Science.gov

Sample records for plants solanum tuberosum

  1. Potato (Solanum tuberosum L.).

    PubMed

    Chetty, Venkateswari J; Narváez-Vásquez, Javier; Orozco-Cárdenas, Martha L

    2015-01-01

    Agrobacterium-mediated transformation is the most common method for the incorporation of foreign genes into the genome of potato as well as many other species in the Solanaceae family. This chapter describes protocols for the genetic transformation of three species of potato: Solanum tuberosum subsp. tuberosum (Desiréé), S. tuberosum subsp. andigenum (Blue potato), and S. tuberosum subsp. andigena using internodal segments as explants. PMID:25416251

  2. Potato (Solanum tuberosum L.).

    PubMed

    Chetty, Venkateswari J; Narváez-Vásquez, Javier; Orozco-Cárdenas, Martha L

    2015-01-01

    Agrobacterium-mediated transformation is the most common method for the incorporation of foreign genes into the genome of potato as well as many other species in the Solanaceae family. This chapter describes protocols for the genetic transformation of three species of potato: Solanum tuberosum subsp. tuberosum (Desiréé), S. tuberosum subsp. andigenum (Blue potato), and S. tuberosum subsp. andigena using internodal segments as explants.

  3. Identification of benzodiazepines in Artemisia dracunculus and Solanum tuberosum rationalizing their endogenous formation in plant tissue.

    PubMed

    Kavvadias, D; Abou-Mandour, A A; Czygan, F C; Beckmann, H; Sand, P; Riederer, P; Schreier, P

    2000-03-01

    Sterile cultivated plant cell tissues and cell regenerates of several species were tested for their binding affinity to the central human benzodiazepine receptor. Binding activity was found in extracts of Artemisia dracunculus cell tissue (IC(50) = 7 microg/ml) and, to a lesser extent, in plant regenerates of potato herb (Solanum tuberosum). Preparative HPLC led to the isolation of fractions with a significant displacing potency in the benzodiazepine receptor binding assay. Using on-line HPLC-electrospray-tandem mass spectrometry (HPLC-ESI-MS/MS) in the "selected reaction monitoring" (SRM) mode, delorazepam and temazepam were found in amounts of about 100 to 200 ng/g cell tissue of Artemisia dracunculus, whereas sterile potato herb contained temazepam and diazepam ranging approximately from 70 to 450 ng/g cell tissue. It is the first report on the endogenous formation of benzodiazepines by plant cells, as any interaction of microorganisms and environmental factors was excluded.

  4. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria.

    PubMed

    Poiatti, Vera A D; Dalmas, Fernando R; Astarita, Leandro V

    2009-01-01

    The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in defense mechanisms

  5. Comparison of single cell culture derived Solanum tuberosum L. plants and a model for their application in breeding programs.

    PubMed

    Wenzel, G; Schieder, O; Przewozny, T; Sopory, S K; Melchers, G

    1979-03-01

    The techniques of microspore and protoplast regeneration starting from dihaploid Solanum tuberosum plants has been improved to such an extent that the production of more than 2000 microspore derived A1 plant lines and of several hundred protoplast derived plantlets has become possible. Further, from the dihaploid Solanum species S. phureja the regeneration of microspores to plants, and from the species S. infundibuliforme, S. sparsipilum and S. tarijense the regeneration of protoplasts to calluses, has been achieved. The plants descending from the two single cell culture systems are compared with reference to phenotypic markers and economic qualities. Some principles characteristic for either microspore or protoplast derived plants are examined and their significance is discussed. The results are compiled into an extended analytical synthetic breeding scheme based on a stepwise reduction of the autotetraploid to the monohaploid level and a subsequent controlled combination to a new synthetic completely heterozygous tetraploid potato.

  6. Plastid transformation in potato: Solanum tuberosum.

    PubMed

    Valkov, Vladimir T; Gargano, Daniela; Scotti, Nunzia; Cardi, Teodoro

    2014-01-01

    Although plastid transformation has attractive advantages and potential applications in plant biotechnology, for long time it has been highly efficient only in tobacco. The lack of efficient selection and regeneration protocols and, for some species, the inefficient recombination using heterologous flanking regions in transformation vectors prevented the extension of the technology to major crops. However, the availability of this technology for species other than tobacco could offer new possibilities in plant breeding, such as resistance management or improvement of nutritional value, with no or limited environmental concerns. Herein we describe an efficient plastid transformation protocol for potato (Solanum tuberosum subsp. tuberosum). By optimizing the tissue culture system and using transformation vectors carrying homologous potato flanking sequences, we obtained up to one transplastomic shoot per bombardment. Such efficiency is comparable to that usually achieved in tobacco. The method described in this chapter can be used to regenerate potato transplastomic plants expressing recombinant proteins in chloroplasts as well as in amyloplasts.

  7. Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum.

    PubMed

    Ulloa, Rita M; Raíces, Marcela; MacIntosh, Gustavo C; Maldonado, Sara; Téllez-Iñón, María T

    2002-07-01

    The effect of jasmonic acid (JA) on plant growth and on calcium-dependent protein kinase (CDPK) activity and expression was studied in non-photoperiodic potato plants, Solanum tuberosum L. var. Spunta, grown in vitro. Stem cuttings were grown for 45 days (long treatment, LT) in MS medium with increasing concentrations of JA. For short treatments (ST) adult plants grown in MS were transferred for 1, 4 and 20 h to JA containing media. During the LT, low concentrations of JA promoted cell expansion and shoot elongation while higher concentrations caused growth inhibition. Under these conditions, treated plants showed root shortening and tuber formation was not induced. Morphological and histochemical studies using light microscopy and TEM analysis of leaves from treated plants revealed that JA also affected subcellular organelles of mesophyll cells. Peroxisomes increased in size and number, and an autophagic process was triggered in response to high concentrations of the hormone. CDPK activity, determined in crude extracts of treated plants (LT), was inhibited (up to 80%). Plant growth and CDPK inhibition were reverted upon transfer of the plants to hormone-free medium. Soluble CDPK activity decreased in response to JA short treatment. Concomitantly, a decline in the steady state levels of StCDPK2 mRNA, a potato CDPK isoform that is expressed in leaves, was observed. These data suggest that the phytohormone down-regulated the expression and activity of the kinase.

  8. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    NASA Astrophysics Data System (ADS)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the

  9. Molecular cloning and biochemical characterization of alpha- and beta-tubulin from potato plants (Solanum tuberosum L.).

    PubMed

    Koo, Bon-Sung; Kalme, Satish; Yeo, Soo-Hwan; Lee, Su-Jae; Yoon, Moon-Young

    2009-09-01

    Few studies have investigated microtubules from plants that host pathogenic fungi. Considerable efforts are underway to find an antimitotic agent against plant pathogens like Phytophthora infestans. However, screening the effects of antifungal agents on plant tubulin in vivo or using purified native microtubule in vitro is a time consuming process. A recombinant, correctly folded, microtubule-like structure forming tubulin could accelerate research in this area. In this study, we cloned full length cDNAs isolated from potato leaves using reverse-transcribed polymerase chain reaction (RT-PCR). Solanum tuberosum (Stub) alpha-tubulin and beta-tubulin were predicted to encode 449 and 451 amino acid long proteins with molecular masses of 57 kDa and 60 kDa, respectively. Average yields of alpha- and beta-tubulin were 2.0-3.5 mg l(-1) and 1.3-3.0 mg l(-1) of culture, respectively. The amino acids, His6, Glu198, and Phe170 involved in benomyl sensitivity were conserved in Stub tubulin. The dimerization of tubulin monomers was confirmed by western blot analysis. When combined under appropriate conditions, these recombinant alpha- and beta-tubulins were capable of polymerizing into microtubules. Accessibility of cysteine residues of tubulin revealed that important ligand binding sites were folded correctly. This recombinant tubulin could serve as a control of phytotoxicity of selected antimitotic fungicide compounds during in vitro screening experiments.

  10. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    PubMed

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  11. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    PubMed Central

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  12. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    PubMed

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  13. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants.

    PubMed

    Rey, P; Pruvot, G; Becuwe, N; Eymery, F; Rumeau, D; Peltier, G

    1998-01-01

    By analysing two-dimensional patterns of chloroplastic proteins from Solanum tuberosum, the authors observed the accumulation of a 32-kDa polypeptide in the stroma of plants subjected to water deficit. N-terminus and internal peptides of the protein, named CDSP 32 for chloroplastic drought-induced stress protein, showed no obvious homology with known sequences. Using a serum raised against the protein N-terminus, a cDNA encoding CDSP 32 was cloned by screening an expression library. The deduced mature CDSP 32 protein is 243 amino acids long and displays typical features of thioredoxins in the C-terminal region (122 residues). In particular, CDSP 32 contains a CGPC motif corresponding to a thioredoxin active site and a number of amino acids conferring thioredoxin-type structure. The CDSP 32 C-terminal region was expressed as a fusion protein in Escherichia coli and was shown to possess thioredoxin activity based on reduction assay of insulin disulfide bridges. RNA blot analysis showed that CDSP 32 transcript does not accumulate upon mild water deficit conditions corresponding to leaf relative water contents (RWC) around 85%, but high levels of CDSP 32 transcripts were observed for more severe stress conditions (RWC around 70%). In vivo labelling and immunoprecipitation revealed a substantial increase in CDSP 32 synthesis upon similar stress conditions. Rewatering of wilted plants caused decreases in both transcript and protein abundances. In tomato wild-type plants and ABA-deficient mutants, a similar accumulation of a CDSP 32-related transcript was observed upon water deficit, most likely indicating no requirement for ABA in the regulation of CDSP 32 synthesis. Based on these results, it is proposed that CDSP 32 plays a role in preservation of the thiol: disulfide redox potential of chloroplastic proteins during water deficit.

  14. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions

    PubMed Central

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon’s response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  15. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

    PubMed

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  16. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature.

    PubMed

    Hancock, Robert D; Morris, Wayne L; Ducreux, Laurence J M; Morris, Jenny A; Usman, Muhammad; Verrall, Susan R; Fuller, John; Simpson, Craig G; Zhang, Runxuan; Hedley, Pete E; Taylor, Mark A

    2014-02-01

    Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.

  17. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    EPA Science Inventory

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  18. Climate Change: Precipitation and Plant Nutrition Interactions on Potato (Solanum tuberosum L.) Yield in North-Eastern Hungary

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    formation, yield quantity of potato depended decisively on the time of year when they were experienced and the period for which they lasted. Droughts in the winter or summer half-year had much the same effect on yield. Precipitation deficiency in the winter could not be counterbalanced by average rainfall during the vegetation period, and its effect on the yield was similar to that of summer drought. It was also concluded that economic yields could not be achieved with poor N, P, K and Mg nutrient supply even with a normal quantity and distribution of rainfall. Yield was influenced by rainfall to a greater extent (Table 4) than by 0-150 kg ha-1 nitrogen and NP, NK, NPK, NPKMg combinations. Drought and over rainfall negative effects were decreased by increasing N- doses with combinations of potassium, phosphorous and magnesium from 13 to 32% (Table 5). And with the help of regression analysis it was found the polynomial correlation between rainfall and yield could be observed in the case of N: Y'=380.18-2.95x+0.0056x2, n=72, R2=0.95, NP: Y'=387.19-3.04x+0.0059x2, n=72, R2=0.96, NK: Y'=381.65-2.95x+0.0056x2, n=72, R2=0.95, NPK: Y'=390.87-3.07x+0.0060x2, n=72, R2=0.96 and NPKMg: Y'=390.45-3.06x+0.0059x2, n=72, R2=0.96 nutrition systems. The optimum yields ranges between 17-20 t ha-1 at 280-330 mm of rainfall. Acknowledgement: This study were supported by Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS), Budapest. References Johnston, A. E., 2000. Some aspects of nitrogen use efficiency in arable agriculture. K. Scogs-o. Lantbr. Akad. Tidskr. 139, 8. Kádár, I., Márton, L., Horváth, S., 2000. Mineral fertilisation of potato (Solanum tuberosum L.) on calcareous chernozem soil. Plant Production. 49, 291-306. Kádár, I., Szemes, I., 1994. A nyírlugosi tartamkísérlet 30 éve. MTA TAKI, Budapest, 248 p. Láng, I., 1973. Műtrágyázási tartamkísérletek homoktalajon. MTA Doktori értekezés. MTA TMB. Budapest

  19. Phosphorous uptake by potato (Solanum tuberosum L.) from biochar amended with anaerobic digested dairy manure effluent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption of plant nutrients by biochar from dairy storage lagoons and use as a supplemental fertilizer off site is a beneficial strategy to reduce nutrient contamination around dairies and supply nutrients to potato (Solanum tuberosum L.) and other crops. This research evaluated potato growth respo...

  20. Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants.

    PubMed

    Pruvot, G; Cuiné, S; Peltier, G; Rey, P

    1996-01-01

    Using two-dimensional electrophoresis and Coomassie Blue staining, the accumulation of a 34-kDa protein (named cdsp 34 for chloroplastic drought-induced stress protein) is shown in the thylakoids of Solanum tuberosum plants subjected to a progressive and reversible water deficit. In-vivo labeling experiments showed an increased synthesis of cdsp 34 from the early stages of drought stress (leaf relative water content around 85%) and throughout the constraint. Sequences of the N-terminal part and of four tryptic-digest peptides did not reveal significant homology between the cdsp 34 protein and other known proteins. Western blotting analysis, using a serum raised against the N-terminal part of cdsp 34, confirmed the accumulation of cdsp 34 in thylakoids upon drought stress. From immunoblot analysis of different chloroplastic subfractions, the cdsp 34 protein appears to be an extrinsic protein preferentially located in unstacked stroma thylakoids. Immunoprecipitation of in-vitro-translated products, as well as Southern analysis, showed that the cdsp 34 protein is nuclear encoded. After rewatering of water-stressed plants, the level of cdsp 34 synthesis was reduced, but remained substantially higher than in control plants. Western analysis showed the persistence of a high amount of cdsp 34 in rewatered plants for at least two weeks. Based on the abundance and on the location of cdsp 34 within thylakoids, a putative role for this novel chloroplastic protein is discussed in relation to the tolerance of the photosynthetic apparatus of higher plants to dehydration.

  1. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    PubMed

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7. PMID:26979928

  2. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    PubMed

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  3. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases

    PubMed Central

    Hunter, Lydia J. R.; Brockington, Samuel F.; Murphy, Alex M.; Pate, Adrienne E.; Gruden, Kristina; MacFarlane, Stuart A.; Palukaitis, Peter; Carr, John P.

    2016-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7. PMID:26979928

  4. Analysis of cytosolic heteroglycans from leaves of transgenic potato (Solanum tuberosum L.) plants that under- or overexpress the Pho 2 phosphorylase isozyme.

    PubMed

    Fettke, Joerg; Poeste, Simon; Eckermann, Nora; Tiessen, Axel; Pauly, Markus; Geigenberger, Peter; Steup, Martin

    2005-12-01

    During starch degradation, chloroplasts export neutral sugars into the cytosol where they appear to enter a complex glycan metabolism. Interactions between glycans and glucosyl transferases residing in the cytosol were studied by analyzing transgenic potato (Solanum tuberosum L.) plants that possess either decreased or elevated levels of the cytosolic (Pho 2) phosphorylase isoform. Water-soluble heteroglycans (SHGs) were isolated from these plants and were characterized. SHG contains, as major constituents, arabinose, rhamnose, galactose and glucose. Non-aqueous fractionation combined with other separation techniques revealed a distinct pool of the SHG that is located in the cytosol. Under in vitro conditions, the cytosolic heteroglycans act as glucosyl acceptor selectively for Pho 2. Acceptor sites were characterized by a specific hydrolytic degradation following the Pho 2-catalyzed glucosyl transfer. The size distribution of the cytosolic SHG increased during the dark period, indicating a distinct metabolic activity related to net starch degradation. Antisense inhibition of Pho 2 resulted in increased glucosyl and rhamnosyl contents of the glycans. Overexpression of Pho 2 decreased the content of both residues. Compared with the wild type, in both types of transgenic plants the size of the cytosolic glycans was increased.

  5. Unexpected effects of chitinases on the peach-potato aphid (Myzus persicae Sulzer) when delivered via transgenic potato plants (Solanum tuberosum Linné) and in vitro.

    PubMed

    Saguez, Julien; Hainez, Romaric; Cherqui, Anas; Van Wuytswinkel, Olivier; Jeanpierre, Haude; Lebon, Gaël; Noiraud, Nathalie; Beaujean, Antony; Jouanin, Lise; Laberche, Jean-Claude; Vincent, Charles; Giordanengo, Philippe

    2005-02-01

    With the aim of producing insect-resistant potato plants, internode explants of Solanum tuberosum L. cv. Désirée were transformed with an Agrobacterium strain C58pMP90 containing an insect (Phaedon cochleariae: Coleoptera, Chrysomelidae) chitinase gene and the neomycin phosphotransferase (nptII) gene as selectable marker, both under the control of the viral CaMV 35S promoter. Three transformed potato lines (CH3, CH5 and CH25) exhibiting the highest chitinolytic activities were selected for feeding experiments with the peach-potato aphid, Myzus persicae (Sulzer), under controlled photoperiod and temperature conditions. Aphids fed on transgenic potato plants showed a reduced pre-reproductive period and an enhanced daily fecundity. Transgenic potato lines did not affect nymphal mortality, but improved several biological parameters related to aphid population's growth. Artificial diets were used to provide active (1, 10, 100 and 500 microg ml(-1)) and inactive (500 microg ml(-1)) bacterial (Serratia marcescens) chitinase to M. persicae. These compounds increased nymph survival at all active chitinase doses when compared to the control diet, while inactive chitinase did not. Although the pre-reproductive period was slightly shortened and the daily fecundity slightly higher, active and inactive chitinase provided as food led a reduction from 1 to 1.5 day population's doubling time. Therefore chitinase activity was responsible for the probiotic effects on aphids. Our results question the relevance of a chitinase-based strategy in the context of potato culture protection.

  6. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    PubMed

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum. PMID:25144460

  7. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    PubMed

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  8. A reassessment of Solanum maglia in the origin of Chilean landraces of cultivated potato (Solanum tuberosum Chilotanum Group)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landrace potato cultivars of Solanum tuberosum occur in two broad geographic regions; the high Andes from western Venezuela south to northern Argentina (S. tuberosum Andigenum Group), and lowland south central Chile (S. tuberosum Chilotanum Group). Chilotanum is adapted to long days, has a 241 bp pl...

  9. The enigma of Solanum maglia in the origin of the Chilean cultivated potato, Solanum tuberosum Chilotanum group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landrace potato cultivars of Solanum tuberosum occur in two broad geographic regions; the high Andes from western Venezuela south to northern Argentina (S. tuberosum Andigenum Group), and lowland south central Chile (S. tuberosum Chilotanum Group). Chilotanum Group landraces are adapted to long days...

  10. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja.

    PubMed

    Fock, I; Collonnier, C; Purwito, A; Luisetti, J; Souvannavong, V; Vedel, F; Servaes, A; Ambroise, A; Kodja, H; Ducreux, G; Sihachakr, D

    2000-12-01

    Somatic hybrid plants were produced after protoplast electrofusion between a dihaploid potato, cv. BF15, and a wild tuber-bearing relative, Solanum phureja, with a view to transferring bacterial wilt resistance into potato lines. A total of ten putative hybrids were selected. DNA analysis using flow cytometry revealed that six were tetraploids, two mixoploids, one amphiploid and one octoploid. In the greenhouse, the putative hybrids exhibited strong vigor and were morphologically intermediate, including leaf form, flowers and tuber characteristics. The hybrid nature of the ten selected plants was confirmed by examining isoenzyme patterns for esterases and peroxidases, and analysis of RAPD and SSR markers. Analysis of chloroplast genome revealed that eight hybrids possessed chloroplast (ct) DNA of the wild species, S. phureja, and only two contained Solanum tuberosum ct type. Six hybrid clones, including five tetraploids and one amphiploid, were evaluated for resistance to bacterial wilt by using race 1 and race 3 strains of Ralstonia solanacearum, originating from Reunion Island. Inoculations were performed by an in vitro root dipping method. The cultivated potato was susceptible to both bacterial strains tested. All somatic hybrids except two were tolerant to race 1 strain, and susceptible to race 3 strain. Interestingly, the amphiploid hybrid clone showed a good tolerance to both strains.

  11. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena.

    PubMed

    Bhogale, Sneha; Mahajan, Ameya S; Natarajan, Bhavani; Rajabhoj, Mohit; Thulasiram, Hirekodathakallu V; Banerjee, Anjan K

    2014-02-01

    MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development.

  12. Effect of ozone on indicators of leaf aging. [Solanum tuberosum

    SciTech Connect

    Yisheng Ni; Yaoren Dai; Fayek Negm; Reddy, N. Flores, H.; Arteca, R.; Pell, E. )

    1991-05-01

    Ozone (O{sub 3}) stress induces accelerated foliar senescence, as measured by a decline in ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). The authors wish to determine (1) whether the decline in rubisco is under genetic regulation and (2) what role is played by ethylene and polyamines in modulating this response. Plants of Solanum tuberosum L. cv. Norland were grown in a charcoal filtered greenhouse and treated with 0.15 {mu}1 1{sup {minus}1} O{sub 3} in continuous stirred tank reactors for 4 h. Immediately, 4 h and 20 h after O{sub 3} exposure, the fourth, seventh and tenth leaves from the apex were harvested and the tissue analyzed for ethylene emission, ethylene forming enzyme, malonyl transferase, ACC, malonyl ACC, spermine, spermidine, putrescine, ornithine decarboxylase and messenger RNA for the large and small subunits of rubisco. Ozone induced changes in most of the variables studied and the response was most evident in the younger tissue. In contrast O{sub 3} induces accelerated senescence of the oldest tissue. The relationship between O{sub 3}-induced changes in younger foliage and accelerated aging of older tissue will be the subject of further investigation.

  13. Glycoalkaloid profile in potato haploids derived from solanum tuberosum-S. bulbocastanum somatic hybrids.

    PubMed

    Carputo, Domenico; Savarese, Salvatore; Andolfi, Anna; Aversano, Riccardo; Cimmino, Alessio; Frusciante, Luigi; Evidente, Antonio

    2010-08-01

    Cultivated and wild potato species synthesize a wide variety of steroidal glycoalkaloids (GA) that may affect either human health or biotic stress resistance. Therefore, GA composition must be a major criterion in the evaluation of breeding products when species genomes are merged and/or manipulated. This work reports the results of GA analysis performed on unique haploid (2n=2x=24) plants obtained from tetraploid (2n=4x=48) Solanum bulbocastanum-S. tuberosum hybrids through in vitro anther culture. Glycoalkaloids were extracted from tubers and analyzed by HPLC. Haploids generally showed the occurrence of parental GA. However, in several cases loss of parental GA and gain of new GA lacking in the parents was observed. It may be hypothesized that new GA profiles of our haploids is the result of either genetic recombination or combinatorial biochemistry events. To highlight differences between haploids and parents, soluble proteins and antioxidant activities were also determined. Both were always higher in haploids compared to their parents. The nature of the newly formed GAs will be further investigated, because they may represent new metabolites that can be used against pest and diseases, or are useful for human health.

  14. Alteration of pathogenicity-linked life-history traits by resistance of its host Solanum tuberosum impacts sexual reproduction of the plant pathogenic oomycete Phytophthora infestans.

    PubMed

    Clément, J A J; Magalon, H; Pellé, R; Marquer, B; Andrivon, D

    2010-12-01

    Although sexual reproduction implies a cost, it represents an evolutionary advantage for the adaptation and survival of facultative sexual pathogens. Understanding the maintenance of sex in pathogens requires to analyse how host resistance will impact their sexual reproduction through the alteration of their life-history traits. We explored this experimentally using potato (Solanum tuberosum) and one of its pathogens, the heterothallic oomycete Phytophthora infestans. Sexual reproduction was highest on hosts favouring asexual multiplication of the pathogen, suggesting similar nutritional requirements for both sexual and asexual sporulation. Sexual reproduction was also highest on hosts decreasing the latent period, probably because of a trade-off between growth and reproduction. Distinguishing host effects on each pathogenic trait remains however uneasy, as most life-history traits linked to pathogenicity were not independent of each other. We argue that sexual reproduction of P. infestans is an adaptation to survive when the host is susceptible and rapidly destroyed.

  15. Phenotypic performance of transgenic potato (Solanum tuberosum L.) plants with pyramided rice cystatin genes (OCI and OCII)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evaluation of transgenic plants commonly carried out under controlled conditions in culture rooms and greenhouses can give valuable information about the influence of introduced genes on transgenic plant phenotype. However, an overall assessment of plant performance can only be made by testing t...

  16. Solanidine isolation from Solanum tuberosum by centrifugal partition chromatography.

    PubMed

    Attoumbré, Jacques; Giordanengo, Philippe; Baltora-Rosset, Sylvie

    2013-07-01

    The aim of this investigation was the preparative isolation of solanidine (aglycone of the two main potato glycoalkaloids: α-chaconine and α-solanine) from fresh Solanum tuberosum (cv. Pompadour) material by implementing a new preparation scheme using centrifugal partition chromatography (CPC). A setup for obtaining solanidine by hydrolysis of the glycoalkaloids found in the skin and sprouts of S. tuberosum was first developed. Then its isolation was carried out by the development of CPC conditions: the solvent system used for separation was ethyl acetate/butanol/water in the ratio 42.5:7.5:50 v/v/v, 0.6 g of crude extract were separated with a 8 mL/min flow rate of mobile phase while rotating at 2500 rpm. A run yielded 98 mg of solanidine (86.7% recovery from the crude extract) in a one-step separation. The purity of the isolated solanidine was over 98%. Thus, CPC has proven to be the method of choice to get solanidine of very high purity from S. tuberosum biomass in large quantities.

  17. Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L.

    PubMed Central

    Folgado, Raquel; Panis, Bart; Sergeant, Kjell; Renaut, Jenny; Swennen, Rony; Hausman, Jean-Francois

    2013-01-01

    Better knowledge on responses to dehydration stress could help to improve the existing cryopreservation protocols for potato, since plant tissues processed for cryopreservation are often submitted to similar in vitro stress conditions. Cryopreservation (the best method of conservation for vegetatively propagated plants) of potato still needs to be standardized to make it available and to conserve the wide diversity of this crop. In the present work, the response to osmotic stress and chilling temperature was investigated in two potato species, Solanum tuberosum and its relative, frost-tolerant S. commersonii. After 14 days of exposure, different growth parameters, such as shoot length and number of leaves, were measured. Furthermore, differentially abundant proteins were identified after performing 2-fluorescence difference gel electrophoresis (2-DIGE) experiments, and soluble carbohydrates were analyzed by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). The results show different responses in both species depending on the stress treatment. Focusing on the differences in growth parameters during the treatments, Solanum commersonii seems to be more affected than S. tuberosum cv. Désirée. At the molecular level, there are some differences and similarities between the two potato species studied that are dependent on the type of stressor. PMID:23455465

  18. Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L.

    PubMed

    Folgado, Raquel; Panis, Bart; Sergeant, Kjell; Renaut, Jenny; Swennen, Rony; Hausman, Jean-Francois

    2013-03-01

    Better knowledge on responses to dehydration stress could help to improve the existing cryopreservation protocols for potato, since plant tissues processed for cryopreservation are often submitted to similar in vitro stress conditions. Cryopreservation (the best method of conservation for vegetatively propagated plants) of potato still needs to be standardized to make it available and to conserve the wide diversity of this crop. In the present work, the response to osmotic stress and chilling temperature was investigated in two potato species, Solanum tuberosum and its relative, frost-tolerant S. commersonii. After 14 days of exposure, different growth parameters, such as shoot length and number of leaves, were measured. Furthermore, differentially abundant proteins were identified after performing 2-fluorescence difference gel electrophoresis (2-DIGE) experiments, and soluble carbohydrates were analyzed by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). The results show different responses in both species depending on the stress treatment. Focusing on the differences in growth parameters during the treatments, Solanum commersonii seems to be more affected than S. tuberosum cv. Désirée. At the molecular level, there are some differences and similarities between the two potato species studied that are dependent on the type of stressor.

  19. Climate Change: Precipitation and Plant Nutrition Interactions on Potato (Solanum tuberosum L.) Yield in North-Eastern Hungary

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    It is widely well known that annual temperatures over Europe warm at a rate of between 0.1 0C decade-1 and 0.4 0C decade-1. And most of Europe gets wetter in the winter season between +1% and +4% decade-1. In summer there is a strong gradient of change between northern Europe (wetting of up to +2% decade-1) and southern Europe (drying of up to 5% decade-1). The droughts and the floods were experienced at Hungary in the early eighties as well as today. So among the natural catastrophes, drought and flooding caused by over-abundant rainfall cause the greatest problems in field potato production. The crop is demanding indicator plant of climate factors (temperature, rainfall) and soil nitrogen, phosphorus, potassium and magnesium status. This publication gives the results achieved in the period from 1962 to 2001 of a long term small- plot fertilization experiment set up on acidic sandy brown forest soil at Nyírlugos in the Nyírség region in North-Eastern Hungary. Characteristics of the experiment soil were a pH (KCl) 4.5, humus 0.5%, CEC 5-10 mgeq 100g-1 in the ploughed layer. The topsoil was poor in all four macronutrient N, P, K and Mg. The mineral fertilization experiment involved 2 (genotypes: Gülbaba and Aranyalma) x 2 (ploughed depths: 20 and 40 cm) x 16 (fertilizations: N, P, K, Mg) = 64 treatments in 8 replications, giving a total of 512 plots. The gross and net plot sizes were 10x5=50 m2 and 35.5 m2. The experimental designe was split-split-plot. The N levels were 0, 50, 100, 150 kg ha-1 year-1 and the P, K, Mg levels were 48, 150, 30 kg ha-1 year-1 P2O5, K2O, MgO in the form of 25% calcium ammonium nitrate, 18% superphosphate, 40% potassium chloride, and powdered technological magnesium sulphate. The forecrop every second year was rye. The groundwater level was at a depth of 2-3 m. From the 64 treatments, eight replications, altogether 512- experimental plots with 7 treatments and their 16 combinations are summarised of experiment period from 1962 to

  20. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cutttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell, C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cutting of potato (Solanum tuberosum) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamp (LPS/CWF). Results suggested that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  1. Breeding for resistance to early blight in potato (Solanum tuberosum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by Alternaria solani, is a major cause of economic losses in many potato growing regions. We have identified two early blight resistant clones EB24-24 and EB24-3, which are hybrids between the cultivated (S. tuberosum) potato clone US-W4 (2x=24) ...

  2. Evidence from Solanum tuberosum in support of the dual-pathway hypothesis of aromatic biosynthesis

    SciTech Connect

    Morris, P.F.; Doong, R.L.; Jensen, R.A. )

    1989-01-01

    Key branchpoint enzymes of aromatic amino acid biosynthesis, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DS) and chorismate mutase (CM), have previously been shown to exist as separate compartmentalized isozymes in the chloroplasts and cytosol of tobacco, sorghum and spinach. Although additional examples of plants containing these isozyme pairs are accumulating, some studies in the literature report the presence of only the single plastidic DS or CM enzyme. Such apparent exceptions contradict the universality of pathway organization existing in higher plants that is implied by the dual-pathway hypothesis of aromatic biosynthesis. Since potato (Solanum tuberosum) exemplifies a case where only a single species of both DS and CM have been reported, we selected this system for further analysis. The DS-Mn and DS-Co isozyme pair, exhibiting all of the differential properties described in Nicotiana silvestris, have now been identified in S. tuberosum. Likwise, partial purification via DEAE-cellulose chromatography revealed two isozymes of CM in disks excised from tubers of S. tuberosum. The differential regulatory properties of these isozymes were comparable to the CM-1 and CM-2 isozymes of N. silvestris.

  3. Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum.

    PubMed

    Wyrzykowska, Anna; Pieczynski, Marcin; Szweykowska-Kulinska, Zofia

    2016-01-01

    The use of artificial microRNAs (amiRNAs) is still a relatively new technique in molecular biology with a wide range of applications in life sciences. Here, we describe the silencing of the CBP80/ABH1 gene in Solanum tuberosum with the use of amiRNA. The CBP80/ABH1 protein is part of the Cap Binding Complex (CBC), which is involved in plant responses to drought stress conditions. Transformed plants with a decreased level of CBP80/ABH1 display increased tolerance to water shortage conditions. We describe how to design amiRNA with the Web MicroRNA Designer platform in detail. Additionally, we explain how to perform all steps of a procedure aiming to obtain transgenic potato plants with the use of designed amiRNA, through callus tissue regeneration and Agrobacterium tumefaciens strain LBA4404 as a transgene carrier. PMID:26867630

  4. Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum.

    PubMed

    Wyrzykowska, Anna; Pieczynski, Marcin; Szweykowska-Kulinska, Zofia

    2016-01-01

    The use of artificial microRNAs (amiRNAs) is still a relatively new technique in molecular biology with a wide range of applications in life sciences. Here, we describe the silencing of the CBP80/ABH1 gene in Solanum tuberosum with the use of amiRNA. The CBP80/ABH1 protein is part of the Cap Binding Complex (CBC), which is involved in plant responses to drought stress conditions. Transformed plants with a decreased level of CBP80/ABH1 display increased tolerance to water shortage conditions. We describe how to design amiRNA with the Web MicroRNA Designer platform in detail. Additionally, we explain how to perform all steps of a procedure aiming to obtain transgenic potato plants with the use of designed amiRNA, through callus tissue regeneration and Agrobacterium tumefaciens strain LBA4404 as a transgene carrier.

  5. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    NASA Technical Reports Server (NTRS)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  6. The use of microsatellite analysis in Solanum tuberosum l. in vitro plantlets derived from cryopreserved germplasm.

    PubMed

    Harding, K; Benson, E E

    2001-01-01

    This study reports the application of the encapsulation/dehydration cryopreservation and microsatellite analysis to the conservation of Solanum tuberosum cultivars Brodick and Golden Wonder. Cryopreserved shoot-tips were capable of up to 40% shoot and plantlet regeneration in Brodick and >60 % for Golden Wonder. Microsatellite analysis was used with genomic DNA of Golden Wonder and Desiree to establish DNA sequence length polymorphisms. As the basis of stability assessments this technique was applied to: (i) individual, field-grown, plants of Golden Wonder; (ii) individual Golden Wonder plants derived from a single parental tuber progeny; (iii) plantlets derived from in vitro cultures of Golden Wonder and Brodick and (iv) Golden Wonder and Brodick plantlets derived from cryopreserved germplasm

  7. Molecular cloning and characterization of a cDNA encoding endonuclease from potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2005-11-01

    A cDNA, StEN1, encoding a potato (Solanum tuberosum) endonuclease was cloned and sequenced. The nucleotide sequence of this clone contains an open reading frame of 906 nucleotides encoding a protein of 302 amino acids, and with a calculated molecular mass of 34.4kDa and a Pi of 5.6. The deduced StEN1 protein contains a putative signal sequence of 25 amino acid residues. The StEN1 encoded protein shows substantial homology to both plant and fungal endonucleases isolated and cloned from other sources. The highest identity (73%) was observed with AgCEL I from celery, Apium graveolens, ZEN1 from Zinnia elegans (69%) and DSA6 from daylily, Hemerocallis (68%). RT-PCR expression analysis demonstrated that the potato StEN1 gene is constitutively expressed in potato, although minor differences in expression level in different tissues were observed. PMID:16323278

  8. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    PubMed

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-01-01

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency. PMID:27193058

  9. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    PubMed

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-05-19

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.

  10. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs

    PubMed Central

    Gálvez, José Héctor; Tai, Helen H.; Lagüe, Martin; Zebarth, Bernie J.; Strömvik, Martina V.

    2016-01-01

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha−1 was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency. PMID:27193058

  11. Clinostation influence on regeneration of cell wall in Solanum Tuberosum L. protoplasts

    NASA Astrophysics Data System (ADS)

    Nedukha, Elena M.; Sidorov, V. A.; Samoylov, V. M.

    1994-08-01

    Regeneration of cell walls in protoplasts was investigated using light- and electronmicroscopic methods. The protoplasts were isolated from mesophyll of Solanum tuberosum leaves and were cultivated on the horizontal low rotating clinostat (2 rpm) and in control for 10 days. Using a fluorescent method (with Calcofluor white) it was demonstrated that changes in vector gravity results in an regeneration inhibition of cell wall. With electron-microscopical and electro-cytochemical methods (staining with alcianum blue) dynamics of the regeneration of cell walls in protoplasts was studied; carbohydrate matrix of cell walls is deposited at the earliest stages of this process. The influence of microgravity on the cell wall regeneration is discussed in higher plants.

  12. Gene transfer into Solanum tuberosum via Rhizobium spp.

    PubMed

    Wendt, Toni; Doohan, Fiona; Winckelmann, Dominik; Mullins, Ewen

    2011-04-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) is the preferred technique for gene transfer into crops. A major disadvantage of the technology remains the complexity of the patent landscape that surrounds ATMT which restricts its use for commercial applications. An alternative system has been described (Broothaerts et al. in Nature 433:629-633, 2005) detailing the propensity of three rhizobia to transform the model crop Arabidopsis thaliana, the non-food crop Nicotiana tabacum and, at a very low frequency, the monocotyledonous crop Oryza sativa. In this report we describe for the first time the genetic transformation of Solanum tuberosum using the non-Agrobacterium species Sinorhizobium meliloti, Rhizobium sp. NGR234 and Mesorhizobium loti. This was achieved by combining an optimal bacterium and host co-cultivation period with a low antibiotic regime during the callus and shoot induction stages. Using this optimized protocol the transformation frequency (calculated as % of shoots equipped with root systems with the ability to grow in rooting media supplemented with 25 μg/ml hygromycin) of the rhizobia strains was calculated at 4.72, 5.85 and 1.86% for S. meliloti, R. sp. NGR234 and M. loti respectively, compared to 47.6% for the A. tumefaciens control. Stable transgene integration and expression was confirmed via southern hybridisation, quantitative PCR analysis and histochemical screening of both leaf and/or tuber tissue. In light of the rapid advances in potato genomics, combined with the sequencing of the potato genome, the ability of alternative bacteria species to genetically transform this major food crop will provide a novel resource to the Solanaceae community as it continues to develop potato as both a food and non-food crop.

  13. Resistance to Early Blight in Hybrids Between a Solanum Tuberosum Haploid and S Raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by the foliar fungal pathogen Alternaria solani is a major cause of economic loss in many potato growing regions. Genetic resistance offers an opportunity to decrease fungicide usage while maintaining yield and quality. In this study, an early bl...

  14. Resistance to alternaria solani in hybrids between a Solanum tuberosum haploid and S. raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by the foliar fungal pathogen Alternaria solani is a major cause of economic loss in many potato growing regions. Genetic resistance offers an opportunity to decrease fungicide usage while maintaining yield and quality. In this study, an early bl...

  15. A new index to assess nitrogen dynamics in potato (Solanum tuberosum L.) production systems of Bolivia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bolivia is the poorest country in South America with over 80% of the rural population under the poverty line. Agricultural productivity is closely correlated with poverty levels across rural Bolivia. Potato (Solanum tuberosum L.) is one of the most important crops for food security in Bolivia and th...

  16. Stem-end defect in chipping potatoes (Solanum tuberosum L.) as influenced by mild environmental stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global consumption of potato (Solanum tuberosum, L.) continues to shift from fresh potatoes to value-added processed food products such as potato chips. One serious tuber quality defect of chipping potatoes is stem-end chip defect, which results in chips with dark vasculature and adjacent tissues at...

  17. Colored potatoes (Solanum tuberosum L.) dried into antioxidant-rich value-added foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colored potatoes (Solanum tuberosum L.) are a significant source of antioxidants from polyphenols, carotenoids, tocopherol and ascorbic acid. In this study, retention of total antioxidants in fresh colored potatoes and processed potato flakes prepared as potential ingredients for snack foods was stu...

  18. Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding.

    PubMed

    Godoy, Andrea V.; Zanetti, María Eugenia; San Segundo, Blanca; Casalongué, Claudia A.

    2001-06-01

    Coadaptors or coactivators are a new class of transcription factors capable of interconnecting a regulator DNA-binding protein with a component of the basal transcription machinery allowing transcriptional activation to proceed. We report the identification of a novel Solanum tuberosum ssp. tuberosum putative transcription coactivator, named StMBF1 (Solanum tuberosum multiprotein bridging factor 1). The StMBF1 cDNA was isolated from a Fusarium solani f. sp. eumartii-infected potato tuber cDNA library, using a differential screening approach. StMBF1 is up-regulated during fungal attack as well as on wounding. A Fusarium elicitor source and ethylene precursor and salicylic acid also regulate StMBF1 expression. The precise role of StMBF1 during the plant response against environmental stresses remains to be elucidated.

  19. Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y.

    PubMed

    Lazar, Ana; Coll, Anna; Dobnik, David; Baebler, Spela; Bedina-Zavec, Apolonija; Zel, Jana; Gruden, Kristina

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant-pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.

  20. Response of Solanum tuberosum to Myzus persicae infestation at different stages of foliage maturity.

    PubMed

    Alvarez, Adriana E; Alberti D'Amato, Anahí M; Tjallingii, W Fred; Dicke, Marcel; Vosman, Ben

    2014-12-01

    Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling of M. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.

  1. Characterization and functional analysis of a pollen-specific gene st901 in Solanum tuberosum.

    PubMed

    Zhao, Yan; Zhao, Qian; Ao, Guangming; Yu, Jingjuan

    2006-07-01

    A pollen-specific gene, sb401, which was isolated from a cDNA library of in vitro geminated pollen of the diploid potato species Solanum berthaultii, belongs to the class of genes expressed late during pollen development. Using sb401 as a probe, a pollen-specific gene st901 was isolated from the genomic library of a potato species Solanum tuberosum cv. Desiree. Sequencing and RT-PCR analysis showed that the st901 genomic gene is 2,889 bp long, contains three exons and two introns, and encodes a putative polypeptide of 217 residues. The predicted protein sequence contains four imperfect repeated motifs of V-V-E-K-K-N/E-E; the core sequence of the repeats (K-K-N/E-E) resembles a microtubule-binding domain of the microtubule-associated protein MAP1B from mouse. The examination of a promoter-reporter construct in transgenic potato plants revealed that the st901 is expressed exclusively in mature pollen grains, which is consistent with the results of Northern blot and RT-PCR. For analysis of the function of st901, transgenic plants harboring antisense copies of st901 cDNA driven by a native st901 promoter were generated. Suppression of st901 gene in potato resulted in aberrant pollen at maturation and pollen viability of transgenic plants ranged from 4.4 to 14.8%, while that of control plants were more than 90%. These results strongly suggest that st901 has an essential role in pollen development.

  2. Intercropping of aromatic crop Pelargonium graveolens with Solanum tuberosum for better productivity and soil health.

    PubMed

    Vermal, Rajesh Kumar; Yadav, Ajai; Verma, Ram Swaroop; Khan, Khushboo

    2014-11-01

    Farmers in hilly regions experience low production potential and resource use efficiency due to low valued crops and poorsoil health. Geranium (Pelargonium graveolens L.) is a vegetatively propagated initially slow growing, high value aromatic crop. Potato (Solanum tuberosum L.) is also vegetatively propagated high demand cash crop. A field experiment was carried out in temperate climate to investigate the influence of geranium intercropping at different row strips (1:1 and 1:2) and plant density (60 x 45, 75 x 45 and 90 x 45 cm) with potato intercrop on biomass, oil yield, monetary advantage and soil quality parameters. The row spacing 60x45cm and row strip 1:1 was found to be superior and produced 92 t ha(-1) and 14 kg ha(-1) biomass and oil yield, respectively. The row strip 1:2 intercrop earned a maximum $2107, followed by $1862 with row strip 1:1 at 60 x 45 cm plant density. Significant variations were noticed in soil organic carbon (Corg), total N (Nt), available nutrients, soil microbial biomass (Cmic) and nitrogen (Nmic) content. Maximum improvement of Corg (41.0%) and Nt (27.5%)with row strip 1:1 at 75 x 45 cm plant density. While higher soil respiration rate, Cmic, Nmic, and qCO2 was found with 1:2 row strip at 60 x 45 plant density. The buildup of Corg and Cmic potato intercrop can promote long term sustainability on productivity and soil health.

  3. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development.

    PubMed

    Pasare, Stefania A; Ducreux, Laurence J M; Morris, Wayne L; Campbell, Raymond; Sharma, Sanjeev K; Roumeliotis, Efstathios; Kohlen, Wouter; van der Krol, Sander; Bramley, Peter M; Roberts, Alison G; Fraser, Paul D; Taylor, Mark A

    2013-06-01

    · Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy. PMID:23496288

  4. Intercropping of aromatic crop Pelargonium graveolens with Solanum tuberosum for better productivity and soil health.

    PubMed

    Vermal, Rajesh Kumar; Yadav, Ajai; Verma, Ram Swaroop; Khan, Khushboo

    2014-11-01

    Farmers in hilly regions experience low production potential and resource use efficiency due to low valued crops and poorsoil health. Geranium (Pelargonium graveolens L.) is a vegetatively propagated initially slow growing, high value aromatic crop. Potato (Solanum tuberosum L.) is also vegetatively propagated high demand cash crop. A field experiment was carried out in temperate climate to investigate the influence of geranium intercropping at different row strips (1:1 and 1:2) and plant density (60 x 45, 75 x 45 and 90 x 45 cm) with potato intercrop on biomass, oil yield, monetary advantage and soil quality parameters. The row spacing 60x45cm and row strip 1:1 was found to be superior and produced 92 t ha(-1) and 14 kg ha(-1) biomass and oil yield, respectively. The row strip 1:2 intercrop earned a maximum $2107, followed by $1862 with row strip 1:1 at 60 x 45 cm plant density. Significant variations were noticed in soil organic carbon (Corg), total N (Nt), available nutrients, soil microbial biomass (Cmic) and nitrogen (Nmic) content. Maximum improvement of Corg (41.0%) and Nt (27.5%)with row strip 1:1 at 75 x 45 cm plant density. While higher soil respiration rate, Cmic, Nmic, and qCO2 was found with 1:2 row strip at 60 x 45 plant density. The buildup of Corg and Cmic potato intercrop can promote long term sustainability on productivity and soil health. PMID:25522521

  5. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development.

    PubMed

    Pasare, Stefania A; Ducreux, Laurence J M; Morris, Wayne L; Campbell, Raymond; Sharma, Sanjeev K; Roumeliotis, Efstathios; Kohlen, Wouter; van der Krol, Sander; Bramley, Peter M; Roberts, Alison G; Fraser, Paul D; Taylor, Mark A

    2013-06-01

    · Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.

  6. Decline of rubisco activity and net photosynthesis in ozone-treated potato foliage. [Solanum tuberosum

    SciTech Connect

    Dann, M.S.; Pell, E.J.

    1987-04-01

    The effect of O/sub 3/ on rubisco activity in Solanum tuberosum L. cv Norland foliage was studied as related to oxidant-induced premature senescence. Plants, 25 days old, were exposed to O/sub 3/ increasing from 0.06 to 0.08 ..mu..1/L for 6 h/day for 4 days in a controlled environment chamber. On day 5 plants were exposed to a 6 h simulated inversion in which O/sub 3/ peaked at 0.12 /sup +/1/L. The authors measured initial and total rubisco activities and net photosynthesis of leaves at full expansion on days 0,3,5,6,9 and 12. These parameters declined in both ozone and control plants throughout the course of the experiment. O/sub 3/ exacerbated the decline and produced a significantly greater decrease following the inversion. The enhanced reduction in rubisco activity over time may be an important characteristics of ozone-induced premature senescence. Rubisco activation (initial/total activity) did not change with the treatment. The decrease in activity is most likely due to a decrease in available protein rather than a decrease in the percentage of rubisco activated in vivo.

  7. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    SciTech Connect

    Spychalla, J.P.; Desborough, S.L. )

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  8. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    NASA Astrophysics Data System (ADS)

    Safarik, Ivo; Horska, Katerina; Martinez, Lluis M.; Safarikova, Mirka

    2010-12-01

    A simple procedure for large scale isolation of Solanum tuberosum tuber lectin from potato starch industry waste water has been developed. The procedure employed magnetic chitosan microparticles as an affinity adsorbent. Magnetic separation was performed in a flow-through magnetic separation system. The adsorbed lectin was eluted with glycine/HCl buffer, pH 2.2. The specific activity of separated lectin increased approximately 27 times during the isolation process.

  9. In vitro activity of a Solanum tuberosum extract against mammary carcinoma cells.

    PubMed

    De Lorenzo, M S; Lorenzano Menna, P L; Alonso, D F; Gomez, D E

    2001-03-01

    We investigated the antitumor properties of a Solanum tuberosum extract (STE) on F3II mouse mammary carcinoma cells. STE significantly inhibited adhesion on fibronectin-coated surfaces and blocked migration of tumor cells in vitro. A major gelatinolytic activity (gelatinase) of 82 kD was identified in STE by zymographic analysis and characterized by exposure to different experimental conditions. Proteolytic activity of STE may be responsible, at least in part, for the in vitro effects on mammary carcinoma cells.

  10. rbcS genes in Solanum tuberosum: conservation of transit peptide and exon shuffling during evolution.

    PubMed Central

    Wolter, F P; Fritz, C C; Willmitzer, L; Schell, J; Schreier, P H

    1988-01-01

    Five genes of the rbcS gene family of Solanum tuberosum (potato) were studied. One of these is a cDNA clone; the other four are located on two genomic clones representing two different chromosomal loci containing one (locus 1) and three genes (locus 2), respectively. The intron/exon structure of the three genes in locus 2 is highly conserved with respect to size and position. These genes contain two introns, whereas the gene from locus 1 contains three introns. Although in most cases the amino acid sequences in the transit peptide part of different rbcS genes from the same species varied considerably more than the corresponding mature amino acid sequences, one exception found in tomato and potato indicates that the transit peptide of rbcS could have a special function. A comparison of the rbcS genes of higher plants with those of prokaryotes offers suggestive evidence that introns first served as spacer material in the process of exon shuffling and then were removed stepwise during the evolution of higher plants. PMID:3422467

  11. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    PubMed Central

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  12. Purification and Partial Characterization of Potato (Solanum tuberosum) Invertase and Its Endogenous Proteinaceous Inhibitor

    PubMed Central

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Invertase plays an important role in the hydrolysis of sucrose in higher plants, especially in the storage organs. In potato (Solanum tuberosum) tubers, and in some other plant tissues, the enzyme seems to be controlled by interaction with an endogenous proteinaceous inhibitor. An acid invertase from potato tubers (variety russet) was purified 1560-fold to electrophoretic homogeneity by consecutive use of concanvalin A-Sepharose 4B affinity chromatography, DEAE-Sephadex A-50-120 chromatography, Sephadex G-150 chromatography, and DEAE-Sephadex A-50-120 chromatography. The enzyme contained 10.9% carbohydrate, had an apparent molecular weight of 60,000 by gel filtration, and was composed of two identical molecular weight subunits (Mr 30,000). The enzyme had a Km for sucrose of 16 millimolar at pH 4.70 and was most stable and had maximum activity around pH 5. The endogenous inhibitor was purified 610-fold to homogeneity by consecutive treatment at pH 1 to 1.5 at 37°C for 1 hour, (NH4)2SO4 fractionation, Sephadex G-100 chromatography, DEAE-Sephadex G-50-120 chromatography, and hydroxylapatite chromatography. The inhibitor appears to be a single polypeptide (Mr 17,000) without glyco groups. The purified inhibitor was stable over the pH range of 2 to 7 when incubated at 37°C for 1 hour. Images Figure 2 PMID:16667287

  13. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.

  14. In vitro import of a nuclearly encoded tRNA into mitochondria of Solanum tuberosum.

    PubMed

    Delage, Ludovic; Dietrich, André; Cosset, Anne; Maréchal-Drouard, Laurence

    2003-06-01

    Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNA(Ala), tRNA(Phe), and tRNA(Met-e) with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNA(Ala) than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNA(Ala) is naturally imported into potato mitochondria whereas tRNA(Phe) and tRNA(Met-e) are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.

  15. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    PubMed

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  16. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids.

    PubMed

    Mortimer, Cara L; Misawa, Norihiko; Ducreux, Laurence; Campbell, Raymond; Bramley, Peter M; Taylor, Mark; Fraser, Paul D

    2016-01-01

    To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4' β-oxygenase (crtW) and 3, 3' β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules. PMID:25845905

  17. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    PubMed

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  18. A metabolomics study of cultivated potato (Solanum tuberosum) groups Andigena, Phureja, Stenotomum, and tuberosum using gas chromatography-mass spectrometry.

    PubMed

    Dobson, Gary; Shepherd, Tom; Verrall, Susan R; Griffiths, Wynne D; Ramsay, Gavin; McNicol, James W; Davies, Howard V; Stewart, Derek

    2010-01-27

    Phytochemical diversity was examined by gas chromatography-mass spectrometry in tubers of genotypes belonging to groups Andigena, Phureja, Stenotomum, and Tuberosum of the potato, Solanum tuberosum. Polar extracts (mainly amino acids, organic acids, sugars, and sugar alcohols) and nonpolar extracts (mainly fatty acids, fatty alcohols, and sterols) were examined. There was a large range in levels of metabolites, including those such as asparagine, fructose, and glucose, that are important to tuber quality, offering considerable scope for selecting germplasm for breeding programmes. There were significant differences in the levels of many metabolites among the groups. The metabolite profiles of genotypes belonging to Phureja and Stenotomum were similar and different from those of Tuberosum and the majority of Andigena genotypes. There was some agreement with the phylogeny of the groups in that Stenotomum is believed to be the ancestor of Phureja and they are both distinct from Tuberosum. Andigena genotypes could be partially distinguished according to geographical origin, Bolivian genotypes being particularly distinct from those from Ecuador. Biosynthetic links between metabolites were explored by performing pairwise correlations of all metabolites. The significance of some expected and unexpected strong correlations between many amino acids (e.g., between isoleucine, lysine, valine, and other amino acids) and between several nonpolar metabolites (e.g., between many fatty acids) is discussed. For polar metabolites, correlation analysis gave essentially similar results irrespective of whether the whole data set, only Andigena genotypes, or only Phureja genotypes were used. In contrast, for the nonpolar metabolites, Andigena only and Phureja only data sets resulted in weaker and stronger correlations, respectively, compared to the whole data set, and may suggest differences in the biochemistry of the two groups, although the interpretation should be viewed with some

  19. Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses.

    PubMed

    País, Silvia Marina; González, Marina Alejandra; Téllez-Iñón, María Teresa; Capiati, Daniela Andrea

    2009-06-01

    Protein phosphorylation/dephosphorylation plays critical roles in stress responses in plants. This report presents a comparative characterization of the serine/threonine PP2A catalytic subunit family in Solanum tuberosum (potato) and S. lycopersicum (tomato), two important food crops of the Solanaceae family, based on the sequence analysis and expression profiles in response to environmental stress. Sequence homology analysis revealed six isoforms in potato and five in tomato clustered into two subfamilies (I and II). The data presented in this work show that the expression of different PP2Ac genes is regulated in response to environmental stresses in potato and tomato plants and suggest that, in general, mainly members of the subfamily I are involved in stress responses in both species. However, the differences found in the expression profiles between potato and tomato suggest divergent roles of PP2A in the plant defense mechanisms against stress in these closely related species. PMID:19330349

  20. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development. PMID:24917207

  1. Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key developmental stages.

    PubMed

    Sharma, Sanjeev Kumar; Millam, Steve

    2004-09-01

    A potential novel method of producing high-quality potato ( Solanum tuberosum L.) nuclear seeds is through the process of somatic embryogenesis (SE). Somatic embryo formation has been successfully reported in many plant species, but in potato, reliable SE systems are still at the experimental stage. A key factor in the success of any SE system is the ability to discriminate SE-specific cellular structures from those emerging through an organogenic route. In the investigation reported here we attempted to discriminate the progression of specific stages of potato SE by histological means. Internodal segment (INS) explants from 4- to 6-week-old cv. Desiree in vitro cultures were successively cultured on SE induction (for 2 weeks) and expression/regeneration media (for 3 weeks) with and without 2,4-dichlorophenoxyacetic acid (5 microM). Microscopic examination of histological slides prepared using INS explants at different stages revealed the presence of characteristic globular, heart and torpedo stages in the potato SE system along with other associated unique features such as protoderm development and discrete vascular connections. These results confirm the occurrence of potato SE as per the accepted definition of the term.

  2. Somatic hybrids Solanum nigrum (+) S. tuberosum: morphological assessment and verification of hybridity.

    PubMed

    Szczerbakowa, A; Maciejewska, U; Zimnoch-Guzowska, E; Wielgat, B

    2003-02-01

    Somatic hybrids between the cultivated potato diploid hybrid clone, ZEL-1136, and hexaploid non-tuber-bearing wild species Solanum nigrum L. exhibiting resistance to Phytophthora infestans were regenerated after PEG-mediated fusion of mesophyll protoplasts. The objective was to transfer the late-blight resistance genes from the wild species into plants of the cultivated potato clone. From a total of 59 regenerants, 40 clones survived and have been maintained in vitro on hormone-free MS/2 medium. Thirty-two somatic hybrids were identified by their intermediate morphology (leaves of nigrum type and flowers of tuberosum type) and verified by flow cytometry and random amplified polymorphic DNA (RAPD) patterns. The RAPD analysis of nuclear DNA confirmed the hybrid nature of 29 clones. Flow cytometry revealed a wide range of ploidy in the generated hybrids, from nearly the tetra- to decaploid level. Most of the hybrid clones were stable in vitro, grew vigorously in soil, and set flowers and parthenocarpic berries. However, all of the flowering hybrids were male-sterile. Nine hybrid clones produced tuber-like structures in soil. The most vigorous flowering somatic hybrids were selected for assessment of the late-blight resistance.

  3. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cuttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  4. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.).

    PubMed

    Wang, Zemin; Zhang, Ning; Zhou, Xiangyan; Fan, Qiang; Si, Huaijun; Wang, Di

    2015-04-01

    Ethylene response factor (ERF) is a major subfamily of the AP2/ERF family and plays significant roles in the regulation of abiotic- and biotic-stress responses. ERF proteins can interact with the GCC-box cis-element and then initiate a transcriptional cascade activating downstream ethylene response and enhancing plant stress tolerance. In this research, we cloned five StERF genes from potato (Solanum tuberosum L.). The expressional analysis of StERF genes revealed that they showed tissue- or organ-specific expression patterns and the expression levels in leaf, stem, root, flower, and tuber were different. The assays of quantitative real-time polymerase chain reaction (qRT-PCR) and the reverse transcription-PCR (RT-PCR) showed that the expression of five StERF genes was regulated by ethephon, methyl jasmonate (MeJA), salt and drought stress. The result from the yeast one-hybrid experiment showed that five StERFs had trans-activation activity and could specifically bind to the GCC-box cis-elements. The StERFs responded to abiotic factors and hormones suggested that they possibly had diverse roles in stress and hormone regulation of potato.

  5. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.

    PubMed

    Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2013-12-01

    Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses.

  6. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2010-01-01

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plants were treated with herbicides (cloransulam, dicamba, glyphosate, imazapyr, primsulfuron, sulfometuron, or tribenuron) at simulated drift levels [Plant height was measured approximately 14 d after treatment (DAT). Production of small tubers and shoot dry weight were determined at approximately 28 DAT. Imazapyr, sulfometuron, and tribenuron caused significant reductions in tuber fresh weight, with the effective concentrations producing a 25% potato tuber fresh weight (EC25) of 0.00038, 0.0016, and 0.0021 x f.a.r. of 1,124, 52, and 9 g active ingredient hectare(-1) (g a.i. HA(-1)), respectively. Primisulfuron, dicamba, and cloransulam also significantly reduced tuber fresh weight, but with higher EC25 values of 0.011, 0.07, and 0.010 to 0.2 x f.a.r. of 40, 558, and 18 g a.i. HA(-1), respectively. Glyphosate had little effect on tuber fresh weight, with a significant reduction in only one experiment. Sulfometuron reduced tuber fresh weight at an EC25 value lower than the EC25 values for shoot dry weight or plant height. For other herbicides, the reduction in tuber fresh weight occurred within the range of EC25 values for other responses. Although additional experiments are required to develop further a phytotoxicity test, these results indicated that tuber production in young potato plants (harvested approximately 42 DAE) may be an effective assay for below-ground asexual reproductive responses to herbicides, especially acetolactate synthase inhibitors.

  7. Starch synthesis, and tuber storage protein genes are differently expressed in Solanum tuberosum and in Solanum brevidens.

    PubMed

    Bánfalvi, Z; Molnar, A; Molnar, G; Lakatos, L; Szabo, L

    1996-04-01

    Studying in vitro stem cuttings of Solanum tuberosum induced for tuberization and those of a non-tuberizing Solanum species, differences both in morphology and in gene expression were detected. Stolon formation essentially depended on light while tuberization was triggered by the elevated level of sucrose in the medium. Genes involved in starch synthesis were induced by sucrose in both species, however, starch granules were detected only in potato. A new tuber specific cDNA clone, GM7, encoding a putative metallocarboxypeptidase inhibitor and the cDNA of a proline rich cell wall protein with S. brevidens specific expression were isolated by differential screening. Sucrose mediated transcription of the tuber storage proteins like patatin and proteinase inhibitors (Kunitz-type, winI, GM7) failed in S. brevidens.

  8. Isolation and characterization of a Solanum tuberosum subtilisin-like protein with caspase-3 activity (StSBTc-3).

    PubMed

    Fernández, María Belén; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2015-01-01

    Plant proteases with caspase-like enzymatic activity have been widely studied during the last decade. Previously, we have reported the presence and induction of caspase-3 like activity in the apoplast of potato leaves during Solanum tuberosum- Phytophthora infestans interaction. In this work we have purified and identified a potato extracellular protease with caspase-3 like enzymatic activity from potato leaves infected with P. infestans. Results obtained from the size exclusion chromatography show that the isolated protease is a monomeric enzyme with an estimated molecular weight of 70 kDa approximately. Purified protease was analyzed by MALDI-TOF MS, showing a 100% of sequence identity with the deduced amino acid sequence of a putative subtilisin-like protease from S. tuberosum (Solgenomics protein ID: PGSC0003DMP400018521). For this reason the isolated protease was named as StSBTc-3. This report constitutes the first evidence of isolation and identification of a plant subtilisin-like protease with caspase-3 like enzymatic activity. In order to elucidate the possible function of StSBTc-3 during plant pathogen interaction, we demonstrate that like animal caspase-3, StSBTc-3 is able to produce in vitro cytoplasm shrinkage in plant cells and to induce plant cell death. This result suggest that, StSBTc-3 could exert a caspase executer function during potato- P. infestans interaction, resulting in the restriction of the pathogen spread during plant-pathogen interaction. PMID:25486023

  9. Isolation and characterization of a Solanum tuberosum subtilisin-like protein with caspase-3 activity (StSBTc-3).

    PubMed

    Fernández, María Belén; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2015-01-01

    Plant proteases with caspase-like enzymatic activity have been widely studied during the last decade. Previously, we have reported the presence and induction of caspase-3 like activity in the apoplast of potato leaves during Solanum tuberosum- Phytophthora infestans interaction. In this work we have purified and identified a potato extracellular protease with caspase-3 like enzymatic activity from potato leaves infected with P. infestans. Results obtained from the size exclusion chromatography show that the isolated protease is a monomeric enzyme with an estimated molecular weight of 70 kDa approximately. Purified protease was analyzed by MALDI-TOF MS, showing a 100% of sequence identity with the deduced amino acid sequence of a putative subtilisin-like protease from S. tuberosum (Solgenomics protein ID: PGSC0003DMP400018521). For this reason the isolated protease was named as StSBTc-3. This report constitutes the first evidence of isolation and identification of a plant subtilisin-like protease with caspase-3 like enzymatic activity. In order to elucidate the possible function of StSBTc-3 during plant pathogen interaction, we demonstrate that like animal caspase-3, StSBTc-3 is able to produce in vitro cytoplasm shrinkage in plant cells and to induce plant cell death. This result suggest that, StSBTc-3 could exert a caspase executer function during potato- P. infestans interaction, resulting in the restriction of the pathogen spread during plant-pathogen interaction.

  10. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum).

    PubMed

    Andreote, Fernando Dini; Rocha, Ulisses Nunes da; Araújo, Welington Luiz; Azevedo, João Lúcio; van Overbeek, Leonard Simon

    2010-05-01

    Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.

  11. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation. PMID:26645142

  12. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation.

  13. Growth and tuberization of potato (Solanum tuberosum L.) under continuous light

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Tibbitts, T. W.

    1986-01-01

    The growth and tuberization of potatoes (Solanum tuberosum L.) maintained for 6 weeks under four different regimes of continuous irradiance were compared to plants given 12 hours light and 12 hours dark. Treatments included: (a) continuous photosynthetic photon flux of 200 micromoles per square meter per second cool-white fluorescent (CWF); (b) continuous 400 micromoles per square meter per second CWF; (c) 12 hours 400 micromoles per square meter per second CWF plus 12 hours dim CWF at 5 micromoles per square meter per second; (d) 12 hours [400] micromoles per square meter per second CWF plus 12 hours dim incandescent (INC) at 5 micromoles per square meter per second and a control treatment of 12 hours light at 400 micromoles per square meter per second CWF and 12 hours dark. The study included five cultivars ranging from early- to late-season types: 'Norland,' 'Superior,''Norchip,' 'Russet Burbank,' and 'Kennebec,' Tuber development progressed well under continuous irradiation at 400 micromoles per square meter per second and under 12 hours irradiance and 12 hours dark, while tuber development was suppressed in all other light treatments. Continuous irradiation at 200 or 400 micromoles per square meter per second resulted in severe stunting and leaf malformation on 'Superior' and 'Kennebec' plants, but little or no injury and vigorous shoot growth in the other cultivars. No injury or stunting were apparent under 12-dim light or 12-dark treatments. Plants given 12 hours dim INC showed significantly greater stem elongation but less total biomass than plants in other treatments. The continuous light encouraged shoot growth over tuber growth but this trend was overridden by providing a high irradiance level. The variation among cultivars for tolerance to continuous lighting indicates that potato may be a useful species for photoinhibition studies.

  14. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    PubMed

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide. PMID:19820966

  15. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    PubMed

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.

  16. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    PubMed

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  17. Population Dynamics of Soil Pseudomonads in the Rhizosphere of Potato (Solanum tuberosum L.).

    PubMed

    Loper, J E; Haack, C; Schroth, M N

    1985-02-01

    Rhizosphere population dynamics of seven Pseudomonas fluorescens and Pseudomonas putida strains isolated from rhizospheres of various agricultural plants were studied on potato (Solanum tuberosum L.) in field soil under controlled environmental conditions. Rhizosphere populations of two strains (B10 and B4) were quantitatively related to initial seed piece inoculum levels when plants were grown at -0.3 bar matric potential. At a given inoculum level, rhizosphere populations of strain B4 were consistently greater than those of strain B10. In vivo growth curves on 4-cm root tip-proximal segments indicated that both strains grew at similar rates in the potato rhizosphere, but large populations of strain B10 were not maintained at 24 degrees C after 7 h, whereas those of strain B4 were maintained for at least 40 h. Although both strains grew more rapidly in the rhizosphere at 24 degrees C than at 12 degrees C, their rhizosphere populations after seed piece inoculation were generally greater at 12 or 18 degrees C, indicating that in vivo growth did not solely determine rhizosphere populations in these studies. In vitro osmotolerance of seven Pseudomonas strains (including strains B4 and B10) was correlated with their abilities to establish stable populations in the rhizosphere of potato. Stability of rhizosphere populations of the Pseudomonas strains studied here was maximized at low (i.e., 12 degrees C) soil temperatures. These results indicate that Pseudomonas strains differ in their capacity to maintain stable rhizosphere populations in association with potato. This capacity, distinct from the ability to grow in the rhizosphere, may limit the establishment of rhizosphere populations under some environmental conditions.

  18. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior

  19. A Predictive Degree Day Model for the Development of Bactericera cockerelli (Hemiptera: Triozidae) Infesting Solanum tuberosum.

    PubMed

    Lewis, O M; Michels, G J; Pierson, E A; Heinz, K M

    2015-08-01

    Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of potato (Solanum tuberosum L.) that vectors the bacterium that putatively causes zebra chip disease in potatoes, 'Candidatus Liberibacter solanacearum.' Zebra chip disease is managed by controlling populations of B. cockerelli in commercial potato fields. Lacking an integrated pest management strategy, growers have resorted to an intensive chemical control program that may be leading to insecticide-resistant B. cockerelli populations in south Texas and Mexico. To initiate the development of an integrated approach of controlling B. cockerelli, we used constant temperature studies, nonlinear and linear modeling, and field sampling data to determine and validate the degree day parameters for development of B. cockerelli infesting potato. Degree day model predictions for three different B. cockerelli life stages were tested against data collected from pesticide-free plots. The model was most accurate at predicting egg-to-egg and nymph-to-nymph peaks, with less accuracy in predicting adult-to-adult peaks. It is impractical to predict first occurrence of B. cockerelli in potato plantings as adults are present as soon cotyledons break through the soil. Therefore, we suggest integrating the degree day model into current B. cockerelli management practices using a two-phase method. Phase 1 occurs from potato planting through to the first peak in a B. cockerelli field population, which is managed using current practices. Phase 2 begins with the first B. cockerelli population peak and the degree day model is initiated to predict the subsequent population peaks, thus providing growers a tool to proactively manage this pest. PMID:26314066

  20. A Predictive Degree Day Model for the Development of Bactericera cockerelli (Hemiptera: Triozidae) Infesting Solanum tuberosum.

    PubMed

    Lewis, O M; Michels, G J; Pierson, E A; Heinz, K M

    2015-08-01

    Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of potato (Solanum tuberosum L.) that vectors the bacterium that putatively causes zebra chip disease in potatoes, 'Candidatus Liberibacter solanacearum.' Zebra chip disease is managed by controlling populations of B. cockerelli in commercial potato fields. Lacking an integrated pest management strategy, growers have resorted to an intensive chemical control program that may be leading to insecticide-resistant B. cockerelli populations in south Texas and Mexico. To initiate the development of an integrated approach of controlling B. cockerelli, we used constant temperature studies, nonlinear and linear modeling, and field sampling data to determine and validate the degree day parameters for development of B. cockerelli infesting potato. Degree day model predictions for three different B. cockerelli life stages were tested against data collected from pesticide-free plots. The model was most accurate at predicting egg-to-egg and nymph-to-nymph peaks, with less accuracy in predicting adult-to-adult peaks. It is impractical to predict first occurrence of B. cockerelli in potato plantings as adults are present as soon cotyledons break through the soil. Therefore, we suggest integrating the degree day model into current B. cockerelli management practices using a two-phase method. Phase 1 occurs from potato planting through to the first peak in a B. cockerelli field population, which is managed using current practices. Phase 2 begins with the first B. cockerelli population peak and the degree day model is initiated to predict the subsequent population peaks, thus providing growers a tool to proactively manage this pest.

  1. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum.

    PubMed

    van Eldik, G J; Ruiter, R K; Colla, P H; van Herpen, M M; Schrauwen, J A; Wullems, G J

    1997-03-01

    Successful sexual reproduction relies on gene products delivered by the pistil to create an environment suitable for pollen tube growth. These compounds are either produced before pollination or formed during the interactions between pistil and pollen tubes. Here we describe the pollination-enhanced expression of the cp100 gene in pistils of Solanum tuberosum. Temporal analysis of gene expression revealed an enhanced expression already one hour after pollination and lasts more than 72 h. Increase in expression also occurred after touching the stigma and was not restricted to the site of touch but spread into the style. The predicted CP100 protein shows similarity to leguminous isoflavone reductases (IFRs), but belongs to a family of IFR-like NAD(P)H-dependent oxidoreductases present in various plant species.

  2. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.).

    PubMed

    Charfeddine, Mariam; Saïdi, Mohamed Najib; Charfeddine, Safa; Hammami, Asma; Gargouri Bouzid, Radhia

    2015-04-01

    The ERF transcription factors belong to the AP2/ERF superfamily, one of the largest transcription factor families in plants. They play important roles in plant development processes, as well as in the response to biotic, abiotic, and hormone signaling. In the present study, 155 putative ERF transcription factor genes were identified from the potato (Solanum tuberosum) genome database, and compared with those from Arabidopsis thaliana. The StERF proteins are divided into ten phylogenetic groups. Expression analyses of five StERFs were carried out by semi-quantitative RT-PCR and compared with published RNA-seq data. These latter analyses were used to distinguish tissue-specific, biotic, and abiotic stress genes as well as hormone-responsive StERF genes. The results are of interest to better understand the role of the AP2/ERF genes in response to diverse types of stress in potatoes. A comprehensive analysis of the physiological functions and biological roles of the ERF family genes in S. tuberosum is required to understand crop stress tolerance mechanisms.

  3. Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes.

    PubMed

    Visser, R G; Jacobsen, E; Witholt, B; Feenstra, W J

    1989-10-01

    We transformed three potato (Solanum tuberosum L.) genotypes by using A. rhizogenes or a mixture of A. rhizogenes and A. tumefaciens. Inoculations of potato stem segments were performed with Agrobacterium rhizogenes AM8703 containing two independent plasmids: the wild-type Ri-plasmid, pRI1855, and the binary vector plasmid, pBI121. In mixed inoculation experiments, Agrobacterium rhizogenes LBA1334 (pRI1855) and Agrobacterium tumefaciens AM8706 containing the disarmed Ti-plasmid (pAL4404) and the binary vector plasmid (pBI121) were mixed in a 1∶1 ratio. The T-DNA of the binary vector plasmid pBI121 contained two marker genes encoding neomycin phosphotransferase, which confers resistance to kanamycin, and β-glucuronidase. Both transformation procedures gave rise to hairy roots on potato stem segments within 2 weeks. With both procedures it was possible to obtain transformed hairy roots, able to grow on kanamycin and possessing β-glucuronidase activity, without selection pressure. The efficiency of the A. rhizogenes AM8703 transformation, however, was much higher than that of the "mixed" transformation. Up to 60% of the hairy roots resulting from the former transformation method were kanamycin resistant and possessed β-glucuronidase activity. There was no correlation between the height of the kanamycin resistance and that of the β-glucuronidase activity in a root clone. Hairy roots obtained from a diploid potato genotype turned out to be diploid in 80% of the cases. Transformed potato plants were recovered from Agrobacterium rhizogenes AM8703-induced hairy roots.

  4. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism.

    PubMed

    Davies, Howard V; Shepherd, Louise V T; Burrell, Michael M; Carrari, Fernando; Urbanczyk-Wochniak, Ewa; Leisse, Andrea; Hancock, Robert D; Taylor, Mark; Viola, Roberto; Ross, Heather; McRae, Diane; Willmitzer, Lothar; Fernie, Alisdair R

    2005-07-01

    Potato plants (Solanum tuberosum L. cvs Desiree and Record) transformed with sense and antisense constructs of a cDNA encoding the potato fructokinase StFK1 exhibited altered transcription of this gene, altered amount of protein and altered enzyme activities. Measurement of the maximal catalytic activity of fructokinase revealed a 2-fold variation in leaf (from 90 to 180% of wild type activity) and either a 10- or 30-fold variation in tuber (from 10 or 30% to 300% in Record and Desiree, respectively) activity. The comparative effect of the antisense construct in leaf and tuber tissue suggests that this isoform is only a minor contributor to the total fructokinase activity in the leaf but the predominant isoform in the tuber. Antisense inhibition of the fructokinase resulted in a reduced tuber yield; however, its overexpression had no impact on this parameter. The modulation of fructokinase activity had few, consistent effects on carbohydrate levels, with the exception of a general increase in glucose content in the antisense lines, suggesting that this enzyme is not important for the control of starch synthesis. However, when metabolic fluxes were estimated, it became apparent that the transgenic lines display a marked shift in metabolism, with the rate of redistribution of radiolabel to sucrose markedly affected by the activity of fructokinase. These data suggest an important role for fructokinase, acting in concert with sucrose synthase, in maintaining a balance between sucrose synthesis and degradation by a mechanism independent of that controlled by the hexose phosphate-mediated activation of sucrose phosphate synthase. PMID:15890680

  5. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism.

    PubMed

    Davies, Howard V; Shepherd, Louise V T; Burrell, Michael M; Carrari, Fernando; Urbanczyk-Wochniak, Ewa; Leisse, Andrea; Hancock, Robert D; Taylor, Mark; Viola, Roberto; Ross, Heather; McRae, Diane; Willmitzer, Lothar; Fernie, Alisdair R

    2005-07-01

    Potato plants (Solanum tuberosum L. cvs Desiree and Record) transformed with sense and antisense constructs of a cDNA encoding the potato fructokinase StFK1 exhibited altered transcription of this gene, altered amount of protein and altered enzyme activities. Measurement of the maximal catalytic activity of fructokinase revealed a 2-fold variation in leaf (from 90 to 180% of wild type activity) and either a 10- or 30-fold variation in tuber (from 10 or 30% to 300% in Record and Desiree, respectively) activity. The comparative effect of the antisense construct in leaf and tuber tissue suggests that this isoform is only a minor contributor to the total fructokinase activity in the leaf but the predominant isoform in the tuber. Antisense inhibition of the fructokinase resulted in a reduced tuber yield; however, its overexpression had no impact on this parameter. The modulation of fructokinase activity had few, consistent effects on carbohydrate levels, with the exception of a general increase in glucose content in the antisense lines, suggesting that this enzyme is not important for the control of starch synthesis. However, when metabolic fluxes were estimated, it became apparent that the transgenic lines display a marked shift in metabolism, with the rate of redistribution of radiolabel to sucrose markedly affected by the activity of fructokinase. These data suggest an important role for fructokinase, acting in concert with sucrose synthase, in maintaining a balance between sucrose synthesis and degradation by a mechanism independent of that controlled by the hexose phosphate-mediated activation of sucrose phosphate synthase.

  6. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase.

    PubMed

    Feng, Jie; Yuan, Fenghua; Gao, Yin; Liang, Chenggang; Xu, Jin; Zhang, Changling; He, Liyuan

    2003-12-01

    The nucleotide and amino acids sequences for AP(1) will appear in the GenBank(R) and NCBI databases under accession number AY297449. A novel antimicrobial protein (AP(1)) was purified from leaves of the potato ( Solanum tuberosum, variety MS-42.3) with a procedure involving ammonium sulphate fractionation, molecular sieve chromatography with Sephacryl S-200 and hydrophobic chromatography with Butyl-Sepharose using a FPLC system. The inhibition spectrum investigation showed that AP(1) had good inhibition activity against five different strains of Ralstonia solanacearum from potato or other crops, and two fungal pathogens, Rhizoctonia solani and Alternaria solani from potato. The full-length cDNA encoding AP(1) has been successfully cloned by screening a cDNA expression library of potato with an anti-AP(1) antibody and RACE (rapid amplification of cDNA ends) PCR. Determination of the nucleotide sequences revealed the presence of an open reading frame encoding 343 amino acids. At the C-terminus of AP(1) there is an ATP-binding domain, and the N-terminus exhibits 58% identity with an/the acid phosphatase from Mesorhizobium loti. SDS/PAGE and Western blotting analysis suggested that the AP(1) gene can be successfully expressed in Escherichia coli and recognized by an antibody against AP(1). Also the expressed protein showed an inhibition activity the same as original AP(1) protein isolated from potato. We suggest that AP(1) most likely belongs to a new group of proteins with antimicrobial characteristics in vitro and functions in relation to phosphorylation and energy metabolism of plants.

  7. Effect of selenate supplementation on glycoalkaloid content of potato (Solanum tuberosum L.).

    PubMed

    Turakainen, Marja; Väänänen, Tiina; Anttila, Katja; Ollilainen, Velimatti; Hartikainen, Helinä; Seppänen, Mervi

    2004-11-17

    Potatoes (Solanum tuberosum L.) supplemented with increasing amounts of sodium selenate were analyzed for glycoalkaloid (GA) content. GAs were extracted with 5% acetic acid from freeze-dried tubers of two potato cultivars, Satu and Sini, harvested 10 weeks after planting as immature. The GAs alpha-solanine and alpha-chaconine were quantified by reverse-phase high-performance liquid chromatography (RP-HPLC) with diode array detection. Two independent experiments were performed. In the first experiment, the total GA concentration +/- standard error of the tubers ranged between 105 +/- 9 and 124 +/- 10 mg kg(-1) fresh weight in Satu and between 194 +/- 26 and 228 +/- 10 mg kg(-1) fresh weight in Sini. The ratio of alpha-solanine to alpha-chaconine was 0.2 in Satu and 0.5-0.6 in Sini. In the second experiment, the total GA concentration +/- standard error was 75 +/- 4 to 96 +/- 11 mg kg(-1) fresh weight, and the ratio of alpha-solanine to alpha-chaconine was 0.3-0.4 in Satu. A high sodium selenate supplementation (0.9 mg of Se kg(-1) quartz sand) slightly decreased the GA content in Satu, but this decrease was not statistically significant. Furthermore, at this addition level the Se concentration increased to a very high level of 20 microg g(-1) dry weight, which cannot be recommended for human consumption. In both experiments, the Se concentration in tubers increased with increasing sodium selenate application levels. Our results show that acceptable application levels of selenate did not have an effect on the GA concentration in immature potato tubers.

  8. Localisation of hydrogen peroxide accumulation during Solanum tuberosum cv. Rywal hypersensitive response to Potato virus Y.

    PubMed

    Otulak, Katarzyna; Garbaczewska, Grazyna

    2010-06-01

    The reactive oxygen species hydrogen peroxide (H(2)O(2)) was detected cytochemically in Solanum tuberosum cv. Rywal tissues as a hypersensitive response (HR) 24 and 48 h after a Potato virus Y (PVY) infection. Hydrogen peroxide was detected in vivo by its reaction with 3.3-diaminobenzidine, producing a reddish-brown staining in contact with H(2)O(2). Hydrogen peroxide was detected in the necrotic area of the epidermal and mesophyll cells 24 and 48 h after the PVY infection. Highly localised accumulations of H(2)O(2) were found within xylem tracheary elements, and this was much more intensive than in non-infected leaves. Hydrogen peroxide was detected cytochemically in HR also by its reaction with cerium chloride, producing electron-dense deposits of cerium perhydroxides. Inoculation with PVY(NTN) and also PVY(N) Wi induced a rapid hypersensitive response during which highly localised accumulations of H(2)O(2) was detected in plant cell walls. The most intensive accumulation was present in the bordering cell walls of necrotic mesophyll cells and the adjacent non-necrotic mesophyll cells. Intensive electron-dense deposits of cerium perhydroxide were found along ER cistrenae and chloroplast envelopes connected with PVY particles. The precipitates of hydrogen peroxide were detected in the nuclear envelope and along tracheary elements, especially when virus particles were present inside. The intensive accumulation of H(2)O(2) at the early stages of potato-PVY interaction is consistent with its role as an antimicrobial agent and for this reason it has been regarded as a signalling molecule.

  9. Host Status of Different Potato (Solanum tuberosum) Varieties and Hatching in Root Diffusates of Globodera ellingtonae.

    PubMed

    Zasada, Inga A; Peetz, Amy; Wade, Nadine; Navarre, Roy A; Ingham, Russ E

    2013-09-01

    Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. 'Russet Burbank,' 'Desiree,' 'Modac,' 'Norland,' 'Umatilla,' and 'Yukon Gold' were good hosts (RF > 14) for G. ellingtonae. Potato varieties 'Maris Piper,' 'Atlantic,' and 'Satina,' all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD

  10. 4r2Host status of different potato (Solanum tuberosum) varieties and hatching in root diffusate of Globodera ellingtonae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An atypical Globodera population was detected in Oregon in 2008. As the first step towards understanding the biology of this nematode, cysts were exposed to a range of root diffusates. The Globodera population hatched readily in the presence of diffusates from potato (Solanum tuberosum; PRD) and t...

  11. [Effects of hydroxyapatite on growth and quality of potato (Solanum tuberosum L.) in Cd polluted soil].

    PubMed

    Song, Yong; He, Tan; Liu, Ming-Yue; Zeng, Min; Liao, Bo-Han

    2010-09-01

    A pot experiment was conducted in a glasshouse to study effects of hydroxyapatite amending Cd polluted soil on growth and quality of potato (Solanum tuberosum L.). In the experiment, 3 levels of Cd pollution (0, 5, and 10 mg x kg(-1)) and 6 levels of hydroxyapatite application (0, 4, 8, 10, 16, and 30 g x kg(-1)) in soil were prepared to plant 2 potato varieties (Zhongshusanhao and Daxiyang in Chinese system). The results showed that Cd pollution in soil resulted in decrease in yield per plant of potato; for example, in the soils with 5 and 10 mg x kg(-1) of Cd, the yield per plant decreased 24%-31% and 41%-45%, respectively. Applying hydroxyapatite to Cd pollution could greatly increase yield per plant of potato. Compared to the soil without hydroxyapatite, 10 or 30 g x kg(-1) hydroxyapatite added to the soil with 5 or 10 mg x kg(-1) of Cd increased 17%-9% or 45%-58% in yield per plant. Due to hydroxyapatite amending Cd polluted soil, chlorophyll contents in leaves and superoxide dismutase (SOD) activities in tubers enhanced and malondialdehyde (MDA) contents in tubers declined apparently. Meanwhile, quality of potato tubers was obviously improved, such as increase in vitamin C contents, starch contents, and protein contents in potato tubers. With hydroxyapatite applying from 0 to 30 g x kg(-1), Cd contents in potato tubers deceased from 0.87-0.95 mg x kg(-1) to 0.13-0.21 mg x kg(-1) by 78%-85% in the soils with 5 mg x kg(-1) of Cd, and from 1.86-1.93 mg x kg(-1) to 0.52-0.65 mg x kg(-1) by 66%-72% in the soils with 10 mg x kg(-1) of Cd. The experiment indicated that the mechanism of hydroxyapatite alleviating soil Cd toxicity main included rising soil pH values, reducing effective Cd contents in soil, and Ca from hydroxyapatite blocking soil Cd moving to potato. However, ability of hydroxyapatite alleviating soil Cd toxicity was limited, and excessive hydroxyapatite to soil exhibited stress effects on growth and quality of potato. In the Cd polluted soils with

  12. Analysis of plastome and chondriome genome types in potato somatic hybrids from Solanum tuberosum × Solanum etuberosum.

    PubMed

    Tiwari, Jagesh K; Chandel, Poonam; Singh, Bir Pal; Bhardwaj, Vinay

    2014-01-01

    Cytoplasm types of the potato somatic hybrids from Solanum tuberosum × Solanum etuberosum were analysed using chloroplast (cp) and mitochondrial (mt) organelle genomes-specific markers. Of the 29 markers (15 cpDNA and 14 mtDNA) amplified in the 26 genotypes, 5 cpDNA (H3, NTCP4, NTCP8, NTCP9, and ALC1/ALC3) and 13 mtDNA markers showed polymorphism. The cluster analysis based on the mtDNA markers detected higher diversity compared with the cpDNA markers. Presence of new mtDNA fragments of the markers, namely, T11-2, Nsm1, pumD, Nsm3, and Nsm4, were observed, while monomorphic loci revealed highly conserved genomic regions in the somatic hybrids. The study revealed that the somatic hybrids had diverse cytoplasm types consisting predominantly of T-, W-, and C-, with a few A- and S-type cp genomes; and α-, β-, and γ-type mt genomes. Somatic hybridization has unique potential to widen the cytoplasm types of the cultivated gene pools from wild species through introgression by breeding methods.

  13. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum).

    PubMed

    Chaouachi, Maher; El Malki, Redouane; Berard, Aurélie; Romaniuk, Marcel; Laval, Valérie; Brunel, Dominique; Bertheau, Yves

    2008-03-26

    The labeling of products containing genetically modified organisms (GMO) is linked to their quantification since a threshold for the presence of fortuitous GMOs in food has been established. This threshold is calculated from a combination of two absolute quantification values: one for the specific GMO target and the second for an endogenous reference gene specific to the taxon. Thus, the development of reliable methods to quantify GMOs using endogenous reference genes in complex matrixes such as food and feed is needed. Plant identification can be difficult in the case of closely related taxa, which moreover are subject to introgression events. Based on the homology of beta-fructosidase sequences obtained from public databases, two couples of consensus primers were designed for the detection, quantification, and differentiation of four Solanaceae: potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), and eggplant (Solanum melongena). Sequence variability was studied first using lines and cultivars (intraspecies sequence variability), then using taxa involved in gene introgressions, and finally, using taxonomically close taxa (interspecies sequence variability). This study allowed us to design four highly specific TaqMan-MGB probes. A duplex real time PCR assay was developed for simultaneous quantification of tomato and potato. For eggplant and pepper, only simplex real time PCR tests were developed. The results demonstrated the high specificity and sensitivity of the assays. We therefore conclude that beta-fructosidase can be used as an endogenous reference gene for GMO analysis.

  14. In vitro microtuberization in potato (Solanum tuberosum L.) cultivars.

    PubMed

    Sakha, B M; Bhatia, A K; Batra, V K; Chaudhary, V K; Batra, P; Khurana, S C

    2004-12-01

    Mechanism of microtuberization in three elite cultivars kufri badhsha (KB), kufri chandramukhi (KCM) and kufri jawahar (KJ) of potato was studied. Sprouts of all the three cultivars were used to obtain in vitro shoot cultures. MS medium supplemented with chlorocholine chloride was found to be most suitable for all the cultivars. Maximum tuberization was obtained under incubation conditions of continuous darkness at 20 degrees +/- 1 degrees C. The highest number of micro-tubers per plant basis was produced under continuous darkness and KCM recorded the highest yield of micro-tubers and was found significantly superior to KJ and KB.

  15. Regulation of Bud Rest in Tubers of Potato, Solanum tuberosum L

    PubMed Central

    Shih, C. Y.; Rappaport, Lawrence

    1971-01-01

    Using the electron microscope, we compared the effects of abscisic acid and gibberellin A3 on excised buds from resting potato (Solanum tuberosum L.) tubers. Cells of abscisic acid-treated buds became progressively more vacuolated during a 12-hour time course study as compared with control (water) and gibberellin A3-treated buds. Concentric configurations of endoplasmic reticulum were present in apical cells of freshly excised buds. After about 6 hours these configurations began to open and disperse, and after 12 hours, intact concentric configurations were no longer evident. Both abscisic acid and gibberellin A3 induced opening and dispersal of the concentric configurations, sometimes as early as 0.5 hour after excision and treatment with hormones. Images PMID:16657728

  16. Polyphenol oxidase expression in potato (Solanum tuberosum) tubers inhibited to sprouting by treatment with iodine atmosphere.

    PubMed

    Eolini, Francesco; Hochkoeppler, Alejandro; Credi, Andrea; Rodríguez, Antonio Gonzàlez Vara Y; Poggi, Valeria

    2004-08-01

    Iodine-saturated atmosphere was found to inhibit the sprouting of potato (Solanum tuberosum L.) tubers. The iodine concentration in tuber tissues increased as a function of exposure length, and the onset of inhibition of sprouting was found to depend on tubers genotype. During the time-course of the treatment, the transcription of polyphenol oxidases (EC 1.10.3.1 and EC 1.14.18.1) was undetectable in tuber peel, whereas in bud tissues featured an increase, followed by a decrease occurring simultaneously with the suppression of sprouting. The treatment of tubers with iodine strongly affected the expression of polyphenol oxidases at the transcriptional level. Polyphenol oxidase activity in buds poorly reflected the corresponding level of transcription; similarly, little differences were found among the enzyme isoforms expressed in buds as a function of length of exposure to iodine. These findings suggest that the induction of polyphenol oxidases mRNAs transcription could probe the inhibition of sprouting by iodine.

  17. Hypoxic stress inhibits multiple aspects of the potato tuber wound response. [Solanum tuberosum L

    SciTech Connect

    Butler, W.; Cook, L.; Vayda, M.E. )

    1990-05-01

    Potato (Solanum tuberosum L.) tubers subjected to wounding under hypoxic stress do not synthesize RNA species that are induced in response to wounding in aerobic conditions. Further, wound-response proteins fail to be synthesized when wounded tubers are transferred to hypoxic conditions although messenger RNAs which encode them persist for many hours after transfer. Hypoxic stress also prevents the incorporation of ({sup 3}H)thymidine by wounded tubers that occurs in aerobic conditions. In contrast, hypoxic tubers accumulate and translate transcripts of genes whose products are involved in anaerobic metabolism whether or not they are wounded. Both the hypoxic response and the aerobic wound response preclude the synthesis of proteins encoded by messenger RNAs which accumulated during the tuberization process and which can be translated in vitro. Finally, wounding elicits the degradation of a subset of these tuberization-associated transcripts. These data indicate a complex and precise regulation of gene expression at several levels of macromolecular synthesis.

  18. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase.

    PubMed

    Auslender, Evgenia L; Dorion, Sonia; Dumont, Sébastien; Rivoal, Jean

    2015-06-01

    The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates.

  19. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase.

    PubMed

    Auslender, Evgenia L; Dorion, Sonia; Dumont, Sébastien; Rivoal, Jean

    2015-06-01

    The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates. PMID:25573389

  20. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

    PubMed

    Fettke, Joerg; Albrecht, Tanja; Hejazi, Mahdi; Mahlow, Sebastian; Nakamura, Yasunori; Steup, Martin

    2010-02-01

    Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.

  1. Growth biostimulation of quorum-quenching bacteria by gammagamma-heptalactone treatment in the hydroponic rhizosphere of Solanum tuberosum.

    PubMed

    Tannieres, M; Beury-Cirou, A; Faure, D

    2012-01-01

    Several bacterial plant pathogens, including Pectobacterium, use a cell-to-cell communication system called quorum sensing (QS) to synchronize and regulate expression of the virulence factors. In this study, the biomolecule gamma-heptalactone (GHL) was introduced in hydroponic culture of Solanum tuberosum to stimulate growth of the native rhizospheric bacteria which are able to degrade the QS signal, hence potentially quench the QS-regulated virulence of Pectobacterium. During two annual campaigns, GHL-treatment efficiently stimulated the growth of QS-degrading bacterial population of Rhodococcus erythropolis in the rhizosphere of potato plants. Analytical chemistry showed that GHL rapidly disappeared because it could be assimilated as a carbon source by R. erythropolis. Moreover, pyrosequencing of the rrs-amplicons revealed a strong modification of the structure and diversity of bacterial populations, when GHL-treated and untreated conditions were compared. This work highlighted a potential innovative strategy for stimulating the growth and root colonization of QS-degrading bacteria, which would act as biocontrol agents against plant QS-pathogens.

  2. Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection.

    PubMed

    Ruocco, Michelina; Ambrosino, Patrizia; Lanzuise, Stefania; Woo, Sheridan Lois; Lorito, Matteo; Scala, Felice

    2011-12-15

    Pleiotropic drug resistant (PDR/ABCG) genes are involved in plant response to biotic and abiotic stresses. In this work, we cloned, from Solanum tuberosum, four PDR/ABCG transporter genes named StPDR1, StPDR2, StPDR3 and StPDR4, which were differentially expressed in plant tissues and cell cultures. A number of different chemically unrelated compounds were found to regulate the transcript levels of the four genes in cultured cells. In particular, StPDR2 was highly up-regulated in the presence of Botrytis cinerea cell walls, NaCl, 2,4-dichlorophenol, sclareol and α-solanin and biological compounds. The expression of the genes was also investigated by real time RT-PCR during infection by Phytophthora infestans. StPDR1 and StPDR2 were up-regulated about 13- and 37-fold at 48 h post-infection (hpi), StPDR3 was expressed (4-5-fold) at 24 and 48 hpi and then rapidly decreased, while StPDR4 RNA accumulation was stimulated (about 4-fold) at 12 and 24 hpi, decreased at 48 hpi and increased again at 96 hpi. We discuss the role of StPDR1-4 genes in response to pathogens and abiotic stresses.

  3. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.).

    PubMed

    Xu, Dongyu; Chen, Zhifan; Sun, Ke; Yan, Dong; Kang, Mingjie; Zhao, Ye

    2013-11-01

    The pollution of agricultural soils with cadmium (Cd) has become a serious problem worldwide. The potato (Solanum tuberosum L.) was used to investigate how different concentrations of Cd (1, 5, and 25mgkg(-1)) affected the physiological parameters and the subcellular distribution of Cd in the potato. The analyses were conducted using scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX). The results suggest that the leaf is the organ with the highest accumulation of Cd. The malondialdehyde (MDA) content increased and the chlorophyll content decreased in response to high level of Cd. The SEM-EDX microanalysis revealed that Cd was primarily deposited in the spongy and palisade tissues of the leaf. Furthermore, Cd was also detected in the cortex and the adjacent phloem and was observed inside the intercellular space, the interior surface of the plasma membrane, and on the surface of the elliptical starch granules in the tubers of the potato. Although low concentrations of Cd migrated from the root to the tuber, the accumulation of Cd in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be seriously evaluated because Cd-containing potatoes might present high health risk to humans.

  4. Solanum tuberosum L. cv Hongyoung extract inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice

    PubMed Central

    Kang, Myung Ah; Choung, Se-Young

    2016-01-01

    Solanum tuberosum L. cv Hongyoung (SH) is a widely consumed anthocyanin-rich food and medicinal plant, which possesses anti-inflammatory and anti-allergic activities. The present study aimed to examine the inhibitory effects of SH extract on atopic dermatitis (AD)-like skin lesions induced by the topical application of 2,4-dinitrochlorobenzene (DNCB) in NC/Nga mice. SH extract was orally administered to the DNCB-treated NC/Nga mice. The anti-AD effects of SH extract were examined by measuring symptom severity; ear thickness; scratching behavior; serum levels of immunoglobulin (Ig)E; T-helper (Th)1, Th2 and Th17 cytokine levels in the spleen; mRNA expression levels of inflammatory cytokines and chemokines; and tissue infiltration of inflammatory cells. The results demonstrated that SH extract inhibited the development of AD-like lesions, and reduced IgE levels and the production of cytokines. Furthermore, SH extract significantly suppressed the expression of AD-associated mRNAs in lesional skin. Histological alterations in the AD-like lesions were visualized using hematoxylin and eosin, and toluidine blue staining in the DNCB-treated group; the alterations were attenuated following SH treatment. In addition, thickening of the epidermis and accumulation of inflammatory cells in the DNCB-treated mice were suppressed by SH treatment. These results suggested that SH extract may suppress the development of AD symptoms through modulation of the Th1 and Th2 responses. PMID:27510042

  5. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield.

    PubMed

    Nölke, Greta; Houdelet, Marcel; Kreuzaler, Fritz; Peterhänsel, Christoph; Schillberg, Stefan

    2014-08-01

    We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8-fold), fructose (3.8-fold), sucrose (1.6-fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3-fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.

  6. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    PubMed

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; van Dijk, Jeroen P; Kok, Esther J; Frazzon, Jeverson

    2016-02-01

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate the relationship between total glycoalkaloid (TGA) content and the expression of GAME, SGT1, and SGT3 genes in potato tubers. TGA content was measured by HPLC-MS, and reverse transcription quantitative polymerase chain reactions were performed to determine the relative expression of GAME, SGT1, and SGT3 genes. We searched for cis-elements of the transcription start site using the PlantPAN database. There was a relationship between TGA content and the relative expression of GAME, SGT1, and SGT3 genes in potato tubers. Putative promoter regions showed the presence of several cis-elements related to biotic and abiotic stresses and light. These findings provide an important step toward understanding TGA regulation and variation in potato tubers.

  7. Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.).

    PubMed

    Legay, Sylvain; Lefèvre, Isabelle; Lamoureux, Didier; Barreda, Carolina; Luz, Rosalina Tincopa; Gutierrez, Raymundo; Quiroz, Roberto; Hoffmann, Lucien; Hausman, Jean-François; Bonierbale, Merideth; Evers, Danièle; Schafleitner, Roland

    2011-06-01

    In potatoes and many other crops, drought is one of the most important environmental constraints leading to yield loss. Development of drought-tolerant cultivars is therefore required for maintaining yields under climate change conditions and for the extension of agriculture to sub-optimal cropping areas. Drought tolerance mechanisms have been well described for many crop plants including Native Andean potato. However, knowledge on tolerance traits suitable for commercial potato varieties is scarce. In order to describe drought tolerance mechanisms that sustain potato yield under water stress, we have designed a growth-chamber experiment with two Solanum tuberosum L. cultivars, the more drought tolerant accession 397077.16, and the sensitive variety Canchan. After 21 days of drought exposure, gene expression was studied in leaves using cDNA microarrays. The results showed that the tolerant clone presented more differentially expressed genes than the sensitive one, suggesting greater stress response and adaptation. Moreover, it exhibited a large pool of upregulated genes belonging to cell rescue and detoxication such as LEAs, dehydrins, HSPs, and metallothioneins. Transcription factors related to abiotic stresses and genes belonging to raffinose family oligosaccharide synthesis, involved in desiccation tolerance, were upregulated to a greater extent in the tolerant clone. This latter result was corroborated by biochemical analyses performed at 32 and 49 days after drought that showed an increase in galactinol and raffinose especially in clone 397077.16. The results depict key components for the drought tolerance of this advanced potato clone.

  8. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    PubMed

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  9. Expression of G-Ry derived from the potato (Solanum tuberosum L.) increases PVY(O) resistance.

    PubMed

    Lee, Changsu; Park, Jaeyoung; Hwang, Indeok; Park, Yoonkyung; Cheong, Hyeonsook

    2010-06-23

    In Solanaceae, potato virus Y(O) (PVY(O)) is a widespread virus leading to severe damages such as necrosis, molting, and yield reduction. The resistance Y gene (Ry gene) of potato specifically confers resistance to PVY infection. Previously, potatoes resistant to PVY(O) infection were screened among the 32 Korean cultivars. 'Golden Valley' displayed the most resistance to PVY(O) infection. 'Golden Valley''s Ry gene (G-Ry) was cloned from 'Golden Valley', and the function was investigated. G-Ry protein contains 1134 amino acid residues and is structurally similar to the Y-1, which confers resistance to PVY infection in Solanum tuberosum subsp. andigena. To generate a PVY(O)-resistant potato, the G-Ry gene has been introduced into 'Winter Valley', the cultivar most susceptible to PVY(O) infection among the 32 Korean cultivars. Transgenic 'Winter Valley' ('Winter Valley'-G) showed an increased resistance to PVY infection. This approach may ultimately lead to the development of a virus-resistant plant.

  10. The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44.

    PubMed

    Massa, Alicia N; Childs, Kevin L; Lin, Haining; Bryan, Glenn J; Giuliano, Giovanni; Buell, C Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family.

  11. Effects of steroidal glycoalkaloids from potatoes (Solanum tuberosum) on in vitro bovine embryo development.

    PubMed

    Wang, S; Panter, K E; Gaffield, W; Evans, R C; Bunch, T D

    2005-02-01

    alpha-Solanine and alpha-chaconine are two naturally occurring steroidal glycoalkaloids in potatoes (Solanum tuberosum), and solanidine-N-oxide is a corresponding steroidal aglycone. The objective of this research was to screen potential cyto-toxicity of these potato glycoalkaloids using bovine oocyte maturation, in vitro fertilization techniques and subsequent embryonic development as the in vitro model. A randomized complete block design with four in vitro oocyte maturation (IVM) treatments (Experiment 1) and four in vitro embryo culture (IVC) treatments (Experiment 2) was used. In Experiment 1, bovine oocytes (n=2506) were matured in vitro in medium supplemented with 6 microM of alpha-solanine, alpha-chaconine, solanidine-N-oxide or IVM medium only. The in vitro matured oocytes were then subject to routine IVF and IVC procedures. Results indicated that exposure of bovine oocytes to the steroidal glycoalkaloids during in vitro maturation inhibited subsequent pre-implantation embryo development. Potency of the embryo-toxicity varied between these steroidal glycoalkaloids. In Experiment 2, IVM/IVF derived bovine embryos (n=2370) were cultured in vitro in medium supplemented with 6 microM of alpha-solanine, alpha-chaconine, solanidine-N-oxide or IVC medium only. The results showed that the pre-implantation embryo development is inhibited by exposure to these glycoalkaloids. This effect is significant during the later pre-implantation embryo development period as indicated by fewer numbers of expanded and hatched blastocysts produced in the media containing these alkaloids. Therefore, we conclude that in vitro exposure of oocytes and fertilized ova to the steroidal glycoalkaloids from potatoes inhibits pre-implantation embryo development. Furthermore, we suggest that ingestion of Solanum species containing toxic amounts of glycoalkaloids may have negative effects on pre-implantation embryonic survival.

  12. Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins.

    PubMed

    Nissen, Mark S; Kumar, G N Mohan; Youn, Buhyun; Knowles, D Benjamin; Lam, Ka Sum; Ballinger, W Jordan; Knowles, N Richard; Kang, Chulhee

    2009-03-01

    Potato (Solanum tuberosum) multicystatin (PMC) is a crystalline Cys protease inhibitor present in the subphellogen layer of potato tubers. It consists of eight tandem domains of similar size and sequence. Our in vitro results showed that the pH/PO(4)(-)-dependent oligomeric behavior of PMC was due to its multidomain nature and was not a characteristic of the individual domains. Using a single domain of PMC, which still maintains inhibitor activity, we identified a target protein of PMC, a putative Cys protease. In addition, our crystal structure of a representative repeating unit of PMC, PMC-2, showed structural similarity to both type I and type II cystatins. The N-terminal trunk, alpha-helix, and L2 region of PMC-2 were most similar to those of type I cystatins, while the conformation of L1 more closely resembled that of type II cystatins. The structure of PMC-2 was most similar to the intensely sweet protein monellin from Dioscorephyllum cumminisii (serendipity berry), despite a low level of sequence similarity. We present a model for the possible molecular organization of the eight inhibitory domains in crystalline PMC. The unique molecular properties of the oligomeric PMC crystal are discussed in relation to its potential function in regulating the activity of proteases in potato tubers.

  13. Physico-chemical and sensory evaluation of potato (Solanum tuberosum L.) after irradiation.

    PubMed

    Soares, Ivanesa G M; Silva, Edvane B; Amaral, Ademir J; Machado, Erilane C L; Silva, Josenilda M

    2016-06-01

    This work evaluated the effects of ionizing radiation on the physico-chemical and sensory characteristics of the potato cultivar Ágata (Solanum tuberosum L.), including budding and deterioration, with the end goal of increasing shelf life. For this, four groups of samples were harvested at the maturation stage. Three of them were separately exposed to a Co-60 source, receiving respective doses of 0.10, 0.15 and 2.00 kGy, while the non-irradiated group was kept as a control. All samples were stored for 35 days at 24 °C (± 2) and at 39% relative humidity. The following aspects were evaluated: budding, rot, loss of weight, texture, flesh color, moisture, external and internal appearance, aroma, soluble solids, titratable acidity, vitamin C, protein, starch and glucose. The results indicated that 0.15 kGy was the most effective dose to reduce sprouting and post-harvest losses, under the conditions studied. PMID:27276382

  14. Purification of a polyphenol oxidase isoform from potato (Solanum tuberosum) tubers.

    PubMed

    Marri, Costanza; Frazzoli, Alessandra; Hochkoeppler, Alejandro; Poggi, Valeria

    2003-08-01

    A different expression pattern of polyphenol oxidases has been observed during storage in cultivars of potato (Solanum tuberosum L.) featuring different length of dormancy: a short-dormant cultivar showed, at the end of the dormancy, both the highest polyphenol oxidase activity and the largest number of enzyme isoforms. An isoform of polyphenol oxidase isolated at the end of the physiological dormancy from a short-dormant cultivar has been purified to homogeneity by means of column chromatography on phenyl Sepharose and on Superdex 200. The purification factor has been determined equal to 88, and the molecular mass of the purified isoform has been estimated to be 69 and 340 kDa by SDS polyacrylamide gel electrophoresis and gel filtration on Superdex 200, respectively, indicating this PPO isoform as a multimer. The corresponding zymogram features a diffused single band at the cathodic region of the gel and the pI of this polyphenol oxidase has been calculated equal to 6.5. PMID:12877914

  15. Polyphenol oxidase expression in potato (Solanum tuberosum) tubers inhibited to sprouting by treatment with iodine atmosphere.

    PubMed

    Eolini, Francesco; Hochkoeppler, Alejandro; Credi, Andrea; Rodríguez, Antonio Gonzàlez Vara Y; Poggi, Valeria

    2004-08-01

    Iodine-saturated atmosphere was found to inhibit the sprouting of potato (Solanum tuberosum L.) tubers. The iodine concentration in tuber tissues increased as a function of exposure length, and the onset of inhibition of sprouting was found to depend on tubers genotype. During the time-course of the treatment, the transcription of polyphenol oxidases (EC 1.10.3.1 and EC 1.14.18.1) was undetectable in tuber peel, whereas in bud tissues featured an increase, followed by a decrease occurring simultaneously with the suppression of sprouting. The treatment of tubers with iodine strongly affected the expression of polyphenol oxidases at the transcriptional level. Polyphenol oxidase activity in buds poorly reflected the corresponding level of transcription; similarly, little differences were found among the enzyme isoforms expressed in buds as a function of length of exposure to iodine. These findings suggest that the induction of polyphenol oxidases mRNAs transcription could probe the inhibition of sprouting by iodine. PMID:15587701

  16. Characterization of Solanum tuberosum Multicystatin and the Significance of Core Domains[C

    PubMed Central

    Green, Abigail R.; Nissen, Mark S.; Kumar, G.N. Mohan; Knowles, N. Richard; Kang, ChulHee

    2013-01-01

    Potato (Solanum tuberosum) multicystatin (PMC) is a unique cystatin composed of eight repeating units, each capable of inhibiting cysteine proteases. PMC is a composite of several cystatins linked by trypsin-sensitive (serine protease) domains and undergoes transitions between soluble and crystalline forms. However, the significance and the regulatory mechanism or mechanisms governing these transitions are not clearly established. Here, we report the 2.2-Å crystal structure of the trypsin-resistant PMC core consisting of the fifth, sixth, and seventh domains. The observed interdomain interaction explains PMC’s resistance to trypsin and pH-dependent solubility/aggregation. Under acidic pH, weakening of the interdomain interactions exposes individual domains, resulting in not only depolymerization of the crystalline form but also exposure of cystatin domains for inhibition of cysteine proteases. This in turn allows serine protease–mediated fragmentation of PMC, producing ∼10-kD domains with intact inhibitory capacity and faster diffusion, thus enhancing PMC’s inhibitory ability toward cysteine proteases. The crystal structure, light-scattering experiments, isothermal titration calorimetry, and site-directed mutagenesis confirmed the critical role of pH and N-terminal residues in these dynamic transitions between monomer/polymer of PMC. Our data support a notion that the pH-dependent structural regulation of PMC has defense-related implications in tuber physiology via its ability to regulate protein catabolism. PMID:24363310

  17. Characterization of Solanum tuberosum Multicystatin and Its Structural comparison with Other Cystatins[OA

    PubMed Central

    Nissen, Mark S.; Kumar, G.N. Mohan; Youn, Buhyun; Knowles, D. Benjamin; Lam, Ka Sum; Ballinger, W. Jordan; Knowles, N. Richard; Kang, ChulHee

    2009-01-01

    Potato (Solanum tuberosum) multicystatin (PMC) is a crystalline Cys protease inhibitor present in the subphellogen layer of potato tubers. It consists of eight tandem domains of similar size and sequence. Our in vitro results showed that the pH/PO4−-dependent oligomeric behavior of PMC was due to its multidomain nature and was not a characteristic of the individual domains. Using a single domain of PMC, which still maintains inhibitor activity, we identified a target protein of PMC, a putative Cys protease. In addition, our crystal structure of a representative repeating unit of PMC, PMC-2, showed structural similarity to both type I and type II cystatins. The N-terminal trunk, α-helix, and L2 region of PMC-2 were most similar to those of type I cystatins, while the conformation of L1 more closely resembled that of type II cystatins. The structure of PMC-2 was most similar to the intensely sweet protein monellin from Dioscorephyllum cumminisii (serendipity berry), despite a low level of sequence similarity. We present a model for the possible molecular organization of the eight inhibitory domains in crystalline PMC. The unique molecular properties of the oligomeric PMC crystal are discussed in relation to its potential function in regulating the activity of proteases in potato tubers. PMID:19304935

  18. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. PMID:25819317

  19. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  20. Antioxidant, antimicrobial and anti-proliferative activities of Solanum tuberosum L. var. Vitelotte.

    PubMed

    Bontempo, Paola; Carafa, Vincenzo; Grassi, Roberto; Basile, Adriana; Tenore, Gian Carlo; Formisano, Carmen; Rigano, Daniela; Altucci, Lucia

    2013-05-01

    Solanum tuberosum L. var. Vitelotte is a potato variety widely used for human consumption. The pigments responsible for its attractive color belong to the class of anthocyanins. The objectives of this study were to characterize and measure the concentration of anthocyanins in pigmented potatoes and to evaluate their antioxidant and antimicrobial activities and their anti-proliferative effects in solid and hematological cancer cell lines. Anthocyanins exert anti-bacterial activity against different bacterial strains and a slight activity against three fungal strains. The Gram-positive bacterium Staphylococcus aureus and the fungus Rhyzoctonia solani were the most affected microorganisms. Antioxidant activities were evaluated by DPPH and FRAP methods; the extract showed a higher reducing capability than anti-radical activity. Moreover, we found that in different cancer cell models the anthocyanins cause inhibition of proliferation and apoptosis in a dose dependent manner. These biological activities are likely due to the high content of malvidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside and petunidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside. PMID:23313609

  1. Physico-chemical and sensory evaluation of potato (Solanum tuberosum L.) after irradiation.

    PubMed

    Soares, Ivanesa G M; Silva, Edvane B; Amaral, Ademir J; Machado, Erilane C L; Silva, Josenilda M

    2016-06-01

    This work evaluated the effects of ionizing radiation on the physico-chemical and sensory characteristics of the potato cultivar Ágata (Solanum tuberosum L.), including budding and deterioration, with the end goal of increasing shelf life. For this, four groups of samples were harvested at the maturation stage. Three of them were separately exposed to a Co-60 source, receiving respective doses of 0.10, 0.15 and 2.00 kGy, while the non-irradiated group was kept as a control. All samples were stored for 35 days at 24 °C (± 2) and at 39% relative humidity. The following aspects were evaluated: budding, rot, loss of weight, texture, flesh color, moisture, external and internal appearance, aroma, soluble solids, titratable acidity, vitamin C, protein, starch and glucose. The results indicated that 0.15 kGy was the most effective dose to reduce sprouting and post-harvest losses, under the conditions studied.

  2. Hydrolysis of sucrose within isolated vacuoles from Solanum tuberosum L. tubers.

    PubMed

    Isla, M I; Vattuone, M A; Sampietro, A R

    1998-08-01

    The soluble acid invertase (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) from potato (Solanum tuberosum L. cv. Kennebec) tubers was located in the vacuoles. Although the functionality of this invertase in the vacuoles has been assumed, the activity of the enzyme has never been shown within isolated vacuoles. Vacuoles were prepared by gentle osmotic shock from free protoplasts obtained by enzymic digestion of tuber tissues. The mean volume of these vacuoles, (0.26 +/- 0.05) x 10(-2) microliters, was estimated by optical microscopy. Sucrose, glucose and fructose concentrations were calculated to be 100 mM, 20 mM and 40 mM, respectively, in the vacuoles. Sucrose hydrolysis and the increase in glucose and fructose concentrations within the vacuoles were measured during vacuolar incubations. An almost identical pattern of sucrose hydrolysis by invertase was found by an in-vitro assay reproducing the vacuolar conditions. In view of the determinations of internal vacuolar pH (5.2), the possibility of spontaneous hydrolysis of sucrose was disregarded. Vacuoles were shown to be free from proteinaceous inhibitors, confirming the extravacuolar location of these inhibitors. The vacuolar hydrolytic pattern of sucrose confirms the regulatory role of the reaction products previously proposed for in-vitro assays.

  3. Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro.

    PubMed

    Liu, Yen-Wenn; Han, Chuan-Hsiao; Lee, Mei-Hsien; Hsu, Feng-Lin; Hou, Wen-Chi

    2003-07-16

    The potato (Solanum tuberosum L.) tuber storage protein, patatin, was purified to homogeneity with a molecular mass of 45 kDa. The purified patatin showed antioxidant or antiradical activity by a series of in vitro tests, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (half-inhibition concentration, IC(50), was 0.582 mg/mL) scavenging activity assays, anti-human low-density lipoprotein peroxidation tests, and protections against hydroxyl radical-mediated DNA damages and peroxynitrite-mediated dihydrorhodamine 123 oxidations. Using electron paramagnetic resonance (EPR) spectrometry for hydroxyl radical detections, it was found that the intensities of the EPR signal were decreased by the increased amounts of patatin added (IC(50) was 0.775 mg/mL). Through modifications of patatin by iodoacetamide or N-bromosuccinimide, it was found that the antiradical activities of modified patatin against DPPH or hydroxyl radicals were decreased. It was suggested that cysteine and tryptophan residues in patatin might contribute to its antioxidant activities against radicals.

  4. Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue.

    PubMed

    Chaves, Inês; Pinheiro, Carla; Paiva, Jorge A P; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Graça, José A; Costa, Gonçalo; Coelho, Ana V; Ricardo, Cândido P Pinto

    2009-09-01

    Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound-healing process, were separated by 2-DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell-wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2-DE gels revealed a time-dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0-D2 and D4-D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound-periderm reconstruction. Some late-expressed proteins (D6-D8), including a suberisation-associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound-periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing-periderm formation processes.

  5. The subunit structure of potato tuber ADPglucose pyrophosphorylase. [Solanum tuberosum L

    SciTech Connect

    Okita, T.W.; Nakata, P.A.; Anderson, J.M. ); Sowokinos, J. ); Morell, M.; Preiss, J. )

    1990-06-01

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.

  6. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  7. Metabolic Biosynthesis of Potato (Solanum tuberosum l.) Antioxidants and Implications for Human Health.

    PubMed

    Lovat, Christie; Nassar, Atef M K; Kubow, Stan; Li, Xiu-Qing; Donnelly, Danielle J

    2016-10-25

    Potato (Solanum tuberosum L.) is common, affordable, readily stored, easily prepared for consumption, and nutritious. For these reasons, potato has become one of the top five crops consumed worldwide. Consequently, it is important to understand its contribution to both our daily and long-term health. Potato is one of the most important sources of antioxidants in the human diet. As such, it supports the antioxidant defense network in our bodies that reduces cellular and tissue toxicities that result from free radical-induced protein, lipid, carbohydrate, and DNA damage. In this way, potato antioxidants may reduce the risk for cancers, cardiovascular diseases, diabetes, and even radiation damage. A better understanding of these components of potato is needed by the food industry, health professionals, and consumers. This review provides referenced summaries of all of the antioxidant groups present in potato tubers and updated schematics including genetic regulation for the major antioxidant biosynthesis pathways. This review complements current knowledge on the role of potato in human health. We hope it will provide impetus toward breeding efforts to develop cultivars with increased antioxidant capacity as 'functional foods' and encourage potato consumers and processors to work toward preservation of antioxidant capacity in cooked potato and potato products.

  8. Metabolic regulation of pathways of carbohydrate oxidation in potato (Solanum tuberosum) tubers.

    PubMed

    Centeno, Danilo C; Oliver, Sandra N; Nunes-Nesi, Adriano; Geigenberger, Peter; Machado, Daniel N; Loureiro, Marcelo Ehlers; Silva, Marco A P; Fernie, Alisdair R

    2008-08-01

    In the present article we evaluate the consequence of tuber-specific expression of yeast invertase, on the pathways of carbohydrate oxidation, in potato (Solanum tuberosum L. cv. Desiree). We analysed the relative rates of glycolysis and the oxidative pentose phosphate pathway that these lines exhibited as well as the relative contributions of the cytochrome and alternative pathways of mitochondrial respiration. Enzymatic and protein abundance analysis revealed concerted upregulation of the glycolytic pathway and of specific enzymes of the tricarboxylic acid cycle and the alternative oxidase but invariant levels of enzymes of the oxidative pentose phosphate pathway and proteins of the cytochrome pathway. When taken together these experiments suggest that the overexpression of a cytosolic invertase (EC 3.2.1.26) results in a general upregulation of carbohydrate oxidation with increased flux through both the glycolytic and oxidative pentose phosphate pathways as well as the cytochrome and alternative pathways of oxidative phosphorylation. Moreover these data suggest that the upregulation of respiration is a consequence of enhanced efficient mitochondrial metabolism.

  9. Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.).

    PubMed

    Grunenfelder, Laura A; Knowles, Lisa O; Hiller, Larry K; Knowles, N Richard

    2006-08-01

    Chlorophyll and glycoalkaloid synthesis in potato (Solanum tuberosum L.) tubers occur in direct response to light. The two processes are concurrent, but independent. Color photographic indices to subjectively grade fresh market potatoes for the extent of greening were developed under lighting conditions consistent with those of retail markets. Total glycoalkaloid (TGA) and chlorophyll accumulation for four cultivars were determined over the respective greening scales, thus calibrating the scales for TGA content. On average, TGA concentrations in complete longitudinal sections of tubers (flesh samples) were highest in Dark Red Norland followed by Russet Norkotah, Yukon Gold, and White Rose. TGA concentrations of flesh samples of White Rose and Yukon Gold tubers were somewhat variable and did not increase in direct proportion to greening level and chlorophyll content, particularly at higher levels of greening. TGA concentrations in Dark Red Norland and Russet Norkotah tubers were highly correlated (P < or = 0.001) with greening level and chlorophyll concentrations. When averaged over greening levels, skin samples contained 3.4- to 6.8-fold higher concentrations of TGAs than flesh samples, depending on the cultivar. The TGA concentration in periderm samples ranged from 37 to 160 mg/100 g of dry wt. Regardless of greening level, concentrations of TGAs in the flesh samples (including attached periderm) remained within limits presumed safe for human consumption. Discrimination of greened tubers on the basis of perceived glycoalkaloid toxicity is likely unfounded for the cultivars and greening levels studied. PMID:16881686

  10. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis. PMID:27039890

  11. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis.

  12. The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    PubMed Central

    Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane

    2012-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937

  13. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System

    PubMed Central

    Butler, Nathaniel M.; Atkins, Paul A.; Voytas, Daniel F.; Douches, David S.

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3–60% per transformation and from 0–29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87–100%. This

  14. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.

    PubMed

    Butler, Nathaniel M; Atkins, Paul A; Voytas, Daniel F; Douches, David S

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration

  15. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.

    PubMed

    Butler, Nathaniel M; Atkins, Paul A; Voytas, Daniel F; Douches, David S

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration

  16. Gene Expression Changes in Phosphorus Deficient Potato (Solanum tuberosum L.) Leaves and the Potential for Diagnostic Gene Expression Markers

    PubMed Central

    Hammond, John P.; Broadley, Martin R.; Bowen, Helen C.; Spracklen, William P.; Hayden, Rory M.; White, Philip J.

    2011-01-01

    Background There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving

  17. Growth, yield and tuber quality of Solanum tuberosum L. under supplemental ultraviolet-B radiation at different NPK levels.

    PubMed

    Singh, S; Kumari, R; Agrawal, M; Agrawal, S B

    2011-05-01

    In many areas, decreases in the stratospheric ozone layer have resulted in an increase in ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth's surface. The present study was conducted to evaluate the interactive effects of supplemental UV-B (sUV-B) and mineral nutrients on a tuber crop, potato (Solanum tuberosum L. var Kufri Badshah), under natural field conditions in a dry tropical environment. The nutrient treatments were the recommended dose of NPK (F(o)), 1.5 times the recommended dose of NPK (F(1)), 1.5 times the recommended dose of N (F(2)) and 1.5 times the recommended dose of K (F(3)). The response of potato plants to sUV-B varied with nutrient treatment and concentration. sUV-B adversely affected growth, yield and quality of tubers, causing an increase in reducing sugars in the tubers and thus reducing the economic value. Growth and fresh weight of tubers was maximal with sUV-B at 1.5 times recommended NPK, but the dry weight of tubers were highest with the recommended NPK dose. Reducing sugar content was lower in potato plants treated with sUV-B and the recommended NPK than with sUV-B and 1.5 times the recommended NPK. This study thus clearly shows that growing potato with 1.5 times the recommended NPK or 1.5 times the recommended dose of N/K does not alleviate the sUV-B induced changes in yield and quality of tubers compared to the recommended NPK dose.

  18. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs.

    PubMed

    Grandellis, Carolina; Giammaria, Verónica; Bialer, Magalí; Santin, Franco; Lin, Tian; Hannapel, David J; Ulloa, Rita M

    2012-12-01

    Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.

  19. Leaf surface sesquiterpene alcohols of the potato (Solanum tuberosum) and their influence on colorado beetle (Leptinotarsa decemlineata Say) feeding.

    PubMed

    Szafranek, Beata; Chrapkowska, Karolina; Waligóra, Danuta; Palavinskas, Richard; Banach, Arkadiusz; Szafranek, Janusz

    2006-10-01

    The structures of two previously unknown sesquiterpene alcohols of the potato (Solanum tuberosum) were assigned. The potato alcohols were obtained by steam-distillation, preparative column chromatography, and separation into fractions by HPLC on a silica gel column. The fractions were studied by GC-FID, GC-MS, and NMR spectroscopy. The potato sesquiterpene alcohols were identified as kunzeaol (6-alpha-hydroxygermacra-1(10),4-diene) and ledol. These two compounds were used in feeding tests with larvae and beetles of the Colorado potato beetle (Leptinotarsa decemlineata Say). In a bioassay, kunzeaol was found to act as a feeding attractant for the beetles.

  20. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro.

    PubMed

    Segretin, María Eugenia; Lentz, Ezequiel Matías; Wirth, Sonia Alejandra; Morgenfeld, Mauro Miguel; Bravo-Almonacid, Fernando Félix

    2012-04-01

    Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.

  1. Selection of Reference Genes for Transcriptional Analysis of Edible Tubers of Potato (Solanum tuberosum L.)

    PubMed Central

    Voorhuijzen, Marleen M.; Staats, Martijn; Hutten, Ronald C. B.; Van Dijk, Jeroen P.; Kok, Esther; Frazzon, Jeverson

    2015-01-01

    Potato (Solanum tuberosum) yield has increased dramatically over the last 50 years and this has been achieved by a combination of improved agronomy and biotechnology efforts. Gene studies are taking place to improve new qualities and develop new cultivars. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a bench-marking analytical tool for gene expression analysis, but its accuracy is highly dependent on a reliable normalization strategy of an invariant reference genes. For this reason, the goal of this work was to select and validate reference genes for transcriptional analysis of edible tubers of potato. To do so, RT-qPCR primers were designed for ten genes with relatively stable expression in potato tubers as observed in RNA-Seq experiments. Primers were designed across exon boundaries to avoid genomic DNA contamination. Differences were observed in the ranking of candidate genes identified by geNorm, NormFinder and BestKeeper algorithms. The ranks determined by geNorm and NormFinder were very similar and for all samples the most stable candidates were C2, exocyst complex component sec3 (SEC3) and ATCUL3/ATCUL3A/CUL3/CUL3A (CUL3A). According to BestKeeper, the importin alpha and ubiquitin-associated/ts-n genes were the most stable. Three genes were selected as reference genes for potato edible tubers in RT-qPCR studies. The first one, called C2, was selected in common by NormFinder and geNorm, the second one is SEC3, selected by NormFinder, and the third one is CUL3A, selected by geNorm. Appropriate reference genes identified in this work will help to improve the accuracy of gene expression quantification analyses by taking into account differences that may be observed in RNA quality or reverse transcription efficiency across the samples. PMID:25830330

  2. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin. PMID:25921651

  3. Selection of reference genes for transcriptional analysis of edible tubers of potato (Solanum tuberosum L.).

    PubMed

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; Van Dijk, Jeroen P; Kok, Esther; Frazzon, Jeverson

    2015-01-01

    Potato (Solanum tuberosum) yield has increased dramatically over the last 50 years and this has been achieved by a combination of improved agronomy and biotechnology efforts. Gene studies are taking place to improve new qualities and develop new cultivars. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a bench-marking analytical tool for gene expression analysis, but its accuracy is highly dependent on a reliable normalization strategy of an invariant reference genes. For this reason, the goal of this work was to select and validate reference genes for transcriptional analysis of edible tubers of potato. To do so, RT-qPCR primers were designed for ten genes with relatively stable expression in potato tubers as observed in RNA-Seq experiments. Primers were designed across exon boundaries to avoid genomic DNA contamination. Differences were observed in the ranking of candidate genes identified by geNorm, NormFinder and BestKeeper algorithms. The ranks determined by geNorm and NormFinder were very similar and for all samples the most stable candidates were C2, exocyst complex component sec3 (SEC3) and ATCUL3/ATCUL3A/CUL3/CUL3A (CUL3A). According to BestKeeper, the importin alpha and ubiquitin-associated/ts-n genes were the most stable. Three genes were selected as reference genes for potato edible tubers in RT-qPCR studies. The first one, called C2, was selected in common by NormFinder and geNorm, the second one is SEC3, selected by NormFinder, and the third one is CUL3A, selected by geNorm. Appropriate reference genes identified in this work will help to improve the accuracy of gene expression quantification analyses by taking into account differences that may be observed in RNA quality or reverse transcription efficiency across the samples.

  4. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars.

    PubMed

    Jaarsma, Rinse; de Vries, Rozemarijn S M; de Boer, Albertus H

    2013-01-01

    Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na(+) homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na(+) levels in root and stem with the highest leaf Na(+) concentration of all cultivars, resulting in a high Na(+) shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na(+) accumulation was found and the SDI for Na(+) points to a role of stem Na(+) accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na(+) accumulation in stem tissue, resulting in reduced Na(+) transport to the leaves.

  5. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin.

  6. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    PubMed

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-09-14

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications.

  7. Protein phosphatases type 2A mediate tuberization signaling in Solanum tuberosum L. leaves.

    PubMed

    País, Silvia Marina; García, María Noelia Muñiz; Téllez-Iñón, María Teresa; Capiati, Daniela Andrea

    2010-06-01

    Tuber formation in potato (Solanum tuberosum L.) is regulated by hormonal and environmental signals that are thought to be integrated in the leaves. The molecular mechanisms that mediate the responses to tuberization-related signals in leaves remain largely unknown. In this study we analyzed the roles of protein phosphatase type 2A catalytic subunits (PP2Ac) in the leaf responses to conditions that affect tuberization. The responses were monitored by analyzing the expression of the "tuber-specific" genes Patatin and Pin2, which are induced in tubers and leaves during tuber induction. Experiments using PP2A inhibitors, together with PP2Ac expression profiles under conditions that affect tuberization indicate that high sucrose/nitrogen ratio, which promotes tuber formation, increases the transcript levels of Patatin and Pin2, by increasing the activity of PP2As without affecting PP2Ac mRNA or protein levels. Gibberellic acid (GA), a negative regulator of tuberization, down-regulates the transcription of catalytic subunits of PP2As from the subfamily I and decreases their enzyme levels. In addition, GA inhibits the expression of Patatin and Pin2 possibly by a PP2A-independent mechanism. PP2Ac down-regulation by GA may inhibit tuberization signaling downstream of the inductive effects of high sucrose/nitrogen ratio. These results are consistent with the hypothesis that PP2As of the subfamily I may positively modulate the signaling pathways that lead to the transcriptional activation of "tuber-specific" genes in leaves, and act as molecular switches regulated by both positive and negative modulators of tuberization. PMID:20358221

  8. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)

    PubMed Central

    Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.

    2015-01-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  9. Acclimation of photosynthesis to elevated CO sub 2 in five C sub 3 species. [Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, Brassica oleracea

    SciTech Connect

    Sage, R.F. ); Sharkey, T.D. ); Seemann, J.R. )

    1989-02-01

    The effect of long-term (weeks to months) CO{sub 2} enhancement on (a) the gas-exchange characteristics, (b) the content and activation state of ribulose-1,5-bisphosphate carboxylase (rubisco), and (c) leaf nitrogen, chlorophyll, and dry weight per area were studied in five C{sub 3} species (Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, and Brassica oleracea) grown at CO{sub 2} partial pressures of 300 or 900 to 1000 microbars. Long-term exposure to elevated CO{sub 2} affected the CO{sub 2} response of photosynthesis in one of three ways: (a) the initial slope of the CO{sub 2} response was unaffected, but the photosynthetic rate at high CO{sub 2} increased (S. tuberosum); (b) the initial slope decreased but the CO{sub 2}-saturated rate of photosynthesis decreased (B. oleracea, S. melongena). In all five species, growth at high CO{sub 2} increased the extent to which photosynthesis was stimulated following a decrease in the partial pressure of O{sub 2} or an increase in measurement CO{sub 2} above 600 microbars. This stimulation indicates that a limitation on photosynthesis by the capacity to regenerate orthophosphate was reduced or absent after acclimation to high CO{sub 2}. Leaf nitrogen per area either increased (S. tuberosum, S. melongena) or was little changed by CO{sub 2} enhancement. The content of rubisco was lower in only two of the fives species, yet its activation state was 19% to 48% lower in all five species following long-term exposure to high CO{sub 2}. These results indicate that during growth in CO{sub 2}-enriched air, leaf rubisco content remains in excess of that required to support the observed photosynthetic rates.

  10. [Allelic state of the molecular marker for the golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world cultivars of potato (Solanum tuberosum ssp. tuberosum)].

    PubMed

    Karelov, A V; Pilipenko, L A; Kozub, N A; Bondus, R A; Borzykh, A U; Sozinov, I A; Blium, Ia B; Sozinov, A A

    2013-01-01

    The purpose of our investigation was determination of allelic state of the H1 resistance gene against the pathotypes Ro1 and Ro4 of golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic condition of the TG689 marker was determined by PCR with DNA samples isolated from tubers of potato and primers, one pair of which flanks the allele-specific region and the other one was used for the control of DNA quality. Among analyzed 77 potato cultivars the allele of marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% foreign ones although some of those cultivars proved to be susceptible to the golden potato nematode in field. The obtained data confirm the presence of H1-resistance against golden nematode pathotypes Ro1 and Ro4 among the Ukrainian potato cultivars and efficiency of the used marker within the accuracy that has been declared by its authors.

  11. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern

    PubMed Central

    Delaplace, Pierre; Fauconnier, Marie-Laure; Sergeant, Kjell; Dierick, Jean-François; Oufir, Mouhssin; van der Wal, Froukje; America, Antoine H. P.; Renaut, Jenny; Hausman, Jean-François; du Jardin, Patrick

    2009-01-01

    During post-harvest storage, potato tubers age as they undergo an evolution of their physiological state influencing their sprouting pattern. In the present study, physiological and biochemical approaches were combined to provide new insights on potato (Solanum tuberosum L. cv. Désirée) tuber ageing. An increase in the physiological age index (PAI) value from 0.14 to 0.83 occurred during storage at 4 °C over 270 d. Using this reference frame, a proteomic approach was followed based on two-dimensional electrophoresis. In the experimental conditions of this study, a marked proteolysis of patatin occurred after the PAI reached a value of 0.6. In parallel, several glycolytic enzymes were up-regulated and cellular components influencing protein conformation and the response to stress were altered. The equilibrium between the 20S and 26S forms of the proteasome was modified, the 20S form that recycles oxidized proteins being up-regulated. Two proteins belonging to the cytoskeleton were also differentially expressed during ageing. As most of these changes are also observed in an oxidative stress context, an approach focused on antioxidant compounds and enzymes as well as oxidative damage on polyunsaturated fatty acids and proteins was conducted. All the changes observed during ageing seemed to allow the potato tubers to maintain their radical scavenging activity until the end of the storage period as no accumulation of oxidative damage was observed. These data are interpreted considering the impact of reactive oxygen species on the development and the behaviour of other plant systems undergoing ageing or senescence processes. PMID:19204031

  12. Farmyard Manure and Fertilizer Effects on Seed Potato (Solanum tuberosum L.) Yield in Green House Production

    NASA Astrophysics Data System (ADS)

    László, M.

    2009-04-01

    fertilizer (18.0 g pot-1) with a hard effect (57%). Our results are shown that it was possible developing of the seed potato production under tropical greenhouse conditions by optimalised soil-organic matter-fertilizer system. This datas should be as indicators to sustainable field potato advisory systems. Keywords: potato (Solanum tuberosum L.), greenhouse, latossolo vermelho soil, farmyard manure, burnt rice straw, 4N:14P:8K fertilizer, sustainability, yield Introducáo: Importância e situação actual em produção da batata no Brazíl A batata é atualmente uma das hortaliças de maior importância no Brasíl (Márton 2000a., 2000b.) com um cultivo annual médio de 173.000 ha e uma produção de 2600000 t. A produtividade médio nacional é de 15 t ha-1, muito baixa se considerar que é possivel a obtenção de rendimentos acima de 40 t ha-1. Observa- se também, que existe variação no produtividade entre regiões e estados. E importante como fonte de alimento pelo seu alto valor nutricional a quantidade produzida muito superior por unidade de área a tempo, se comparada com diversas outras culturas (László 2000b., 2000c.). Os estados que tradicionalmente produzem batata em maior ou menor escala são indicados em seguente: Pernambuco, Ceará, Sergipe, Goiás, Mato Grosso, Mato Grosso do Sul, Rondonia e Acre. Os plantios predominantes são o das águas e das secas, sendo o de inverno bem menos expressivo, pois poucas áreas permitem o seu cultivo, na maioria dos casos necessitando- se de irrigação. Considerando as três épocas de plantio e diferentes condições climaticas brasileiras, podemos definir de um modo geral o plantio de batata no Brasíl da seguinte maneira: Nordeste e Centro- Oeste- plantio de inverno, Sudeste- plantio das águas, secas e inverno, Sul- plantio das aguas, secas e inverno. Sendo este último em áreas muito limitadas. Dentre as hortaliças a batata é uma das culturas mais estudadas actualmente. Os principais problemas que afetam a

  13. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  14. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03). PMID:21905714

  15. First report of ‘Candidatus Phytoplasma asteris’ subgroup 16SrI-A associated with a disease of potato (Solanum tuberosum) in Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symptoms of little leaf, witches’-broom, and abnormally small and deformed potatoes, suggestive of possible phytoplasmal infection, were observed in diseased potato (Solanum tuberosum var. Hannibal arba Kestrel) in the Vilnius region of Lithuania. DNA extracted from symptomatic leaves and shoots we...

  16. Farmyard Manure and Fertilizer Effects on Seed Potato (Solanum tuberosum L.) Yield in Green House Production

    NASA Astrophysics Data System (ADS)

    László, M.

    2009-04-01

    crescentes dosagens de 0 e 18.0 grama vaso-1 diminuiram a produção assima de 250% em médio da duas misturas. 12. Numero de tuberculos 0-20 mm e 20 mm- por planta com os manejos de 0 e 18.0 grama vaso-1 foi possível aumentar em media 200% sobre a mistura padrão. Os manejo de 18.0 grama de adubo vaso-1 já causaram importante diminuição em relação caso a absoluto controle. 13. Numero total de tuberculos por planta entre manejos foi melhor a dosagem de 7.2 grama vaso-1 adubo complexo 4N:14P:8K comparando da mistura padrão. Nos verificamos-se que a mistura padrão sempre deu menor rasultados do que as outras misturas (i.e.: 1 e 2). Entre as misturas 1 e 2 a melhor foi a número 2. (80% latossolo vermelho novo, 10% palha de arroz queimado, 10% esterco de curral). Com esta mistura e com relação a mistura padrão, foi possível aumentar o número de tuberculos 0-20 mm com 77%. No caso do adubação, verificamos que grande quantidades de adubo acima de 7.2 grama vaso-1, de modo rigoroso diminuiu a produção de batata-semente pré- básica. Este fato deve ser considerado para a eleição das dosagens de adubos. Deve-se indicar o caso de número de tuberculos acima 20 mm-, onde em relação mistura padrão foi possivel aumentar em média 73% os resultados. Reconhecimento: Esta pesquisa foi apoio da Empresa Brasileira de Pesquisa Agropecuaria- Centro Nacional de Pesquisas de Hortaliças, Brasília-DF e Centro Pesquisa de Solo e Agroquímica do Academia Húngara de Ciências, Budapest References Kádár I-Márton L.-Horváth S. 2000. Mineral fertilisation of potato (Solanum tuberosum L.) on calcareous chernozem soil. Plant Production. 49: 291-306. Kurnik E.-Németh T.-Márton L.-Radimszki L. 2001. Effects of a new environment friendly deep fertilization system on a limy chernozem soil parameters. Agrochemistry and Soil Science. Budapest. In press László M. 2000. Nutrition of potato (Solanum tuberosum L.) on Hungary on a chernozem soil. Acta Agronomica Óváriensis. 42: 81

  17. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    NASA Astrophysics Data System (ADS)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  18. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    PubMed

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. PMID:26828405

  19. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    PubMed

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures.

  20. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    Nowadays potato (Solanum tuberosum L.) is a more important throughout the world between field crops. As potato is such a potassium demanding crop, it is particularly important that the potassium fertilizers used should be correctly balanced. Applying the adequate quantity of balanced K- fertilizer is the first requirement for achieving optimum yield and doing so will result in potatoes of acceptable quality. Potato potassium nutrition has been studied at the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS)- Experiment Station, Nagyhörcsök (chernozem soil) in a long term field experiment designed to determine NPK- nutrient requirements. The method of the experiment was 43 mixed factorial design with 64 treatments in 2 repetitions with 128 plots. The residual effects of K- levels brought about by build- up fertilization were studied. Potato were planted in 1978. The experimental dates were estimated by multivariate analysis of variance (MANOVA). On the basis of foliar analysis at early flowering about 4.5 to 5.0% K in dry matter proved to be satisfactory for obtaining maximum yield (32.6 t/ha). The yields increased by 22%, 34%, and 38% at 124-140, 141-168 and 169-208 ppm soil AL- K2O rates, respectively. The tubers concentrated much N 19% and less P 81% than potassium. Results for tuber maximum uptake of potassium reached a maximum about 130 days after planting. The improvement of the K supply of the soil increased yield and induced low concentrations of numerous microelements on leaves considered to be important. Key words: Potato (Solanum tuberosum L.), chernozem soil, potassium, yield Introduction Potato is an important food crop, more particularly in the temperate zone, especially in Europe and Asia. Between 1981 and 1995, in spite of an 18% decrease in cultivated area production increased by 13% because the average yield increased from 11.0 to 15.1 t/ha. Potato is a soil nutrients demanding crop

  1. Evidence for separate elongation enzymes for very-long-chain-fatty-acid synthesis in potato (Solanum tuberosum).

    PubMed Central

    Walker, K A; Harwood, J L

    1986-01-01

    Aging potato (Solanum tuberosum) tuber discs in a Ca2+-containing medium resulted in increased rates of fatty acid labelling from [1-14C]acetate with time. Maximal labelling rates were seen after 6-8 h aging in a number of varieties. Saturated very-long-chain fatty acids (C20 and particularly C22 and C24) were very poorly labelled in freshly cut tissue. They were synthesized in increasing amounts and in a homologous sequence with progressive aging times. Use of increasing induction times and cycloheximide or puromycin as protein-synthesis inhibitors indicated that the sequence of fatty acid elongation was dependent on protein synthesis de novo and was controlled by three separate specific elongase enzymes. PMID:3800889

  2. Regeneration, in vitro glycoalkaloids production and evaluation of bioactivity of callus methanolic extract of Solanum tuberosum L.

    PubMed

    Al-Ashaal, Hanan Abd Al-Hay

    2010-09-01

    Callus and differentiated shoots initiated from Solanum tuberosum L. on MS media containing BA, IAA, and Kin. Glycoalkaloids are produced in callus and shoots in concentrations higher than original tubers using HPLC. Callus methanolic extract had promising anticancer activity with low IC(50) values against human carcinoma cell lines of breast, lymphoplastic leukemia, larynx, liver, cervix, colon, and brain, IC(50) (microg/mL) were 2.7, 3.7, 6, 6.7, 10, 13.6, and 22.3 respectively. Antioxidant capacity of the extract (76.4%) performed using ESR. Preliminary screening showed that the extract exhibited in vitro virucidal activity against Herpes simplex. The extract possessed in vitro schistomicidal and fasciolicidal activity.

  3. Alternative oxidase of potato is an integral membrane protein synthesized de novo during aging of tuber slices. [Solanum tuberosum

    SciTech Connect

    Hiser, C.; McIntosh, L. )

    1990-05-01

    The rise in alternative respiratory capacity upon aging of potato (Solanum tuberosum) tuber slices is correlated with changes in mitochondrial membrane protein composition and a requirement for cytoplasmic protein synthesis. However, the lack of an antibody specific to the alternative oxidase has, until recently, prevented examination of the alternative oxidase protein(s) itself. We have employed a monoclonal antibody raised against the Sauromatum guttatum alternative oxidase to investigate developmental changes in the alternative pathway of aging potato slice mitochondria and to characterize the potato alternative oxidase by one- and two-dimensional gel electrophoresis. The relative levels of a 36 kilodalton protein parallel the rise in alternative path capacity. A plausible interpretation is that this alternative oxidase protein is synthesized de novo during aging of potato slices.

  4. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.

    PubMed

    Sharma, Vishakha; Nandineni, Madhusudan R

    2014-04-01

    Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0

  5. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.

    PubMed

    Sharma, Vishakha; Nandineni, Madhusudan R

    2014-04-01

    Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0

  6. Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum[OPEN

    PubMed Central

    Hardigan, Michael A.; Crisovan, Emily; Hamilton, John P.; Laimbeer, Parker; Leisner, Courtney P.; Manrique-Carpintero, Norma C.; Newton, Linsey; Pham, Gina M.; Vaillancourt, Brieanne; Zeng, Zixian; Jiang, Jiming

    2016-01-01

    Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways. PMID:26772996

  7. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea. PMID:25772466

  8. The sub-cellular localisation of the potato (Solanum tuberosum L.) carotenoid biosynthetic enzymes, CrtRb2 and PSY2.

    PubMed

    Pasare, Stefania; Wright, Kathryn; Campbell, Raymond; Morris, Wayne; Ducreux, Laurence; Chapman, Sean; Bramley, Peter; Fraser, Paul; Roberts, Alison; Taylor, Mark

    2013-12-01

    Carotenoids are isoprenoids with important biological roles both for plants and animals. The yellow flesh colour of potato (Solanum tuberosum L.) tubers is a quality trait dependent on the types and levels of carotenoids that accumulate. The carotenoid biosynthetic pathway is well characterised, facilitating the successful engineering of carotenoid content in numerous crops including potato. However, a clear understanding concerning the factors regulating carotenoid accumulation and localisation in plant storage organs, such as tubers, is lacking. In the present study, the localisation of key carotenoid biosynthetic enzymes was investigated, as one of the unexplored factors that could influence the accumulation of carotenoids in potato tubers. Stable transgenic potato plants were generated by over-expressing β-CAROTENE HYDROXYLASE 2 (CrtRb2) and PHYTOENE SYNTHASE 2 (PSY2) genes, fused to red fluorescent protein (RFP). Gene expression and carotenoid levels were both significantly increased, confirming functionality of the fluorescently tagged proteins. Confocal microscopy studies revealed different sub-organellar localisations of CrtRb2-RFP and PSY2-RFP within amyloplasts. CrtRb2 was detected in small vesicular structures, inside amyloplasts, whereas PSY2 was localised in the stroma of amyloplasts. We conclude that it is important to consider the location of biosynthetic enzymes when engineering the carotenoid metabolic pathway in storage organs such as tubers.

  9. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

  10. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    PubMed

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  11. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    PubMed

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-01-01

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis. PMID:24854441

  12. Meiotic behavior of pollen mother cells in relation to ploidy level of somatic hybrids between Solanum tuberosum and S. chacoense.

    PubMed

    Guo, Xianpu; Xie, Conghua; Cai, Xingkui; Song, Botao; He, Li; Liu, Jun

    2010-11-01

    Potato somatic hybrids obtained by protoplast fusion between Solanum tuberosum (4x) and Solanum chacoense (2x) were investigated for genome stability and meiotic behavior associated with the pollen viability in order to elucidate the mechanism influencing the fertility of the somatic hybrids. The ploidy level detections conducted in 2004 and 2007 demonstrated that 68 out of 108 somatic hybrids had their ploidy level changed to be uniform and euploidy after successive in vitro subcultures, which mainly occurred in octaploids, aneuploids, and mixoploids, while 74% hexaploids were still stable in their genome dosage in 2007. Different types of abnormal meiotic behavior were observed during the development of pollen mother cells (PMCs) including the formation of univalents, multivalents, laggard chromosomes, and chromosomal bridges, as well as triads and polyads. A higher proportion of abnormal meiosis seemed to be accompanied with a genome dosage higher than the hexaploids expected in this study. A significant positive correlation between defective PMCs and the number of small pollen grains and negative correlation between number of small pollen grains and pollen viability strongly suggested that abnormal meiosis could be a causal factor influencing the fertility of the somatic hybrids. The hexaploids with stable genome dosage and a certain level of fertility will have great potential in a potato breeding program.

  13. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries.

    PubMed

    Hirsch, Candice N; Hirsch, Cory D; Felcher, Kimberly; Coombs, Joseph; Zarka, Dan; Van Deynze, Allen; De Jong, Walter; Veilleux, Richard E; Jansky, Shelley; Bethke, Paul; Douches, David S; Buell, C Robin

    2013-06-21

    Cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes, including fresh market, pigmented, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra- and intermarket class crosses and introgressions of wild and cultivated Solanum relatives. To retrospectively explore the effects of potato breeding at the genome level, we used 8303 single-nucleotide polymorphism markers to genotype a 250-line diversity panel composed of wild species, genetic stocks, and cultivated potato lines with release dates ranging from 1857 to 2011. Population structure analysis revealed four subpopulations within the panel, with cultivated potato lines grouping together and separate from wild species and genetic stocks. With pairwise kinship estimates clear separation between potato market classes was observed. Modern breeding efforts have scarcely changed the percentage of heterozygous loci or the frequency of homozygous, single-dose, and duplex loci on a genome level, despite concerted efforts by breeders. In contrast, clear selection in less than 50 years of breeding was observed for alleles in biosynthetic pathways important for market class-specific traits such as pigmentation and carbohydrate composition. Although improvement and diversification for distinct market classes was observed through whole-genome analysis of historic and current potato lines, an increased rate of gain from selection will be required to meet growing global food demands and challenges due to climate change. Understanding the genetic basis of diversification and trait improvement will allow for more rapid genome-guided improvement of potato in future breeding efforts.

  14. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    Nowadays potato (Solanum tuberosum L.) is a more important throughout the world between field crops. As potato is such a potassium demanding crop, it is particularly important that the potassium fertilizers used should be correctly balanced. Applying the adequate quantity of balanced K- fertilizer is the first requirement for achieving optimum yield and doing so will result in potatoes of acceptable quality. Potato potassium nutrition has been studied at the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS)- Experiment Station, Nagyhörcsök (chernozem soil) in a long term field experiment designed to determine NPK- nutrient requirements. The method of the experiment was 43 mixed factorial design with 64 treatments in 2 repetitions with 128 plots. The residual effects of K- levels brought about by build- up fertilization were studied. Potato were planted in 1978. The experimental dates were estimated by multivariate analysis of variance (MANOVA). On the basis of foliar analysis at early flowering about 4.5 to 5.0% K in dry matter proved to be satisfactory for obtaining maximum yield (32.6 t/ha). The yields increased by 22%, 34%, and 38% at 124-140, 141-168 and 169-208 ppm soil AL- K2O rates, respectively. The tubers concentrated much N 19% and less P 81% than potassium. Results for tuber maximum uptake of potassium reached a maximum about 130 days after planting. The improvement of the K supply of the soil increased yield and induced low concentrations of numerous microelements on leaves considered to be important. Key words: Potato (Solanum tuberosum L.), chernozem soil, potassium, yield Introduction Potato is an important food crop, more particularly in the temperate zone, especially in Europe and Asia. Between 1981 and 1995, in spite of an 18% decrease in cultivated area production increased by 13% because the average yield increased from 11.0 to 15.1 t/ha. Potato is a soil nutrients demanding crop

  15. Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14.

    PubMed

    Wendt, Toni; Doohan, Fiona; Mullins, Ewen

    2012-06-01

    Based on the use of Agrobacterium tumefaciens-mediated transformation commodity crop improvement through genetic engineering is the fastest adopted crop technology in the world (James 2010). However, the complexity of the Agrobacterium patent landscape remains a challenge for non-patent holders who wish to generate novel varieties for a commercial purpose. The potential of non-Agrobacterium strains (Transbacter(™)) to modify a plant genome has previously been described. However, they are unlikely to be widely used without significant adjustments in transformation protocols in order to improve their gene transfer efficiencies. In this study we set out to identify alternative bacteria species that could (a) utilize vir genes for genetic transformation and (b) substitute for A. tumefaciens in existing transformation protocols, without a prerequisite for protocol modifications. To this end we isolated a collection (n=751) of plant-associated bacteria from the rhizosphere of commercially grown crops. Based on various screens, including plant transformation with the open-source vector pCAMBIA5105, we identified a strain of the bacterium Ensifer adhaerens with the capacity to transform both Arabidopsis thaliana (0.12%) and potato (mean transformation frequency 35.1%). Thereafter, Ensifer adhaerens was used to generate blight- (causative organism Phytophthora infestans) resistant potato using the Solanum bulbocastanum 'resistance to blight' (RB) gene. Resistant genotypes were confirmed by associated molecular analysis and resistant phenotypes demonstrated by the development of hypersensitive lesions on inoculated leaf tissue post-pathogen inoculation. These data confirm the potential of Ensifer-mediated transformation (EMT) as a novel platform for the high frequency generation of transgenic potato.

  16. In silico insights into protein-protein interactions and folding dynamics of the saposin-like domain of Solanum tuberosum aspartic protease.

    PubMed

    De Moura, Dref C; Bryksa, Brian C; Yada, Rickey Y

    2014-01-01

    The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family. PMID:25188221

  17. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro.

    PubMed

    Ahn, Yeh-Jin; Zimmerman, J Lynn

    2006-01-01

    We have examined the ability of a carrot (Daucus carota L.) heat shock protein gene encoding HSP17.7 (DcHSP17.7) to confer enhanced heat tolerance to potato (Solanum tuberosum L.), a cool-season crop. The DcHSP17.7 gene was fused to a 6XHistidine (His) tag to distinguish the engineered protein from endogenous potato proteins and was introduced into the potato cultivar 'Désirée' under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Western analysis showed that engineered DcHSP17.7 was constitutively, but not abundantly, expressed in transgenic potato lines before heat stress. Leaves from multiple regenerated potato lines that contain the transgene exhibited significantly improved cellular membrane stability at high temperatures, compared with wild-type and vector control plants. Transgenic potato lines also exhibited enhanced tuberization in vitro: under a condition of constant heat stress, at 29 degrees C, nodal sections of the transgenic lines produced larger and heavier microtubers at higher rates, compared to the wild type and vector controls. The dry weight and percentages of microtubers that were longer than 5 mm were up to three times higher in the transgenic lines. Our results suggest that constitutive expression of carrot HSP17.7 can enhance thermotolerance in transgenic potato plants. To our knowledge, this is the first study that shows that the thermotolerance of potato can be enhanced through gene transfer.

  18. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis.

    PubMed

    Gosset, Virginie; Harmel, Nicolas; Göbel, Cornelia; Francis, Frédéric; Haubruge, Eric; Wathelet, Jean-Paul; du Jardin, Patrick; Feussner, Ivo; Fauconnier, Marie-Laure

    2009-01-01

    Plant defensive strategies bring into play blends of compounds dependent on the type of attacker and coming from different synthesis pathways. Interest in the field is mainly focused on volatile organic compounds (VOCs) and jasmonic acid (JA). By contrast, little is known about the oxidized polyunsaturated fatty acids (PUFAs), such as PUFA-hydroperoxides, PUFA-hydroxides, or PUFA-ketones. PUFA-hydroperoxides and their derivatives might be involved in stress response and show antimicrobial activities. Hydroperoxides are also precursors of JA and some volatile compounds. In this paper, the differential biochemical response of a plant against insects with distinct feeding behaviours is characterized not only in terms of VOC signature and JA profile but also in terms of their precursors synthesized through the lipoxygenase (LOX)-pathway at the early stage of the plant response. For this purpose, two leading pests of potato with distinct feeding behaviours were used: the Colorado Potato Beetle (Leptinotarsa decemlineata Say), a chewing herbivore, and the Green Peach Aphid (Myzus persicae Sulzer), a piercing-sucking insect. The volatile signatures identified clearly differ in function with the feeding behaviour of the attacker and the aphid, which causes the smaller damages, triggers the emission of a higher number of volatiles. In addition, 9-LOX products, which are usually associated with defence against pathogens, were exclusively activated by aphid attack. Furthermore, a correlation between volatiles and JA accumulation and the evolution of their precursors was determined. Finally, the role of the insect itself on the plant response after insect infestation was highlighted.

  19. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    PubMed

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.

  20. PG-2, a Potent AMP against Pathogenic Microbial Strains, from Potato (Solanum tuberosum L cv. Gogu Valley) Tubers Not Cytotoxic against Human Cells

    PubMed Central

    Kim, Jin-Young; Gopal, Ramamourthy; Kim, Sang Young; Seo, Chang Ho; Lee, Hyang Burm; Cheong, Hyeonsook; Park, Yoonkyung

    2013-01-01

    In an earlier study, we isolated potamin-1 (PT-1), a 5.6-kDa trypsin-chymotrypsin protease inhibitor, from the tubers of a potato strain (Solanum tuberosum L cv. Gogu Valley). We established that PT-1 strongly inhibits pathogenic microbial strains, but not human bacterial strains, and that its sequence shows 62% homology with a serine protease inhibitor. In the present study, we isolated an antifungal and antibacterial peptide with no cytotoxicity from tubers of the same potato strain. The peptide (peptide-G2, PG-2) was isolated using salt-extraction, ultrafiltration and reverse-phase high performance liquid chromatography (RP-HPLC). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) showed the protein to have a molecular mass of 3228.5 Da, while automated Edman degradation showed the N-terminal sequence of PG-2 to be LVKDNPLDISPKQVQALCTDLVIRCMCCC-. PG-2 exhibited antimicrobial activity against Candida albicans, a human pathogenic yeast strain, and Clavibacter michiganensis subsp. michiganensis, a plant late blight strain. PG-2 also showed antibacterial activity against Staphylococcus aureus, but did not lyse human red blood cells and was thermostable. Overall, these results suggest PG-2 may be a good candidate to serve as a natural antimicrobial agent, agricultural pesticide and/or food additive. PMID:23429275

  1. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance.

    PubMed

    Chen, Lin; Guo, Xianpu; Xie, Conghua; He, Li; Cai, Xingkui; Tian, Lingli; Song, Botao; Liu, Jun

    2013-07-01

    The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.

  2. Effect of Potato (Solanum tuberosum L.) Cropping Systems on Soil and Nutrient Losses Through Runoff in a Humic Nitisol, Kenya

    NASA Astrophysics Data System (ADS)

    Nyawade, Shadrack; Charles, Gachene; Karanja, Nancy; Elmar, Schulte-Geldermann

    2016-04-01

    Soil erosion has been identified as one of the major causes of soil productivity decline in the potato growing areas of East African Highlands. Potato establishes a protective soil cover only at about 45-60 days after planting and does not yield sufficient surface mulch upon harvest which leaves the soil bare at the critical times when rainfall intensities are usually high thus exposes soil to erosion. A field study was carried out using runoff plots during the short and long rainy seasons of 2014/15 respectively at the University of Nairobi Upper Kabete Farm, Kenya. The objectives were to assess the effect of soil surface roughness and potato cropping systems on soil loss and runoff, to determine the effect of erosion on nutrient enrichment ratio and to evaluate the soil organic matter fraction most susceptible to soil erosion. The treatments comprised of Bare Soil (T1); Potato + Garden Pea (Pisum sativa) (T2); Potato + Climbing Bean (Phaseolus vulgaris) (T3); Potato + Dolichos (Lablab purpureus) (T4) and Sole Potato (Solanum tuberosum L.) (T5). The amount of soil loss and runoff recorded in each event differed significantly between treatments (p<0.05) and were consistently highest in T1 and lowest in T4. Mean cumulative soil loss reduced by 6.4, 13.3 and 24.4 t ha-1from T2, T3 and T4 respectively compared to sole potato plots (T5), while mean cumulative runoff reduced by 8.5, 17.1 and 28.3 mm from T2, T3 and T4 respectively when compared with the sole potato plots (T5) indicating that T4 plots provided the most effective cover in reducing soil loss and runoff. Regression analyses revealed that both runoff and soil loss related significantly with surface roughness and percent cover (R2=0.83 and 0.73 respectively, p<0.05). Statistically significant linear dependence of runoff and soil loss on surface roughness and crop cover was found in T4 (p<0.05) indicating that this system was highly effective in minimizing soil loss and runoff. Enrichment ratio was on average

  3. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries.

    PubMed

    Hirsch, Candice N; Hirsch, Cory D; Felcher, Kimberly; Coombs, Joseph; Zarka, Dan; Van Deynze, Allen; De Jong, Walter; Veilleux, Richard E; Jansky, Shelley; Bethke, Paul; Douches, David S; Buell, C Robin

    2013-06-01

    Cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes, including fresh market, pigmented, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra- and intermarket class crosses and introgressions of wild and cultivated Solanum relatives. To retrospectively explore the effects of potato breeding at the genome level, we used 8303 single-nucleotide polymorphism markers to genotype a 250-line diversity panel composed of wild species, genetic stocks, and cultivated potato lines with release dates ranging from 1857 to 2011. Population structure analysis revealed four subpopulations within the panel, with cultivated potato lines grouping together and separate from wild species and genetic stocks. With pairwise kinship estimates clear separation between potato market classes was observed. Modern breeding efforts have scarcely changed the percentage of heterozygous loci or the frequency of homozygous, single-dose, and duplex loci on a genome level, despite concerted efforts by breeders. In contrast, clear selection in less than 50 years of breeding was observed for alleles in biosynthetic pathways important for market class-specific traits such as pigmentation and carbohydrate composition. Although improvement and diversification for distinct market classes was observed through whole-genome analysis of historic and current potato lines, an increased rate of gain from selection will be required to meet growing global food demands and challenges due to climate change. Understanding the genetic basis of diversification and trait improvement will allow for more rapid genome-guided improvement of potato in future breeding efforts. PMID:23589519

  4. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency.

    PubMed

    Liu, Fulai; Shahnazari, Ali; Andersen, Mathias N; Jacobsen, Sven-Erik; Jensen, Christian R

    2006-01-01

    The physiological responses of potato (Solanum tuberosum L. cv. Folva) to partial root-zone drying (PRD) were investigated in potted plants in a greenhouse (GH) and in plants grown in the field under an automatic rain-out-shelter. In the GH, irrigation was applied daily to the whole root system (FI), or to one-half of the root system while the other half was dried, for 9 d. In the field, the plants were drip irrigated either to the whole root system near field capacity (FI) or using 70% water of FI to one side of the roots, and shifted to the other side every 5-10 d (PRD). PRD plants had a similar midday leaf water potential to that of FI, whereas in the GH their root water potential (Psi(r)) was significantly lowered after 5 d. Stomatal conductance (g(s)) was more sensitive to PRD than photosynthesis (A) particularly in the field, leading to greater intrinsic water use efficiency (WUE) (i.e. A/g(s)) in PRD than in FI plants on several days. In PRD, the xylem sap abscisic acid concentration ([ABA](xylem)) increased exponentially with decreasing Psi(r); and the relative [ABA](xylem) (PRD/FI) increased exponentially as the fraction of transpirable soil water (FTSW) in the drying side decreased. In the field, the leaf area index was slightly less in PRD than in FI treatment, while tuber biomass was similar for the two treatments. Compared with FI, PRD treatment saved 30% water and increased crop water use efficiency (WUE) by 59%. Restrictions on leaf area expansion and g(s) by PRD-induced ABA signals might have contributed to reduced water use and increased WUE.

  5. Life-history parameters of the Colorado potato beetle, Leptinotarsa decemlineata, on seven commercial cultivars of potato, Solanum tuberosum.

    PubMed

    Fathi, Seyed Ali Asghar; Fakhr-Taha, Zoha; Razmjou, Jabraeil

    2013-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), is an important pest of potato, Solanum tuberosum L. (Solanales: Solanaceae), crops in the Ardabil region of Iran. In this research, the life-history parameters of L. decemlineata were investigated on seven potato cultivars, namely Agria, Aozonia, Diamant, Cosmus, Kondor, Morene, and Savalan, in a greenhouse at 23 ± 1° C and 55 ± 5% RH under a natural photoperiod. The results indicated that the development time of larvae was longest on Savalan (18.3 days) among the tested potato cultivars. The survival rates (egg to adult) on Savalan and Morene were significantly lower than on the other studied cultivars. L. decemlineata reared on Savalan had the lowest fecundity (286.3 eggs/female) among the tested potato cultivars. The oviposition period of females was significantly shorter on Savalan and Diamant than on Kondor, Aozonia, Morene, Agria, and Cosmus. The values of intrinsic rate of natural increase and population growth rate were lowest on Savalan (0.055 and 1.056, respectively). The generation time and doubling time were significantly longest on Savalan (69.5 and 12.7 days, respectively). Based on these results, it can be concluded that Savalan is the least suitable cultivar for L. decemlineata among the ones tested. These results can be useful in integrated management of L. decemlineata in potato fields. PMID:24794138

  6. The effect of packaging material and storage period on microwave-dried potato (Solanum tuberosum L.) cubes.

    PubMed

    Shakouri, Shahrzad; Ziaolhagh, Hamid Reza; Sharifi-Rad, Javad; Heydari-Majd, Mojtaba; Tajali, Rohallah; Nezarat, Somayeh; Teixeira da Silva, Jaime A

    2015-06-01

    The effect of three packaging materials (transparent biaxially oriented polypropylene laminate (BOPP); semi-transparent BOPP; polyethylene-polyamide (PE-PA) laminate) in three packaging conditions (vacuum, N2, natural atmosphere) and in two temperature treatments (blanching in hot water; steam) on microwave-dried potato (Solanum tuberosum L.; Solanaceae) cubes was studied. After storage for 60 and 120 days, the amount of ascorbic acid (AA), shrinkage and rehydration were determined. Dried potato cubes packaged under N2 atmosphere had the highest rehydration value (3.142 %). Since there is a direct relationship between the amount of water loss and shrinkage, samples packaged in PE-PA laminate packages under vacuum showed 4.947 % less shrinkage than transparent BOPP or semi-transparent BOPP due to low permeability of these packages. Potatoes stored for 120 days resulted in 7.89 % more shrinkage than those stored for 60 days. The least loss in AA occurred in PE-PA laminate packaging. The shelf-life of potato cubes can be increased and their quantitative and qualitative characteristics can be best preserved by package-drying in PE-PA laminate under vacuum conditions. PMID:26028775

  7. The effect of packaging material and storage period on microwave-dried potato (Solanum tuberosum L.) cubes.

    PubMed

    Shakouri, Shahrzad; Ziaolhagh, Hamid Reza; Sharifi-Rad, Javad; Heydari-Majd, Mojtaba; Tajali, Rohallah; Nezarat, Somayeh; Teixeira da Silva, Jaime A

    2015-06-01

    The effect of three packaging materials (transparent biaxially oriented polypropylene laminate (BOPP); semi-transparent BOPP; polyethylene-polyamide (PE-PA) laminate) in three packaging conditions (vacuum, N2, natural atmosphere) and in two temperature treatments (blanching in hot water; steam) on microwave-dried potato (Solanum tuberosum L.; Solanaceae) cubes was studied. After storage for 60 and 120 days, the amount of ascorbic acid (AA), shrinkage and rehydration were determined. Dried potato cubes packaged under N2 atmosphere had the highest rehydration value (3.142 %). Since there is a direct relationship between the amount of water loss and shrinkage, samples packaged in PE-PA laminate packages under vacuum showed 4.947 % less shrinkage than transparent BOPP or semi-transparent BOPP due to low permeability of these packages. Potatoes stored for 120 days resulted in 7.89 % more shrinkage than those stored for 60 days. The least loss in AA occurred in PE-PA laminate packaging. The shelf-life of potato cubes can be increased and their quantitative and qualitative characteristics can be best preserved by package-drying in PE-PA laminate under vacuum conditions.

  8. Life-history parameters of the Colorado potato beetle, Leptinotarsa decemlineata, on seven commercial cultivars of potato, Solanum tuberosum.

    PubMed

    Fathi, Seyed Ali Asghar; Fakhr-Taha, Zoha; Razmjou, Jabraeil

    2013-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), is an important pest of potato, Solanum tuberosum L. (Solanales: Solanaceae), crops in the Ardabil region of Iran. In this research, the life-history parameters of L. decemlineata were investigated on seven potato cultivars, namely Agria, Aozonia, Diamant, Cosmus, Kondor, Morene, and Savalan, in a greenhouse at 23 ± 1° C and 55 ± 5% RH under a natural photoperiod. The results indicated that the development time of larvae was longest on Savalan (18.3 days) among the tested potato cultivars. The survival rates (egg to adult) on Savalan and Morene were significantly lower than on the other studied cultivars. L. decemlineata reared on Savalan had the lowest fecundity (286.3 eggs/female) among the tested potato cultivars. The oviposition period of females was significantly shorter on Savalan and Diamant than on Kondor, Aozonia, Morene, Agria, and Cosmus. The values of intrinsic rate of natural increase and population growth rate were lowest on Savalan (0.055 and 1.056, respectively). The generation time and doubling time were significantly longest on Savalan (69.5 and 12.7 days, respectively). Based on these results, it can be concluded that Savalan is the least suitable cultivar for L. decemlineata among the ones tested. These results can be useful in integrated management of L. decemlineata in potato fields.

  9. Effect of irradiance, sucrose, and CO2 concentration on the growth of potato (Solanum tuberosum L.) in vitro

    NASA Technical Reports Server (NTRS)

    Yorio, Neil C.; Wheeler, Raymond M.; Weigel, Russell C.

    1995-01-01

    Growth measurements were taken of potato plantlets (Solanum tuberosum L.) cvs. Norland (NL), Denali (DN), and Kennebec (KN), grown in vitro. Studies were conducted in a growth chamber, with nodal explants grown for 21 days on Murashige and Skoog salts with either 0, 1, 2, or 3% sucrose and capped with loose-fitted Magenta 2-way caps that allowed approximately 2.25 air exchanges/hour. Plantlets were exposed to either 100 or 300 micro mol/sq m/s photosynthetic photon flux (PPF), and the growth chamber was maintained at either 400 or 4000 micro mol/mol CO2. Regardless of PPF, all cvs. that were grown at 4000 micro mol/mol CO2 showed significant increases in total plantlet dry weight (TDW) and shoot length (SL) when sucrose was omitted from the media, indicating an autotrophic response. At 400 micro mol/mol CO2, all cvs. showed an increase in TDW and SL with increasing sucrose under both PPF levels. Within any sucrose treatment, the highest TDW for all cvs. resulted from 300 micro mol/sq m/s PPF and 4000 micro mol/mol CO2 At 4000 micro mol/mol CO2, TDW showed no further increase with sucrose levels above 1% for cvs. NL and DN at both PPF levels, suggesting that sucrose levels greater than 1% may hinder growth when CO2 enrichment is used.

  10. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.

    PubMed

    Baroja-Fernández, Edurne; Muñoz, Francisco José; Montero, Manuel; Etxeberria, Ed; Sesma, María Teresa; Ovecka, Miroslav; Bahaji, Abdellatif; Ezquer, Ignacio; Li, Jun; Prat, Salomé; Pozueta-Romero, Javier

    2009-09-01

    Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. To determine the impact of SuSy activity in starch metabolism and yield in potato (Solanum tuberosum L.) tubers we measured sugar levels and enzyme activities in tubers of SuSy-overexpressing potato plants grown in greenhouse and open field conditions. We also transcriptionally characterized tubers of SuSy-overexpressing and -antisensed potato plants. SuSy-overexpressing tubers exhibited a substantial increase in starch, UDPglucose and ADPglucose content when compared with controls. Tuber dry weight, starch content per plant and total yield of SuSy-overexpressing tubers increased significantly over those of control plants. In contrast, activities of enzymes directly involved in starch metabolism in SuSy-overexpressing tubers were normal when compared with controls. Transcriptomic analyses using POCI arrays and the MapMan software revealed that changes in SuSy activity affect the expression of genes involved in multiple biological processes, but not that of genes directly involved in starch metabolism. These analyses also revealed a reverse correlation between the expressions of acid invertase and SuSy-encoding genes, indicating that the balance between SuSy- and acid invertase-mediated sucrolytic pathways is a major determinant of starch accumulation in potato tubers. Results presented in this work show that SuSy strongly determines the intracellular levels of UDPglucose, ADPglucose and starch, and total yield in potato tubers. We also show that enhancement of SuSy activity represents a useful strategy for increasing starch accumulation and yield in potato tubers.

  11. Molecular characterization of StCDPK1, a calcium-dependent protein kinase from Solanum tuberosum that is induced at the onset of tuber development.

    PubMed

    Raíces, M; Chico, J M; Téllez-Iñón, M T; Ulloa, R M

    2001-07-01

    We isolated a full-length cDNA clone (StCDPK1) encoding a calcium-dependent protein kinase (CDPK) by screening a stolon tip cDNA library from potato plants (Solanum tuberosum L.). The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family except in the N-terminal region. As described for other CDPKs, StCDPK1 has a putative N-terminal myristoylation sequence. A coupled transcription/translation system was used to demonstrate that this post-translational modification occurs in vitro. The behaviour of the myristoylated form of StCDPK1 during its purification on a phenyl-Sepharose column mimics that of the endogenous potato enzyme suggesting that this modification occurs in vivo. In addition, a possible palmitoylation site is present in StCDPK1. Southern blot analysis suggests that more than one CDPK isoform is present in potato plants. Northern blot analysis of steady-state mRNA levels for StCDPK1 in different tissues of potato plants shows that the transcript is differentially expressed in tuberizing stolons. The transcript appears in the early steps of tuber formation before the induction of other genes, such as Pin2 and patatin. This result parallels previous data on CDPK activity in potato plants which was highest at the beginning of tuberization. Our results suggest that StCDPK1 is developmentally regulated. The early and transient expression of this CDPK isoform in the tuberization process suggests that this kinase could trigger a cascade of phosphorylation events involved in tuber induction.

  12. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum x S. sparsipilum located on chromosome I.

    PubMed

    Sørensen, Kirsten Kørup; Kirk, Hanne Grethe; Olsson, Kerstin; Labouriau, Rodrigo; Christiansen, Jørgen

    2008-06-01

    New potato (Solanum tuberosum) varieties are required to contain low levels of the toxic glycoalkaloids and a potential approach to obtain this is through marker-assisted selection (MAS). Before applying MAS it is necessary to map quantitative trait loci (QTLs) for glycoalkaloid content in potato tubers and identify markers that link tightly to this trait. In this study, tubers of a dihaploid BC(1) population, originating from a cross between 90-HAF-01 (S. tuberosum(1)) and 90-HAG-15 (S. tuberosum(2) x S. sparsipilum), were evaluated for content of alpha-solanine and alpha-chaconine (total glycoalkaloid, TGA) after field trials. In addition, tubers were assayed for TGA content after exposure to light. A detailed analysis of segregation patterns indicated that a major QTL is responsible for the TGA content in tubers of this potato population. One highly significant QTL was mapped to chromosome I of the HAG and the HAF parent. Quantitative trait loci for glycoalkaloid production in foliage of different Solanum species have previously been mapped to this chromosome. In the present research, QTLs for alpha-solanine and alpha-chaconine content were mapped to the same location as for TGA content. Similar results were observed for tubers exposed to light. The simple sequence repeat marker STM5136 was closely linked to the identified QTL.

  13. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.)

    PubMed Central

    Hanif, Muhammad Kashif; Hameed, Sohail; Imran, Asma; Naqqash, Tahir; Shahid, Muhammad; Van Elsas, Jan D.

    2015-01-01

    Phosphate-solubilizing and phytate-mineralizing bacteria collectively termed as phosphobacteria provide a sustainable approach for managing P-deficiency in agricultural soils by supplying inexpensive phosphate to plants. A phosphobacterium Bacillus subtilis strain KPS-11 (Genbank accession no. KP006655) was isolated from potato (Solanum tuberosum L.) rhizosphere and characterized for potato plant growth promoting potential. The strain utilized both Ca-phosphate and Na-phytate in vitro and produced 6.48 μg mL-1 indole-3-acetic acid in tryptophan supplemented medium. P-solubilization after 240 h was 66.4 μg mL-1 alongwith the production of 19.3 μg mL-1 gluconic acid and 5.3 μg mL-1 malic acid. The extracellular phytase activity was higher (4.3 × 10-10 kat mg-1 protein) than the cell-associated phytase activity (1.6 × 10-10 kat mg-1 protein). B. subtilis strain KPS-11 utilized 40 carbon sources and showed resistance against 20 chemicals in GENIII micro-plate system demonstrating its metabolic potential. Phytase-encoding gene β-propeller (BPP) showed 92% amino acid similarity to BPP from B. subtilis (accession no.WP_014114128.1) and 83% structural similarity to BPP from B. subtilis (accession no 3AMR_A). Potato inoculation with B. subtilis strain KPS-11 increased the root/shoot length and root/shoot weight of potato as compared to non-inoculated control plants. Moreover, rifampicin-resistant derivative of KPS-11 were able to survive in the rhizosphere and on the roots of potato up to 60 days showing its colonization potential. The study indicates that B. subtilis strain KPS-11 can be a potential candidate for development of potato inoculum in P-deficient soils. PMID:26106383

  14. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.).

    PubMed

    Hanif, Muhammad Kashif; Hameed, Sohail; Imran, Asma; Naqqash, Tahir; Shahid, Muhammad; Van Elsas, Jan D

    2015-01-01

    Phosphate-solubilizing and phytate-mineralizing bacteria collectively termed as phosphobacteria provide a sustainable approach for managing P-deficiency in agricultural soils by supplying inexpensive phosphate to plants. A phosphobacterium Bacillus subtilis strain KPS-11 (Genbank accession no. KP006655) was isolated from potato (Solanum tuberosum L.) rhizosphere and characterized for potato plant growth promoting potential. The strain utilized both Ca-phosphate and Na-phytate in vitro and produced 6.48 μg mL(-1) indole-3-acetic acid in tryptophan supplemented medium. P-solubilization after 240 h was 66.4 μg mL(-1) alongwith the production of 19.3 μg mL(-1) gluconic acid and 5.3 μg mL(-1) malic acid. The extracellular phytase activity was higher (4.3 × 10(-10) kat mg(-1) protein) than the cell-associated phytase activity (1.6 × 10(-10) kat mg(-1) protein). B. subtilis strain KPS-11 utilized 40 carbon sources and showed resistance against 20 chemicals in GENIII micro-plate system demonstrating its metabolic potential. Phytase-encoding gene β-propeller (BPP) showed 92% amino acid similarity to BPP from B. subtilis (accession no.WP_014114128.1) and 83% structural similarity to BPP from B. subtilis (accession no 3AMR_A). Potato inoculation with B. subtilis strain KPS-11 increased the root/shoot length and root/shoot weight of potato as compared to non-inoculated control plants. Moreover, rifampicin-resistant derivative of KPS-11 were able to survive in the rhizosphere and on the roots of potato up to 60 days showing its colonization potential. The study indicates that B. subtilis strain KPS-11 can be a potential candidate for development of potato inoculum in P-deficient soils.

  15. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells.

    PubMed

    Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong

    2014-01-01

    Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually.

  16. Detection of a quantitative trait locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum).

    PubMed

    Bradshaw, John E; Hackett, Christine A; Lowe, Robert; McLean, Karen; Stewart, Helen E; Tierney, Irene; Vilaro, Marco D R; Bryan, Glenn J

    2006-09-01

    Linkage analysis, Kruskal-Wallis analysis, interval mapping and graphical genotyping were performed on a potato diploid backcross family comprising 120 clones segregating for resistance to late blight. A hybrid between the Solanum tuberosum dihaploid clone PDH247 and the long-day-adapted S. phureja clone DB226(70) had been crossed to DB226(70) to produce the backcross family. Eighteen AFLP primer combinations provided 186 and 123 informative maternal and paternal markers respectively, with 63 markers in common to both parents. Eleven microsatellite (SSR) markers proved useful for identifying chromosomes. Linkage maps of both backcross parents were constructed. The results of a Kruskal-Wallis analysis, interval mapping and graphical genotyping were all consistent with a QTL or QTLs for blight resistance between two AFLP markers 30 cM apart on chromosome 4, which was identified by a microsatellite marker. The simplest explanation of the results is a single QTL with an allele from the dihaploid parent conferring resistance to race 1, 4 of P. infestans in the foliage in the glasshouse and to race 1, 2, 3, 4, 6, 7 in the foliage in the field and in tubers from glasshouse raised plants. The QTL was of large effect, and explained 78 and 51% of the variation in phenotypic scores for foliage blight in the glasshouse and field respectively, as well as 27% of the variation in tuber blight. Graphical genotyping and the differences in blight scores between the parental clones showed that all of the foliage blight resistance is accounted for by chromosome 4, whereas undetected QTLs for tuber resistance probably exist on other chromosomes. Graphical genotyping also explained the lack of precision in mapping the QTL(s) in terms of lack of appropriate recombinant chromosomes.

  17. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.)

    PubMed Central

    Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2010-01-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146–152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1472-9) contains supplementary material, which is available to authorized users. PMID:21049265

  18. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)-potato (Solanum tuberosum L.) rotation.

    PubMed

    Haile-Mariam, S; Collins, H P; Higgins, S S

    2008-01-01

    Intensive agriculture and increased N fertilizer use have contributed to elevated emissions of the greenhouse gases carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In this study, the exchange of CO(2), N(2)O, and CH(4) between a Quincy fine sand (mixed, mesic Xeric Torripsamments) soil and atmosphere was measured in a sweet corn (Zea mays L.)-sweet corn-potato (Solanum tuberosum L.) rotation during the 2005 and 2006 growing seasons under irrigation in eastern Washington. Gas samples were collected using static chambers installed in the second-year sweet corn and potato plots under conventional tillage or reduced tillage. Total emissions of CO(2)-C from sweet corn integrated over the season were 2071 and 1684 kg CO(2)-C ha(-1) for the 2005 and 2006 growing seasons, respectively. For the same period, CO(2) emissions from potato plots were 1571 and 1256 kg of CO(2)-C ha(-1). Cumulative CO(2) fluxes from sweet corn and potato fields were 17 and 13 times higher, respectively, than adjacent non-irrigated, native shrub steppe vegetation (NV). Nitrous oxide losses accounted for 0.5% (0.55 kg N ha(-1)) of the applied fertilizer (112 kg N ha(-1)) in corn and 0.3% (0.59 kg N ha(-1)) of the 224 kg N ha(-1) applied fertilizer. Sweet corn and potato plots, on average, absorbed 1.7 g CH(4)-C ha(-1) d(-1) and 2.3 g CH(4)-C ha(-1) d(-1), respectively. The global warming potential contributions from NV, corn, and potato fields were 459, 7843, and 6028 kg CO(2)-equivalents ha(-1), respectively, for the 2005 growing season and were 14% lower in 2006.

  19. Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization.

    PubMed

    Järvinen, Riikka; Silvestre, Armando J D; Holopainen, Ulla; Kaimainen, Mika; Nyyssölä, Antti; Gil, Ana M; Pascoal Neto, Carlos; Lehtinen, Pekka; Buchert, Johanna; Kallio, Heikki

    2009-10-14

    Chemical and enzymatic depolymerizations of suberin isolated from potato peel ( Solanum tuberosum var. Nikola) were performed under various conditions. Enzymatic hydrolysis with cutinase CcCut1 and chemical methanolysis with NaOMe of suberin yielded monomeric fragments, which were identified as TMS derivatives with GC-MS and GC-FID. The solid, hydrolysis-resistant residues were analyzed with solid state (13)C CPMAS NMR, FT-IR, and microscopic methods. Methanolysis released more CHCl(3)-soluble material than the cutinase treatment when determined gravimetrically. Interestingly, cutinase-catalyzed hydrolysis produced higher proportions of aliphatic monomers than hydrolysis with the NaOMe procedure when analyzed by GC in the form of TMS derivatives. Monomers released by the two methods were mainly alpha,omega-dioic acids and omega-hydroxy acids, but the ratios of the detected monomers were different, at 40.0 and 32.7% for methanolysis and 64.6 and 8.2% for cutinase, respectively. Thus, cutinase CcCut1 showed higher activity toward ester bonds of alpha,omega-dioic acids than toward the bonds of omega-hydroxy acids. The most abundant monomeric compounds were octadec-9-ene-1,18-dioic acid and 18-hydroxyoctadec-9-enoic acid, which accounted for ca. 37 and 28% of all monomers, respectively. The results of the analyses of the chemical and enzymatic hydrolysis products were supported by the spectroscopic analyses with FT-IR and CPMAS (13)C NMR together with the analysis of the microstructures of the hydrolysis residues by light and confocal microscopy. PMID:19739639

  20. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)-potato (Solanum tuberosum L.) rotation.

    PubMed

    Haile-Mariam, S; Collins, H P; Higgins, S S

    2008-01-01

    Intensive agriculture and increased N fertilizer use have contributed to elevated emissions of the greenhouse gases carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In this study, the exchange of CO(2), N(2)O, and CH(4) between a Quincy fine sand (mixed, mesic Xeric Torripsamments) soil and atmosphere was measured in a sweet corn (Zea mays L.)-sweet corn-potato (Solanum tuberosum L.) rotation during the 2005 and 2006 growing seasons under irrigation in eastern Washington. Gas samples were collected using static chambers installed in the second-year sweet corn and potato plots under conventional tillage or reduced tillage. Total emissions of CO(2)-C from sweet corn integrated over the season were 2071 and 1684 kg CO(2)-C ha(-1) for the 2005 and 2006 growing seasons, respectively. For the same period, CO(2) emissions from potato plots were 1571 and 1256 kg of CO(2)-C ha(-1). Cumulative CO(2) fluxes from sweet corn and potato fields were 17 and 13 times higher, respectively, than adjacent non-irrigated, native shrub steppe vegetation (NV). Nitrous oxide losses accounted for 0.5% (0.55 kg N ha(-1)) of the applied fertilizer (112 kg N ha(-1)) in corn and 0.3% (0.59 kg N ha(-1)) of the 224 kg N ha(-1) applied fertilizer. Sweet corn and potato plots, on average, absorbed 1.7 g CH(4)-C ha(-1) d(-1) and 2.3 g CH(4)-C ha(-1) d(-1), respectively. The global warming potential contributions from NV, corn, and potato fields were 459, 7843, and 6028 kg CO(2)-equivalents ha(-1), respectively, for the 2005 growing season and were 14% lower in 2006. PMID:18453396

  1. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations.

    PubMed

    Chen, Jie; Zhang, Chi; Liu, Qingfeng; Shao, Xiayan; Feng, Chengcheng; Shen, Yehong; Zhang, Qizhi; Jiang, Xinguo

    2012-02-01

    Solanum tuberosum lectin (STL) conjugated poly (DL-lactic-co- glycolic acid) (PLGA) nanoparticle (STL-NP) was constructed in this paper as a novel biodegradable nose-to-brain drug delivery system. The in vitro uptake study showed markedly enhanced endocytosis of STL-NP compared to unmodified PLGA nanoparticles (NP) in Calu-3 cells and significant inhibition of uptake in the presence of inhibitor sugar (chitin hydrolysate). Following intranasal administration, coumarin-6 carried by STL-NP was rapidly absorbed into blood and brain. The AUC((0→12 h)) of coumarin-6 in blood, olfactory bulb, cerebrum and cerebellum were about 0.77-, 1.48-, 1.89- and 1.45-fold of those of NP, respectively (p < 0.05). STL-NP demonstrated 1.89-2.45 times (p < 0.01) higher brain targeting efficiency in different brain tissues than unmodified NP. Enhanced accumulation of STL-NP in the brain was also observed by near infrared fluorescence probe image following intranasal administration. The fluorescence signal of STL-NP appeared in olfactory bulb, cerebrum and brainstem early at 0.25 h. The signal in olfactory bulb decreased gradually after 2 h, while the obvious signal in brainstem, cerebrum and cerebellum lasted for more than 8 h. The STL-NP safety experiments showed mild cytotoxicity and negligible cilia irritation. These intriguing in vitro and in vivo results suggest that STL-NP might serve as a promising brain drug delivery system.

  2. Mitochondrial protein import: modification of sulfhydryl groups of the inner mitochondrial membrane import machinery in Solanum tuberosum inhibits protein import.

    PubMed

    von Stedingk, E M; Pavlov, P F; Grinkevich, V A; Glaser, E

    1997-12-01

    Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 beta subunit of the ATP synthase (pF1 beta) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondrial than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 beta with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 beta into intact mitochondria. Import of pF1 beta through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.

  3. Role for Ca/sup 2 +/ in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. [Solanum tuberosum

    SciTech Connect

    Zook, M.N.; Rush, J.S.; Kuc, J.A.

    1987-06-01

    Calcium and strontium ions enhanced rishitin but not lubimin accumulation in tuber tissue of potato (Solanum tuberosum cv Kennebec) treated with arachidonic acid (AA). The same cations in the presence of poly-L-lysine (PL) enhanced the accumulation of lubimin more than rishitin. In contrast, Mg/sup 2 +/ did not affect AA-elicited rishitin and lubimin accumulation and inhibited the accumulation of these compounds following application of PL. AA-elicited potato tuber tissue remained sensitive to the stimulatory effects of Ca/sup 2 +/ and Sr/sup 2 +/ up to 24 h after application of AA, but PL-elicited tuber tissue was sensitive to Ca/sup 2 +/ and Sr/sup 2 +/ for only 6 hours after PL application. Etyleneglycol-bis (..beta..-aminoethyl ether)-N,N'-tetraacetic acid and La/sup 3 +/ both inhibited rishitin and lubimin accumulation elicited by AA. The inhibition by either agent was overcome by the addition of Ca/sup 2 +/. Calcium was more effective in overcoming lanthanum inhibition when applied simultaneously than when applied 12 hours later. Lanthanum was only effective in inhibiting rishitin and lubimin accumulation when applied within 3 hours of the application of AA. Inhibition of phytoalexin accumulation was greater when La/sup 3 +/ was greater when La/sup 3 +/ was applied simultaneously with AA compared to La/sup 3 +/ application after AA aplication to discs. These observations suggest that the mobilization of calcium may play a central regulatory role in the expression of phytoalexin accumulation following elicitation in potato tissue.

  4. Concentration levels of selected essential and toxic metals in potato (Solanum tuberosum L.) of West Gojjam, Amhara Region, Ethiopia.

    PubMed

    Tadesse, Berhe; Atlabachew, Minaleshewa; Mekonnen, Kebede Nigussie

    2015-01-01

    Potato (Solanum tuberosum L.) is one of the most widely used as a staple food crop for human diets. It is an excellent source of minerals. In this study, contents of Ca, Mg, Fe, Zn, Cd and Pb in potato cultivars cultivated in Yilmana Densa, and Mecha districts of the West Gojjam zone, Ethiopia were determined by flame atomic absorption spectrometry. A 0.50 g oven-dried potato sample was digested using a mixture of 10 mL HNO3:HClO4 (4:1 v/v) at 120 °C for 3 h. The concentration ranges in dry weight basis in decreasing order were: Mg (420-438 mg/kg) > Ca (176-254 mg/kg) > Fe (27.3-90.4 mg/kg) > Zn (20.6-77.7 mg/kg) > (2.00-17.4 mg/kg) for Pb. The toxic heavy metal Cd was below the limit of detection in all the analyzed samples (<0.1 mg/kg). The Mg found in highest contents while Fe was the most abundant microelement. The Cd was found below the provisional maximum tolerable daily intake of WHO/FAO and European Commission (EC) while Pb was above the limit. A wide range of variations was observed in the metal contents of potato cultivars collected from the two districts. Potato cultivars grown in West Gojam zone of Ethiopian could contribute a substantial amount of Fe and Zn together with the major elements, Ca and Mg to the individual's daily dietary needs if consumed on a regular basis.

  5. The development of a high-yield recombinant protein bioreactor through RNAi induced knockdown of ATP/ADP transporter in Solanum tuberosum.

    PubMed

    Tremblay, Reynald; Diao, Hong; Hüner, Norm; Jevnikar, Anthony M; Ma, Shengwu

    2011-10-20

    There is an increased need for high-yield protein production platforms to meet growing demand. Tuber-based production in Solanum tuberosum offers several advantages, including high biomass yield, although protein concentration is typically low. In this work, we investigated the question whether minor interruption of starch biosynthesis can have a positive effect on tuber protein content and/or tuber biomass, as previous work suggested that partial obstruction of starch synthesis had variable effects on tuber yield. To this end, we used a RNAi approach to knock down ATP/ADP transporter and obtained a large number of transgenic lines for screening of lines with improved tuber protein content and/or tuber biomass. The initial screening was based on tuber biomass because of its relative simplicity. We identified a line, riAATP1-10, with minor (less than 15%) reduction in starch, that had a nearly 30% increase in biomass compared to wild-type, producing both more and larger tubers with altered morphological features compared to wild-type. riAATP1-10 tubers have a higher concentration of soluble protein compared to wild-type tubers, with nearly 50% more soluble protein. We assessed the suitability of this line as a new bioreactor by expressing a human scFv, reaching over 0.5% of total soluble protein, a 2-fold increase over the highest accumulating line in a wild-type background. Together with increased biomass and increased levels in total protein content, foreign protein expression in riAATP1-10 line would translate into a nearly 4-fold increase in recombinant protein yield per plant. Our results indicate that riAATP1-10 line provides an improved expression system for production of foreign proteins.

  6. Solanum tuberosum L. cv Hongyoung extract inhibits 2,4‑dinitrochlorobenzene‑induced atopic dermatitis in NC/Nga mice.

    PubMed

    Kang, Myung Ah; Choung, Se-Young

    2016-10-01

    Solanum tuberosum L. cv Hongyoung (SH) is a widely consumed anthocyanin-rich food and medicinal plant, which possesses anti‑inflammatory and anti‑allergic activities. The present study aimed to examine the inhibitory effects of SH extract on atopic dermatitis (AD)‑like skin lesions induced by the topical application of 2,4‑dinitrochlorobenzene (DNCB) in NC/Nga mice. SH extract was orally administered to the DNCB‑treated NC/Nga mice. The anti‑AD effects of SH extract were examined by measuring symptom severity; ear thickness; scratching behavior; serum levels of immunoglobulin (Ig)E; T‑helper (Th)1, Th2 and Th17 cytokine levels in the spleen; mRNA expression levels of inflammatory cytokines and chemokines; and tissue infiltration of inflammatory cells. The results demonstrated that SH extract inhibited the development of AD‑like lesions, and reduced IgE levels and the production of cytokines. Furthermore, SH extract significantly suppressed the expression of AD‑associated mRNAs in lesional skin. Histological alterations in the AD‑like lesions were visualized using hematoxylin and eosin, and toluidine blue staining in the DNCB‑treated group; the alterations were attenuated following SH treatment. In addition, thickening of the epidermis and accumulation of inflammatory cells in the DNCB‑treated mice were suppressed by SH treatment. These results suggested that SH extract may suppress the development of AD symptoms through modulation of the Th1 and Th2 responses. PMID:27510042

  7. Comparative Analysis of Short- and Long-Term Changes in Gene Expression Caused by Low Water Potential in Potato (Solanum tuberosum) Cell-Suspension Cultures.

    PubMed

    Leone, A.; Costa, A.; Tucci, M.; Grillo, S.

    1994-10-01

    To dissect the cellular response to water stress and compare changes induced as a generalized response with those involved in tolerance/acclimation mechanisms, we analyzed changes in two-dimensional electrophoretic patterns of in vivo [35S]methionine-labeled polypeptides of cultured potato (Solanum tuberosum) cells after gradual and long exposure to polyethylene glycol (PEG)- mediated low water potential versus those induced in cells abruptly exposed to the same stress intensity. Protein synthesis was not inhibited by gradual stress imposition, and the expression of 17 proteins was induced in adapted cells. Some polypeptides were inducible under mild stress conditions (5% PEG) and accumulated further when cells were exposed to a higher stress intensity (10 and 20% PEG). The synthesis of another set of polypeptides was up-regulated only when more severe water-stress conditions were applied, suggesting that plant cells were able to monitor different levels of stress intensity and modulate gene expression accordingly. In contrast, in potato cells abruptly exposed to 20% PEG, protein synthesis was strongly inhibited. Nevertheless, a large set of polypeptides was identified whose expression was increased. Most of these polypeptides were not induced in adapted cells, but many of them were common to those observed in abscisic acid (ABA)-treated cells. These data, along with the finding that cellular ABA content increased in PEG-shocked cells but not in PEG-adapted cells, suggested that this hormone is mainly involved in the rapid response to stress rather than long-term adaptation. A further group of proteins included those induced after long exposure to both water stress and shock. Western blot analysis revealed that osmotin was one protein belonging to this common group. This class may represent induced proteins that accumulate specifically in response to low water potential and that are putatively involved in the maintenance of cellular homeostasis under prolonged

  8. Characterization of StPPI1, a proton pump interactor from Solanum tuberosum L. that is up-regulated during tuber development and by abiotic stress.

    PubMed

    Muñiz García, María Noelia; País, Silvia Marina; Téllez-Iñón, María Teresa; Capiati, Daniela Andrea

    2011-04-01

    Plasma membrane proton pumps (PM H(+)-ATPases) are involved in several physiological processes, such as growth and development, and abiotic stress responses. The major regulators of the PM H(+)-ATPases are proteins of the 14-3-3 family, which stimulate its activity. In addition, a novel interaction partner of the AHA1 PM H(+)-ATPase, named PPI1 (proton pump interactor, isoform 1), was identified in Arabidopsis thaliana. This protein stimulates the activity of the proton pump in vitro. In this work, we report the characterization of an A. thaliana PPI1 homolog in potato (Solanum tuberosum L.) named StPPI1. The full-length coding sequence of StPPI1 was obtained. The open reading frame (ORF) encodes a protein of 629 amino acids showing 50% identity with A. thaliana PPI1 protein. The StPPI1 ORF is divided into seven exons split by six introns. Southern blot analysis suggests that StPPI1 belongs to a family of related genes. Recombinant StPPI1 stimulates H(+)-ATPase activity in vitro. Basal levels of StPPI1 transcripts are observed in all tissues, however, StPPI1 expression is higher in proliferative regions (shoot apex and flower buds), flowers and leaves than in shoots and roots. StPPI1 mRNA levels significantly increase during tuber development. StPPI1 is induced by salt stress and cold. Drought and mechanical wounding slightly increase StPPI1 transcript levels. In addition, the expression of SlPPI1, the tomato homolog of StPPI1, was determined under adverse environmental conditions in tomato plants. SlPPI1 mRNA levels are increased by drought and cold, but are unaffected by salt stress. Mechanical wounding slightly increases SlPPI1 expression.

  9. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    PubMed

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-10-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979

  10. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    PubMed

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown.

  11. Characterization of StPPI1, a proton pump interactor from Solanum tuberosum L. that is up-regulated during tuber development and by abiotic stress.

    PubMed

    Muñiz García, María Noelia; País, Silvia Marina; Téllez-Iñón, María Teresa; Capiati, Daniela Andrea

    2011-04-01

    Plasma membrane proton pumps (PM H(+)-ATPases) are involved in several physiological processes, such as growth and development, and abiotic stress responses. The major regulators of the PM H(+)-ATPases are proteins of the 14-3-3 family, which stimulate its activity. In addition, a novel interaction partner of the AHA1 PM H(+)-ATPase, named PPI1 (proton pump interactor, isoform 1), was identified in Arabidopsis thaliana. This protein stimulates the activity of the proton pump in vitro. In this work, we report the characterization of an A. thaliana PPI1 homolog in potato (Solanum tuberosum L.) named StPPI1. The full-length coding sequence of StPPI1 was obtained. The open reading frame (ORF) encodes a protein of 629 amino acids showing 50% identity with A. thaliana PPI1 protein. The StPPI1 ORF is divided into seven exons split by six introns. Southern blot analysis suggests that StPPI1 belongs to a family of related genes. Recombinant StPPI1 stimulates H(+)-ATPase activity in vitro. Basal levels of StPPI1 transcripts are observed in all tissues, however, StPPI1 expression is higher in proliferative regions (shoot apex and flower buds), flowers and leaves than in shoots and roots. StPPI1 mRNA levels significantly increase during tuber development. StPPI1 is induced by salt stress and cold. Drought and mechanical wounding slightly increase StPPI1 transcript levels. In addition, the expression of SlPPI1, the tomato homolog of StPPI1, was determined under adverse environmental conditions in tomato plants. SlPPI1 mRNA levels are increased by drought and cold, but are unaffected by salt stress. Mechanical wounding slightly increases SlPPI1 expression. PMID:21153662

  12. Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively different potatoes Solanum tuberosum L.

    PubMed

    Karlsson, Miriam Frida; Birgersson, Göran; Witzgall, Peter; Lekfeldt, Jonas Duus Stevens; Nimal Punyasiri, P A; Bengtsson, Marie

    2013-01-01

    Guatemalan potato moth, Tecia solanivora, lay eggs in the soil nearby potato Solanum spp. and larvae feed on the tubers. We investigated the oviposition behaviour of T. solanivora females and the survival of larval offspring on healthy vs. stressed, i.e. light exposed and/or damaged potato tubers. In choice tests, females laid significantly more eggs in response to potato odour of healthy tubers and female oviposition preference correlated with higher larval survival. Survival of larvae was negatively correlated with the tuber content of the steroid glycoalkaloids α-solanine and α-chaconine: healthy potatoes contained lower amounts than stressed tubers, ranging from 25 to 500 μg g⁻¹ and from 30 to 600 μg g⁻¹, respectively. Analysis of volatile compounds emitted by potato tubers revealed that stressed tubers could clearly be distinguished from healthy tubers by the composition of their volatile profiles. Compounds that contributed to this difference were e.g. decanal, nonanal, isopropyl myristate, phenylacetaldehyde, benzothiazole, heptadecane, octadecane, myristicin, E,E-α-farnesene and verbenone. Oviposition assays, when female moths were not in contact with the tubers, clearly demonstrated that volatiles guide the females to lay fewer eggs on stressed tubers that are of inferior quality for the larvae. We propose that volatiles, such as sesquiterpenes and aldehydes, mediate oviposition behaviour and are correlated with biosynthetically related, non-volatile compounds, such as steroidal glycoalkaloids, which influence larval survival. We conclude that the oviposition response and larval survival of T. solanivora on healthy vs. stressed tubers supports the preference performance hypothesis for insect herbivores.

  13. [Changes of gene expression in Solanum tuberosum L. as a result of transgenes].

    PubMed

    Totskii, V N; D'iachenko, L F; Toptikov, V A; Miros', S L; Polodienko, O B

    2001-01-01

    Potato plants of various cultivars, transformed using Agrobacterium tumefaciens with pGV941 plasmid, differed from control plants in glyphosate herbicide tolerance, tryptophane content, intensity of callusogenesis, microtuber formation in vitro and multimolecular forms of peroxidase (EC 1.11.1.7) and superoxide dismutase (EC 1.15.1.11). The results demonstrate the influence of alien DNA on structural gene expression in transgenic plants.

  14. Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions.

    PubMed

    Kumari, Sumita; Agrawal, Madhoolika

    2014-03-01

    The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future.

  15. Accumulation and localization of cadmium in potato (Solanum tuberosum) under different soil Cd levels.

    PubMed

    Chen, Zhifan; Zhao, Ye; Gu, Lei; Wang, Shuifeng; Li, Yongliang; Dong, Fangli

    2014-06-01

    Phytoavailability and uptake mechanism of Cd in edible plant tissues grown on metal polluted agricultural soils has become a growing concern worldwide. Uptake, transport, accumulation and localization of cadmium in potato organs under different soil Cd levels were investigated using inductively-coupled plasma mass spectrometry and energy dispersive X-ray microanalysis. Results indicated that Cd contents in potato organs increased with increasing soil Cd concentrations, and the order of Cd contents in different organs was leaves > stems/roots > tubers. Root-to-stem Cd translocation coefficients ranged from 0.89 to 1.81. Cd localization in potato tissues suggested that leaves and stems should be the main compartment of Cd storage and uptake. Although low concentrations of Cd migrated from the root to tuber, Cd accumulation in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be closely evaluated due to its potential to present health risks.

  16. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum.

    PubMed

    Al-Babili, S; Hugueney, P; Schledz, M; Welsch, R; Frohnmeyer, H; Laule, O; Beyer, P

    2000-11-24

    The polymerase chain reaction analysis of potato plants, transformed with capsanthin capsorubin synthase ccs, revealed the presence of a highly related gene. The cloned cDNA showed at the protein level 89.6% identity to CCS. This suggested that the novel enzyme catalyzes a mechanistically similar reaction. Such a reaction is represented by neoxanthin synthase (NXS), forming the xanthophyll neoxanthin, a direct substrate for abscisic acid formation. The function of the novel enzyme could be proven by transient expression in plant protoplasts and high performance liquid chromatography analysis. The cloned NXS was imported in vitro into plastids, the compartment of carotenoid biosynthesis.

  17. A case for crop wild relative preservation and utilization in potato (Solanum tuberosum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental degradation and climate change pose a threat to global food security. Crop wild relatives (CWR) provide a critical resource to address food security needs by providing genetic diversity for crop improvement, leading to increased plasticity and productivity. However, plant breeders have...

  18. Pyramiding rice cystatin genes (OCI and OCII) in potato (Solanum tuberosum L cv. Jelica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the major advances being used in current biotechnology to improve disease and pest control is the introduction of more than one beneficial gene into transgenic plants. Proteinase inhibitors oryzacystatins I and II (OCI and OCII) show potential in controlling pests that utilize cysteine prote...

  19. Isolation and functional characterization of a stolon specific promoter from potato (Solanum tuberosum L.).

    PubMed

    Trindade, Luisa M; Horvath, Beatrix; Bachem, Christian; Jacobsen, Evert; Visser, Richard G F

    2003-01-16

    In the search for time- and tissue-specific promoters an RNA fingerprinting technique called cDNA-AFLP was used. A transcript derived fragment (TDF511) was isolated which showed high similarity to alcohol dehydrogenases. The gene corresponding to this TDF, named Stgan, is likely to be involved in biosynthesis or breakdown of compounds affecting gibberellic acid (GA) levels in the plant [Plant J. 25(6) (2001) 595]. In this article the isolation and characterization of a Stgan promoter region is reported. The promoter region of this gene was fused to a reporter gene encoding beta-glucuronidase (GUS) and introduced in potato plants. GUS staining was detected uniquely in stolon tips and nodes. RNA in situ hybridization experiments revealed that this gene was specifically expressed in parenchyma cells, in the stolon cortex. Comparison of this promoter sequence with several promoter databases resulted in the identification of several potential binding sites for transcription factors. From the in vitro-culture experiments Stgan transcription appears to be induced by long days, sucrose and different hormones such as gibberellic acid, ancymidol, ethylene and cytokinins.

  20. Beneficial ‘unintended effects’ of a cereal cystatin in transgenic lines of potato, Solanum tuberosum

    PubMed Central

    2012-01-01

    Background Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. Results The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. Conclusions These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance. PMID:23116303

  1. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  2. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

    PubMed

    Butler, Nathaniel M; Baltes, Nicholas J; Voytas, Daniel F; Douches, David S

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species.

  3. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

    PubMed

    Butler, Nathaniel M; Baltes, Nicholas J; Voytas, Daniel F; Douches, David S

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  4. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans.

    PubMed

    Knipp, Gabriele; Honermeier, Bernd

    2006-03-01

    This study aimed to investigate the effect of water stress on the accumulation of proline in the leaves of transgenic potato lines generating fructans. The results of the series of bifactorial experiments in 2002 and 2003 indicated an increase of the proline level in leaves of all potato lines examined under water deficit. In addition, an increase in proline concentration during plant development was observed. The proline content was related to leaf water potential and relative water content (RWC), which indicates that proline could be involved in osmoregulation of potato plants under the experimental conditions. Surprisingly, under water deficit, the proline level was lowest in most of the transgenic SST/FFT-lines, which generate fructan molecules with a high degree of polymerization. Therefore, a pleiotropic effect can not be excluded as the reason for the divergence in behavior of these transgenic lines. The present results suggest that the modification of carbohydrate metabolism, especially the high content of soluble carbohydrates, may affect water stress-induced proline accumulation.

  5. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    PubMed

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-01

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  6. Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L.

    PubMed

    Mulinacci, Nadia; Ieri, Francesca; Giaccherini, Catia; Innocenti, Marzia; Andrenelli, Luisa; Canova, Giulia; Saracchi, Marco; Casiraghi, Maria Cristina

    2008-12-24

    HPLC/DAD/MS analysis of the phenolic acids and anthocyanin content of three cultivars of Solanum tuberosum L. (Vitelotte Noire, Highland Burgundy Red, with pigmented flesh, and Kennebec with white pulp) was performed. The analyses were carried out both on fresh tubers and after cooking treatments (boiling and microwaves). Starch digestibility and the % of resistant starch were also determined on cooked tubers by in vitro methods. For the pigmented potatoes, the heating treatment did not cause any changes in the phenolic acids content, while anthocyanins showed only a small decrement (16-29%). The cv. Highland Burgundy Red showed anthocyanins and phenolic acid concentrations close to 1 g/kg and more than 1.1 g/kg, respectively. Vitellotte Noire showed the highest amounts of resistant starch. Potato starch digestibility and % of resistant starch, considered as a component of dietary fiber, were affected both by cultivar and by heating/cooling treatments.

  7. Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18.

    PubMed

    Ballvora, Agim; Flath, Kerstin; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2011-12-01

    The obligate biotrophic, soil-borne fungus Synchytrium endobioticum causes wart disease of potato (Solanum tuberosum), which is a serious problem for crop production in countries with moderate climates. S. endobioticum induces hypertrophic cell divisions in plant host tissues leading to the formation of tumor-like structures. Potato wart is a quarantine disease and chemical control is not possible. From 38 S. endobioticum pathotypes occurring in Europe, pathotypes 1, 2, 6 and 18 are the most relevant. Genetic resistance to wart is available but only few current potato varieties are resistant to all four pathotypes. The phenotypic evaluation of wart resistance is laborious, time-consuming and sometimes ambiguous, which makes breeding for resistance difficult. Molecular markers diagnostic for genes for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 would greatly facilitate the selection of new, resistant cultivars. Two tetraploid half-sib families (266 individuals) segregating for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 were produced by crossing a resistant genotype with two different susceptible ones. The families were scored for five different wart resistance phenotypes. The distribution of mean resistance scores was quantitative in both families. Resistance to pathotypes 2, 6 and 18 was correlated and independent from resistance to pathotype 1. DNA pools were constructed from the most resistant and most susceptible individuals and screened with genome wide simple sequence repeat (SSR), inverted simple sequence region (ISSR) and randomly amplified polymorphic DNA (RAPD) markers. Bulked segregant analysis identified three SSR markers that were linked to wart resistance loci (Sen). Sen1-XI on chromosome XI conferred partial resistance to pathotype 1, Sen18-IX on chromosome IX to pathotype 18 and Sen2/6/18-I on chromosome I to pathotypes 2,6 and 18. Additional genotyping with 191 single nucleotide polymorphism (SNP) markers confirmed the

  8. An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity

    PubMed Central

    Provan, J.; Powell, W; Dewar, H.; Bryan, G.; Machray, G. C.; Waugh, R.

    1999-01-01

    We have used the polymorphic chloroplast (cp) and nuclear simple sequence repeats (SSRs) to analyse levels of cytoplasmic and nuclear diversity in the gene pool of the European cultivated potato (Solanum tuberosum ssp. tuberosum). Primers designed from the complete chloroplast sequence of tobacco (Nicotiana tabacum) were used to amplify polymorphic products in a range of potato cultivars. Combining the data from seven polymorphic cpSSR loci gave 26 haplotypes, one of which (haplotype A) accounted for 151 out of the 178 individuals studied and corresponded to the T-type cytoplasm previously identified in cultivated potatoes using chloroplast restriction fragment length polymorphism analysis. Phylogenetic and diversity analyses of the relationships between cpSSR haplotypes confirmed much higher levels of cytoplasmic diversity outwith the T-type group. Diversity levels at eight nuclear SSR loci, however, were not significantly different between cytoplasmic groups, suggesting a severe maternal bottleneck in the evolution of the modern cultivated potato. These results highlight the importance in quantifying levels of cytoplasmic as well as nuclear diversity and confirm the need for a change in breeding practices to increase levels of non-T-type cytoplasm in the cultivated gene pool, thus helping reduce problems associated with pollen sterility. This may be facilitated by germplasm analysis using cpSSRs, which will allow efficient selection of diverse cytoplasm donors.

  9. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement].

    PubMed

    Perraki, Artemis; Cacas, Jean-Luc; Crowet, Jean-Marc; Lins, Laurence; Castroviejo, Michel; German-Retana, Sylvie; Mongrand, Sébastien; Raffaele, Sylvain

    2012-10-01

    The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.

  10. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline.

    PubMed

    Hannula, S E; Boschker, H T S; de Boer, W; van Veen, J A

    2012-05-01

    • The aim of this study was to gain understanding of the carbon flow from the roots of a genetically modified (GM) amylopectin-accumulating potato (Solanum tuberosum) cultivar and its parental isoline to the soil fungal community using stable isotope probing (SIP). • The microbes receiving (13)C from the plant were assessed through RNA/phospholipid fatty acid analysis with stable isotope probing (PLFA-SIP) at three time-points (1, 5 and 12 d after the start of labeling). The communities of Ascomycota, Basidiomycota and Glomeromycota were analysed separately with RT-qPCR and terminal restriction fragment length polymorphism (T-RFLP). • Ascomycetes and glomeromycetes received carbon from the plant as early as 1 and 5 d after labeling, while basidiomycetes were slower in accumulating the labeled carbon. The rate of carbon allocation in the GM variety differed from that in its parental variety, thereby affecting soil fungal communities. • We conclude that both saprotrophic and mycorrhizal fungi rapidly metabolize organic substrates flowing from the root into the rhizosphere, that there are large differences in utilization of root-derived compounds at a lower phylogenetic level within investigated fungal phyla, and that active communities in the rhizosphere differ between the GM plant and its parental cultivar through effects of differential carbon flow from the plant.

  11. Effects of planting configuration and in-row plant spacing on photosynthetic active radiation interception for three irrigated potato cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research studies have evaluated the production of potatoes (Solanum tuberosum L.) grown in conventional and bed planting configurations. However, intercepted photosynthetically active radiation (PAR) from these planting configurations has not been quantified. A study conducted in 2008 and 2009 quant...

  12. Solanum tuberosum (Potato)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is the fourth most important food crop worldwide, with high value as a balanced and nutritious food. It is one of the world’s most productive crops. Wild potatoes are native from the southwestern United States to south-central Chile, with centers of species diversity in central Mexico and in ...

  13. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.

  14. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species. PMID:26260485

  15. Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum.

    PubMed

    Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal

    2015-06-01

    Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.

  16. Climate Change and Potassium Effects Under Different N-Fertilization Input on Potato (Solanum tuberosum L.) Yield in a Long Term Field Experiment

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    achieved with poor N, P, K and Mg nutrient supply even with a normal quantity and distribution of rainfall. Yield was influenced by rainfall to a greater extent (Table 4) than by 150 kg ha-1 potassium combinations (NK, NPK, NPKMg). Drought and over rainfall negative effects were decreased by increasing N- doses with combinations of potassium, phosphorous and magnesium from 13 to 32% (Table 5 and 6). With the help of regression analysis it was found the polynomial correlation between rainfall and yield could be observed in the case of NK (Y'=381.65-2.95x+0.0056x2, n=72, R2=0.95), NPK (Y'=390.87-3.07x+0.0060x2, n=72, R2=0.96) and NPKMg (Y'=390.45-3.06x+0.0059x2, n=72, R2=0.96) nutrition systems. The optimum yield ranges between 17-20 t ha-1 at 280-330 mm of rainfall. From 1962 to 1979 the weather was highly variable, with particularly frequent droughts and over rainfall resulting in yield losses of 13 to 32 percentin in this period. Thus it is important to analyse the consequences of possible future climate change on crop in Hungary. REFERENCES A.E. Johnston. 2000. Some aspects of nitrogen use efficiency in arable agriculture. K. Scogs-o. Lantbr. Akad. Tidskr. 139: 8. Kádár, I-Márton, L.-Horváth, S. 2000. Mineral fertilisation of potato (Solanum tuberosum L.) on calcareous chernozem soil. Plant Production. 49: 291-306. László, M. 2000. Nutrition of potato (Solanum tuberosum L.) on Hungary on a chernozem soil. Acta Agronomica Óváriensis. 42: 81-93. László, M. 2001a. Climate change and N, P, K, Mg fertilization effects on potato (Solanum tuberosum L.) yield and quality. EAPR. Hamburg. In press László, M. 2001b. Year and N- fertilizer effect on winter rye (Secale cereale L.) yield in a long term field experiment. XLIII. Georgikon Days. University of Veszprém. Keszthely László, M.-Imre, K.-Jose, E.M. 2000a. Effects of Crotalaria juncea L. and Crotalaria spectabilis ROTH. on soil fertility and soil conservation in Hungary. Acta Agronomica Óváriensis. 42: 99

  17. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant.

    PubMed

    Grausem, B; Widemann, E; Verdier, G; Nosbüsch, D; Aubert, Y; Beisson, F; Schreiber, L; Franke, R; Pinot, F

    2014-09-01

    Cutin and suberin represent lipophilic polymers forming plant/environment interfaces in leaves and roots. Despite recent progress in Arabidopsis, there is still a lack on information concerning cutin and suberin synthesis, especially in crops. Based on sequence homology, we isolated two cDNA clones of new cytochrome P450s, CYP77A19 and CYP77A20 from potato tubers (Solanum tuberosum). Both enzymes hydroxylated lauric acid (C12:0) on position ω-1 to ω-5. They oxidized fatty acids with chain length ranging from C12 to C18 and catalysed hydroxylation of 16-hydroxypalmitic acid leading to dihydroxypalmitic (DHP) acids, the major C16 cutin and suberin monomers. CYP77A19 also produced epoxides from linoleic acid (C18:2). Exploration of expression pattern in potato by RT-qPCR revealed the presence of transcripts in all tissues tested with the highest expression in the seed compared with leaves. Water stress enhanced their expression level in roots but not in leaves. Application of methyl jasmonate specifically induced CYP77A19 expression. Expression of either gene in the Arabidopsis null mutant cyp77a6-1 defective in flower cutin restored petal cuticular impermeability. Nanoridges were also observed in CYP77A20-expressing lines. However, only very low levels of the major flower cutin monomer 10,16-dihydroxypalmitate and no C18 epoxy monomers were found in the cutin of the complemented lines.

  18. Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis.

    PubMed

    Kitazumi, Ai; Kawahara, Yoshihiro; Onda, Ty S; De Koeyer, David; de los Reyes, Benildo G

    2015-01-01

    MicroRNA (miRNA) mediated changes in gene expression by post-transcriptional modulation of major regulatory transcription factors is a potent mechanism for integrating growth and stress-related responses. Exotic plants including many traditional varieties of Andean potatoes (Solanum tuberosum subsp. andigena) are known for better adaptation to marginal environments. Stress physiological studies confirmed earlier reports on the salinity tolerance potentials of certain andigena cultivars. Guided by the hypothesis that certain miRNAs play important roles in growth modulation under suboptimal conditions, we identified and characterized salinity stress-responsive miRNA-target gene pairs in the andigena cultivar Sullu by parallel analysis of noncoding and coding RNA transcriptomes. Inverse relationships were established by the reverse co-expression between two salinity stress-regulated miRNAs (miR166, miR159) and their target transcriptional regulators HD-ZIP-Phabulosa/Phavulota and Myb101, respectively. Based on heterologous models in Arabidopsis, the miR166-HD-ZIP-Phabulosa/Phavulota network appears to be involved in modulating growth perhaps by mediating vegetative dormancy, with linkages to defense-related pathways. The miR159-Myb101 network may be important for the modulation of vegetative growth while also controlling stress-induced premature transition to reproductive phase. We postulate that the induction of miR166 and miR159 under salinity stress represents important network hubs for balancing gene expression required for basal growth adjustments.

  19. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  20. Are uranium-contaminated soil and irrigation water a risk for human vegetables consumers? A study case with Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.

    PubMed

    Neves, O; Abreu, M M

    2009-11-01

    The knowledge of uranium concentration, in the products entering the human diet is of extreme importance because of their chemical hazard to health. Controlled field experiments with potatoes, beans and lettuce (Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.) were carried out in a contaminated soil used by local farmers located near a closed Portuguese uranium mine (Cunha Baixa, Mangualde). The soil with high average uranium levels (64-252 mg/kg) was divided in two plots, and irrigated with non-contaminated and uranium-contaminated water (<20 and >900 microg/L). Uranium maximum average concentration in the edible vegetables parts (mg/kg fresh weight) ranged in the following order: lettuce (234 microg/kg) > green bean (30 microg/kg) > potatoes without peel (4 microg/kg). Although uranium in soil, irrigation water and vegetables was high, the assessment of the health risk based on hazard quotient indicates that consumption of these vegetables does not represent potential adverse (no carcinogenic) effects for a local inhabitant during lifetime.

  1. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum).

    PubMed

    Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel

    2014-04-01

    A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science. PMID:24980018

  2. Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases.

    PubMed

    Cao, Li; Lee, Jintae; Chen, Wilfred; Wood, Thomas K

    2006-06-20

    Soluble epoxide hydrolase (EH) from the potato Solanum tuberosum and an evolved EH of the bacterium Agrobacterium radiobacter AD1, EchA-I219F, were purified for the enantioconvergent hydrolysis of racemic styrene oxide into the single product (R)-1-phenyl-1,2-ethanediol, which is an important intermediate for pharmaceuticals. EchA-I219F has enhanced enantioselectivity (enantiomeric ratio of 91 based on products) for converting (R)-styrene oxide to (R)-1-phenyl-1,2-ethanediol (2.0 +/- 0.2 micromol/min/mg), and the potato EH converts (S)-styrene oxide primarily to the same enantiomer, (R)-1-phenyl-1,2-ethanediol (22 +/- 1 micromol/min/mg), with an enantiomeric ratio of 40 +/- 17 (based on substrates). By mixing these two purified enzymes, inexpensive racemic styrene oxide (5 mM) was converted at 100% yield to 98% enantiomeric excess (R)-1-phenyl-1,2-ethanediol at 4.7 +/- 0.7 micromol/min/mg. Hence, at least 99% of substrate is converted into a single stereospecific product at a rapid rate.

  3. In vitro antioxidant, antimicrobial and anti-proliferative activities of purple potato extracts (Solanum tuberosum cv Vitelotte noire) following simulated gastro-intestinal digestion.

    PubMed

    Ombra, Maria Neve; Fratianni, Florinda; Granese, Tiziana; Cardinale, Federica; Cozzolino, Autilia; Nazzaro, Filomena

    2015-01-01

    Analyses of antioxidant and in vitro antimicrobial and anti-proliferative activities of anthocyanin-rich extracts from purple potatoes, Solanum tuberosum L. cv Vitelotte noire (Solanaceae), were performed by simulating both a domestic cooking process and human digestion. Extracts of crude and cooked purple potato did not exhibit antimicrobial activity against the tester strains: Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. The behaviour changed after the simulated gastrointestinal transit, when an inhibition halo was observed against all tester strains used, ranging from 0.53 cm against B. cereus to 0.82 cm against E. coli. In addition antioxidant activity exhibited, before and after the simulated gastrointestinal digestion (5.96 mg/mL ± 0.92; 28 mg/mL ± 0 .13, respectively) and the persistence of anti-proliferative activity against the colon cancer cells Caco-2, SW48 and MCF7, MDA-MB-231 breast cancer cells, after the simulated digestion, (EC50 = 0.21; 1.13 μg/mL), suggest that vitelotte consumption might bring tangible benefits for human health.

  4. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum).

    PubMed

    Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel

    2014-04-01

    A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science.

  5. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development.

    PubMed

    Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli

    2016-03-01

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes.

  6. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate.

    PubMed

    Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D

    2012-02-01

    The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track.

  7. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders.

  8. Impact of Multi-year Cropping Regimes on Solanum tuberosum Tuber Yields in the Presence of Pratylenchus penetrans and Verticillium dahliae.

    PubMed

    Chen, J; Bird, G W; Mather, R L

    1995-12-01

    Five cropping regimes involving combinations of 2 legumes, alfalfa (Medicago sativa) and yellow sweet dover (Melilotus officinalis), 2 monocots, corn (Zea mays) and sudax (Sorghum halupeuse x Sorghum sudanese), and potato (Solanum tuberosum cv. Superior) were tested for their impact on potato yields in a field infested with Pratylenchus penetrans and Verticillium dahliae. No differences in 1990 tuber yields were observed among the five cropping regimes (P < 0.05). In 1991, yields following 1 year of corn, sudax, sweet clover, or alfalfa and 2 years of potato were not different from that of 3 years of continuous potato (P < 0.05). Two years of sweet clover or alfalfa followed by potato resulted in significantly increased potato tuber yields compared with 3 years of potato (P < 0.05). The 2-year legume and 2-year grain rotations resulted in lower P. penetrans population densities at the end of the 3-year rotation compared with 3 years of continuous potato (P < 0.01). The highest preplant V. dahliae population density (34 cfu/g soil), together with a P. penetrans density of 12/100 cm(3) of soil was in the sudax-sudax-potato cropping regime and resulted in the lowest potato tuber yield. The highest preplant P. penetrans population density (54/100 cm(3) soil), together with a V. dahliae population density of 19.5 cfu/g soil was observed in the corn-corn-potato cropping regime and resulted in the second lowest potato tuber yield in 1991. After 3 years, potato tuber yields were negatively related to preplant densities of V. dahliae (r(2) = 0.237), P. penetrans (r(2) = 0.175), and both pathogens (r(2) = 0.380). A comprehensive regression model was developed to isolate pathogen effects on potato yields from cropping regime effects encompassing all 10 cropping regimes (r(2) = 0.915).

  9. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.

    PubMed

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-05-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional

  10. Combination of the Auxins NAA, IBA, and IAA with GA3 Improves the Commercial Seed-Tuber Production of Potato (Solanum tuberosum L.) under In Vitro Conditions

    PubMed Central

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25–5 d on 1.0 × MS medium containing 0.25 mg L−1  GA3 + 1 mg L−1 NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L−1  NAA + 0.25 mg L−1 GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  11. Production and characterization of arboreous and fertile Solanum melongena + Solanum marginatum somatic hybrid plants.

    PubMed

    Borgato, Lorena; Conicella, Clara; Pisani, Federica; Furini, Antonella

    2007-09-01

    In crop plants the shift from being annuals to perennials may allow future agricultural systems requiring less energy inputs. The practicability of this was tested for Solanum melongena. Leaf protoplasts of S. melongena (2n = 2x = 24) and one of the related arborescent species Solanum marginatum (2n = 2x = 24) were electrofused and fertile somatic hybrids with arborescent habit regenerated. The magnetic cell sorter (MACS) technique was used for the selection of heterokaryons. The hybrid nature of 18 regenerated plants was assessed on the banding patterns generated by inter-simple sequence repeat PCR. When taken to maturity in the greenhouse, hybrids grew more vigorously compared to the parental species. Their morphological traits were intermediate between those of S. melongena and S. marginatum. Hybrids flowered and produced an average of 85% stainable viable pollen and fertile fruits. The somatic hybrids were maintained in the greenhouse for more than 3 years and continued to produce flowers developing into two types of fruits with plentiful seeds. Fruits were either striated green containing non-germinable seeds or yellow with fully germinable seeds. Their S(1) progenies showed common features with S(0) hybrids, including fertility and arborescent habit. Cytologically, somatic hybrids exhibited the expected chromosome number of 2n = 4x = 48, while chromosome pairing during microsporogenesis was associated with a low frequency of intergenomic pairing. It is concluded that an arborescent perennial species has been obtained by somatic hybridization. The usefulness of this species per se or in eggplant breeding will depend not only on the transmission of the arborescent habit to cultivated eggplant varieties, but also on the variability that should be created from backcrossing the S. melongena + S. marginatum hybrids to S. melongena.

  12. The Futile Cycling of Hexose Phosphates Could Account for the Fact That Hexokinase Exerts a High Control on Glucose Phosphorylation but Not on Glycolytic Rate in Transgenic Potato (Solanum tuberosum) Roots

    PubMed Central

    Clendenning, Audrey; He, Jiang Zhou; Wally, Owen; Chen, Jingkui; Auslender, Evgenia L.; Moisan, Marie-Claude; Jolicoeur, Mario; Rivoal, Jean

    2013-01-01

    The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O2 uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using 14C-glucose as precursor showed the formation of 14C-fructose and 14C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed. PMID:23382859

  13. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro.

    PubMed

    Muñiz García, María Noelia; Giammaria, Verónica; Grandellis, Carolina; Téllez-Iñón, María Teresa; Ulloa, Rita María; Capiati, Daniela Andrea

    2012-04-01

    ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.

  14. The futile cycling of hexose phosphates could account for the fact that hexokinase exerts a high control on glucose phosphorylation but not on glycolytic rate in transgenic potato (Solanum tuberosum) roots.

    PubMed

    Claeyssen, Eric; Dorion, Sonia; Clendenning, Audrey; He, Jiang Zhou; Wally, Owen; Chen, Jingkui; Auslender, Evgenia L; Moisan, Marie-Claude; Jolicoeur, Mario; Rivoal, Jean

    2013-01-01

    The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O(2) uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using (14)C-glucose as precursor showed the formation of (14)C-fructose and (14)C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.

  15. Efeito do Solo do Materias Organicos E do Adubo Formula 4N:14P:8K Para Producao DA Batata (Solanum tuberosum L.) Semente Pre-Basica no Casa de Vegetacao

    NASA Astrophysics Data System (ADS)

    László, Márton

    2010-05-01

    hard effect (57%). Our results are shown that it was possible developing of the seed potato production under tropical greenhouse conditions by optimalised soil-organic matter-fertilizer system. This datas should be as indicators to sustainable field potato advisory systems. Keywords: potato (Solanum tuberosum L.), greenhouse, latossolo vermelho soil, farmyard manure, burnt rice straw, 4N:14P:8K fertilizer, sustainability, yield RESUMO A batata é atualmente uma das hortaliças de maior importância no Brasíl. Nos conduzirémos os três experimentos para aumentár-se do produção e produtividade da batata (Solanum tuberosum L.) semente pré- básica no casa de vegetação da Brazília-DF, no Empresa Brasileira de Pesquisa Agropecuaria- Centro Nacional de Pesquisas de Hortaliças no 1990. Os três experimentos (latossolo vermelho novo x esterco de curral x palha de arroz queimado, latossolo vermelho novo x adubo 4:14:8 NPK, latossolo vermelho novo x esterco de curral x palha de arroz queimado x adubo 4:14:8 NPK) no casa de vegetação foram conduzidos com total 29 combinações, no 5-5-3 repetições com total parcelas de 116. Os resultados foram submetidos a analise de variáncia, ANOVA e MANOVA. Nossos principal resultados estam apresentándo abaixo. 1. A mistura de 80% latossolo vermelho novo, 10% palha de arroz queimado e 10% de esterco de curral, apresentou os maiores valores para numero de tuberculos com 0-20 mm, peso total de tuberculos com 0-20 mm e peso total de tuberculos por vaso. 2. Há um efeito grande crescente das doses de 4N:14P:8K nos caracteres observados. 3. Analise-se do latossolo vermelho novo x esterco de curral x palha de arroz queimado x adubo 4:14:8 NPK experimento os resultados apresentárám-se que entre nas misturas também foi melhor a 80% latossolo vermelho novo, 10% palha de arroz queimado, 10% esterco de curral. Examinando-se 15 fatores, entre 11 casos afirmou-se a mistura como para melhor que a outra mistura. Nossos resultados

  16. Overexpression of Arabidopsis thaliana LOV KELCH REPEAT PROTEIN 2 promotes tuberization in potato (Solanum tuberosum cv. May Queen).

    PubMed

    Inui, Hideyuki; Ogura, Yasunobu; Kiyosue, Tomohiro

    2010-06-01

    Potato tuberization is induced under short-day conditions and repressed under long-day conditions. In this study, we produced transgenic potatoes overexpressing either Arabidopsis thaliana LOV KELCH PROTEIN 2 (35S:LKP2) or CONSTANS fused with a transcription repressor motif (35S:CO-Rep). In an in vitro tuberization assay, the average number of tubers per plant was greater in 35S:LKP2 plants than in vector-control plants, but lower in 35S:CO-Rep plants. Under long-day conditions in soil, all 35S:LKP2 plants tuberized, whereas most control plants and 35S:CO-Rep plants did not. These results suggest genes involved in flowering time regulation can be used to control potato tuber production.

  17. Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum Group Phureja.

    PubMed

    Duarte-Delgado, Diana; Narváez-Cuenca, Carlos-Eduardo; Restrepo-Sánchez, Luz-Patricia; Kushalappa, Ajjamada; Mosquera-Vásquez, Teresa

    2015-01-15

    A High Performance Liquid Chromatography (HPLC) method was developed and validated to quantify sucrose (non-reducing sugar), glucose, and fructose (reducing sugars) in raw tubers of Solanum tuberosum Group Phureja. Chromatographic analysis was performed using an AMINEX HPX 87H column, at 18 °C, linked to a refraction index detector, at 35 °C. The eluent was 10mM sulfuric acid. The conditions established for the method provided an optimum separation of sugars, citric acid, and malic acid, with resolution values higher or equal to one. Among the four sugar extraction methods tested, the double 50% (v/v) aqueous methanol extraction gave the highest level of analytes. Recovery of this extraction method ranged between 94.14 and 99.77%. The HPLC method was validated for repeatability, reproducibility, linearity, and limits of detection, and quantification. Relative standard deviation was found to be lower than five, when testing repeatability and reproducibility, which is suitable considering a range of acceptability from 5.3 to 7.3. Additionally, the regression analyses supported the method linearity in a range of quantification from 3 to 100 mg/L with regression coefficients values greater than 0.998 for the three analytes. Limits of detection were 3.0 mg/L for the three sugars and limits of quantification were 2.0 mg/L for sucrose and 3.0 mg/L for glucose and fructose. Four Colombian commercial cultivars (Criolla Guaneña, Criolla Paisa, Criolla Galeras, and Criolla Colombia) and five landrace accessions from the Colombian Core Collection of Group Phureja were grown in the district of Usme (Bogotá) fields to analyze their sugar contents. Sucrose, glucose, and fructose contents were found ranging from 0.93 to 3.11 g/100 g tuber dried weight (DW), from 0.25 to 4.53 g/100 g tuber DW, and from 0.10 to 1.49 g/100 g tuber DW, respectively. Therefore, a high range in the variability of sugar contents was found among genotypes. However, the variability was low among

  18. Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (Solanum tuberosum L.) leaves.

    PubMed

    Pérez-Rodríguez, Paula; Paradelo, Marcos; Rodríguez-Salgado, Isabel; Fernández-Calviño, David; López-Periago, José Eugenio

    2013-01-01

    Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha(-1) (BM), 0.3 kg Cu ha(-1) (CO) and 0.47 kg Cu ha(-1) (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.

  19. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method.

    PubMed

    Kappachery, Sajeesh; Yu, Jae Woong; Baniekal-Hiremath, Gangadhar; Park, Se Won

    2013-01-01

    Identification of major stress tolerance genes of a crop plant is important for the rapid development of its stress-tolerant cultivar. Here, we used a yeast functional screen method to identify potential drought-tolerance genes from a potato plant. A cDNA expression library was constructed from hyperosmotic stressed potato plants. The yeast transformants expressing different cDNAs were selected for their ability to survive in hyperosmotic stress conditions. The relative tolerances of the selected yeast transformants to multiple abiotic stresses were also studied. Specific potato cDNAs expressed in the tolerant yeast transformants were identified. Sixty-nine genes were found capable of enhancing hyperosmotic stress tolerance of yeast. Based on the relative tolerance data generated, 12 genes were selected, which could be most effective in imparting higher drought tolerance to potato with better survival in salt and high-temperature stresses. Orthologues of few genes identified here are previously known to increase osmotic stress tolerance of yeast and plants; however, specific studies are needed to confirm their role in the osmotic stress tolerance of potato. PMID:24296077

  20. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) alpha variety.

    PubMed

    Zuno-Floriano, Fabiola G; Miller, Marion G; Aldana-Madrid, Maria L; Hengel, Matt J; Gaikwad, Nilesh W; Tolstikov, Vladimir; Contreras-Cortés, Ana G

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism. PMID:22363586

  1. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) alpha variety.

    PubMed

    Zuno-Floriano, Fabiola G; Miller, Marion G; Aldana-Madrid, Maria L; Hengel, Matt J; Gaikwad, Nilesh W; Tolstikov, Vladimir; Contreras-Cortés, Ana G

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism.

  2. Effect of Acinetobacter sp on Metalaxyl Degradation and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety

    PubMed Central

    Zuno-Floriano, Fabiola G.; Miller, Marion G.; Aldana-Madrid, Maria L.; Hengel, Matt J.; Gaikwad, Nilesh W.; Tolstikov, Vladimir; Contreras-Cortés, Ana G.

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC–TOF–MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism. PMID:22363586

  3. Identification of actively filling sucrose sinks. [Solanum tuberosum; Phaseolus lunatus; Manihot esculenta; Liquidambar styraciflua L. ; Carya illinoinensis

    SciTech Connect

    Sung, Shijean S.; Xu, Dianpeng; Black C.C. )

    1989-04-01

    Certain actively filling plant sucrose sinks such as a seed, a tuber, or a root can be identified by measuring the uridine diphosphate and pyrophosphate-dependent metabolism of sucrose. Sucrolysis in both active and quiescent sucrose sinks was tested and sucrose synthase was found to be the predominant sucrose breakdown activity. Sucrolysis via invertases was low and secondary in both types of sinks. Sucrose synthase activity dropped markedly, greater than fivefold, in quiescent sinks. The test are consistent with the hypothesis that the sucrose filling activity, i.e. the sink strength, of these plant sinks can be measured by testing the uridine diphosphate and pyrophosphate-dependent breakdown of sucrose. Measuring the initial reactions of sucrolysis shows much promise for use in agriculture crop and tree improvement research as a biochemical test for sink strength.

  4. Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots.

    PubMed

    Hellwege, E M; Czapla, S; Jahnke, A; Willmitzer, L; Heyer, A G

    2000-07-18

    The ability to synthesize high molecular weight inulin was transferred to potato plants via constitutive expression of the 1-SST (sucrose:sucrose 1-fructosyltransferase) and the 1-FFT (fructan: fructan 1-fructosyltransferase) genes of globe artichoke (Cynara scolymus). The fructan pattern of tubers from transgenic potato plants represents the full spectrum of inulin molecules present in artichoke roots as shown by high-performance anion exchange chromatography, as well as size exclusion chromatography. These results demonstrate in planta that the enzymes sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase are sufficient to synthesize inulin molecules of all chain lengths naturally occurring in a given plant species. Inulin made up 5% of the dry weight of transgenic tubers, and a low level of fructan production also was observed in fully expanded leaves. Although inulin accumulation did not influence the sucrose concentration in leaves or tubers, a reduction in starch content occurred in transgenic tubers, indicating that inulin synthesis did not increase the storage capacity of the tubers.

  5. Extensive Variation in Fried Chip Color and Tuber Composition in Cold-Stored Tubers of Wild Potato (Solanum) Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold-induced sweetening and browning in the Maillard reaction have driven extensive research in the areas of plant physiology, biochemistry, and food science in Solanum tuberosum. To date, research in these areas excluded wild relatives of potato. This is the first assessment of cold-stored tuber c...

  6. An efficient cryopreservation procedure for potato (Solanum tuberosum L.) utilizing the new ice blocking agent, Supercool X1000.

    PubMed

    Zhao, M A; Xhu, Y Z; Dhital, S P; Khu, D M; Song, Y S; Wang, M Y; Lim, H T

    2005-10-01

    Cryopreservation has been recognized as a practical and efficient tool for long-term storage of vegetatively propagated plants. This study was conducted to investigate effects of modified vitrification techniques on cryopreservation of potato. In vitro plants of potato cultivars "Superior" and "Atlantic" were cold acclimated, and axillary buds were precultured, osmoprotected, exposed to PVS-2 solution, plunged into liquid nitrogen, thawed, and finally planted in the regeneration medium. In the modified vitrification technique an ice-blocking agent, Supercool X1000, was added with PVS-2 solution. Cold acclimation affected survival of cryopreserved shoot tips, and the highest survival (46.7%) was obtained after 3 weeks of acclimation at 10 degrees C. Shoot tips exposed to 2M glycerol plus 0.6M sucrose for 40 min gave 51.5% and 11.7% survival in "Atlantic" and "Superior" at 10 degrees C, respectively. Cold acclimated and osmoprotected shoot tips were dehydrated with PVS-2 containing different concentrations of Supercool X1000 prior to a plunge into liquid nitrogen. Treatments with 0.1% and 1% of Supercool X1000 significantly improved survival by 55% in "Superior" and 71.3% in "Atlantic", respectively. After cryopreservation, vitrified shoot tips resumed growth within a week in a medium (1 mg l(-1) GA(3), 0.5 mg l(-1) zeatin, and 0.1 mg l(-1) IAA) with a low level of Pluronic F-68 (0.005%) and survival was 33.7% higher in "Atlantic" and 14.7% higher in "Superior" than the control (without Pluronic F-68).

  7. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    PubMed

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  8. Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase.

    PubMed

    Coetzer, C; Corsini, D; Love, S; Pavek, J; Tumer, N

    2001-02-01

    Polyphenol oxidase (PPO) activity of Russet Burbank potato was inhibited by sense and antisense PPO RNAs expressed from a tomato PPO cDNA under the control of the 35S promoter from the cauliflower mosaic virus. Transgenic Russet Burbank potato plants from 37 different lines were grown in the field. PPO activity and the level of enzymatic browning were measured in the tubers harvested from the field. Of the tubers from 28 transgenic lines that were sampled, tubers from 5 lines exhibited reduced browning. The level of PPO activity correlated with the reduction in enzymatic browning in these lines. These results indicate that expression of tomato PPO RNA in sense or antisense orientation inhibits PPO activity and enzymatic browning in the major commercial potato cultivar. Expression of tomato PPO RNA in sense orientation led to the greatest decrease in PPO activity and enzymatic browning, possibly due to cosuppression. These results suggest that expression of closely related heterologous genes can be used to prevent enzymatic browning in a wide variety of food crops without the application of various food additives.

  9. Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L.).

    PubMed

    Ma, Haoli; Cao, Xiaoli; Shi, Shandang; Li, Silu; Gao, Junpeng; Ma, Yuling; Zhao, Qin; Chen, Qin

    2016-10-01

    Amino acid transporters (AATs) are integral membrane proteins responsible for the transmembrane transport of amino acids and play important roles in various physiological processes of plants. However, there has not yet been a genome-wide overview of the StAAT gene family to date and only StAAP1 has been previously studied in potato. In this paper, a total of 72 StAATs were identified using a series of bioinformatics searches and classified into 12 subfamilies based on their phylogenetic relationship with known Arabidopsis and rice AATs. Chromosomal localization revealed their distribution on all 12 chromosomes. Nearly one-third of StAAT genes (23 of 72) were derived from gene duplication, among which tandem duplication made the greatest contribution to the expansion of the StAAT family. Motif analysis showed that the same subfamily had similar conserved motifs in both numbers and varieties. Moreover, high-throughput sequencing data was used to analyze the expression patterns of StAAT genes and was verified by quantitative real-time RT-PCR. The expression of StAAT genes exhibited both abundant and tissue-specific expression patterns, which might be connected to their functional roles in long- and short-distance transport. This study provided a comprehensive survey of the StAAT gene family, and could serve as a theoretical foundation for the further functional identification and utilization of family members. PMID:27289266

  10. Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase.

    PubMed

    Coetzer, C; Corsini, D; Love, S; Pavek, J; Tumer, N

    2001-02-01

    Polyphenol oxidase (PPO) activity of Russet Burbank potato was inhibited by sense and antisense PPO RNAs expressed from a tomato PPO cDNA under the control of the 35S promoter from the cauliflower mosaic virus. Transgenic Russet Burbank potato plants from 37 different lines were grown in the field. PPO activity and the level of enzymatic browning were measured in the tubers harvested from the field. Of the tubers from 28 transgenic lines that were sampled, tubers from 5 lines exhibited reduced browning. The level of PPO activity correlated with the reduction in enzymatic browning in these lines. These results indicate that expression of tomato PPO RNA in sense or antisense orientation inhibits PPO activity and enzymatic browning in the major commercial potato cultivar. Expression of tomato PPO RNA in sense orientation led to the greatest decrease in PPO activity and enzymatic browning, possibly due to cosuppression. These results suggest that expression of closely related heterologous genes can be used to prevent enzymatic browning in a wide variety of food crops without the application of various food additives. PMID:11262007

  11. Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L.).

    PubMed

    Ma, Haoli; Cao, Xiaoli; Shi, Shandang; Li, Silu; Gao, Junpeng; Ma, Yuling; Zhao, Qin; Chen, Qin

    2016-10-01

    Amino acid transporters (AATs) are integral membrane proteins responsible for the transmembrane transport of amino acids and play important roles in various physiological processes of plants. However, there has not yet been a genome-wide overview of the StAAT gene family to date and only StAAP1 has been previously studied in potato. In this paper, a total of 72 StAATs were identified using a series of bioinformatics searches and classified into 12 subfamilies based on their phylogenetic relationship with known Arabidopsis and rice AATs. Chromosomal localization revealed their distribution on all 12 chromosomes. Nearly one-third of StAAT genes (23 of 72) were derived from gene duplication, among which tandem duplication made the greatest contribution to the expansion of the StAAT family. Motif analysis showed that the same subfamily had similar conserved motifs in both numbers and varieties. Moreover, high-throughput sequencing data was used to analyze the expression patterns of StAAT genes and was verified by quantitative real-time RT-PCR. The expression of StAAT genes exhibited both abundant and tissue-specific expression patterns, which might be connected to their functional roles in long- and short-distance transport. This study provided a comprehensive survey of the StAAT gene family, and could serve as a theoretical foundation for the further functional identification and utilization of family members.

  12. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster

    PubMed Central

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  13. Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome.

    PubMed

    Tang, Xiaomin; Datema, Erwin; Guzman, Myriam Olortegui; de Boer, Jan M; van Eck, Herman J; Bachem, Christian W B; Visser, Richard G F; de Jong, Hans

    2014-12-01

    One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.

  14. Photosynthetic assimilation of ¹⁴C into amino acids in potato (Solanum tuberosum) and asparagine in the tubers.

    PubMed

    Muttucumaru, Nira; Keys, Alfred J; Parry, Martin A J; Powers, Stephen J; Halford, Nigel G

    2014-01-01

    Asparagine is the predominant free amino acid in potato tubers and the present study aimed to establish whether it is imported from the leaves or synthesised in situ. Free amino acid concentrations are important quality determinants for potato tubers because they react with reducing sugars at high temperatures in the Maillard reaction. This reaction produces melanoidin pigments and a host of aroma and flavour volatiles, but if free asparagine participates in the final stages, it results in the production of acrylamide, an undesirable contaminant. ¹⁴CO₂ was supplied to a leaf or leaves of potato plants (cv. Saturna) in the light and radioactivity incorporated into amino acids was determined in the leaves, stems, stolons and tubers. Radioactivity was found in free amino acids, including asparagine, in all tissues, but the amount incorporated in asparagine transported to the tubers and stolons was much less than that in glutamate, glutamine, serine and alanine. The study showed that free asparagine does not play an important role in the transport of nitrogen from leaf to tuber in potato, and that the high concentrations of free asparagine that accumulate in potato tubers arise from synthesis in situ. This indicates that genetic interventions to reduce free asparagine concentration in potato tubers will have to target asparagine metabolism in the tuber.

  15. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  16. Solanum tuberosum L. cv Jayoung Epidermis Extract Inhibits Mite Antigen-Induced Atopic Dermatitis in NC/Nga Mice by Regulating the Th1/Th2 Balance and Expression of Filaggrin.

    PubMed

    Yang, Gabsik; Cheon, Se-Yun; Chung, Kyung-Sook; Lee, Sung-Jin; Hong, Chul-Hee; Lee, Kyung-Tae; Jang, Dae-Sik; Jeong, Jin-Cheol; Kwon, Oh-Keun; Nam, Jung-Hwan; An, Hyo-Jin

    2015-09-01

    Solanum tuberosum L. cv Jayoung (JY) is a potato with dark purple flesh and contains substantial amounts of polyphenols. In this study, we evaluated the therapeutic effects of S. tuberosum L. cv JY in a mouse model of Dermatophagoides farinae body (Dfb)-induced atopic dermatitis (AD). The ethanol extract of the peel of JY (EPJ) ameliorated Dfb-induced dermatitis severity, serum levels of immunoglobulin E (IgE) and thymus and activation-regulated chemokine. Histological analysis of the skin also revealed that EPJ treatment significantly decreased mast cell infiltration. The suppression of dermatitis by EPJ treatment was accompanied by a decrease in the skin levels of type 2 helper T-cell cytokines such as interleukin (IL)-4, IL-5, and IL-13. The induction of thymic stromal lymphopoietin, which leads to a systemic Th2 response, was also decreased in the skin by EPJ. Nuclear translocation of nuclear factor-κB p65 was decreased by EPJ in Dfb-induced NC/Nga mice. The protein expression of filaggrin in the AD-like skin lesions was restored by EPJ treatment. These results suggested that EPJ may be a potential therapeutic tool for the treatment of AD.

  17. Evaluation of In-Row Plant Spacing and Planting Configuration for Three Irrigated Potato Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research studies have shown that planting potatoes (Solanum tuberosum L.) in a bed configuration can improve water movement into the potato root zone. However, plant spacing recommendations are needed for potatoes planted in a bed configuration. This study was conducted to evaluate the effect of i...

  18. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease.

    PubMed

    Mosquera, Teresa; Alvarez, Maria Fernanda; Jiménez-Gómez, José M; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane

    2016-01-01

    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis

  19. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease

    PubMed Central

    Jiménez-Gómez, José M.; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane

    2016-01-01

    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis

  20. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease.

    PubMed

    Mosquera, Teresa; Alvarez, Maria Fernanda; Jiménez-Gómez, José M; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane

    2016-01-01

    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis

  1. Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS).

    PubMed

    Bartke, Nana; Fischbeck, Anne; Humpf, Hans-Ulrich

    2006-12-01

    Ceramides and glucocerebrosides of potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) were analyzed using RP-HPLC-ESI-MS/MS. Ceramides and glucocerebrosides containing the three different long-chain bases 4,8-sphingadienine (d18:2(delta4,delta8)), 4-hydroxy-8-sphingenine (t18:1(delta8)), and 8-sphingenine (d18:1(delta8)) acylated to saturated and unsaturated hydroxy- and nonhydroxy fatty acids with 16-26 carbon atoms were detected. For ceramides and glucocerebrosides 4,8-sphingadienine (d18:2(delta4,delta8)) was found as the major long-chain base, with lesser amounts of 4-hydroxy-8-sphingenine (t18:1(delta8)) and 8-sphingenine (d18:1(delta8)). 2-(Alpha-)hydroxypalmitic acid (C16:0h) was the major fatty acid, which was found to be acylated to the long-chain bases. For quantification of these compounds, an RP-HPLC-ESI-MS/MS method with an "echo-peak"-technique simulating internal standard injection was developed. The analyzed samples of potatoes and sweet potatoes showed amounts of approximately 0.1-8 microg/kg single ceramides and amounts up to 500 microg/kg glucocerebrosides, with C16:0h-glucosyl-4,8-sphingadienine as the major component.

  2. Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS).

    PubMed

    Bartke, Nana; Fischbeck, Anne; Humpf, Hans-Ulrich

    2006-12-01

    Ceramides and glucocerebrosides of potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) were analyzed using RP-HPLC-ESI-MS/MS. Ceramides and glucocerebrosides containing the three different long-chain bases 4,8-sphingadienine (d18:2(delta4,delta8)), 4-hydroxy-8-sphingenine (t18:1(delta8)), and 8-sphingenine (d18:1(delta8)) acylated to saturated and unsaturated hydroxy- and nonhydroxy fatty acids with 16-26 carbon atoms were detected. For ceramides and glucocerebrosides 4,8-sphingadienine (d18:2(delta4,delta8)) was found as the major long-chain base, with lesser amounts of 4-hydroxy-8-sphingenine (t18:1(delta8)) and 8-sphingenine (d18:1(delta8)). 2-(Alpha-)hydroxypalmitic acid (C16:0h) was the major fatty acid, which was found to be acylated to the long-chain bases. For quantification of these compounds, an RP-HPLC-ESI-MS/MS method with an "echo-peak"-technique simulating internal standard injection was developed. The analyzed samples of potatoes and sweet potatoes showed amounts of approximately 0.1-8 microg/kg single ceramides and amounts up to 500 microg/kg glucocerebrosides, with C16:0h-glucosyl-4,8-sphingadienine as the major component. PMID:17103377

  3. Impact of host plant connectivity, crop border and patch size on adult Colorado potato beetle retention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant...

  4. Transient decreases in methylation at 5'-cCGG-3' sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth.

    PubMed

    Law, R David; Suttle, Jeffrey C

    2003-02-01

    The 5-methylcytosine (5mC) content in DNA of tuber meristems isolated from field-grown potatoes (Solanum tuberosum L.) was determined during a 7-month storage period at 3 degrees C for three growing/postharvest seasons. No significant changes in 5mC levels were noted genome-wide or within 5'-CG-3' dinucleotide sequences, 5'-CG-3' islands or 5'-CA(T)G-3' trinucleotide sequences during storage. However, a consistent but transient 50-70% decrease in methylation at both cytosines within 5'-CCGG-3' sequences was detected that peaked 112-194 days after harvest. This result was corroborated by methylation-sensitive amplified fragment length polymorphism analysis of meristem DNA. Similar to tuber meristems undergoing progression through natural dormancy, premature chemical termination of dormancy resulted in rapid, transient 5'-CCGG-3' demethylation in meristem DNA. Minimum methylation levels at this sequence preceded initiation of high levels of de novo DNA synthesis by two days. Cytosine methylation status was also followed in in vitro-generated potato microtubers during 7 months of post-harvest storage. As in DNA from tuber bud meristems, no changes in genome-wide 5mC content or methylation at 5'-CA(T)G-3' or 5'-CG-3' island sequences were noted in microtuber DNA. However, there was a transient 46% drop in methylation at 5'-CG-3' dinucleotides concomitant with minimum levels of 5'-CCGG-3' methylation (30-60% below those in dormant microtubers) 57-98 days after harvest. As microtubers exited dormancy, there were sustained three- and seven-fold increases in RNA and DNA synthesis rates, peaking on or after 98 days of storage, respectively. Together, these data demonstrate that demethylation of 5'-CCGG-3' sequences occurs independently of tuber age during dormancy progression and precedes transcriptional activation of genes leading to cell division and meristem growth in potatoes.

  5. Comparative antimicrobial activity of callus and natural plant extracts of Solanum trilobatum L

    PubMed Central

    Nagarajan, S.M.; Kandasamy, S.; Chinnappa, R.

    2009-01-01

    Comparison of natural plant and callus extracts of Solanum trilobatum L. was studied against two bacteria and fungi, for their antimicrobial activity using cup diffusion method. Various solvents such as chloroform, petroleum ether and ethanol were used. The leaf and stem segments of the plant were culturedon Murashige and S koog basal medium supplemented with various growth regulators. Maximum callus was recorded on medium containing 0.5 mg/lNAA and 0.5 mgj IKinetin. The results reveals that the stem and leaf callus extracts has shown significant activity against the tested microorganisms than the natural sample. PMID:22557312

  6. Species-Specific Identification from Incomplete Sampling: Applying DNA Barcodes to Monitoring Invasive Solanum Plants

    PubMed Central

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling–through this, DNA barcoding will greatly benefit the current fields of its application. PMID:23409092

  7. Novel inter-series hybrids in Solanum, section Petota.

    PubMed

    Dinu, I I; Hayes, R J; Kynast, R G; Phillips, R L; Thill, C A

    2005-02-01

    Sexual hybrids between distantly related Solanum species can undergo endosperm failure, a post-zygotic barrier in inter-species hybridizations. This barrier is explained by the endosperm balance number (EBN) hypothesis, which states that parents must have corresponding EBNs for viable seed formation. Tests for inter-crossability were made involving the Mexican species Solanum pinnatisectum Dunal. (series Pinnatisecta, ApiApi, 1EBN), autotetraploids of this species, Solanum verrucosum Schlechtd. (series Tuberosa, AA, 2EBN), haploids (2x, 2EBN) of the South American S. tuberosum L. (series Tuberosa, A1A1A2A2, 4EBN), and F2 haploid-species hybrids with South American species (AA, 2EBN) S. berthaultii Hawkes, S. sparsipilum (Bitter.) Juz. and Bukasov and S. chacoense Bitter. The development of hybrid endosperms was investigated for these combinations by confocal microscopy with regard to cell-division timing and tissue collapse. Novel sexual diploid (AApi) and triploid (AApiApi) inter-series hybrids were generated from S. verrucosum x S. pinnatisectum crosses by using post-pollination applications of auxin. F1 embryos were rescued in vitro. The hybrid status of recovered plants was verified by microsatellite marker analysis, and the ploidy was determined by chromosome counting. The application of phytohormones in inter-ploidy S. pinnatisectum x S. tuberosum crosses, however, did not delay endosperm collapse, and embryos were not formed. Other diploid, 1EBN species tested in remote hybridizations with Group Tuberosum were S. cardiophyllum Lindl., S. trifidum Correll, and S. tarnii Hawkes and Hjert., series Pinnatisecta, and S. bulbocastanum Dunal., series Bulbocastana. Based on the analysis of post-zygotic reproductive barriers among isolated species of section Petota, we propose strategies to overcome such incompatibilities. PMID:15517147

  8. Novel inter-series hybrids in Solanum, section Petota.

    PubMed

    Dinu, I I; Hayes, R J; Kynast, R G; Phillips, R L; Thill, C A

    2005-02-01

    Sexual hybrids between distantly related Solanum species can undergo endosperm failure, a post-zygotic barrier in inter-species hybridizations. This barrier is explained by the endosperm balance number (EBN) hypothesis, which states that parents must have corresponding EBNs for viable seed formation. Tests for inter-crossability were made involving the Mexican species Solanum pinnatisectum Dunal. (series Pinnatisecta, ApiApi, 1EBN), autotetraploids of this species, Solanum verrucosum Schlechtd. (series Tuberosa, AA, 2EBN), haploids (2x, 2EBN) of the South American S. tuberosum L. (series Tuberosa, A1A1A2A2, 4EBN), and F2 haploid-species hybrids with South American species (AA, 2EBN) S. berthaultii Hawkes, S. sparsipilum (Bitter.) Juz. and Bukasov and S. chacoense Bitter. The development of hybrid endosperms was investigated for these combinations by confocal microscopy with regard to cell-division timing and tissue collapse. Novel sexual diploid (AApi) and triploid (AApiApi) inter-series hybrids were generated from S. verrucosum x S. pinnatisectum crosses by using post-pollination applications of auxin. F1 embryos were rescued in vitro. The hybrid status of recovered plants was verified by microsatellite marker analysis, and the ploidy was determined by chromosome counting. The application of phytohormones in inter-ploidy S. pinnatisectum x S. tuberosum crosses, however, did not delay endosperm collapse, and embryos were not formed. Other diploid, 1EBN species tested in remote hybridizations with Group Tuberosum were S. cardiophyllum Lindl., S. trifidum Correll, and S. tarnii Hawkes and Hjert., series Pinnatisecta, and S. bulbocastanum Dunal., series Bulbocastana. Based on the analysis of post-zygotic reproductive barriers among isolated species of section Petota, we propose strategies to overcome such incompatibilities.

  9. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    PubMed

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research.

  10. Endophytic Colonization of Potato (Solanum tuberosum L.) by a Novel Competent Bacterial Endophyte, Pseudomonas putida Strain P9, and Its Effect on Associated Bacterial Communities▿

    PubMed Central

    Andreote, Fernando Dini; de Araújo, Welington L.; de Azevedo, João L.; van Elsas, Jan Dirk; da Rocha, Ulisses Nunes; van Overbeek, Leonard S.

    2009-01-01

    Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities. PMID:19329656

  11. Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism.

    PubMed

    Fernie, Alisdair R; Tauberger, Eva; Lytovchenko, Anna; Roessner, Ute; Willmitzer, Lothar; Trethewey, Richard N

    2002-02-01

    The aim of this work was to investigate the role of cytosolic phosphoglucomutase (PGM; EC 5.4.2.2) in the regulation of carbohydrate metabolism. Many in vitro studies have indicated that PGM plays a central role in carbohydrate metabolism; however, until now the importance of this enzyme in plants has not been subject to reverse-genetics investigations. With this intention we cloned the cytosolic isoform of potato PGM (StcPGM) and expressed this in the antisense orientation under the control of the CaMV 35 S promoter in potato plants. We confirmed that these plants contained reduced total PGM activity and that loss in activity was due specifically to a reduction in cytosolic PGM activity. These plants were characterised by a severe phenotype: stunted aerial growth combined with limited root growth and a reduced tuber yield. Analysis of the metabolism of these lines revealed that leaves of these plants were inhibited in sucrose synthesis whereas the tubers exhibited decreased levels of sucrose and starch as well as decreased levels of glycolytic intermediates but possessed unaltered levels of adenylates. Furthermore, a broader metabolite screen utilising GC-MS profiling revealed that these lines contained altered levels of several intermediates of the TCA cycle and of amino acids. In summary, we conclude that cytosolic PGM plays a crucial role in the sucrose synthetic pathway within the leaf and in starch accumulation within the tuber, and as such is important in the maintenance of sink-source relationships.

  12. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves.

    PubMed

    Lawrence, Susan D; Novak, Nicole G; Ju, Chelsea J-T; Cooke, Janice E K

    2008-08-01

    Colorado potato beetle (CPB) is a leading pest of solanaceous plants. Despite the economic importance of this pest, surprisingly few studies have been carried out to characterize its molecular interaction with the potato plant. In particular, little is known about the effect of CPB elicitors on gene expression associated with the plant's defense response. In order to discover putative CPB elicitor-responsive genes, the TIGR 11,421 EST Solanaceae microarray was used to identify genes that are differentially expressed in response to the addition of CPB regurgitant to wounded potato leaves. By applying a cutoff corresponding to an adjusted P-value of <0.01 and a fold change of >1.5 or <0.67, we found that 73 of these genes are induced by regurgitant treatment of wounded leaves when compared to wounding alone, whereas 54 genes are repressed by this treatment. This gene set likely includes regurgitant-responsive genes as well as wounding-responsive genes whose expression patterns are further enhanced by the presence of regurgitant. Real-time polymerase chain reaction was used to validate differential expression by regurgitant treatment for five of these genes. In general, genes that encoded proteins involved in secondary metabolism and stress were induced by regurgitant; genes associated with photosynthesis were repressed. One induced gene that encodes aromatic amino acid decarboxylase is responsible for synthesis of the precursor of 2-phenylethanol. This is significant because 2-phenylethanol is recognized by the CPB predator Perillus bioculatis. In addition, three of the 16 type 1 and type 2 proteinase inhibitor clones present on the potato microarray were repressed by application of CPB regurgitant to wounded leaves. Given that proteinase inhibitors are known to interfere with digestion of proteins in the insect midgut, repression of these proteinase inhibitors by CPB may inhibit this component of the plant's defense arsenal. These data suggest that beyond the wound

  13. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank.

    PubMed

    Naveed, Khalid; Mitter, Neena; Harper, Artemus; Dhingra, Amit; Pappu, Hanu R

    2014-10-13

    Deep sequencing technology has enabled the analysis of small RNA profiles of virus-infected plants and could provide insights into virus-host interactions. Potato virus Y is an economically important viral pathogen of potato worldwide. In this study, we investigated the nature and relative levels of virus-derived small interfering RNAs (vsiRNAs) in potato cv. Russet Burbank infected with three biologically distinct and economically important strains of PVY, the ordinary strain (PVY-O), tobacco veinal-necrotic strain (PVY-N) and tuber necrotic strain (PVY-NTN). The analysis showed an overall abundance of vsiRNAs of 20-24nt in PVY-infected plants. Considerable differences were present in the distribution of vsiRNAs as well as total small RNAs. The 21nt class was the most prevalent in PVY-infected plants irrespective of the virus strain, whereas in healthy potato plants, the 24nt class was the most dominant. vsiRNAs were derived from every position in the PVY genome, though certain hotspots were identified for each of the PVY strains. Among the three strains used, the population of vsiRNAs of different size classes was relatively different with PVY-NTN accumulating the highest level of vsiRNAs, while PVY-N infected plants had the least population of vsiRNAs. Unique vsiRNAs mapping to PVY genome in PVY-infected plants amounted to 3.13, 1.93 and 1.70% for NTN, N and O, respectively. There was a bias in the generation of vsiRNAs from the plus strand of the genome in comparison to the negative strand. The highest number of total vsiRNAs was from the cytoplasmic inclusion protein gene (CI) in PVY-O and PVY-NTN strains, whereas from PVY-N, the NIb gene produced maximum total vsiRNAs. These findings indicate that the three PVY strains interact differently in the same host genetic background and provided insights into virus-host interactions in an important food crop. PMID:25036885

  14. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank.

    PubMed

    Naveed, Khalid; Mitter, Neena; Harper, Artemus; Dhingra, Amit; Pappu, Hanu R

    2014-10-13

    Deep sequencing technology has enabled the analysis of small RNA profiles of virus-infected plants and could provide insights into virus-host interactions. Potato virus Y is an economically important viral pathogen of potato worldwide. In this study, we investigated the nature and relative levels of virus-derived small interfering RNAs (vsiRNAs) in potato cv. Russet Burbank infected with three biologically distinct and economically important strains of PVY, the ordinary strain (PVY-O), tobacco veinal-necrotic strain (PVY-N) and tuber necrotic strain (PVY-NTN). The analysis showed an overall abundance of vsiRNAs of 20-24nt in PVY-infected plants. Considerable differences were present in the distribution of vsiRNAs as well as total small RNAs. The 21nt class was the most prevalent in PVY-infected plants irrespective of the virus strain, whereas in healthy potato plants, the 24nt class was the most dominant. vsiRNAs were derived from every position in the PVY genome, though certain hotspots were identified for each of the PVY strains. Among the three strains used, the population of vsiRNAs of different size classes was relatively different with PVY-NTN accumulating the highest level of vsiRNAs, while PVY-N infected plants had the least population of vsiRNAs. Unique vsiRNAs mapping to PVY genome in PVY-infected plants amounted to 3.13, 1.93 and 1.70% for NTN, N and O, respectively. There was a bias in the generation of vsiRNAs from the plus strand of the genome in comparison to the negative strand. The highest number of total vsiRNAs was from the cytoplasmic inclusion protein gene (CI) in PVY-O and PVY-NTN strains, whereas from PVY-N, the NIb gene produced maximum total vsiRNAs. These findings indicate that the three PVY strains interact differently in the same host genetic background and provided insights into virus-host interactions in an important food crop.

  15. [1.4 kb 5' flanking region of class I patatin directs tuber-specific gus expression in potato (Solanum tuberosum L.)].

    PubMed

    Song, D G; Zhou, J; Huang, D Q; Ma, H; Situ, J F; Wang, G Q; Wang, X M

    2001-03-01

    Binary vectors pPATIs (with partial signal sequence) and pPATI (without signal sequence) were constructed by fusing 1.4 kb 5' flanking regions of Class I patatin gene with GUS. Transient GUS expression was observed in in vitro tuber slices bombarded with pPATI. These constructs were then introduced into potato (cv. Desiree) via Agrobacterium tumefaciens transformation. Transgenic potato plants were confirmed by X-Gluc staining and PCR. Using in vitro tuberization system, GUS activities were assayed by fluorescence. It was shown that, in plants transformed with PATI-GUS, GUS specific activities were about 10-20 fold higher in tubers than in stems. Increased sucrose concentration could not induce PATI-GUS expression, but light enhanced PATI-GUS expression in cultured shoots.

  16. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans.

    PubMed

    Henriquez, Maria Antonia; Soliman, Atta; Li, Genyi; Hannoufa, Abdelali; Ayele, Belay T; Daayf, Fouad

    2016-02-01

    1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.

  17. Behavioral Response of Nothanguina phyllobia to Selected Plant Species

    PubMed Central

    Robinson, A. F.; Orr, C. C.; Abernathy, J. R.

    1979-01-01

    The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics. PMID:19305532

  18. Steroidal glycoalkaloids in Solanum chacoense.

    PubMed

    Mweetwa, Alice M; Hunter, Danielle; Poe, Rebecca; Harich, Kim C; Ginzberg, Idit; Veilleux, Richard E; Tokuhisa, James G

    2012-03-01

    Potato (Solanum tuberosum L.), a domesticated species that is the fourth most important world agricultural commodity, requires significant management to minimize the effects of herbivore and pathogen damage on crop yield. A wild relative, Solanum chacoense Bitt., has been of interest to plant breeders because it produces an abundance of novel steroidal glycoalkaloid compounds, leptines and leptinines, which are particularly effective deterrents of herbivory by the Colorado potato beetle (Leptinotarsa decemlineata Say). Biochemical approaches were used in this study to investigate the formation and accumulation of SGAs in S. chacoense. SGA contents were determined in various organs at different stages of organ maturity during a time course of plant development. Leptines and leptinines were the main contributors to the increased levels in SGA concentration measured in the aerial versus the subterranean organs of S. chacoense accession 8380-1. Leptines were not detected in aboveground stolons until the stage where shoots had formed mature chlorophyllous leaves. To gain insights into SGA biosynthesis, the abundance of SGAs and steady-state transcripts of genes coding for enzymes of the central terpene and SGA-specific pathways in various plant organs at anthesis were compared. For two genes of primary terpene metabolism, transcript and SGA abundances were correlated, although with some discrepancies. For genes associated with SGA biosynthesis, transcripts were not detected in some tissues containing SGAs; however these transcripts were detected in the progenitor tissues, indicating the possibility that under our standard growth conditions, SGA biosynthesis is largely limited to highly proliferative tissues such as shoot, root and floral meristems.

  19. Comparative assessment of genetic and epigenetic variation among regenerants of potato (Solanum tuberosum) derived from long-term nodal tissue-culture and cell selection.

    PubMed

    Dann, Alison L; Wilson, Calum R

    2011-04-01

    Three long-term nodal tissued cultured Russet Burbank potato clones and nine thaxtomin A-treated regenerant lines, derived from the nodal lines, were assessed for genetic and epigenetic (in the form of DNA methylation) differences by AFLP and MSAP. The treated regenerant lines were originally selected for superior resistance to common scab disease and acceptable tuber yield in pot and field trials. The long-term, tissue culture clone lines exhibited genetic (8.75-15.63% polymorphisms) and epigenetic (12.56-26.13% polymorphisms) differences between them and may represent a stress response induced by normal plant growth disruption. The thaxtomin A-treated regenerant lines exhibited much higher significant (p < 0.05) genetic (2-29.38%) and epigenetic (45.22-51.76%) polymorphisms than the nodal cultured parent clones. Methylation-sensitive mutations accumulated within the regenerant lines are significantly correlated (p < 0.05) to disease resistance. However, linking phenotypic differences that could be of benefit to potato growers, to single gene sequence polymorphisms in a tetraploid plant such as the potato would be extremely difficult since it is assumed many desirable traits are under polygenic control.

  20. A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca(+2) signaling pathway and lipoxygenase gene.

    PubMed

    Upadhyaya, Chandrama Prakash; Gururani, Mayank Anand; Prasad, Ram; Verma, Ajit

    2013-06-01

    Piriformospora indica is an axenically cultivable phytopromotional endosymbiont that mimics capabilities of arbuscular mycorrhizal fungi. This is a basidiomycete of the Sebacinaceae family, which promotes growth, development, and seed production in a variety of plant species. We report that the cell wall extract (CWE) from P. indica induces tuberization in vitro and promotes tuber growth and yield in potato. The CWE altered the calcium signaling pathway that regulates tuberization process. An increase in tuber number and size was correlated with increased transcript expression of the two Ca(2+)-dependant proteins (CaM1 and St-CDPK1) and the lipoxygenase (LOX) mRNA, which are known to play distinct roles in potato tuberization. External supplementation of Ca(2+) ions induced a similar set of tuberization pathway genes, indicating presence of an active Ca(2+) in the CWE of P. indica. Since potato tuberization is directly influenced by the presence of microflora in nature, the present study provides an insight into the novel mechanism of potato tuberization in relation to plant-microbe association. Ours is the first report on an in vitro tuber-inducing beneficial fungus. PMID:23609909

  1. Aqueous two-phase (PEG4000/Na2SO4) extraction and characterization of an acid invertase from potato tuber (Solanum tuberosum).

    PubMed

    Yuzugullu, Yonca; Duman, Yonca Avcı

    2015-01-01

    Invertases are key metabolic enzymes that catalyze irreversible hydrolysis of sucrose into fructose and glucose. Plant invertases have essential roles in carbohydrate metabolism, plant development, and stress responses. To study their isolation and purification from potato, an attractive system useful for the separation of biological molecules, an aqueous two-phase system, was used. The influence of various system parameters such as type of phase-forming salts, polyethylene glycol (PEG) molecular mass, salt, and polymer concentration was investigated to obtain the highest recovery of enzyme. The PEG4000 (12.5%, w/w)/Na2SO4(15%, w/w) system was found to be ideal for partitioning invertase into the bottom salt-rich phase. The addition of 3% MnSO4 (w/w) at pH 5.0 increased the purity by 5.11-fold with the recovered activity of 197%. The Km and Vmax on sucrose were 3.95 mM and 0.143 U mL(-1) min(-1), respectively. Our data confirmed that the PEG4000/Na2SO4 aqueous two-phase system combined with the presence of MnSO4 offers a low-cost purification of invertase from readily available potato tuber in a single step. The biochemical characteristics of temperature and pH stability for potato invertase prepared from an ATPS make the enzyme a good candidate for its potential use in many research and industrial applications.

  2. A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca(+2) signaling pathway and lipoxygenase gene.

    PubMed

    Upadhyaya, Chandrama Prakash; Gururani, Mayank Anand; Prasad, Ram; Verma, Ajit

    2013-06-01

    Piriformospora indica is an axenically cultivable phytopromotional endosymbiont that mimics capabilities of arbuscular mycorrhizal fungi. This is a basidiomycete of the Sebacinaceae family, which promotes growth, development, and seed production in a variety of plant species. We report that the cell wall extract (CWE) from P. indica induces tuberization in vitro and promotes tuber growth and yield in potato. The CWE altered the calcium signaling pathway that regulates tuberization process. An increase in tuber number and size was correlated with increased transcript expression of the two Ca(2+)-dependant proteins (CaM1 and St-CDPK1) and the lipoxygenase (LOX) mRNA, which are known to play distinct roles in potato tuberization. External supplementation of Ca(2+) ions induced a similar set of tuberization pathway genes, indicating presence of an active Ca(2+) in the CWE of P. indica. Since potato tuberization is directly influenced by the presence of microflora in nature, the present study provides an insight into the novel mechanism of potato tuberization in relation to plant-microbe association. Ours is the first report on an in vitro tuber-inducing beneficial fungus.

  3. Zinc Accumulation and Tolerance in Solanum nigrum are Plant Growth Dependent.

    PubMed

    Samardjieva, Kalina A; Gonçalves, Rui F; Valentão, Patrícia; Andrade, Paula B; Pissarra, José; Pereira, Susana; Tavares, Fernando

    2015-01-01

    Zinc tolerance, accumulation, and organic acid production by Solanum nigrum, a known Zn accumulator, was studied during pre- and post-flowering stages of development. The plants, when challenged with Zn concentrations lethal to plantlets, showed an increase in tolerance from pre-flowering to post-flowering, which was accompanied by a reduction of Zn translocation to the aerial plant parts. Treatment with Zn induced a differential response in organic acids according to the plant organ and developmental stage. In the roots, where Zn concentrations were similar in pre- and post-flowering plants, a general decrease in organic acid in pre-flowering roots contrasted with the increase observed in post-flowering plants. In the stems, Zn induced a generalized increase in organic acids at both growth stages while in the leaves, a slight increase in malic and shikimic was observed in pre-flowering plants and only shikimic acid levels were significantly increased in post-flowering plants. This work shows that Zn accumulation and tolerance in S. nigrum vary during plant development--an observation that may be important to improve the efficiency of phytoremediation approaches. Furthermore, the data suggest the involvement of specific organic acids in this response.

  4. Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective.

    PubMed

    Steinbrenner, Adam D; Gómez, Sara; Osorio, Sonia; Fernie, Alisdair R; Orians, Colin M

    2011-12-01

    Induced changes in primary metabolism are important plant responses to herbivory, providing energy and metabolic precursors for defense compounds. Metabolic shifts also can lead to reallocation of leaf resources to storage tissues, thus increasing a plant's tolerance. We characterized whole-plant metabolic responses of tomato (Solanum lycopersicum) 24 h after leaf herbivory by two caterpillars (the generalist Helicoverpa zea and the specialist Manduca sexta) by using GC-MS. We measured 56 primary metabolites across the leaves, stems, roots, and apex, comparing herbivore-attacked plants to undamaged plants and mechanically damaged plants. Induced metabolic change, in terms of magnitude and number of individual concentration changes, was stronger in the apex and root tissues than in undamaged leaflets of damaged leaves, indicating rapid and significant whole-plant responses to damage. Helicoverpa zea altered many more metabolites than M. sexta across most tissues, suggesting an enhanced plant response to H. zea herbivory. Helicoverpa zea herbivory strongly affected concentrations of defense-related metabolites (simple phenolics and precursor amino acids), while M. sexta altered metabolites associated with carbon and nitrogen transport. We conclude that herbivory induces many systemic primary metabolic changes in tomato, and that changes often are specific to a single tissue or type of herbivore. The potential implications of primary metabolic changes are discussed in relation to resistance and tolerance.

  5. HRE-type genes are regulated by growth-related changes in internal oxygen concentrations during the normal development of potato (Solanum tuberosum) tubers.

    PubMed

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-11-01

    The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.

  6. The Single Andigenum Origin of Neo-Tuberosum Potato Materials is not Supported by Microsatellite and Plastid Marker Analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neo-Tuberosum refers to cultivated potato adapted to long-day tuberization and a syndrome of related morphological and physiological traits, developed by intercrossing and selection of short-day adapted potatoes of the Solanum tuberosum Andigenum Group, native from the Andes of western Venezuela to ...

  7. Rhizoctonia wilt suppression of brinjal (Solanum melongena L) and plant growth activity by Bacillus BS2.

    PubMed

    Boruah, H P Deka; Kumar, B S Dileep

    2003-06-01

    An antibiotic-producing and hydrogen-cyanide-producing rhizobacteria strain Bacillus BS2 showed a wide range of antifungal activity against many Fusarium sp. and brinjal wilt disease pathogen Rhizoctonia solani. Seed bacterization with the strain BS2 promoted seed germination and plant growth in leguminous plants Phaseolus vulgaris and non-leguminous plants Solanum melongena L, Brassica oleracea var. capitata, B. oleraceae var. gongylodes and Lycopersicon esculentum Mill in terms of relative growth rate, shoot height, root length, total biomass production and total chlorophyll content of leaves. Yield of bacterized plants were increased by 10 to 49% compared to uninoculated control plants. Brinjal sapling raised through seed bacterization by the strain BS2 showed a significantly reduced wilt syndrome of brinjal caused by Rhizoctonia solani. Control of wilt disease by the bacterium was clue to the production of antibiotic-like substances, whereas plant growth-promotion was due to the activity of hydrogen cyanide. Root colonization study confirmed that the introduced bacteria colonized the roots and occupied 23-25% of total aerobic bacteria, which was confirmed using dual antibiotic (nalidixic acid and streptomycin sulphate) resistant mutant strain. The results obtained through this investigation suggested the potentiality of the strain BS2 to be used as a plant growth promoter and suppressor of wilt pathogen.

  8. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants.

    PubMed

    Luo, Bing Fang; Du, Shao Ting; Lu, Kai Xing; Liu, Wen Jing; Lin, Xian Yong; Jin, Chong Wei

    2012-05-01

    Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO₃⁻ accumulated more Cd than plants fed NH₄⁺. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO₃⁻. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO₃⁻ and NH₄⁺ treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO₃⁻-facilitated Cd accumulation in plants.

  9. Shoot tip cryopreservation of Solanum tuberosum germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid nitrogen storage of vegetatively-propagated germplasm collections is the most economic and reliable long-term preservation method for many of these collections. Over the past 11 years, the USDA-ARS National Center for Genetic Resources Preservation (NCGRP) cryopreserved over 100 different pot...

  10. Plant nutritional status modulates glutamine synthetase levels in ripe tomatoes (Solanum lycopersicum cv. Micro-Tom).

    PubMed

    Scarpeci, Telma E; Marro, Martin L; Bortolotti, Santiago; Boggio, Silvana B; Valle, Estela M

    2007-02-01

    Tomato (Solanum lycopersicum) fruit ripening implies that chloroplastic proteins are degraded and new proteins are synthesized. Supplementary nutrition is frequently required when tomato plants begin to fruit and continues until the end of the plant's life cycle. Ammonium assimilation is crucial in these fruit maturation and ripening processes. Glutamine synthetase (GS; EC 6.3.1.2), the main ammonium-fixing enzyme in plants, could not be detected in red fruits of several tomato varieties when growing under standard nutrition. In this paper, we analyze the influence of the nutritional status on the ammonium assimilation capacity of ripe tomato (cv. Micro-Tom) fruit. For this purpose, GS expression and protein profiles were followed in mature green and red fruits harvested from plants grown under standard or supplemented nutrition. Under standard nutrient regime (weekly supplied with 0.5 x Hoagland solution) GS activity was found in chloroplasts (GS2) of mature green fruits, but it was not detected either in the chromoplasts or in the cytosol of red fruits. When plants were shifted to a supplemented nutritional regime (daily supplied with 0.5 x Hoagland solution), GS was found in red fruits. Also, cytosolic transcripts (gs1) preferentially accumulated in red fruits under high nutrition. These results indicate that mature green Micro-Tom fruits assimilate ammonia through GS2 under standard nutrition, while ripe red fruits accumulate GS1 under high nutrition, probably in order to assimilate the extra N-compounds made available through supplemented nutrition.

  11. Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L.

    PubMed

    Ahammed, Golam Jalal; Gao, Chun-Juan; Ogweno, Joshua Otieno; Zhou, Yan-Hong; Xia, Xiao-Jian; Mao, Wei-Hua; Shi, Kai; Yu, Jing-Quan

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic to both plants and animals. The enhancement of plant tolerance and detoxification capacity is important for the plant-based remediation of PAHs. Therefore, we investigated the effects of 24-epibrassinolide (EBR) on the metabolism of a three-ringed PAH (phenanthrene-PHE) and subsequent stress tolerance in tomato (Solanum lycopersicum L.) plants. Exposure to PHE (300 μM) for 21 d significantly decreased biomass and net CO(2) assimilation (P(n)) but induced photoinhibition, malondialdehyde (MDA), H(2)O(2) and antioxidant enzymes. Obvious ultrastructural alterations were observed in the PHE-treated root tip cells. Importantly, the foliar application of EBR (0.1 μM) significantly increased biomass, P(n) and antioxidant enzyme activities but decreased MDA and H(2)O(2) compared with PHE alone and saved the root cells from severe damage. The expression of detoxification genes (CYP90b3, GSH1, GST1), reduced glutathione (GSH) content and glutathione S-transferase activity in the EBR+PHE-treated plants were higher than those of PHE alone. Additionally, lower levels of PHE residues in the roots were observed as a result of EBR+PHE treatment. Taken together, our results strongly suggest an enhanced and coordinated detoxification and degradation of PHE by EBR.

  12. Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR's) on medicinal plant Solanum viarum seedlings.

    PubMed

    Hemashenpagam, N; Selvaraj, T

    2011-09-01

    A green house nursery study was conducted to assess the interaction between arbuscular mycorrhizal (AM) fungus, Glomus aggregatum and some plant growth promoting rhizomicrooganisms (PGPR's), Bacillus coagulans and Trichoderma harzianum, in soil and their consequent effect on growth, nutrition and content of secondary metabolities of Solanum viarum seedlings. Triple inoculation of G. aggregatum+B. coagulans+T. harzainum with Solanum viarum in a green house nursery study resulted in maximum plant biomass (plant height 105 cm and plant dry weight 12.17 g), P, Fe, Zn, Cu and Mn and secondary metabolities [total phenols (129.6 microg g(-1) f.wt.), orthodihydroxy phenols (90.6 microg g(-1) f.wt.), flavonoids (3.94 microg g(-1) f.wt.), alkaloids (5.05 microg g(-1) f.wt.), saponins (5.05 microg g(-1) f.wt.) and tannins (0.324 microg g(-1) f.wt.)] of S. viarum seedlings. The mycorrhizal root colonization and spore numbers in the root zone soil of the inoculated plants increased. The enzyme activity namely acid phosphatase (53.44 microg PNP g(-1) soil), alkaline phosphatase (40.95 microg PNP g(-1) soil) and dehydrogenase (475.5 microg PNP g(-1) soil) and total population of B. coagulans (12.5x10(4) g(-1)) and T. harzianum (12.4 x 10(4) g(-1)), in the root zone soil was found high in the triple inoculation with G. aggregatum+B. coagulans+T. harzianum that proved to be the best microbial consortium.

  13. Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants.

    PubMed

    Daresta, Barbara Elisabetta; Italiano, Francesca; de Gennaro, Gianluigi; Trotta, Massimo; Tutino, Maria; Veronico, Pasqua

    2015-01-01

    This study shows the direct effect of atmospheric particulate matter on plant growth. Tomato (Solanum lycopersicum L.) plants were grown for 18d directly on PM10 collected on quartz fiber filters. Organic and elemental carbon and polycyclic aromatic hydrocarbons (PAHs) contents were analyzed on all the tested filters. The toxicity indicators (i.e., seed germination, root elongation, shoot and/or fresh root weight, chlorophyll and carotenoids content) were quantified to study the negative and/or positive effects in the plants via root uptake. Substantial differences were found in the growth of the root apparatus with respect to that of the control plants. A 17-58% decrease of primary root elongation, a large amount of secondary roots and a decrease in shoot (32%) and root (53-70%) weights were found. Quantitative analysis of the reactive oxygen species (ROS) indicated that an oxidative burst in response to abiotic stress occurred in roots directly grown on PM10, and this detrimental effect was also confirmed by the findings on the chlorophyll content and chlorophyll-to-carotenoid ratio.

  14. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum.

    PubMed

    Challal, Soura; Buenafe, Olivia E M; Queiroz, Emerson F; Maljevic, Snezana; Marcourt, Laurence; Bock, Merle; Kloeti, Werner; Dayrit, Fabian M; Harvey, Alan L; Lerche, Holger; Esguerra, Camila V; de Witte, Peter A M; Wolfender, Jean-Luc; Crawford, Alexander D

    2014-10-15

    Medicinal plants used for the treatment of epilepsy are potentially a valuable source of novel antiepileptic small molecules. To identify anticonvulsant secondary metabolites, we performed an in vivo, zebrafish-based screen of medicinal plants used in Southeast Asia for the treatment of seizures. Solanum torvum Sw. (Solanaceae) was identified as having significant anticonvulsant activity in zebrafish larvae with seizures induced by the GABAA antagonist pentylenetetrazol (PTZ). This finding correlates well with the ethnomedical use of this plant in the Philippines, where a water decoction of S. torvum leaves is used to treat epileptic seizures. HPLC microfractionation of the bioactive crude extract, in combination with the in vivo zebrafish seizure assay, enabled the rapid localization of several bioactive compounds that were partially identified online by UHPLC-TOF-MS as steroid glycosides. Targeted isolation of the active constituents from the methanolic extract enabled the complete de novo structure identification of the six main bioactive compounds that were also present in the traditional preparation. To partially mimic the in vivo metabolism of these triterpene glycosides, their common aglycone was generated by acid hydrolysis. The isolated molecules exhibited significant anticonvulsant activity in zebrafish seizure assays. These results underscore the potential of zebrafish bioassay-guided microfractionation to rapidly identify novel bioactive small molecules of natural origin. PMID:25127088

  15. Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants.

    PubMed

    Nagata, Takeshi; Oobo, Takuro; Aozasa, Osamu

    2013-06-01

    Active uptake of ferric iron in microorganisms is based on siderophores. During iron deficiency, Pseudomonas fluorescens synthesizes siderophores, called pyoverdine, which have a high affinity for ferric iron. Strategy I plants generally cannot synthesize pyoverdine or take up ferric iron. We assessed the effect of pyoverdine chelated to ferric iron on iron nutrition in Solanum lycopersicum. Weight and photosynthetic pigment concentrations in the plants supplemented with the pyoverdine and ferric iron were restored to the rates of plants supplemented with ferrous iron. Leaves and roots accumulated significant iron after pyoverdine and ferric iron supplementation than when supplemented with ferric iron alone. When leaves and roots were supplemented with pyoverdine and ferric iron, the SlFRO1 expression level was suppressed to 20% and 50% relative to those decreased with ferric iron alone, respectively. The level of SlIRT1 in roots supplemented with pyoverdine and ferric iron decreased to 50% compared with the level in roots supplemented with ferric iron alone. These results suggest that SlFRO1 and SlIRT1 expression levels were suppressed and that iron content was restored by pyoverdine and ferric iron supplementation. Thus, the downregulation may have occurred because of negative feedback on mRNA expression. Pyoverdine-mediated ferric iron uptake by tomato is suggested to be a useful strategy to increase iron uptake from the environment. PMID:23332821

  16. Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum.

    PubMed

    Kubienová, Lucie; Kopečný, David; Tylichová, Martina; Briozzo, Pierre; Skopalová, Jana; Šebela, Marek; Navrátil, Milan; Tâche, Roselyne; Luhová, Lenka; Barroso, Juan B; Petřivalský, Marek

    2013-04-01

    S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD(+) as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD(+), the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD(+) and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids. PMID

  17. Fertility, root reserves and the cost of inducible defenses in the perennial plant Solanum carolinense.

    PubMed

    Walls, Ramona; Appel, Heidi; Cipollini, Martin; Schultz, Jack

    2005-10-01

    We examined the relationship between internal resources (root reserves), external resources (soil fertility), and allocation to defense vs. growth in the clonal, perennial herb Solanum carolinense. In a short-term (9 d) greenhouse experiment, plants were treated once with jasmonic acid (JA) to determine if polyphenols and glycoalkaloids were inducible by simulated herbivory. In a longer-term (4 wk) greenhouse experiment, we measured the cost, in terms of growth, of treatment with JA every 3 d, to determine if the induced response was due more to carbon limitation or nitrogen limitation. We manipulated the resources available to the plants by varying soil fertility and the size of root cuttings from which plants were grown, and assessed how different resource levels affected the growth and production of polyphenols and alkaloids under JA treatment or control conditions. In the short term, JA increased the concentration of polyphenols in both above- and below-ground plant parts, as well as alkaloid concentrations in the roots. In the long term, the only significant secondary chemistry response to JA was an increased polyphenol concentration in above ground tissues. The total amount of polyphenols produced was the same for JA and control plants, indicating that the higher concentration was a result of the lower biomass of treated plants. In contrast, alkaloid concentrations in plants treated with JA for 4 wk did not differ from controls, but JA-treated plants contained lower total amounts of alkaloids in above ground tissues, as a result of decreased growth. Fertilizer level and root cutting size had effects on growth and the production of secondary compounds and influenced the cost of induction. Plants grown under high fertility had a greater reduction in growth in response to JA than plants grown under low fertility, indicating a greater trade-off between growth and defense for high fertility plants. Plants from larger root cuttings grew bigger without any reduction

  18. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    PubMed Central

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  19. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area.

    PubMed

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-23

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  20. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hamayun, Muhammad; Hussain, Javid; Joo, Gil-Jae; You, Young-Hyun; Kim, Jong-Guk; Lee, In-Jung

    2012-12-01

    Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA(1) and GA(4)) and inactive (GA(9), GA(12), GA(19), GA(20), GA(24), GA(34), and GA(53)) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA(12)→GA(24)→GA(9)→GA(4)→ GA(34)) in the tomato plants as compared to the NB and DW control plants. Abscisic acid, a plant stress hormone, was significantly down-regulated in the presence of Promicromonospora sp. SE188. Contrarily, salicylic acid was significantly higher in the tomato plant after Promicromonospora sp. SE188 inoculation as compared to the controls. Promicromonospora sp. SE188 showed promising stimulation of tomato plant growth. From the results it appears that Promicromonospora sp. SE188 has potential as a bio-fertilizer and should be more broadly tested in field trials for higher crop production in eco-friendly farming systems.

  1. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hamayun, Muhammad; Hussain, Javid; Joo, Gil-Jae; You, Young-Hyun; Kim, Jong-Guk; Lee, In-Jung

    2012-12-01

    Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA(1) and GA(4)) and inactive (GA(9), GA(12), GA(19), GA(20), GA(24), GA(34), and GA(53)) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA(12)→GA(24)→GA(9)→GA(4)→ GA(34)) in the tomato plants as compared to the NB and DW control plants. Abscisic acid, a plant stress hormone, was significantly down-regulated in the presence of Promicromonospora sp. SE188. Contrarily, salicylic acid was significantly higher in the tomato plant after Promicromonospora sp. SE188 inoculation as compared to the controls. Promicromonospora sp. SE188 showed promising stimulation of tomato plant growth. From the results it appears that Promicromonospora sp. SE188 has potential as a bio-fertilizer and should be more broadly tested in field trials for higher crop production in eco-friendly farming systems. PMID:23274975

  2. Life history parameters of the biocontrol agent Gratiana spadicea (Chrysomelidae), reared on the natural host plant Solanum sisymbriifolium and the non-target crop Solanum melongena (Solanaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gratiana spadicea (Klug), a leaf-feeding tortoise beetle native to South America, was released in South Africa for the biological control of Solanum sisymbriifolium Lamarck (wild tomato), despite its ability to develop on cultivated eggplant (Solanum melongena L.) during laboratory host-specificity ...

  3. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    PubMed Central

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  4. Wild and Cultivated Potato (Solanum sect. Petota) Escaped and Persistent Outside of its Natural Range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild potato (Solanum section Petota) contains about 110 species that are native to the Americas from the southwestern United States to central Chile and adjacent Argentina, Uruguay, Paraguay, and southern Brazil. Landrace populations of the cultivated potato, Solanum tuberosum, are native to the Ame...

  5. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato)

    PubMed Central

    2013-01-01

    Background Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. Results DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes. Conclusions Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas

  6. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum).

    PubMed

    Ángeles López, Yesenia Ithaí; Martínez-Gallardo, Norma Angélica; Ramírez-Romero, Ricardo; López, Mercedes G; Sánchez-Hernández, Carla; Délano-Frier, John Paul

    2012-11-01

    Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14 days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7 days post-infestation (dpi). Additional tunnel experiments showed that a 3 days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.

  7. Studies on the medicinal properties of Solanum chrysotrichum in tissue culture: I. Callus formation and plant induction from axillary buds.

    PubMed

    Villarreal, M L; Muñoz, J

    1991-01-01

    A tissue culture method is described for micropropagation and callus formation from Solanum chrysotricum axillary bud explants in Murashige and Skoog's (MS) medium, supplemented with various growth regulators. Induction of rooted plants were initiated only when indol-3 acetic acid (IAA) was present as an auxin in combination with either of two cytokinins: kinetin (KN) or benzyladenine (BA); however, the combination of IAA (0.1 mg.lt.-1) + BA (0.2 mg.lt.-1) was found to be best suited for morphogenesis purposes. Alternatively, callus tissue formation was influenced in presence of naphthalene acetic acid; which in combination with kinetin (NAA 0.1 mg.lt.-1 + KN 0.2 mg.lt.-1) exhibit the best response studied. The plant material obtained by this procedure is proposed for pharmacological and chemical studies of this important antimycotic plant remedy.

  8. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  9. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities.

    PubMed

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-Marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude "waste" plant materials for specific practical applications, especially-but not exclusively-in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  10. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities.

    PubMed

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-Marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude "waste" plant materials for specific practical applications, especially-but not exclusively-in developing countries lacking a more sophisticated industrial infrastructure.

  11. Leaf Anatomy and Photochemical Behaviour of Solanum lycopersicum L. Plants from Seeds Irradiated with Low-LET Ionising Radiation

    PubMed Central

    De Micco, V.; Paradiso, R.; Aronne, G.; De Pascale, S.; Quarto, M.; Arena, C.

    2014-01-01

    Plants can be exposed to ionising radiation not only in Space but also on Earth, due to specific technological applications or after nuclear disasters. The response of plants to ionising radiation depends on radiation quality/quantity and/or plant characteristics. In this paper, we analyse some growth traits, leaf anatomy, and ecophysiological features of plants of Solanum lycopersicum L. “Microtom” grown from seeds irradiated with increasing doses of X-rays (0.3, 10, 20, 50, and 100 Gy). Both juvenile and compound leaves from plants developed from irradiated and control seeds were analysed through light and epifluorescence microscopy. Digital image analysis allowed quantifying anatomical parameters to detect the occurrence of signs of structural damage. Fluorescence parameters and total photosynthetic pigment content were analysed to evaluate the functioning of the photosynthetic machinery. Radiation did not affect percentage and rate of seed germination. Plants from irradiated seeds accomplished the crop cycle and showed a more compact habitus. Dose-depended tendencies of variations occurred in phenolic content, while other leaf anatomical parameters did not show distinct trends after irradiation. The sporadic perturbations of leaf structure, observed during the vegetative phase, after high levels of radiation were not so severe as to induce any significant alterations in photosynthetic efficiency. PMID:24883400

  12. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum Nigrum L. Through Interplant with Low Accumulation Welsh Onion.

    PubMed

    Wang, Siqi; Wei, Shuhe; Ji, Dandan; Bai, Jiayi

    2015-01-01

    Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0-20 cm) Cd concentration was 0.45-0.62 mg kg(-1), which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.

  13. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum Nigrum L. Through Interplant with Low Accumulation Welsh Onion.

    PubMed

    Wang, Siqi; Wei, Shuhe; Ji, Dandan; Bai, Jiayi

    2015-01-01

    Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0-20 cm) Cd concentration was 0.45-0.62 mg kg(-1), which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future. PMID:25581317

  14. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba.

    PubMed

    Austruy, A; Wanat, N; Moussard, C; Vernay, P; Joussein, E; Ledoigt, G; Hitmi, A

    2013-04-01

    In order to revegetate an industrial soil polluted by trace metals and metalloids (As, Pb, Cu, Cd, Sb), the impact of pollution on three plant species, Solanum nigrum and Agrostis capillaris, both native species in an industrial site, and Vicia faba, a plant model species, is studied. Following the study of soil pollution from the industrial wasteland of Auzon, it appears that the As is the principal pollutant. Particular attention is given to this metalloid, both in its content and its speciation in the soil that the level of its accumulation in plants. In V. faba and A. capillaris, the trace metals and metalloids inhibit the biomass production and involve a lipid peroxidation in the leaves. Furthermore, these pollutants cause a photosynthesis perturbation by stomatal limitations and a dysfunction of photosystem II. Whatever the plant, the As content is less than 0.1 percent of dry matter, the majority of As absorbed is stored in the roots which play the role of trap organ. In parallel, the culture of S. nigrum decreases significantly the exchangeable and weakly adsorbed fraction of As in rhizospheric soil. This study has highlighted the ability of tolerance to trace metals of S. nigrum and to a lesser extent A. capillaris. Our data indicate that V. faba is not tolerant to soil pollution and is not a metallophyte species.

  15. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants.

    PubMed

    Djebali, Wahbi; Gallusci, Philippe; Polge, Cécile; Boulila, Latifa; Galtier, Nathalie; Raymond, Philippe; Chaibi, Wided; Brouquisse, Renaud

    2008-02-01

    The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3-300 microM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (< or =3 microM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants.

  16. Size of tuber propagule influences injury of 'Kennebec' potato plants by constant light

    NASA Technical Reports Server (NTRS)

    Cushman, K. E.; Tibbitts, T. W.

    1996-01-01

    Chlorosis and necrotic spotting develop on the foliage of particular cultivars of potato (Solanum tuberosum L.) when grown under constant light. 'Kennebec', a cultivar severely injured by constant light when propagated from tissue-cultured plantlets, also was injured when plants were propagated from small tuber pieces (approximately 1 g). However, plants did not develop injury when propagated from large tuber pieces (approximately 100 g). Plants from large tuber pieces grew more rapidly than plants from small tuber pieces. The role of plant vigor and carbohydrate translocation in controlling injury development is discussed.

  17. The type III secreted effector DspE is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to elicit cell death, and requires Wx(3-6)D/E motifs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effect...

  18. Taxonomic Treatment of Solanum Section Petota (Wild Potatoes) in Catálogo de Plantas Vasculares del Cono Sur (Argentina, Chile, Paraguay, Uruguay, y sur del Brasil)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum section Petota (Solanaceae), which includes the cultivated potato (Solanum tuberosum) and its wild relatives, contains over 150 wild species distributed from the southwestern U.S.A. (38°N) to central Argentina and adjacent Chile (41°S). This catalog includes all species from the Southern Con...

  19. Insect Eggs Can Enhance Wound Response in Plants: A Study System of Tomato Solanum lycopersicum L. and Helicoverpa zea Boddie

    PubMed Central

    Kim, Jinwon; Tooker, John F.; Luthe, Dawn S.; De Moraes, Consuelo M.; Felton, Gary W.

    2012-01-01

    Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable feeding sites. Here, we report induction of antiherbivore defense by insect oviposition which targets newly hatched larvae, not the eggs, in the system of tomato Solanum lycopersicum L., and tomato fruitworm moth Helicoverpa zea Boddie. When tomato plants were oviposited by H. zea moths, pin2, a highly inducible gene encoding protease inhibitor2, which is a representative defense protein against herbivorous arthropods, was expressed at significantly higher level at the oviposition site than surrounding tissues, and expression decreased with distance away from the site of oviposition. Moreover, more eggs resulted in higher pin2 expression in leaves, and both fertilized and unfertilized eggs induced pin2 expression. Notably, when quantified daily following deposition of eggs, pin2 expression at the oviposition site was highest just before the emergence of larvae. Furthermore, H. zea oviposition primed the wound-induced increase of pin2 transcription and a burst of jasmonic acid (JA); tomato plants previously exposed to H. zea oviposition showed significantly stronger induction of pin2 and higher production of JA upon subsequent simulated herbivory than without oviposition. Our results suggest that tomato plants recognize H. zea oviposition as a signal of impending future herbivory and induce defenses to prepare for this herbivory by newly hatched neonate larvae. PMID:22616005

  20. Influence of near null magnetic field on in vitro growth of potato and wild Solanum species.

    PubMed

    Rakosy-Tican, Lenuta; Aurori, C M; Morariu, V V

    2005-10-01

    The influence of near null magnetic field on in vitro growth of different cultures of potato and related Solanum species was investigated for various exposure times and dates. Potato (Solanum tuberosum L. cv. Désirée) in vitro cultures of shoot tips or nodal segments were used. Three different exposure periods revealed either stimulation or inhibition of root, stem, or leaf in vitro growth after 14 or 28 days of exposure. In one experiment the significant stimulation of leaf growth was also demonstrated at biochemical level, the quantity of chlorophyll a and b and carotenoids increasing more than two-fold. For the wild species Solanum chacoense, S. microdontum, and S. verrucosum, standardized in vitro cultures of nodal stem segments were used. Root and stem growth was either stimulated or slightly inhibited after 9 days exposure to near null magnetic field. Callus cultures obtained from potato dihaploid line 120/19 were maintained in near null magnetic field in 2 different months. For these experiments as well as for Solanum verrucosum, callus cultures recorded either slight inhibition or no effect on fresh weight. For all experiments significant growth variation was brought about only when geomagnetic activity (AP index) showed variations at the beginning of in vitro growth and when the explant had at least one meristematic tissue. Moreover longer maintenance in near null magnetic field, 28 days as compared to 14 days or the controls, can also make a difference in plant growth in response to geomagnetic field variations when static component was reduced to zero value. These results of in vitro plant growth stimulation by variable component of geomagnetic field also sustain the so-called seasonal "window" effect.

  1. Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress

    PubMed Central

    Catola, Stefano; Kaidala Ganesha, Srikanta Dani; Calamai, Luca; Loreto, Francesco; Ranieri, Annamaria; Centritto, Mauro

    2016-01-01

    Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts.

  2. Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress

    PubMed Central

    Catola, Stefano; Kaidala Ganesha, Srikanta Dani; Calamai, Luca; Loreto, Francesco; Ranieri, Annamaria; Centritto, Mauro

    2016-01-01

    Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts. PMID:27602039

  3. Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress.

    PubMed

    Catola, Stefano; Kaidala Ganesha, Srikanta Dani; Calamai, Luca; Loreto, Francesco; Ranieri, Annamaria; Centritto, Mauro

    2016-01-01

    Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts. PMID:27602039

  4. Temperature-induced fluorescence changes : a screening method for frost tolerance of potato (solanum sp.).

    PubMed

    Sundbom, E; Strand, M; Hällgren, J E

    1982-11-01

    Field-grown tuber-bearing potatoes were screened for frost tolerance in a late stage of development. Three different clones of Solanum tuberosum L. and two interspecific crosses between clones of S. tuberosum and the wild potato species S. demissum Lindl. were studied. Two different methods were used. (a) Temperature-induced fluorescence changes of intact leaves were measured in freeze-thaw cycles between 20 degrees C and -10 degrees C. The variable fluorescence pattern was characterized in relation to frost tolerance. (b) Controlled freezings of plants in a climate chamber with successively increased low temperature stress, of 1 to 2 hours duration during the dark period. Freezing damages were classified visually.The short-term frost during the fluorescence measurement was compared with the long-term frost treatments in the climate chamber. The results of the two were identical to ranking of the different clones for frost tolerance. The temperature-induced fluorescence changes also monitored progressive damages to the chloroplast membranes when plants were exposed to successively lower temperatures in a controlled climate chamber freezing test. It was deduced from the fluorescence measurements that the freezing injury of potato occurs on the water splitting side of photosystem II. PMID:16662670

  5. Anti-reproductive and other medicinal effects of Tropaeolum tuberosum.

    PubMed

    Johns, T; Kitts, W D; Newsome, F; Towers, G H

    1982-03-01

    Tropaeolum tuberosum is an edible-tuber-producing cultigen of the Andes mountains. Historical beliefs relating to the effects of this species on human reproductive potential continue to the present day. T. tuberosum subsp. tuberosum contains p-methoxybenzylglucosinolate as its major secondary metabolite. The putative anti-aphrodisiac activity of T. tuberosum was examined in male rats fed a diet containing tubers of this taxon. Experimental animals and controls showed equal capability in impregnating females, although animals fed T. tuberosum showed a 45% drop in their blood levels of testosterone/dihydrotestosterone. This decrease appears to be related to the presence of isothiocyanates in the tubers. Feeding studies of female guinea pigs and in vitro studies to test the 17 beta-estradiol binding inhibition of plant extracts and of pure isothiocyanates failed to substantiate any estrogenic activity of these taxa. However, preliminary results suggest that N, N-di-(methoxy-4-benzyl)thiourea competitively inhibits estradiol binding and may have estrogenic activity. The antibiotic, insecticidal, nematocidal and diuretic properties of isothiocyanates substantiate several of the uses of T. tuberosum in Andean folk medicine.

  6. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants

    PubMed Central

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C.; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50–60% and photosynthetic area by 20–25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase. PMID:19036841

  7. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    NASA Astrophysics Data System (ADS)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  8. Treatment of hypercholesterolemia: screening of Solanum macrocarpon Linn (Solanaceae) as a medicinal plant in Benin

    PubMed Central

    Dougnon, Tamègnon Victorien; Bankolé, Honoré Sourou; Klotoé, Jean Robert; Sènou, Maximin; Fah, Lauris; Koudokpon, Hornel; Akpovi, Casimir; Dougnon, Tossou Jacques; Addo, Phyllis; Loko, Frédéric; Boko, Michel

    2014-01-01

    Objective: Hypercholesterolemia is the greatest risk factor for cardiovascular diseases. The present study is conducted to evaluate the lipid lowering activity of leaves and fruits of Solanum macrocarpon, a vegetable, on Wistar rats experimentally rendered hypercholesterolemic by Triton X-100. Materials and Methods: The leaves and fruits were administered (p.o.) for 7 days to rats at doses of 400 and 800 mg/kg of body weight. Atorvastatin was used as reference treatment drug. The data were analyzed by the Brown-Forsythe ANOVA, Dunnett’s T3 multiple comparison test, and Dunnett’s t test. All tests were done at the 5% significance level. Results: Administration of S. macrocarpon (fruits as well as leaves) resulted in a statistically significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol, and triglycerides in the treated groups compared with the untreated hypercholesterolemic group, regardless of the administrated doses. A significant increase in HDL-cholesterol was observed in the treated groups. Hepatic disorders due to the Triton have been corrected by S. macrocarpon. Conclusions: This vegetable effectively suppresses experimental hypercholesterolemia in Wistar rats, suggesting a protective role in cardiovascular diseases. Its use by individuals at risk should be promoted. PMID:25050314

  9. Diel changes in nitrogen and carbon resource status and use for growth in young plants of tomato (Solanum lycopersicum)

    PubMed Central

    Huanosto Magaña, Ruth; Adamowicz, Stéphane; Pagès, Loïc

    2009-01-01

    Background and Aims Modellers often define growth as the development of plant structures from endogenous resources, thus making a distinction between structural (WS) and total (W) dry biomass, the latter being the sum of WS and the weight of storage compounds. In this study, short-term C and N reserves were characterized experimentally (forms, organ distribution, time changes) in relation to light and nutrition signals, and organ structural growth in response to reserve levels was evaluated. Methods Tomato plants (Solanum lycopersicum) were grown hydroponically in a growth room with a 12-h photoperiod and an adequate supply of NO3− (3 mol m−3). Three experiments were carried out 18 d after sowing: [NO3−] was either maintained at 3 mol m−3, changed to 0·02 mol m−3 or to 0 mol m−3. Plants were sampled periodically throughout the light/dark cycles over 24–48 h. Organ WS was calculated from W together with the amount of different compounds that act as C and N resources, i.e. non-structural carbohydrates and carboxylates, nitrate and free amino acids. Key Results With adequate nutrition, carbohydrates accumulated in leaves during light periods, when photosynthesis exceeded growth needs, but decreased at night when these sugars are the main source of C for growth. At the end of the night, carbohydrates were still high enough to fuel full-rate growth, as WS increased at a near constant rate throughout the light/dark cycle. When nitrate levels were restricted, C reserves increased, but [NO3−] decreased progressively in stems, which contain most of the plant N reserves, and rapidly in leaves and roots. This resulted in a rapid restriction of structural growth. Conclusions Periodic darkness did not restrict growth because sufficient carbohydrate reserves accumulated during the light period. Structural growth, however, was very responsive to NO3− nutrition, because N reserves were mostly located in stems, which have limited nitrate reduction capacity. PMID

  10. Within plant distribution of Potato Virus Y in hairy nightshade (Solanum sarrachoides): an inoculum source affecting PVY aphid transmission.

    PubMed

    Cervantes, Felix A; Alvarez, Juan M

    2011-08-01

    Potato virus Y (PVY) is vectored by several potato-colonizing and non-colonizing aphid species in a non-persistent manner and has a wide host range. It occurs naturally in several plant families. Myzus persicae and Macrosiphum euphorbiae are the most efficient potato-colonizing aphid vectors of PVY. Rhopalosiphum padi, a cereal aphid that migrates in large numbers through potato fields during the middle of the growing season, does not colonize potato plants but can transmit PVY. Hairy nightshade, Solanum sarrachoides, a prevalent annual solanaceous weed in the Pacific Northwest (PNW) of the United States, is an alternative host for PVY and a preferred host for M. persicae and M. euphorbiae. Hence, hairy nightshade plants might play an important role as an inoculum source in the epidemiology of PVY. We looked at titre accumulation and distribution of PVY(O), PVY(N:O) and PVY(NTN) in S. sarrachoides and potato after aphid inoculation with M. persicae and studied the transmission of PVY(O) and PVY(NTN), by M. persicae, M. euphorbiae and R. padi from hairy nightshade to potato plants. Virus titre at different positions on the plant was similar in S. sarrachoides and potato plants with strains PVY(O) and PVY(N:O). Titres of PVY(NTN) were similar in S. sarrachoides and potato but differences in titre were observed at different positions within the plant depending on the plant phenology. Percentage transmission of PVY(NTN) by M. persicae and M. euphorbiae was twice as high (46 and 34%, respectively) from hairy nightshade to potato than from potato to potato (20 and 14%). Percentage transmission of PVY(O) by M. persicae and M. euphorbiae was not affected by the inoculum source. No effect of the inoculum source was observed in the transmission of either PVY strain by R. padi. These results show that hairy nightshade may be an equal or better virus reservoir than potato and thus, important in the epidemiology of PVY.

  11. Transcriptome analysis of Solanum melongena L. (eggplant) fruit to identify putative allergens and their epitopes.

    PubMed

    Ramesh, Kumar Ramagoni; Hemalatha, R; Vijayendra, Chary Anchoju; Arshi, Uz Zaman Syed; Dushyant, Singh Baghel; Dinesh, Kumar Bharadwaj

    2016-01-15

    Eggplant is the third most important Solanaceae crop after tomato and potato, particularly in India and China. A transcriptome analysis of eggplant's fruit was performed to study genes involved in medicinal importance and allergies. Illumina HiSeq 2000 system generated 89,763,638 raw reads (~18 Gb) from eggplant. High quality reads (59,039,694) obtained after trimming process, were assembled into a total of 149,224 non redundant set of transcripts. Out of 80,482 annotated sequences of eggplant fruit (BLASTx results against nr-green plant database), 40,752 transcripts showed significant similarity with predicted proteins of Solanum tuberosum (51%) followed by Solanum lycopersicum (34%) and other sequenced plant genomes. With BLASTx top hit analysis against existing allergens, a total of 1986 homologous allergen sequences were found, which had >37% similarity with 48 different allergens existing in the database. From the 48 putative allergens, 526 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. Transcript sequences generated from this study can be used to map epitopes of monoclonal antibodies and polyclonal sera from patients. With the support of this whole transcriptome catalogue of eggplant fruit, complete list of genes can be predicted based on which secondary structures of proteins may be modeled. PMID:26424595

  12. Transcriptome analysis of Solanum melongena L. (eggplant) fruit to identify putative allergens and their epitopes.

    PubMed

    Ramesh, Kumar Ramagoni; Hemalatha, R; Vijayendra, Chary Anchoju; Arshi, Uz Zaman Syed; Dushyant, Singh Baghel; Dinesh, Kumar Bharadwaj

    2016-01-15

    Eggplant is the third most important Solanaceae crop after tomato and potato, particularly in India and China. A transcriptome analysis of eggplant's fruit was performed to study genes involved in medicinal importance and allergies. Illumina HiSeq 2000 system generated 89,763,638 raw reads (~18 Gb) from eggplant. High quality reads (59,039,694) obtained after trimming process, were assembled into a total of 149,224 non redundant set of transcripts. Out of 80,482 annotated sequences of eggplant fruit (BLASTx results against nr-green plant database), 40,752 transcripts showed significant similarity with predicted proteins of Solanum tuberosum (51%) followed by Solanum lycopersicum (34%) and other sequenced plant genomes. With BLASTx top hit analysis against existing allergens, a total of 1986 homologous allergen sequences were found, which had >37% similarity with 48 different allergens existing in the database. From the 48 putative allergens, 526 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. Transcript sequences generated from this study can be used to map epitopes of monoclonal antibodies and polyclonal sera from patients. With the support of this whole transcriptome catalogue of eggplant fruit, complete list of genes can be predicted based on which secondary structures of proteins may be modeled.

  13. A binomial sequential sampling plan for Bactericera cockerelli (Hemiptera: Triozidae) in Solanum lycopersicum (Solanales: Solanacea).

    PubMed

    Prager, Sean M; Butler, Casey D; Trumble, John T

    2014-04-01

    The tomato-potato psyllid Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of many solanaceous plants, including tomato (Solanum lycopersicum L.) and potato (Solanum tuberosum L.). In tomato, feeding by nymphs is associated with "psyllid yellows." B. cockerelli also vectors "Candidatus Liberibacter psyllaurous," an infectious bacterium that causes "vein greening" disease. Decisions about management action are much more effective when guided by robust sampling. However, there are few previous studies of potato psyllid spatial distribution in tomato fields, and no published sequential sampling plans for the pest in tomato. We studied B. cockerelli in various tomato fields in California and used these data to generate a sequential sampling plan. We found that juvenile B. cockerelli in tomato fields exhibit an edge effect, an aggregated distribution, and individuals are primarily located on the bottom of leaves. Psyllids were concentrated in the upper segments of plants, but this changed over time. Finally, we present three binominal sequential sampling plans for managing tomato psyllids in tomato fields. These plans differed from both those for bell pepper (Capsicum annum L.) and potato, indicating that B. cockerelli needs to be sampled using crop-specific sampling plans. PMID:24772568

  14. Breeding for Early Blight Resistance in Potato Using the Wild Species Solanum Raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by Alternaria solani is a major cause of economic losses in many potato growing regions. Growers are interested in the development of potato cultivars with resistance to early blight as a means to decrease usage of fungicide applications. Using w...

  15. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid

    PubMed Central

    Al-Amri, Salem M.

    2013-01-01

    A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. PMID:24235870

  16. [RNA-silencing of anionic peroxidase gene decreases the potato plant resistance to Phytophthora infestans (Mont.) de Bary].

    PubMed

    Sorokan', A V; Kuluev, B R; Burkhanova, G F; Maksimov, I V

    2014-01-01

    Transformed potato (Solanum tuberosum L.) plants expressing the antisense-fragment of M21334 gene were estimated. In transgenic plants the decrease of anionic isoperoxidase pI - 3.5 activity was detected. So, the data testify that M21334 gene encodes this isoperoxidase. Decrease of lignin accumulation and dramatic decline of resistance of transgenic potato plants to the late blight agent Phytophthora infestans emphasize an importance of isoperoxidase pI - 3.5 in defense reaction against late blight. PMID:25842867

  17. Potato (Solanum tuberosum) response to simulated glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 in Ontario, OR and Paterson, WA to determine the effect of simulated glyphosate drift on 'Ranger Russet' potato injury, shikimic acid accumulation, and tuber yield. Glyphosate was applied at 8.5-, 54-, 107-, 215-, and 423 g ae ha-1; which corresponds to 0.01, 0.0...

  18. From introduced American weed to Cape Verde Islands endemic: the case of Solanum rigidum Lam. (Solanaceae, Solanum subgenus Leptostemonum)

    PubMed Central

    Knapp, Sandra; Vorontsova, Maria S.

    2013-01-01

    Abstract A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status. PMID:24198710

  19. From introduced American weed to Cape Verde Islands endemic: the case of Solanum rigidum Lam. (Solanaceae, Solanum subgenus Leptostemonum).

    PubMed

    Knapp, Sandra; Vorontsova, Maria S

    2013-01-01

    A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status. PMID:24198710

  20. Changes in the initial phase of lipid peroxidation induced by elicitor from Phytophthora infestans in Solanum species.

    PubMed

    Polkowska-Kowalczyk, Lidia; Montillet, Jean-Luc; Agnel, Jean-Pierre; Triantaphylidès, Christian; Wielgat, Bernard; Maciejewska, Urszula

    2008-12-01

    The initial phase of the lipid peroxidation process in leaves of Solanum nigrum var. gigantea, Solanum tuberosum cv Bzura and clone H-8105, which represent non-host resistance, field resistance and susceptibility, respectively, against Phytophthora infestans, was investigated. Based on quantitative and qualitative high-performance liquid chromatography (HPLC) analyses of free and esterified fatty acid hydroperoxides (FAHs), we characterized the lipid peroxidation process induced by the pathogen-derived elicitor, culture filtrate (CF), in leaves of the studied genotypes. In all plants, FAHs generated due to 13-lipoxygenase (LOX) action dominated over those from the non-enzymatic pathway. The FAHs derived from 9-LOX activity were found only in CF-treated leaves of the non-host resistant S. nigrum. However, experiments in vitro and in planta with exogenous linoleic acid (LA) as a substrate for LOX revealed high constitutive activity of 9-LOX in all genotypes, which increased in response to CF treatment. The time course changes in polyunsaturated fatty acid (PUFA) pools in the total lipid fractions as well as the degree of their oxidation suggested that CF-induced PUFA peroxidation was enhanced mostly in S. nigrum, less so in Bzura and least in the susceptible clone H-8105. The obtained results are discussed in light of the overall biochemical cell status of plants in the studied interactions.

  1. Transcriptome Analysis of Plant Hormone-Related Tomato (Solanum lycopersicum) Genes in a Sunlight-Type Plant Factory.

    PubMed

    Tanigaki, Yusuke; Higashi, Takanobu; Takayama, Kotaro; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu

    2015-01-01

    In plant factories, measurements of plant conditions are necessary at an early stage of growth to predict harvest times of high value-added crops. Moreover, harvest qualities depend largely on environmental stresses that elicit plant hormone responses. However, the complexities of plant hormone networks have not been characterized under nonstress conditions. In the present study, we determined temporal expression profiles of all genes and then focused on plant hormone pathways using RNA-Seq analyses of gene expression in tomato leaves every 2 h for 48 h. In these experiments, temporally expressed genes were found in the hormone synthesis pathways for salicylic acid, abscisic acid, ethylene, and jasmonic acid. The timing of CAB expression 1 (TOC1) and abscisic acid insensitive 1 (ABA1) and open stomata 1 (OST1) control gating stomata. In this study, compare with tomato and Arabidopsis thaliana, expression patterns of TOC1 have similarity. In contrast, expression patterns of tomato ABI1 and OST1 had expression peak at different time. These findings suggest that the regulation of gating stomata does not depend predominantly on TOC1 and significantly reflects the extracellular environment. The present data provide new insights into relationships between temporally expressed plant hormone-related genes and clock genes under normal sunlight conditions.

  2. Transcriptome Analysis of Plant Hormone-Related Tomato (Solanum lycopersicum) Genes in a Sunlight-Type Plant Factory.

    PubMed

    Tanigaki, Yusuke; Higashi, Takanobu; Takayama, Kotaro; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu

    2015-01-01

    In plant factories, measurements of plant conditions are necessary at an early stage of growth to predict harvest times of high value-added crops. Moreover, harvest qualities depend largely on environmental stresses that elicit plant hormone responses. However, the complexities of plant hormone networks have not been characterized under nonstress conditions. In the present study, we determined temporal expression profiles of all genes and then focused on plant hormone pathways using RNA-Seq analyses of gene expression in tomato leaves every 2 h for 48 h. In these experiments, temporally expressed genes were found in the hormone synthesis pathways for salicylic acid, abscisic acid, ethylene, and jasmonic acid. The timing of CAB expression 1 (TOC1) and abscisic acid insensitive 1 (ABA1) and open stomata 1 (OST1) control gating stomata. In this study, compare with tomato and Arabidopsis thaliana, expression patterns of TOC1 have similarity. In contrast, expression patterns of tomato ABI1 and OST1 had expression peak at different time. These findings suggest that the regulation of gating stomata does not depend predominantly on TOC1 and significantly reflects the extracellular environment. The present data provide new insights into relationships between temporally expressed plant hormone-related genes and clock genes under normal sunlight conditions. PMID:26624004

  3. Transcriptome Analysis of Plant Hormone-Related Tomato (Solanum lycopersicum) Genes in a Sunlight-Type Plant Factory

    PubMed Central

    Tanigaki, Yusuke; Higashi, Takanobu; Takayama, Kotaro; Nagano, Atsushi J.; Honjo, Mie N.; Fukuda, Hirokazu

    2015-01-01

    In plant factories, measurements of plant conditions are necessary at an early stage of growth to predict harvest times of high value-added crops. Moreover, harvest qualities depend largely on environmental stresses that elicit plant hormone responses. However, the complexities of plant hormone networks have not been characterized under nonstress conditions. In the present study, we determined temporal expression profiles of all genes and then focused on plant hormone pathways using RNA-Seq analyses of gene expression in tomato leaves every 2 h for 48 h. In these experiments, temporally expressed genes were found in the hormone synthesis pathways for salicylic acid, abscisic acid, ethylene, and jasmonic acid. The timing of CAB expression 1 (TOC1) and abscisic acid insensitive 1 (ABA1) and open stomata 1 (OST1) control gating stomata. In this study, compare with tomato and Arabidopsis thaliana, expression patterns of TOC1 have similarity. In contrast, expression patterns of tomato ABI1 and OST1 had expression peak at different time. These findings suggest that the regulation of gating stomata does not depend predominantly on TOC1 and significantly reflects the extracellular environment. The present data provide new insights into relationships between temporally expressed plant hormone-related genes and clock genes under normal sunlight conditions. PMID:26624004

  4. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia.

    PubMed

    Deryabin, A N; Burakhanova, E A; Trunova, T I

    2015-01-01

    We studied the involvement of apoplastic sugars (glucose, fructose, and sucrose) and the cell-wall invertase (CWI) in the formation of the tolerance of cold-resistant potato plants (Solanum tuberosum L., cv Désirée) to hypothermia. The activity of CW1 and the content in the cell and the apoplast substrate (sucrose) and the reaction products of this enzyme (glucose and fructose) have a significant influence on the formation of the tolerance of cold-resistant potato plants to hypothermia. PMID:26728726

  5. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.

    PubMed

    Scagliola, M; Pii, Y; Mimmo, T; Cesco, S; Ricciuti, P; Crecchio, C

    2016-10-01

    Plant Growth Promoting Bacteria (PGPB) are considered a promising approach to replace the conventional agricultural practices, since they have been shown to affect plant nutrient-acquisition processes by influencing nutrient availability in the rhizosphere and/or those biochemical processes determining the uptake at root level of nitrogen (N), phosphorus (P), and iron (Fe), that represent the major constraints for crop productivity worldwide. We have isolated novel bacterial strains from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) plants, previously grown in hydroponic solution (either Fe deficient or Fe sufficient) and subsequently transferred onto an agricultural calcareous soil. PGPB have been identified by molecular tools and characterized for their capacity to produce siderophores and indole-3-acetic acid (IAA), and to solubilize phosphate. Selected bacterial isolates, showing contemporarily high levels of the three activities investigated, were finally tested for their capacity to induce Fe reduction in cucumber roots two isolates, from barley and tomato plants under Fe deficiency, significantly increased the root Fe-chelate reductase activity; interestingly, another isolate enhanced the reduction of Fe-chelate reductase activity in cucumber plant roots, although grown under Fe sufficiency. PMID:27295343

  6. Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene

    PubMed Central

    Kiełbowicz-Matuk, Agnieszka; Rey, Pascal; Rorat, Tadeusz

    2014-01-01

    Background and Aims Double B-box zinc finger (DBB) proteins are recently identified plant transcription regulators that participate in the response to sodium chloride-induced stress in arabidopsis plants. Little is known regarding their subcellular localization and expression patterns, particularly in relation to other osmotic constraints and the day/night cycle. This study investigated natural variations in the amount of a Solanum DBB protein, SsBBX24, during plant development, and also under various environmental constraints leading to cell dehydration in relation to the circadian clock and the time of day. Methods SsBBX24 transcript and protein abundance in various organs of phytotron-grown Solanum tuberosum and S. sogarandinum plants were investigated at different time points of the day and under various osmotic constraints. The intracellular location of SsBBX24 was determined by western blot analysis of subcellular fractions. Key Results Western blot analysis of SsBBX24 protein revealed that it was located in the nucleus at the beginning of the light period and in the cytosol at the end, suggesting movement (‘trafficking’) during the light phase. SsBBX24 gene expression exhibited circadian cycling under control conditions, with the highest and lowest abundances of both transcript and protein occurring 8 and 18 h after dawn, respectively. Exposing Solanum plants to low temperature, salinity and polyethylene glycol (PEG), but not to drought, disturbed the circadian regulation of SsBBX24 gene expression at the protein level. SsBBX24 transcript and protein accumulated in Solanum plants in response to salt and PEG treatments, but not in response to low temperature or water deficit. Most interestingly, the time of the day modulated the magnitude of SsBBX24 expression in response to high salt concentration. Conclusions The interplay between circadian rhythm and osmotic constraints in the regulation of the expression of a Solanum DBB transcriptional regulator is

  7. Late blight and early blight resistance from Solanum hougasii introgressed into Solanum tuberosum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight, caused by Phytophthora infestans, and early blight, incited by Alternaria solani,are the two most widely occurring foliar diseases of potato in the U.S. Resistance to both diseases is necessary if growers are to reduce fungicide applications. Field resistance to late blight has previous...

  8. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought.

    PubMed

    Landi, Simone; Nurcato, Roberta; De Lillo, Alessia; Lentini, Marco; Grillo, Stefania; Esposito, Sergio

    2016-08-01

    The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity. PMID:27085599

  9. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum)

    PubMed Central

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment. PMID:26630675

  10. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.).

    PubMed

    Beesley, Luke; Marmiroli, Marta; Pagano, Luca; Pigoni, Veronica; Fellet, Guido; Fresno, Teresa; Vamerali, Teofilo; Bandiera, Marianna; Marmiroli, Nelson

    2013-06-01

    Arsenic (As) concentrations in soil, soil pore water and plant tissues were evaluated in a pot experiment following the transplantation of tomato (Solanum lycopersicum L.) plantlets to a heavily As contaminated mine soil (~6000 mg kg(-1) pseudo-total As) receiving an orchard prune residue biochar amendment, with and without NPK fertiliser. An in-vitro test was also performed to establish if tomato seeds were able to germinate in various proportions of biochar added to nutrient solution (MS). Biochar significantly increased arsenic concentrations in pore water (500 μg L(-1)-2000 μg L(-1)) whilst root and shoot concentrations were significantly reduced compared to the control without biochar. Fruit As concentrations were very low (<3 μg kg(-1)), indicating minimal toxicity and transfer risk. Fertilisation was required to significantly increase plant biomass above the control after biochar addition whilst plants transplanted to biochar only were heavily stunted and chlorotic. Given that increasing the amount of biochar added to nutrient solution in-vitro reduced seed germination by up to 40%, a lack of balanced nutrient provision from biochar could be concluded. In summary, solubility and mobility of As were increased by biochar addition to this soil, but uptake to plant was reduced, and toxicity-transfer risk was negligible. Therefore leaching rather than food chain transfer appears the most probable immediate consequence of biochar addition to As contaminated soils. PMID:23583727

  11. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum).

    PubMed

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.

  12. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum).

    PubMed

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment. PMID:26630675

  13. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis.

    PubMed

    Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue

    2014-01-01

    The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193-228 (SsCBF1(193-228)). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions.

  14. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.

    PubMed

    UdDin, Islam; Bano, Asghari; Masood, Sajid

    2015-03-01

    Chromium (Cr), being a highly toxic metal, adversely affects the mineral uptake and metabolic processes in plants when present in excess. The current study was aimed at investigating the Cr accumulation in various plant tissues and its relation to the antioxidation activity and root exudation. Plants were grown in soil spiked with different concentrations of Cr for three weeks in pots and analysed for different growth, antioxidants and ion attributes. Furthermore, plants treated with different concentrations of Cr in pots were shifted to rhizobox-like system for 48h and organic acids were monitored in the mucilage dissolved from the plant root surface, mirroring rhizospheric solution. The results revealed that the Cr application at 1mM increased the shoot fresh and dry weight and root dry weight of Solanum nigrum, whereas the opposite was observed for Parthenium hysterophorus when compared with lower levels of Cr (0.5mM) or control treatment. In both plant species, Cr and Cl concentrations were increased while Ca, Mg and K concentrations in root, shoot and root exudates were decreased with increasing levels of Cr. Higher levels of Cr treatments enhanced the activities of SOD, POD and proline content in leaves of S. nigrum, whereas lower levels of Cr treatment were found to have stimulatory effects in P. hysterophorus. P. hysterophorus exhibited highest exudation of organic acid contents. With increasing levels of Cr treatments, citric acid concentration in root exudates increased by 35% and 44% in S. nigrum, whereas 20% and 76% in P. hysterophorus. Cr toxicity was responsible for the shoot growth reduction of S. nigrum and P. hysterophorus, however, shoot growth response was different at different levels of applied Cr. Consequently, Cr stress negatively altered the plant physiology and biochemistry. However, the enhanced antioxidant production, Cl uptake and root exudation are the physiological and biochemical indicators for the plant adaptations in biotic systems

  15. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.

    PubMed

    UdDin, Islam; Bano, Asghari; Masood, Sajid

    2015-03-01

    Chromium (Cr), being a highly toxic metal, adversely affects the mineral uptake and metabolic processes in plants when present in excess. The current study was aimed at investigating the Cr accumulation in various plant tissues and its relation to the antioxidation activity and root exudation. Plants were grown in soil spiked with different concentrations of Cr for three weeks in pots and analysed for different growth, antioxidants and ion attributes. Furthermore, plants treated with different concentrations of Cr in pots were shifted to rhizobox-like system for 48h and organic acids were monitored in the mucilage dissolved from the plant root surface, mirroring rhizospheric solution. The results revealed that the Cr application at 1mM increased the shoot fresh and dry weight and root dry weight of Solanum nigrum, whereas the opposite was observed for Parthenium hysterophorus when compared with lower levels of Cr (0.5mM) or control treatment. In both plant species, Cr and Cl concentrations were increased while Ca, Mg and K concentrations in root, shoot and root exudates were decreased with increasing levels of Cr. Higher levels of Cr treatments enhanced the activities of SOD, POD and proline content in leaves of S. nigrum, whereas lower levels of Cr treatment were found to have stimulatory effects in P. hysterophorus. P. hysterophorus exhibited highest exudation of organic acid contents. With increasing levels of Cr treatments, citric acid concentration in root exudates increased by 35% and 44% in S. nigrum, whereas 20% and 76% in P. hysterophorus. Cr toxicity was responsible for the shoot growth reduction of S. nigrum and P. hysterophorus, however, shoot growth response was different at different levels of applied Cr. Consequently, Cr stress negatively altered the plant physiology and biochemistry. However, the enhanced antioxidant production, Cl uptake and root exudation are the physiological and biochemical indicators for the plant adaptations in biotic systems

  16. Serine Protease Inhibitors Specifically Defend Solanum nigrum against Generalist Herbivores but Do Not Influence Plant Growth and Development[C][W

    PubMed Central

    Hartl, Markus; Giri, Ashok P.; Kaur, Harleen; Baldwin, Ian T.

    2010-01-01

    Solanaceaeous taxa produce diverse peptide serine proteinase inhibitors (SPIs), known antidigestive defenses that might also control endogenous plant proteases. If and how a plant coordinates and combines its different SPIs for the defense against herbivores and if these SPIs simultaneously serve developmental functions is unknown. We examine Solanum nigrum’s SPI profile, comprising four different active inhibitors, of which the most abundant proved to be novel, to understand their functional specialization in an ecological context. Transcript and activity characterization revealed tissue-specific and insect-elicited accumulation patterns. Stable and transient gene silencing of all four SPIs revealed different specificities for target proteinases: the novel SPI2c displayed high specificity for trypsin and chymotrypsin, while two other SPI2 homologs were highly active against subtilisin. In field and lab experiments, we found all four SPIs to display herbivore- and gene-specific defensive properties, with dissimilar effects on closely related species. However, we did not observe any clear developmental phenotype in SPI-silenced plants, suggesting that SPIs do not play a major role in regulating endogenous proteases under the conditions studied. In summary, specific single SPIs or their combinations defend S. nigrum against generalist herbivores, while the defense against herbivores specialized on SPI-rich diets requires other unknown defense mechanisms. PMID:21177479

  17. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.

    PubMed

    Urbanczyk-Wochniak, Ewa; Fernie, Alisdair R

    2005-01-01

    The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitrate regimes: saturated (8 mM NO3-), replete (4 mM NO3-) and deficient (0.4 mM NO3-). All treatments were performed under varied light intensity, with leaf samples being collected after 7, 14, and 21 d. In addition, the short-term response (after 1, 24, 48, and 94 h) to varying nutrient status was evaluated at the higher light intensity. GC-MS analysis of the levels of amino acids, tricarboxylic acid cycle intermediates, sugars, sugar alcohols, and representative compounds of secondary metabolism revealed substantial changes under the various growth regimes applied. The data presented here suggest that nitrate nutrition has wide-ranging effects on plant leaf metabolism with nitrate deficiency resulting in decreases in many amino and organic acids and increases in the level of several carbohydrates and phosphoesters, as well as a handful of secondary metabolites. These results are compared with previously reported transcript profiles of altered nitrogen regimes and discussed within the context of current models of carbon nitrogen interaction.

  18. [Chemical constituents from Solanum rostratum].

    PubMed

    Hao, Li-Juan; Wang, Shan; Zhu, Jing-Jing; Wang, Zhi-Min; Wei, Shou-Hui

    2014-06-01

    Ten compounds were isolated from the aerial part of Solanum rostratum by means of various chromatographic techniques such as silica gel, Sephadex LH-20, ODS and preparative HPLC. Their structures were identified as dioscin (1), hypoglaucin H (2), hyperin (3), isoquercitrin (4), isorhamnetin-3-O-beta-D-galactopyranoside (5), kaempferol-3-O-beta-D-glucoside (6), smilaxchinoside A (7), 26-O-beta-D-glucopyranosyl-3beta, 20alpha,26-triol-25 (R) -delta5,22-dienofurostan-3-O-alpha-L-rhamnopyranosyl (1 --> 2) -[ alpha-L-rhamnopyranosyl (1 --> 4)] -beta-D-glucopyranoside (8), beta-sitosterol (9), and daucosterol (10), on the basis of physicochemical properties and spectroscopic data analysis. Among them ,compounds 7 and 8 were isolated from the genus Solanum for the first time, and the remaining compounds were obtained from this plant for the first time.

  19. A Deluge of Complex Repeats: The Solanum Genome.

    PubMed

    Mehra, Mrigaya; Gangwar, Indu; Shankar, Ravi

    2015-01-01

    Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50-60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats. PMID:26241045

  20. Solanum Tuber-bearing Species Resistance Behavior Against Nacobbus aberrans

    PubMed Central

    Chaves, Eliseo J.; Clausen, Andrea. M.; Franco, Javier

    2009-01-01

    Naccobus aberrans is a major pest of the potato crop in the Andean regions of Argentina, Bolivia, and Perú. It is endemic in northwest Argentina and is also found in lowlands. The resistance of eleven Andean potato landraces and three accessions of the wild tuber-bearing species Solanum acaule, S. infundibuliforme, and S. megistacrolobum were evaluated against a population of N. aberrans from Coctaca, Jujuy province, while Solanum tuberosum ssp. tuberosum ‘Spunta’, ‘Kennebec’, and ‘Frital INTA’ were evaluated against a population from the southeast of Buenos Aires province. The presence, the number of galls, and the number of individuals were recorded. In addition, a reproduction factor was calculated and races were determined. Results showed that the N. aberrans population from Coctaca corresponded to race 2 and the population from the lowlands belonged to the sugar beet group. Landrace Azul, one genotype of S. megistacrolobum, and two genotypes of S. acaule showed resistance towards the race from Coctaca while no infection was recorded in potato cultivars with the Naccobus race from the lowland area. PMID:22661771

  1. A Deluge of Complex Repeats: The Solanum Genome

    PubMed Central

    Mehra, Mrigaya; Gangwar, Indu; Shankar, Ravi

    2015-01-01

    Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50–60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats. PMID:26241045

  2. Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1.

    PubMed

    De Palma, Monica; D'Agostino, Nunzio; Proietti, Silvia; Bertini, Laura; Lorito, Matteo; Ruocco, Michelina; Caruso, Carla; Chiusano, Maria L; Tucci, Marina

    2016-01-15

    Trichoderma species include widespread rhizosphere-colonising fungi that may establish an opportunistic interaction with the plant, resulting in growth promotion and/or increased tolerance to biotic and abiotic stresses. For this reason, Trichoderma-based formulations are largely used in agriculture to improve yield while reducing the application of agro-chemicals. By using the Suppression Subtractive Hybridization method, we identified molecular mechanisms activated during the in vitro interaction between tomato (Solanum lycopersicum L.) and the selected strain MK1 of Trichoderma longibrachiatum, and which may participate in the stimulation of plant growth and systemic resistance. Screening and sequence analysis of the subtractive library resulted in forty unique transcripts. Their annotation in functional categories revealed enrichment in cell defence/stress and primary metabolism categories, while secondary metabolism and transport were less represented. Increased transcription of genes involved in defence, cell wall reinforcement and signalling of reactive oxygen species suggests that improved plant pathogen resistance induced by T. longibrachiatum MK1 in tomato may occur through stimulation of the above mechanisms. The array of activated defence-related genes indicates that different signalling pathways, beside the jasmonate/ethylene-dependent one, collaborate to fine-tune the plant response. Our results also suggest that the growth stimulation effect of MK1 on tomato may involve a set of genes controlling protein synthesis and turnover as well as energy metabolism and photosynthesis. Transcriptional profiling of several defence-related genes at different time points of the tomato-Trichoderma interaction, and after subsequent inoculation with the pathogen Botrytis cinerea, provided novel information on genes that may specifically modulate the tomato response to T. longibrachiatum, B. cinerea or both.

  3. Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum

    PubMed Central

    2010-01-01

    Background Understanding the regulation of the flavonoid pathway is important for maximising the nutritional value of crop plants and possibly enhancing their resistance towards pathogens. The flavonoid 3'5'-hydroxylase (F3'5'H) enzyme functions at an important branch point between flavonol and anthocyanin synthesis, as is evident from studies in petunia (Petunia hybrida), and potato (Solanum tuberosum). The present work involves the identification and characterisation of a F3'5'H gene from tomato (Solanum lycopersicum), and the examination of its putative role in flavonoid metabolism. Results The cloned and sequenced tomato F3'5'H gene was named CYP75A31. The gene was inserted into the pYeDP60 expression vector and the corresponding protein produced in yeast for functional characterisation. Several putative substrates for F3'5'H were tested in vitro using enzyme assays on microsome preparations. The results showed that two hydroxylation steps occurred. Expression of the CYP75A31 gene was also tested in vivo, in various parts of the vegetative tomato plant, along with other key genes of the flavonoid pathway using real-time PCR. A clear response to nitrogen depletion was shown for CYP75A31 and all other genes tested. The content of rutin and kaempferol-3-rutinoside was found to increase as a response to nitrogen depletion in most parts of the plant, however the growth conditions used in this study did not lead to accumulation of anthocyanins. Conclusions CYP75A31 (NCBI accession number GQ904194), encodes a flavonoid 3'5'-hydroxylase, which accepts flavones, flavanones, dihydroflavonols and flavonols as substrates. The expression of the CYP75A31 gene was found to increase in response to nitrogen deprivation, in accordance with other genes in the phenylpropanoid pathway, as expected for a gene involved in flavonoid metabolism. PMID:20128892

  4. Optimization of the genomic DNA extraction method of silverleaf nightshade/ (Solanum elaeagnifolium /Cav.), an invasive plant in the cultivated areas within the Mediterranean region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The geographical origin of an invasive in the cultivated area within the Mediterranean region, silverleaf nightshade, Solanum elaeagnifolium Cav, (Solanaceae) should be identified through the analysis of genetic similarities between native and introduced populations using microsatellite markers. Bef...

  5. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    PubMed

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings. PMID:27421813

  6. Effects of low temperature on mRNA and small RNA transcriptomes in Solanum lycopersicoides leaf revealed by RNA-Seq.

    PubMed

    Chen, Hongyu; Chen, Xiuling; Chai, Xinfeng; Qiu, Youwen; Gong, Chao; Zhang, Zhenzhu; Wang, Tingting; Zhang, Yue; Li, Jingfu; Wang, Aoxue

    2015-08-28

    The plant low temperature tolerance mechanisms have been studied in the Arabidopsis, tomato, Solanum commersonii, Solanum tuberosum, Chorispora bungeana, and Chinese cabbage at the transcriptional level. Some genome-wide works to identify cold-regulated genes, but no comprehensive research of the Solanum lycopersicoides transcriptome under low temperature stress have been performed. S. lycopersicoides is more freeze-tolerant than the cultivated tomato. We analyzed the low temperature transcriptomes and small RNA fractions of S. lycopersicoides leaf tissue using an Illumina platform for high-throughput RNA sequencing (RNA-seq). There were 59,286 unigenes obtained using de novo assembly, and 2052 down-regulated and 2409 up-regulated unigenes were identified in response to chilling. The expression of six cold-regulated genes was confirmed by qPCR. Some biological processes were showed, by gene ontology term enrichment analysis of the cold-regulated genes, including 'response to stimulus', 'signaling', and 'cell killing' in the response of S. lycopersicoides to chilling. In addition, we identified a total of 952 novel miRNA candidates that may regulate relevant target genes. Our data indicated that certain miRNAs (e.g., sly-miR156a, sly-miR397, and unconservative_SL2.50ch00_21686) play roles in response to low temperature stress. Sequencing of mRNAs and miRNAs revealed new genes and allowed us to have new assumptions for a low temperature tolerance mechanism. PMID:26187671

  7. Three new species of Solanum (Brevantherum Clade) endemic to the Brazilian Atlantic Forest

    PubMed Central

    Giacomin, Leandro L.; Stehmann, João R.

    2014-01-01

    Abstract Three new Brazilian species of the Brevantherum clade of Solanum (Solanaceae) are described, all closely related to the poorly known Solanum inornatum Witasek. Solanum bradei Giacomin & Stehmann, sp. nov., and Solanum kriegeri Giacomin & Stehmann, sp. nov., differ from S. inornatum in having very small deltate calyx lobes that are not accrescent in fruit. Solanum bradei is a shrub up to 1.8 m with generally pedunculate inflorescences and tiny translucent fruits, whereas Solanum kriegeri is a dwarf glabrescent plant growing on sandy soils in cloud forests, with larger fruits and sessile to subsessile inflorescence. Solanum friburgense Giacomin & Stehmann, sp. nov., has linear calyx lobes like S. inornatum, and is characterized by its 2-foliate sympodia and leaf pubescence, with trichomes concentrated on leaf veins. The species here described and illustrated are restricted to the mountain ranges of Mantiqueira and Serra do Mar in the Atlantic forests of southeastern Brazil and are all of considerable conservation concern. PMID:25009438

  8. Three new species of Solanum (Brevantherum Clade) endemic to the Brazilian Atlantic Forest.

    PubMed

    Giacomin, Leandro L; Stehmann, João R

    2014-01-01

    Three new Brazilian species of the Brevantherum clade of Solanum (Solanaceae) are described, all closely related to the poorly known Solanum inornatum Witasek. Solanum bradei Giacomin & Stehmann, sp. nov., and Solanum kriegeri Giacomin & Stehmann, sp. nov., differ from S. inornatum in having very small deltate calyx lobes that are not accrescent in fruit. Solanum bradei is a shrub up to 1.8 m with generally pedunculate inflorescences and tiny translucent fruits, whereas Solanum kriegeri is a dwarf glabrescent plant growing on sandy soils in cloud forests, with larger fruits and sessile to subsessile inflorescence. Solanum friburgense Giacomin & Stehmann, sp. nov., has linear calyx lobes like S. inornatum, and is characterized by its 2-foliate sympodia and leaf pubescence, with trichomes concentrated on leaf veins. The species here described and illustrated are restricted to the mountain ranges of Mantiqueira and Serra do Mar in the Atlantic forests of southeastern Brazil and are all of considerable conservation concern.

  9. Central diabetes insipidus following digestion Solanum indicum L. concentrated solution.

    PubMed

    Huang, Wen-Hung; Hsu, Ching-Wei; Fang, Ji-Tseng

    2008-04-01

    In Taiwan, Solanum indicum L. has been used in folk medicine for the treatment of inflammation, toothache, ascites, edema, and wound infection. The plant is rich in solanine, an alkaloidal glycoside. We report a 43-year-old man who developed polyuria and polydipsia after taking seven doses of concentrated solution of Solanum indicum L. over two weeks. A water deprivation test and a low serum antidiuretic hormone level helped to confirm a diagnosis of central diabetes insipidus. We suggest that excessive doses of Solanum indicum L. may cause central diabetes insipidus.

  10. In vitro RNA uptake studies in plant mitochondria.

    PubMed

    Kubiszewski-Jakubiak, Szymon; Megel, Cyrille; Ubrig, Elodie; Salinas, Thalia; Duchêne, Anne-Marie; Maréchal-Drouard, Laurence

    2015-01-01

    During evolution, most of the ancestral genes from the endosymbiotic α-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. To allow the comeback of proteins and RNAs [in particular transfer RNA (tRNAs)] into the organelle, macromolecule import systems were universally established. While protein import processes have been studied into details, much less is known about tRNA mitochondrial import. In plants, part of the knowledge on the tRNA import process into mitochondria has been acquired thanks to in vitro import assays. Furthermore, the development of in vitro RNA import strategies allowed the study of plant mitochondrial gene expression. The purpose of this chapter is to provide detailed protocols to perform in vitro RNA uptake into potato (Solanum tuberosum) or Arabidopsis (Arabidopsis thaliana) mitochondria as well as approaches to analyze them.

  11. Proteomic Analysis Provides New Insights in Phosphorus Homeostasis Subjected to Pi (Inorganic Phosphate) Starvation in Tomato Plants (Solanum lycopersicum L.)

    PubMed Central

    Muneer, Sowbiya; Jeong, Byoung Ryong

    2015-01-01

    Phosphorus is a major nutrient acquired by plants via high-affinity inorganic phosphate (Pi) transporters. To determine the adaptation and homeostasis strategy to Pi starvation, we compared the proteome analysis of tomato leaves that were treated with and without Pi (as KH2PO4) for 10 days. Among 600 reproducible proteins on 2-DE gels 46 of them were differentially expressed. These proteins were involved in major metabolic pathways, including photosynthesis, transcriptional/translational regulations, carbohydrate/energy metabolism, protein synthesis, defense response, and other secondary metabolism. The results also showed that the reduction in photosynthetic pigments lowered P content under –Pi treatments. Furthermore, high-affinity Pi transporters (lePT1 and lePT2) expressed in higher amounts under –Pi treatments. Also, the accumulation of Pi transporters was observed highly in the epidermis and palisade parenchyma under +Pi treatments compared to –Pi treatments. Our data suggested that tomato plants developed reactive oxygen species (ROS) scavenging mechanisms to cope with low Pi content, including the up-regulation of proteins mostly involved in important metabolic pathways. Moreover, Pi-starved tomato plants increased their internal Pi utilization efficiency by increasing the Pi transporter genes and their rational localization. These results thus provide imperative information about how tomato plants respond to Pi starvation and its homeostasis. PMID:26222137

  12. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars.

    PubMed

    Thieme, Ramona; Rakosy-Tican, Elena; Nachtigall, Marion; Schubert, Jörg; Hammann, Thilo; Antonova, Olga; Gavrilenko, Tatjana; Heimbach, Udo; Thieme, Thomas

    2010-10-01

    Interspecific somatic hybrids between commercial cultivars of potato Solanum tuberosum L. Agave and Delikat and the wild diploid species Solanum cardiophyllum Lindl. (cph) were produced by protoplast electrofusion. The hybrid nature of the regenerated plants was confirmed by flow cytometry, simple sequence repeat (SSR), amplified fragment length polymorphism (AFLP), microsatellite-anchored fragment length polymorphism (MFLP) markers and morphological analysis. Somatic hybrids were assessed for their resistance to Colorado potato beetle (CPB) using a laboratory bioassay, to Potato virus Y (PVY) by mechanical inoculation and field trials, and foliage blight in a greenhouse and by field trials. Twenty-four and 26 somatic hybrids of cph + cv. Agave or cph + cv. Delikat, respectively, showed no symptoms of infection with PVY, of which 3 and 12, respectively, were also resistant to foliage blight. One hybrid of cph + Agave performed best in CPB and PVY resistance tests. Of the somatic hybrids that were evaluated for their morphology and tuber yield in the field for 3 years, four did not differ significantly in tuber yield from the parental and standard cultivars. Progeny of hybrids was obtained by pollinating them with pollen from a cultivar, selfing or cross-pollination. The results confirm that protoplast electrofusion can be used to transfer the CPB, PVY and late blight resistance of cph into somatic hybrids. These resistant somatic hybrids can be used in pre-breeding studies, molecular characterization and for increasing the genetic diversity available for potato breeding by marker-assisted combinatorial introgression into the potato gene pool.

  13. Virus induced gene silencing of three putative prolyl 4-hydroxylases enhances plant growth in tomato (Solanum lycopersicum).

    PubMed

    Fragkostefanakis, Sotirios; Sedeek, Khalid E M; Raad, Maya; Zaki, Marwa Samir; Kalaitzis, Panagiotis

    2014-07-01

    Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.

  14. Host plant choice experiments of Colorado potato beetle (Coleoptera: Chrysomelidae) in Virginia.

    PubMed

    Hitchner, Erin M; Kuhar, Thomas P; Dickens, Joseph C; Youngman, Roger R; Schultz, Peter B; Pfeiffer, Douglas G

    2008-06-01

    Field and laboratory-choice experiments were conducted to understand aspects of host plant orientation by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory bioassays, L. decemlineata oriented to volatiles emitted by potato, Solanum tuberosum L., foliage over both tomato, Lycopersicon esculentum L., and eggplant, Solanum melongena L., foliage, and eggplant over tomato foliage, all of which had been mechanically damaged. Field choice tests revealed more L. decemlineata adults, larvae, and egg masses on eggplant than on tomato. In other experiments, counts of live L. decemlineata on untreated paired plants and counts of dead beetles on imidacloprid-treated plants did not differ between potato and eggplant. L. decemlineata was significantly attracted to eggplant over both tomato and pepper. To determine whether feeding adults affected orientation to host plants, an imidacloprid-treated eggplant or potato plant was paired with an untreated eggplant or potato plant covered in a mesh bag containing two adult male beetles. Significantly more adults were attracted to eggplant with feeding male beetles paired with another eggplant than any other treatment combination. These results indicate that the presence of male L. decemlineata on plants affects host plant orientation and suggests that the male-produced aggregation pheromone may be involved.

  15. Computational models in plant-pathogen interactions: the case of Phytophthora infestans

    PubMed Central

    2009-01-01

    Background Phytophthora infestans is a devastating oomycete pathogen of potato production worldwide. This review explores the use of computational models for studying the molecular interactions between P. infestans and one of its hosts, Solanum tuberosum. Modeling and conclusion Deterministic logistics models have been widely used to study pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological resolution levels. In recent years, owing to the availability of high throughput biological data and computational resources, interest in stochastic modeling of plant-pathogen interactions has grown. Stochastic models better reflect the behavior of biological systems. Most modern approaches to plant pathology modeling require molecular kinetics information. Unfortunately, this information is not available for many plant pathogens, including P. infestans. Boolean formalism has compensated for the lack of kinetics; this is especially the case where comparative genomics, protein-protein interactions and differential gene expression are the most common data resources. PMID:19909526

  16. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds.

    PubMed

    Rauha, J P; Remes, S; Heinonen, M; Hopia, A; Kähkönen, M; Kujala, T; Pihlaja, K; Vuorela, H; Vuorela, P

    2000-05-25

    Plant phenolics, especially dietary flavonoids, are currently of growing interest owing to their supposed functional properties in promoting human health. Antimicrobial screening of 13 phenolic substances and 29 extracts prepared from Finnish plant materials against selected microbes was conducted in this study. The tests were carried out using diffusion methods with four to nine microbial species (Aspergillus niger, Bacillus subtilis, Candida albicans, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Saccharomyces cerevisiae, Staphylococcus aureus and Staphylococcus epidermidis). Flavone, quercetin and naringenin were effective in inhibiting the growth of the organisms. The most active plant extracts were purple loosestrife (Lythrum salicaria L.) against Candida albicans, meadowsweet (Filipendula ulmaria (L.) Maxim.), willow herb (Epilobium angustifolium L.), cloudberry (Rubus chamaemorus L.) and raspberry (Rubus idaeus L.) against bacteria, and white birch (Betula pubescens Ehrh.), pine (Pinus sylvestris L.) and potato (Solanum tuberosum. L.) against gram-positive Staphylococcus aureus.

  17. An explosive innovation: Phylogenetic relationships of Solanum section Gonatotrichum (Solanaceae)

    PubMed Central

    Stern, Stephen; Bohs, Lynn

    2012-01-01

    Abstract Solanum is one of the largest plant genera and exhibits a wide range of morphological diversity. Solanum section Gonatotrichum, the focus of this study, is unique within the genus because of its fruits that swell with turgor pressure and explosively dehisce to disperse the seeds. We infer phylogenetic relationships within section Gonatotrichum using DNA sequence data from two nuclear regions (ITS and the granule-bound starch synthase gene [GBSSI or waxy]) and the chloroplast region trnT-F. The resulting phylogenetic trees support the monophyly of the section with the inclusion of Solanum lignescens, a species not previously thought to belong to the group due to the presence of stellate hairs. This inclusion of this species in section Gonatotrichum suggests that the simple, often geniculate hairs of species in the group may represent reduced stellate hairs. The presence of heterantherous flowers appears to be derived in the section, but this character is largely lost in Solanum parcistrigosum. PMID:22287931

  18. Antitranspirant-induced increases in leaf water potential increase tuber calcium and decrease tuber necrosis in water-stressed potato plants.

    PubMed

    Win, K; Berkowitz, G A; Henninger, M

    1991-05-01

    Experiments were undertaken with field-grown potato (Solanum tuberosum L.) plants to test the hypothesis that altering leaf:tuber water potential gradients within a plant subjected to low soil moisture will allow greater Ca accumulation in tubers and reverse Ca deficiency-related tuber necrosis. Antitranspirant formulations containing a wax emulsion and a spreader/sticker surfactant increased leaf water potential during a drought episode, significantly reducing the potential gradient that develops between leaf and tuber during a period of stress. Increased leaf water potential in treated plants was associated with decreased leaf Ca and increased tuber Ca. Tuber necrosis was found to be reduced in treated plants, thus increasing tuber quality.

  19. Changes in Carbon Fixation, Tuberization, and Growth Induced by CO2 Applications to the Root Zone of Potato Plants.

    PubMed

    Arteca, R N; Poovaiah, B W; Smith, O E

    1979-09-21

    The root systems of potato plants (Solanum tuberosum L. var. Russet Burbank) treated with CO(2) for 12 hours showed an increase in dry matter as early as 2 days after the treatment. When treated plants were allowed to grow for 3 to 6 weeks there was a substantial increase in tuberization. In addition, there was an increase in stolon length, number of tubers per stolon, and overall dry weight after the enrichment of the root zone with CO(2). Plants treated with CO(2) showed higher concentrations of malic and citric acids and of the cations Mg(2+) and Ca(2+). The effect of CO(2) was more dramatic when CO(2) was applied to the root zone than when it was applied to the shoots.

  20. Mechanism of sulfate transport inhibition by cycloheximide in plant tissues.

    PubMed

    Renosto, F; Ferrari, G

    1975-10-01

    Inhibition by cycloheximide of sulfate transport in both barley roots (Hordeum vulgare L.) and potato tuber (Solanum tuberosum L.) increases with increasing inhibitor concentration only to a limited extent, depending on the length of the tissue incubation with the inhibitor. In contrast to this, increasing concentrations of dinitrophenol have a rapid and total inhibitory effect on the active transport. Leucine transport in the same tissues is strongly inhibited by dinitrophenol but is not affected by cycloheximide, whereas incorporation into protein is mainly inhibited by cycloheximide. It appears that the mechanism of transport inhibition by cycloheximide in plant tissues consists in stopping new carrier synthesis and not in the disruption of energy flow. Sulfate carriers show comparable decay rates in barley roots and potato tuber, the mean life being shorter than that of the leucine carriers. These appear more stable in roots than in storage tissues.

  1. Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species.

    PubMed

    Goyer, Aymeric; Sweek, Kortney

    2011-12-28

    Biofortification of staple crops like potato via breeding is an attractive strategy to reduce human micronutrient deficiencies. A prerequisite is metabolic phenotyping of genetically diverse material which can potentially be used as parents in breeding programs. Thus, the natural genetic diversity of thiamin and folate contents was investigated in indigenous cultivated potatoes (Solanum tuberosum group Andigenum) and wild potato species (Solanum section Petota). Significant differences were found among clones and species. For about 50% of the clones there were variations in thiamin and folate contents between years. Genotypes which contained over 2-fold the thiamin and 4-fold the folate content compared to the modern variety Russet Burbank were identified and should be useful material to integrate in breeding programs which aim to enhance the nutritional value of potato. Primitive cultivars and wild species with widely different amounts of thiamin and folate will also be valuable tools to explore their respective metabolic regulation.

  2. Combining engineered resistance, avidin, and natural resistance derived from Solanum chacoense bitter to control Colorado potato beetle (Coleoptera: Chrysomelidae).

    PubMed

    Cooper, Susannah G; Douches, David S; Grafius, Edward J

    2009-06-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), is the most destructive insect pest of potato, Solanum tuberosum (L.), in North America. Avidin sequesters available biotin, thereby causing abnormal growth and development of insects. We expressed avidin in two potato lines: MSE149-5Y, a susceptible potato line, and ND5873-15, a line with S. chacoense-derived insect resistance. A preliminary study was conducted to determine the bioactivity of the transgene in each background. A single transgenic line was selected in each background for further studies. Detached leaf bioassays were performed on transgenic and nontransgenic clones of the susceptible and S. chacoense lines by using first-stage Colorado potato beetle larvae. Consumption, survival, and survivor growth were measured after 5 d. Larvae consumed significantly less on the two avidin-expressing lines compared with the nontransgenic lines. Survival was also significantly less for larvae feeding on transgenic avidin lines compared with the nontransgenic lines. The mass of survivors was significantly reduced on two transgenic avidin lines compared with the nontransgenic lines. Further studies examined the development from first-stage larvae to adulthood on greenhouse-grown whole plants in a no-choice setting for larvae fed on the four potato lines. Development from first stage to pupation was significantly prolonged for larvae fed on the avidin line compared with larvae fed on the susceptible line. Significantly fewer larvae fed on transgenic avidin plants, avidin or avidin + S. chacoense-derived line survived to adulthood compared with survival on nontransgenic plants, susceptible or S. chacoense-derived line. Avidin-based resistance may be useful in managing Colorado potato beetle populations in commercial planting by reducing the population size.

  3. Solanum diploconos fruits: profile of bioactive compounds and in vitro antioxidant capacity of different parts of the fruit.

    PubMed

    Ribeiro, Alessandra Braga; Chisté, Renan Campos; Lima, José L F C; Fernandes, Eduarda

    2016-05-18

    Solanum diploconos is an unexploited Brazilian native fruit that belongs to the same genus of important food crops, such as tomato (Solanum lycorpersicum) and potato (Solanum tuberosum). In this study, we determined, for the first time, the profile of bioactive compounds (phenolic compounds, carotenoids, ascorbic acid and tocopherols) of the freeze-dried pulp and peel of Solanum diploconos fruits, as well as of an extract obtained from the whole fruit. Additionally, the antioxidant potential of the whole fruit extract was evaluated in vitro, against reactive oxygen species (ROS) and reactive nitrogen species (RNS). Eighteen phenolic compounds were identified in the peel and pulp and 6 compounds were found in the whole fruit extract. Coumaric, ferulic and caffeic acid derivatives were revealed to be the major phenolic constituents. All-trans-β-carotene was the major carotenoid (17-38 μg g(-1), dry basis), but all-trans-lutein and 9-cis-β-carotene were also identified. The peel and pulp presented <2 μg per mL of tocopherols, and ascorbic acid was not detected. The whole fruit extract exhibited scavenging capacity against all tested ROS and RNS (IC50 = 14-461 μg mL(-1)) with high antioxidant efficiency against HOCl. Thus, Solanum diploconos fruits may be seen as a promising source of bioactive compounds with high antioxidant potential against the most physiologically relevant ROS and RNS.

  4. Solanum diploconos fruits: profile of bioactive compounds and in vitro antioxidant capacity of different parts of the fruit.

    PubMed

    Ribeiro, Alessandra Braga; Chisté, Renan Campos; Lima, José L F C; Fernandes, Eduarda

    2016-05-18

    Solanum diploconos is an unexploited Brazilian native fruit that belongs to the same genus of important food crops, such as tomato (Solanum lycorpersicum) and potato (Solanum tuberosum). In this study, we determined, for the first time, the profile of bioactive compounds (phenolic compounds, carotenoids, ascorbic acid and tocopherols) of the freeze-dried pulp and peel of Solanum diploconos fruits, as well as of an extract obtained from the whole fruit. Additionally, the antioxidant potential of the whole fruit extract was evaluated in vitro, against reactive oxygen species (ROS) and reactive nitrogen species (RNS). Eighteen phenolic compounds were identified in the peel and pulp and 6 compounds were found in the whole fruit extract. Coumaric, ferulic and caffeic acid derivatives were revealed to be the major phenolic constituents. All-trans-β-carotene was the major carotenoid (17-38 μg g(-1), dry basis), but all-trans-lutein and 9-cis-β-carotene were also identified. The peel and pulp presented <2 μg per mL of tocopherols, and ascorbic acid was not detected. The whole fruit extract exhibited scavenging capacity against all tested ROS and RNS (IC50 = 14-461 μg mL(-1)) with high antioxidant efficiency against HOCl. Thus, Solanum diploconos fruits may be seen as a promising source of bioactive compounds with high antioxidant potential against the most physiologically relevant ROS and RNS. PMID:27142444

  5. Uptake of intact zinc-ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration.

    PubMed

    Collins, Richard N; Merrington, Graham; McLaughlin, Mike J; Knudsen, Chris

    2002-09-01

    Pot experiments were conducted with barley (Hordeum vulgare L.), potato (Solanum tuberosum L.), Indian mustard (Brassicajuncea L.), and white lupin (Lupinus albus L.) to determine the nature of Zn mobilization, uptake, and root-shoot transport from a Zn-contaminated soil in the presence of increasing concentrations of ethylenediaminetetraacetic acid (EDTA; 0.0-3.4 mmole/kg soil). Increasing EDTA concentrations lead to a greater proportion of soil-solution Zn being detected as the ZnEDTA complex. However, a significant increase in the concentration of soil-solution Zn was only observed after the addition of 3.4 mmole EDTA/ kg soil. At this application rate, regardless of the plant species, 97 +/- 9% (+/- SD) of the increase in soil-solution Zn could be accounted for by chelation/desorption, and 89 +/- 9% of total Zn in solution was measured as ZnEDTA. Although the complex was detected in the xylem exudate of B. juncea after 0.34 mmole EDTA/kg soil had been added, ZnEDTA was only found in the xylem exudate of the other plant species following the highest application rate of EDTA. In this case, the accumulation of Zn and the concentration of ZnEDTA in the xylem sap of B. juncea were significantly greater than those of H. vulgare and S. tuberosum. Measurements of plant transpiration following the addition of EDTA indicated that B. juncea experienced greater physiological stress in the presence of high concentrations of EDTA. It was therefore concluded that two different mechanisms of ZnEDTA uptake existed for these plant species. Based on a review of the literature, it was hypothesized that uptake of ZnEDTA by B. juncea occurred only after physiological damage to its root system, whereas uptake by H. vulgare and S. tuberosum was via an apoplastic pathway (passive extracellular transport into the xylem).

  6. Transgenic potato plants with overexpression of dihydroflavonol reductase can serve as efficient nutrition sources.

    PubMed

    Kostyn, Kamil; Szatkowski, Michal; Kulma, Anna; Kosieradzka, Iwona; Szopa, Jan

    2013-07-10

    Potato (Solanum tuberosum) is considered to be one of the most important crops cultivated in Europe and the entire world. The tubers of the potato are characterized by rich starch and protein contents and high concentrations of antioxidants, such as vitamin C and flavonoids. Notably, the presence of the phenolic antioxidants is of high importance as they have health-related properties. They are known to reduce the incidence of atherosclerosis, prevent certain kinds of cancer, and aid with many other kinds of diseases. The aim of this study was to find the most efficient way to increase the content of phenolic antioxidants in potato tubers through transgenesis. The results showed that the most efficacious way to achieve this goal was the overexpression of the dihydroflavonol reductase gene (DFR). The produced transgenic potato plants served as a nutrition source for laboratory rats; the study has confirmed their nontoxicity and nutritional benefits on the tested animals.

  7. Transgenic potato plants with overexpression of dihydroflavonol reductase can serve as efficient nutrition sources.

    PubMed

    Kostyn, Kamil; Szatkowski, Michal; Kulma, Anna; Kosieradzka, Iwona; Szopa, Jan

    2013-07-10

    Potato (Solanum tuberosum) is considered to be one of the most important crops cultivated in Europe and the entire world. The tubers of the potato are characterized by rich starch and protein contents and high concentrations of antioxidants, such as vitamin C and flavonoids. Notably, the presence of the phenolic antioxidants is of high importance as they have health-related properties. They are known to reduce the incidence of atherosclerosis, prevent certain kinds of cancer, and aid with many other kinds of diseases. The aim of this study was to find the most efficient way to increase the content of phenolic antioxidants in potato tubers through transgenesis. The results showed that the most efficacious way to achieve this goal was the overexpression of the dihydroflavonol reductase gene (DFR). The produced transgenic potato plants served as a nutrition source for laboratory rats; the study has confirmed their nontoxicity and nutritional benefits on the tested animals. PMID:23692339

  8. Plant Omics Data Center: an integrated web repository for interspecies gene expression networks with NLP-based curation.

    PubMed

    Ohyanagi, Hajime; Takano, Tomoyuki; Terashima, Shin; Kobayashi, Masaaki; Kanno, Maasa; Morimoto, Kyoko; Kanegae, Hiromi; Sasaki, Yohei; Saito, Misa; Asano, Satomi; Ozaki, Soichi; Kudo, Toru; Yokoyama, Koji; Aya, Koichiro; Suwabe, Keita; Suzuki, Go; Aoki, Koh; Kubo, Yasutaka; Watanabe, Masao; Matsuoka, Makoto; Yano, Kentaro

    2015-01-01

    Comprehensive integration of large-scale omics resources such as genomes, transcriptomes and metabolomes will provide deeper insights into broader aspects of molecular biology. For better understanding of plant biology, we aim to construct a next-generation sequencing (NGS)-derived gene expression network (GEN) repository for a broad range of plant species. So far we have incorporated information about 745 high-quality mRNA sequencing (mRNA-Seq) samples from eight plant species (Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis vinifera, Solanum tuberosum, Medicago truncatula and Glycine max) from the public short read archive, digitally profiled the entire set of gene expression profiles, and drawn GENs by using correspondence analysis (CA) to take advantage of gene expression similarities. In order to understand the evolutionary significance of the GENs from multiple species, they were linked according to the orthology of each node (gene) among species. In addition to other gene expression information, functional annotation of the genes will facilitate biological comprehension. Currently we are improving the given gene annotations with natural language processing (NLP) techniques and manual curation. Here we introduce the current status of our analyses and the web database, PODC (Plant Omics Data Center; http://bioinf.mind.meiji.ac.jp/podc/), now open to the public, providing GENs, functional annotations and additional comprehensive omics resources.

  9. Plant Omics Data Center: An Integrated Web Repository for Interspecies Gene Expression Networks with NLP-Based Curation

    PubMed Central

    Ohyanagi, Hajime; Takano, Tomoyuki; Terashima, Shin; Kobayashi, Masaaki; Kanno, Maasa; Morimoto, Kyoko; Kanegae, Hiromi; Sasaki, Yohei; Saito, Misa; Asano, Satomi; Ozaki, Soichi; Kudo, Toru; Yokoyama, Koji; Aya, Koichiro; Suwabe, Keita; Suzuki, Go; Aoki, Koh; Kubo, Yasutaka; Watanabe, Masao; Matsuoka, Makoto; Yano, Kentaro

    2015-01-01

    Comprehensive integration of large-scale omics resources such as genomes, transcriptomes and metabolomes will provide deeper insights into broader aspects of molecular biology. For better understanding of plant biology, we aim to construct a next-generation sequencing (NGS)-derived gene expression network (GEN) repository for a broad range of plant species. So far we have incorporated information about 745 high-quality mRNA sequencing (mRNA-Seq) samples from eight plant species (Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis vinifera, Solanum tuberosum, Medicago truncatula and Glycine max) from the public short read archive, digitally profiled the entire set of gene expression profiles, and drawn GENs by using correspondence analysis (CA) to take advantage of gene expression similarities. In order to understand the evolutionary significance of the GENs from multiple species, they were linked according to the orthology of each node (gene) among species. In addition to other gene expression information, functional annotation of the genes will facilitate biological comprehension. Currently we are improving the given gene annotations with natural language processing (NLP) techniques and manual curation. Here we introduce the current status of our analyses and the web database, PODC (Plant Omics Data Center; http://bioinf.mind.meiji.ac.jp/podc/), now open to the public, providing GENs, functional annotations and additional comprehensive omics resources. PMID:25505034

  10. Comparative Functional Genomic Analysis of Solanum Glandular Trichome Types1[W][OA

    PubMed Central

    McDowell, Eric T.; Kapteyn, Jeremy; Schmidt, Adam; Li, Chao; Kang, Jin-Ho; Descour, Anne; Shi, Feng; Larson, Matthew; Schilmiller, Anthony; An, Lingling; Jones, A. Daniel; Pichersky, Eran; Soderlund, Carol A.; Gang, David R.

    2011-01-01

    Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors. PMID:21098679

  11. Influence of Pratylenchus penetrans on Plant Growth and Water Relations in Potato.

    PubMed

    Kotcon, J B; Loria, R

    1986-07-01

    Plants of potato (Solanum tuberosum) cultivars Katahdin and Superior were inoculated with 0, 1,500, or 15,000 Pratylenchus penetrans. Transpiration, measured in the greenhouse with a porometer after 56 days of growth, was not significantly different among nematode inoculum levels or between cultivars. The rate of xylem exudation from decapitated root systems of Katahdin plants inoculated with 1,500 or 15,000 P. penetrans and Superior plants inoculated with 15,000 P. penetrans was lower than from noninoculated plants. Root weight of Katahdin and Superior was not affected by P. penetrans inoculum level. Transpiration of plants inoculated with 0, 500, 5,000 or 50,000 P. penetrans was recorded weekly from 14 to 56 days after planting. No consistent effects of nematode inoculum density on transpiration rate were observed. Root hydraulic conductivity was lower in Katahdin plants inoculated with 266 P. penetrans per plant and in Chippewa with 5,081 per plant than in noninoculated plants. Nematodes reduced leaf area of Superior, Chippewa, and Katahdin and root dry weight of Chippewa but had no effect on growth of Hudson, Onaway, or Russet Burbank plants. Assessing nematode effects on root hydraulic conductivity may provide a measure of the tolerance of potato cultivars to nematodes.

  12. The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens.

    PubMed

    Muñoz, Fernando F; Mendieta, Julieta R; Pagano, Mariana R; Paggi, Roberto A; Daleo, Gustavo R; Guevara, María G

    2010-05-01

    Plant-specific insert domain (PSI) is a region of approximately 100 amino acid residues present in most plant aspartic protease (AP) precursors. PSI is not a true saposin domain; it is the exchange of the N- and C-terminal portions of the saposin like domain. Hence, PSI is called a swaposin domain. Here, we report the cloned, heterologous expression and purification of PSI from StAsp 1 (Solanum tuberosum aspartic protease 1), called StAsp-PSI. Results obtained here show that StAsp-PSI is able to kill spores of two potato pathogens in a dose-dependent manner without any deleterious effect on plant cells. As reported for StAPs (S. tuberosum aspartic proteases), the StAsp-PSI ability to kill microbial pathogens is dependent on the direct interaction of the protein with the microbial cell wall/or membrane, leading to increased permeability and lysis. Additionally, we demonstrated that, like proteins of the SAPLIP family, StAsp-PSI and StAPs are cytotoxic to Gram-negative and Gram-positive bacteria in a dose dependent manner. The amino acid residues conserved in SP_B (pulmonary surfactant protein B) and StAsp-PSI could explain the cytotoxic activity exerted by StAsp-PSI and StAPs against Gram-positive bacteria. These results and data previously reported suggest that the presence of the PSI domain in mature StAPs could be related to their antimicrobial activity.

  13. Effect of Sorghum-Sudangrass and Velvetbean Cover Crops on Plant-Parasitic Nematodes Associated with Potato Production in Florida

    PubMed Central

    Crow, W. T.; Weingartner, D. P.; Dickson, D. W.; McSorley, R.

    2001-01-01

    In a 3-year field study, population densities of Belonolaimus longicaudatus and other plant-parasitic nematodes and crop yields were compared between potato (Solanum tuberosum) cropping systems where either sorghum-sudangrass (Sorghum bicolor × S. arundinaceum) or velvetbean (Mucuna pruriens) was grown as a summer cover crop. Population densities of B. longicaudatus, Paratrichodorus minor, Tylenchorhynchus sp., and Mesocriconema sp. increased on sorghum-sudangrass. Population densities of P. minor and Mesocriconema sp. increased on velvetbean. Sorghum-sudangrass increased population densities of B. longicaudatus and Mesocriconema sp. on a subsequent potato crop compared to velvetbean. Potato yields following velvetbean were not greater than following sorghum-sudangrass despite reductions in population densities of B. longicaudatus. PMID:19265888

  14. Crop Improvement through Modification of the Plant's Own Genome

    PubMed Central

    Rommens, Caius M.; Humara, Jaime M.; Ye, Jingsong; Yan, Hua; Richael, Craig; Zhang, Lynda; Perry, Rachel; Swords, Kathleen

    2004-01-01

    Plant genetic engineering has, until now, relied on the incorporation of foreign DNA into plant genomes. Public concern about the extent to which transgenic crops differ from their traditionally bred counterparts has resulted in molecular strategies and gene choices that limit, but not eliminate, the introduction of foreign DNA. Here, we demonstrate that a plant-derived (P-) DNA fragment can be used to replace the universally employed Agrobacterium transfer (T-) DNA. Marker-free P-DNAs are transferred to plant cell nuclei together with conventional T-DNAs carrying a selectable marker gene. By subsequently linking a positive selection for temporary marker gene expression to a negative selection against marker gene integration, 29% of derived regeneration events contain P-DNA insertions but lack any copies of the T-DNA. Further refinements are accomplished by employing Ω-mutated virD2 and isopentenyl transferase cytokinin genes to impair T-DNA integration and select against backbone integration, respectively. The presented methods are used to produce hundreds of marker-free and backbone-free potato (Solanum tuberosum) plants displaying reduced expression of a tuber-specific polyphenol oxidase gene in potato. The modified plants represent the first example of genetically engineered plants that only contain native DNA. PMID:15133156

  15. Eggplant (Solanum melongena L.).

    PubMed

    Van Eck, Joyce; Snyder, Ada

    2006-01-01

    Eggplant is an economically important vegetable crop in Asia and Africa, and although it is grown in Europe and the United States, it does not account for a significant percentage of agricultural production. It is susceptible to a number of pathogens and insects, with bacterial and fungal wilts being the most devastating. Attempts to improve resistance through introgression of traits from wild relatives have had limited success owing to sexual incompatibilities. Therefore, a crop improvement approach that combines both conventional breeding and biotechnological techniques would be beneficial. This chapter describes an Agrobacterium-mediated transformation protocol for eggplant based on inoculation of seedling explants (cotyledons and hypocotyls) and leaves. We have used this protocol to recover transformants from two different types of eggplant, a Solanum melongena L. breeding line, and S. melongena L. var. Black Eggplant. The selectable marker gene used was neomycin phosphotransferase II (nptII) and the selection agent was kanamycin. In vitro grown transformants acclimated readily to greenhouse conditions.

  16. A revision of the Dulcamaroid Clade of  Solanum L. (Solanaceae)

    PubMed Central

    Knapp, Sandra

    2013-01-01

    Abstract The Dulcamaroid clade of Solanum contains 45 species of mostly vining or weakly scandent species, including the common circumboreal weed Solanum dulcamara L. The group comprises members of the previously recognised infrageneric groupings sect. Andropedas Rusby, sect. Californisolanum A. Child, sect. Dulcamara (Moench) Dumort., sect. Holophylla (G.Don) Walp., sect. Jasminosolanum (Bitter) Seithe, sect.Lysiphellos (Bitter) Seithe, subsect. Nitidum A.Child and sect. Subdulcamara Dunal. These infrageneric groups are not monophyletic as traditionally recognised, and the complex history of the classification of the dulcamaroid solanums is reviewed. Many of the species in the clade are quite variable morphologically; plants are shrubs, herbaceous vines or woody canopy lianas, and habits can vary between these states in a single locality. Variation in leaf shape and pubescence density and type is also extreme and has lead to the description of many minor morphological variants as distinct species. The flowers of members of the group are generally very showy, and several species (e.g., Solanum crispum Ruiz & Pav., Solanum laxum Spreng., Solanum seaforthianum Andrews) are popular ornamental plants that have occasionally escaped from cultivation and become naturalised. The clade is here divided into five morphologically and geographically delimited species groups to facilitate further study. One new species from southern Ecuador, Solanum agnoston S.Knapp sp. nov., is described here. Full descriptions and synonymies (including designations of lectotypes or neotypes), preliminary conservation assessments, illustrations, distribution maps, and an extensive list of localities are provided for all species. PMID:23794937

  17. Interaction of polyphenol oxidase of Solanum tuberosum with β-cyclodextrin: Process details and applications.

    PubMed

    Singh, Virendra; Jadhav, Swati B; Singhal, Rekha S

    2015-09-01

    Polysaccharides differing in structure and chemical nature were screened for their ability to bind non-covalently with polyphenol oxidase (PPO) from potato (as a model) and their effect on enzyme activity. All the polysaccharides selected inhibited the PPO but β-cyclodextrin showed maximum inhibition under optimum conditions. Process details for the inhibition of PPO were studied with respect to concentration of β-cyclodextrin, temperature, pH, and time. Higher inhibition constant and lower half life was obtained at 40 °C than at 30 °C in the presence of inhibitor. β-Cyclodextrin showed mixed type of inhibition of PPO. β-Cyclodextrin was further exploited as anti-browning agent in selected fruit juices. It not only showed a significant anti-browning effect on freshly prepared potato juice but was also effective in other fruit juices. Better effect was seen in pineapple, apple and pear as compared to banana, sugarcane and guava fruit juices.

  18. Interaction of polyphenol oxidase of Solanum tuberosum with β-cyclodextrin: Process details and applications.

    PubMed

    Singh, Virendra; Jadhav, Swati B; Singhal, Rekha S

    2015-09-01

    Polysaccharides differing in structure and chemical nature were screened for their ability to bind non-covalently with polyphenol oxidase (PPO) from potato (as a model) and their effect on enzyme activity. All the polysaccharides selected inhibited the PPO but β-cyclodextrin showed maximum inhibition under optimum conditions. Process details for the inhibition of PPO were studied with respect to concentration of β-cyclodextrin, temperature, pH, and time. Higher inhibition constant and lower half life was obtained at 40 °C than at 30 °C in the presence of inhibitor. β-Cyclodextrin showed mixed type of inhibition of PPO. β-Cyclodextrin was further exploited as anti-browning agent in selected fruit juices. It not only showed a significant anti-browning effect on freshly prepared potato juice but was also effective in other fruit juices. Better effect was seen in pineapple, apple and pear as compared to banana, sugarcane and guava fruit juices. PMID:26187193

  19. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense.

    PubMed

    Jiang, Zhihui; Chen, Chen; Wang, Jian; Xie, Wenyan; Wang, Meng; Li, Xinsheng; Zhang, Xiaoying

    2016-01-01

    Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses. PMID:26481011

  20. Ultrasound-assisted three-phase partitioning of polyphenol oxidase from potato peel (Solanum tuberosum).

    PubMed

    Niphadkar, Sonali S; Rathod, Virendra K

    2015-01-01

    Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. PMID:26139472

  1. Isolation and partial characterization of thermostable isoperoxidases from potato (Solanum tuberosum L.) tuber sprouts.

    PubMed

    Boucoiran, C F; Kijne, J W; Recourt, K

    2000-03-01

    Peroxidases (POD; EC 1.11.1.7) can cross-link cell wall polymers and may have an impact on the final textural quality of potato tubers. Because heat treatments are important during processing, the thermal properties of isoPODs from soluble and ionically and covalently bound fractions were studied from both potato tubers and sprouts. For both tissues, the ionically bound fraction was the most thermostable; approximately 20% of POD activity remained after a heat treatment of 10 min at 90 degrees C (for sprouts). The temperature profile of the ionically bound sprout fraction appeared to be nonlinear and suggested the presence of a very thermostable POD, which still showed activity after a heat treatment at 100 degrees C. Visualization by using isoelectric focusing confirmed the occurrence of a thermostable isoPOD with an IEP of 9.5, which displayed regeneration of activity after heat inactivation. This cationic POD was further purified by chromatography techniques, and by SDS-PAGE its molecular mass was estimated at 38 kDa. PMID:10725137

  2. Pseudomonas endophytica sp. nov., isolated from stem tissue of Solanum tuberosum L. in Spain.

    PubMed

    Ramírez-Bahena, Martha-Helena; Cuesta, Maria José; Tejedor, Carmen; Igual, José Mariano; Fernández-Pascual, Mercedes; Peix, Álvaro

    2015-07-01

    A bacterial strain named BSTT44(T) was isolated in the course of a study of endophytic bacteria occurring in stems and roots of potato growing in a soil from Salamanca, Spain. The 16S rRNA gene sequence had 99.7% identity with respect to that of its closest relative, Pseudomonas psychrophila E-3T, and the next most closely related type strains were those of Pseudomonas fragi, with 99.6% similarity, Pseudomonas deceptionensis, with 99.2% similarity, and Pseudomonas lundensis, with 99.0% similarity; these results indicate that BSTT44(T) should be classified within the genus Pseudomonas. Analysis of the housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation and showed identities lower than 92% in all cases with respect to the above-mentioned closest relatives. Cells of the strain bore one polar-subpolar flagellum. The respiratory quinone was Q-9.The major fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The strain was oxidase-, catalase- and urease-positive and the arginine dihydrolase system was present, but tests for nitrate reduction, β-galactosidase production and aesculin hydrolysis were negative. It could grow at 35 °C and at pH 5-9.The DNA G+C content was 60.2 mol%. DNA-DNA hybridization results showed less than 48% relatedness with respect to the type strains of the four most closely related species. Therefore, the combined results of genotypic, phenotypic and chemotaxonomic analyses support the classification of strain BSTT44 into a novel species of the genus Pseudomonas, for which the name Pseudomonas endophytica sp. nov. is proposed. The type strain is BSTT44(T) ( = LMG 28456(T) = CECT 8691(T)).

  3. Effect of preservative agents on the respiration rate of minimally processed potato (Solanum tuberosum cv. Monalisa).

    PubMed

    Petri, E; Arroqui, C; Angós, I; Vírseda, P

    2008-04-01

    The shelf life of minimally processed potatoes (MPP) is limited by enzyme-catalyzed browning reactions, with the increase in respiration being another factor that affects quality retention of this product. Sulfites are commonly used as effective preservative agents in minimally processing potatoes, but ascorbic acid and citric acid are considered natural sulfite substitutes and more accepted by consumers. The aim of this study was to study the effect of combinations of the preservative agents cited above (sodium metabisulfite 0.1% and 0.5%; citric acid 0.1% and 0.5%; ascorbic acid 0.5%) on the respiration rate of MPP (cv. Monalisa) processed at both ambient and refrigerated temperatures. The results have revealed that there is a significant effect of dipping treatment and temperature on respiration rate of MPP. Sodium metabisulfite (SM) reduces respiratory activity up to 0.8 mL/kg/h. The addition of either citric or ascorbic acid enhanced the effect of SM on the reduction of the respiration rate of MPP. The strongest effect (up to 3.3 mL/kg/h) was observed when a combination of all 3 agents at the higher concentrations was employed at a temperature of 18 degrees C.

  4. Antioxidant Contents and Antioxidant Activities of White and Colored Potatoes (Solanum tuberosum L.)

    PubMed Central

    Lee, Sang Hoon; Oh, Seung Hee; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Woo, Shun Hee; Kim, Hong Sig; Lee, Junsoo; Jeong, Heon Sang

    2016-01-01

    This study was performed to evaluate and compare the antioxidant substance content and antioxidant activities of white (Superior) and colored (Hongyoung, Jayoung, Jasim, Seohong, and Jaseo) potatoes. The potatoes were extracted with 80% ethanol and were evaluated for the total polyphenol, flavonoid, and anthocyanin contents and for 1,1-diphenyl- 2-picrylhydrazyl (DPPH)/2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, reducing power, and ferrous metal ion chelating effect. The total polyphenol, flavonoid, and anthocyanin contents of Hongyoung and Jayoung were higher than white and other colored potatoes. All colored potato extracts, except for Jaseo and Seohong, showed higher ABTS radical scavenging activities than the general white potato extract. Hongyoung and Jayoung had the highest ABTS and DPPH radical scavenging activities. Optical density values for the reducing power of Jayoung and Jaseo at concentration of 2 mg/mL were 0.148 and 0.090, respectively. All colored potato extracts had lower ferrous metal ion chelating effect than the white potato. A significant (P<0.05) positive correlation was observed between total polyphenol content and total flavonoid content (r=0.919), anthocyanin content (r=0.992), and ABTS radical scavenging activity (r=0.897). Based on these results, this research may be useful in developing the Hongyoung and Jayoung cultivars with high antioxidant activities. PMID:27390727

  5. Fontibacillus solani sp. nov. isolated from potato (Solanum tuberosum L.) root.

    PubMed

    Ramírez-Bahena, Martha-Helena; Flores-Félix, José David; Cuesta, Maria José; Tejedor Gil, Carmen; Palomo, Jose Luis; García Benavides, Pablo; Igual, Jose Mariano; Fernández Pascual, Mercedes; Velázquez, Encarna; Peix, Alvaro

    2015-05-01

    A bacterial strain designated A4STR04(T) was isolated from the inner root tissue of potatoes in Spain. Phylogenetic analysis based on the 16S rRNA gene sequence placed the isolate into the genus Fontibacillus, being most closely related to Fontibacillus panacisegetis KCTC 13564(T) with 99% identity. The isolate was observed to form Gram-positive, motile and sporulating rods. The catalase test was found to be negative and oxidase positive. Nitrate was found to be reduced to nitrite. β-Galactosidase and caseinase were observed to be produced but the production of gelatinase, urease, arginine dehydrolase, ornithine and lysine decarboxylase was negative. Aesculin hydrolysis was found to be positive and acetoin production was negative. Growth was found to be supported by many carbohydrates and organic acids as carbon source. MK-7 was the only menaquinone detected and the major fatty acid (61.5%) was identified as anteiso-C(15:0), as occurs in the other species of genus Fontibacillus. The strain A4STR04(T) was found to display a complex lipid profile consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a glycolipid, two phospholipids, a lipid and two aminophospholipids. Mesodiaminopimelic acid was detected in the peptidoglycan. The G+C content was determined to be 50.5 mol% (Tm). Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain A4STR04(T) (=LMG 28458 (T) = CECT 8693(T)) should be classified as representing a novel species of genus Fontibacillus, for which the name Fontibacillus solani sp. nov. is proposed.

  6. Potato (Solanum tuberosum) juice exerts an anticonvulsant effect in mice through binding to GABA receptors.

    PubMed

    Muceniece, Ruta; Saleniece, Kristine; Krigere, Liga; Rumaks, Juris; Dzirkale, Zane; Mezhapuke, Rudolfs; Kviesis, Jorens; Mekss, Peteris; Klusa, Vija; Schiöth, Helgi B; Dambrova, Maija

    2008-04-01

    Naturally occurring benzodiazepines have been identified in regular food such as wheat and potato, but there is still no evidence that potato extracts can affect CNS responses in vivo. Here we found that undiluted potato juice and potato juice diluted with saline 1 : 2 administered 10 min intracisternally ( I. C.) and 30 min per os before bicuculline exerted significant anticonvulsant activity in the bicuculline-induced seizure threshold test in mice. In vitro, potato juice from different harvests at dilution series from 10 % to 0.000001 %, diluted 100,000-fold, displaced 50 % of gamma-aminobutyric acid (GABA) receptor ligand [ (3)H]GABA and diluted 40-fold displaced 50 % of [(3)H]flunitrazepam from binding sites in mice forebrain membranes. The low content of diazepam (0.04 +/- 0.01 mg/kg) determined by HPLC and mass spectrometry in the potato extracts could not sustain the anticonvulsant activity of potato juice in vivo; therefore we hypothesized that potato juice might contain GABA (A) receptor GABA-site active compounds. The findings of this study suggest that potato juice as well as potato taken as food may have the capacity of influencing brain GABA-ergic activity.

  7. Unidirectional inhibition and activation of "malic' enzyme of Solanum tuberosum by meso-tartrate.

    PubMed

    Do Nascimento, K H; Davies, D D; Patil, K D

    1975-08-01

    A kinetic study of "malic' enzyme (EC 1.1.1.40) from potato suggests that the mechanism is Ordered Bi Ter with NADP+ binding before malate, and NADPH binding before pyruvate and HCO3-. The analysis is complicated by the non-linearity that occurs in some of the plots. meso-Tartrate is shown to inhibit the oxidative decarboxylation of malate but to activate the reductive carboxylation of pyruvate. To explain these unidirectional effects it is suggested that the control site of "malic' enzyme binds organic acids (including meso-tartrate) which activate the enzyme. meso-Tartrate, however, competes with malate for the active site and thus inhibits the oxidative decarboxylation of malate. Because meso-tartrate does not compete effectively with pyruvate for enzyme-NADPH, its binding at the control site leads to a stimulation of the carboxylation of pyruvate. A similar explanation is advanced for the observation that malic acid stimulates its own synthesis.

  8. Some properties of β-fructofuranosidases partially purified from Phaseolus vulgaris and Solanum tuberosum

    PubMed Central

    Frost, G. M.; Greenshields, R. N.; Teale, F. W. J.

    1968-01-01

    1. Soluble β-fructofuranosidases were purified 16-fold from French-bean-pod extracts and 35-fold from potato-tuber extracts. 2. The two enzymes had similar overall properties but differed from each other quantitatively in lability and reaction kinetics. 3. A non-diffusible inhibitor of β-fructofuranosidase was present in the potato-tuber extracts but was absent from the bean extracts. This non-competitive inhibitor was acid-labile. 4. The possible roles of imidazole, carboxyl and thiol groups in β-fructofuranosidase action are discussed, and the properties of the bean and potato enzymes are compared with published data for yeast, mould and grape-berry enzymes. PMID:16742583

  9. Antioxidant Contents and Antioxidant Activities of White and Colored Potatoes (Solanum tuberosum L.).

    PubMed

    Lee, Sang Hoon; Oh, Seung Hee; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Woo, Shun Hee; Kim, Hong Sig; Lee, Junsoo; Jeong, Heon Sang

    2016-06-01

    This study was performed to evaluate and compare the antioxidant substance content and antioxidant activities of white (Superior) and colored (Hongyoung, Jayoung, Jasim, Seohong, and Jaseo) potatoes. The potatoes were extracted with 80% ethanol and were evaluated for the total polyphenol, flavonoid, and anthocyanin contents and for 1,1-diphenyl- 2-picrylhydrazyl (DPPH)/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, reducing power, and ferrous metal ion chelating effect. The total polyphenol, flavonoid, and anthocyanin contents of Hongyoung and Jayoung were higher than white and other colored potatoes. All colored potato extracts, except for Jaseo and Seohong, showed higher ABTS radical scavenging activities than the general white potato extract. Hongyoung and Jayoung had the highest ABTS and DPPH radical scavenging activities. Optical density values for the reducing power of Jayoung and Jaseo at concentration of 2 mg/mL were 0.148 and 0.090, respectively. All colored potato extracts had lower ferrous metal ion chelating effect than the white potato. A significant (P<0.05) positive correlation was observed between total polyphenol content and total flavonoid content (r=0.919), anthocyanin content (r=0.992), and ABTS radical scavenging activity (r=0.897). Based on these results, this research may be useful in developing the Hongyoung and Jayoung cultivars with high antioxidant activities. PMID:27390727

  10. Ultrasound-assisted three-phase partitioning of polyphenol oxidase from potato peel (Solanum tuberosum).

    PubMed

    Niphadkar, Sonali S; Rathod, Virendra K

    2015-01-01

    Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps.

  11. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology.

    PubMed

    Amado, Isabel Rodríguez; Franco, Daniel; Sánchez, Marivel; Zapata, Carlos; Vázquez, José Antonio

    2014-12-15

    This study reports the optimised conditions (temperature, ethanol concentration and processing-time) for antioxidant extraction from potato peel (Agria variety) waste. At short extraction times (34 min), optimal yields of phenolic (TP) and flavonoid (Fv) compounds were reached at 89.9°C and ethanol concentrations of 71.2% and 38.6%, respectively. The main phenolic compounds identified in the extracts were chlorogenic (Cl) and ferulic (Fer) acids. A significant positive correlation was found between antioxidant activity and TP, Fv, Fer and Cl responses. Potato peel extracts were able to stabilize soybean oil under accelerated oxidation conditions, minimising peroxide, totox and p-anisidine indices. The production of hexanal and 2-hexenal in soybean oil samples was maximal for extracts obtained at intermediate temperatures and ethanol concentrations. Our results demonstrate potato peel waste is a good source of antioxidants able to effectively limit oil oxidation, while contributing to the revalorisation of these agrifood by-products.

  12. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense.

    PubMed

    Jiang, Zhihui; Chen, Chen; Wang, Jian; Xie, Wenyan; Wang, Meng; Li, Xinsheng; Zhang, Xiaoying

    2016-01-01

    Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses.

  13. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs.

    PubMed

    Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu

    2016-01-01

    It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes.

  14. Genotype by environment interaction effects on starch content and digestibility in potato (Solanum tuberosum L.).

    PubMed

    Bach, Stephanie; Yada, Rickey Y; Bizimungu, Benoit; Fan, Ming; Sullivan, J Alan

    2013-04-24

    Biochemically, starch is composed of amylose and amylopectin but can also be defined by its digestibility rates within the human intestinal tract, i.e., rapidly digested (RDS), slowly digested (SDS), or resistant (RS). The relative ratio of these starch components is the main contributor to differences in the glycemic index (GI) of carbohydrate sources. This study evaluated the digestible starch profile of 12 potato genotypes comprising elite breeding lines and commercial varieties in six environments, with the optimal profile defined as low RDS and high SDS. Genotype by environment interaction (GEI) analysis found significant (p = 0.05) genotypic and environmental effects for all digestibility rate components; however, interaction effects were only significant for SDS. Optimal starch profiles were identified for two genotypes, CV96044-3 and Goldrush. The desirable starch profile in these potato cultivars can be exploited in breeding programs for the improvement of starch profile and other important characteristics such as high yields and disease resistance.

  15. FLS2 from Solanum tuberosum have interaction with FlaLas from Candidatus Liberibacter asiaticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candidatus Liberibacter asiaticus’ (Las) is a Gram-negative and phloem-limited alphaproteobacterium. Las attacks all citrus species and citrus hybrids in the genus of Citrus and other relatives, and causes a systemic disease. Currently, control of this devastating disease is extremely difficult sinc...

  16. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance.

    PubMed

    Li, Li; Steffens, John C

    2002-06-01

    Polyphenol oxidases (PPOs; EC 1.10.3.2 or EC 1.14.18.1) catalyzing the oxygen-dependent oxidation of phenols to quinones are ubiquitous among angiosperms and assumed to be involved in plant defense against pests and pathogens. In order to investigate the role of PPO in plant disease resistance, we made transgenic tomato ( Lycopersicon esculentum Mill. cv. Money Maker) plants that overexpressed a potato ( Solanum tuberosum L.) PPO cDNA under control of the cauliflower mosaic virus 35S promoter. The transgenic plants expressed up to 30-fold increases in PPO transcripts and 5- to 10-fold increases in PPO activity and immunodetectable PPO. As expected, these PPO-overexpressing transgenic plants oxidized the endogenous phenolic substrate pool at a higher rate than control plants. Three independent transgenic lines were selected to assess their interaction with the bacterial pathogen Pseudomonas syringae pv. tomato. The PPO-overexpressing tomato plants exhibited a great increase in resistance to P. syringae. Compared with control plants, these transgenic lines showed less severity of disease symptoms, with over 15-fold fewer lesions, and strong inhibition of bacterial growth, with over 100-fold reduction of bacterial population in the infected leaves. These results demonstrate the importance of PPO-mediated phenolic oxidation in restricting plant disease development. PMID:12029473

  17. The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives

    PubMed Central

    Aversano, Riccardo; Contaldi, Felice; Ercolano, Maria Raffaella; Grosso, Valentina; Iorizzo, Massimo; Tatino, Filippo; Xumerle, Luciano; Dal Molin, Alessandra; Avanzato, Carla; Ferrarini, Alberto; Delledonne, Massimo; Sanseverino, Walter; Cigliano, Riccardo Aiese; Capella-Gutierrez, Salvador; Gabaldón, Toni; Frusciante, Luigi; Bradeen, James M.; Carputo, Domenico

    2015-01-01

    Here, we report the draft genome sequence of Solanum commersonii, which consists of ∼830 megabases with an N50 of 44,303 bp anchored to 12 chromosomes, using the potato (Solanum tuberosum) genome sequence as a reference. Compared with potato, S. commersonii shows a striking reduction in heterozygosity (1.5% versus 53 to 59%), and differences in genome sizes were mainly due to variations in intergenic sequence length. Gene annotation by ab initio prediction supported by RNA-seq data produced a catalog of 1703 predicted microRNAs, 18,882 long noncoding RNAs of which 20% are shown to target cold-responsive genes, and 39,290 protein-coding genes with a significant repertoire of nonredundant nucleotide binding site-encoding genes and 126 cold-related genes that are lacking in S. tuberosum. Phylogenetic analyses indicate that domesticated potato and S. commersonii lineages diverged ∼2.3 million years ago. Three duplication periods corresponding to genome enrichment for particular gene families related to response to salt stress, water transport, growth, and defense response were discovered. The draft genome sequence of S. commersonii substantially increases our understanding of the domesticated germplasm, facilitating translation of acquired knowledge into advances in crop stability in light of global climate and environmental changes. PMID:25873387

  18. The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives.

    PubMed

    Aversano, Riccardo; Contaldi, Felice; Ercolano, Maria Raffaella; Grosso, Valentina; Iorizzo, Massimo; Tatino, Filippo; Xumerle, Luciano; Dal Molin, Alessandra; Avanzato, Carla; Ferrarini, Alberto; Delledonne, Massimo; Sanseverino, Walter; Cigliano, Riccardo Aiese; Capella-Gutierrez, Salvador; Gabaldón, Toni; Frusciante, Luigi; Bradeen, James M; Carputo, Domenico

    2015-04-01

    Here, we report the draft genome sequence of Solanum commersonii, which consists of ∼830 megabases with an N50 of 44,303 bp anchored to 12 chromosomes, using the potato (Solanum tuberosum) genome sequence as a reference. Compared with potato, S. commersonii shows a striking reduction in heterozygosity (1.5% versus 53 to 59%), and differences in genome sizes were mainly due to variations in intergenic sequence length. Gene annotation by ab initio prediction supported by RNA-seq data produced a catalog of 1703 predicted microRNAs, 18,882 long noncoding RNAs of which 20% are shown to target cold-responsive genes, and 39,290 protein-coding genes with a significant repertoire of nonredundant nucleotide binding site-encoding genes and 126 cold-related genes that are lacking in S. tuberosum. Phylogenetic analyses indicate that domesticated potato and S. commersonii lineages diverged ∼2.3 million years ago. Three duplication periods corresponding to genome enrichment for particular gene families related to response to salt stress, water transport, growth, and defense response were discovered. The draft genome sequence of S. commersonii substantially increases our understanding of the domesticated germplasm, facilitating translation of acquired knowledge into advances in crop stability in light of global climate and environmental changes.

  19. Bioinformatic Identification and Analysis of Extensins in the Plant Kingdom.

    PubMed

    Liu, Xiao; Wolfe, Richard; Welch, Lonnie R; Domozych, David S; Popper, Zoë A; Showalter, Allan M

    2016-01-01

    Extensins (EXTs) are a family of plant cell wall hydroxyproline-rich glycoproteins (HRGPs) that are implicated to play important roles in plant growth, development, and defense. Structurally, EXTs are characterized by the repeated occurrence of serine (Ser) followed by three to five prolines (Pro) residues, which are hydroxylated as hydroxyproline (Hyp) and glycosylated. Some EXTs have Tyrosine (Tyr)-X-Tyr (where X can be any amino acid) motifs that are responsible for intramolecular or intermolecular cross-linkings. EXTs can be divided into several classes: classical EXTs, short EXTs, leucine-rich repeat extensins (LRXs), proline-rich extensin-like receptor kinases (PERKs), formin-homolog EXTs (FH EXTs), chimeric EXTs, and long chimeric EXTs. To guide future research on the EXTs and understand evolutionary history of EXTs in the plant kingdom, a bioinformatics study was conducted to identify and classify EXTs from 16 fully sequenced plant genomes, including Ostreococcus lucimarinus, Chlamydomonas reinhardtii, Volvox carteri, Klebsormidium flaccidum, Physcomitrella patens, Selaginella moellendorffii, Pinus taeda, Picea abies, Brachypodium distachyon, Zea mays, Oryza sativa, Glycine max, Medicago truncatula, Brassica rapa, Solanum lycopersicum, and Solanum tuberosum, to supplement data previously obtained from Arabidopsis thaliana and Populus trichocarpa. A total of 758 EXTs were newly identified, including 87 classical EXTs, 97 short EXTs, 61 LRXs, 75 PERKs, 54 FH EXTs, 38 long chimeric EXTs, and 346 other chimeric EXTs. Several notable findings were made: (1) classical EXTs were likely derived after the terrestrialization of plants; (2) LRXs, PERKs, and FHs were derived earlier than classical EXTs; (3) monocots have few classical EXTs; (4) Eudicots have the greatest number of classical EXTs and Tyr-X-Tyr cross-linking motifs are predominantly in classical EXTs; (5) green algae have no classical EXTs but have a number of long chimeric EXTs that are absent in

  20. Bioinformatic Identification and Analysis of Extensins in the Plant Kingdom

    PubMed Central

    Liu, Xiao; Wolfe, Richard; Welch, Lonnie R.; Domozych, David S.; Popper, Zoë A.; Showalter, Allan M.

    2016-01-01

    Extensins (EXTs) are a family of plant cell wall hydroxyproline-rich glycoproteins (HRGPs) that are implicated to play important roles in plant growth, development, and defense. Structurally, EXTs are characterized by the repeated occurrence of serine (Ser) followed by three to five prolines (Pro) residues, which are hydroxylated as hydroxyproline (Hyp) and glycosylated. Some EXTs have Tyrosine (Tyr)-X-Tyr (where X can be any amino acid) motifs that are responsible for intramolecular or intermolecular cross-linkings. EXTs can be divided into several classes: classical EXTs, short EXTs, leucine-rich repeat extensins (LRXs), proline-rich extensin-like receptor kinases (PERKs), formin-homolog EXTs (FH EXTs), chimeric EXTs, and long chimeric EXTs. To guide future research on the EXTs and understand evolutionary history of EXTs in the plant kingdom, a bioinformatics study was conducted to identify and classify EXTs from 16 fully sequenced plant genomes, including Ostreococcus lucimarinus, Chlamydomonas reinhardtii, Volvox carteri, Klebsormidium flaccidum, Physcomitrella patens, Selaginella moellendorffii, Pinus taeda, Picea abies, Brachypodium distachyon, Zea mays, Oryza sativa, Glycine max, Medicago truncatula, Brassica rapa, Solanum lycopersicum, and Solanum tuberosum, to supplement data previously obtained from Arabidopsis thaliana and Populus trichocarpa. A total of 758 EXTs were newly identified, including 87 classical EXTs, 97 short EXTs, 61 LRXs, 75 PERKs, 54 FH EXTs, 38 long chimeric EXTs, and 346 other chimeric EXTs. Several notable findings were made: (1) classical EXTs were likely derived after the terrestrialization of plants; (2) LRXs, PERKs, and FHs were derived earlier than classical EXTs; (3) monocots have few classical EXTs; (4) Eudicots have the greatest number of classical EXTs and Tyr-X-Tyr cross-linking motifs are predominantly in classical EXTs; (5) green algae have no classical EXTs but have a number of long chimeric EXTs that are absent in

  1. Bioinformatic Identification and Analysis of Extensins in the Plant Kingdom.

    PubMed

    Liu, Xiao; Wolfe, Richard; Welch, Lonnie R; Domozych, David S; Popper, Zoë A; Showalter, Allan M

    2016-01-01

    Extensins (EXTs) are a family of plant cell wall hydroxyproline-rich glycoproteins (HRGPs) that are implicated to play important roles in plant growth, development, and defense. Structurally, EXTs are characterized by the repeated occurrence of serine (Ser) followed by three to five prolines (Pro) residues, which are hydroxylated as hydroxyproline (Hyp) and glycosylated. Some EXTs have Tyrosine (Tyr)-X-Tyr (where X can be any amino acid) motifs that are responsible for intramolecular or intermolecular cross-linkings. EXTs can be divided into several classes: classical EXTs, short EXTs, leucine-rich repeat extensins (LRXs), proline-rich extensin-like receptor kinases (PERKs), formin-homolog EXTs (FH EXTs), chimeric EXTs, and long chimeric EXTs. To guide future research on the EXTs and understand evolutionary history of EXTs in the plant kingdom, a bioinformatics study was conducted to identify and classify EXTs from 16 fully sequenced plant genomes, including Ostreococcus lucimarinus, Chlamydomonas reinhardtii, Volvox carteri, Klebsormidium flaccidum, Physcomitrella patens, Selaginella moellendorffii, Pinus taeda, Picea abies, Brachypodium distachyon, Zea mays, Oryza sativa, Glycine max, Medicago truncatula, Brassica rapa, Solanum lycopersicum, and Solanum tuberosum, to supplement data previously obtained from Arabidopsis thaliana and Populus trichocarpa. A total of 758 EXTs were newly identified, including 87 classical EXTs, 97 short EXTs, 61 LRXs, 75 PERKs, 54 FH EXTs, 38 long chimeric EXTs, and 346 other chimeric EXTs. Several notable findings were made: (1) classical EXTs were likely derived after the terrestrialization of plants; (2) LRXs, PERKs, and FHs were derived earlier than classical EXTs; (3) monocots have few classical EXTs; (4) Eudicots have the greatest number of classical EXTs and Tyr-X-Tyr cross-linking motifs are predominantly in classical EXTs; (5) green algae have no classical EXTs but have a number of long chimeric EXTs that are absent in

  2. Successful treatment of Solanum dulcamara intoxication in a Labrador retriever puppy.

    PubMed

    Kees, Megan; Beckel, Nicole; Sharp, Claire

    2015-12-01

    A 10-week-old intact male Labrador retriever dog was presented for acute onset of weakness, ataxia, and generalized muscle tremors. The puppy was suffering respiratory and central nervous system (CNS) depression, was mildly pyrexic, and vomited plant material that was identified as creeping nightshade (Solanum dulcamara). He responded well to supportive care and was discharged successfully. To the authors' knowledge, this is the first report of Solanum dulcamara toxicity occurring in a dog. PMID:26663926

  3. Successful treatment of Solanum dulcamara intoxication in a Labrador retriever puppy

    PubMed Central

    Kees, Megan; Beckel, Nicole; Sharp, Claire

    2015-01-01

    A 10-week-old intact male Labrador retriever dog was presented for acute onset of weakness, ataxia, and generalized muscle tremors. The puppy was suffering respiratory and central nervous system (CNS) depression, was mildly pyrexic, and vomited plant material that was identified as creeping nightshade (Solanum dulcamara). He responded well to supportive care and was discharged successfully. To the authors’ knowledge, this is the first report of Solanum dulcamara toxicity occurring in a dog. PMID:26663926

  4. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants.

    PubMed

    Almasia, Natalia I; Bazzini, Ariel A; Hopp, H Esteban; Vazquez-Rovere, Cecilia

    2008-05-01

    Snakin-1 (SN1), a cysteine-rich peptide with broad-spectrum antimicrobial activity in vitro, was evaluated for its ability to confer resistance to pathogens in transgenic potatoes. Genetic variants of this gene were cloned from wild and cultivated Solanum species. Nucleotide sequences revealed highly evolutionary conservation with 91-98% identity values. Potato plants (S. tuberosum subsp. tuberosum cv. Kennebec) were transformed via Agrobacterium tumefaciens with a construct encoding the S. chacoense SN1 gene under the regulation of the ubiquitous CaMV 35S promoter. Transgenic lines were molecularly characterized and challenged with either Rhizoctonia solani or Erwinia carotovora to analyse whether constitutive in vivo overexpression of the SN1 gene may lead to disease resistance. Only transgenic lines that accumulated high levels of SN1 mRNA exhibited significant symptom reductions of R. solani infection such as stem cankers and damping-off. Furthermore, these overexpressing lines showed significantly higher survival rates throughout the fungal resistance bioassays. In addition, the same lines showed significant protection against E. carotovora measured as: a reduction of lesion areas (from 46.5 to 88.1% with respect to the wild-type), number of fallen leaves and thickened or necrotic stems. Enhanced resistance to these two important potato pathogens suggests in vivo antifungal and antibacterial activity of SN1 and thus its possible biotechnological application.

  5. Sulfamethazine uptake by plants from manure-amended soil.

    PubMed

    Dolliver, Holly; Kumar, Kuldip; Gupta, Satish

    2007-01-01

    Animal manure is applied to agricultural land as a means to provide crop nutrients. However, animal manure often contains antibiotics as a result of extensive therapeutic and subtherapeutic use in livestock production. The objective of this study was to evaluate plant uptake of a sulfonamide-class antibiotic, sulfamethazine, in corn (Zea mays L.), lettuce (Lactuca sativa L.), and potato (Solanum tuberosum L.) grown in a manure-amended soil. The treatments were 0, 50, and 100 microg sulfamethazine mL(-1) manure applied at a rate of 56 000 L ha(-1). Results from the 45-d greenhouse experiment showed that sulfamethazine was taken up by all three crops, with concentrations in plant tissue ranging from 0.1 to 1.2 mg kg(-1) dry weight. Sulfamethazine concentrations in plant tissue increased with corresponding increase of sulfamethazine in manure. Highest plant tissue concentrations were found in corn and lettuce, followed by potato. Total accumulation of sulfamethazine in plant tissue after 45 d of growth was less than 0.1% of the amount applied to soil in manure. These results raise potential human health concerns of consuming low levels of antibiotics from produce grown on manure-amended soils.

  6. Physiological responses in potato plants under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1991-01-01

    The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

  7. In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants.

    PubMed

    Kim, Hyun-Jin; Baek, Kwang-Hyun; Lee, Bong-Woo; Choi, Doil; Hur, Cheol-Goo

    2011-02-01

    MicroRNAs (miRNAs) are a class of small, single-stranded, noncoding RNAs ranging from 19 to 25 nucleotides. The miRNA control various cellular functions by negatively regulating gene expression at the post-transcriptional level. The miRNA regulation over their target genes has a central role in regulating plant growth and development; however, only a few reports have been published on the function of miRNAs in the family Solanaceae. We identified Solanaceae miRNAs and their target genes by analyzing expressed sequence tag (EST) data from five different Solanaceae species. A comprehensive bioinformatic analysis of EST data of Solanaceae species revealed the presence of at least 11 miRNAs and 54 target genes in pepper (Capsicum annuum L.), 22 miRNAs and 221 target genes in potato (Solanum tuberosum L.), 12 miRNAs and 417 target genes in tomato (Solanum lycopersicum L.), 46 miRNAs and 60 target genes in tobacco (Nicotiana tabacum L.), and 7 miRNAs and 28 target genes in Nicotiana benthamiana. The identified Solanaceae miRNAs and their target genes were deposited in the SolmiRNA database, which is freely available for academic research only at http://genepool.kribb.re.kr/SolmiRNA. Our data indicate that the Solanaceae family has both conserved and specific miRNAs and that their target genes may play important roles in growth and development of Solanaceae plants.

  8. Targeted Identification of Short Interspersed Nuclear Element Families Shows Their Widespread Existence and Extreme Heterogeneity in Plant Genomes[W

    PubMed Central

    Wenke, Torsten; Döbel, Thomas; Sörensen, Thomas Rosleff; Junghans, Holger; Weisshaar, Bernd; Schmidt, Thomas

    2011-01-01

    Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5′ truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3′ end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families. PMID:21908723

  9. Plastid transformation in eggplant (Solanum melongena L.).

    PubMed

    Singh, A K; Verma, S S; Bansal, K C

    2010-02-01

    We have developed a method for plastid transformation in eggplant (Solanum melongena L.), a solanaceous plant species. Plastid transformation in eggplant was achieved by bombardment of green stem segments with pPRV111A plastid expression vector carrying the aadA gene encoding aminoglycoside 3''-adenylyltransferase. Biolistic delivery of the pPRV111A plasmid yielded transplastomic plants at a frequency of two per 21 bombarded plates containing 25 stem explants each. Integration of the aadA gene in the plastome was verified by PCR analysis and also by Southern blotting using 16S rDNA (targeting sequence) and the aadA gene as a probe. Transplastomic expression of the aadA gene was verified by RT-PCR. The development of transplastomic technology in eggplant may open up exciting possibilities for novel gene introduction and expression in the engineered plastome for agronomic or pharmaceutical traits.

  10. Genome Sequence of the Emerging Plant Pathogen Dickeya solani Strain RNS 08.23.3.1A

    PubMed Central

    Khayi, Slimane; Mondy, Samuel; Beury-Cirou, Amélie; Moumni, Mohieddine; Hélias, Valérie

    2014-01-01

    Here we present the genome sequence of Dickeya solani strain RNS 08.23.3.1A (PRI3337), isolated from Solanum tuberosum. Dickeya solani, recently described on potato cultures in Europe, is a proposed new taxon closely related to the Dickeya dianthicola and Dickeya dadantii species. PMID:24482527

  11. Revision of the Solanum medians complex (Solanum section Petota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum medians is a widely distributed wild potato species growing along the coast and along the western slopes of the Andes from central Peru and northern Chile, from along the coastal lomas near sea level to 3800 m. Fertile diploid and triploid cytotypes are common, are believed to associated wit...

  12. Application of a modified EDTA-mediated exudation technique and guttation fluid analysis for potato spindle tuber viroid RNA detection in tomato plants (Solanum lycopersicum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato spindle tuber viroid (PSTVd) is a small plant pathogenic circular RNA that does not encode proteins, replicates autonomously, and traffics systemically in infected plants. Long-distance transport occurs by way of the phloem; however one report in the literature describes the presence of viroi...