not appear to be regulated by light; this is consistent with the previous observation that nuclear GT-1 activity is present in extracts from both light-grown and dark-adapted plants. Sequence comparison with another plant trans-acting factor, GT-2, which binds to a GT-like element in the rice phytochrome promoter, shows striking homology in three putative alpha-helices that may be involved in DNA binding. PMID:1392597

  19. Computational redesign of endonuclease DNA binding and cleavage specificity

    NASA Astrophysics Data System (ADS)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  20. Genomic DNA binding to ZnO microrods

    NASA Astrophysics Data System (ADS)

    Guzmán-Embús, D. A.; Cardozo, M. Orrego; Vargas-Hernández, C.

    2015-08-01

    In this work, ZnO microrods were produced by hydrothermal synthesis. DNA was extracted from pork spleen cells by cellular lysis, deproteinization and precipitation. The analysis of the DNA binding to the ZnO was performed using Raman spectroscopy a technique that allowed for the evaluation of the effect that the presence of the ZnO in the complex has on the DNA structure. Vibrational spectral bands from the DNA molecule and hexagonal wurtzite ZnO were observed and classified as E2(M), A1(TO), E2(High), E1(LO) and 2LO. The Raman signals from the vibrational bands corresponding to the phosphodiester bond 5‧-C-O-P-O-C-3‧ and bond stretching of the PO2- group, as well as ring vibrations of the nitrogenous bases of the DNA, were enhanced by the presence of the ZnO microrods. The bands from the modes corresponding to the C-O and Odbnd Psbnd O- molecules of the DNA backbone were observed to exhibit larger spectral shifts due to the compression and tensile stresses generated at the ZnO/DNA interface, respectively. In addition, the relative vibrational mode intensities of the nitrogenous bases increased.

  1. Prediction of Protein-DNA binding by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex

    1997-08-01

    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  2. Identifying DNA Binding Motifs by Combining Data from Different Sources

    SciTech Connect

    Mao, Linyong; Resat, Haluk; Nagib Callaos; Katsuhisa Horimoto; Jake Chen; Amy Sze Chan

    2004-07-19

    A transcription factor regulates the expression of its target genes by binding to their operator regions. It functions by affecting the interactions between RNA polymerases and the gene's promoter. Many transcription factors bind to their targets by recognizing a specific DNA sequence pattern, which is referred to as a consensus sequence or a motif. Since it would remove the possible biases, combining biological data from different sources can be expected to improve the quality of the information extracted from the biological data. We analyzed the microarray gene expression data and the organism's genome sequence jointly to determine the transcription factor recognition sequences with more accuracy. Utilizing such a data integration approach, we have investigated the regulation of the photosynthesis genes of the purple non-sulphur photosynthetic bacterium Rhodobacter sphaeroides. The photosynthesis genes in this organism are tightly regulated as a function of environmental growth conditions by three major regulatory systems, PrrB/PrrA, AppA/PpsR and FnrL. In this study, we have detected a previously undefined PrrA consensus sequence, improved the previously known DNA-binding motif of PpsR, and confirmed the consensus sequence of the global regulator FnrL.

  3. An Overview of the Prediction of Protein DNA-Binding Sites

    PubMed Central

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-01-01

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications. PMID:25756377

  4. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains

    PubMed Central

    Balaji, S.; Babu, M. Madan; Iyer, Lakshminarayan M.; Aravind, L.

    2005-01-01

    The comparative genomics of apicomplexans, such as the malarial parasite Plasmodium, the cattle parasite Theileria and the emerging human parasite Cryptosporidium, have suggested an unexpected paucity of specific transcription factors (TFs) with DNA binding domains that are closely related to those found in the major families of TFs from other eukaryotes. This apparent lack of specific TFs is paradoxical, given that the apicomplexans show a complex developmental cycle in one or more hosts and a reproducible pattern of differential gene expression in course of this cycle. Using sensitive sequence profile searches, we show that the apicomplexans possess a lineage-specific expansion of a novel family of proteins with a version of the AP2 (Apetala2)-integrase DNA binding domain, which is present in numerous plant TFs. About 20–27 members of this apicomplexan AP2 (ApiAP2) family are encoded in different apicomplexan genomes, with each protein containing one to four copies of the AP2 DNA binding domain. Using gene expression data from Plasmodium falciparum, we show that guilds of ApiAP2 genes are expressed in different stages of intraerythrocytic development. By analogy to the plant AP2 proteins and based on the expression patterns, we predict that the ApiAP2 proteins are likely to function as previously unknown specific TFs in the apicomplexans and regulate the progression of their developmental cycle. In addition to the ApiAP2 family, we also identified two other novel families of AP2 DNA binding domains in bacteria and transposons. Using structure similarity searches, we also identified divergent versions of the AP2-integrase DNA binding domain fold in the DNA binding region of the PI-SceI homing endonuclease and the C-terminal domain of the pleckstrin homology (PH) domain-like modules of eukaryotes. Integrating these findings, we present a reconstruction of the evolutionary scenario of the AP2-integrase DNA binding domain fold, which suggests that it underwent

  5. Structure-based Analysis to Hu-DNA Binding

    SciTech Connect

    Swinger,K.; Rice, P.

    2007-01-01

    HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently published Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from 10-14.5 kcal/mol, representing K{sub d} values in the nanomolar to low picomolar range, and a maximum stabilization of at least 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.

  6. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity

    PubMed Central

    Hubbard, Basil P.; Badran, Ahmed H.; Zuris, John A.; Guilinger, John P.; Davis, Kevin M.; Chen, Liwei; Tsai, Shengdar Q.; Sander, Jeffry D.; Joung, J. Keith; Liu, David R.

    2015-01-01

    Nucleases containing programmable DNA-binding domains can alter the genomes of model organisms and have the potential to become human therapeutics. Here we present DNA-binding phage-assisted continuous evolution (DB-PACE) as a general approach for the laboratory evolution of DNA-binding activity and specificity. We used this system to generate TALE nucleases with broadly improved DNA cleavage specificity, establishing DB-PACE as a versatile approach for improving the accuracy of genome-editing agents. PMID:26258293

  7. Single-stranded DNA-binding proteins (SSBs) -- sources and applications in molecular biology.

    PubMed

    Kur, Józef; Olszewski, Marcin; Długołecka, Anna; Filipkowski, Paweł

    2005-01-01

    Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea and eukarya. The SSBs share a common core ssDNA-binding domain with a conserved OB (oligonucleotide/oligosaccharide binding) fold. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life. In recent years, there has been an increasing interest in SSBs because they are useful for molecular biology methods and for analytical purposes. In this review, we concentrate on recent advances in the discovery of new sources of SSBs as well as certain aspects of their applications in analytical sciences.

  8. Identification of novel DNA binding proteins using DNA affinity chromatography-pulldown

    PubMed Central

    Jutras, Brandon L; Verma, Ashutosh

    2012-01-01

    Methods are presented through which one may isolate and identify novel bacterial DNA-binding proteins. Briefly, the DNA sequence of interest is affixed to beads, then incubated with bacterial cytoplasmic extract. Washes with buffers containing non-specific DNA and low salt concentrations will remove non-adhering and low-specificity DNA-binding proteins, while subsequent washes with higher salt concentrations will elute more specific DNA-binding proteins. Eluted proteins may then be identified by standard proteomic techniques. PMID:22307548

  9. Site-specific, covalent incorporation of Tus, a DNA-binding protein, on ionic-complementary self-assembling peptide hydrogels using transpeptidase Sortase A as a conjugation tool† †Dedicated to the memory of Joachim H. G. Steinke. ‡ ‡Electronic supplementary information (ESI) available: Further experimental data. See DOI: 10.1039/c3sm00131hClick here for additional data file.

    PubMed Central

    Piluso, Susanna; Cassell, Heather C.; Gibbons, Jonathan L.; Waller, Thomas E.; Plant, Nick J.; Miller, Aline F.

    2013-01-01

    The site-specific conjugation of DNA-binding protein (Tus) to self-assembling peptide FEFEFKFKK was demonstrated. Rheology studies and TEM of the corresponding hydrogels (including PNIPAAm-containing systems) showed no significant variation in properties and hydrogel morphology compared to FEFEFKFKK. Critically, we demonstrate that Tus is accessible within the gel network displaying DNA-binding properties. PMID:23847687

  10. Site-specific, covalent incorporation of Tus, a DNA-binding protein, on ionic-complementary self-assembling peptide hydrogels using transpeptidase Sortase A as a conjugation tool†Dedicated to the memory of Joachim H. G. Steinke.‡Electronic supplementary information (ESI) available: Further experimental data. See DOI: 10.1039/c3sm00131hClick here for additional data file.

    PubMed

    Piluso, Susanna; Cassell, Heather C; Gibbons, Jonathan L; Waller, Thomas E; Plant, Nick J; Miller, Aline F; Cavalli, Gabriel

    2013-08-01

    The site-specific conjugation of DNA-binding protein (Tus) to self-assembling peptide FEFEFKFKK was demonstrated. Rheology studies and TEM of the corresponding hydrogels (including PNIPAAm-containing systems) showed no significant variation in properties and hydrogel morphology compared to FEFEFKFKK. Critically, we demonstrate that Tus is accessible within the gel network displaying DNA-binding properties. PMID:23847687

  11. Crystal structure of Arabidopsis thaliana calmodulin7 and insight into its mode of DNA binding.

    PubMed

    Kumar, Sanjeev; Mazumder, Mohit; Gupta, Nisha; Chattopadhyay, Sudip; Gourinath, Samudrala

    2016-09-01

    Calmodulin (CaM) is a Ca(2+) sensor that participates in several cellular signaling cascades by interacting with various targets, including DNA. It has been shown that Arabidopsis thaliana CaM7 (AtCaM7) interacts with Z-box DNA and functions as a transcription factor [Kushwaha R et al. (2008) Plant Cell 20, 1747-1759; Abbas N et al. (2014) Plant Cell 26, 1036-1052]. The crystal structure of AtCaM7, and a model of the AtCAM7-Z-box complex suggest that Arg-127 determines the DNA-binding ability by forming crucial interactions with the guanine base. We validated the model using biolayer interferometry, which confirmed that AtCaM7 interacts with Z-box DNA with high affinity. In contrast, the AtCaM2/3/5 isoform does not show any binding, although it differs from AtCaM7 by only a single residue. PMID:27500568

  12. Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53.

    PubMed

    Wacey, A I; Cooper, D N; Liney, D; Hovig, E; Krawczak, M

    1999-01-01

    The spectrum of somatic cancer-associated missense mutations in the human TP53 gene was studied in order to assess the potential structural and functional importance of various intra-molecular properties associated with these substitutions. Relating the observed frequency of particular amino acid substitutions in the p53 DNA-binding domain to their expected frequency, as calculated from DNA sequence-dependent mutation rates, yielded estimates of their relative clinical observation likelihood (RCOL). Several biophysical properties were found to display significant covariation with RCOL values. Thus RCOL values were observed to decrease with increasing solvent accessibility of the substituted residue and with increasing distance from the p53 DNA-binding and Zn2+ -binding sites. The number of adverse steric interactions introduced by an amino acid replacement was found to be positively correlated with its RCOL value, irrespective of the magnitude of the interactions. A gain in hydrogen bond number was found to be only half as likely to come to clinical attention as mutations involving either a reduction or no change in hydrogen bond number. When the difference in potential energy between the wild-type and mutant DNA-binding domains was considered, RCOL values exhibited a minimum around changes of zero. Finally, classification of mutated residues in terms of their protein/solvent environment yielded, for somatic p53 mutations, RCOL values that resembled those previously determined for inherited mutations of human factor IX causing haemophilia B, suggesting that similar mechanisms may be responsible for the mutation-related perturbation of biological function in different protein folds.

  13. Methylated DNA-binding protein is present in various mammalian cell types

    SciTech Connect

    Supakar, P.C.; Weist, D.; Zhang, D.; Inamdar, N.; Zhang, Xianyang; Khan, R.; Ehrlich, M. ); Ehrlich, K.C. )

    1988-08-25

    A DNA-binding protein from human placenta, methylated DNA-binding protein (MDBP), binds to certain DNA sequences only when they contain 5-methylcytosine (m{sup 5}C) residues at specific positions. The authors found a very similar DNA-binding activity in nuclear extracts of rat tissues, calf thymus, human embryonal carcinoma cells, HeLa cells, and mouse LTK cells. Like human placental MDBP, the analogous DNA-binding proteins from the above mammalian cell lines formed a number of different low-electrophoretic-mobility complexes with a 14-bp MDBP-specific oligonucleotide duplex. All of these complexes exhibited the same DNA methylation specificity and DNA sequence specificity. Although MDBP activity was found in various mammalian cell types, it was not detected in extracts of cultured mosquito cells and so may be associated only with cells with vertebrate-type DNA methylation.

  14. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains.

    PubMed

    Wong, Ka-Chun

    2016-01-01

    Protein-DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the cancer-related DNA-binding domains for in-depth studies, namely, winged Helix Turn Helix family, homeodomain family, and basic Helix-Loop-Helix family. The results demonstrate that the proposed method can predict the core residues involved in protein-DNA interactions, as verified by the existing structural data. Given its good performance, various aspects of the method are discussed and explored: for instance, different uses of prediction algorithm, different protein domains, and hotspot threshold setting.

  15. A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves†

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; García-Fandiño, Rebeca; Vázquez, M. Eugenio; Mascareñas, José L.

    2016-01-01

    We report the rational design of a DNA-binding peptide construct composed of the DNA-contacting regions of two transcription factors (GCN4 and GAGA) linked through an AT-hook DNA anchor. The resulting chimera, which represents a new, non-natural DNA binding motif, binds with high affinity and selectivity to a long composite sequence of 13 base pairs (TCAT-AATT-GAGAG). PMID:27252825

  16. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  17. Molecular cloning of a small DNA binding protein with specificity for a tissue-specific negative element within the rps1 promoter.

    PubMed Central

    Zhou, D X; Bisanz-Seyer, C; Mache, R

    1995-01-01

    A cDNA encoding a specific binding activity for the tissue-specific negative cis-element S1F binding site of spinach rps1 was isolated from a spinach cDNA expression library. This cDNA of 0.7 kb encodes an unusual small peptide of only 70 amino acids, with a basic domain which contains a nuclear localization signal and a putative DNA binding helix. This protein, named S1Fa, is highly conserved between dicotyledonous and monocotyledonous plants and may represent a novel class of DNA binding proteins. The corresponding mRNA is accumulated more in roots and in etiolated seedlings than in green leaves. This expression pattern is correlated with the tissue-specific function of the S1F binding site which represses the rps1 promoter preferentially in roots and in etiolated plants. Images PMID:7739894

  18. Interaction of bacteriophage T4 and T7 single-stranded DNA binding proteins with DNA

    PubMed Central

    Shokri, Leila; Rouzina, Ioulia; Williams, Mark C.

    2009-01-01

    Bacteriophage T4 and T7 are well studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination, and repair. Here we discuss the results from two recently developed single molecule methods to determine the salt-dependent DNA binding kinetics and thermodynamics of the single-stranded DNA (ssDNA) binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two order of magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four orders of magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding are essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA binding sites at the replication fork. PMID:19571366

  19. Characterization of the minimal DNA-binding domain of the HIV integrase protein.

    PubMed Central

    Lutzke, R A; Vink, C; Plasterk, R H

    1994-01-01

    The human immunodeficiency virus (HIV) integrase (IN) protein mediates an essential step in the retroviral lifecycle, the integration of viral DNA into human DNA. A DNA-binding domain of HIV IN has previously been identified in the C-terminal part of the protein. We tested truncated proteins of the C-terminal region of HIV-1 IN for DNA binding activity in two different assays: UV-crosslinking and southwestern blot analysis. We found that a polypeptide fragment of 50 amino acids (IN220-270) is sufficient for DNA binding. In contrast to full-length IN protein, this domain is soluble under low salt conditions. DNA binding of IN220-270 to both viral DNA and non-specific DNA occurs in an ion-independent fashion. Point mutations were introduced in 10 different amino acid residues of the DNA-binding domain of HIV-2 IN. Mutation of basic amino acid K264 results in strong reduction of DNA binding and of integrase activity. Images PMID:7937137

  20. Energy transfer analysis of Fos-Jun dimerization and DNA binding.

    PubMed Central

    Patel, L R; Curran, T; Kerppola, T K

    1994-01-01

    The protooncogenes fos and jun encode proteins that bind to DNA as dimeric complexes and regulate gene expression. Protein dimerization is mediated by a leucine zipper and results in juxtaposition of regions of each protein rich in basic amino acids that comprise a bimolecular DNA binding domain. We have developed an approach based on resonance energy transfer for the quantitative analysis of dimerization and DNA binding by Fos and Jun in solution. Fos-(118-211) and Jun-(225-334) polypeptides were labeled with either 5-iodoacetamidofluorescein or rhodamine X iodoacetamide on unique cysteine residues located in their DNA binding domains. Formation of heterodimeric complexes between the labeled proteins allowed resonance energy transfer between the donor fluorescein and the acceptor rhodamine fluorophores. DNA binding induced a conformational transition that increased the efficiency of resonance energy transfer. This increase was consistent with a 3-A reduction in the distance between the fluorophores. Using this assay, we determined the affinity of the Fos-Jun interaction and examined the kinetics of dimerization and DNA binding as well as the rate of subunit exchange. Dimerization and DNA binding by Fos and Jun were rapid, with half-times of < 10 s. In the absence of DNA, Fos and Jun subunits exchanged rapidly, with a half-time of < 10 s. In contrast, in the presence of DNA, the complex was extremely stable. Thus, leucine zipper-containing transcription factors may exchange subunits readily when free in solution, but not when bound to DNA. Images PMID:8041795

  1. Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains.

    PubMed

    Yang, Z; Gu, L; Romeo, P H; Bories, D; Motohashi, H; Yamamoto, M; Engel, J D

    1994-03-01

    GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.

  2. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ)

    PubMed Central

    Kim, Doyoun; Hur, Jeonghwan; Park, Kwangsoo; Bae, Sangsu; Shin, Donghyuk; Ha, Sung Chul; Hwang, Hye-Yeon; Hohng, Sungchul; Lee, Joon-Hwa; Lee, Sangho; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2014-01-01

    Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the β-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the β-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate. PMID:24682817

  3. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    PubMed Central

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  4. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  5. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity

    SciTech Connect

    Chang, Chung-ke; Wu, Tzong-Huah; Wu, Chu-Ya; Chiang, Ming-hui; Toh, Elsie Khai-Woon; Hsu, Yin-Chih; Lin, Ku-Feng; Liao, Yu-heng; Huang, Tai-huang; Huang, Joseph Jen-Tse

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer The N-terminus of TDP-43 contains an independently folded structural domain (NTD). Black-Right-Pointing-Pointer The structural domains of TDP-43 are arranged in a beads-on-a-string fashion. Black-Right-Pointing-Pointer The NTD promotes TDP-43 oligomerization in a concentration-dependent manner. Black-Right-Pointing-Pointer The NTD may assist nucleic acid-binding activity of TDP-43. -- Abstract: TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.

  6. Single-stranded DNA binding activity of C1-tetrahydrofolate synthase enzymes.

    PubMed

    Wahls, W P; Song, J M; Smith, G R

    1993-11-15

    In eukaryotes C1-5,6,7,8-tetrahydrofolate (THF) synthase is a trifunctional enzyme that catalyzes the interconversion of reduced forms of folate to supply activated one-carbon units required for a variety of metabolic pathways. The enzymatic activities include 10-formyl-THF synthetase (EC 6.3.4.3), 5,10-methenyl-THF cyclohydrolase (EC 3.5.4.9), and 5,10-methylene-THF dehydrogenase (EC 1.5.1.5). In bacteria separate, monofunctional or bifunctional polypeptides catalyze the same reactions. We have purified C1-THF synthase from the fission yeast Schizosaccharomyces pombe and found its physical and enzymatic properties similar to those of other eukaryotic C1-THF synthase enzymes. Unexpectedly, the S. pombe enzyme bound strongly (Keq = 100 pM) to single-stranded DNA, but not to double-stranded DNA or to RNA. The binding was sequence-independent, apparently not cooperative, and not detectably inhibited by C1-THF synthase substrates or cofactors. Trifunctional cytoplasmic enzyme from Saccharomyces cerevisiae and monofunctional (synthetase) enzyme from Clostridium acidiurici also bound tightly to single-stranded DNA, while bifunctional (dehydrogenase and cyclohydrolase) enzyme from Escherichia coli did not, suggesting that single-stranded DNA binding is a conserved function of the synthetase domain of C1-THF synthase enzymes. PMID:8226914

  7. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  8. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    PubMed

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  9. Synthesis, G-quadruplexes DNA binding, and photocytotoxicity of novel cationic expanded porphyrins.

    PubMed

    Jin, Shu-fang; Zhao, Ping; Xu, Lian-cai; Zheng, Min; Lu, Jia-zheng; Zhao, Peng-liang; Su, Qiu-lan; Chen, Hui-xian; Tang, Ding-tong; Chen, Jiong; Lin, Jia-qi

    2015-06-01

    Intensive reports allowed the conclusion that molecules with extended aromatic surfaces always do good jobs in the DNA interactions. Inspired by the previous successful researches, herein, we designed a series of cationic porphyrins with expanded planar substituents, and evaluated their binding behaviors to G-quadruplex DNA using the combination of surface-enhanced raman, circular dichroism, absorption spectroscopy and fluorescence resonance energy transfer melting assays. Asymmetrical tetracationic porphyrin with one phenyl-4-N-methyl-4-pyridyl group and three N-methyl-4-pyridyl groups exhibit the best G4-DNA binding affinities among all the designed compounds, suggesting that the bulk of the substituents should be matched to the width of the grooves they putatively lie in. Theoretical calculations applying the density functional theory have been carried out and explain the binding properties of these porphyrins reasonably. Meanwhile, these porphyrins were proved to be potential photochemotherapeutic agents since they have photocytotoxic activities against both myeloma cell (Ag8.653) and gliomas cell (U251) lines.

  10. Novel Coumarin-Containing Aminophosphonatesas Antitumor Agent: Synthesis, Cytotoxicity, DNA-Binding and Apoptosis Evaluation.

    PubMed

    Li, Ya-Jun; Wang, Cai-Yi; Ye, Man-Yi; Yao, Gui-Yang; Wang, Heng-Shan

    2015-01-01

    A series of novel coumarin-containing α-aminophosphonates were synthesized and evaluated for their antitumor activities against Human colorectal (HCT-116), human nasopharyngeal carcinoma (human KB) and human lung adenocarcinoma (MGC-803) cell lines in vitro. Compared with 7-hydroxy-4-methylcoumarin (4-MU), most of the derivatives showed an improved antitumor activity. Compound 8j (diethyl 1-(3-(4-methyl-2-oxo-2H-chromen-7-yloxy) propanamido)-1-phenylethyl-Phosphonate), with IC50 value of 8.68 μM against HCT-116 cell lines, was about 12 fold than that of unsubstituted parent compound. The mechanism investigation proved that 8c, 8d, 8f and 8j were achieved through the induction of cell apoptosis by G1 cell-cycle arrest. In addition, the further mechanisms of compound 8j-induced apoptosis in HCT-116 cells demonstrated that compound 8j induced the activations of caspase-9 and caspase-3 for causing cell apoptosis, and altered anti- and pro-apoptotic proteins. DNA-binding experiments suggested that some derivatives bind to DNA through intercalation. The results seem to imply the presence of an important synergistic effect between coumarin and aminophosphonate, which could contribute to the strong chelating properties of aminophosphonate moiety.

  11. Quantifying the DNA binding characteristics of ruthenium based threading intercalator Λ Λ -P with optical tweezers

    NASA Astrophysics Data System (ADS)

    Bryden, Nicholas; McCauley, Micah; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Williams, Mark; Paramanathan, Thayaparan

    Utilizing optical tweezers, biophysics researchers have been able to study drug-DNA interactions on the single molecule level. Binuclear ruthenium complexes are a particular type of drug molecule that have been found to have potential cancer-fighting qualities, due to their high binding affinity and low dissociation rates. These complexes are threading intercalators, meaning that they must thread their bulky side chains through DNA base pairs to allow the central planar moiety to intercalate between the bases. In this study, we explored the binding properties of the binuclear ruthenium complex, ΛΛ -P (ΛΛ -[µ-bidppz(phen)4Ru2]4+) . A single DNA molecule is held at a constant force and the ΛΛ -P solution introduced to the system in varying concentrations until equilibrium is reached. DNA extension data at various concentrations of ΛΛ -P recorded as a function of time provide the DNA binding kinetics and equilibrium binding affinity. Preliminary data analysis suggests that ΛΛ -P exhibits fast binding kinetics compared to the very similar ΔΔ -P. These complexes have the same chemical structure and only differ in their chirality, which suggests that the left handed (ΛΛ) threading moieties require less DNA structural distortion for threading compared with the right handed (ΔΔ) threading moieties.

  12. Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components.

    PubMed

    Sánchez, Mateo I; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2014-09-01

    At specific DNA sites, nickel(II) salts promote the assembly of designed components, namely a bis(histidine)-modified peptide that is derived from a bZIP transcription factor and a bis(benzamidine) unit that is equipped with a bipyridine. This programmed supramolecular system with emergent properties reproduces some key characteristics of naturally occurring DNA-binding proteins, such as bivalence, selectivity, responsiveness to external agents, and reversibility.

  13. Membrane Destruction and DNA Binding of Staphylococcus aureus Cells Induced by Carvacrol and Its Combined Effect with a Pulsed Electric Field.

    PubMed

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Zhang, Zhi-Hong; Gong, De-Ming; Huang, Yan-Bo

    2016-08-17

    Carvacrol (5-isopropyl-2-methylphenol, CAR) is an antibacterial ingredient that occurs naturally in the leaves of the plant Origanum vulgare. The antimicrobial mechanism of CAR against Staphylococcus aureus ATCC 43300 was investigated in the study. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) showed that exposure to CAR at low concentrations induced a marked increase in the level of unbranched fatty acids (from 34.90 ± 1.77% to 62.37 ± 4.26%). Moreover, CAR at higher levels severely damaged the integrity and morphologies of the S. aureus cell membrane. The DNA-binding properties of CAR were also investigated using fluorescence, circular dichroism, molecular modeling, and atomic-force microscopy. The results showed that CAR bound to DNA via the minor-groove mode, mildly perturbed the DNA secondary structure, and induced DNA molecules to be aggregated. Furthermore, a combination of CAR with a pulsed-electric field was found to exhibit strong synergistic effects on S. aureus. PMID:27420472

  14. Membrane Destruction and DNA Binding of Staphylococcus aureus Cells Induced by Carvacrol and Its Combined Effect with a Pulsed Electric Field.

    PubMed

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Zhang, Zhi-Hong; Gong, De-Ming; Huang, Yan-Bo

    2016-08-17

    Carvacrol (5-isopropyl-2-methylphenol, CAR) is an antibacterial ingredient that occurs naturally in the leaves of the plant Origanum vulgare. The antimicrobial mechanism of CAR against Staphylococcus aureus ATCC 43300 was investigated in the study. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) showed that exposure to CAR at low concentrations induced a marked increase in the level of unbranched fatty acids (from 34.90 ± 1.77% to 62.37 ± 4.26%). Moreover, CAR at higher levels severely damaged the integrity and morphologies of the S. aureus cell membrane. The DNA-binding properties of CAR were also investigated using fluorescence, circular dichroism, molecular modeling, and atomic-force microscopy. The results showed that CAR bound to DNA via the minor-groove mode, mildly perturbed the DNA secondary structure, and induced DNA molecules to be aggregated. Furthermore, a combination of CAR with a pulsed-electric field was found to exhibit strong synergistic effects on S. aureus.

  15. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  16. Spectroscopic studies on the thermodynamic and thermal denaturation of the ct-DNA binding of methylene blue

    NASA Astrophysics Data System (ADS)

    Mudasir; Wahyuni, Endang Tri; Tjahjono, Daryono H.; Yoshioka, Naoki; Inoue, Hidenari

    2010-10-01

    The ct-DNA binding properties of methylene blue (MB) including binding constant, thermodynamic parameter and thermal denaturation ( Tm) have been systematically studied by spectrophotometric method. The binding of MB to ct-DNA is quite strong as indicated by remarkable hypochromicity, red shift and equilibrium binding constant ( Kb). Van't Hoff plot of 1/ T versus ln Kb suggests that the MB dye binds exothermically to ct-DNA which is characterized by large negative enthalpy and entropy changes. According to polyelectrolyte theory, the charge release ( Z) when ct-DNA interacts with MB is +1.09 which corresponds very well to the one positive charge carried by the MB dye. The Kb at a low concentration of salt is dominated by electrostatic interaction (90%) while that at a high concentration of salt is mostly controlled by non-electrostatic process (85%). However, the stabilization of the DNA binding event in both cases is governed by non-electrostatic process. A moderate stabilization of double helix ct-DNA occurs when the MB dye binds to ct-DNA as indicated by the increase in Tm of ct-DNA of about 5.5 °C in the presence of MB. This suggests that MB dye possibly binds to ct-DNA via electrostatic and intercalation modes.

  17. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains

    PubMed Central

    Stephens, Dominique C.; Poon, Gregory M. K.

    2016-01-01

    Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited. PMID:27270080

  18. Entrapment of DNA in an intersubunit tunnel system of a single-stranded DNA-binding protein

    PubMed Central

    Ghalei, Homa; von Moeller, Holger; Eppers, Detlef; Sohmen, Daniel; Wilson, Daniel N.; Loll, Bernhard; Wahl, Markus C.

    2014-01-01

    Instead of a classical single-stranded deoxyribonuleic acid (DNA)-binding protein (SSB), some hyperthermophilic crenarchaea harbor a non-canonical SSB termed ThermoDBP. Two related but poorly characterized groups of proteins, which share the ThermoDBP N-terminal DNA-binding domain, have a broader phylogenetic distribution and co-exist with ThermoDBPs and/or other SSBs. We have investigated the nucleic acid binding properties and crystal structures of representatives of these groups of ThermoDBP-related proteins (ThermoDBP-RPs) 1 and 2. ThermoDBP-RP 1 and 2 oligomerize by different mechanisms and only ThermoDBP-RP2 exhibits strong single-stranded DNA affinity in vitro. A crystal structure of ThermoDBP-RP2 in complex with DNA reveals how the NTD common to ThermoDBPs and ThermoDBP-RPs can contact the nucleic acid in a manner that allows a symmetric homotetrameric protein complex to bind single-stranded DNA molecules asymmetrically. While single-stranded DNA wraps around the surface or binds along channels of previously investigated SSBs, it traverses an internal, intersubunit tunnel system of a ThermoDBP-RP2 tetramer. Our results indicate that some archaea have acquired special SSBs for genome maintenance in particularly challenging environments. PMID:24744237

  19. Molecular insights into DNA binding and anchoring by the Bacillus subtilis sporulation kinetochore-like RacA protein

    PubMed Central

    Schumacher, Maria A.; Lee, Jeehyun; Zeng, Wenjie

    2016-01-01

    During Bacillus subtilis sporulation, segregating sister chromosomes are anchored to cell poles and the chromosome is remodeled into an elongated structure called the axial filament. Data indicate that a developmentally regulated protein called RacA is involved in these functions. To gain insight into how RacA performs these diverse processes we performed a battery of structural and biochemical analyses. These studies show that RacA contains an N-terminal winged-helix-turn-helix module connected by a disordered region to a predicted coiled-coil domain. Structures capture RacA binding the DNA using distinct protein–protein interfaces and employing adjustable DNA docking modes. This unique DNA binding mechanism indicates how RacA can both specifically recognize its GC-rich centromere and also non-specifically bind the DNA. Adjacent RacA molecules within the protein–DNA structure interact leading to DNA compaction, suggesting a mechanism for axial filament formation. We also show that the RacA C-domain coiled coil directly contacts the coiled coil region of the polar protein DivIVA, which anchors RacA and hence the chromosome to the pole. Thus, our combined data reveal unique DNA binding properties by RacA and provide insight into the DNA remodeling and polar anchorage functions of the protein. PMID:27085804

  20. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    PubMed Central

    Prakash, Aishwarya; Natarajan, Amarnath; Marky, Luis A.; Ouellette, Michel M.; Borgstahl, Gloria E. O.

    2011-01-01

    Replication protein A (RPA), a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA-) binding domains (DBDs) A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties. PMID:21772997

  1. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  2. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    SciTech Connect

    Sams, C.F.; Matthews, K.S.

    1988-04-05

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.

  3. Identification of DNA-binding proteins on human umbilical vein endothelial cell plasma membrane.

    PubMed Central

    Chan, T M; Frampton, G; Cameron, J S

    1993-01-01

    The binding of anti-DNA antibodies to the endothelial cell is mediated through DNA, which forms a bridge between the immunoglobulin and the plasma membrane. We have shown that 32P-labelled DNA bound to the plasma membrane of human umbilical vein endothelial cells (HUVEC) by a saturable process, which could be competitively inhibited by non-radiolabelled DNA. In addition, DNA-binding was enhanced in HUVEC that had been treated with IL-1 alpha or tumour necrosis factor-alpha (TNF-alpha). DNA-binding proteins of mol. wt 46,000, 92,000, and 84,000 were identified by the binding of 32P-labelled DNA to plasma membrane proteins separated on SDS-PAGE. DNA-binding proteins of mol. wt 46,000 and 84,000 were also present in the cytosol and nucleus. Murine anti-DNA MoAb410 bound to a single band, at mol. wt 46,000, of plasma membrane protein, in the presence of DNA. Our results showed that DNA-binding proteins are present in different cellular fractions of endothelial cells. DNA-binding proteins on the cell membrane could participate in the in situ formation of immune deposits; and their presence in the cell nucleus suggests a potential role in the modulation of cell function. Images Fig. 3 Fig. 4 PMID:8419070

  4. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme.

    PubMed Central

    Xanthoudakis, S; Miao, G; Wang, F; Pan, Y C; Curran, T

    1992-01-01

    The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun. Reduction of this residue by chemical reducing agents or by a ubiquitous nuclear redox factor (Ref-1) recently purified from Hela cells, stimulates AP-1 DNA binding activity in vitro, whereas oxidation or chemical modification of the cysteine has an inhibitory effect on DNA binding activity. Here we demonstrate that the protein product of the ref-1 gene stimulates the DNA binding activity of Fos-Jun heterodimers, Jun-Jun homodimers and Hela cell AP-1 proteins as well as that of several other transcription factors including NF-kappa B, Myb and members of the ATF/CREB family. Furthermore, immunodepletion analysis indicates that Ref-1 is the major AP-1 redox activity in Hela nuclear extracts. Interestingly, Ref-1 is a bifunctional protein; it also possesses an apurinic/apyrimidinic (AP) endonuclease DNA repair activity. However, the redox and DNA repair activities of Ref-1 can, in part, be distinguished biochemically. This study suggests a novel link between transcription factor regulation, oxidative signalling and DNA repair processes in higher eukaryotes. Images PMID:1380454

  5. DNA-binding specificity changes in the evolution of forkhead transcription factors.

    PubMed

    Nakagawa, So; Gisselbrecht, Stephen S; Rogers, Julia M; Hartl, Daniel L; Bulyk, Martha L

    2013-07-23

    The evolution of transcriptional regulatory networks entails the expansion and diversification of transcription factor (TF) families. The forkhead family of TFs, defined by a highly conserved winged helix DNA-binding domain (DBD), has diverged into dozens of subfamilies in animals, fungi, and related protists. We have used a combination of maximum-likelihood phylogenetic inference and independent, comprehensive functional assays of DNA-binding capacity to explore the evolution of DNA-binding specificity within the forkhead family. We present converging evidence that similar alternative sequence preferences have arisen repeatedly and independently in the course of forkhead evolution. The vast majority of DNA-binding specificity changes we observed are not explained by alterations in the known DNA-contacting amino acid residues conferring specificity for canonical forkhead binding sites. Intriguingly, we have found forkhead DBDs that retain the ability to bind very specifically to two completely distinct DNA sequence motifs. We propose an alternate specificity-determining mechanism whereby conformational rearrangements of the DBD broaden the spectrum of sequence motifs that a TF can recognize. DNA-binding bispecificity suggests a previously undescribed source of modularity and flexibility in gene regulation and may play an important role in the evolution of transcriptional regulatory networks.

  6. Antinutritional properties of plant lectins.

    PubMed

    Vasconcelos, Ilka M; Oliveira, José Tadeu A

    2004-09-15

    Lectins are carbohydrate binding (glyco)proteins which are ubiquitous in nature. In plants, they are distributed in various families and hence ingested daily in appreciable amounts by both humans and animals. One of the most nutritionally important features of plant lectins is their ability to survive digestion by the gastrointestinal tract of consumers. This allows the lectins to bind to membrane glycosyl groups of the cells lining the digestive tract. As a result of this interaction a series of harmful local and systemic reactions are triggered placing this class of molecules as antinutritive and/or toxic substances. Locally, they can affect the turnover and loss of gut epithelial cells, damage the luminal membranes of the epithelium, interfere with nutrient digestion and absorption, stimulate shifts in the bacterial flora and modulate the immune state of the digestive tract. Systemically, they can disrupt lipid, carbohydrate and protein metabolism, promote enlargement and/or atrophy of key internal organs and tissues and alter the hormonal and immunological status. At high intakes, lectins can seriously threaten the growth and health of consuming animals. They are also detrimental to numerous insect pests of crop plants although less is presently known about their insecticidal mechanisms of action. This current review surveys the recent knowledge on the antinutritional/toxic effects of plant lectins on higher animals and insects. PMID:15302522

  7. Substitutional Analysis of the C-Terminal Domain of AbrB Revealed Its Essential Role in DNA-Binding Activity

    PubMed Central

    Neubauer, Svetlana; Dolgova, Olga; Präg, Gregory; Borriss, Rainer; Makarewicz, Oliwia

    2014-01-01

    The global transition state regulator AbrB controls more than 100 genes of the Bacillus relatives and is known to interact with varying DNA-sequences. The DNA-binding domain of the AbrB-like proteins was proposed to be located exclusively within the amino-terminal ends. However, the recognition of DNA, and specificity of the binding mechanism, remains elusive still in view of highly differing recognition sites. Here we present a substitutional analysis to examine the role of the carboxy-terminal domain of AbrB from Bacillus subtilis and Bacillus amyloliquefaciens. Our results demonstrate that the carboxy-terminal domains of AbrB affect the DNA-binding properties of the tetrameric AbrB. Most likely, the C-termini are responsible for the cooperative character observed for AbrB interaction with some DNA targets like tycA and phyC. PMID:24832089

  8. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity.

    PubMed Central

    Brickman, T J; Barry, C E; Hackstadt, T

    1993-01-01

    Two DNA-binding proteins with similarity to eukaryotic histone H1 have been described in Chlamydia trachomatis. In addition to the 18-kDa histone H1 homolog Hc1, elementary bodies of C. trachomatis possess an antigenically related histone H1 homolog, which we have termed Hc2, that varies in apparent molecular mass among strains. We report the molecular cloning, expression, and nucleotide sequence of the hctB gene encoding Hc2 and present evidence for in vivo DNA-binding activity of the expressed product. Expression of Hc2 in Escherichia coli induces a compaction of bacterial chromatin that is distinct from that observed upon Hc1 expression. Moreover, isolated nucleoids from Hc2-expressing E. coli exhibit markedly reduced sensitivity to DNase I. These properties of Hc2 are consistent with a postulated role in establishing the nucleoid structure of elementary bodies. Images PMID:7687246

  9. Detection of a novel minisatellite-specific DNA-binding protein.

    PubMed Central

    Collick, A; Jeffreys, A J

    1990-01-01

    We describe the detection of a ubiquitous DNA-binding protein which appears to interact specifically with tandem-repeated minisatellites. The murine 40 kd protein, which we term Msbp-1, was found to be present in all mouse tissues tested. This protein was bound specifically and with high affinity by double-stranded DNA containing a repeat sequence related to the minisatellite 'core' sequence, and binding required the presence of multiple repeat units. Corresponding minisatellite-specific DNA-binding proteins could also be detected in species ranging from Drosophila to man. This analysis represents the first direct evidence that minisatellites can function as a specific recognition signal for an endogenous DNA-binding protein. Images PMID:2308848

  10. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  11. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    NASA Astrophysics Data System (ADS)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  12. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    NASA Astrophysics Data System (ADS)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  13. Noncanonical DNA-binding mode of repressor and its disassembly by antirepressor

    PubMed Central

    Kim, Minsik; Kim, Hee Jung; Son, Sang Hyeon; Yoon, Hye Jin; Lim, Youngbin; Lee, Jong Woo; Seok, Yeong-Jae; Jin, Kyeong Sik; Yu, Yeon Gyu; Kim, Seong Keun; Ryu, Sangryeol; Lee, Hyung Ho

    2016-01-01

    DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92–198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant. PMID:27099293

  14. Statistical analysis of structural determinants for protein-DNA-binding specificity.

    PubMed

    Corona, Rosario I; Guo, Jun-Tao

    2016-08-01

    DNA-binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA-binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein-DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein-DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein-DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA-binding proteins and structural variations. The results indicate that HS and MS DNA-binding domains have larger conformational changes upon DNA-binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147-1161. © 2016 Wiley Periodicals, Inc.

  15. A Web-based classification system of DNA-binding protein families.

    PubMed

    Karmirantzou, M; Hamodrakas, S J

    2001-07-01

    Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The family of DNA-binding proteins is one of the most populated and studied amongst the various genomes of bacteria, archaea and eukaryotes and the Web-based system presented here is an approach to their classification. The DnaProt resource is an annotated and searchable collection of protein sequences for the families of DNA-binding proteins. The database contains 3238 full-length sequences (retrieved from the SWISS-PROT database, release 38) that include, at least, a DNA-binding domain. Sequence entries are organized into families defined by PROSITE patterns, PRINTS motifs and de novo excised signatures. Combining global similarities and functional motifs into a single classification scheme, DNA-binding proteins are classified into 33 unique classes, which helps to reveal comprehensive family relationships. To maximize family information retrieval, DnaProt contains a collection of multiple alignments for each DNA-binding family while the recognized motifs can be used as diagnostically functional fingerprints. All available structural class representatives have been referenced. The resource was developed as a Web-based management system for online free access of customized data sets. Entries are fully hyperlinked to facilitate easy retrieval of the original records from the source databases while functional and phylogenetic annotation will be applied to newly sequenced genomes. The database is freely available for online search of a library containing specific patterns of the identified DNA-binding protein classes and retrieval of individual entries from our WWW server (http://kronos.biol.uoa.gr/~mariak/dbDNA.html).

  16. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.

    PubMed

    Fujita, Toshitsugu; Fujii, Hodaka

    2015-09-24

    Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  17. Solution Structure of the PhoP DNA-Binding Domain from Mycobacterium tuberculosis

    PubMed Central

    Macdonald, Ramsay; Sarkar, Dibyendu; Amer, Brendan R.; Clubb, Robert T.

    2015-01-01

    Summary Tuberculosis caused by Mycobacterium tuberculosis is a leading cause of death world-wide. The PhoP protein is required for virulence and is part of the PhoPR two-component system that regulates gene expression. The NMR-derived solution structure of the PhoP C-terminal DNA-binding domain is reported. Residues 150 to 246 form a structured domain that contains a winged helix-turn-helix motif. We provide evidence that the transactivation loop postulated to contact RNA polymerase is partially disordered in solution, and that the polypeptide that connects the DNA-binding domain to the regulatory domain is unstructured. PMID:26209027

  18. Experimental strategies for cloning or identifying genes encoding DNA-binding proteins.

    PubMed

    Carey, Michael F; Peterson, Craig L; Smale, Stephen T

    2012-02-01

    This article describes experimental strategies for cloning or identifying genes encoding DNA-binding proteins. DNA-binding proteins are most commonly identified by electrophoretic mobility-shift assay (EMSA) or DNase I footprinting. To identify the gene encoding a protein detected by EMSA or DNase footprinting, the protein often needs to be purified and its sequence analyzed, as described here. Other methods are also available which do not resort to protein purification, including the one-hybrid screen, in vitro expression library screen, and mammalian expression cloning. These methods are outlined, and their advantages and disadvantages are discussed. PMID:22301659

  19. Cooperative DNA Binding and Sequence-Selective Recognition Conferred by the STAT Amino-Terminal Domain

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Sun, Ya-Lin; Hoey, Timothy

    1996-08-01

    STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.

  20. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast

    PubMed Central

    Kelemen, Zsolt; Sebastian, Alvaro; Xu, Wenjia; Grain, Damaris; Salsac, Fabien; Avon, Alexandra; Berger, Nathalie; Tran, Joseph; Dubreucq, Bertrand; Lurin, Claire; Lepiniec, Loïc; Contreras-Moreira, Bruno; Dubos, Christian

    2015-01-01

    The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences. PMID:26484765

  1. Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts.

    PubMed Central

    Baldwin, A S; Azizkhan, J C; Jensen, D E; Beg, A A; Coodly, L R

    1991-01-01

    A DNA-binding factor with properties of NF-kappa B and another similar activity are rapidly induced when growth-arrested BALB/c 3T3 cells are stimulated with serum growth factors. Induction of these DNA-binding activities is not inhibited by pretreatment of quiescent cells with the protein synthesis inhibitor cycloheximide. Interestingly, the major NF-kappa B-like activity is not detected in nuclear extracts of proliferating cells, and thus its expression appears to be limited to the G0-to-G1 transition in 3T3 cells. These DNA-binding activities bind many of the expected NF-kappa B target sequences, including elements in the class I major histocompatibility complex and human immunodeficiency virus enhancers, as well as a recently identified NF-kappa B binding site upstream of the c-myc gene. Furthermore, both the class I major histocompatibility complex and c-myc NF-kappa B binding sites confer inducibility on a minimal promoter in 3T3 cells stimulated with serum growth factors. The results demonstrate that NF-kappa B-like activities are immediate-early response proteins in 3T3 cells and suggest a role for these factors in the G0-to-G1 transition. Images PMID:1922027

  2. Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6.

    PubMed

    Little, Hayley J; Rorick, Nicholas K; Su, Ling-I; Baldock, Clair; Malhotra, Saimon; Jowitt, Tom; Gakhar, Lokesh; Subramanian, Ramaswamy; Schutte, Brian C; Dixon, Michael J; Shore, Paul

    2009-02-01

    Cleft lip and cleft palate (CLP) are common disorders that occur either as part of a syndrome, where structures other than the lip and palate are affected, or in the absence of other anomalies. Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant disorders characterized by combinations of cleft lip, CLP, lip pits, skin-folds, syndactyly and oral adhesions which arise as the result of mutations in interferon regulatory factor 6 (IRF6). IRF6 belongs to a family of transcription factors that share a highly conserved N-terminal, DNA-binding domain and a less well-conserved protein-binding domain. To date, mutation analyses have suggested a broad genotype-phenotype correlation in which missense and nonsense mutations occurring throughout IRF6 may cause VWS; in contrast, PPS-causing mutations are highly associated with the DNA-binding domain, and appear to preferentially affect residues that are predicted to interact directly with the DNA. Nevertheless, this genotype-phenotype correlation is based on the analysis of structural models rather than on the investigation of the DNA-binding properties of IRF6. Moreover, the effects of mutations in the protein interaction domain have not been analysed. In the current investigation, we have determined the sequence to which IRF6 binds and used this sequence to analyse the effect of VWS- and PPS-associated mutations in the DNA-binding domain of IRF6. In addition, we have demonstrated that IRF6 functions as a co-operative transcriptional activator and that mutations in the protein interaction domain of IRF6 disrupt this activity. PMID:19036739

  3. Effects of Temperature on the p53-DNA Binding Interactions and Their Dynamical Behavior: Comparing the Wild Type to the R248Q Mutant

    PubMed Central

    Barakat, Khaled; Issack, Bilkiss B.; Stepanova, Maria; Tuszynski, Jack

    2011-01-01

    Background The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298–306 K). Methodology/Principal Findings This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately. Conclusions The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure. PMID:22110706

  4. DNA binding, photo-induced DNA cleavage and cytotoxicity studies of lomefloxacin and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ragheb, Mohamed A.; Eldesouki, Mohamed A.; Mohamed, Mervat S.

    2015-03-01

    This work was focused on a study of the DNA binding and cleavage properties of lomefloxacin (LMF) and its ternary transition metal complexes with glycine. The nature of the binding interactions between compounds and calf thymus DNA (CT-DNA) was studied by electronic absorption spectra, fluorescence spectra and thermal denaturation experiments. The obtained results revealed that LMF and its complexes could interact with CT-DNA via partial/moderate intercalative mode. Furthermore, the DNA cleavage activities of the compounds were investigated by gel electrophoresis. Mechanistic studies of DNA cleavage suggest that singlet oxygen (1O2) is likely to be the cleaving agent via an oxidative pathway, except for Cu(II) complex which proceeds via both oxidative and hydrolytic pathways. Antimicrobial and antitumor activities of the compounds were also studied against some kinds of bacteria, fungi and human cell lines.

  5. Synthesis, DNA binding and photocleavage, and cellular uptake of an alkyl chain-linked dinuclear ruthenium(II) complex.

    PubMed

    Liu, Ping; Liu, Jin; Zhang, Yu-Qi; Wu, Bao-Yan; Wang, Ke-Zhi

    2015-02-01

    A dinuclear ruthenium(II) complex [(bpy)2Ru(L(1))Ru(bpy)2]Cl4 {bpy=2,2'-bipyridine, L(1)=1,6-bis(3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-9H-carbazol-9-yl)hexane} was synthesised and characterized. The calf thymus DNA (ct-DNA) binding properties of the complex were investigated by means of UV-Visible absorption and emission spectrophotometric titrations, ethidium bromide competitive binding, steady-state emission quenching with ferrocyanide, DNA viscosity measurements, and DNA thermal denaturation. The results indicated that the complex avidly binds to ct-DNA most probably through a threading bis-intercalative mode. The complex was also evidenced to act as an efficient DNA photocleaver, and an effective luminescent stain for cytoplasmic of HeLa cells with low cytotoxicity.

  6. Assembly of custom TALE-type DNA binding domains by modular cloning.

    PubMed

    Morbitzer, Robert; Elsaesser, Janett; Hausner, Jens; Lahaye, Thomas

    2011-07-01

    Transcription activator-like effector (TALE) DNA binding proteins show tremendous potential as molecular tools for targeted binding to any desired DNA sequence. Their DNA binding domain consists of tandem arranged repeats, and due to this repetitive structure it is challenging to generate designer TALEs (dTALEs) with user-defined specificity. We present a cloning approach that facilitates the assembly of multiple repeat-encoding DNA fragments that translate into dTALEs with pre-defined DNA binding specificity. This method makes use of type IIS restriction enzymes in two sequential cut-ligase reactions to build dTALE repeat arrays. We employed this modular approach for generation of a dTALE that differentiates between two highly similar DNA sequences that are both targeted by the Xanthomonas TALE, AvrBs3. These data show that this modular assembly system allows rapid generation of highly specific TALE-type DNA binding domains that target binding sites of predefined length and sequence. This approach enables the rapid and flexible production of dTALEs for gene regulation and genome editing in routine and high-throughput applications.

  7. Context influences on TALE-DNA binding revealed by quantitative profiling.

    PubMed

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  8. Glutamate-induced octamer DNA binding and transcriptional control in cultured radial glia cells.

    PubMed

    López-Bayghen, Esther; Cruz-Solís, Irma; Corona, Matilde; López-Colomé, Ana María; Ortega, Arturo

    2006-08-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, is critically involved in gene expression regulation in neurons and in glia cells. Neuron-glia interactions provide the framework for synaptic plasticity. Retinal and cerebellar radial glia cells surround glutamatergic excitatory synapses and sense synaptic activity through glutamate receptors expressed in their membranes. Several glutamate-dependent membrane to nuclei signaling cascades have been described in these cells. Octamer DNA binding factors, namely Oct-1 and Oct-2 recognize similar DNA sequences on regulatory regions, but their final transcriptional effect depends on several factors. By these means, different responses can be achieved in different cell types. Here, we describe a comparison between the glutamate-induced DNA binding of octamer factors and their functional activities in two important types of radial glia, retinal Müller and cerebellar Bergmann glial cells. While Oct-1 is expressed in both cell types and in both glutamate treatments results in an increase in Oct-1 DNA binding, this complex is capable of transactivating a reporter gene only in Müller glia cells. In contrast, Oct-2 expression is restricted to Bergmann glia cells in which glutamate treatment results in an augmentation of Oct-2 DNA binding complexes and the repression of kainate binding protein gene transcription. Our present findings demonstrate a differential role for Oct-1 and Oct-2 transcription factors in glial glutamate signaling, and further strengthen the notion of an important role for glial cells in glutamatergic transactions in the central nervous system.

  9. Quantification of transcription factor-DNA binding affinity in a living cell.

    PubMed

    Belikov, Sergey; Berg, Otto G; Wrange, Örjan

    2016-04-20

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [(3)H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element.

  10. Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila.

    PubMed

    Lebrecht, Danielle; Foehr, Marisa; Smith, Eric; Lopes, Francisco J P; Vanario-Alonso, Carlos E; Reinitz, John; Burz, David S; Hanes, Steven D

    2005-09-13

    Cooperative interactions by DNA-binding proteins have been implicated in cell-fate decisions in a variety of organisms. To date, however, there are few examples in which the importance of such interactions has been explicitly tested in vivo. Here, we tested the importance of cooperative DNA binding by the Bicoid protein in establishing a pattern along the anterior-posterior axis of the early Drosophila embryo. We found that bicoid mutants specifically defective in cooperative DNA binding fail to direct proper development of the head and thorax, leading to embryonic lethality. The mutants did not faithfully stimulate transcription of downstream target genes such as hunchback (hb), giant, and Krüppel. Quantitative analysis of gene expression in vivo indicated that bcd cooperativity mutants were unable to accurately direct the extent to which hb is expressed along the anterior-posterior axis and displayed a reduced ability to generate sharp on/off transitions for hb gene expression. These failures in precise transcriptional control demonstrate the importance of cooperative DNA binding for embryonic patterning in vivo.

  11. Prospects of nanoparticle-DNA binding and its implications in medical biotechnology.

    PubMed

    An, Hongjie; Jin, Bo

    2012-01-01

    Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle-DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle-DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle-DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle-DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.

  12. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  13. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  14. Identifying DNA-binding proteins using structural motifs and the electrostatic potential.

    PubMed

    Shanahan, Hugh P; Garcia, Mario A; Jones, Susan; Thornton, Janet M

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix-turn-helix (HTH), helix-hairpin-helix (HhH) and helix-loop-helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  15. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains

    PubMed Central

    Wong, Ka-Chun

    2016-01-01

    Protein–DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the cancer-related DNA-binding domains for in-depth studies, namely, winged Helix Turn Helix family, homeodomain family, and basic Helix-Loop-Helix family. The results demonstrate that the proposed method can predict the core residues involved in protein–DNA interactions, as verified by the existing structural data. Given its good performance, various aspects of the method are discussed and explored: for instance, different uses of prediction algorithm, different protein domains, and hotspot threshold setting. PMID:27279732

  16. Chemical Shift Assignments of Mouse HOXD13 DNA Binding Domain Bound to Duplex DNA

    PubMed Central

    Turner, Matthew; Zhang, Yonghong; Carlson, Hanqian L.; Stadler, H. Scott; Ames, James B.

    2014-01-01

    The homeobox gene (Hoxd13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of proteins that control embryonic morphogenesis. We report NMR chemical shift assignments of mouse Hoxd13 DNA binding domain bound to an 11-residue DNA duplex (BMRB no. 25133). PMID:25491407

  17. Stapling monomeric GCN4 peptides allows for DNA binding and enhanced cellular uptake.

    PubMed

    Iyer, Abhishek; Van Lysebetten, Dorien; Ruiz García, Yara; Louage, Benoit; De Geest, Bruno G; Madder, Annemieke

    2015-04-01

    The basic DNA recognition region of the GCN4 protein comprising 23 amino acids has been modified to contain two optimally positioned cysteines which have been linked and stapled using cross-linkers of suitable lengths. This results in stapled peptides with a stabilized α-helical conformation which allows for DNA binding and concurrent enhancement of cellular uptake.

  18. Exploiting anthracene photodimerization within peptides: light induced sequence-selective DNA binding.

    PubMed

    Bullen, Gemma A; Tucker, James H R; Peacock, Anna F A

    2015-05-11

    The unprecedented use of anthracene photodimerization within a protein or peptide system is explored through its incorporation into a DNA-binding peptide, derived from the GCN4 transcription factor. This study demonstrates an effective and dynamic interplay between a photoreaction and a peptide-DNA assembly, with each process able to exert control over the other.

  19. A physiological role for androgen actions in the absence of androgen receptor DNA binding activity.

    PubMed

    Pang, Tammy P S; Clarke, Michele V; Ghasem-Zadeh, Ali; Lee, Nicole K L; Davey, Rachel A; MacLean, Helen E

    2012-01-01

    We tested the hypothesis that androgens have physiological actions via non-DNA binding-dependent androgen receptor (AR) signaling pathways in males, using our genetically modified mice that express a mutant AR with deletion of the 2nd zinc finger of the DNA binding domain (AR(ΔZF2)) that cannot bind DNA. In cultured genital skin fibroblasts, the mutant AR(ΔZF2) has normal ligand binding ability, phosphorylates ERK-1/2 in response to 1 min DHT treatment (blocked by the AR antagonist bicalutamide), but has reduced androgen-dependent nuclear localization compared to wildtype (WT). AR(ΔZF2) males have normal baseline ERK-1/2 phosphorylation, with a 1.5-fold increase in Akt phosphorylation in AR(ΔZF2) muscle vs WT. To identify physiological actions of non-DNA binding-dependent AR signaling, AR(ΔZF2) males were treated for 6 weeks with dihydrotestosterone (DHT). Cortical bone growth was suppressed by DHT in AR(ΔZF2) mice (6% decrease in periosteal and 7% decrease in medullary circumference vs untreated AR(ΔZF2) males). In conclusion, these data suggest that non-DNA binding dependent AR actions suppress cortical bone growth, which may provide a mechanism to fine-tune the response to androgens in bone.

  20. Rb regulates C/EBPbeta-DNA-binding activity during 3T3-L1 adipogenesis.

    PubMed

    Cole, Kathryn A; Harmon, Anne W; Harp, Joyce B; Patel, Yashomati M

    2004-02-01

    Two pathways are initiated upon 3T3-L1 preadipocyte differentiation: the reentry of cells into the cell cycle and the initiation of a cascade of transcriptional events that "prime" the cell for differentiation. The "priming" event involves the synthesis of members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. However, the relationship between these two pathways is unknown. Here we report that in the 3T3-L1 preadipocytes induced to differentiate, cell cycle progression and the initiation of differentiation are linked by a cell cycle-dependent Rb-C/EBPbeta interaction. Cell cycle arrest in G1 by l-mimosine inhibited differentiation-induced C/EBPbeta-DNA-binding activity and Rb phosphorylation. However, cell cycle arrest after the G1/S transition by aphidicolin or nocodazole did not prevent C/EBPbeta-DNA-binding activity or Rb phosphorylation. Furthermore, hypophosphorylated Rb and C/EBPbeta coimmunoprecipitated, whereas phosphorylated Rb and C/EBPbeta did not. Electrophoretic mobility shift assays demonstrated that recombinant hypophosphorylated Rb decreased C/EBPbeta-DNA-binding activity and that Rb overexpression inhibited C/EBPbeta-induced transcriptional activation of a C/EBPalpha-promoter-luciferase reporter gene. We conclude that C/EBPbeta-DNA-binding activity is regulated by its interaction with hypophosphorylated Rb, thereby linking the progression of the cell cycle to the initiation of differentiation during 3T3-L1 adipogenesis. PMID:14576085

  1. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2

    PubMed Central

    Berntsson, Ronnie P.-A.; Odegrip, Richard; Sehlén, Wilhelmina; Skaar, Karin; Svensson, Linda M.; Massad, Tariq; Högbom, Martin; Haggård-Ljungquist, Elisabeth; Stenmark, Pål

    2014-01-01

    The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer. PMID:24259428

  2. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer.

    PubMed Central

    Kimmerly, W; Buchman, A; Kornberg, R; Rine, J

    1988-01-01

    The HMR E silencer is required for SIR-dependent transcriptional repression of the silent mating-type locus, HMR. The silencer also behaves as an origin of replication (ARS element) and allows plasmids to replicate autonomously in yeast. The replication and segregation properties of these plasmids are also dependent on the four SIR genes. We have previously characterized two DNA-binding factors in yeast extracts that recognize specific sequences at the HMR E silencer. These proteins, called ABFI (ARS-Binding Factor) and GRFI (General Regulatory Factor), are not encoded by any of the SIR genes. To investigate the biological roles of these factors, single-base-pair mutations were constructed in both binding sites at the HMR E silencer that were no longer recognized by the corresponding proteins in vitro. Our results indicate that the GRFI-binding site is required for the efficient segregation of plasmids replicated by the HMR E silencer. SIR-dependent transcriptional repression requires either an intact ABFI-binding site or GRFI-binding site, although the GRFI-binding site appears to be more important. A double-mutant silencer that binds neither ABFI nor GRFI does not mediate transcriptional repression of HMR. The replacement of HMR E with a chromosomal origin of replication (ARS1) allows partial SIR-dependent transcriptional repression of HMR, indicating a role for replication in silencer function. Together, these results suggest that the SIR proteins influence the properties of the HMR E silencer through interactions with other DNA-binding proteins. Images PMID:3046937

  3. Autoinhibition of ETV6 DNA Binding Is Established by the Stability of Its Inhibitory Helix.

    PubMed

    De, Soumya; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2016-04-24

    The ETS transcriptional repressor ETV6 (or TEL) is autoinhibited by an α-helix that sterically blocks its DNA-binding ETS domain. The inhibitory helix is marginally stable and unfolds when ETV6 binds to either specific or non-specific DNA. Using NMR spectroscopy, we show that folding of the inhibitory helix requires a buried charge-dipole interaction with helix H1 of the ETS domain. This interaction also contributes directly to autoinhibition by precluding a highly conserved dipole-enhanced hydrogen bond between the phosphodiester backbone of bound DNA and the N terminus of helix H1. To probe further the thermodynamic basis of autoinhibition, ETV6 variants were generated with amino acid substitutions introduced along the solvent exposed surface of the inhibitory helix. These changes were designed to increase the intrinsic helical propensity of the inhibitory helix without perturbing its packing interactions with the ETS domain. NMR-monitored amide hydrogen exchange measurements confirmed that the stability of the folded inhibitory helix increases progressively with added helix-promoting substitutions. This also results in progressively reinforced autoinhibition and decreased DNA-binding affinity. Surprisingly, locking the inhibitory helix onto the ETS domain by a disulfide bridge severely impairs, but does not abolish DNA binding. Weak interactions still occur via an interface displaced from the canonical ETS domain DNA-binding surface. Collectively, these studies establish a direct thermodynamic linkage between inhibitory helix stability and ETV6 autoinhibition, and demonstrate that helix unfolding does not strictly precede DNA binding. Modulating inhibitory helix stability provides a potential route for the in vivo regulation of ETV6 activity.

  4. iDNA-Prot: identification of DNA binding proteins using random forest with grey model.

    PubMed

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2011-01-01

    DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the features into the general form of pseudo amino acid composition that were extracted from protein sequences via the "grey model" and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a newly constructed stringent benchmark dataset in which none of the proteins included has ≥25% pairwise sequence identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results. PMID:21935457

  5. Inhibition of p53 DNA binding by human papillomavirus E6 proteins.

    PubMed Central

    Lechner, M S; Laimins, L A

    1994-01-01

    Transformation by the human papillomavirus (HPV) early gene products, E6 and E7, involves their interaction with cellular proteins p53 and Rb. Using glutathione S-transferase (GST) fusion proteins, we found that HPV E6 bound human p53 and that the relative efficiency of binding varied such that the GST-HPV type 16 E6 (16E6) protein bound p53 with highest affinity, followed by GST-31E6, GST-18E6, and GST-11E6. The GST-E6 fusion proteins were sufficient for binding p53 purified from a baculovirus expression system as well as in vitro translation sources, while no association was observed with GST-18E7 or a GST-16E6 mutant bearing a five-amino-acid deletion in E6. When the site-specific DNA binding activity of p53 was examined in the presence of GST-E6 proteins, an inhibition of DNA binding was observed. The degree of inhibition correlated with the relative affinity of different E6 proteins for p53; thus, GST-16E6 was the most potent inhibitor of p53 DNA binding activity, and GST-11E6 was the least effective. Prevention of p53 DNA binding is likely to play a role in the abrogation of the transcriptional activity of p53 by HPV E6 and provides a further mechanism for E6 disruption of p53 growth suppressor function in addition to its role in directing specific degradation of p53 through the ubiquitin-mediated pathway. The variation in inhibition of DNA binding seen with the various E6 proteins may thus contribute to the differences in oncogenic potential seen among the HPV types. Images PMID:8207801

  6. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis.

    PubMed

    Olszewski, Marcin; Nowak, Marta; Cyranka-Czaja, Anna; Kur, Józef

    2014-01-01

    Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB.

  7. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  8. Photoregulated gene expression may involve ubiquitous DNA binding proteins.

    PubMed Central

    Schindler, U; Cashmore, A R

    1990-01-01

    Several promoter elements have previously been shown to influence the expression of the cab-E gene in Nicotiana plumbaginifolia. Here we demonstrate, by electrophoretic mobility shift and methylation interference assays, that a complex pattern of protein-DNA interactions characterizes this promoter. Among the multiple proteins identified, we focused on five different factors which either occupied important regulatory elements and/or were present in relatively large amounts in nuclear extracts. All of these proteins were distinguished on the basis of their recognition sequence and other biochemical parameters. One, GBF, interacted with a single sequence within the cab-E promoter homologous to the G-box found in many photoregulated and other plant promoters. A second factor, GA-1, bound to the GATA element which is located between the CAAT and TATA boxes of the cab-E and all other LHCII Type I CAB promoters. GA-1 also interacted in vitro with the I-boxes of the Arabidopsis rbcS-1A promoter and the as-2 site of the CaMV 35S promoter. Two other factors, GC-1 and AT-1, bound to multiple recognition sites localized within the GC-rich and AT-rich elements, respectively. GT-1, a protein which interacts with promoters of other light-regulated genes, bound to seven distinct sites distributed throughout the cab-E promoter. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig.5 Fig.6 Fig.7 PMID:2209551

  9. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium.

    PubMed

    Deng, W; Chen, L; Peng, W T; Liang, X; Sekiguchi, S; Gordon, M P; Comai, L; Nester, E W

    1999-03-01

    Agrobacterium tumefaciens induces tumours on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of a single-stranded DNA (ssDNA) segment, the T-DNA, and VirD2, an endonuclease covalently attached to the 5' end of the T-DNA. A type IV secretion system encoded by the virB operon and virD4 is required for the entry of the T-complex and VirE2, a ssDNA-binding protein, into plant cells. The VirE1 protein is specifically required for the export of the VirE2 protein, as demonstrated by extracellular complementation and tumour formation. In this report, using a yeast two-hybrid system, we demonstrated that the VirE1 and VirE2 proteins interact and confirmed this interaction by in vitro binding assays. Although VirE2 is a ssDNA-binding protein, addition of ssDNA into the binding buffer did not interfere with the interaction of VirE1 and VirE2. VirE2 also interacts with itself, but the interaction between VirE1 and VirE2 is stronger than the VirE2 self-interaction, as measured in a lacZ reporter gene assay. In addition, the interaction of VirE2 with itself is inhibited by VirE1, indicating that VirE2 binds VirE1 preferentially. Analysis of various virE2 deletions indicated that the VirE1 interaction domain of VirE2 overlaps the VirE2 self-interaction domain. Incubation of extracts from Escherichia coli overexpressing His-VirE1 with the extracts of E. coli overexpressing His-VirE2 increased the yield of His-VirE2 in the soluble fraction. In a similar purified protein solubility assay, His-VirE1 increased the amount of His-VirE2 partitioning into the soluble fraction. In Agrobacterium, VirE2 was undetectable in the soluble protein fraction unless VirE1 was co-expressed. When urea was added to solubilize any large protein aggregates, a low level of VirE2 was detected. These results indicate that VirE1 prevents VirE2 from aggregating, enhances the stability of VirE2 and, perhaps, maintains VirE2 in an

  10. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2.

    PubMed

    Hodges, Larry D; Cuperus, Josh; Ream, Walt

    2004-05-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2. PMID:15126468

  11. Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor

    PubMed Central

    Hu, Haidai; Dong, Jiazhen; Liang, Deguang; Gao, Zengqiang; Bai, Lei; Sun, Rui; Hu, Hao; Zhang, Heng

    2015-01-01

    DNA-binding properties remain poorly understood. In this study, we performed the first genome-wide vIRF2-binding site mapping in the human genome and found vIRF2 can bind to the promoter regions of 100 target cellular genes. X-ray structure analysis and functional studies provided unique insights into its DNA-binding potency and regulation of target gene expression. Our study suggested that vIRF2 could act as a transcription factor of its target genes and contribute to KSHV infection and pathogenesis through versatile functions. PMID:26537687

  12. Nucleotides sequestered at different subsite loci within DNA-binding pockets of two OB-fold single-stranded DNA-binding proteins are unstacked to different extents.

    PubMed

    Nguyen, Hieu N; Zhao, Liang; Gray, Carla W; Gray, Donald M; Xia, Tianbing

    2013-07-01

    The gene 5 protein (g5p) encoded by the Ff strains of Escherichia coli bacteriophages is a dimeric single-stranded DNA-binding protein (SSB) that consists of two identical OB-fold (oligonucleotide/oligosaccharide-binding) motifs. Ultrafast time-resolved fluorescence measurements were carried out to investigate the effect of g5p binding on the conformation of 2-aminopurine (2AP) labels positioned between adenines or cytosines in the 16-nucleotide antiparallel tails of DNA hairpins. The measurements revealed significant changes in the conformational heterogeneity of the 2AP labels caused by g5p binding. The extent of the changes was dependent on sub-binding-site location, but generally resulted in base unstacking. When bound by g5p, the unstacked 2AP population increased from ∼ 22% to 59-67% in C-2AP-C segments and from 39% to 77% in an A-2AP-A segment. The OB-fold RPA70A domain of the human replication protein A also caused a significant amount of base unstacking at various locations within the DNA binding site as evidenced by steady-state fluorescence titration measurements using 2AP-labeled 5-mer DNAs. These solution studies support the concept that base unstacking at most of a protein's multiple sub-binding-site loci may be a feature that allows non-sequence specific OB-fold proteins to bind to single-stranded DNAs (ssDNAs) with minimal preference for particular sequences.

  13. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding

    PubMed Central

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  14. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    PubMed

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  15. Transcriptional Repressor TrmBL2 from Thermococcus kodakarensis Forms Filamentous Nucleoprotein Structures and Competes with Histones for DNA Binding in a Salt- and DNA Supercoiling-dependent Manner*

    PubMed Central

    Efremov, Artem K.; Qu, Yuanyuan; Maruyama, Hugo; Lim, Ci J.; Takeyasu, Kunio; Yan, Jie

    2015-01-01

    Architectural DNA proteins play important roles in the chromosomal DNA organization and global gene regulation in living cells. However, physiological functions of some DNA-binding proteins from archaea remain unclear. Recently, several abundant DNA-architectural proteins including histones, Alba, and TrmBL2 have been identified in model euryarchaeon Thermococcus kodakarensis. Although histones and Alba proteins have been previously characterized, the DNA binding properties of TrmBL2 and its interplay with the other major architectural proteins in the chromosomal DNA organization and gene transcription regulation remain largely unexplored. Here, we report single-DNA studies showing that at low ionic strength (<300 mm KCl), TrmBL2 binds to DNA largely in non-sequence-specific manner with positive cooperativity, resulting in formation of stiff nucleoprotein filamentous patches, whereas at high ionic strength (>300 mm KCl) TrmBL2 switches to more sequence-specific interaction, suggesting the presence of high affinity TrmBL2-filament nucleation sites. Furthermore, in vitro assays indicate the existence of DNA binding competition between TrmBL2 and archaeal histones B from T. kodakarensis, which can be strongly modulated by DNA supercoiling and ionic strength of surrounding solution. Overall, these results advance our understanding of TrmBL2 DNA binding properties and provide important insights into potential functions of architectural proteins in nucleoid organization and gene regulation in T. kodakarensis. PMID:25931116

  16. Recombination hotspot activity of hypervariable minisatellite DNA requires minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Moore, P D

    1998-01-01

    Hypervariable minisatellite DNA repeats are found at tens of thousands of loci in the mammalian genome. These sequences stimulate homologous recombination in mammalian cells [Cell 60:95-103]. To test the hypothesis that protein-DNA interaction is required for hotspot function in vivo, we determined whether a second protein binding nearby could abolish hotspot activity. Intermolecular recombination between pairs of plasmid substrates was measured in the presence or absence of the cis-acting recombination hotspot and in the presence or absence of the second trans-acting DNA binding protein. Minisatellite DNA had hotspot activity in two cell lines, but lacked hotspot activity in two closely related cell lines expressing a site-specific helicase that bound to DNA adjacent to the hotspot. Suppression of hotspot function occurred for both replicating and non-replicating recombination substrates. These results indicate that hotspot activity in vivo requires site occupancy by minisatellite DNA binding proteins. PMID:9776980

  17. Tetrameric ZBRK1 DNA binding domain has affinity towards cognate DNA in absence of zinc ions.

    PubMed

    Yadav, Lumbini R; Biswal, Mahamaya N; Vikrant; Hosur, M V; Varma, Ashok K

    2014-07-18

    Zinc finger transcription regulatory proteins play crucial roles in cell-cycle regulation, DNA damage response and tumor genesis. Human ZBRK1 is a zinc-finger transcription repressor protein, which recognizes double helical DNA containing consensus sequences of 5'GGGXXXCAGXXXTTT3'. In the present study, we have purified recombinant DNA binding domain of ZBRK1, and studied binding with zinc ions and DNA, using biophysical techniques. The elution profile of the purified protein suggests that this ZBRK1 forms a homotetramer in solution. Dissociation and pull down assays also suggest that this domain forms a higher order oligomer. The ZBRK1-DNA binding domain acquires higher stability in the presence of zinc ions and DNA. The secondary structure of the ZBRK1-DNA complex is found to be significantly altered from the standard B-DNA conformation.

  18. Characterization of the DNA-binding activity of HIV-1 integrase using a filter binding assay.

    PubMed

    Haugan, I R; Nilsen, B M; Worland, S; Olsen, L; Helland, D E

    1995-12-26

    Based on the selective binding of proteins and DNA to distinct filter materials a double-layered dot blot radio assay was developed to evaluate the binding of DNA to HIV-1 integrase. In this assay the DNA-binding was found to be independent of Mn2+ concentration, inhibited by concentrations of Mg2+ above 5 mM, abolished by zinc chelation and inhibited by monoclonal antibodies reacting with either the N-terminal or C-terminal regions of integrase. Atomic absorption spectroscopy revealed the molar ratio between integrase and zinc to be close to 1. It is concluded that both the N-terminal and the C-terminal regions of integrase are involved in DNA-binding and that the reported double-layered dot blot radio assay is well suited for further characterization of the integrase.

  19. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  20. DNA binding, antioxidant activity, and DNA damage protection of chiral macrocyclic Mn(III) salen complexes.

    PubMed

    Pandya, Nirali; Khan, Noor-ul H; Prathap, K Jeya; Kureshy, Rukhsana I; Abdi, Sayed H R; Mishra, Sandhya; Bajaj, Hari C

    2012-12-01

    We are reporting the synthesis, characterization, and calf thymus DNA binding studies of novel chiral macrocyclic Mn(III) salen complexes S-1, R-1, S-2, and R-2. These chiral complexes showed ability to bind with DNA, where complex S-1 exhibits the highest DNA binding constant 1.20 × 10(6) M(-1). All the compounds were screened for superoxide and hydroxyl radical scavenging activities; among them, complex S-1 exhibited significant activity with IC(50) 1.36 and 2.37 μM, respectively. Further, comet assay was used to evaluate the DNA damage protection in white blood cells against the reactive oxygen species wherein complex S-1 was found effective in protecting the hydroxyl radicals mediated plasmid and white blood cells DNA damage.

  1. Structural Analysis of Rtt106p Reveals a DNA Binding Role Required for Heterochromatin Silencing

    SciTech Connect

    Liu, Y.; Huang, H; Zhou, B; Wang, S; Hu, Y; Li, X; Liu, J; Niu, L; Wu, J; et. al.

    2010-01-01

    Rtt106p is a Saccharomyces cerevisiae histone chaperone with roles in heterochromatin silencing and nucleosome assembly. The molecular mechanism by which Rtt106p engages in chromatin dynamics remains unclear. Here, we report the 2.5 {angstrom} crystal structure of the core domain of Rtt106p, which adopts an unusual 'double pleckstrin homology' domain architecture that represents a novel structural mode for histone chaperones. A histone H3-H4-binding region and a novel double-stranded DNA-binding region have been identified. Mutagenesis studies reveal that the histone and DNA binding activities of Rtt106p are involved in Sir protein-mediated heterochromatin formation. Our results uncover the structural basis of the diverse functions of Rtt106p and provide new insights into its cellular roles.

  2. Systematic Determination of Transcription Factor DNA-Binding Specificities in Yeast.

    PubMed

    Peña-Castillo, Lourdes; Badis, Gwenael

    2016-01-01

    Understanding how genes are regulated, decoding their "regulome", is one of the main challenges of the post-genomic era. Here, we describe the in vitro method we used to associate cis-regulatory sites with cognate trans-regulators by characterizing the DNA-binding specificity of the vast majority of yeast transcription factors using Protein Binding Microarrays. This approach can be implemented to any given organism.

  3. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    PubMed Central

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a "zinc cluster" akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is approximately 3.5 A. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is approximately 13 A, and in this instance, a "zinc twist" is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native "zinc fingers," structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent. Images PMID:1846973

  4. Specificity of cellular DNA-binding sites of microbial populations in a Florida reservoir

    SciTech Connect

    Paul, J.H.; Pichard, S.L. )

    1989-11-01

    The substrate specificity of the DNA-binding mechanism(s) of bacteria in a Florida reservoir was investigated in short- and long-term uptake studies with radiolabeled DNA and unlabeled competitors. Thymine oligonucleotides ranging in size from 2 base pairs to 19 to 24 base pairs inhibited DNA binding in 20-min incubations by 43 to 77%. Deoxynucleoside monophosphates, thymidine, and thymine had little effect on short-term DNA binding, although several of these compounds inhibited the uptake of the radiolabel from DNA in 4-h incubations. Inorganic phosphate and glucose-1-phosphate inhibited neither short- nor long-term binding of ({sup 3}H)- or ({sup 32}P)DNA, indicating that DNA was not utilized as a phosphorous source in this reservoir. RNA inhibited both short- and long-term radiolabeled DNA uptake as effectively as unlabeled DNA. Collectively these results indicate that aquatic bacteria possess a generalized nuclei acid uptake/binding mechanism specific for compounds containing phosphodiester bonds and capable of recognizing oligonucleotides as short as dinucleotides. This binding site is distinct from nucleoside-, nucleotide-, phosphomonoester-, and inorganic phosphate-binding sites. Such a nucleic acid-binding mechanism may have evolved for the utilization of extracellular DNA (and perhaps RNA), which is abundant in many marine and freshwater environments.

  5. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication

    PubMed Central

    Holguera, Isabel; Muñoz-Espín, Daniel; Salas, Margarita

    2015-01-01

    Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification. PMID:25722367

  6. Effects of copper ions on DNA binding and cytotoxic activity of a chiral salicylidene Schiff base.

    PubMed

    Fei, Bao-Li; Xu, Wu-Shuang; Tao, Hui-Wen; Li, Wen; Zhang, Yu; Long, Jian-Ying; Liu, Qing-Bo; Xia, Bing; Sun, Wei-Yin

    2014-03-01

    A chiral Schiff base HL N-(5-bromo-salicylaldehyde)dehydroabietylamine (1) and its chiral dinuclear copper complex [Cu2L4]·4DMF (2) have been synthesized and fully characterized. The interactions of 1 and 2 with salmon sperm DNA have been investigated by viscosity measurements, UV, fluorescence and circular dichroism (CD) spectroscopic techniques. Absorption spectral (Kb=3.30 × 10(5)M(-)(1) (1), 6.63 × 10(5)M(-)(1)(2)), emission spectral (Ksv=7.58 × 10(3)M(-)(1) (1), 1.52 × 10(4)M(-)(1) (2)), and viscosity measurements reveal that 1 and 2 interact with DNA through intercalation and 2 exhibits a higher DNA binding ability. In addition, CD study indicates 2 cause a more evident perturbation on the base stacking and helicity of B-DNA upon binding to it. In fluorimetric studies, the enthalpy (ΔH>0) and entropy (ΔS>0) changes of the reactions between the compounds with DNA demonstrate hydrophobic interactions. 1 and 2 were also screened for their cytotoxic ability and 2 demonstrates higher growth inhibition of the selected cancer cells at concentration of 50 μM, this result is identical with their DNA binding ability order. All the experimental results show that the involvement of Cu (II) centers has some interesting effect on DNA binding ability and cytotoxicity of the chiral Schiff base.

  7. A Conserved Myc Protein Domain, MBIV, Regulates DNA Binding, Apoptosis, Transformation, and G2 Arrest†

    PubMed Central

    Cowling, Victoria H.; Chandriani, Sanjay; Whitfield, Michael L.; Cole, Michael D.

    2006-01-01

    The myc family of oncogenes is well conserved throughout evolution. Here we present the characterization of a domain conserved in c-, N-, and L-Myc from fish to humans, N-Myc317-337, designated Myc box IV (MBIV). A deletion of this domain leads to a defect in Myc-induced apoptosis and in some transformation assays but not in cell proliferation. Unlike other Myc mutants, MycΔMBIV is not a simple loss-of-function mutant because it is hyperactive for G2 arrest in primary cells. Microarray analysis of genes regulated by N-MycΔMBIV reveals that it is weakened for transactivation and repression but not nearly as defective as N-MycΔMBII. Although the mutated region is not part of the previously defined DNA binding domain, we find that N-MycΔMBIV has a significantly lower affinity for DNA than the wild-type protein in vitro. Furthermore, chromatin immunoprecipitation shows reduced binding of N-MycΔMBIV to some target genes in vivo, which correlates with the defect in transactivation. Thus, this conserved domain has an unexpected role in Myc DNA binding activity. These data also provide a novel separation of Myc functions linked to the modulation of DNA binding activity. PMID:16705173

  8. Isohelical DNA-Binding Oligomers: Antiviral Activity and Application for the Design of Nanostructured Devices

    NASA Astrophysics Data System (ADS)

    Gursky, Georgy; Nikitin, Alexei; Surovaya, Anna; Grokhovsky, Sergey; Andronova, Valeria; Galegov, Georgy

    We performed a systematic search for new structural motifs isohelical to double-stranded DNA and found five motifs that can be used for the design and synthesis of new DNA-binding oligomers. Some of the DNA-binding oligomers can be equipped with fluorescence chromophores and metal-chelating groups and may serve as conductive wires in nano-scaled electric circuits. A series of new DNA-binding ligands were synthesized by a modular assembly of pyrrole carboxamides and novel pseudopeptides of the form (XY)n. Here, Y is a glycine residue; n is the degree of polymerization. X is an unusual amino acid residue containing a five-membered aromatic ring. Antiviral activity of bis-linked netropsin derivatives is studied. Bis-netropsins containing 15 and 31 lysine residues at the N-termini inhibit most effectively reproduction of the herpes virus type 1 in the Vero cell culture, including virus variants resistant to acyclovir and its analogues. Antiviral activity of bis-linked netropsin derivatives is correlated with their ability to interact with long clusters of AT-base pairs in the origin of replication of the viral DNA.

  9. Extensive DNA-binding specificity divergence of a conserved transcription regulator

    PubMed Central

    Baker, Christopher R.; Tuch, Brian B.; Johnson, Alexander D.

    2011-01-01

    The DNA sequence recognized by a transcription regulator can be conserved across large evolutionary distances. For example, it is known that many homologous regulators in yeasts and mammals can recognize the same (or closely related) DNA sequences. In contrast to this paradigm, we describe a case in which the DNA-binding specificity of a transcription regulator has changed so extensively (and over a much smaller evolutionary distance) that its cis-regulatory sequence appears unrelated in different species. Bioinformatic, genetic, and biochemical approaches were used to document and analyze a major change in the DNA-binding specificity of Matα1, a regulator of cell-type specification in ascomycete fungi. Despite this change, Matα1 controls the same core set of genes in the hemiascomycetes because its DNA recognition site has evolved with it, preserving the protein-DNA interaction but significantly changing its molecular details. Matα1 and its recognition sequence diverged most dramatically in the common ancestor of the CTG-clade (Candida albicans, Candida lusitaniae, and related species), apparently without the aid of a gene duplication event. Our findings suggest that DNA-binding specificity divergence between orthologous transcription regulators may be more prevalent than previously thought and that seemingly unrelated cis-regulatory sequences can nonetheless be homologous. These findings have important implications for understanding transcriptional network evolution and for the bioinformatic analysis of regulatory circuits. PMID:21498688

  10. DNA-binding specificity of the Lon protease alpha-domain from Brevibacillus thermoruber WR-249.

    PubMed

    Lin, Yu-Ching; Lee, Huai-Cheng; Wang, Iren; Hsu, Chun-Hua; Liao, Jiahn-Haur; Lee, Alan Yueh-Luen; Chen, Chinpan; Wu, Shih-Hsiung

    2009-10-01

    Lon protease has been well studied in many aspects; however, the DNA-binding specificity of Lon in prokaryotes has not been clearly identified. Here we examined the DNA-binding activity of Lon protease alpha-domains from Brevibacillus thermoruber (Bt), Bacillus subtilis (Bs), and Escherichia coli (Ec). MALDI-TOF mass spectroscopy showed that the alpha-domain from Bt-Lon binds to the duplex nucleotide sequence 5'-CTGTTAGCGGGC-3' (ms1) and protected it from DNase I digestion. Surface plasmon resonance showed that the Bt-Lon alpha-domain binds with ms1 double-stranded DNA tighter than Bs- and Ec-Lon alpha-domains, whereas the Bt-Lon alpha-domain has dramatically lower affinity for double-stranded DNA with 0 and 50% identity to the ms1 binding sequence. Our results indicated that Bt-Lon alpha-domain plays a critical role with ms1 sequence in the DNA-binding specificity.

  11. HMG1-related DNA-binding protein isolated with V-(D)-J recombination signal probes.

    PubMed Central

    Shirakata, M; Hüppi, K; Usuda, S; Okazaki, K; Yoshida, K; Sakano, H

    1991-01-01

    In order to isolate cDNA clones for DNA-binding components of the V-(D)-J recombinase, phage libraries from a pre-B-cell line were screened with a radiolabeled probe containing recombination signal sequences (RSS). Among prospective clones, cDNA T160 was analyzed further. It produced a protein of 80.6 kDa which bound to DNA containing RSS but not to DNA in which the RSS had been mutated. A search of a data base revealed that the T160 protein has significant sequence homology (56%) to the nonhistone chromosomal protein HMG1 within the C-terminal region of 80 amino acids. DNA-binding analysis with truncated proteins showed that the HMG homology region is responsible for DNA binding. Using restriction fragment length polymorphisms, the T160 gene was mapped at the proximal end of mouse chromosome 2. Evidence was obtained for genetic linkage between the T160 gene and the recombination activator genes RAG-1 and RAG-2. Images PMID:1678855

  12. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  13. DNA binding of dinuclear iron(II) metallosupramolecular cylinders. DNA unwinding and sequence preference.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2008-06-01

    [Fe(2)L(3)](4+) (L = C(25)H(20)N(4)) is a synthetic tetracationic supramolecular cylinder (with a triple helical architecture) that targets the major groove of DNA and can bind to DNA Y-shaped junctions. To explore the DNA-binding mode of [Fe(2)L(3)](4+), we examine herein the interactions of pure enantiomers of this cylinder with DNA by biochemical and molecular biology methods. The results have revealed that, in addition to the previously reported bending of DNA, the enantiomers extensively unwind DNA, with the M enantiomer being the more efficient at unwinding, and exhibit preferential binding to regular alternating purine-pyrimidine sequences, with the M enantiomer showing a greater preference. Also, interestingly, the DNA binding of bulky cylinders [Fe(2)(L-CF(3))(3)](4+) and [Fe(2)(L-Ph)(3)](4+) results in no DNA unwinding and also no sequence preference of their DNA binding was observed. The observation of sequence-preference in the binding of these supramolecular cylinders suggests that a concept based on the use of metallosupramolecular cylinders might result in molecular designs that recognize the genetic code in a sequence-dependent manner with a potential ability to affect the processing of the genetic code. PMID:18467423

  14. DNA-binding motif and target genes of the imprinted transcription factor PEG3

    PubMed Central

    Thiaville, Michelle M.; Huang, Jennifer M.; Kim, Hana; Ekram, Muhammad B.; Roh, Tae-Young; Kim, Joomyeong

    2012-01-01

    The Peg3 gene is expressed only from the paternally inherited allele located on proximal mouse chromosome 7. The PEG3 protein encoded by this imprinted gene is predicted to bind DNA based on its multiple zinc finger motifs and nuclear localization. In the current study, we demonstrated PEG3’s DNA-binding ability by characterizing its binding motif and target genes. We successfully identified target regions bound by PEG3 from mouse brain extracts using chromatin immunoprecipitation analysis. PEG3 was demonstrated to bind these candidate regions through the consensus DNA-binding motif AGTnnCnnnTGGCT. In vitro promoter assays established that PEG3 controls the expression of a given gene through this motif. Consistent with these observations, the transcriptional levels of a subset of the target genes are also affected in a mutant mouse model with reduced levels of PEG3 protein. Overall, these results confirm PEG3 as a DNA-binding protein controlling specific target genes that are involved in distinct cellular functions. PMID:23078764

  15. RAD50 and NBS1 form a stable complex functional in DNA binding and tethering.

    PubMed

    van der Linden, Eddy; Sanchez, Humberto; Kinoshita, Eri; Kanaar, Roland; Wyman, Claire

    2009-04-01

    The RAD50/MRE11/NBS1 protein complex (RMN) plays an essential role during the early steps of DNA double-strand break (DSB) repair by homologous recombination. Previous data suggest that one important role for RMN in DSB repair is to provide a link between DNA ends. The striking architecture of the complex, a globular domain from which two extended coiled coils protrude, is essential for this function. Due to its DNA-binding activity, ability to form dimers and interact with both RAD50 and NBS1, MRE11 is considered to be crucial for formation and function of RMN. Here, we show the successful expression and purification of a stable complex containing only RAD50 and NBS1 (RN). The characteristic architecture of the complex was not affected by absence of MRE11. Although MRE11 is a DNA-binding protein it was not required for DNA binding per se or DNA-tethering activity of the complex. The stoichiometry of NBS1 in RMN and RN complexes was estimated by SFM-based volume analysis. These data show that in vitro, R, M and N form a variety of stable complexes with variable subunit composition and stoichiometry, which may be physiologically relevant in different aspects of RMN function.

  16. Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding

    PubMed Central

    Honda, Masayoshi; Okuno, Yusuke; Yoo, Jungmin; Ha, Taekjip; Spies, Maria

    2011-01-01

    RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52Y104pCMF retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52Y104pCMF specifically targets and wraps ssDNA. While RAD52Y104pCMF is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed. PMID:21804533

  17. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding.

  18. Structure and DNA-binding of meiosis-specific protein Hop2

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua; Moktan, Hem; Pezza, Roberto

    2014-03-01

    Here we report structure elucidation of the DNA binding domain of homologous pairing protein 2 (Hop2), which is important to gene diversity when sperms and eggs are produced. Together with another protein Mnd1, Hop2 enhances the strand invasion activity of recombinase Dmc1 by over 30 times, facilitating proper synapsis of homologous chromosomes. However, the structural and biochemical bases for the function of Hop2 and Mnd1 have not been well understood. As a first step toward such understanding, we recently solved the structure for the N-terminus of Hop2 (1-84) using solution NMR. This fragment shows a typical winged-head conformation with recognized DNA binding activity. DNA interacting sites were then investigated by chemical shift perturbations in a titration experiment. Information of these sites was used to guide protein-DNA docking with MD simulation, revealing that helix 3 is stably lodged in the DNA major groove and that wing 1 (connecting strands 2 and 3) transiently comes in contact with the minor groove in nanosecond time scale. Mutagenesis analysis further confirmed the DNA binding sites in this fragment of the protein.

  19. DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori

    SciTech Connect

    Kuzuhara, T. Suganuma, M.; Oka, K.; Fujiki, H.

    2007-11-03

    Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.

  20. [Leu5]enkephalin-encoding sequences are targets for a specific DNA-binding factor.

    PubMed Central

    Bakalkin, G; Telkov, M; Yakovleva, T; Terenius, L

    1995-01-01

    A DNA-binding factor with high affinity and specificity for the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes has been characterized. The factor has the highest affinity for the [Leu5]-enkephalin-encoding sequence in the dynorphin B-encoding region of the prodynorphin gene, has relatively high affinity for other [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes, but has no apparent affinity for similar DNA sequences coding for [Met5]-enkephalin in the prodynorphin or proopiomelanocortin genes. The factor has been named [Leu5]enkephalin-encoding sequence DNA-binding factor (LEF). LEF has a nuclear localization and is composed of three subunits of about 60, 70, and 95 kDa, respectively. The highest levels were observed in rat testis, cerebellum, and spleen and were generally higher in late embryonal compared to newborn or adult animals. LEF activity was also recorded in human clonal tumor cell lines. LEF inhibited the transcription of reporter genes in artificial gene constructs where a [Leu5]enkephalin-encoding DNA fragment had been inserted between the transcription initiation site and the coding region of the reporter genes. These observations suggest that the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes also have regulatory functions realized through interaction with a specific DNA-binding factor. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568065

  1. DNA binding of dinuclear iron(II) metallosupramolecular cylinders. DNA unwinding and sequence preference

    PubMed Central

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2008-01-01

    [Fe2L3]4+ (L = C25H20N4) is a synthetic tetracationic supramolecular cylinder (with a triple helical architecture) that targets the major groove of DNA and can bind to DNA Y-shaped junctions. To explore the DNA-binding mode of [Fe2L3]4+, we examine herein the interactions of pure enantiomers of this cylinder with DNA by biochemical and molecular biology methods. The results have revealed that, in addition to the previously reported bending of DNA, the enantiomers extensively unwind DNA, with the M enantiomer being the more efficient at unwinding, and exhibit preferential binding to regular alternating purine–pyrimidine sequences, with the M enantiomer showing a greater preference. Also, interestingly, the DNA binding of bulky cylinders [Fe2(L-CF3)3]4+ and [Fe2(L-Ph)3]4+ results in no DNA unwinding and also no sequence preference of their DNA binding was observed. The observation of sequence-preference in the binding of these supramolecular cylinders suggests that a concept based on the use of metallosupramolecular cylinders might result in molecular designs that recognize the genetic code in a sequence-dependent manner with a potential ability to affect the processing of the genetic code. PMID:18467423

  2. DNA binding, DNA cleavage and HSA interaction of several metal complexes containing N-(2-hydroxyethyl)-N'-benzoylthiourea and 1,10-phenanthroline ligands.

    PubMed

    Peng, Bo; Gao, Zhuantao; Li, Xibo; Li, Tingting; Chen, Guorong; Zhou, Min; Zhang, Ji

    2016-10-01

    Four novel ternary metal complexes of the type [M(Phen)(L1)2)] [phen = 1,10-phenanthroline, L1 = N-(2-hydroxyethyl)-N'-benzoylthiourea, M = Ni(II)(1), Co(II) (2), Cu(II) (3), Pd(II) (4)] were synthesized. The organic ligands and their corresponding organometallic complexes have been characterized using UV-vis absorption spectroscopy, element analysis, infrared radiation spectroscopy and fluorescence spectra. DNA binding and cleavage studies of these complexes were conducted in detail. In vitro DNA-binding properties were studied by electronic absorption spectra and fluorescence spectra methods. The results indicate that all of the ternary metal complexes can efficiently bind to DNA via intercalation mode. The DNA-binding constants for all ternary compounds are around 4 × 10(6) M(-1). The binding propensity of the complexes to human serum albumin (HSA) was also investigated. Agarose gel electrophoresis study revealed that the metal complexes could cleave super-coiled pBR322 DNA to a nicked form in the absence of external agents. In vitro anti bacterial studies show that copper complex has weak antibacterial activities. Copper complex exhibits a better biological activity among all complexes. This study provides a new perspective and evaluation on the role and importance of the effect factors on the medicinal properties of benzoylthiourea compounds. Synchronous fluorescence spectra of HSA (10 μM) as a function of concentration of the complexes 1-4.

  3. DNA binding, DNA cleavage and HSA interaction of several metal complexes containing N-(2-hydroxyethyl)-N'-benzoylthiourea and 1,10-phenanthroline ligands.

    PubMed

    Peng, Bo; Gao, Zhuantao; Li, Xibo; Li, Tingting; Chen, Guorong; Zhou, Min; Zhang, Ji

    2016-10-01

    Four novel ternary metal complexes of the type [M(Phen)(L1)2)] [phen = 1,10-phenanthroline, L1 = N-(2-hydroxyethyl)-N'-benzoylthiourea, M = Ni(II)(1), Co(II) (2), Cu(II) (3), Pd(II) (4)] were synthesized. The organic ligands and their corresponding organometallic complexes have been characterized using UV-vis absorption spectroscopy, element analysis, infrared radiation spectroscopy and fluorescence spectra. DNA binding and cleavage studies of these complexes were conducted in detail. In vitro DNA-binding properties were studied by electronic absorption spectra and fluorescence spectra methods. The results indicate that all of the ternary metal complexes can efficiently bind to DNA via intercalation mode. The DNA-binding constants for all ternary compounds are around 4 × 10(6) M(-1). The binding propensity of the complexes to human serum albumin (HSA) was also investigated. Agarose gel electrophoresis study revealed that the metal complexes could cleave super-coiled pBR322 DNA to a nicked form in the absence of external agents. In vitro anti bacterial studies show that copper complex has weak antibacterial activities. Copper complex exhibits a better biological activity among all complexes. This study provides a new perspective and evaluation on the role and importance of the effect factors on the medicinal properties of benzoylthiourea compounds. Synchronous fluorescence spectra of HSA (10 μM) as a function of concentration of the complexes 1-4. PMID:27571992

  4. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    PubMed Central

    Fujita, Toshitsugu; Fujii, Hodaka

    2015-01-01

    Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing. PMID:26404236

  5. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; Couceiro, Jose R.; Vázquez, M. Eugenio; Mascareñas, José L.

    2015-01-01

    We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates. PMID:26290687

  6. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    NASA Astrophysics Data System (ADS)

    Shokri, Leila; Rouzina, Ioulia; Williams, Mark C.

    2009-06-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork.

  7. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    PubMed

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  8. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Duan, Hong; Patel, Dinshaw J.

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain (“BEN-solo” factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  9. The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction.

    PubMed

    Sundberg, C D; Ream, W

    1999-11-01

    Agrobacterium tumefaciens transfers single-stranded DNA (ssDNA) into plants. Efficient tumorigenesis requires VirE1-dependent export of ssDNA-binding (SSB) protein VirE2. VirE1 binds VirE2 domains involved in SSB and self-association, and VirE1 may facilitate VirE2 export by preventing VirE2 aggregation and the premature binding of VirE2 to ssDNA. PMID:10542192

  10. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination.

    PubMed

    Kantake, Noriko; Madiraju, Murty V V M; Sugiyama, Tomohiko; Kowalczykowski, Stephen C

    2002-11-26

    We present biochemical evidence for the functional similarity of Escherichia coli RecO protein and bacteriophage T4 UvsY protein to eukaryotic Rad52 protein. Although Rad52 protein is conserved in eukaryotes, no sequence homologue has been found in prokaryotes or archeabacteria. Rad52 protein has two unique activities: facilitation of replication protein-A (RPA) displacement by Rad51 protein and annealing of RPA-single-stranded DNA (ssDNA) complexes. Both activities require species-specific interaction between Rad52 protein and RPA. Both RecO and UvsY proteins also possess the former property with regard to their cognate ssDNA-binding protein. Here, we report that RecO protein anneals ssDNA that is complexed with only its cognate ssDNA-binding protein, suggesting the involvement of species-specific interactions. Optimal activity for RecO protein occurs after formation of a 1:1 complex with SSB protein. RecR protein, which is known to stimulate RecO protein to facilitate SSB protein displacement by RecA protein, inhibits annealing by RecO protein, suggesting that RecR protein may regulate the choice between the DNA strand invasion versus annealing pathways. In addition, we show that UvsY protein anneals ssDNA; furthermore, ssDNA, which is complexed only with its cognate ssDNA-binding protein, is annealed in the presence of UvsY protein. These results indicate that RecO and possibly UvsY proteins are functional counterparts of Rad52 protein. Based on the conservation of these functions, we propose a modified double-strand break repair model that includes DNA annealing as an important intermediate step. PMID:12438681

  11. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: Antimicrobial activity and DNA binding

    NASA Astrophysics Data System (ADS)

    Latha, P.; Kodisundaram, P.; Sundararajan, M. L.; Jeyakumar, T.

    2014-08-01

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, 1H, 13C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular Csbnd H⋯N and Csbnd H⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814 a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404 a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method.

  12. Structural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme

    PubMed Central

    Golovenko, Dmitrij; Manakova, Elena; Zakrys, Linas; Zaremba, Mindaugas; Sasnauskas, Giedrius; Gražulis, Saulius; Siksnys, Virginijus

    2014-01-01

    The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence 5′-CCTGG-3′). In order to understand the structural and molecular mechanisms of specificity of B3 DBDs, we have solved the crystal structure of BfiI-C (recognition sequence 5′-ACTGGG-3′) complexed with 12-bp cognate oligoduplex. Structural comparison of BfiI-C–DNA and EcoRII-N–DNA complexes reveals a conserved DNA-binding mode and a conserved pattern of interactions with the phosphodiester backbone. The determinants of the target specificity are located in the loops that emanate from the conserved structural core. The BfiI-C–DNA structure presented here expands a range of templates for modeling of the DNA-bound complexes of the B3 family of plant TFs. PMID:24423868

  13. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.

  14. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae.

    PubMed Central

    Zhang, S; Lockshin, C; Herbert, A; Winter, E; Rich, A

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype. Images PMID:1396572

  15. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    SciTech Connect

    Pröpper, Kevin; Meindl, Kathrin; Sammito, Massimo; Dittrich, Birger; Sheldrick, George M.; Pohl, Ehmke; Usón, Isabel

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  16. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins.

    PubMed

    Savic, Daniel; Partridge, E Christopher; Newberry, Kimberly M; Smith, Sophia B; Meadows, Sarah K; Roberts, Brian S; Mackiewicz, Mark; Mendenhall, Eric M; Myers, Richard M

    2015-10-01

    Chromatin immunoprecipitation followed by next-generation DNA sequencing (ChIP-seq) is a widely used technique for identifying transcription factor (TF) binding events throughout an entire genome. However, ChIP-seq is limited by the availability of suitable ChIP-seq grade antibodies, and the vast majority of commercially available antibodies fail to generate usable data sets. To ameliorate these technical obstacles, we present a robust methodological approach for performing ChIP-seq through epitope tagging of endogenous TFs. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing technology to develop CRISPR epitope tagging ChIP-seq (CETCh-seq) of DNA-binding proteins. We assessed the feasibility of CETCh-seq by tagging several DNA-binding proteins spanning a wide range of endogenous expression levels in the hepatocellular carcinoma cell line HepG2. Our data exhibit strong correlations between both replicate types as well as with standard ChIP-seq approaches that use TF antibodies. Notably, we also observed minimal changes to the cellular transcriptome and to the expression of the tagged TF. To examine the robustness of our technique, we further performed CETCh-seq in the breast adenocarcinoma cell line MCF7 as well as mouse embryonic stem cells and observed similarly high correlations. Collectively, these data highlight the applicability of CETCh-seq to accurately define the genome-wide binding profiles of DNA-binding proteins, allowing for a straightforward methodology to potentially assay the complete repertoire of TFs, including the large fraction for which ChIP-quality antibodies are not available.

  17. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  18. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  19. Cross-talk between the ligand- and DNA-binding domains of estrogen receptor.

    PubMed

    Huang, Wei; Greene, Geoffrey L; Ravikumar, Krishnakumar M; Yang, Sichun

    2013-11-01

    Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding.

  20. Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes

    NASA Astrophysics Data System (ADS)

    Marchini, Cristina; Montani, Maura; Amici, Augusto; Pozzi, Daniela; Caminiti, Ruggero; Caracciolo, Giulio

    2009-01-01

    We have applied electrophoresis on agarose gels to investigate the DNA-binding capacity of cationic liposomes made of cationic DC-cholesterol and neutral dioleoylphosphatidylethanolamine as a function of membrane charge density and cationic lipid/DNA charge ratio. While each cationic liposome formulation exhibits a distinctive DNA-protection ability, here we show that such a capacity is universally regulated by surface area of lipid membranes available for binding in an aspecific manner. The relevance of DNA protection for gene transfection is also discussed.

  1. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells.

    PubMed

    Liu, Ting; Huang, Jun

    2016-07-01

    Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.

  2. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair.

    PubMed

    Marceau, Aimee H

    2012-01-01

    Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance

  3. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors.

    PubMed

    Seol, W; Choi, H S; Moore, D D

    1996-05-31

    SHP is an orphan member of the nuclear hormone receptor superfamily that contains the dimerization and ligand-binding domain found in other family members but lacks the conserved DNA binding domain. In the yeast two-hybrid system, SHP interacted with several conventional and orphan members of the receptor superfamily, including retinoid receptors, the thyroid hormone receptor, and the orphan receptor MB67. SHP also interacted directly with these receptors in vitro. In mammalian cells, SHP specifically inhibited transactivation by the superfamily members with which it interacted. These results suggest that SHP functions as a negative regulator of receptor-dependent signaling pathways. PMID:8650544

  4. Altered Specificity of DNA-Binding Proteins with Transition Metal Dimerization Domains

    NASA Astrophysics Data System (ADS)

    Cuenoud, Bernard; Schepartz, Alanna

    1993-01-01

    The bZIP motif is characterized by a leucine zipper domain that mediates dimerization and a basic domain that contacts DNA. A series of transition metal dimerization domains were used to alter systematically the relative orientation of basic domain peptides. Both the affinity and the specificity of the peptide-DNA interaction depend on domain orientation. These results indicate that the precise configuration linking the domains is important; dimerization is not always sufficient for DNA binding. This approach to studying the effect of orientation on protein function complements mutagenesis and could be used in many systems.

  5. Increased stability and DNA site discrimination of "single chain" variants of the dimeric beta-barrel DNA binding domain of the human papillomavirus E2 transcriptional regulator.

    PubMed

    Dellarole, Mariano; Sánchez, Ignacio E; Freire, Eleonora; de Prat-Gay, Gonzalo

    2007-10-30

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric beta-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  6. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    SciTech Connect

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.

    2007-01-01

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  7. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks.

    PubMed

    Mahfouz, Magdy M; Li, Lixin; Shamimuzzaman, Md; Wibowo, Anjar; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-02-01

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  8. The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain

    PubMed Central

    Malgieri, Gaetano; Russo, Luigi; Esposito, Sabrina; Baglivo, Ilaria; Zaccaro, Laura; Pedone, Emilia M.; Di Blasio, Benedetto; Isernia, Carla; Pedone, Paolo V.; Fattorusso, Roberto

    2007-01-01

    The first putative prokaryotic Cys2His2 zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys2His2 zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys2His2 zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys2His2 zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9–66), is arranged in a βββαα topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on 15N R1, 15N R2, and heteronuclear 15N-{1H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain. PMID:17956987

  9. The incorporation of radiolabelled sulphur from captan into protein and its impact on a DNA binding study.

    PubMed

    Provan, W M; Eyton-Jones, H; Lappin, G; Pritchard, D; Moore, R B; Green, T

    1995-05-19

    Repeated administration of high doses of captan is known to produce tumours specifically in the duodenum of mice. Captan is not carcinogenic in the rat. In this study, DNA purified from the liver, stomach, duodenum and jejenum of mice dosed with 35S radiolabelled captan was found to contain radioactivity equivalent to Covalent Binding Indices in the range 38-91; that from the bone marrow had a CBI of 2.8. The distribution of radioactivity between the various tissues did not reflect the target organ specificity of captan. Attempts to further purify the DNA samples using caesium chloride gradients resulted in partial separation of the radioactivity from the DNA suggesting that covalent binding to the DNA may not have occurred. A study of the chemical breakdown of captan showed that captan is unstable, producing a variety of potentially reactive species containing sulphur. Evidence was further obtained to show that the sulphur of captan is incorporated into endogenous amino acids and protein. Hepatic DNA from mice dosed with 35S radiolabelled N-acetylcysteine, and two thiazolidine derivatives which are analogous to known metabolites of captan, was radiolabelled to a similar extent to that from captan treated mice. Furthermore, the DNA from each of these treatments had similar properties on caesium chloride gradients. It was concluded that the radioactivity associated with DNA in the captan DNA binding study was present in the low levels of protein which are always associated with purified DNA samples.

  10. A New Isoindoline Based Schiff Base Derivative as Cu(II) Chemosensor: Synthesis, Photophysical, DNA Binding and Molecular Docking Studies.

    PubMed

    Nayab, Pattan Sirajuddin; Pulaganti, Madhusudana; Chitta, Suresh Kumar; Rahisuddin

    2015-11-01

    A new chemo sensor 2-(4-methylbenzylideneamino)-isoindoline-1,3-dione (PDB) was synthesized and characterized by UV-Vis., IR, (1)H NMR, (13)C NMR spectral and elemental analysis. Its photophysical properties in organic solvents with different polarity were studied. The sensitivity of the PDB in different pH solutions was investigated and the results indicated that PDB would be able to act as an efficient "off-on-off" switch for pH. This chemosensor displayed high selectivity towards Cu(2+) in the presence of metal ions Ba(2+), Cd(2+), Co(2+), Hg(2+), Ni(2+), Pb(2+), K(+) and Zn(2+) in DMF/H2O solution. Furthermore DNA binding and molecular docking studies were also carried out to investigate the biological potential of the test compound. The interaction of compound (PDB) with Ct-DNA was examined by absorption, CD spectroscopy, cyclic voltammetry and viscosity measurements. In silico studies revealed that the test compound (PDB) showed good affinity towards the target receptor d (CGCGAATTCGCG)2 with the binding energy of -7.70 kcal/mol. PMID:26410774

  11. Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein.

    PubMed

    Aufiero, B; Neufeld, E J; Orkin, S H

    1994-08-01

    CCAAT displacement protein (CDP), a nuclear protein of 180-190 kDa, contains a triplicated motif, the cut domain, similar (80-90% conserved) to three repeats of 60-65 amino acids first identified in Drosophila cut, a homeo-domain protein involved in cell-fate decisions in development. Cut repeats bind DNA and exhibit subtle differences in target-site recognition. DNA sequences specifically bound by cut repeats were isolated by PCR-mediated DNA target-site selection. Sequences selected for cut repeat 2 and 3 (CR2 and CR3) binding are A+T-rich and favor an ATA motif with similar, but not identical, flanking base preferences. CR2 and CR3 discriminate among similar target sequences. CR1, which is more divergent from CR2 and CR3, displays the most restricted pattern of DNA sequence recognition. Methylation interference analysis demonstrates different protein-DNA contacts for CR1 and CR3 binding to a target sequence. Thus, CDP/cut is a complex protein whose DNA-binding properties reflect the combinatorial interaction of four domains (three cut repeats and one homeodomain) with target DNA sequences. PMID:7914370

  12. A novel porphyrin derivative and its metal complexes: Electrochemical, photoluminescence, thermal, DNA-binding and superoxide dismutase activity studies

    NASA Astrophysics Data System (ADS)

    Purtaş, Savaş; Köse, Muhammet; Tümer, Ferhan; Tümer, Mehmet; Gölcü, Ayşegül; Ceyhan, Gökhan

    2016-02-01

    In this study, a new porphyrin-Schiff base ligand (L) and its metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) were synthesized. The starting material 4-ethyl-2,6-bis(hydroxymethyl)phenol (A) was synthesized from 4-ethylphenol and formaldehyde in the alkaline media. The compound (A) was then oxidized to the 4-ethyl-2,6-diformylphenol (B). The starting compounds (A) and (B) were obtained as single crystals. Structures of the compounds (A) and (B) were determined by the X-ray crytallography technique. The porphyrin ligand (L) and its metal complexes were characterized by the analytical and spectroscopic methods. Electronic, electrochemical and thermal properties of the synthesised compounds were investigated. Superoxide dismutase activities (SOD) of the porphyrin Schiff base complexes were investigated and results were discussed. Additionally, the DNA (fish sperm FSdsDNA) binding studies of the complexes were performed using UV-vis spectroscopy. Competitive studies with ethidium bromide (EB) show that the compounds interact efficiently with DNA through an intercalating way.

  13. Structural basis for the DNA-binding activity of the bacterial β-propeller protein YncE.

    PubMed

    Kagawa, Wataru; Sagawa, Tomohiko; Niki, Hironori; Kurumizaka, Hitoshi

    2011-12-01

    β-Propellers are widely utilized in nature as recognition modules. The well conserved β-propeller fold exhibits a high degree of functional diversity, which is probably accomplished through variations in the surface properties of the proteins. Little is known about the interactions between β-propeller proteins and nucleic acids. In the present study, it has been found that the bacterial β-propeller protein YncE binds to DNA. Crystal structures of YncE in the free form and complexed with DNA revealed that the surface region of YncE corresponding to the `canonical' substrate-binding site forms essential contacts with DNA. A single DNA base within a single-stranded DNA region is trapped in the hydrophobic pocket located within the central channel of the β-propeller protein. These data provide physical evidence for the DNA-binding ability of the previously uncharacterized YncE and also suggest that the `canonical' substrate-binding site may be commonly adapted to facilitate nucleic acid binding in a subset of β-propeller proteins.

  14. RecA-ssDNA filaments supercoil in the presence of single-stranded DNA-binding protein

    SciTech Connect

    Shi Weixian; Larson, Ronald G. . E-mail: rlarson@umich.edu

    2007-06-08

    Using atomic force microscopy (AFM), we find that RecA-single-stranded DNA (RecA-ssDNA) filaments, in the presence of single-stranded DNA-binding (SSB) protein, organize into left-handed bundles, which differ from the previously reported disordered aggregates formed when SSB is excluded from the reaction. In addition, we see both left- and right-handedness on bundles of two filaments. These two-filament supercoils, individual filaments, and other smaller bundles further organize into more complicated bundles, showing overall left-handedness which cannot be explained by earlier arguments that presumed supercoiling is absent in RecA-ssDNA filaments. This novel finding and our previous results regarding supercoiling of RecA-double-stranded DNA (RecA-dsDNA) filaments are, however, consistent with each other and can possibly be explained by the intrinsic tendency of RecA-DNA filaments, in their fully coated form, to order themselves into helical bundles, independent of the DNA inside the filaments (ssDNA or dsDNA). RecA-RecA interactions may dominate the bundling process, while the original conformation of DNA inside filaments and other factors (mechanical properties of filaments, concentration of filaments, and Mg{sup 2+} concentration) could contribute to the variation in the appearance and pitch of supercoils. The tendency of RecA-DNA filaments to form ordered supercoils and their presence during strand exchange suggest a possible biological importance of supercoiled filaments.

  15. Base pair sensitivity and enhanced ON/OFF ratios of DNA-binding: donor-acceptor-donor fluorophores.

    PubMed

    Wilson, James N; Wigenius, Jens; Pitter, Demar R G; Qiu, Yanhua; Abrahamsson, Maria; Westerlund, Fredrik

    2013-10-10

    The photophysical properties of two recently reported live cell compatible, DNA-binding dyes, 4,6-bis(4-(4-methylpiperazin-1-yl)phenyl)pyrimidin-2-ol, 1, and [1,3-bis[4-(4-methylpiperazin-1-yl)phenyl]-1,3-propandioato-κO, κO']difluoroboron, 2, are characterized. Both dyes are quenched in aqueous solutions, while binding to sequences containing only AT pairs enhances the emission. Binding of the dyes to sequences containing only GC pairs does not produce a significant emission enhancement, and for sequences containing both AT and GC base pairs, emission is dependent on the length of the AT pair tracts. Through emission lifetime measurements and analysis of the dye redox potentials, photoinduced electron transfer with GC pairs is implicated as a quenching mechanism. Binding of the dyes to AT-rich regions is accompanied by bathochromic shifts of 26 and 30 nm, respectively. Excitation at longer wavelengths thus increases the ON/OFF ratio of the bound probes significantly and provides improved contrast ratios in solution as well as in fluorescence microscopy of living cells. PMID:24079271

  16. Quantifying of bactericide properties of medicinal plants

    PubMed Central

    Ács, András; Gölöncsér, Flóra; Barabás, Anikó

    2011-01-01

    Extended research has been carried out to clarify the ecological role of plant secondary metabolites (SMs). Although their primary ecological function is self-defense, bioactive compounds have long been used in alternative medicine or in biological control of pests. Several members of the family Labiatae are known to have strong antimicrobial capacity. For testing and quantifying antibacterial activity, most often standard microbial protocols are used, assessing inhibitory activity on a selected strain. In this study, the applicability of a microbial ecotoxtest was evaluated to quantify the aggregate bactericide capacity of Labiatae species, based on the bioluminescence inhibition of the bacterium Vibrio fischeri. Striking differences were found amongst herbs, reaching even 10-fold toxicity. Glechoma hederacea L. proved to be the most toxic, with the EC50 of 0.4073 g dried plant/l. LC50 values generated by the standard bioassay seem to be a good indicator of the bactericide property of herbs. Traditional use of the selected herbs shows a good correlation with bioactivity expressed as bioluminescence inhibition, leading to the conclusion that the Vibrio fischeri bioassay can be a good indicator of the overall antibacterial capacity of herbs, at least on a screening level. PMID:21502819

  17. Stability properties of an ancient plant peroxidase.

    PubMed

    Loughran, N B; O'Connell, M J; O'Connor, B; O'Fágáin, C

    2014-09-01

    Plant (Class III) peroxidases have numerous applications throughout biotechnology but their thermal and oxidative stabilities may limit their usefulness. Horseradish peroxidase isoenzyme C (HRPC) has good catalytic turnover and is moderately resistant to heat and to excess (oxidizing) concentrations of hydrogen peroxide. In contrast, HRP isoenzyme A2 (HRP A2) has better oxidative but poorer thermal stability, while soybean peroxidase (SBP) displays enhanced thermal stability. Intrigued by these variations amongst closely related enzymes, we previously used maximum likelihood methods (with application of Bayesian statistics) to infer an amino acid sequence consistent with their most recent common ancestor, the 'Grandparent' (GP). Here, we report the cloning and expression of active recombinant GP protein in Escherichia coli. GP's half-inactivation temperature was 45 °C, notably less than HRP C's, but its resistance to excess H2O2 was 2-fold greater. This resurrected GP protein enables a greater understanding of plant peroxidase evolution and serves as a test-bed to explore their ancestral properties.

  18. Stability properties of an ancient plant peroxidase.

    PubMed

    Loughran, N B; O'Connell, M J; O'Connor, B; O'Fágáin, C

    2014-09-01

    Plant (Class III) peroxidases have numerous applications throughout biotechnology but their thermal and oxidative stabilities may limit their usefulness. Horseradish peroxidase isoenzyme C (HRPC) has good catalytic turnover and is moderately resistant to heat and to excess (oxidizing) concentrations of hydrogen peroxide. In contrast, HRP isoenzyme A2 (HRP A2) has better oxidative but poorer thermal stability, while soybean peroxidase (SBP) displays enhanced thermal stability. Intrigued by these variations amongst closely related enzymes, we previously used maximum likelihood methods (with application of Bayesian statistics) to infer an amino acid sequence consistent with their most recent common ancestor, the 'Grandparent' (GP). Here, we report the cloning and expression of active recombinant GP protein in Escherichia coli. GP's half-inactivation temperature was 45 °C, notably less than HRP C's, but its resistance to excess H2O2 was 2-fold greater. This resurrected GP protein enables a greater understanding of plant peroxidase evolution and serves as a test-bed to explore their ancestral properties. PMID:24919139

  19. Evolving insights on how cytosine methylation affects protein–DNA binding

    PubMed Central

    Dantas Machado, Ana Carolina; Zhou, Tianyin; Rao, Satyanarayan; Goel, Pragya; Rastogi, Chaitanya; Lazarovici, Allan; Bussemaker, Harmen J.

    2015-01-01

    Many anecdotal observations exist of a regulatory effect of DNA methylation on gene expression. However, in general, the underlying mechanisms of this effect are poorly understood. In this review, we summarize what is currently known about how this important, but mysterious, epigenetic mark impacts cellular functions. Cytosine methylation can abrogate or enhance interactions with DNA-binding proteins, or it may have no effect, depending on the context. Despite being only a small chemical change, the addition of a methyl group to cytosine can affect base readout via hydrophobic contacts in the major groove and shape readout via electrostatic contacts in the minor groove. We discuss the recent discovery that CpG methylation increases DNase I cleavage at adjacent positions by an order of magnitude through altering the local 3D DNA shape and the possible implications of this structural insight for understanding the methylation sensitivity of transcription factors (TFs). Additionally, 5-methylcytosines change the stability of nucleosomes and, thus, affect the local chromatin structure and access of TFs to genomic DNA. Given these complexities, it seems unlikely that the influence of DNA methylation on protein–DNA binding can be captured in a small set of general rules. Hence, data-driven approaches may be essential to gain a better understanding of these mechanisms. PMID:25319759

  20. Signatures of protein-DNA recognition in free DNA binding sites.

    PubMed

    Locasale, Jason W; Napoli, Andrew A; Chen, Shengfeng; Berman, Helen M; Lawson, Catherine L

    2009-03-01

    One obstacle to achieving complete understanding of the principles underlying sequence-dependent recognition of DNA is the paucity of structural data for DNA recognition sequences in their free (unbound) state. Here, we carried out crystallization screening of 50 DNA duplexes containing cognate protein binding sites and obtained new crystal structures of free DNA binding sites for three distinct modes of DNA recognition: anti-parallel beta strands (MetR), helix-turn-helix motif + hinge helices (PurR), and zinc fingers (Zif268). Structural changes between free and protein-bound DNA are manifested differently in each case. The new DNA structures reveal that distinctive sequence-dependent DNA geometry dominates recognition by MetR, protein-induced bending of DNA dictates recognition by PurR, and deformability of DNA along the A-B continuum is important in recognition by Zif268. Together, our findings show that crystal structures of free DNA binding sites provide new information about the nature of protein-DNA interactions and thus lend insights towards a structural code for DNA recognition.

  1. Structural evidence suggests that antiactivator ExsD from Pseudomonas aeruginosa is a DNA binding protein

    PubMed Central

    Bernhards, Robert C; Jing, Xing; Vogelaar, Nancy J; Robinson, Howard; Schubot, Florian D

    2009-01-01

    The opportunistic pathogen P. aeruginosa utilizes a type III secretion system (T3SS) to support acute infections in predisposed individuals. In this bacterium, expression of all T3SS-related genes is dependent on the AraC-type transcriptional activator ExsA. Before host contact, the T3SS is inactive and ExsA is repressed by the antiactivator protein ExsD. The repression, thought to occur through direct interactions between the two proteins, is relieved upon opening of the type III secretion (T3S) channel when secretion chaperone ExsC sequesters ExsD. We have solved the crystal structure of Δ20ExsD, a protease-resistant fragment of ExsD that lacks only the 20 amino terminal residues of the wild-type protein at 2.6 Å. Surprisingly the structure revealed similarities between ExsD and the DNA binding domain of transcriptional repressor KorB. A model of an ExsD-DNA complex constructed on the basis of this homology produced a realistic complex that is supported by the prevalence of conserved residues in the putative DNA binding site and the results of differential scanning fluorimetry studies. Our findings challenge the currently held model that ExsD solely acts through interactions with ExsA and raise new questions with respect to the underlying mechanism of ExsA regulation. PMID:19235906

  2. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells.

    PubMed

    Presman, Diego M; Ganguly, Sourav; Schiltz, R Louis; Johnson, Thomas A; Karpova, Tatiana S; Hager, Gordon L

    2016-07-19

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  3. Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential

    PubMed Central

    Davies, Kelli A.; Bergmann, Dominique C.

    2014-01-01

    Transcription factor duplication events and subsequent specialization can drive evolution by facilitating biological innovation and developmental complexity. Identification of sequences that confer distinct biochemical function in vivo is an important step in understanding how related factors could refine specific developmental processes over time. Functional analysis of the basic helix–loop–helix (bHLH) protein SPEECHLESS, one of three closely related transcription factors required for stomatal lineage progression in Arabidopsis thaliana, allowed a dissection of motifs associated with specific developmental outputs. Phosphorylated residues, shown previously to quantitatively affect activity, also allow a qualitative shift in function between division and cell fate-promoting activities. Our data also provide surprising evidence that, despite deep sequence conservation in DNA-binding domains, the functional requirement for these domains has diverged, with the three stomatal bHLHs exhibiting absolute, partial, or no requirements for DNA-binding residues for their in vivo activities. Using these data, we build a plausible model describing how the current unique and overlapping roles of these proteins might have evolved from a single ancestral protein. PMID:25304637

  4. Antiviral and anticancer optimization studies of the DNA-binding marine natural product aaptamine.

    PubMed

    Bowling, John J; Pennaka, Hari K; Ivey, Kelly; Wahyuono, Subagus; Kelly, Michelle; Schinazi, Raymond F; Valeriote, Frederick A; Graves, David E; Hamann, Mark T

    2008-03-01

    Aaptamine has potent cytotoxicity that may be explained by its ability to intercalate DNA. Aaptamine was evaluated for its ability to bind to DNA to validate DNA binding as the primary mechanism of cytotoxicity. Based on UV-vis absorbance titration data, the K(obs) for aaptamine was 4.0 (+/-0.2) x 10(3) which was essentially equivalent to the known DNA intercalator N-[2-(diethylamino)ethyl]-9-aminoacridine-4-carboxamide. Semi-synthetic core modifications were performed to improve the general structural diversity of known aaptamine analogs and vary its absorption characteristics. Overall, 26 aaptamine derivatives were synthesized which consisted of a simple homologous range of mono and di-N-alkylations as well as some 9-O-sulfonylation and bis-O-isoaaptamine dimer products. Each product was evaluated for activity in a variety of whole cell and viral assays including a unique solid tumor disk diffusion assay. Details of aaptamine's DNA-binding activity and its derivatives' whole cell and viral assay results are discussed.

  5. Rational design of an estrogen receptor mutant with altered DNA-binding specificity

    PubMed Central

    Nguyen, Denis; Bail, Martine; Pesant, Genevieve; Dupont, Virginie N.; Rouault, Étienne; Deschênes, Julie; Rocha, Walter; Melançon, Geneviève; Steinberg, Sergey V.; Mader, Sylvie

    2007-01-01

    Although artificial C2-H2 zinc fingers can be designed to recognize specific DNA sequences, it remains unclear to which extent nuclear receptor C4 zinc fingers can be tailored to bind novel DNA elements. Steroid receptors bind as dimers to palindromic response elements differing in the two central base pairs of repeated motifs. Predictions based on one amino acid—one base-pair relationships may not apply to estrogen receptors (ERs), which recognize the two central base pairs of estrogen response elements (EREs) via two charged amino acids, each contacting two bases on opposite DNA strands. Mutagenesis of these residues, E203 and K210 in ERα, indicated that both contribute to ERE binding. Removal of the electric charge and steric constraints associated with K210 was required for full loss of parental DNA-binding specificity and recognition of novel sequences by E203 mutants. Although some of the new binding profiles did not match predictions, the double mutation E203R-K210A generated as predicted a mutant ER that was transcriptionally active on palindromes of PuGCTCA motifs, but not on consensus EREs. This study demonstrates the feasibility of designing C4 zinc finger mutants with novel DNA-binding specificity, but also uncovers limitations of this approach. PMID:17478511

  6. Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators.

    PubMed

    Karapetyan, Sargis; Buchler, Nicolas E

    2015-12-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

  7. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    SciTech Connect

    M Mitchell; J Smith; M Mason; S Harper; D Speicher; F Johnson; E Skordalakes

    2011-12-31

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.

  8. Tetrameric Ctp1 coordinates DNA binding and bridging in DNA double strand break repair

    PubMed Central

    Andres, Sara N.; Appel, C. Denise; Westmoreland, Jim; Williams, Jessica S.; Nguyen, Yvonne; Robertson, Patrick D.; Resnick, Michael A.; Williams, R. Scott

    2014-01-01

    Ctp1 (aka CtIP or Sae2) collaborates with Mre11–Rad50–Nbs1 to initiate repair of DNA double strand breaks (DSBs), but its function(s) remain enigmatic. We report that tetrameric Schizosaccharomyces pombe Ctp1 harbors multivalent DNA-binding and bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal “RHR” DNA interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA bridging activity in vitro and both the THDD and RHR are required for efficient DSB repair in S. pombe. Our results establish non-nucleolytic roles for Ctp1 in binding and coordination of DSB repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CTIP-linked Seckel and Jawad syndromes. PMID:25580577

  9. Cdc13 N-Terminal Dimerization, DNA Binding, and Telomere Length Regulation ▿ †

    PubMed Central

    Mitchell, Meghan T.; Smith, Jasmine S.; Mason, Mark; Harper, Sandy; Speicher, David W.; Johnson, F. Brad; Skordalakes, Emmanuel

    2010-01-01

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres. PMID:20837709

  10. A novel DNA-binding protein from Campylobacter jejuni bacteriophage NCTC12673.

    PubMed

    Arutyunov, Denis; Szymanski, Christine M

    2015-11-01

    We previously suggested that the double-stranded genomic DNA of Campylobacter jejuni bacteriophage NCTC12673 was complexed with proteins. Mass spectrometry of peptides obtained from tryptic digests of purified phage DNA indicated that phage protein Gp001 co-purified with the DNA. Gp001 is an acidic protein that lacks any obvious homology or conserved domains found in known DNA-binding proteins. The DNA-binding ability of recombinant Gp001 was examined using an electrophoretic mobility shift assay. Slow DNA-Gp001 complex formation was observed at pH 5.5, but not at neutral or basic pH. This nucleoprotein complex had difficulty entering agarose gels used in the assay while proteinase K pretreatment released the DNA from the complex. No mobility shift was observed when the DNA was immediately subjected to electrophoresis after mixing with Gp001, even if both components were separately pre-incubated at pH 5.5. The complexed DNA was unable to transform chemically competent Escherichia coli cells and was less susceptible to degradation by nucleases. The formation of Gp001-DNA complexes at low pH may provide a mechanism for maintaining DNA integrity while the phage pursues its host through the gastrointestinal tract. Also, this feature can potentially be used to improve DNA delivery protocols applied in gene therapy.

  11. BuD, a helix–loop–helix DNA-binding domain for genome modification

    PubMed Central

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-01-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980

  12. Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential.

    PubMed

    Davies, Kelli A; Bergmann, Dominique C

    2014-10-28

    Transcription factor duplication events and subsequent specialization can drive evolution by facilitating biological innovation and developmental complexity. Identification of sequences that confer distinct biochemical function in vivo is an important step in understanding how related factors could refine specific developmental processes over time. Functional analysis of the basic helix-loop-helix (bHLH) protein SPEECHLESS, one of three closely related transcription factors required for stomatal lineage progression in Arabidopsis thaliana, allowed a dissection of motifs associated with specific developmental outputs. Phosphorylated residues, shown previously to quantitatively affect activity, also allow a qualitative shift in function between division and cell fate-promoting activities. Our data also provide surprising evidence that, despite deep sequence conservation in DNA-binding domains, the functional requirement for these domains has diverged, with the three stomatal bHLHs exhibiting absolute, partial, or no requirements for DNA-binding residues for their in vivo activities. Using these data, we build a plausible model describing how the current unique and overlapping roles of these proteins might have evolved from a single ancestral protein.

  13. DNA-binding affinity and nuclease activity of two cytotoxic copper terpyridine complexes.

    PubMed

    Shi, Pengfei; Lin, Miaoxin; Zhu, Jianhui; Zhang, Yangmiao; Jiang, Qin

    2009-01-01

    Two copper(II) terpyridine complexes, [Cu(atpy)(NO(3))(H(2)O)](NO(3)) 3H(2)O (1) and [Cu(ttpy)(NO(3))(2)] (2) (atpy = 4'-p-N9-adeninylmethyl-phenyl-2,2':6,2''-terpyridine; ttpy = 4'-p-tolyl-2,2':6,2''-terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC-3). The cytotoxicity of the complex 1 was lower than that of the complex 2. Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double-stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA-binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA-binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. PMID:19705364

  14. Signatures of Protein-DNA Recognition in Free DNA Binding Sites

    SciTech Connect

    Locasale, J.; Napoli, A; Chen, S; Berman, H; Lawson, C

    2009-01-01

    One obstacle to achieving complete understanding of the principles underlying sequence-dependent recognition of DNA is the paucity of structural data for DNA recognition sequences in their free (unbound) state. Here, we carried out crystallization screening of 50 DNA duplexes containing cognate protein binding sites and obtained new crystal structures of free DNA binding sites for three distinct modes of DNA recognition: anti-parallel ? strands (MetR), helix-turn-helix motif + hinge helices (PurR), and zinc fingers (Zif268). Structural changes between free and protein-bound DNA are manifested differently in each case. The new DNA structures reveal that distinctive sequence-dependent DNA geometry dominates recognition by MetR, protein-induced bending of DNA dictates recognition by PurR, and deformability of DNA along the A-B continuum is important in recognition by Zif268. Together, our findings show that crystal structures of free DNA binding sites provide new information about the nature of protein-DNA interactions and thus lend insights towards a structural code for DNA recognition.

  15. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    PubMed

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  16. DNA binding fluorescent proteins for the direct visualization of large DNA molecules

    PubMed Central

    Lee, Seonghyun; Oh, Yeeun; Lee, Jungyoon; Choe, Sojeong; Lim, Sangyong; Lee, Hyun Soo; Jo, Kyubong; Schwartz, David C.

    2016-01-01

    Fluorescent proteins that also bind DNA molecules are useful reagents for a broad range of biological applications because they can be optically localized and tracked within cells, or provide versatile labels for in vitro experiments. We report a novel design for a fluorescent, DNA-binding protein (FP-DBP) that completely ‘paints’ entire DNA molecules, whereby sequence-independent DNA binding is accomplished by linking a fluorescent protein to two small peptides (KWKWKKA) using lysine for binding to the DNA phosphates, and tryptophan for intercalating between DNA bases. Importantly, this ubiquitous binding motif enables fluorescent proteins (Kd = 14.7 μM) to confluently stain DNA molecules and such binding is reversible via pH shifts. These proteins offer useful robust advantages for single DNA molecule studies: lack of fluorophore mediated photocleavage and staining that does not perturb polymer contour lengths. Accordingly, we demonstrate confluent staining of naked DNA molecules presented within microfluidic devices, or localized within live bacterial cells. PMID:26264666

  17. Purification and characterization of a mitochondrial, single-stranded-DNA-binding protein from Paracentrotus lividus eggs.

    PubMed

    Roberti, M; Musicco, C; Loguercio Polosa, P; Gadaleta, M N; Quagliariello, E; Cantatore, P

    1997-07-01

    A binding protein for single-stranded DNA was purified from Paracentrotus lividus egg mitochondria to near homogeneity by chromatography on DEAE-Sephacel and single-stranded-DNA-cellulose. The protein consists of a single polypeptide of about 15 kDa. Glycerol gradient sedimentation analysis suggested that P. lividus mitochondrial single-stranded-DNA-binding protein exists as a homo-oligomer, possibly a tetramer, in solution. The protein shows a stronger preference for poly(dT) with respect to single-stranded M13, poly(dI) and poly(dC). Binding to poly(dA) takes place with much lower affinity. The binding-site size, determined by gel mobility-shift experiments with oligonucleotides of different length, is approximately 45 nucleotides. The binding to single-stranded DNA occurs with low or no cooperativity and is not influenced by ionic strength. The protein has a very high affinity for the DNA: its apparent macroscopic association constant is 2x10(9) M(-1), a value which is the highest among the mitochondrial single-stranded-DNA-binding proteins characterized to date. The lack of cooperativity and the high association constant represent distinctive features of this protein and might be related to the peculiar mechanism of sea urchin mitochondrial DNA replication.

  18. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  19. The single-stranded DNA-binding protein of Escherichia coli.

    PubMed Central

    Meyer, R R; Laine, P S

    1990-01-01

    The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake. PMID:2087220

  20. Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators

    NASA Astrophysics Data System (ADS)

    Karapetyan, Sargis; Buchler, Nicolas E.

    2015-12-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

  1. Threading polyintercalators with extremely slow dissociation rates and extended DNA binding sites

    PubMed Central

    Smith, Amy Rhoden; Iverson, Brent L.

    2013-01-01

    The development of small molecules that bind DNA sequence specifically has the potential to modulate gene expression in a general way. One mode of DNA binding is intercalation, or the insertion of molecules between DNA base pairs. We have developed a modular polyintercalation system in which intercalating naphthalene diimide (NDI) units are connected by flexible linkers that alternate between the minor and major grooves of DNA when bound. We recently reported a threading tetraintercalator with a dissociation half-life of 16 days, the longest reported to date, from its preferred 14 bp binding site. Herein, three new tetraintercalator derivatives were synthesized with one, two, and three additional methylene units in the central major groove-binding linker. These molecules displayed dissociation half-lives of 57, 27, and 18 days, respectively, from the 14 bp site. The optimal major groove-binding linker was used in the design of an NDI hexaintercalator that was analyzed by gel-shift assays, DNase I footprinting, and UV-visible spectroscopy. The hexaintercalator bound its entire 22 bp binding site, the longest reported specific binding site for a synthetic, non-nucleic acid based DNA binding molecule, but with a significantly faster dissociation rate compared to the tetraintercalators. PMID:23919778

  2. Threading polyintercalators with extremely slow dissociation rates and extended DNA binding sites.

    PubMed

    Rhoden Smith, Amy; Iverson, Brent L

    2013-08-28

    The development of small molecules that bind DNA sequence specifically has the potential to modulate gene expression in a general way. One mode of DNA binding is intercalation, or the insertion of molecules between DNA base pairs. We have developed a modular polyintercalation system in which intercalating naphthalene diimide (NDI) units are connected by flexible linkers that alternate between the minor and major grooves of DNA when bound. We recently reported a threading tetraintercalator with a dissociation half-life of 16 days, the longest reported to date, from its preferred 14 bp binding site. Herein, three new tetraintercalator derivatives were synthesized with one, two, and three additional methylene units in the central major groove-binding linker. These molecules displayed dissociation half-lives of 57, 27, and 18 days, respectively, from the 14 bp site. The optimal major groove-binding linker was used in the design of an NDI hexaintercalator that was analyzed by gel-shift assays, DNase I footprinting, and UV-vis spectroscopy. The hexaintercalator bound its entire 22 bp binding site, the longest reported specific binding site for a synthetic, non-nucleic acid-based DNA binding molecule, but with a significantly faster dissociation rate compared to the tetraintercalators. PMID:23919778

  3. A second DNA binding site in human BRCA2 promotes homologous recombination

    PubMed Central

    von Nicolai, Catharina; Ehlén, Åsa; Martin, Charlotte; Zhang, Xiaodong; Carreira, Aura

    2016-01-01

    BRCA2 tumour-suppressor protein is well known for its role in DNA repair by homologous recombination (HR); assisting the loading of RAD51 recombinase at DNA double-strand breaks. This function is executed by the C-terminal DNA binding domain (CTD) which binds single-stranded (ss)DNA, and the BRC repeats, which bind RAD51 and modulate its assembly onto ssDNA. Paradoxically, analysis of cells resistant to DNA damaging agents missing the CTD restore HR proficiency, suggesting another domain may take over its function. Here, we identify a region in the N terminus of BRCA2 that exhibits DNA binding activity (NTD) and provide evidence for NTD promoting RAD51-mediated HR. A missense variant detected in breast cancer patients located in the NTD impairs HR stimulation on dsDNA/ssDNA junction containing substrates. These findings shed light on the function of the N terminus of BRCA2 and have implications for the evaluation of breast cancer variants. PMID:27628236

  4. Two novel SRY missense mutations reducing DNA binding identified in XY females and their mosaic fathers

    SciTech Connect

    Schmitt-Ney, M.; Scherer, G.; Thiele, H.; KaltwaBer, P.; Bardoni, B.; Cisternino, M.

    1995-04-01

    Two novel mutations in the sex-determining gene SRY were identified by screening DNA from 30 sex-reversed XY females by using the SSCP assay. Both point mutations lead to an amino acid substitution in the DNA-binding high-mobility-group domain of the SRY protein. The first mutation, changing a serine at position 91 to glycine, was found in a sporadic case. The second mutation, leading to replacement of a highly conserved proline at position 125 with leucine, is shared by three members of the same family, two sisters and a half sister having the same father. The mutant SRY proteins showed reduced DNA-binding ability in a gel-shift assay. Analysis of lymphocyte DNA from the respective fathers revealed that they carry both the wild-type and the mutant version of the SRY gene. The fact that both fathers transmitted the mutant SRY copy to their offspring implies that they are mosaic for the SRY gene in testis as well as in blood, as a result of a mutation during early embryonic development. 30 refs., 5 figs.

  5. A second DNA binding site in human BRCA2 promotes homologous recombination.

    PubMed

    von Nicolai, Catharina; Ehlén, Åsa; Martin, Charlotte; Zhang, Xiaodong; Carreira, Aura

    2016-01-01

    BRCA2 tumour-suppressor protein is well known for its role in DNA repair by homologous recombination (HR); assisting the loading of RAD51 recombinase at DNA double-strand breaks. This function is executed by the C-terminal DNA binding domain (CTD) which binds single-stranded (ss)DNA, and the BRC repeats, which bind RAD51 and modulate its assembly onto ssDNA. Paradoxically, analysis of cells resistant to DNA damaging agents missing the CTD restore HR proficiency, suggesting another domain may take over its function. Here, we identify a region in the N terminus of BRCA2 that exhibits DNA binding activity (NTD) and provide evidence for NTD promoting RAD51-mediated HR. A missense variant detected in breast cancer patients located in the NTD impairs HR stimulation on dsDNA/ssDNA junction containing substrates. These findings shed light on the function of the N terminus of BRCA2 and have implications for the evaluation of breast cancer variants. PMID:27628236

  6. Synthesis, characterization, DNA binding, light switch "on and off", docking studies and cytotoxicity, of ruthenium(II) and cobalt(III) polypyridyl complexes.

    PubMed

    Reddy, M Rajender; Reddy, Putta Venkat; Kumar, Yata Praveen; Srishailam, A; Nambigari, Navaneetha; Satyanarayana, S

    2014-05-01

    The novel ligand (dmbip) 2-(4-N, N-dimethylbenzenamine)1H-imidazo[4, 5-f][1, 10]phenanthroline and its complexes [Ru(phen)2dmbip](2+) (1), [Ru(bpy)2dmbip](2+) (2), [Co(phen)2dmbip](3+) (3) and [Co(bpy)2dmbip](3+) (4) [where phen = 1, 10-phenanthroline, bpy = 2, 2'-bipyridine], have been synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H NMR, (13)C NMR and Mass spectra. The DNA binding properties of the complexes were investigated by absorption, emission, quenching studies, light switch "on and off", salt dependent, sensor (cation and anion) studies, viscosity measurements, cyclic voltammetry, molecular modeling and docking studies. The four complexes were screened for Photo cleavage of pBR322 DNA, antimicrobial activity and cytotoxicity. The experimental results indicate that the four complexes can intercalate into DNA base pairs. The DNA-binding affinities of these complexes follow the order [Ru(phen)2dmbip](2+) > [Co(phen)2dmbip](3+) > [Ru(bpy)2dmbip](2+) > [Co(bpy)2dmbip](3+). PMID:24615259

  7. A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution.

    PubMed

    Touma, Christine; Kariawasam, Ruvini; Gimenez, Adrian X; Bernardo, Ray E; Ashton, Nicholas W; Adams, Mark N; Paquet, Nicolas; Croll, Tristan I; O'Byrne, Kenneth J; Richard, Derek J; Cubeddu, Liza; Gamsjaeger, Roland

    2016-09-19

    Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.

  8. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    PubMed

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam

    2015-04-01

    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies.

  9. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity.

    PubMed Central

    Xanthoudakis, S; Curran, T

    1992-01-01

    Fos and Jun form a heterodimeric complex that regulates gene transcription by binding to the activator protein-1 (AP-1) DNA sequence motif. Previously, we demonstrated that the DNA-binding activity of Fos and Jun is regulated in vitro by a novel redox (reduction-oxidation) mechanism. Reduction of a conserved cysteine (cys) residue in the DNA-binding domains of Fos and Jun by chemical reducing agents or by a nuclear redox factor stimulates DNA-binding activity. Here, we describe purification and characterization of a 37 kDa protein (Ref-1) corresponding to the redox factor. Although Ref-1 does not bind to the AP-1 site in association with Fos and Jun, it partially copurifies with a subset of AP-1 proteins. Purified Ref-1 protein stimulates AP-1 DNA-binding activity through the conserved Cys residues in Fos and Jun, but it does not alter the DNA-binding specificity of Fos and Jun. Ref-1 may represent a novel redox component of the signal transduction processes that regulate eukaryotic gene expression. Images PMID:1537340

  10. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    PubMed

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam

    2015-04-01

    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies. PMID:25665519

  11. A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution

    PubMed Central

    Touma, Christine; Kariawasam, Ruvini; Gimenez, Adrian X.; Bernardo, Ray E.; Ashton, Nicholas W.; Adams, Mark N.; Paquet, Nicolas; Croll, Tristan I.; O'Byrne, Kenneth J.; Richard, Derek J.; Cubeddu, Liza; Gamsjaeger, Roland

    2016-01-01

    Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus. Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability. PMID:27387285

  12. An immunoassay for the study of DNA-binding activities of herpes simplex virus protein ICP8.

    PubMed Central

    Lee, C K; Knipe, D M

    1985-01-01

    An immunoassay was used to examine the interaction between a herpes simplex virus protein, ICP8, and various types of DNA. The advantage of this assay is that the protein is not subjected to harsh purification procedures. We characterized the binding of ICP8 to both single-stranded (ss) and double-stranded (ds) DNA. ICP8 bound ss DNA fivefold more efficiently than ds DNA, and both binding activities were most efficient in 150 mM NaCl. Two lines of evidence indicate that the binding activities were not identical: (i) ds DNA failed to complete with ss DNA binding even with a large excess of ds DNA; (ii) Scatchard plots of DNA binding with various amounts of DNA were fundamentally different for ss DNA and ds DNA. However, the two activities were related in that ss DNA efficiently competed with the binding of ds DNA. We conclude that the ds DNA-binding activity of ICP8 is probably distinct from the ss DNA-binding activity. No evidence for sequence-specific ds DNA binding was obtained for either the entire herpes simplex virus genome or cloned viral sequences. Images PMID:2987527

  13. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    PubMed

    Prouse, Michael B; Campbell, Malcolm M

    2013-01-01

    Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471

  14. Double-strand break-induced targeted mutagenesis in plants.

    PubMed

    Lyznik, L Alexander; Djukanovic, Vesna; Yang, Meizhu; Jones, Spencer

    2012-01-01

    Double-strand breaks are very potent inducers of DNA recombination. There is no recombination between DNA molecules unless one or two DNA strands are broken. It has become feasible to introduce double-strand breaks at specific chromosomal loci by using dedicated, redesigned endonucleases with altered DNA-binding specificities. Such breaks are mainly repaired by error-prone nonhomologous recombination pathways in somatic cells, thus frequently producing mutations at the preselected chromosomal sites. Although the art and science of reengineering protein properties have been advancing quickly, an empirical validation of new endonucleases in a particular experimental environment is essential for successful targeted mutagenesis experiments. This chapter presents methods that were developed for a comprehensive evaluation of the DNA-binding and DNA-cutting activities of homing endonucleases in maize cells; however, they can be adopted for similar evaluation studies of other endonucleases and other plant species that are amenable for Agrobacterium-mediated transformation. PMID:22351025

  15. Structural and functional studies of the rat mitochondrial single strand DNA binding protein P16.

    PubMed

    Hoke, G D; Pavco, P A; Ledwith, B J; Van Tuyle, G C

    1990-10-01

    The rat mitochondrial single strand DNA binding protein (SSB) P16 was purified to apparent homogeneity by elution from single strand DNA agarose with ethidium bromide. Each monomer of P16 contains two tryptophan residues, and the intrinsic fluorescence from these residues is quenched upon binding to single strand polynucleotides. From fluorescence quench titrations of ligand to fixed amounts of DNA lattice, a binding site size of 8 or 9 nucleotides per P16 monomer was found. Measurement of the affinity of P16 for isolated sites by titration with either oligo(dT)8 or 5'-dephosphorylated oligo(dT)8 indicated values on the order of 10(7) M-1. P16 exhibited a binding preference for single strand DNA, poly(dT), and poly(dC) in comparison to double strand DNA, poly(U), or poly[d(A-T)]. Although it was not possible to show that P16 destabilizes double helical DNA or even poly[d(A-T)], binding of P16 does inhibit the process of renaturation as shown by inhibition of duplex formation between poly(dA) and poly(dT). The binding of saturating amounts of P16 to single strand poly(dT).oligo(dA)50 template-primers enhanced approximately 10-fold the activity of both the homologous mitochondrial DNA polymerase and the Escherichia coli DNA polymerase I Klenow fragment. However, the mitochondrial DNA primase was nearly completely inhibited by the saturation of the poly(dT) template with P16. Amino-terminal sequence analysis of P16 and a protease-insensitive, DNA binding domain (Mr approximately 6000) revealed that the DNA binding domain residues, at least in part, in the amino-terminal third of the P16 molecule. Furthermore, the amino-terminal sequence was found to be strikingly similar to that of the Xenopus laevis mtSSB-1 and to a lesser extent similar to E. coli SSB and E. coli F sex factor SSB.

  16. Minisatellite binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein.

    PubMed Central

    Collick, A; Dunn, M G; Jeffreys, A J

    1991-01-01

    Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes. Images PMID:1754375

  17. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for DNA binding and multimerization.

    PubMed Central

    Kullik, I; Stevens, J; Toledano, M B; Storz, G

    1995-01-01

    OxyR is a LysR-type transcriptional regulator which negatively regulates its own expression and positively regulates the expression of proteins important for the defense against hydrogen peroxide in Escherichia coli and Salmonella typhimurium. Using random mutagenesis, we isolated six nonrepressing OxyR mutants that were impaired in DNA binding. Five of the mutations causing the DNA binding defect mapped near the N-terminal helix-turn-helix motif conserved among the LysR family members, confirming that this region is a DNA binding domain in OxyR. The sixth nonrepressing mutant (with E-225 changed to K [E225K]) was found to be predominantly dimeric, in contrast to the tetrameric wild-type protein, suggesting that a C-terminal region defined by the E225K mutation is involved in multimerization. PMID:7868603

  18. Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1.

    PubMed

    Liu, Wang-Jing; Chang, Yun-Shiang; Wang, Hao-Ching; Leu, Jiann-Horng; Kou, Guang-Hsiung; Lo, Chu-Fang

    2008-11-01

    Immediate-early proteins from many viruses function as transcriptional regulators and exhibit transactivation activity, DNA binding activity, and dimerization. In this study, we investigated these characteristics in white spot syndrome virus (WSSV) immediate-early protein 1 (IE1) and attempted to map the corresponding functional domains. Transactivation was investigated by transiently expressing a protein consisting of the DNA binding domain of the yeast transactivator GAL4 fused to full-length IE1. This GAL4-IE1 fusion protein successfully activated the Autographa californica multicapsid nucleopolyhedrovirus p35 basal promoter when five copies of the GAL4 DNA binding site were inserted upstream of the TATA box. A deletion series of GAL4-IE1 fusion proteins suggested that the transactivation domain of WSSV IE1 was carried within its first 80 amino acids. A point mutation assay further showed that all 12 of the acidic residues in this highly acidic domain were important for IE1's transactivation activity. DNA binding activity was confirmed by an electrophoresis mobility shift assay using a probe with (32)P-labeled random oligonucleotides. The DNA binding region of WSSV IE1 was located in its C-terminal end (amino acids 81 to 224), but mutation of a putative zinc finger motif in this C-terminal region suggested that this motif was not directly involved in the DNA binding activity. A homotypic interaction between IE1 molecules was demonstrated by glutathione S-transferase pull-down assay and a coimmunoprecipitation analysis. A glutaraldehyde cross-linking experiment and gel filtration analysis showed that this self-interaction led to the formation of stable IE1 dimers. PMID:18768963

  19. APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner.

    PubMed

    Cun, Yanping; Dai, Nan; Li, Mengxia; Xiong, Chengjie; Zhang, Qinhong; Sui, Jiangdong; Qian, Chengyuan; Wang, Dong

    2014-02-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of human cancer including hepatocellular carcinoma (HCC), little is known about whether APE1/Ref-1 can regulate mutant p53 (mutp53). Herein, we reported the increased APE1/Ref-1 protein and accumulation of mutp53 in HCC by immunohistochemistry. Of note, it was observed that APE1/Ref-1 high-expression and mutp53 expression were associated with carcinogenesis and progression of HCC. To determine whether APE1/Ref-1 regulates DNA binding of mutp53, we performed electromobility shift assays (EMSAs) and quantitative chromatin immunoprecipitation (ChIP) assays in HCC cell lines. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, reduced mutp53 efficiently bound to nonlinear DNA, but not to linear DNA. Notably, overexpression of APE1/Ref-1 resulted in increased DNA binding activity of mutp53, while downregulation of APE1/Ref-1 caused a marked decrease of mutp53 DNA binding. In addition, APE1/Ref-1 could not potentiate the accumulation of p21 mRNA and protein in mutp53 cells. These data indicate that APE1/Ref-1 can stimulate mutp53 DNA binding in a redox-dependent manner.

  20. Suppression of Xo1-Mediated Disease Resistance in Rice by a Truncated, Non-DNA-Binding TAL Effector of Xanthomonas oryzae

    PubMed Central

    Read, Andrew C.; Rinaldi, Fabio C.; Hutin, Mathilde; He, Yong-Qiang; Triplett, Lindsay R.; Bogdanove, Adam J.

    2016-01-01

    Delivered into plant cells by type III secretion from pathogenic Xanthomonas species, TAL (transcription activator-like) effectors are nuclear-localized, DNA-binding proteins that directly activate specific host genes. Targets include genes important for disease, genes that confer resistance, and genes inconsequential to the host-pathogen interaction. TAL effector specificity is encoded by polymorphic repeats of 33–35 amino acids that interact one-to-one with nucleotides in the recognition site. Activity depends also on N-terminal sequences important for DNA binding and C-terminal nuclear localization signals (NLS) and an acidic activation domain (AD). Coding sequences missing much of the N- and C-terminal regions due to conserved, in-frame deletions are present and annotated as pseudogenes in sequenced strains of Xanthomonas oryzae pv. oryzicola (Xoc) and pv. oryzae (Xoo), which cause bacterial leaf streak and bacterial blight of rice, respectively. Here we provide evidence that these sequences encode proteins we call “truncTALEs,” for “truncated TAL effectors.” We show that truncTALE Tal2h of Xoc strain BLS256, and by correlation truncTALEs in other strains, specifically suppress resistance mediated by the Xo1 locus recently described in the heirloom rice variety Carolina Gold. Xo1-mediated resistance is triggered by different TAL effectors from diverse X. oryzae strains, irrespective of their DNA binding specificity, and does not require the AD. This implies a direct protein-protein rather than protein-DNA interaction. Similarly, truncTALEs exhibit diverse predicted DNA recognition specificities. And, in vitro, Tal2h did not bind any of several potential recognition sites. Further, a single candidate NLS sequence in Tal2h was dispensable for resistance suppression. Many truncTALEs have one 28 aa repeat, a length not observed previously. Tested in an engineered TAL effector, this repeat required a single base pair deletion in the DNA, suggesting that it

  1. Ion concentration and temperature dependence of DNA binding: comparison of PurR and LacI repressor proteins.

    PubMed

    Moraitis, M I; Xu, H; Matthews, K S

    2001-07-10

    Purine repressor (PurR) binding to specific DNA is enhanced by complexing with purines, whereas lactose repressor (LacI) binding is diminished by interaction with inducer sugars despite 30% identity in their protein sequences and highly homologous tertiary structures. Nonetheless, in switching from low- to high-affinity DNA binding, these proteins undergo a similar structural change in which the hinge region connecting the DNA and effector binding domains folds into an alpha-helix and contacts the DNA minor groove. The differences in response to effector for these proteins should be manifest in the polyelectrolyte effect which arises from cations displaced from DNA by interaction with positively charged side chains on a protein and is quantitated by measurement of DNA binding affinity as a function of ion concentration. Consistent with structural data for these proteins, high-affinity operator DNA binding by the PurR-purine complex involved approximately 15 ion pairs, a value significantly greater than that for the corresponding state of LacI (approximately 6 ion pairs). For both proteins, however, conversion to the low-affinity state results in a decrease of approximately 2-fold in the number of cations released per dimeric DNA binding site. Heat capacity changes (DeltaC(p)) that accompany DNA binding, derived from buried apolar surface area, coupled folding, and restriction of motional freedom of polar groups in the interface, also reflect the differences between these homologous repressor proteins. DNA binding of the PurR-guanine complex is accompanied by a DeltaC(p) (-2.8 kcal mol(-1) K(-1)) more negative than that observed previously for LacI (-0.9 to -1.5 kcal mol(-1) K(-1)), suggesting that more extensive protein folding and/or enhanced structural rigidity may occur upon DNA binding for PurR compared to DNA binding for LacI. The differences between these proteins illustrate plasticity of function despite high-level sequence and structural homology and

  2. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  3. Calf thymus DNA-binding ability study of anthocyanins from purple sweet potatoes ( Ipomoea batatas L.).

    PubMed

    Wang, Dan; Wang, Xirui; Zhang, Chao; Ma, Yue; Zhao, Xiaoyan

    2011-07-13

    A total of 10 anthocyanin compounds were identified from five purple sweet potato ( Ipomoea batatas L.) varieties, Qunzi, Zishu038, Ji18, Jingshu6, and Ziluolan, by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to assess their calf thymus DNA-binding ability in vitro. The interaction between anthocyanins and calf thymus DNA in Tris-HCl buffer solution (pH 6.9) was evaluated by fluorescence spectroscopy. Using ethidium bromide (EB) as a fluorescence probe, fluorescence quenching of the emission peak was seen in the DNA-EB system when anthocyanins were added, indicating that the anthocyanins bound with DNA. The acylated groups influenced the ability of the interaction with DNA. Anthocyanins from purple sweet potato with more acylated groups in sorphorose have a stronger binding ability with DNA.

  4. Calf thymus DNA-binding ability study of anthocyanins from purple sweet potatoes ( Ipomoea batatas L.).

    PubMed

    Wang, Dan; Wang, Xirui; Zhang, Chao; Ma, Yue; Zhao, Xiaoyan

    2011-07-13

    A total of 10 anthocyanin compounds were identified from five purple sweet potato ( Ipomoea batatas L.) varieties, Qunzi, Zishu038, Ji18, Jingshu6, and Ziluolan, by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to assess their calf thymus DNA-binding ability in vitro. The interaction between anthocyanins and calf thymus DNA in Tris-HCl buffer solution (pH 6.9) was evaluated by fluorescence spectroscopy. Using ethidium bromide (EB) as a fluorescence probe, fluorescence quenching of the emission peak was seen in the DNA-EB system when anthocyanins were added, indicating that the anthocyanins bound with DNA. The acylated groups influenced the ability of the interaction with DNA. Anthocyanins from purple sweet potato with more acylated groups in sorphorose have a stronger binding ability with DNA. PMID:21678894

  5. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M.

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  6. Association of the Adenovirus DNA-Binding Protein with RNA Both in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Cleghon, Vaughn G.; Klessig, Daniel F.

    1986-12-01

    The multifunctional DNA-binding protein (DBP) encoded by human adenovirus binds RNA. The association of purified DBP with RNA in vitro was demonstrated by using either a gel filtration or a filter binding assay. This association is sensitive to ionic strength and exhibits no apparent sequence specificity. DBP also interacts with RNA in vivo; it can be crosslinked to polyadenylylated RNA by UV-irradiation of intact cells during the late phase of adenovirus infections. The 46-kDa carboxyl-terminal domain of DBP binds RNA in vitro and was found to be associated with polyadenylylated RNA in vivo. This is the same domain that interacts with DNA. However, the differences in sensitivity of DBP to trypsin when bound to RNA versus DNA suggest that RNA and DNA either bind at different sites within this domain or induce different conformational changes within the protein.

  7. Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited

    PubMed Central

    Regan, Michael C.; Horanyi, Peter S.; Pryor, Edward E.; Sarver, Jessica L.; Cafiso, David S.; Bushweller, John H.

    2013-01-01

    The Ets-Related Gene (ERG) belongs to the Ets family of transcription factors and is critically important for maintenance of the hematopoietic stem cell population. A chromosomal translocation observed in the majority of human prostate cancers leads to the aberrant overexpression of ERG. We have identified regions flanking the ERG Ets domain responsible for autoinhibition of DNA binding and solved crystal structures of uninhibited, autoinhibited, and DNA-bound ERG. NMR-based measurements of backbone dynamics show that uninhibited ERG undergoes substantial dynamics on the millisecond-to-microsecond timescale but autoinhibited and DNA-bound ERG do not. We propose a mechanism whereby the allosteric basis of ERG autoinhibition is mediated predominantly by the regulation of Ets-domain dynamics with only modest structural changes. PMID:23898196

  8. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins

    PubMed Central

    Patel, A.; Hashimoto, H.; Zhang, X.; Cheng, X.

    2016-01-01

    Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides. PMID:27372763

  9. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    PubMed

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  10. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  11. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    PubMed

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities.

  12. ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding

    PubMed Central

    Akai, Yuko; Kanai, Ryuta; Nakazawa, Norihiko; Ebe, Masahiro; Toyoshima, Chikashi; Yanagida, Mitsuhiro

    2014-01-01

    Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA. PMID:25520186

  13. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.

    PubMed

    Kubik, Grzegorz; Summerer, Daniel

    2016-06-01

    Epigenetic modification of the cytosine 5-position is an important regulator of gene expression with essential roles in genome stability, development, and disease. In addition to 5-methylcytosine (mC), the oxidized mC derivatives 5-hydroxymethyl-, 5-formyl-, and 5-carboxylcytosine (hmC, fC, and caC) have recently been discovered. These are intermediates of an active demethylation pathway but might also represent new epigenetic marks with individual biological roles. This increase in chemical complexity of DNA-encoded information has created a pressing need for new approaches that allow reading and editing of this information. Transcription-activator-like effectors (TALEs) are DNA-binding domains with programmable sequence selectivity that enable the direct reading of epigenetic cytosine modifications but can also guide enzymatic editing domains to genomic loci of choice. Here, we review recent advances in employing TALEs for these applications. PMID:26972580

  14. Chromodomain Helicase DNA-Binding Proteins in Stem Cells and Human Developmental Diseases

    PubMed Central

    Micucci, Joseph A.; Sperry, Ethan D.

    2015-01-01

    Dynamic regulation of gene expression is vital for proper cellular development and maintenance of differentiated states. Over the past 20 years, chromatin remodeling and epigenetic modifications of histones have emerged as key controllers of rapid reversible changes in gene expression. Mutations in genes encoding enzymes that modify chromatin have also been identified in a variety of human neurodevelopmental disorders, ranging from isolated intellectual disability and autism spectrum disorder to multiple congenital anomaly conditions that affect major organ systems and cause severe morbidity and mortality. In this study, we review recent evidence that chromodomain helicase DNA-binding (CHD) proteins regulate stem cell proliferation, fate, and differentiation in a wide variety of tissues and organs. We also highlight known roles of CHD proteins in human developmental diseases and present current unanswered questions about the pleiotropic effects of CHD protein complexes, their genetic targets, nucleosome sliding functions, and enzymatic effects in cells and tissues. PMID:25567374

  15. Gene regulation knowledge commons: community action takes care of DNA binding transcription factors

    PubMed Central

    Tripathi, Sushil; Vercruysse, Steven; Chawla, Konika; Christie, Karen R.; Blake, Judith A.; Huntley, Rachael P.; Orchard, Sandra; Hermjakob, Henning; Thommesen, Liv; Lægreid, Astrid; Kuiper, Martin

    2016-01-01

    A large gap remains between the amount of knowledge in scientific literature and the fraction that gets curated into standardized databases, despite many curation initiatives. Yet the availability of comprehensive knowledge in databases is crucial for exploiting existing background knowledge, both for designing follow-up experiments and for interpreting new experimental data. Structured resources also underpin the computational integration and modeling of regulatory pathways, which further aids our understanding of regulatory dynamics. We argue how cooperation between the scientific community and professional curators can increase the capacity of capturing precise knowledge from literature. We demonstrate this with a project in which we mobilize biological domain experts who curate large amounts of DNA binding transcription factors, and show that they, although new to the field of curation, can make valuable contributions by harvesting reported knowledge from scientific papers. Such community curation can enhance the scientific epistemic process. Database URL: http://www.tfcheckpoint.org PMID:27270715

  16. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  17. The extended arms of DNA-binding domains: a tale of tails.

    PubMed

    Crane-Robinson, Colyn; Dragan, Anatoly I; Privalov, Peter L

    2006-10-01

    DNA-binding domains (DBDs) frequently have N- or C-terminal tails, rich in lysine and/or arginine and disordered in free solution, that bind the DNA separately from and in the opposite groove to the folded domain. Is their role simply to increase affinity for DNA or do they have a role in specificity, that is, sequence recognition? One approach to answering this question is to analyze the contribution of such tails to the overall energetics of binding. It turns out that, despite similarities of amino acid sequence, three distinct categories of DBD extension exist: (i) those that are purely electrostatic and lack specificity, (ii) those that are largely non-electrostatic with a high contribution to specificity and (iii) those of mixed character that show sequence preference. Because in all cases the tails also increase the affinity for target DNA, they represent a crucial component of the machinery for selective gene activation or repression. PMID:16920361

  18. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101

  19. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    PubMed

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  20. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    PubMed

    Barrilleaux, Bonnie L; Burow, Dana; Lockwood, Sarah H; Yu, Abigail; Segal, David J; Knoepfler, Paul S

    2014-01-01

    The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate. PMID:24983942

  1. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  2. BuD, a helix–loop–helix DNA-binding domain for genome modification

    SciTech Connect

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  3. Distinct Structural Features of the Peroxide Response Regulator from Group A Streptococcus Drive DNA Binding

    PubMed Central

    Hammel, Michal; Nix, Jay C.; Tseng, Hsiao-Ling; Tsou, Chih-Cheng; Fei, Chun-Hsien; Chiou, Huo-Sheng; Jeng, U-Ser; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Wang, Shuying

    2014-01-01

    Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators. PMID:24586487

  4. Metal-catalyzed uncaging of DNA-binding agents in living cells† †Electronic supplementary information (ESI) available: Synthesis and characterization of the studied molecules and required precursors. NMR, UV, and fluorescence spectra, titrations, control experiments, and detailed procedures for cell uptake and co-staining experiments. See DOI: 10.1039/c3sc53317d Click here for additional data file.

    PubMed Central

    Sánchez, Mateo I.; Penas, Cristina

    2014-01-01

    Attachment of alloc protecting groups to the amidine units of fluorogenic DNA-binding bisbenzamidines or to the amino groups of ethidium bromide leads to a significant reduction of their DNA affinity. More importantly, the active DNA-binding species can be readily regenerated by treatment with ruthenium catalysts in aqueous conditions, even in cell cultures. The catalytic chemical uncaging can be easily monitored by fluorescence microscopy, because the protected products display both different emission properties and cell distribution to the parent compounds. PMID:25632343

  5. Transcriptional regulation of NADP-dependent malate dehydrogenase: comparative genetics and identification of DNA-binding proteins.

    PubMed

    Hameister, Steffen; Becker, Beril; Holtgrefe, Simone; Strodtkötter, Inga; Linke, Vera; Backhausen, Jan E; Scheibe, Renate

    2007-10-01

    The transcriptional regulation of NADP-malate dehydrogenase (NADP-MDH) was analyzed in Arabidopsis ecotypes and other Brassicaceae. The amount of transcript increased twofold after transfer into low temperature (12 degrees C) or high light (750 microE) in all species. Analysis of the genomic DNA reveals that the NADP-MDH gene (At5g58330 in A. thaliana) in Brassicaceae is located between two other genes (At5g58320 and At5g58340 in Arabidopsis), both encoded on the opposite DNA strand. No promoter elements were identified in 5' direction of the NADP-MDH gene, and the expression of NADP-MDH was not affected in knock-out plants carrying a DNA insert in the 5' region. A yeast-one hybrid approach yielded only three DNA-binding proteins for the 500-bp fragment located upstream of the ATG sequence, but 34 proteins for its coding region. However, in Chlamydomonas and in some Poaceae, which do not possess any genes within the 1200 bp upstream region, typical promoter elements were identified. Alignments of genomic DNA reveal that, in contrast to Poaceae, the introns are highly conserved within Brassicaceae. We conclude that in Brassicaceae the majority of regulatory elements are located within the coding region. The NADP-MDH gene of both families evolved from a common precursor, similar to the gene in Chlamydomonas. Changes in the selection pressure allowed the insertion of At5g58340 into the promoter region of a common ancestor. When the demand for transcriptional regulation increased, At5g58340 disappeared in Poaceae, and a promoter developed in the 5' region. In contrast, Brassicaceae maintained At5g58340 and shifted all regulatory elements into the coding region of NADP-MDH.

  6. Biophysical characterization of the DNA binding and condensing properties of adenoviral core peptide mu.

    PubMed

    Keller, Michael; Tagawa, Toshiaki; Preuss, Monika; Miller, Andrew D

    2002-01-15

    Cationic peptides containing Lys and Arg residues interact with DNA via charge-charge interactions and are known to play an important role in DNA charge neutralization and condensation processes. In this paper, we describe investigations of the interaction of the cationic adenovirus core complex peptide mu with a dodecameric ODN (12 bp) and pDNA (7528 bp) using a combination of fluorescence spectroscopy, circular dichroism spectroscopy, isothermal titration calorimetry, and photon correlation spectroscopy. Comparisons are made with protamine, a cationic peptide well-known for DNA charge neutralization and condensation. Equilibrium dissociation constants are derived independently by both CD and ITC methods for the interaction between protamine or mu with pDNA (K(d) = 0.6-1 microM). Thermodynamic data are also obtained by ITC, indicating strong charge-charge interactions. The interaction of protamine with pDNA takes place with decreasing entropy (-28.7 cal mol(-1) K(-1)); unusually, the interaction of mu with pDNA takes place with increasing entropy (Delta S degrees (bind) = 11.3 cal mol(-1) K(-1)). Although protamine and mu appear to destabilize pDNA double helix character to similar extents, according to CD thermal titration analyses, PCS studies show that interactions between mu and pDNA result in the formation of significantly more size-stable condensed particles than protamine. The enhanced flexibility and size stability of mu-DNA (MD) particles (80-110 nm) compared to protamine counterparts suggest that MD particles are ideal for use as a part of new nonviral gene delivery vectors.

  7. Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper(II) complex.

    PubMed

    Ferreira, B J M Leite; Brandão, P; Meireles, M; Martel, Fátima; Correia-Branco, Ana; Fernandes, Diana M; Santos, T M; Félix, V

    2016-08-01

    In this study a novel dinuclear copper(II) complex with adenine and phenanthroline has been synthesized and its structure determined by single crystal X-ray diffraction. In the dinuclear complex [Cu₂(μ-adenine)₂(phen)₂(H2O)2](NO3)4·0.5H2O (phen=1,10-phenanthroline) (1) the two Cu(II) centres exhibit a distorted square pyramidal coordination geometry linked by two nitrogen donors from adenine bridges leading to a Cu-Cu distance of 3.242(3)Å. Intramolecular and intermolecular π⋯π interactions as well as an H-bonding network were observed. The antitumor capacity of the complex has been tested in vitro against human cancer cell lines, cervical carcinoma (HeLa) and colorectal adenocarcinoma (Caco-2), by metabolic tests, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide as reagent. The complex 1 has remarkable low IC50 values of 0.87±0.06μM (HeLa) and 0.44±0.06μM (Caco-2), when compared with values for cisplatin against the same cell lines. The interaction of complex 1 with calf thymus DNA (CT DNA) was further investigated by absorption and fluorescence spectroscopic methods. A binding constant of 5.09×10(5)M(-1) was obtained from UV-vis absorption studies. PMID:27157979

  8. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    NASA Astrophysics Data System (ADS)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  9. Synthesis, characterization, thermal and DNA-binding properties of new zinc complexes with 2-hydroxyphenones.

    PubMed

    Mrkalić, Emina; Zianna, Ariadni; Psomas, George; Gdaniec, Maria; Czapik, Agnieszka; Coutouli-Argyropoulou, Evdoxia; Lalia-Kantouri, Maria

    2014-05-01

    The neutral mononuclear zinc complexes with 2-hydroxyphenones (ketoH) having the formula [Zn(keto)2(H2O)2] and [Zn(keto)2(enR)], where enR stands for a N,N'-donor heterocyclic ligand such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) or 2,2'-dipyridylamine (dpamH), have been synthesized and characterized by IR, UV and (1)H NMR spectroscopies. The 2-hydroxyphenones are chelated to the metal ion through the phenolate and carbonyl oxygen atoms. The crystal structures of [bis(2-hydroxy-4-methoxy-benzophenone)(2,2'-bipyridine)zinc(II)] dimethanol solvate and [bis(2-hydroxy-benzophenone)(2,2'-bipyridine)zinc(II)] dimethanol solvate have been determined by X-ray crystallography. The thermal stability of the zinc complexes has been investigated by simultaneous TG/DTG-DTA technique. The ability of the complexes to bind to calf-thymus DNA (CT DNA) has been studied by UV-absorption and fluorescence emission spectroscopy as well as viscosity measurements. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the corresponding binding constants to DNA have been calculated and evaluated. The complexes most probably bind to CT DNA via intercalation as concluded by studying the viscosity of a DNA solution in the presence of the complexes. Competitive studies with ethidium bromide (EB) have shown that the reported complexes can displace the DNA-bound EB, suggesting strong competition with EB for the intercalation site. PMID:24561277

  10. Analysis of Oligonucleotide DNA Binding and Sedimentation Properties of Montmorillonite Clay Using Ultraviolet Light Spectroscopy

    PubMed Central

    Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin

    2009-01-01

    Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334

  11. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  12. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively.

  13. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively. PMID:27295415

  14. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  15. Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes.

    PubMed

    Gabra, Nazar Mohammed; Mustafa, Bakheit; Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Reddy, P Venkat; Reddy, Kotha Laxma; Satyanarayana, S

    2014-01-01

    A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, (1)H-NMR,(13)C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9 × 10(5) M(-1), 6.7 × 10(5) M(-1) and 2.9 × 10(5) M(-1). The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form І to nicked form ІІ. Further in the presence of Co(2+), the emission of DNA-Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the "on-off-on" properties of molecular "light switch". The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding. PMID:23982735

  16. Synthesis, characterization and DNA-binding studies of 2-carboxybenzaldehydeisonicotinoylhydrazone and its La(III), Sm(III) and Eu(III) complexes

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wang, Yan; Yang, Zheng-Yin

    2007-02-01

    2-Carboxybenzaldehydeisonicotinoylhydrazone (HL), and its three lanthanide complexes, LnL 3·4H 2O [Ln = La( 1), Sm( 2), Eu( 3)], have been synthesized and characterized on the basis of elemental analyses, molar conductivities, IR spectra and thermal analyses. In addition, the DNA-binding properties of the ligand and its complexes have been investigated by absorption, fluorescence and viscosity measurements. The experimental results indicated that the complexes ( 2) and ( 3) can bind to DNA, but the ligand and the complex ( 1) cannot; the binding affinity of the complex ( 3) is higher than that of the complex ( 2) and the intrinsic binding constant Kb of the complex ( 3) is 7.86 × 10 4 M -1.

  17. Locus of enterocyte effacement-encoded regulator (Ler) of pathogenic Escherichia coli competes off histone-like nucleoid-structuring protein (H-NS) through noncooperative DNA binding.

    PubMed

    Winardhi, Ricksen S; Gulvady, Ranjit; Mellies, Jay L; Yan, Jie

    2014-05-16

    The locus of enterocyte effacement-encoded regulator (Ler) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) functions to activate transcription of virulence genes silenced by the histone-like nucleoid-structuring protein (H-NS). Despite its important role in the bacterial gene regulation, the binding mode of Ler to DNA and its mechanism in alleviating genes repressed by H-NS are largely unknown. In this study, we use magnetic tweezers to demonstrate that Ler binds extended DNA through a largely noncooperative process, which results in DNA stiffening and DNA folding depending on protein concentration. We also show that Ler can replace prebound H-NS on DNA over a range of potassium and magnesium concentrations. Our findings reveal the DNA binding properties of Ler and shed light to further understand the anti-silencing activity of Ler.

  18. Helicase binding to DnaI exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis

    PubMed Central

    Ioannou, Charikleia; Schaeffer, Patrick M.; Dixon, Nicholas E.; Soultanas, Panos

    2006-01-01

    The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular ‘switch’ regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system. PMID:17003052

  19. Helicase binding to DnaI exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis.

    PubMed

    Ioannou, Charikleia; Schaeffer, Patrick M; Dixon, Nicholas E; Soultanas, Panos

    2006-01-01

    The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular 'switch' regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system. PMID:17003052

  20. Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast

    PubMed Central

    Montano, Sherwin P.; Coté, Marie L.; Fingerman, Ian; Pierce, Michael; Vershon, Andrew K.; Georgiadis, Millie M.

    2002-01-01

    Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 Å resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues. The structure reveals a single ≈32-kDa domain with a distinct fold comprising a β-sandwich core elaborated with seven additional β-sheets and three short α-helices. Inspired by the structure, we have performed a mutational analysis and defined a DNA-binding motif in this domain. The DNA-binding domain of Ndt80 is homologous to a number of proteins from higher eukaryotes, and the residues that we have shown are required for DNA binding by Ndt80 are highly conserved among this group of proteins. These results suggest that Ndt80 is the defining member of a previously uncharacterized family of transcription factors, including the human protein (C11orf9), which has been shown to be highly expressed in invasive or metastatic tumor cells. PMID:12384578

  1. Histone-Like Proteins of the Dinoflagellate Crypthecodinium cohnii Have Homologies to Bacterial DNA-Binding Proteins

    PubMed Central

    Wong, J. T. Y.; New, D. C.; Wong, J. C. W.; Hung, V. K. L.

    2003-01-01

    The dinoflagellates have very large genomes encoded in permanently condensed and histoneless chromosomes. Sequence alignment identified significant similarity between the dinoflagellate chromosomal histone-like proteins of Crypthecodinium cohnii (HCCs) and the bacterial DNA-binding and the eukaryotic histone H1 proteins. Phylogenetic analysis also supports the origin of the HCCs from histone-like proteins of bacteria. PMID:12796310

  2. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1

    PubMed Central

    Campagne, Sébastien; Muller, Isabelle; Gervais, Virginie

    2012-01-01

    The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding. Our study demonstrates that none of the mutations investigated failed to bind DNA and some of them even bind DNA stronger than the wild-type protein. However, some mutations could alter DNA-binding specificity. Furthermore, the most striking effect is the decrease of stability observed for mutations at positions affecting the zinc coordination, the hydrophobic core or the C-terminal AVPTIF motif, with unfolding temperatures ranging from 46°C for the wild-type to below 37°C for two mutations. These findings suggest that reduction in population of folded protein under physiological conditions could also account for the disease. PMID:22844099

  3. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1.

    PubMed

    Campagne, Sébastien; Muller, Isabelle; Milon, Alain; Gervais, Virginie

    2012-10-01

    The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding. Our study demonstrates that none of the mutations investigated failed to bind DNA and some of them even bind DNA stronger than the wild-type protein. However, some mutations could alter DNA-binding specificity. Furthermore, the most striking effect is the decrease of stability observed for mutations at positions affecting the zinc coordination, the hydrophobic core or the C-terminal AVPTIF motif, with unfolding temperatures ranging from 46°C for the wild-type to below 37°C for two mutations. These findings suggest that reduction in population of folded protein under physiological conditions could also account for the disease. PMID:22844099

  4. Alternative Use of DNA Binding Domains by the Neurospora White Collar Complex Dictates Circadian Regulation and Light Responses

    PubMed Central

    Wang, Bin; Zhou, Xiaoying; Loros, Jennifer J.

    2015-01-01

    In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift from WCC's dark circadian role to its light activation role are poorly described. We report that the DBD region (named for being defective in binding DNA), a basic region in WC-1 proximal to the DNA-binding zinc finger (ZnF) whose function was previously ascribed to nuclear localization, instead plays multiple essential roles assisting in DNA binding and mediating interactions with the FFC. DNA binding for light induction by the WCC requires only WC-2, whereas DNA binding for circadian functions requires WC-2 as well as the ZnF and DBD motif of WC-1. The data suggest a means by which alterations in the tertiary and quaternary structures of the WCC can lead to its distinct functions in the dark and in the light. PMID:26711258

  5. An 'open' structure of the RecOR complex supports ssDNA binding within the core of the complex.

    PubMed

    Radzimanowski, Jens; Dehez, François; Round, Adam; Bidon-Chanal, Axel; McSweeney, Sean; Timmins, Joanna

    2013-09-01

    Efficient DNA repair is critical for cell survival and the maintenance of genome integrity. The homologous recombination pathway is responsible for the repair of DNA double-strand breaks within cells. Initiation of this pathway in bacteria can be carried out by either the RecBCD or the RecFOR proteins. An important regulatory player within the RecFOR pathway is the RecOR complex that facilitates RecA loading onto DNA. Here we report new data regarding the assembly of Deinococcus radiodurans RecOR and its interaction with DNA, providing novel mechanistic insight into the mode of action of RecOR in homologous recombination. We present a higher resolution crystal structure of RecOR in an 'open' conformation in which the tetrameric RecR ring flanked by two RecO molecules is accessible for DNA binding. We show using small-angle neutron scattering and mutagenesis studies that DNA binding does indeed occur within the RecR ring. Binding of single-stranded DNA occurs without any major conformational changes of the RecOR complex while structural rearrangements are observed on double-stranded DNA binding. Finally, our molecular dynamics simulations, supported by our biochemical data, provide a detailed picture of the DNA binding motif of RecOR and reveal that single-stranded DNA is sandwiched between the two facing oligonucleotide binding domains of RecO within the RecR ring. PMID:23814185

  6. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1.

    PubMed

    Omichinski, J G; Clore, G M; Schaad, O; Felsenfeld, G; Trainor, C; Appella, E; Stahl, S J; Gronenborn, A M

    1993-07-23

    The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone. PMID:8332909

  7. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    SciTech Connect

    Nishimoto, Arata; Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target

  8. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cells.

    PubMed

    Nishimoto, Arata; Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2013-08-30

    Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cell line COLO205.

  9. Effect of DNA Binding on Geminate CO Recombination Kinetics in CO-sensing Transcription Factor CooA*

    PubMed Central

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L.; Champion, Paul M.

    2012-01-01

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role. PMID:22544803

  10. The single-stranded DNA-binding protein of Deinococcus radiodurans

    PubMed Central

    Eggington, Julie Malia; Haruta, Nami; Wood, Elizabeth Anne; Cox, Michael Matthew

    2004-01-01

    Background Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored. Results A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer. Conclusions The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus

  11. Acoustic properties of low growing plants.

    PubMed

    Horoshenkov, Kirill V; Khan, Amir; Benkreira, Hadj

    2013-05-01

    The plane wave normal incidence acoustic absorption coefficient of five types of low growing plants is measured in the presence and absence of soil. These plants are generally used in green living walls and flower beds. Two types of soil are considered in this work: a light-density, man-made soil and a heavy-density natural clay base soil. The absorption coefficient data are obtained in the frequency range of 50-1600 Hz using a standard impedance tube of diameter 100 mm. The equivalent fluid model for sound propagation in rigid frame porous media proposed by Miki [J. Acoust. Soc. Jpn. (E) 11, 25-28 (1990)] is used to predict the experimentally observed behavior of the absorption coefficient spectra of soils, plants, and their combinations. Optimization analysis is employed to deduce the effective flow resistivity and tortuosity of plants which are assumed to behave acoustically as an equivalent fluid in a rigid frame porous medium. It is shown that the leaf area density and dominant angle of leaf orientation are two key morphological characteristics which can be used to predict accurately the effective flow resistivity and tortuosity of plants.

  12. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex.

    PubMed

    Pan, S; Sehnke, P C; Ferl, R J; Gurley, W B

    1999-08-01

    The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP-associated factor hTAF(II)32 in vitro but not hTAF(II)55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3-TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent beta-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex. PMID:10449590

  13. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    SciTech Connect

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  14. The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins.

    PubMed

    Inoue, Jin; Honda, Masayoshi; Ikawa, Shukuko; Shibata, Takehiko; Mikawa, Tsutomu

    2008-01-01

    The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins. PMID:18000001

  15. Visual detection of single-base mismatches in DNA using hairpin oligonucleotide with double-target DNA binding sequences and gold nanoparticles.

    PubMed

    He, Yuqing; Zhang, Xibao; Zhang, Sanquan; Kris, Mak Ka Long; Man, Fong Chi; Kawde, Abdel-Nasser; Liu, Guodong

    2012-04-15

    We describe a hairpin oligonucleotide (HO) with double-target DNA binding sequences in the loop and 11-base in the stem for visual detection of single-base mismatches (SBM) in DNA with highly specificity. The thiol-modified HO was immobilized on gold nanoparticle (Au-NP) surface through a self-assembling process. The strategy of detecting SBM depends on the unique molecular recognition properties of HO to the perfect-matched DNA and SBM to generate different quantities of duplex DNA on the Au-NP surface, which are captured on the test zone of lateral flow test strip via the DNA hybridization reaction between the duplex DNA and preimmobilized DNA probe. Accumulation of Au-NPs produces the characteristic red bands, enabling visual detection of SBM. It was found that the ability of HO to differentiate perfect-matched DNA and SBM was increased dramatically by incorporating double-target DNA binding sequences in the loop of HO. The signal ratio between perfect-matched DNA and SBM was up to 28, which is much higher than that of conventional HO or molecular beacon. The approach was applied to detect the mutation sites, Arg142Cys and Gly529Ile, of transglutaminase 1 gene in autosomal recessive congenital ichthyosis. The results presented here show that the new HO is a potential molecular recognition probe for the future development of nucleic acid-based biosensors and bioassays. The approach can be used for point-of-care diagnosis of genetic diseases and detecting infectious agents or warning against bio-warfare agents.

  16. DNA-binding dependent and independent functions of WT1 protein during human hematopoiesis

    SciTech Connect

    Svensson, Emelie; Eriksson, Helena; Gekas, Christos; Olofsson, Tor; Richter, Johan; Gullberg, Urban . E-mail: urban.gullberg@hematologi.lu.se

    2005-08-01

    The Wilms tumor gene 1 (WT1) encodes a zinc-finger-containing transcription factor highly expressed in immature hematopoietic progenitor cells. Overexpression and presence of somatic mutations in acute leukemia indicate a role for WT1 in the pathogenesis of leukemia. CD34{sup +} progenitor cells were transduced with one splice variant of human WT1 without the KTS insert in the zinc-finger domain, WT1(+/-), and with a deleted mutant of WT1 lacking the entire zinc-finger region, WT1(delZ), thus incapable of binding DNA. We show that inhibition of erythroid colony formation and differentiation is absolutely dependent on the DNA-binding zinc-finger domain of WT1. Unexpectedly, however, WT1(delZ) was equally effective as wild type protein in the reduction of myeloid clonogenic growth as well as in stimulation of myeloid differentiation, as judged by the expression of cell surface CD11b. Expression of neither WT1(+/-) nor WT1(delZ) upregulated mRNA for the cdk inhibitor p21{sup Waf1/Cip1} or p27{sup Kip1}. Our results demonstrate that WT1 affects proliferation and differentiation in erythroid and myeloid cells by different molecular mechanisms, and suggest that mutations affecting the zinc-finger domain of WT1 could interfere with normal differentiation in the pathogenesis of leukemia.

  17. Z-DNA Binding Protein Mediates Host Control of Toxoplasma gondii Infection.

    PubMed

    Pittman, Kelly J; Cervantes, Patrick W; Knoll, Laura J

    2016-10-01

    Intrinsic to Toxoplasma gondii infection is the parasite-induced modulation of the host immune response, which ensures establishment of a chronic lifelong infection. This manipulation of the host immune response allows T. gondii to not only dampen the ability of the host to eliminate the parasite but also trigger parasite differentiation to the slow-growing, encysted bradyzoite form. We previously used RNA sequencing (RNA-seq) to profile the transcriptomes of mice and T. gondii during acute and chronic stages of infection. One of the most abundant host transcripts during acute and chronic infection was Z-DNA binding protein 1 (ZBP1). In this study, we determined that ZBP1 functions to control T. gondii growth. In activated macrophages isolated from ZBP1 deletion (ZBP1(-/-)) mice, T. gondii has an increased rate of replication and a decreased rate of degradation. We also identified a novel function for ZBP1 as a regulator of nitric oxide (NO) production in activated macrophages, even in the absence of T. gondii infection. Upon stimulation, T. gondii-infected ZBP1(-/-) macrophages display increased proinflammatory cytokines compared to wild-type macrophages under the same conditions. These in vitro phenotypes were recapitulated in vivo, with ZBP1(-/-) mice having increased susceptibility to oral challenge, higher cyst burdens during chronic infection, and elevated inflammatory cytokine responses. Taken together, these results highlight a role for ZBP1 in assisting host control of T. gondii infection. PMID:27481249

  18. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    PubMed Central

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  19. Structure and DNA binding of alkylation response protein AidB

    SciTech Connect

    Bowles, Timothy; Metz, Audrey H.; O'Quin, Jami; Wawrzak, Zdzislaw; Eichman, Brandt F.

    2009-01-12

    Exposure of Escherichia coli to alkylating agents activates expression of AidB in addition to DNA repair proteins Ada, AlkA, and AlkB. AidB was recently shown to possess a flavin adenine dinucleotide (FAD) cofactor and to bind to dsDNA, implicating it as a flavin-dependent DNA repair enzyme. However, the molecular mechanism by which AidB acts to reduce the mutagenic effects of specific DNA alkylators is unknown. We present a 1.7-{angstrom} crystal structure of AidB, which bears superficial resemblance to the acyl-CoA dehydrogenase superfamily of flavoproteins. The structure reveals a unique quaternary organization and a distinctive FAD active site that provides a rationale for AidB's limited dehydrogenase activity. A highly electropositive C-terminal domain not present in structural homologs was identified by mutational analysis as the DNA binding site. Structural analysis of the DNA and FAD binding sites provides evidence against AidB-catalyzed DNA repair and supports a model in which AidB acts to prevent alkylation damage by protecting DNA and destroying alkylating agents that have yet to reach their DNA target.

  20. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    PubMed

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  1. Synthesis, DNA Binding and Antitumor Evaluation of Styelsamine and Cystodytin Analogues

    PubMed Central

    Fong, Hugo K. H.; Copp, Brent R.

    2013-01-01

    A series of N-14 sidechain substituted analogues of styelsamine (pyrido[4,3,2-mn]acridine) and cystodytin (pyrido[4,3,2-mn]acridin-4-one) alkaloids have been prepared and evaluated for their DNA binding affinity and antiproliferative activity towards a panel of human tumor cell lines. Overall it was found that styelsamine analogues were stronger DNA binders, with the natural products styelsamines B and D having particularly high affinity (Kapp 5.33 × 106 and 3.64 × 106 M−1, respectively). In comparison, the cystodytin iminoquinone alkaloids showed lower affinity for DNA, but were typically just as active as styelsamine analogues at inhibiting proliferation of tumor cells in vitro. Sub-panel selectivity towards non-small cell lung, melanoma and renal cancer cell lines were observed for a number of the analogues. Correlation was observed between whole cell activity and clogP, with the most potent antiproliferative activity being observed for 3-phenylpropanamide analogues 37 and 41 (NCI panel average GI50 0.4 μM and 0.32 μM, respectively) with clogP ~4.0–4.5. PMID:23358307

  2. Human single-stranded DNA binding proteins: guardians of genome stability.

    PubMed

    Wu, Yuanzhong; Lu, Jinping; Kang, Tiebang

    2016-07-01

    Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.

  3. Establishment of a replication fork barrier following induction of DNA binding in mammalian cells

    PubMed Central

    Beuzer, Paolo; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    Understanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB. We find that the binding of the proteins to the arrays during replication causes a prolonged persistence of replication foci at the site. This, in turn, induces a local DNA damage repair (DDR) response, with the recruitment of proteins involved in double-strand break (DSB) repair such as TOPBP1 and 53BP1, and the phosphorylation of H2AX. Furthermore, the appearance of micronuclei and DNA bridges after mitosis is consistent with an incomplete replication. We discuss how the many DNA binding proteins encountered during replication can be dealt with and the consequences of incomplete replication. Future studies exploiting this type of system should help analyze how an RFB, along with bypass mechanisms, are controlled in order to maintain genome integrity. PMID:24675882

  4. Novel Pt(II) complexes containing pyrrole oxime; synthesis, characterization and DNA binding studies

    NASA Astrophysics Data System (ADS)

    Erdogan, Deniz Altunoz; Özalp-Yaman, Şeniz

    2014-05-01

    Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)2]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)Cl(L)] (1), [Pt(L)2] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, 1H NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 × 103 and 5.09 × 103 M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies.

  5. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor.

    PubMed

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-05-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with gamma-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH* radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH. radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  6. Radiation damage to a DNA-binding protein. Combined circular dichroism and molecular dynamics simulation analysis.

    PubMed

    Mazier, S; Villette, S; Goffinont, S; Renouard, S; Maurizot, J C; Genest, D; Spotheim-Maurizot, M

    2008-11-01

    The E. coli lactose operon, the paradigm of gene expression regulation systems, is the best model for studying the effect of radiation on such systems. The operon function requires the binding of a protein, the repressor, to a specific DNA sequence, the operator. We have previously shown that upon irradiation the repressor loses its operator binding ability. The main radiation-induced lesions of the headpiece have been identified by mass spectrometry. All tyrosine residues are oxidized into 3,4-dihydroxyphenylalanine (DOPA). In the present study we report a detailed characterization of the headpiece radiation-induced modification. An original approach combining circular dichroism measurements and the analysis of molecular dynamics simulation of headpieces bearing DOPA-s instead of tyrosines has been applied. The CD measurements reveal an irreversible modification of the headpiece structure and stability. The molecular dynamics simulation shows a loss of stability shown by an increase in internal dynamics and allows the estimation of the modifications due to tyrosine oxidation for each structural element of the protein. The changes in headpiece structure and stability can explain at least in part the radiation-induced loss of binding ability of the repressor to the operator. This conclusion should hold for all proteins containing radiosensitive amino acids in their DNA-binding site. PMID:18959464

  7. A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity.

    PubMed

    Garton, Michael; Najafabadi, Hamed S; Schmitges, Frank W; Radovani, Ernest; Hughes, Timothy R; Kim, Philip M

    2015-10-30

    Development of an accurate protein-DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF-DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering. PMID:26384429

  8. Structural insights into the DNA-binding specificity of E2F family transcription factors

    PubMed Central

    Morgunova, Ekaterina; Yin, Yimeng; Jolma, Arttu; Dave, Kashyap; Schmierer, Bernhard; Popov, Alexander; Eremina, Nadejda; Nilsson, Lennart; Taipale, Jussi

    2015-01-01

    The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as repressors. To understand the mechanism of repression, we have resolved the structure of E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular dynamics simulations, biochemical affinity measurements and chromatin immunoprecipitation, we further show that both atypical and typical E2Fs bind to similar DNA sequences in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target genes and exert their negative influence on cell cycle progression. PMID:26632596

  9. Synthesis, chemical characterization, DNA binding and antioxidant studies of ferrocene incorporated selenoure

    NASA Astrophysics Data System (ADS)

    Hussain, Raja Azadar; Badshah, Amin; Sohail, Manzar; Lal, Bhajan; Akbar, Kamran

    2013-09-01

    In this article we have reported synthesis, chemical characterization (with single crystal XRD, elemental analysis, FTIR and multinuclear NMR spectroscopy), DNA binding (with cyclic voltammetry, UV-vis spectroscopy, molecular docking and viscometry) and antioxidant activities (1,1-diphenyl-2-picrylhydrazyl scavenging) of 1-(2-methylbenzoyl)-3-(3-ferrocenylphenyl)selenourea (MOT). We found that this compound interacts electrostatically with DNA and has a binding constant value of 1.703 × 104 M-1. Lower value of diffusion coefficient for MOT-DNA adduct (1.35 × 106 cm2 s-1) relative to free MOT (1.66 × 106 cm2 s-1) in cyclic voltammetry (CV) indicated the binding of the compound with DNA. Smaller value of binding site size (0.88 base pairs) in CV, hyperchromism in UV-vis spectroscopy and decrease of relative specific viscosity of DNA in viscometry favored electrostatic interactions. Binding energy of experimental (-5.77 kcal mol-1) and simulated (-5.86 kcal mol-1) work are in close agreement with each other. IC50 value of MOT for 1,1-diphenyl-2-picrylhydrazyl scavenging was found to be 27 μM.

  10. DNA binding and oligomerization of NtrC studied by fluorescence anisotropy and fluorescence correlation spectroscopy.

    PubMed Central

    Sevenich, F W; Langowski, J; Weiss, V; Rippe, K

    1998-01-01

    Fluorescence anisotropy and fluorescence correlation spectroscopy measurements of rhodamine-labeled DNA oligonucleotide duplexes have been used to determine equilibrium binding constants for DNA binding of the prokaryotic transcription activator protein NtrC. Measurements were made with wild-type NtrC from Escherichia coli and the constitutively active mutant NtrCS160Ffrom Salmonella using DNA duplexes with one or two binding sites. The following results were obtained: (i) the dissociation constant K d for binding of one NtrC dimer to a single binding site was the same for the wild-type and mutant proteins within the error of measurement. (ii) The value of K d decreased from 1.4 +/- 0.7 x 10(-11) M at 15 mM K acetate to 5.8 +/- 2.6 x 10(-9) M at 600 mM K acetate. From the salt dependence of the dissociation constant we calculated that two ion pairs form upon binding of one dimeric protein to the DNA. (iii) Binding of two NtrC dimers to the DNA duplex with two binding sites occured with essentially no cooperativity. Titration curves of NtrCS160Fbinding to the same duplex demonstrated that more than two protein dimers of the mutant protein could bind to the DNA. PMID:9490780

  11. Potential DNA binding and nuclease functions of ComEC domains characterized in silico

    PubMed Central

    Baker, James A.; Simkovic, Felix; Taylor, Helen M.C.

    2016-01-01

    ABSTRACT Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA‐protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure‐based DNA binding propensity; and by data‐driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA‐binding OB fold domain and that the β‐lactamase‐like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431–1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27318187

  12. Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins.

    PubMed Central

    Almendral, J M; Huebsch, D; Blundell, P A; Macdonald-Bravo, H; Bravo, R

    1987-01-01

    A full-length cDNA clone for the human nuclear protein cyclin has been isolated by using polyclonal antibodies and sequenced. The sequence predicts a protein of 261 amino acids (Mr 29,261) with a high content of acidic (41, aspartic and glutamic acids) versus basic (24, lysine and arginine) amino acids. The identity of the cDNA clone was confirmed by in vitro hybrid-arrested translation of cyclin mRNA. Blot-hybridization analysis of mouse 3T3 and human MOLT-4 cell RNA revealed a mRNA species of approximately the same size as the cDNA insert. Expression of cyclin mRNA was undetectable or very low in quiescent cells, increasing after 8-10 hr of serum stimulation. Inhibition of DNA synthesis by hydroxyurea in serum-stimulated cells did not affect the increase in cyclin mRNA but inhibited 90% the expression of H3 mRNA. These results suggest that expression of cyclin and histone mRNAs are controlled by different mechanisms. A region of the cyclin sequence shows a significant homology with the putative DNA binding site of several proteins, specially with the transcriptional-regulator cAMP-binding protein of Escherichia coli, suggesting that cyclin could play a similar role in eukaryotic cells. Images PMID:2882507

  13. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC-1.

    PubMed

    Peleg, Y; Metzenberg, R L

    1994-12-01

    NUC-1, a positive regulatory protein of Neurospora crassa, controls the expression of several unlinked target genes involved in phosphorus acquisition. The carboxy-terminal end of the NUC-1 protein has sequence similarity to the helix-loop-helix family of transcription factors. Bacterially expressed and in vitro-synthesized proteins, which consist of the carboxy-terminal portion of NUC-1, bind specifically to upstream sequences of two of its target genes, pho2+ and pho-4+. These upstream sequences contain the core sequence, CACGTG, a target for many helix-loop-helix proteins. A large loop region (47 amino acids) separates the helix I and helix II domains. Mutations and deletion within the loop region did not interfere with the in vitro or in vivo functions of the protein. Immediately carboxy-proximal to the helix II domain, the NUC-1 protein contains an atypical zipper domain which is essential for function. This domain consists of a heptad repeat of alanine and methionine rather than leucine residues. Analysis of mutant NUC-1 proteins suggests that the helix II and the zipper domains are essential for the protein dimerization, whereas the basic and the helix I domains are involved in DNA binding. The helix I domain, even though likely to participate in dimer formation while NUC-1 is bound to DNA, is not essential for in vitro dimerization.

  14. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions.

    PubMed

    Brown, Maxwell W; Kim, Yoori; Williams, Gregory M; Huck, John D; Surtees, Jennifer A; Finkelstein, Ilya J

    2016-01-01

    DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2-Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2-Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2-Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2-Msh3 and Msh2-Msh6 navigate on a crowded genome and suggest how Msh2-Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin. PMID:26837705

  15. Compound hierarchical correlated beta mixture with an application to cluster mouse transcription factor DNA binding data.

    PubMed

    Dai, Hongying; Charnigo, Richard

    2015-10-01

    Modeling correlation structures is a challenge in bioinformatics, especially when dealing with high throughput genomic data. A compound hierarchical correlated beta mixture (CBM) with an exchangeable correlation structure is proposed to cluster genetic vectors into mixture components. The correlation coefficient, [Formula: see text], is homogenous within a mixture component and heterogeneous between mixture components. A random CBM with [Formula: see text] brings more flexibility in explaining correlation variations among genetic variables. Expectation-Maximization (EM) algorithm and Stochastic Expectation-Maximization (SEM) algorithm are used to estimate parameters of CBM. The number of mixture components can be determined using model selection criteria such as AIC, BIC and ICL-BIC. Extensive simulation studies were conducted to compare EM, SEM and model selection criteria. Simulation results suggest that CBM outperforms the traditional beta mixture model with lower estimation bias and higher classification accuracy. The proposed method is applied to cluster transcription factor-DNA binding probability in mouse genome data generated by Lahdesmaki and others (2008, Probabilistic inference of transcription factor binding from multiple data sources. PLoS One, 3: , e1820). The results reveal distinct clusters of transcription factors when binding to promoter regions of genes in JAK-STAT, MAPK and other two pathways.

  16. Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding

    PubMed Central

    Zorzini, Valentina; Buts, Lieven; Schrank, Evelyne; Sterckx, Yann G.J.; Respondek, Michal; Engelberg-Kulka, Hanna; Loris, Remy; Zangger, Klaus; van Nuland, Nico A.J.

    2015-01-01

    Toxin-antitoxin (TA) modules are pairs of genes essential for bacterial regulation upon environmental stresses. The mazEF module encodes the MazF toxin and its cognate MazE antitoxin. The highly dynamic MazE possesses an N-terminal DNA binding domain through which it can negatively regulate its own promoter. Despite being one of the first TA systems studied, transcriptional regulation of Escherichia coli mazEF remains poorly understood. This paper presents the solution structure of C-terminal truncated E. coli MazE and a MazE-DNA model with a DNA palindrome sequence ∼10 bp upstream of the mazEF promoter. The work has led to a transcription regulator-DNA model, which has remained elusive thus far in the E. coli toxin–antitoxin family. Multiple complementary techniques including NMR, SAXS and ITC show that the long intrinsically disordered C-termini in MazE, required for MazF neutralization, does not affect the interactions between the antitoxin and its operator. Rather, the MazE C-terminus plays an important role in the MazF binding, which was found to increase the MazE affinity for the palindromic single site operator. PMID:25564525

  17. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    SciTech Connect

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-02-13

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  18. CpG methylation increases the DNA binding of 9-aminoacridine carboxamide Pt analogues.

    PubMed

    Kava, Hieronimus W; Murray, Vincent

    2016-10-01

    This study investigated the effect of CpG methylation on the DNA binding of cisplatin analogues with an attached aminoacridine intercalator. DNA-targeted 9-aminoacridine carboxamide Pt complexes are known to bind at 5'-CpG sequences. Their binding to methylated and non-methylated 5'-CpG sequences was determined and compared with cisplatin. The damage profiles of each platinum compound were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. Methylation at 5'-CpG was shown to significantly increase the binding intensity for the 9-aminoacridine carboxamide compounds, whereas no significant increase was found for cisplatin. 5'-CpG methylation had the largest effect on the 9-ethanolamine-acridine carboxamide Pt complex, followed by the 9-aminoacridine carboxamide Pt complex and the 7-fluoro complex. The methylation state of a cell's genome is important in maintaining normal gene expression, and is often aberrantly altered in cancer cells. An analogue of cisplatin which differentially targets methylated DNA may be able to improve its therapeutic activity, or alter its range of targets and evade the chemoresistance which hampers cisplatin efficacy in clinical use. PMID:27567075

  19. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.

    PubMed

    Bandyopadhyay, Susmita; Lee, Meryl; Sivaraman, J; Chatterjee, Chiradip

    2013-01-01

    Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) (1)H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.

  20. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions

    PubMed Central

    Brown, Maxwell W.; Kim, Yoori; Williams, Gregory M.; Huck, John D.; Surtees, Jennifer A.; Finkelstein, Ilya J.

    2016-01-01

    DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2–Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2–Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2–Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2–Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2–Msh3 and Msh2–Msh6 navigate on a crowded genome and suggest how Msh2–Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin. PMID:26837705

  1. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    PubMed Central

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-01-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  2. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1.

    PubMed

    Miroshnikova, A D; Kuznetsova, A A; Kuznetsov, N A; Fedorova, O S

    2016-01-01

    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step. PMID:27099790

  3. How different DNA sequences are recognized by a DNA-binding protein: effects of partial proteolysis.

    PubMed

    Supakar, P C; Zhang, X Y; Githens, S; Khan, R; Ehrlich, K C; Ehrlich, M

    1989-11-11

    MDBP is a sequence-specific DNA-binding protein from mammals that recognizes a variety of DNA sequences, all of which show much homology to a partially palindromic 14 base-pair consensus sequence. MDBP subjected to limited proteolysis and then incubated with various specific oligonucleotide duplexes yielded two types of complexes. The relative concentrations of these complexes varied greatly depending on how closely the MDBP site matched the consensus sequence. No such DNA sequence-specific differences in the types of complexes formed were seen with intact MDBP. Partial proteolysis also changed the relative affinity of MDBP for several of its binding sites. The nature of the two types of complexes formed from fragmented MDBP and DNA was studied by DNA competition assays, protein titration, site-directed mutagenesis, and dimethyl sulfate and missing base interference assays. The results suggest that, for some specific DNA sequences, half-site interactions with one MDBP subunit predominate and for others, strong interaction of two subunits with both half-sites readily occur.

  4. Phase Behavior of DNA in the Presence of DNA-Binding Proteins.

    PubMed

    Le Treut, Guillaume; Képès, François; Orland, Henri

    2016-01-01

    To characterize the thermodynamical equilibrium of DNA chains interacting with a solution of nonspecific binding proteins, we implemented a Flory-Huggins free energy model. We explored the dependence on DNA and protein concentrations of the DNA collapse. For physiologically relevant values of the DNA-protein affinity, this collapse gives rise to a biphasic regime with a dense and a dilute phase; the corresponding phase diagram was computed. Using an approach based on Hamiltonian paths, we show that the dense phase has either a molten globule or a crystalline structure, depending on the DNA bending rigidity, which is influenced by the ionic strength. These results are valid at the thermodynamical equilibrium and therefore should be consistent with many biological processes, whose characteristic timescales range typically from 1 ms to 10 s. Our model may thus be applied to biological phenomena that involve DNA-binding proteins, such as DNA condensation with crystalline order, which occurs in some bacteria to protect their chromosome from detrimental factors; or transcription initiation, which occurs in clusters called transcription factories that are reminiscent of the dense phase characterized in this study.

  5. HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses.

    PubMed

    Papageorgiou, Anna C; Adam, Panagiotis S; Stavros, Philemon; Nounesis, George; Meijers, Rob; Petratos, Kyriacos; Vorgias, Constantinos E

    2016-09-01

    The histone-like DNA-binding proteins (HU) serve as model molecules for protein thermostability studies, as they function in different bacteria that grow in a wide range of temperatures and show sequence diversity under a common fold. In this work, we report the cloning of the hutth gene from Thermus thermophilus, the purification and crystallization of the recombinant HUTth protein, as well as its X-ray structure determination at 1.7 Å. Detailed structural and thermodynamic analyses were performed towards the understanding of the thermostability mechanism. The interaction of HUTth protein with plasmid DNA in solution has been determined for the first time with MST. Sequence conservation of an exclusively thermophilic order like Thermales, when compared to a predominantly mesophilic order (Deinococcales), should be subject, to some extent, to thermostability-related evolutionary pressure. This hypothesis was used to guide our bioinformatics and evolutionary studies. We discuss the impact of thermostability adaptation on the structure of HU proteins, based on the detailed evolutionary analysis of the Deinococcus-Thermus phylum, where HUTth belongs. Furthermore, we propose a novel method of engineering thermostable proteins, by combining consensus-based design with ancestral sequence reconstruction. Finally, through the structure of HUTth, we are able to examine the validity of these predictions. Our approach represents a significant advancement, as it explores for the first time the potential of ancestral sequence reconstruction in the divergence between a thermophilic and a mainly mesophilic taxon, combined with consensus-based engineering. PMID:27342116

  6. STRUCTURE OF THE DNA REPAIR HELICASE HEL308 REVEALS DNA BINDING AND AUTOINHIBITORY DOMAINS

    PubMed Central

    Richards, Jodi; Johnson, Ken; Liu, Huanting; Oke, Stephen McMahon. Muse; Carter, Lester; Naismith, James H; White, Malcolm F

    2012-01-01

    Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest, and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high-resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as a molecular brake, clamping the ssDNA extruded through the central pore of the helicase structure to limit the enzyme’s helicase activity. This provides an elegant mechanism to tune the enzyme’s processivity to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, suggesting that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates. PMID:18056710

  7. DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I

    PubMed Central

    Whittle, Christina M.; Lazakovitch, Elena; Gronostajski, Richard M.; Lieb, Jason D.

    2009-01-01

    The conserved nuclear factor I (NFI) family of transcription factors is unique to animals and essential for mammalian development. The Caenorhabditis elegans genome encodes a single NFI family member, whereas vertebrate genomes encode 4 distinct NFI protein subtypes (A, B, C, and X). NFI-1-deficient worms exhibit abnormalities, including reduced lifespan, defects in movement and pharyngeal pumping, and delayed egg-laying. To explore the functional basis of these phenotypes, we sought to comprehensively identify NFI-1-bound loci in C. elegans. We first established NFI-1 DNA-binding specificity using an in vitro DNA-selection strategy. Analysis yielded a consensus motif of TTGGCA(N)3TGCCAA, which occurs 586 times in the genome, a 100-fold higher frequency than expected. We next asked which sites were occupied by NFI-1 in vivo by performing chromatin immunoprecipitation of NFI-1 followed by microarray hybridization. Only 55 genomic locations were identified, an unexpectedly small target set. In vivo NFI-1 binding sites tend to be upstream of genes involved in core cellular processes, such as chromatin remodeling, mRNA splicing, and translation. Remarkably, 59 out of 70 (84%) of the C. briggsae orthologs of the identified targets contain conserved NFI binding sites in their promoters. These experiments provide a foundation for understanding how NFI-1 is recruited to unexpectedly few in vivo sites to perform its developmental functions, despite a vast over-representation of its binding motif. PMID:19584245

  8. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    NASA Astrophysics Data System (ADS)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  9. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R.

    2012-10-01

    Few transition metal complexes of tetradentate N2O2 donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL1/KHL2 have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL1/KHL2 are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen (1O2) and superoxide anion radical (O2rad -) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.

  10. Redox-active and DNA-binding coordination complexes of clotrimazole.

    PubMed

    Betanzos-Lara, Soledad; Chmel, Nikola P; Zimmerman, Matthew T; Barrón-Sosa, Lidia R; Garino, Claudio; Salassa, Luca; Rodger, Alison; Brumaghim, Julia L; Gracia-Mora, Isabel; Barba-Behrens, Norah

    2015-02-28

    DNA interactions of anticancer mononuclear Cu(2+), Co(2+), Zn(2+), and Ni(2+) complexes with the biologically active ligand clotrimazole (clotri) are reported. To fully characterize DNA binding modes for these complexes of the formulae [M(clotri)2Cl2]·nH2O (1-4), [M(clotri)2Br2]·nH2O (5,6), [M(clotri)3NO3]NO3·nH2O (9), and [M(clotri)3(NO3)2] (10), circular dichroism (CD) and linear dichroism (LD) spectroscopy, UV melting experiments, atomic force microscopy (AFM) and ethidium bromide (EtBr) displacement methods were used. Results indicate mixed electrostatic interactions, possibly through groove binding, that result in accretion and coiling of DNA. Electrochemical studies indicate that the Cu(2+) complex 9 readily reduces to the reactive-oxygen-species-generating Cu(+), which oxidatively damages DNA. There is a subtle correlation between log P values, calculated electrostatic potentials, and cytotoxicity of the complexes. The extent of cell-nucleus DNA-metal adduct formation in the HeLa cervix-uterine carcinoma cell line does not necessarily correlate with cytotoxicity, indicating that the nature of DNA lesions may be crucial to activity. PMID:25561277

  11. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.

    PubMed

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  12. Dimerization of FIR Upon FUSE DNA Binding Suggests Mechanism of c-myc Inhibition

    SciTech Connect

    Crichlow,G.; Zhou, H.; Hsiao, H.; Frederick, K.; Debrosse, M.; Yang, Y.; Folta-Stogniew, E.; Chung, H.; Fan, C.; et al

    2008-01-01

    c-myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH--the FUSE binding protein (FBP) and the FBP-interacting repressor (FIR). FBP and FIR recognize single-stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single-stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N-terminal RRM domain participates in nucleic acid recognition. Site-directed mutations of conserved residues in the first RRM domain reduce FIR's affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c-myc transcriptional control.

  13. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes.

    PubMed

    Raman, N; Sobha, S; Selvaganapathy, M; Mahalakshmi, R

    2012-10-01

    Few transition metal complexes of tetradentate N(2)O(2) donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL(1)/KHL(2) have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL(1)/KHL(2) are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen ((1)O(2)) and superoxide anion radical (O(2)(-)) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method. PMID:22885083

  14. Genomic repertoires of DNA-binding transcription factors across the tree of life

    PubMed Central

    Charoensawan, Varodom; Wilson, Derek; Teichmann, Sarah A.

    2010-01-01

    Sequence-specific transcription factors (TFs) are important to genetic regulation in all organisms because they recognize and directly bind to regulatory regions on DNA. Here, we survey and summarize the TF resources available. We outline the organisms for which TF annotation is provided, and discuss the criteria and methods used to annotate TFs by different databases. By using genomic TF repertoires from ∼700 genomes across the tree of life, covering Bacteria, Archaea and Eukaryota, we review TF abundance with respect to the number of genes, as well as their structural complexity in diverse lineages. While typical eukaryotic TFs are longer than the average eukaryotic proteins, the inverse is true for prokaryotes. Only in eukaryotes does the same family of DNA-binding domain (DBD) occur multiple times within one polypeptide chain. This potentially increases the length and diversity of DNA-recognition sequence by reusing DBDs from the same family. We examined the increase in TF abundance with the number of genes in genomes, using the largest set of prokaryotic and eukaryotic genomes to date. As pointed out before, prokaryotic TFs increase faster than linearly. We further observe a similar relationship in eukaryotic genomes with a slower increase in TFs. PMID:20675356

  15. DNA binding induces conformational transition within human DNA topoisomerase I in solution.

    PubMed

    Oleinikov, Vladimir; Sukhanova, Alyona; Mochalov, Konstantin; Ustinova, Olga; Kudelina, Irina; Bronstein, Igor; Nabiev, Igor

    2002-01-01

    We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex. PMID:12209444

  16. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context

    PubMed Central

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  17. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51.

    PubMed

    Carreira, Aura; Hilario, Jovencio; Amitani, Ichiro; Baskin, Ronald J; Shivji, Mahmud K K; Venkitaraman, Ashok R; Kowalczykowski, Stephen C

    2009-03-20

    The breast cancer susceptibility protein, BRCA2, is essential for recombinational DNA repair. BRCA2 delivers RAD51 to double-stranded DNA (dsDNA) breaks through interaction with eight conserved, approximately 35 amino acid motifs, the BRC repeats. Here we show that the solitary BRC4 promotes assembly of RAD51 onto single-stranded DNA (ssDNA), but not dsDNA, to stimulate DNA strand exchange. BRC4 acts by blocking ATP hydrolysis and thereby maintaining the active ATP-bound form of the RAD51-ssDNA filament. Single-molecule visualization shows that BRC4 does not disassemble RAD51-dsDNA filaments but rather blocks nucleation of RAD51 onto dsDNA. Furthermore, this behavior is manifested by a domain of BRCA2 comprising all eight BRC repeats. These results establish that the BRC repeats modulate RAD51-DNA interaction in two opposing but functionally reinforcing ways: targeting active RAD51 to ssDNA and prohibiting RAD51 nucleation onto dsDNA. Thus, BRCA2 recruits RAD51 to DNA breaks and, we propose, the BRC repeats regulate DNA-binding selectivity.

  18. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation.

    PubMed

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  19. Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein.

    PubMed

    Benjamin, Lawrence R; Chung, Hye-Jung; Sanford, Suzanne; Kouzine, Fedor; Liu, Juhong; Levens, David

    2008-11-25

    The far upstream element (FUSE) binding protein (FBP), a single-stranded nucleic acid binding protein, is recruited to the c-myc promoter after melting of FUSE by transcriptionally generated dynamic supercoils. Via interactions with TFIIH and FBP-interacting repressor (FIR), FBP modulates c-myc transcription. Here, we investigate the contributions of FBP's 4 K Homology (KH) domains to sequence selectivity. EMSA and missing contact point analysis revealed that FBP contacts 4 separate patches spanning a large segment of FUSE. A SELEX procedure using paired KH-domains defined the preferred subsequences for each KH domain. Unexpectedly, there was also a strong selection for the noncontacted residues between these subsequences, showing that the contact points must be optimally presented in a backbone that minimizes secondary structure. Strategic mutation of contact points defined in this study disabled FUSE activity in vivo. Because the biological specificity of FBP is tuned at several layers: (i) accessibility of the site; (ii) supercoil-driven melting; (iii) presentation of unhindered bases for recognition; and (iv) modular interaction of KH-domains with cognate bases, the FBP-FIR system and sequence-specific, single-strand DNA binding proteins in general are likely to prove versatile tools for adjusting gene expression.

  20. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation

    PubMed Central

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  1. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans.

    PubMed

    Leiros, Ingar; Timmins, Joanna; Hall, David R; McSweeney, Sean

    2005-03-01

    The RecFOR pathway has been shown to be essential for DNA repair through the process of homologous recombination in bacteria and, recently, to be important in the recovery of stalled replication forks following UV irradiation. RecO, along with RecR, RecF, RecQ and RecJ, is a principal actor in this fundamental DNA repair pathway. Here we present the three-dimensional structure of a member of the RecO family. The crystal structure of Deinococcus radiodurans RecO (drRecO) reveals possible binding sites for DNA and for the RecO-binding proteins within its three discrete structural regions: an N-terminal oligonucleotide/oligosaccharide-binding domain, a helical bundle and a zinc-finger motif. Furthermore, drRecO was found to form a stable complex with RecR and to bind both single- and double-stranded DNA. Mutational analysis confirmed the existence of multiple DNA-binding sites within the protein. PMID:15719017

  2. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    PubMed

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. PMID:25170075

  3. DNA binding proteins explore multiple local configurations during docking via rapid rebinding

    PubMed Central

    Ganji, Mahipal; Docter, Margreet; Le Grice, Stuart F.J.; Abbondanzieri, Elio A.

    2016-01-01

    Finding the target site and associating in a specific orientation are essential tasks for DNA-binding proteins. In order to make the target search process as efficient as possible, proteins should not only rapidly diffuse to the target site but also dynamically explore multiple local configurations before diffusing away. Protein flipping is an example of this second process that has been observed previously, but the underlying mechanism of flipping remains unclear. Here, we probed the mechanism of protein flipping at the single molecule level, using HIV-1 reverse transcriptase (RT) as a model system. In order to test the effects of long-range attractive forces on flipping efficiency, we varied the salt concentration and macromolecular crowding conditions. As expected, increased salt concentrations weaken the binding of RT to DNA while increased crowding strengthens the binding. Moreover, when we analyzed the flipping kinetics, i.e. the rate and probability of flipping, at each condition we found that flipping was more efficient when RT bound more strongly. Our data are consistent with a view that DNA bound proteins undergo multiple rapid re-binding events, or short hops, that allow the protein to explore other configurations without completely dissociating from the DNA. PMID:27471033

  4. Competition for DNA binding sites using Promega DNA IQ™ paramagnetic beads.

    PubMed

    Frégeau, Chantal J; De Moors, Anick

    2012-09-01

    The Promega DNA IQ™ system is easily amenable to automation and has been an integral part of standard operating procedures for many forensic laboratories including those of the Royal Canadian Mounted Police (RCMP) since 2004. Due to some failure to extract DNA from samples that should have produced DNA using our validated automated DNA IQ™-based protocol, the competition for binding sites on the DNA IQ™ magnetic beads was more closely examined. Heme from heavily blooded samples interfered slightly with DNA binding. Increasing the concentration of Proteinase K during lysis of these samples did not enhance DNA recovery. However, diluting the sample lysate following lysis prior to DNA extraction overcame the reduction in DNA yield and preserved portions of the lysates for subsequent manual or automated extraction. Dye/chemicals from black denim lysates competed for binding sites on the DNA IQ™ beads and significantly reduced DNA recovery. Increasing the size or number of black denim cuttings during lysis had a direct adverse effect on DNA yield from various blood volumes. The dilution approach was successful on these samples and permitted the extraction of high DNA yields. Alternatively, shortening the incubation time for cell lysis to 30 min instead of the usual overnight at 56 °C prevented competition from black denim dye/chemicals and increased DNA yields.

  5. FRET-based protein-DNA binding assay for detection of active NF-kappa B

    SciTech Connect

    Giannetti, Ambra; Baldini, Francesco; Wabuyele, Musundi B; Vo Dinh, Tuan

    2006-01-01

    A novel method to detect the active form of NF-{kappa}B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single-strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF-{kappa}B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.

  6. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium.

    PubMed

    Sinha, Abhinav; Hughes, Katie R; Modrzynska, Katarzyna K; Otto, Thomas D; Pfander, Claudia; Dickens, Nicholas J; Religa, Agnieszka A; Bushell, Ellen; Graham, Anne L; Cameron, Rachael; Kafsack, Bjorn F C; Williams, April E; Llinás, Manuel; Berriman, Matthew; Billker, Oliver; Waters, Andrew P

    2014-03-13

    Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents. PbAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PbAP2-G and revealed a second ApiAP2 member (PBANKA_103430, here termed PbAP2-G2) that significantly modulates but does not abolish gametocytogenesis, indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PbAP2-G that could be exploited to prevent the transmission of this pernicious parasite.

  7. Acetylation of the p53 DNA binding domain regulates apoptosis induction.

    PubMed Central

    Sykes, Stephen M.; Mellert, Hestia S.; Holbert, Marc A.; Li, Keqin; Marmorstein, Ronen; Lane, William S.; McMahon, Steven B.

    2007-01-01

    SUMMARY The ability of p53 to induce apoptosis plays an important role in tumor suppression. Here we describe a previously unknown post-translational modification of the DNA-binding domain of p53. This modification, acetylation of lysine 120, occurs rapidly after DNA damage and is catalyzed by the MYST family acetyltransferases hMOF and TIP60. Mutation of lysine 120 to arginine, as occurs in human cancer, debilitates K120 acetylation and diminishes p53-mediated apoptosis without affecting cell-cycle arrest. The K120R mutation selectively blocks the transcription of pro-apoptotic target genes such as BAX and PUMA while the non-apoptotic targets p21 and hMDM2 remain unaffected. Consistent with this, depletion of hMOF and/or TIP60 inhibits the ability of p53 to activate BAX and PUMA transcription. Furthermore, the acetyl-lysine 120 form of p53 specifically accumulates at pro-apoptotic target genes. These data suggest that K120 acetylation may help distinguish the cell cycle arrest and apoptotic functions of p53. PMID:17189187

  8. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes

    PubMed Central

    Banerjee, Ankan; Herman, Elena; Serif, Manuel; Maestre-Reyna, Manuel; Hepp, Sebastian; Pokorny, Richard; Kroth, Peter G.; Essen, Lars-Oliver; Kottke, Tilman

    2016-01-01

    The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes’ light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical ‘aureo box’, TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity. PMID:27179025

  9. Retargeting Sleeping Beauty Transposon Insertions by Engineered Zinc Finger DNA-binding Domains

    PubMed Central

    Voigt, Katrin; Gogol-Döring, Andreas; Miskey, Csaba; Chen, Wei; Cathomen, Toni; Izsvák, Zsuzsanna; Ivics, Zoltán

    2012-01-01

    The Sleeping Beauty (SB) transposon is a nonviral, integrating vector system with proven efficacy in preclinical animal models, and thus holds promise for future clinical applications. However, SB has a close-to-random insertion profile that could lead to genotoxic effects, thereby presenting a potential safety issue. We evaluated zinc finger (ZF) DNA-binding domains (DBDs) for their abilities to introduce a bias into SB's insertion profile. E2C, that binds a unique site in the erbB-2 gene, mediated locus-specific transposon insertions at low frequencies. A novel ZF targeting LINE1 repeats, ZF-B, showed specific binding to an 18-bp site represented by ~12,000 copies in the human genome. We mapped SB insertions using linear-amplification (LAM)-PCR and Illumina sequencing. Targeted insertions with ZF-B peaked at approximately fourfold enrichment of transposition around ZF-B binding sites yielding ~45% overall frequency of insertion into LINE1. A decrease in the ZF-B dataset with respect to transposon insertions in genes was found, suggesting that LINE1 repeats act as a sponge that “soak up” a fraction of SB insertions and thereby redirect them away from genes. Improvements in ZF technology and a careful choice of targeted genomic regions may improve the safety profile of SB for future clinical applications. PMID:22776959

  10. Cloning and sequencing of PYBP, a pyrimidine-rich specific single strand DNA-binding protein.

    PubMed Central

    Brunel, F; Alzari, P M; Ferrara, P; Zakin, M M

    1991-01-01

    In the human transferrin gene promoter, PRI and DRI are positive cis-acting elements interacting respectively with two families of proteins, Tf-LF1 and Tf-LF2. In this paper, we report the purification from rat liver nuclei, of one of these factors, PYBP, as well as the cloning and the sequencing of its cDNA. PYBP is a DNA-binding protein, purified as a 58 kDa doublet which binds only to single strand pyrimidine-rich DNA present for example in PRI and DRI. The protein binds also to a similar polypyrimidine tract present in one of the two strands of a DNA regulatory element of the rat tyrosine aminotransferase gene enhancer. PYBP gene is transcribed ubiquitously as a roughly 2.8 kb RNA which is likely to be subject to an alternative splicing. PYBP is highly homologous to a mouse nuclear protein, as well as to PTB, its human version, which interacts specifically with the pyrimidine tracts of introns. Primary structure information and predicted secondary structure elements of the protein indicate that PYBP contains four sequence repeats. Each of these repeats appears to exhibit the typical RNA recognition motif found in several proteins interacting with RNA or single strand DNA. Finally several hypotheses concerning the biological function of PYBP are presented. Images PMID:1681508

  11. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis.

    PubMed

    Sontakke, Vyankat A; Lawande, Pravin P; Kate, Anup N; Khan, Ayesha; Joshi, Rakesh; Kumbhar, Anupa A; Shinde, Vaishali S

    2016-04-26

    An efficient route was developed for synthesis of bicyclic benzimidazole nucleosides from readily available d-glucose. The key reactions were Vörbruggen glycosylation and ring closing metathesis (RCM). Primarily, to understand the mode of DNA binding, we performed a molecular docking study and the binding was found to be in the minor groove region. Based on the proposed binding model, UV-visible and fluorescence spectroscopic techniques using calf thymus DNA (CT-DNA) demonstrated a non-intercalative mode of binding. Antiproliferative activity of nucleosides was tested against MCF-7 and MDA-MB-231 breast cancer cell lines and found to be active at low micromolar concentrations. Compounds and displayed significant antiproliferative activity as compared to and with the reference anticancer drug, doxorubicin. Cell cycle analysis showed that nucleoside induced cell cycle arrest at the S-phase. Confocal microscopy has been performed to validate the induction of cellular apoptosis. Based on these findings, such modified bicyclic benzimidazole nucleosides will make a significant contribution to the development of anticancer drugs. PMID:27074628

  12. Metabolism and DNA binding of BaP in the presence of complex organic mixtures

    SciTech Connect

    Springer, D.L.; Dankovic, D.A.; Thomas, B.L.; Hopkins, K.L.; Bean, R.E.; Mahlum, D.D.

    1986-04-01

    Previous studies have shown that the mutagenic, carcinogenic and DNA binding activities of benzo(a)pyrene (BaP) were decreased when BaP was coadministered with complex organic mixtures. We have continued these studies to identify the components of the mixture that were responsible for this effect. For this study a high-boiling coal liquid was separated into aliphatic, polycyclic aromatic hydrocarbon (PAH), nitrogen-containing polycyclic aromatic compounds (NPAC) and oxygen containing PAH fractions (HPAH); these were spiked with /sup 3/H-BaP, administered dermally to mice and DNA isolated twenty-four hours later. Binding of BaP, as estimated by radioactivity associated the DNA, decreased to 47, 55 and 66% of that for the same dose of BaP alone for the PAH, NPAC and HPAH fractions, respectively. In vitro studies with Aroclor-induced rat liver S9 demonstrated that the rate of metabolism of BaP decreased when it was coadministered with the mixtures but that the BaP metabolite profiles were similar for BaP alone and in the presence of the mixture. These data suggest that the differences in mutagenic, and presumable carcinogenic activities, for BaP, when administered with the complex mixture, were due to decreased rates of conversion of BaP to reactive metabolites. 15 refs., 2 figs., 3 tabs.

  13. Chromatin-driven de novo discovery of DNA binding motifs in the human malaria parasite

    PubMed Central

    2011-01-01

    Background Despite extensive efforts to discover transcription factors and their binding sites in the human malaria parasite Plasmodium falciparum, only a few transcription factor binding motifs have been experimentally validated to date. As a consequence, gene regulation in P. falciparum is still poorly understood. There is now evidence that the chromatin architecture plays an important role in transcriptional control in malaria. Results We propose a methodology for discovering cis-regulatory elements that uses for the first time exclusively dynamic chromatin remodeling data. Our method employs nucleosome positioning data collected at seven time points during the erythrocytic cycle of P. falciparum to discover putative DNA binding motifs and their transcription factor binding sites along with their associated clusters of target genes. Our approach results in 129 putative binding motifs within the promoter region of known genes. About 75% of those are novel, the remaining being highly similar to experimentally validated binding motifs. About half of the binding motifs reported show statistically significant enrichment in functional gene sets and strong positional bias in the promoter region. Conclusion Experimental results establish the principle that dynamic chromatin remodeling data can be used in lieu of gene expression data to discover binding motifs and their transcription factor binding sites. Our approach can be applied using only dynamic nucleosome positioning data, independent from any knowledge of gene function or expression. PMID:22165844

  14. Artemisia herba alba: a popular plant with potential medicinal properties.

    PubMed

    Moufid, Abderrahmane; Eddouks, Mohamed

    2012-12-15

    Artemisia herba alba (Asteraceae), commonly known as desert or white wormwood, is used in folk medicine for treatment of various diseases. Phytochemical studies of this plant revealed the existence of many beneficial compounds such as herbalbin, cis-chryanthenyl acetate, flavonoids (hispidulin and cirsilineol), monoterpenes, sesquiterpene. The aerial parts are characterized by a very low degree of toxicity. This study reviews the main reports of the pharmacological and toxicological properties of Artemisia herba alba in addition to the main constituents. It would appear that this plant exhibits many beneficial properties. Further studies are warranted to more integrate this popular plant in human health care system.

  15. Antiplasmodial properties of some Malaysian medicinal plants.

    PubMed

    Noor Rain, A; Khozirah, S; Mohd Ridzuan, M A R; Ong, B K; Rohaya, C; Rosilawati, M; Hamdino, I; Badrul, Amin; Zakiah, I

    2007-06-01

    Seven Malaysian medicinal plants were screened for their antiplasmodial activities in vitro. These plants were selected based on their traditional claims for treatment or to relieve fever. The plant extracts were obtained from Forest Research Institute Malaysia (FRIM). The antiplasmodial activities were carried out using the pLDH assay to Plasmodium falciparum D10 strain (sensitive strain) while the cytotoxic activities were carried out towards Madin- Darby bovine kidney (MDBK) cells using MTT assay. The concentration of extracts used for both screening assays were from the highest concentration 64 microg/ml, two fold dilution to the lowest concentration 0.03 microg/ml. Goniothalamus macrophyllus (stem extract) showed more than 60% growth inhibition while Goniothalamus scortechinii root and stem extract showed a 90% and more than 80% growth inhibition at the last concentration tested, 0.03 microg/ml. The G. scortechini (leaves extract) showed an IC50 (50% growth inhibition) at 8.53 microg/ml, Ardisia crispa (leaves extract) demonstrated an IC50 at 5.90 +/- 0.14 microg/ml while Croton argyratus (leaves extract) showed a percentage inhibition of more than 60% at the tested concentration. Blumea balsamifera root and stem showed an IC50 at 26.25 +/- 2.47 microg/ml and 7.75 +/- 0.35 microg/ ml respectively. Agathis borneensis (leaves extract) demonstrated a 50% growth inhibition at 11.00 +/- 1.41 microg/ml. The study gives preliminary scientific evidence of these plant extracts in line with their traditional claims. PMID:17568375

  16. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: DETERMINANTS OF DNA BINDING AND REDOX REGULATION BY DISULFIDE BOND FORMATION.

    PubMed

    Cooper, Christopher D O; Newman, Joseph A; Aitkenhead, Hazel; Allerston, Charles K; Gileadi, Opher

    2015-05-29

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.

  17. DR_bin