Sample records for plaque lipid pattern

  1. Shedding Light on the Molecular Pathology of Amyloid Plaques in Transgenic Alzheimer's Disease Mice Using Multimodal MALDI Imaging Mass Spectrometry.

    PubMed

    Kaya, Ibrahim; Zetterberg, Henrik; Blennow, Kaj; Hanrieder, Jörg

    2018-05-04

    Senile plaques formed by aggregated amyloid β peptides are one of the major pathological hallmarks of Alzheimer's disease (AD) which have been suggested to be the primary influence triggering the AD pathogenesis and the rest of the disease process. However, neurotoxic Aβ aggregation and progression are associated with a wide range of enigmatic biochemical, biophysical and genetic processes. MALDI imaging mass spectrometry (IMS) is a label-free method to elucidate the spatial distribution patterns of intact molecules in biological tissue sections. In this communication, we utilized multimodal MALDI-IMS analysis on 18 month old transgenic AD mice (tgArcSwe) brain tissue sections to enhance molecular information correlated to individual amyloid aggregates on the very same tissue section. Dual polarity MALDI-IMS analysis of lipids on the same pixel points revealed high throughput lipid molecular information including sphingolipids, phospholipids, and lysophospholipids which can be correlated to the ion images of individual amyloid β peptide isoforms at high spatial resolutions (10 μm). Further, multivariate image analysis was applied in order to probe the multimodal MALDI-IMS data in an unbiased way which verified the correlative accumulations of lipid species with dual polarity and Aβ peptides. This was followed by the lipid fragmentation obtained directly on plaque aggregates at higher laser pulse energies which provided tandem MS information useful for structural elucidation of several lipid species. Majority of the amyloid plaque-associated alterations of lipid species are for the first time reported here. The significance of this technique is that it allows correlating the biological discussion of all detected plaque-associated molecules to the very same individual amyloid plaques which can give novel insights into the molecular pathology of even a single amyloid plaque microenvironment in a specific brain region. Therefore, this allowed us to interpret the possible roles of lipids and amyloid peptides in amyloid plaque-associated pathological events such as focal demyelination, autophagic/lysosomal dysfunction, astrogliosis, inflammation, oxidative stress, and cell death.

  2. Carotenoids co-localize with hydroxyapatite, cholesterol, and other lipids in calcified stenotic aortic valves. Ex vivo Raman maps compared to histological patterns.

    PubMed

    Bonetti, A; Bonifacio, A; Della Mora, A; Livi, U; Marchini, M; Ortolani, F

    2015-04-20

    Unlike its application for atherosclerotic plaque analysis, Raman microspectroscopy was sporadically used to check the sole nature of bioapatite deposits in stenotic aortic valves, neglecting the involvement of accumulated lipids/lipoproteins in the calcific process. Here, Raman microspectroscopy was employed for examination of stenotic aortic valve leaflets to add information on nature and distribution of accumulated lipids and their correlation with mineralization in the light of its potential precocious diagnostic use. Cryosections from surgically explanted stenotic aortic valves (n=4) were studied matching Raman maps against specific histological patterns. Raman maps revealed the presence of phospholipids/triglycerides and cholesterol, which showed spatial overlapping with one another and Raman-identified hydroxyapatite. Moreover, the Raman patterns correlated with those displayed by both von-Kossa-calcium- and Nile-blue-stained serial cryosections. Raman analysis also provided the first identification of carotenoids, which co-localized with the identified lipid moieties. Additional fit concerned the distribution of collagen and elastin. The good correlation of Raman maps with high-affinity staining patterns proved that Raman microspectroscopy is a reliable tool in evaluating calcification degree, alteration/displacement of extracellular matrix components, and accumulation rate of different lipid forms in calcified heart valves. In addition, the novel identification of carotenoids supports the concept that valve stenosis is an atherosclerosis-like valve lesion, consistently with their previous Raman microspectroscopical identification inside atherosclerotic plaques.

  3. Comparison by optical coherence tomography of the frequency of lipid coronary plaques in current smokers, former smokers, and nonsmokers.

    PubMed

    Abtahian, Farhad; Yonetsu, Taishi; Kato, Koji; Jia, Haibo; Vergallo, Rocco; Tian, Jinwei; Hu, Sining; McNulty, Iris; Lee, Hang; Yu, Bo; Jang, Ik-Kyung

    2014-09-01

    Smoking is associated with high incidence of cardiovascular events including acute coronary syndrome. We sought to characterize coronary plaques in patients with ongoing smoking using optical coherence tomography (OCT) compared with former smokers and nonsmokers. We identified 465 coronary plaques from 182 subjects who underwent OCT imaging for all 3 coronary arteries. Subjects were divided into 3 groups: current smokers (n = 41), former smokers (n = 67), and nonsmokers (n = 74). OCT analysis included the presence of lipid-rich plaque, thin-cap fibroatheroma (TCFA), calcification, maximum lipid arc, lipid core length, lipid index, and fibrous cap thickness. Lipid index was defined by mean lipid arc multiplied by lipid core length. Compared with former smokers and nonsmokers, the incidence of lipid plaques and TCFA was significantly higher in current smokers (lipid plaques: 68.0% vs 45.9% and 52.6%, p = 0.002; TCFA: 18.4% vs 7.6% and 9.9%, p = 0.018). There was a trend for higher plaque disruption in current smokers. Former smokers were more likely to have calcified plaques than current and nonsmokers (52.9% vs 32.0% and 38.0%, p = 0.001). In a multivariate analysis, current smoking, low-density lipoprotein, and presentation with acute coronary syndrome were independently associated with the presence of TCFAs. In conclusion, current smokers are more likely to have lipid plaques and OCT-defined vulnerable plaques (TCFAs). Former smokers have increased number of calcified plaques. These results may explain the increased risk of acute cardiac events among smokers. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Carotenoids Co-Localize with Hydroxyapatite, Cholesterol, and Other Lipids in Calcified Stenotic Aortic Valves. Ex Vivo Raman Maps Compared to Histological Patterns

    PubMed Central

    Bonetti, A.; Bonifacio, A.; Mora, A. Della; Livi, U.; Marchini, M.; Ortolani, F.

    2015-01-01

    Unlike its application for atherosclerotic plaque analysis, Raman microspectroscopy was sporadically used to check the sole nature of bioapatite deposits in stenotic aortic valves, neglecting the involvement of accumulated lipids/lipoproteins in the calcific process. Here, Raman microspectroscopy was employed for examination of stenotic aortic valve leaflets to add information on nature and distribution of accumulated lipids and their correlation with mineralization in the light of its potential precocious diagnostic use. Cryosections from surgically explanted stenotic aortic valves (n=4) were studied matching Raman maps against specific histological patterns. Raman maps revealed the presence of phospholipids/triglycerides and cholesterol, which showed spatial overlapping with one another and Raman-identified hydroxyapatite. Moreover, the Raman patterns correlated with those displayed by both von-Kossa-calcium- and Nile-blue-stained serial cryosections. Raman analysis also provided the first identification of carotenoids, which co-localized with the identified lipid moieties. Additional fit concerned the distribution of collagen and elastin. The good correlation of Raman maps with high-affinity staining patterns proved that Raman microspectroscopy is a reliable tool in evaluating calcification degree, alteration/displacement of extracellular matrix components, and accumulation rate of different lipid forms in calcified heart valves. In addition, the novel identification of carotenoids supports the concept that valve stenosis is an atherosclerosis-like valve lesion, consistently with their previous Raman microspectroscopical identification inside atherosclerotic plaques. PMID:26150160

  5. Characterization of human arterial tissue affected by atherosclerosis using multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Baria, Enrico; Cicchi, Riccardo; Rotellini, Matteo; Nesi, Gabriella; Massi, Daniela; Pavone, Francesco S.

    2016-03-01

    Atherosclerosis is a widespread cardiovascular disease caused by the deposition of lipids (such as cholesterol and triglycerides) on the inner arterial wall. The rupture of an atherosclerotic plaque, resulting in a thrombus, is one of the leading causes of death in the Western World. Preventive assessment of plaque vulnerability is therefore extremely important and can be performed by studying collagen organization and lipid composition in atherosclerotic arterial tissues. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Instead, a label-free and non-invasive alternative is provided by nonlinear microscopy. In this study, we combined SHG and FLIM microscopy in order to characterize collagen organization and lipids in human carotid ex vivo tissues affected by atherosclerosis. SHG and TPF images, acquired from different regions within atherosclerotic plaques, were processed through image pattern analysis methods (FFT, GLCM). The resulting information on collagen and cholesterol distribution and anisotropy, combined with collagen and lipids fluorescence lifetime measured from FLIM images, allowed characterization of carotid samples and discrimination of different tissue regions. The presented method can be applied for automated classification of atherosclerotic lesions and plaque vulnerability. Moreover, it lays the foundation for a potential in vivo diagnostic tool to be used in clinical setting.

  6. Detection of Aβ plaque-associated astrogliosis in Alzheimer's disease brain by spectroscopic imaging and immunohistochemistry† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7an01747b

    PubMed Central

    Tamagnini, Francesco; Jeynes, J. Charles G.; Mattana, Sara; Swift, Imogen; Nallala, Jayakrupakar; Hancock, Jane; Brown, Jonathan T.; Randall, Andrew D.; Stone, Nick

    2018-01-01

    Recent work using micro-Fourier transform infrared (μFTIR) imaging has revealed that a lipid-rich layer surrounds many plaques in post-mortem Alzheimer's brain. However, the origin of this lipid layer is not known, nor is its role in the pathogenesis of Alzheimer's disease (AD). Here, we studied the biochemistry of plaques in situ using a model of AD. We combined FTIR, Raman and immunofluorescence images, showing that astrocyte processes co-localise with the lipid ring surrounding many plaques. We used μFTIR imaging to rapidly measure chemical signatures of plaques over large fields of view, and selected plaques for higher resolution analysis with Raman microscopy. Raman maps showed similar lipid rings and dense protein cores as in FTIR images, but also revealed cell bodies. We confirmed the presence of plaques using amylo-glo staining, and detected astrocytes using immunohistochemistry, revealing astrocyte co-localisation with lipid rings. This work is important because it correlates biochemical changes surrounding the plaque with the biological process of astrogliosis. PMID:29230441

  7. Lapaquistat acetate, a squalene synthase inhibitor, changes macrophage/lipid-rich coronary plaques of hypercholesterolaemic rabbits into fibrous lesions.

    PubMed

    Shiomi, M; Yamada, S; Amano, Y; Nishimoto, T; Ito, T

    2008-07-01

    Inhibition of squalene synthesis could transform unstable, macrophage/lipid-rich coronary plaques into stable, fibromuscular plaques. We have here treated WHHLMI rabbits, a model for coronary atherosclerosis and myocardial infarction, with a novel squalene synthase inhibitor, lapaquistat acetate (TAK-475). Young male WHHLMI rabbits were fed a diet supplemented with lapaquistat acetate (100 or 200 mg per kg body weight per day) for 32 weeks. Serum lipid levels were monitored every 4 weeks. After the treatment, lipoprotein lipid and coenzyme Q10 levels were assayed, and coronary atherosclerosis and xanthomas were examined histopathologically or immunohistochemically. From histopathological and immunohistochemical sections, the composition of the plaque was analysed quantitatively with computer-assisted image analysis. Xanthoma was evaluated grossly. Lapaquistat acetate decreased plasma cholesterol and triglyceride levels, by lowering lipoproteins containing apoB100. Development of atherosclerosis and xanthomatosis was suppressed. Accumulation of oxidized lipoproteins, macrophages and extracellular lipid was decreased in coronary plaques of treated animals. Treatment with lapaquistat acetate increased collagen concentration and transformed coronary plaques into fibromuscular plaques. Lapaquistat acetate also suppressed the expression of matrix metalloproteinase-1 and plasminogen activator inhibitor-1 in the plaque and increased peripheral coenzyme Q10 levels. Increased coenzyme Q10 levels and decreased very low-density lipoprotein cholesterol levels were correlated with improvement of coronary plaque composition. Inhibition of squalene synthase by lapaquistat acetate delayed progression of coronary atherosclerosis and changed coronary atheromatous plaques from unstable, macrophage/lipid accumulation-rich, lesions to stable fibromuscular lesions.

  8. Lapaquistat acetate, a squalene synthase inhibitor, changes macrophage/lipid-rich coronary plaques of hypercholesterolaemic rabbits into fibrous lesions

    PubMed Central

    Shiomi, M; Yamada, S; Amano, Y; Nishimoto, T; Ito, T

    2008-01-01

    Background and purpose: Inhibition of squalene synthesis could transform unstable, macrophage/lipid-rich coronary plaques into stable, fibromuscular plaques. We have here treated WHHLMI rabbits, a model for coronary atherosclerosis and myocardial infarction, with a novel squalene synthase inhibitor, lapaquistat acetate (TAK-475). Experimental approach: Young male WHHLMI rabbits were fed a diet supplemented with lapaquistat acetate (100 or 200 mg per kg body weight per day) for 32 weeks. Serum lipid levels were monitored every 4 weeks. After the treatment, lipoprotein lipid and coenzyme Q10 levels were assayed, and coronary atherosclerosis and xanthomas were examined histopathologically or immunohistochemically. From histopathological and immunohistochemical sections, the composition of the plaque was analysed quantitatively with computer-assisted image analysis. Xanthoma was evaluated grossly. Key results: Lapaquistat acetate decreased plasma cholesterol and triglyceride levels, by lowering lipoproteins containing apoB100. Development of atherosclerosis and xanthomatosis was suppressed. Accumulation of oxidized lipoproteins, macrophages and extracellular lipid was decreased in coronary plaques of treated animals. Treatment with lapaquistat acetate increased collagen concentration and transformed coronary plaques into fibromuscular plaques. Lapaquistat acetate also suppressed the expression of matrix metalloproteinase-1 and plasminogen activator inhibitor-1 in the plaque and increased peripheral coenzyme Q10 levels. Increased coenzyme Q10 levels and decreased very low-density lipoprotein cholesterol levels were correlated with improvement of coronary plaque composition. Conclusion and implications: Inhibition of squalene synthase by lapaquistat acetate delayed progression of coronary atherosclerosis and changed coronary atheromatous plaques from unstable, macrophage/lipid accumulation-rich, lesions to stable fibromuscular lesions. PMID:18587443

  9. WE-FG-207B-06: Plaque Composition Measurement with Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C; Ding, H; Malkasian, S

    Purpose: To investigate the feasibility of characterizing arterial plaque composition in terms of water, lipid and protein or calcium using dual energy computed tomography. Characterization of plaque composition can potentially help distinguish vulnerable from stable plaques. Methods: Simulations studies were performed by the CT simulator based on ASTRA tomography toolbox. The beam energy for dual energy images was selected to be 80 kVp and 135 kVp. The radiation dose and energy spectrum for the CT simulator were carefully calibrated with respect to a 320-slice CT scanner. A digital chest phantom was constructed using Matlab for calibration and plaque measurement. Puremore » water, lipid, protein or calcium was used for calibration and a mixture of different volume percentages of these materials were used for validation purposes. Non-calcified plaque was simulated using water, lipid and protein with volumetric percentage range of 35%∼65%, 5%∼60% and 5%∼40%, respectively. Calcified plaque was simulated using water, lipid and calcium with volumetric percentage range of 50%∼80%, 8%∼45% and 3%∼13%, respectively. We employed iterative sinogram processing (ISP) to reduce the beam hardening effect in the simulation to improve the decomposition results. Results: The simulated known composition and dual energy decomposition results were in good agreement. Water, lipid and protein (calcium) mixtures were decomposed into water, lipid and protein (calcium) contents. The RMS errors of volumetric percentage for the water, lipid and protein (non-calcified plaque) decomposition, as compared to known values, were estimated to be approximately 5.74%, 2.54%, and 0.95% respectively. The RMS errors of volumetric percentage for the water, lipid and Calcium (calcified plaque) decomposition, as compared to known values, were estimated to be approximately 7.4%, 8.64%, and 0.08% respectively. Conclusion: The results of this study suggest that the dual energy decomposition can potentially be used to quantify the water, lipid, and protein or calcium composition of a plaque with relatively good accuracy. Grant funding from Toshiba Medical Systems and Philips Medical Systems.« less

  10. Directional spatial frequency analysis of lipid distribution in atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Korn, Clyde; Reese, Eric; Shi, Lingyan; Alfano, Robert; Russell, Stewart

    2016-04-01

    Atherosclerosis is characterized by the growth of fibrous plaques due to the retention of cholesterol and lipids within the artery wall, which can lead to vessel occlusion and cardiac events. One way to evaluate arterial disease is to quantify the amount of lipid present in these plaques, since a higher disease burden is characterized by a higher concentration of lipid. Although therapeutic stimulation of reverse cholesterol transport to reduce cholesterol deposits in plaque has not produced significant results, this may be due to current image analysis methods which use averaging techniques to calculate the total amount of lipid in the plaque without regard to spatial distribution, thereby discarding information that may have significance in marking response to therapy. Here we use Directional Fourier Spatial Frequency (DFSF) analysis to generate a characteristic spatial frequency spectrum for atherosclerotic plaques from C57 Black 6 mice both treated and untreated with a cholesterol scavenging nanoparticle. We then use the Cauchy product of these spectra to classify the images with a support vector machine (SVM). Our results indicate that treated plaque can be distinguished from untreated plaque using this method, where no difference is seen using the spatial averaging method. This work has the potential to increase the effectiveness of current in-vivo methods of plaque detection that also use averaging methods, such as laser speckle imaging and Raman spectroscopy.

  11. The potential role of IDEAL MRI for identification of lipids and hemorrhage in carotid artery plaques.

    PubMed

    Khosa, Faisal; Clough, Rachel E; Wang, Xiaoen; Madhuranthakam, Ananth J; Greenman, Robert L

    2018-06-01

    Hemorrhage and lipid deposits contribute to instability in atherosclerotic plaques. Unstable carotid artery plaques can lead to cerebral ischemic events. While MRI studies have shown the ability to identify plaque components, the identification of hemorrhage and lipids has proven to be problematic. The purpose of this study was to quantitatively evaluate the potential of the MRI fat/water separation method known as iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) to complement and improve existing methods for the identification of hemorrhage and lipids in carotid artery plaques. Fifteen asymptomatic subjects with 50-79% stenosis of at least one carotid artery were enrolled. Hemorrhage and lipid components within carotid plaques were identified using previously published criteria based on the multiple contrast-weighted (MCW) method (3D Time-of-Flight (3D-TOF), T1-Weighted (T1W) and T2-Weighted (T2W)). The hemorrhage:muscle, lipid:muscle and intra-plaque lipid:hemorrhage signal intensity ratios (SIR) and contrast to noise ratios (CNR) were measured on MCW and compared to IDEAL black-blood images. No differences were found between any of the MCW methods for any of the SIRs measured. The IDEAL Fat images had higher lipid:muscle and lipid/hemorrhage SIRs (p<0.001) compared to IDEAL Water and all MCW image sequence types. The mean values of IDEAL Fat hemorrhage:muscle SIR and CNR were nearly unity (1.1±0.6) and nearly zero (0.1±1.1), respectively. The IDEAL Water imaging was not significantly different than any of the MCW methods for any of the SIRs or for the hemorrhage:muscle CNR of 3D-TOF, while its CNRs were significantly higher than IDEAL Fat lipid:muscle (p<0.05) and lipid:hemorrhage (p<0.001) and all MCW methods (p<0.001). The addition of IDEAL Water and Fat imaging to the MCW method shows potential to improve the identification of hemorrhage and lipid structures in carotid artery plaques. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Aortic atherosclerotic plaque detection using a multiwavelength handheld photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Hirano, Susumu; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-03-01

    Patients affected by diseases caused by arteriosclerosis are increasing. Atherosclerosis, which is becoming an especially difficult health problem, forms plaques from lipids such as cholesterol located in walls of the aorta, cerebral artery, and coronary artery. Because lipid-rich plaques are vulnerable and because arterial rupture causes acute vascular occlusion, early detection is crucially important to prevent plaque growth and rupture. Ultrasound systems can detect plaques but cannot discriminate between vulnerable and equable plaques. To evaluate plaques non-invasively and easily, we developed a handheld photoacoustic imaging device. Its usefulness was verified in phantom experiments with a bovine aorta in which mimic plaque had been embedded. Photoacoustic images taken at wavelengths that produce high light absorbance by lipids show strong photoacoustic signals from the boundary of the mimic plaque. Results confirmed that our system can evaluate plaque properties by analysis with the photoacoustic spectrum. The effects of surrounding tissues and tissue components on plaque evaluation were investigated using a layered phantom. The mimic plaque located under a 6 mm blood layer was also evaluated. Results of these analyses demonstrate the system's usefulness.

  13. Type D personality and coronary atherosclerotic plaque vulnerability: The potential mediating effect of health behavior.

    PubMed

    Cheng, Fangman; Lin, Ping; Wang, Yini; Liu, Guojie; Li, Ling; Yu, Huai; Yu, Bo; Zhao, Zhenjuan; Gao, Xueqin

    2018-05-01

    The association between type D personality and coronary plaque vulnerability has been suggested. The objective of the study was to evaluate the potential mediating effects of health behavior on the association between type D personality and plaque vulnerability in coronary artery disease (CAD) patients. A total of 319 CAD patients were assessed for type D personality and health behavior via self-administered questionnaires. The plaque vulnerability, evaluated according to characteristics, accompaniment, and outcomes of plaque, was assessed by optical coherence tomography. Regression analysis showed that type D personality was independently associated with lipid plaque (odds ratio [OR] = 2.387, p = 0.001), thin cap fibroatheroma (TCFA) (OR = 2.366, p = 0.001), rupture (OR = 2.153, p = 0.002), and lipid arc (β = -0.291, p < 0.001). Mediation analyses showed that aspects of health behavior were significant mediators of the relationship between type D personality and plaque vulnerability. Psychological stress mediated the relationship between type D and lipid plaque (p = 0.030), TCFA (p = 0.034), and rupture (p = 0.013). Living habits significantly mediated the relationship between type D and lipid plaque (p = 0.028), TCFA (p = 0.036), but not rupture (p = 0.066). Participating in activities was not a significant mediator of the relationship between type D personality and lipid plaque (p = 0.115), TCFA (p = 0.115), or rupture (p = 0.077). Health behaviors (psychological stress and living habits) may be mediators of the association between type D personality and plaque vulnerability. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  15. Apoptosis does not mediate macrophage depletion in rabbit atherosclerotic plaques after dietary lipid lowering.

    PubMed

    Martinet, Wim; Croons, Valerie; Herman, Arnold G; De Meyer, Guido R Y

    2009-08-01

    Unstable atherosclerotic plaques are characterized by a thin fibrous cap that contains few smooth muscle cells (SMCs) and numerous foam cells of macrophage origin. Previously we and others demonstrated that macrophages disappear from atherosclerotic plaques after dietary lipid lowering. However, it remains unclear whether loss of macrophages after lipid lowering occurs via increased apoptosis, decreased macrophage replication and/or recruitment, or via a combination of both. Rabbits were fed a diet supplemented with cholesterol (0.3%) for 24 weeks followed by a normal diet for 4, 12, or 24 weeks. After 24 weeks of cholesterol supplement, plaques showed apoptosis in both macrophages and SMCs, as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Cell replication (Ki-67 immunolabeling) was predominantly present in macrophages. After 24 weeks of cholesterol withdrawal, the thickness and areas of the plaques were unchanged. Nevertheless, plaques showed a considerable loss of macrophages. This event was associated with a reduced immunoreactivity for vascular cell adhesion molecule-1 (VCAM-1) in the endothelial cells starting 4 weeks after cholesterol withdrawal. Apoptosis did not increase after lipid lowering but showed a steady decline. Apart from decreased VCAM-1 expression, a strong decrease in Ki-67 immunolabeling was observed after 12 weeks of cholesterol withdrawal. Our findings suggest that loss of macrophages in atherosclerotic plaques after dietary lipid lowering is not related to induction of macrophage apoptosis but mainly a consequence of impaired monocyte recruitment followed by decreased macrophage replication. This information is essential for understanding the effects of aggressive lipid lowering on plaque stability.

  16. Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk.

    PubMed

    Bargalló, Núria; Gilabert, Rosa; Romero-Mamani, Edwin-Saúl; Cofán, Montserrat; Calder, Philip C; Fitó, Montserrat; Corella, Dolores; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2017-09-20

    Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque ( n = 38), with plaques <2.0 mm thick ( n = 65), and with plaques ≥2.0 mm ( n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence ( n = 31) or presence ( n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques.

  17. Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk

    PubMed Central

    Bargalló, Núria; Gilabert, Rosa; Romero-Mamani, Edwin-Saúl; Calder, Philip C.; Fitó, Montserrat; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2017-01-01

    Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque (n = 38), with plaques <2.0 mm thick (n = 65), and with plaques ≥2.0 mm (n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence (n = 31) or presence (n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques. PMID:28930197

  18. Decreased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability.

    PubMed

    Zhao, Huiying; Qin, Xiujiao; Wang, Shuai; Sun, Xiwei; Dong, Bin

    2017-10-01

    Investigating the determinants and dynamics of atherosclerotic plaque instability is a key area of current cardiovascular research. Extracellular matrix degradation from excessive proteolysis induced by enzymes such as cathepsin K (Cat K) is implicated in the pathogenesis of unstable plaques. The current study assessed the expression of Cat K in human unstable atherosclerotic plaques. Specimens of popliteal arteries with atherosclerotic plaques were classified as stable (<40% lipid core plaque area; n=6) or unstable (≥40% lipid core plaque area; n=14) based on histopathological examinations of hematoxylin and eosin stained sections. The expression of Cat K and cystatin C (Cys C) were assessed by immunohistochemical examination and levels of Cat K mRNA were detected by semi-quantitative reverse transcriptase polymerase chain reaction. Morphological changes including a larger lipid core, endothelial proliferation with foam cells and destruction of internal elastic lamina were observed in unstable atherosclerotic plaques. In unstable plaques, the expression of Cat K protein and mRNA was upregulated, whereas Cys C protein expression was downregulated. The interplay between Cat K and Cys C may underlie the progression of plaques from stable to unstable and the current study indicated that Cat K and Cys C are potential targets for preventing and treating vulnerable atherosclerotic plaque ruptures.

  19. Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles

    PubMed Central

    Wang, Tianyi; Jacob Mancuso, J.; Sapozhnikova, Veronika; Dwelle, Jordan; Ma, Li L.; Willsey, Brian; Shams Kazmi, S. M.; Qiu, Jinze; Li, Xiankai; Asmis, Reto; Johnston, Keith P.; Feldman, Marc D.

    2012-01-01

    Abstract. The objective of this study was to assess the ability of combined photothermal wave (PTW) imaging and optical coherence tomography (OCT) to detect, and further characterize the distribution of macrophages (having taken up plasmonic gold nanorose as a contrast agent) and lipid deposits in atherosclerotic plaques. Aortas with atherosclerotic plaques were harvested from nine male New Zealand white rabbits divided into nanorose- and saline-injected groups and were imaged by dual-wavelength (800 and 1210 nm) multifrequency (0.1, 1 and 4 Hz) PTW imaging in combination with OCT. Amplitude PTW images suggest that lateral and depth distribution of nanorose-loaded macrophages (confirmed by two-photon luminescence microscopy and RAM-11 macrophage stain) and lipid deposits can be identified at selected modulation frequencies. Radiometric temperature increase and modulation amplitude of superficial nanoroses in response to 4 Hz laser irradiation (800 nm) were significantly higher than native plaque (P<0.001). Amplitude PTW images (4 Hz) were merged into a coregistered OCT image, suggesting that superficial nanorose-loaded macrophages are distributed at shoulders on the upstream side of atherosclerotic plaques (P<0.001) at edges of lipid deposits. Results suggest that combined PTW-OCT imaging can simultaneously reveal plaque structure and composition, permitting characterization of nanorose-loaded macrophages and lipid deposits in atherosclerotic plaques. PMID:22502567

  20. [Is regression of atherosclerotic plaque possible?

    PubMed

    Páramo, José A; Civeira, Fernando

    As it is well-known, a thrombus evolving into a disrupted/eroded atherosclerotic plaque causes most acute coronary syndromes. Plaque stabilization via reduction of the lipid core and/or thickening of the fibrous cap is one of the possible mechanisms accounted for the clinical benefits displayed by different anti-atherosclerotic strategies. The concept of plaque stabilization was developed to explain how lipid-lowering agents could decrease adverse coronary events without substantial modifications of the atherosclerotic lesion ('angiographic paradox'). A number of imaging modalities (vascular ultrasound and virtual histology, MRI, optical coherence tomography, positron tomography, etc.) are used for non-invasive assessment of atherosclerosis; most of them can identify plaque volume and composition beyond lumen stenosis. An 'aggressive' lipid-lowering strategy is able to reduce the plaque burden and the incidence of cardiovascular events; this may be attributable, at least in part, to plaque-stabilizing effects. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. High-resolution magnetic resonance imaging of carotid atherosclerotic plaques - a correlation study with histopathology.

    PubMed

    Xia, Zhangyong; Yang, Hua; Yuan, Xiaochun; Wang, Jiyue; Zhang, Shigang; Zhang, Liyong; Qu, Yang; Chen, Jun; Jiao, Liqun; Wang, Le-Xin; Du, Yifeng

    2017-07-01

    This study aimed to utilize high-resolution magnetic resonance imaging (MRI) to investigate the characteristics of stable and vulnerable carotid arteriosclerotic plaques, with correlations to histopathological findings. High-resolution MRI was performed in 817 patients, using three-dimensional magnetic resonance angiography. Plaque composition was evaluated by measuring the areas occupied by calcification, a lipid-rich necrotic core, intra-plaque haemorrhage, and fibrous cap rupture. Plaque morphology was analysed by measuring vessel wall area, thickness, and luminal area at the bifurcation of the common carotid artery. Plaque tissues were sampled during carotid endarterectomy and examined using haematoxylin-eosin, Oil Red O, Masson trichrome staining, and immunohistochemical staining for CD68. Patients were divided into stable plaque group (n = 462) and vulnerable plaque group (n = 355), based on intraoperative observations and postoperative histopathological findings. Compared to the stable plaque group, the vulnerable plaque group exhibited increased vessel wall areas and thickness, and decreased mean luminal areas (P < 0.001). The vulnerable plaque group also had a lower collagen content, a higher lipid content, and higher CD68 expression in plaque tissues on histological examinations (P < 0.01). Incidences of lipid-rich necrotic core (38.1 % vs. 34.3 %), intra-plaque haemorrhage (26.9 % vs. 22.8 %), plaque calcification (45.2 % vs. 40.9 %), and fibrous cap rupture (36.0 % vs 39.8 %) in the plaques were concordant with MRI observations and histopathological findings (p > 0.05). Stable and vulnerable carotid plaques had different morphologies and compositions. High-resolution MRI can assess such differences qualitatively and quantitatively in vivo and provide guidance for risk stratification and management.

  2. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong Soo; Song, Joon Woo; Jang, Sun-Joo; Lee, Jae Joong; Oh, Wang-Yuhl; Kim, Jin Won; Yoo, Hongki

    2016-07-01

    Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.

  3. Lipid discordance and carotid plaque in obese patients in primary prevention.

    PubMed

    Masson, Walter; Siniawski, Daniel; Lobo, Martín; Molinero, Graciela

    2018-01-01

    Obese patients with lipid discordance (non-HDL cholesterol levels 30mg/dL above the LDL-c value) may have a greater prevalence of carotid atherosclerotic plaque (CAP). Our study objectives were: 1) To assess the prevalence of lipid discordance in a primary prevention population of obese patients; 2) To investigate the association between lipid discordance and presence of CAP. Obese subjects aged >18 years (BMI ≥30kg/m 2 ) with no cardiovascular disease, diabetes, or lipid-lowering treatment from six cardiology centers were included. Lipid discordance was defined when, regardless of the LDL-c level, the non-HDL cholesterol value exceeded the LDL-c value by 30mg/dL. Presence of CAP was identified by ultrasonography. Univariate and multivariate analyses were performed to explore the association between lipid discordance and presence of CAP. The study simple consisted of 325 obese patients (57.2% men; mean age, 52.3 years). Prevalence of lipid discordance was 57.9%. CAP was found in 38.6% of patients, but the proportion was higher in subjects with lipid discordance as compared to those without this lipid pattern (44.4% vs. 30.7%, P=.01). In both the univariate (OR: 1.80; 95% CI: 1.14-2.87; P=.01) and the multivariate analysis (OR: 2.07; 95% CI: 1.22-3.54; P=.007), presence of lipid discordance was associated to an increased probability of CAP. In these obese patients, lipid discordance was associated to greater prevalence of CAP. Evaluation of obese patients with this strategy could help identify subjects with higher residual cardiovascular risk. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Effect of longitudinal anatomical mismatch of stenting on the mechanical environment in human carotid artery with atherosclerotic plaques.

    PubMed

    Fan, Zhenmin; Liu, Xiao; Sun, Anqiang; Zhang, Nan; Fan, Zhanming; Fan, Yubo; Deng, Xiaoyan

    2017-10-01

    Longitudinal anatomic mismatch (LAM) of stenting (i.e., a stenotic artery segment is not fully covered by a deployed stent) worsens the mechanical environment in the treated artery, which most likely is the cause for the associated high risks of restenosis, myocardial infarction and stent thrombosis. To probe the possibility, we constructed a patient-specific carotid model with two components of plaques (lipid and calcified plaque) based on MRI images; we numerically compared three different stenting scenarios in terms of von Mises stress (VMS) distribution in the treated arteries, namely, the short stenting (LAM), the medium stenting and the long stenting. The results showed that the short stenting led to more areas with abnormally high VMS along the inner surface of the treated artery with a much higher surface-averaged VMS at the distal end of the stent than both the medium and long stenting. While the VMS distribution in the calcified plaques was similar for the three stenting models, it was quite different in the lipid plaques among the three stenting models. The lipid plaque of the short-stent model showed more volume of the lipid plaque subjected to high VMS than those of the other two models. Based on the obtained results, we may infer that the short stenting (i.e., LAM) may aggravate vascular injury due to high VMS on the artery-stent interaction surface and within the lipid plaque. Therefore, to obtain a better outcome, a longer stent, rather than a short one, might be needed for arterial stenting. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of Carotid Plaque Composition Study.

    PubMed

    Zhao, Xue-Qiao; Phan, Binh An P; Chu, Baocheng; Bray, Frank; Moore, Andrew B; Polissar, Nayak L; Dodge, J Theodore; Lee, Colin D; Hatsukami, Thomas S; Yuan, Chun

    2007-08-01

    In vivo testing of the lipid depletion hypothesis in human beings during lipid-modifying therapy has not been possible until recent developments in magnetic resonance imaging (MRI). The Carotid Plaque Composition Study is a prospective, randomized study designed to test the lipid depletion hypothesis in vivo. One hundred twenty-three subjects with coronary artery disease (CAD) or carotid disease and with levels of apolipoprotein B > or = 120 mg/dL (low-density lipoprotein levels 100-190 mg/dL) were enrolled and randomized to (1) single therapy--atorvastatin alone, placebos for extended release (ER)-niacin and colesevelam; (2) double therapy--atorvastatin plus ER-niacin (2 g/d), and placebo for colesevelam; (3) triple therapy--atorvastatin, ER-niacin, plus colesevelam (3.8 g/d). All subjects will undergo MRI scans of bilateral carotid arteries at baseline and annually for 3 years for a total of 4 examinations while on active therapy. Among these 123 subjects with mean age of 55 years and mean body mass index of 30 kg/m2, 73% are male, 43% have a family history of premature cardiovascular disease, 37% have had a previous myocardial infarction, 80% have clinically established CAD, 52% are hypertensive, 12% have diabetes, 23% are current smokers, and 47% meet the criteria for metabolic syndrome. The baseline carotid disease is evaluated using a MRI-modified American Heart Association lesion type definition. Of the 123 enrolled subjects, 40% have type III lesions with small eccentric plaque, 52% have type IV to V lesions with a necrotic core, and only 4% have calcified plaque based on the most diseased carotid location. The Carotid Plaque Composition Study uses a state-of-the-art imaging technology and comprehensive lipid management to test the plaque lipid depletion hypothesis in CAD subjects.

  6. SNR enhancement for catheter based intravascular photoacoustic/ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Cho, Seonghee; Choi, Changhoon; Ahn, Joongho; Kim, Taehoon; Park, Sungjo; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Chang, Kiyuk; Kim, Yongmin; Kim, Chulhong

    2017-03-01

    Atherosclerosis, the most common cause of death, kills suddenly by arterial occlusion by thrombosis, which is caused by plaque rupture. Because a growing necrotic core is highly related to plaque rupture in atherosclerosis, distinguishing between fibrous plaque and lipid-rich plaque in real time is important, but has been challenging. Real-time photoacoustic imaging requires a pulse laser with high repetition rate, which tends to sacrifice pulse energy. Furthermore, a high repetition rate is hard to achieve at lipid-sensitive wavelengths, such as 1210 nm and 1720 nm. To address the unmet need, we have developed the algorithm for PA imaging. We successfully acquired ex vivo PA images from the lipid cores of arterial plaques in rabbit arteries, using a low-power 1064-nm laser. PA images were acquired with a custom-made catheter employing a single-element 40-MHz ultrasound transducer and a compact 1064-nm laser with the pulse energy of 5 μJ and the repetition rate of 24 kHz. Acquired raw data were processed in the time and frequency domains. In the time domain, a delay-and-sum algorithm was used for image enhancement. In the frequency domain, signals exceeding the MTF were removed. As a result, SNR was increased by about 10 dB without degrading spatial resolution. We were able to achieve high-speed and high-SNR lipid target imaging in animals in spite of the low lipid sensitivity of a 1064nm laser. These results show good promise for detecting lipid-rich plaques with a compact high-speed laser, which can be easily adapted for target clinical applications.

  7. Ultrasound Tissue Characterization of Vulnerable Atherosclerotic Plaque

    PubMed Central

    Picano, Eugenio; Paterni, Marco

    2015-01-01

    A thrombotic occlusion of the vessel fed by ruptured coronary atherosclerotic plaque may result in unstable angina, myocardial infarction or death, whereas embolization from a plaque in carotid arteries may result in transient ischemic attack or stroke. The atherosclerotic plaque prone to such clinical events is termed high-risk or vulnerable plaque, and its identification in humans before it becomes symptomatic has been elusive to date. Ultrasonic tissue characterization of the atherosclerotic plaque is possible with different techniques—such as vascular, transesophageal, and intravascular ultrasound—on a variety of arterial segments, including carotid, aorta, and coronary districts. The image analysis can be based on visual, video-densitometric or radiofrequency methods and identifies three distinct textural patterns: hypo-echoic (corresponding to lipid- and hemorrhage-rich plaque), iso- or moderately hyper-echoic (fibrotic or fibro-fatty plaque), and markedly hyperechoic with shadowing (calcific plaque). Hypoechoic or dishomogeneous plaques, with spotty microcalcification and large plaque burden, with plaque neovascularization and surface irregularities by contrast-enhanced ultrasound, are more prone to clinical complications than hyperechoic, extensively calcified, homogeneous plaques with limited plaque burden, smooth luminal plaque surface and absence of neovascularization. Plaque ultrasound morphology is important, along with plaque geometry, in determining the atherosclerotic prognostic burden in the individual patient. New quantitative methods beyond backscatter (to include speed of sound, attenuation, strain, temperature, and high order statistics) are under development to evaluate vascular tissues. Although not yet ready for widespread clinical use, tissue characterization is listed by the American Society of Echocardiography roadmap to 2020 as one of the most promising fields of application in cardiovascular ultrasound imaging, offering unique opportunities for the early detection and treatment of atherosclerotic disease. PMID:25950760

  8. p62-enriched inclusion bodies in macrophages protect against atherosclerosis

    PubMed Central

    Sergin, Ismail; Bhattacharya, Somashubhra; Emanuel, Roy; Esen, Emel; Stokes, Carl J.; Evans, Trent D.; Arif, Batool; Curci, John A.; Razani, Babak

    2016-01-01

    Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages that cannot undergo autophagy because of a deficiency of an autophagy component such as ATG5. We showed that exposure of macrophages to atherogenic lipids led to an increase in the abundance of the autophagy chaperone p62, which colocalized with polyubiquitinated proteins in cytoplasmic inclusions. p62 accumulation was increased in ATG5-null macrophages, which had large cytoplasmic ubiquitin-positive p62 inclusions. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that co-localized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. The failure of these aggregates to form was associated with increased secretion of IL-1β and enhanced macrophage apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted. PMID:26732762

  9. Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology.

    PubMed

    Li, Tao; Li, Xin; Zhao, Xihai; Zhou, Weihua; Cai, Zulong; Yang, Li; Guo, Aitao; Zhao, Shaohong

    2012-05-01

    The objective of our study was to evaluate the feasibility of ex vivo high-resolution multicontrast-weighted MRI to accurately classify human coronary atherosclerotic plaques according to the American Heart Association classification. Thirteen human cadaver heart specimens were imaged using high-resolution multicontrast-weighted MR technique (T1-weighted, proton density-weighted, and T2-weighted). All MR images were matched with histopathologic sections according to the landmark of the bifurcation of the left main coronary artery. The sensitivity and specificity of MRI for the classification of plaques were determined, and Cohen's kappa analysis was applied to evaluate the agreement between MRI and histopathology in the classification of atherosclerotic plaques. One hundred eleven MR cross-sectional images obtained perpendicular to the long axis of the proximal left anterior descending artery were successfully matched with the histopathologic sections. For the classification of plaques, the sensitivity and specificity of MRI were as follows: type I-II (near normal), 60% and 100%; type III (focal lipid pool), 80% and 100%; type IV-V (lipid, necrosis, fibrosis), 96.2% and 88.2%; type VI (hemorrhage), 100% and 99.0%; type VII (calcification), 93% and 100%; and type VIII (fibrosis without lipid core), 100% and 99.1%, respectively. Isointensity, which indicates lipid composition on histopathology, was detected on MRI in 48.8% of calcified plaques. Agreement between MRI and histopathology for plaque classification was 0.86 (p < 0.001). Ex vivo high-resolution multicontrast-weighted MRI can accurately classify advanced atherosclerotic plaques in human coronary arteries.

  10. Relation of Cholesterol and Lipoprotein Parameters with Carotid Artery Plaque Characteristics: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study

    PubMed Central

    Virani, Salim S.; Catellier, Diane J.; Pompeii, Lisa A.; Nambi, Vijay; Hoogeveen, Ron C.; Wasserman, Bruce A.; Coresh, Josef; Mosley, Thomas H.; Otvos, James D.; Sharrett, A. Richey; Boerwinkle, Eric; Ballantyne, Christie M.

    2011-01-01

    Objective There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non–high-density lipoprotein cholesterol [non– HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Methods Carotid artery magnetic resonance imaging was performed in 1,670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥1.5 mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Results Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p<0.05 for total cholesterol, LDL-C, non–HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non–HDL-C/ HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p≤0.05). Conclusion Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. PMID:21868017

  11. Relation of cholesterol and lipoprotein parameters with carotid artery plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) carotid MRI study.

    PubMed

    Virani, Salim S; Catellier, Diane J; Pompeii, Lisa A; Nambi, Vijay; Hoogeveen, Ron C; Wasserman, Bruce A; Coresh, Josef; Mosley, Thomas H; Otvos, James D; Sharrett, A Richey; Boerwinkle, Eric; Ballantyne, Christie M

    2011-12-01

    There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Carotid artery magnetic resonance imaging was performed in 1670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥ 1.5mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p < 0.05 for total cholesterol, LDL-C, non-HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non-HDL-C/HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p ≤ 0.05). Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. Published by Elsevier Ireland Ltd.

  12. Distribution of tissue characteristics of coronary plaques evaluated by integrated backscatter intravascular ultrasound: Differences between the inner and outer vessel curvature.

    PubMed

    Sato, Hironobu; Kawasaki, Masanori; Morita, Norihiko; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2015-12-01

    The purpose of the present study was to evaluate the tissue characteristics of plaques with moderate or mild stenosis in the inner and outer curvature of the left anterior descending artery (LAD) using integrated backscatter intravascular ultrasound. We evaluated 66 plaques with moderate stenosis (plaque burden >50% but ≤75%) and 49 plaques with mild stenosis (plaque burden >30% but ≤50%) in 66 patients undergoing percutaneous intervention to the LAD. All plaques were >10mm away from any side branch or previously implanted stents. We divided vessel cross-sections into four quadrants (inner curvature, outer curvature, clockwise lateral side, and counterclockwise lateral side) using the septal branch as a landmark for the inner curvature. We averaged relative lipid area, relative fibrous area, and relative calcified area in minimal lumen area (MLA), three cross-sections proximal to the site of MLA, and three cross-sections distal to the site of MLA. In plaques with moderate stenosis, the relative lipid area in the inner curvature was significantly greater than in the outer curvature and lateral sides, whereas there was no significant difference in plaques with mild stenosis. The present study provides new findings that lipid pool is clustered in the inner curvature and fibrous tissue is clustered in the outer curvature of plaques with moderate stenosis in non-branching LAD lesions. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  13. Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study.

    PubMed

    Teng, Zhongzhao; Zhang, Yongxue; Huang, Yuan; Feng, Jiaxuan; Yuan, Jianmin; Lu, Qingsheng; Sutcliffe, Michael P F; Brown, Adam J; Jing, Zaiping; Gillard, Jonathan H

    2014-12-01

    Computational modelling to calculate the mechanical loading within atherosclerotic plaques has been shown to be complementary to defining anatomical plaque features in determining plaque vulnerability. However, its application has been partially impeded by the lack of comprehensive knowledge about the mechanical properties of various tissues within the plaque. Twenty-one human carotid plaques were collected from endarterectomy. The plaque was cut into rings, and different type of atherosclerotic tissues, including media, fibrous cap (FC), lipid and intraplaque haemorrhage/thrombus (IPH/T) was dissected for uniaxial extension testing. In total, 65 media strips from 17 samples, 59 FC strips from 14 samples, 38 lipid strips from 11 samples, and 21 IPH/T strips from 11 samples were tested successfully. A modified Mooney-Rivlin strain energy density function was used to characterize the stretch-stress relationship. The stiffnesses of media and FC are comparable, as are lipid and IPH/T. However, both media and FC are stiffer than either lipid or IPH/T. The median values of incremental Young's modulus of media, FC, lipid and IPH/T at λ=1 are 290.1, 244.5, 104.4, 52.9, respectively; they increase to 1019.5, 817.4, 220.7 and 176.9 at λ=1.1; and 4302.7, 3335.0, 533.4 and 268.8 at λ=1.15 (unit, kPa; λ, stretch ratio). The material constants of each tissue type are suggested to be: media, c1=0.138kPa, D1=3.833kPa and D2=18.803; FC, c1=0.186kPa, D1=5.769kPa and D2=18.219; lipid, c1=0.046kPa, D1=4.885kPa and D2=5.426; and IPH/T, c1=0.212kPa, D1=4.260kPa and D2=5.312. It is concluded that all soft atherosclerotic tissues are non-linear, and both media and FC are stiffer than either lipid or IPH/T. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Erythrocyte membrane cholesterol and lipid core growth in a rabbit model of atherosclerosis: modulatory effects of rosuvastatin.

    PubMed

    Tziakas, Dimitrios; Chalikias, Georgios; Kapelouzou, Alkistis; Tentes, Ioannis; Schäfer, Katrin; Karayannakos, Panagiotis; Kostakis, Alkiviadis; Boudoulas, Harissios; Konstantinides, Stavros

    2013-12-10

    Lipid core expansion is partly responsible for the conversion of a stable atherosclerotic lesion to a rupture-prone plaque. Intraplaque hemorrhage contributes to the accumulation of cholesterol within unstable plaques. In the present study, we investigated, using a rabbit model of atherosclerosis, the extent to which diet-induced increases in cholesterol content of erythrocyte membranes (CEM) contribute to lipid core expansion and the modulatory effect of rosuvastatin use. Rabbits fed with atherogenic diet (0.75% cholesterol) for 5 months exhibited advanced atherosclerotic lesions (mean plaque area, 0.39 ± 0.03 mm(2)), and lipid core size was associated with the concentration-time integral (CTI) of CEM levels (r=0.567, P=0.004) independent of other established predictors of lipid core size. Further experiments were performed by feeding rabbits atherogenic diet (1% cholesterol) for 3 months, followed by either normal diet or normal diet plus rosuvastatin for the next 3 months. Although no differences were observed in total plaque area between both groups, administration of rosuvastatin was associated with significantly smaller lipid cores, fewer macrophages within the lipid core, less microvessels as well as with lower CTI of CEM levels compared to normal diet alone. Moreover, intraplaque erythrocyte membranes covered a smaller lipid core area in rabbits under rosuvastatin plus normal diet as opposed to rabbits under diet alone. Increased CEM levels, induced by high-cholesterol diet, are associated with lipid core growth. Ingestion of a potent HMG-CoA reductase inhibitor (rosuvastatin) may decrease CEM levels, and this effect may contribute to regression of the lipid core. © 2013.

  15. Indocyanine Green Enables Near-Infrared Fluorescence Imaging of Lipid-Rich, Inflamed Atherosclerotic Plaques

    PubMed Central

    Vinegoni, Claudio; Botnaru, Ion; Aikawa, Elena; Calfon, Marcella A.; Iwamoto, Yoshiko; Folco, Eduardo J.; Ntziachristos, Vasilis; Weissleder, Ralph; Libby, Peter; Jaffer, Farouc A.

    2011-01-01

    New high-resolution molecular and structural imaging strategies are needed to visualize high-risk plaques that are likely to cause acute myocardial infarction, because current diagnostic methods do not reliably identify at-risk subjects. While molecular imaging agents are available for lower-resolution detection of atherosclerosis in large arteries, a lack of imaging agents coupled to high-resolution modalities has limited molecular imaging of atherosclerosis in the smaller coronary arteries [AU: ok? YES]. Here, we have demonstrated that indocyanine green (ICG), an FDA-approved near-infrared fluorescence (NIRF) emitting compound, targets atheromas within 20 minutes of injection and provides sufficient signal enhancement for in vivo detection of lipid-rich, inflamed, coronary-sized plaques in atherosclerotic rabbits. In vivo NIRF sensing was achieved with an intravascular wire in the aortae, a vessel of comparable caliber to human coronary arteries. Ex vivo fluorescence reflectance imaging studies showed high plaque target-to-background ratios in atheroma-bearing rabbits injected with ICG, compared to atheroma-bearing rabbits injected with saline. In vitro studies using human macrophages established that ICG preferentially targets lipid-loaded macrophages. In an early clinical study of human atheroma specimens from four patients, we found that ICG colocalized with plaque macrophages and lipids. The atheroma-targeting capability of ICG has the potential to accelerate the clinical development of NIRF molecular imaging of high-risk plaques in humans. PMID:21613624

  16. Human LDL Structural Diversity Studied by IR Spectroscopy

    PubMed Central

    Fernández-Higuero, José A.; Salvador, Ana M.; Martín, Cesar; Milicua, José Carlos G.; Arrondo, José L. R.

    2014-01-01

    Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor. PMID:24642788

  17. Fully integrated optical coherence tomography, ultrasound, and indocyanine green based fluorescence tri-modality system for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jing, Joseph C.; Qu, Yueqiao; Miao, Yusi; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    The rupture of atherosclerotic plaques is the leading cause of acute coronary events, so accurate assessment of plaque is critical. A large lipid pool, thin fibrous cap, and inflammatory reaction are the crucial characteristics for identifying vulnerable plaques. In our study, a tri-modality imaging system for intravascular imaging was designed and implemented. The tri-modality imaging system with a 1-mm probe diameter is able to simultaneously acquire optical coherence tomography (OCT), intravascular ultrasound (IVUS), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. Firstly, IVUS is used as the first step for identifying plaque since IVUS enables the visualization of the layered structures of the artery wall. Due to low soft-tissue contrast, IVUS only provides initial identification of the lipid plaque. Then OCT is used for differentiating fibrosis and lipid pool based on its relatively higher soft tissue contrast and high sensitivity/specificity. Last, fluorescence imaging is used for identifying inflammatory reaction to further confirm whether the plaque is vulnerable or not. Ex vivo experiment of a male New Zealand white rabbit aorta was performed to validate the performance of our tri-modality system. H and E histology results of the rabbit aorta were also presented to check assessment accuracy. The miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

  18. Topographic association of angioscopic yellow plaques with coronary atherosclerotic plaque: assessment with quantitative colorimetry in human coronary artery autopsy specimens.

    PubMed

    Ishibashi, Fumiyuki; Lisauskas, Jennifer B; Kawamura, Akio; Waxman, Sergio

    2008-01-01

    Yellow plaques seen during coronary angioscopy are thought to be the surrogates for superficial intimal lipids in coronary plaque. Given diffuse and heterogeneous nature of atherosclerosis, yellow plaques in coronaries may be seen as several yellow spots on diffuse coronary plaque. We examined the topographic association of yellow plaques with coronary plaque. In 40 non-severely stenotic ex-vivo coronary segments (average length: 52.2 +/- 3.1 mm), yellow plaques were examined by angioscopy with quantitative colorimetry. The segments were cut perpendicular to the long axis of the vessel at 2 mm intervals, and 1045 slides with 5 microm thick tissue for whole segments were prepared. To construct the plaque surface, each tissue slice was considered to be representative of the adjacent 2 mm. The circumference of the lumen and the lumen border of plaque were measured in each slide, and the plaque surface region was constructed. Coronary plaque was in 37 (93%) of 40 segments, and consisted of a single mass [39.9 +/- 3.9 (0-100) mm, 311.3 +/- 47.4 (0.0-1336.2) mm2]. In 30 (75%) segments, multiple (2-9) yellow plaques were detected on a mass of coronary plaque. The number of yellow plaques correlated positively with coronary plaque surface area (r = 0.77, P < 0.0001). Yellow plaques in coronaries detected by angioscopy with quantitative colorimetry, some of them are associated with lipid cores underneath thin fibrous caps, may be used to assess the extent of coronary plaque. Further research using angioscopy could be of value to study the association of high-risk coronaries with acute coronary syndromes.

  19. Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals Aβ Aggregation Dependent Anionic Lipid Accumulations and Metabolism.

    PubMed

    Michno, Wojciech; Kaya, Ibrahim; Nyström, Sofie; Guerard, Laurent; Nilsson, K Peter R; Hammarström, Per; Blennow, Kaj; Zetterberg, Henrik; Hanrieder, Jörg

    2018-06-01

    Amyloid plaque formation constitutes one of the main pathological hallmark of Alzheimer's disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, Aβ deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric Aβ into neurotoxic aggregates and the predominantly cored deposits observed in AD. The structural diversity among Aβ plaques, including cored/compact- and diffuse, may be linked to their distinct Aβ profile and other chemical species including neuronal lipids. We developed a novel, chemical imaging paradigm combining matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) and fluorescent amyloid staining. This multimodal imaging approach was used to probe the lipid chemistry associated with structural plaque heterogeneity in transgenic AD mice (tgAPPSwe) and was correlated to Aβ profiles determined by subsequent laser microdissection and immunoprecipitation-mass spectrometry. Multivariate image analysis revealed an inverse localization of ceramides and their matching metabolites to diffuse and cored structures within single plaques, respectively. Moreover, phosphatidylinositols implicated in AD pathogenesis, were found to localise to the diffuse Aβ structures and correlate with Aβ1-42. Further, lysophospholipids implicated in neuroinflammation were increased in all Aβ deposits. The results support previous clinical findings on the importance of lipid disturbances in AD pathophysiology and associated sphingolipid processing. These data highlight the potential of multimodal imaging as a powerful technology to probe neuropathological mechanisms.

  20. Carotid Plaque Lipid Content and Fibrous Cap Status Predict Systemic CV Outcomes: The MRI Substudy in AIM-HIGH.

    PubMed

    Sun, Jie; Zhao, Xue-Qiao; Balu, Niranjan; Neradilek, Moni B; Isquith, Daniel A; Yamada, Kiyofumi; Cantón, Gádor; Crouse, John R; Anderson, Todd J; Huston, John; O'Brien, Kevin; Hippe, Daniel S; Polissar, Nayak L; Yuan, Chun; Hatsukami, Thomas S

    2017-03-01

    The aim of this study was to investigate whether and what carotid plaque characteristics predict systemic cardiovascular outcomes in patients with clinically established atherosclerotic disease. Advancements in atherosclerosis imaging have allowed assessment of various plaque characteristics, some of which are more directly linked to the pathogenesis of acute cardiovascular events compared to plaque burden. As part of the event-driven clinical trial AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes), subjects with clinically established atherosclerotic disease underwent multicontrast carotid magnetic resonance imaging (MRI) to detect plaque tissue composition and high-risk features. Prospective associations between MRI measurements and the AIM-HIGH primary endpoint (fatal and nonfatal myocardial infarction, ischemic stroke, hospitalization for acute coronary syndrome, and symptom-driven revascularization) were analyzed using Cox proportional hazards survival models. Of the 232 subjects recruited, 214 (92.2%) with diagnostic image quality constituted the study population (82% male, mean age 61 ± 9 years, 94% statin use). During median follow-up of 35.1 months, 18 subjects (8.4%) reached the AIM-HIGH endpoint. High lipid content (hazard ratio [HR] per 1 SD increase in percent lipid core volume: 1.57; p = 0.002) and thin/ruptured fibrous cap (HR: 4.31; p = 0.003) in carotid plaques were strongly associated with the AIM-HIGH endpoint. Intraplaque hemorrhage had a low prevalence (8%) and was marginally associated with the AIM-HIGH endpoint (HR: 3.00; p = 0.053). High calcification content (HR per 1 SD increase in percent calcification volume: 0.66; p = 0.20), plaque burden metrics, and clinical risk factors were not significantly associated with the AIM-HIGH endpoint. The associations between carotid plaque characteristics and the AIM-HIGH endpoint changed little after adjusting for clinical risk factors, plaque burden, or AIM-HIGH randomized treatment assignment. Among patients with clinically established atherosclerotic disease, carotid plaque lipid content and fibrous cap status were strongly associated with systemic cardiovascular outcomes. Markers of carotid plaque vulnerability may serve as novel surrogate markers for systemic atherothrombotic risk. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. The use of plaque score measurements to assess changes in atherosclerotic plaque burden induced by lipid-lowering therapy over time: the METEOR study.

    PubMed

    Peters, Sanne A E; Dogan, Soner; Meijer, Rudy; Palmer, Mike K; Grobbee, Diederick E; Crouse, John R; O'Leary, Daniel H; Evans, Gregory W; Raichlen, Joel S; Bots, Michiel L

    2011-01-01

    To evaluate whether plaque scoring measurements are able to track changes in atherosclerotic plaque burden over time and to study whether this is affected by lipid-lowering therapy. Data used were from METEOR (Measuring Effects on Intima-Media Thickness: an Evaluation Of Rosuvastatin), a randomized controlled trial of rosuvastatin 40 mg among 984 low-risk patients with modest carotid intima-media thickening (CIMT). In this analysis, duplicate ultrasound images from 12 carotid sites were collected at the baseline and end of the study from 495 European patients and were evaluated for plaque presence and severity. Plaques were scored from near and far walls of the 12 sites (0= none; 1= minimal; 2= moderate; 3= severe) and plaque scores (PS) were combined into two summary measures for each examination. The MeanMaxPS is the mean over the 12 carotid sites of the maximum score at each site and the MaxMaxPS reflects the most severe lesion at any site. Baseline MeanMaxPS and MaxMaxPS were 0.31 (SD: 0.20) and 1.15 (SD: 0.51), respectively. Changes in MeanMaxPS and MaxMaxPS significantly differed between rosuvastatin and placebo (mean difference: -0.03 [SE: 0.01; p =0.016] and -0.09 [SE: 0.04; p =0.027], respectively). In contrast to rosuvastatin, which demonstrated no change from the baseline, placebo showed significant progression in MeanMaxPS and MaxMaxPS (p =0.002; both). The plaque-scoring method proved capable of assessing the change in atherosclerotic plaque burden over time and proved useful to evaluate lipid-lowering in asymptomatic individuals with a low risk of cardiovascular disease and subclinical atherosclerosis.

  2. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Lipid-Rich Plaque Study of vulnerable plaques and vulnerable patients: Study design and rationale.

    PubMed

    Waksman, Ron; Torguson, Rebecca; Spad, Mia-Ashley; Garcia-Garcia, Hector; Ware, James; Wang, Rui; Madden, Sean; Shah, Priti; Muller, James

    2017-10-01

    It has been hypothesized that the outcome post-PCI could be improved by the detection and subsequent treatment of vulnerable patients and lipid-rich vulnerable coronary plaques (LRP). A near-infrared spectroscopy (NIRS) catheter capable of detecting LRP is being evaluated in The Lipid-Rich Plaque Study. The LRP Study is an international, multicenter, prospective cohort study conducted in patients with suspected coronary artery disease (CAD) who underwent cardiac catheterization with possible ad hoc PCI for an index event. Patient level and plaque level events were detected by follow-up in the subsequent 2 years. Enrollment began in February 2014 and was completed in March 2016; a total of 1,562 patients were enrolled. Adjudication of new coronary event occurrence and de novo culprit lesion location during the 2-year follow-up is performed by an independent clinical end-points committee (CEC) blinded to NIRS-IVUS findings. The first analysis of the results will be performed when at least 20 de novo events have occurred for which follow-up angiographic data and baseline NIRS-IVUS measurements are available. It is expected that results of the study will be announced in 2018. The LRP Study will test the hypotheses that NIRS-IVUS imaging to detect LRP in patients can identify vulnerable patients and vulnerable plaques. Identification of vulnerable patients will assist future studies of novel systemic therapies; identification of localized vulnerable plaques would enhance future studies of possible preventive measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard in human carotid artery plaques. It is shown in this capstone experiment that lipid filled regions in MRI correspond to areas of increased displacement in ARFI imaging while calcium and loose matrix components in MRI correspond to uniformly low displacements in ARFI imaging. This dissertation provides evidence to support that ARFI imaging may provide important prognostic and diagnostic information regarding stroke risk via measurements of plaque stiffness. More generally, the results have important implications for all acoustic radiation force based imaging methods used clinically.

  5. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption.

    PubMed

    Lee, Regent; Fischer, Roman; Charles, Philip D; Adlam, David; Valli, Alessandro; Di Gleria, Katalin; Kharbanda, Rajesh K; Choudhury, Robin P; Antoniades, Charalambos; Kessler, Benedikt M; Channon, Keith M

    2017-01-01

    Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation. We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption. We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption. This novel approach for biomarker discovery in human coronary artery plaque disruption can identify new biomarkers related to human coronary artery plaque composition and disruption.

  6. Photothermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2017-07-01

    Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.

  7. Lipid peroxidation and decomposition-Conflicting roles in plaque vulnerability and stability

    PubMed Central

    Parthasarathy, Sampath; Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi

    2008-01-01

    The low density lipoprotein (LDL) oxidation hypothesis has generated considerable interest in oxidative stress and how it might affect atherosclerosis. However, the failure of antioxidants, particularly vitamin E, to affect the progression of the disease in humans has convinced even staunch supporters of the hypothesis to take a step backwards and reconsider alternatives. Preponderant evidence for the hypothesis came from animal antioxidant intervention studies. In this review we point out basic differences between animal and human atherosclerosis development and suggest that human disease starts where animal studies end. While initial oxidative steps in the generation of early fatty streak lesions might be common, the differences might be in the steps involved in the decomposition of peroxidized lipids into aldehydes and their further oxidation into carboxylic acids. We suggest that these steps may not be amenable to attenuation by antioxidants and antioxidants might actually counter the stabilization of plaque by preventing the formation of carboxylic acids which are anti-inflammatory in nature. The formation of such dicarboxylic acids may also be conducive to plaque stabilization by trapping calcium. We suggest that agents that would prevent the decomposition of lipid peroxides and promote the formation and removal of lipid hydroxides, such as paraoxonase (PON 1) or apo A1/high density lipoprotein (HDL) might be more conducive to plaque regression. PMID:18406361

  8. Laser-induced photo-thermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  9. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis.

    PubMed

    Finney, Alexandra C; Funk, Steven D; Green, Jonette M; Yurdagul, Arif; Rana, Mohammad Atif; Pistorius, Rebecca; Henry, Miriam; Yurochko, Andrew; Pattillo, Christopher B; Traylor, James G; Chen, Jin; Woolard, Matthew D; Kevil, Christopher G; Orr, A Wayne

    2017-08-08

    Atherosclerotic plaque formation results from chronic inflammation and fibroproliferative remodeling in the vascular wall. We previously demonstrated that both human and mouse atherosclerotic plaques show elevated expression of EphA2, a guidance molecule involved in cell-cell interactions and tumorigenesis. Here, we assessed the role of EphA2 in atherosclerosis by deleting EphA2 in a mouse model of atherosclerosis (Apoe - /- ) and by assessing EphA2 function in multiple vascular cell culture models. After 8 to 16 weeks on a Western diet, male and female mice were assessed for atherosclerotic burden in the large vessels, and plasma lipid levels were analyzed. Despite enhanced weight gain and plasma lipid levels compared with Apoe -/- controls, EphA2 -/- Apoe -/- knockout mice show diminished atherosclerotic plaque formation, characterized by reduced proinflammatory gene expression and plaque macrophage content. Although plaque macrophages express EphA2, EphA2 deletion does not affect macrophage phenotype, inflammatory responses, and lipid uptake, and bone marrow chimeras suggest that hematopoietic EphA2 deletion does not affect plaque formation. In contrast, endothelial EphA2 knockdown significantly reduces monocyte firm adhesion under flow. In addition, EphA2 -/- Apoe -/- mice show reduced progression to advanced atherosclerotic plaques with diminished smooth muscle and collagen content. Consistent with this phenotype, EphA2 shows enhanced expression after smooth muscle transition to a synthetic phenotype, and EphA2 depletion reduces smooth muscle proliferation, mitogenic signaling, and extracellular matrix deposition both in atherosclerotic plaques and in vascular smooth muscle cells in culture. Together, these data identify a novel role for EphA2 in atherosclerosis, regulating both plaque inflammation and progression to advanced atherosclerotic lesions. Cell culture studies suggest that endothelial EphA2 contributes to atherosclerotic inflammation by promoting monocyte firm adhesion, whereas smooth muscle EphA2 expression may regulate the progression to advanced atherosclerosis by regulating smooth muscle proliferation and extracellular matrix deposition. © 2017 American Heart Association, Inc.

  10. Premenopausal Antimullerian Hormone Concentration is Associated with Subsequent Atherosclerosis

    PubMed Central

    Appt, Susan E.; Chen, Haiying; Clarkson, Thomas B.; Kaplan, Jay R.

    2012-01-01

    Objective To determine if premenopausal ovarian reserve is associated with susceptibility for atherosclerosis. Methods Female cynomologus macaques (n = 66, women’s equivalent age = 45 yrs) consumed an atherogenic diet for ~5 months prior to the measurement of a marker of ovarian reserve (antimüllerian hormone, AMH), plasma lipids, follicular phase estradiol (E2) and body weight (BW). Monkeys were then ovariectomized (OVX, n =17) remained premenopausal (PRE, n=20) or induced to have reduce ovarian reserve (ROR, n=29). After 26 additional months on the diet, atherosclerosis measurements and risk variables were reassessed. Results No differences in baseline AMH, plasma lipids, BW, E2 or post-diet lipids and BW, were observed among the groups subsequently assigned to OVX, PRE or ROR conditions. Post-diet measurements of atherosclerosis extent did not differ among the groups. However, analysis of plaque size by tertile of baseline AMH revealed that plaques were largest in monkeys that began the experiment with the lowest baseline AMH, followed by those in the middle and high tertiles (plaque extent mm2: Low AMH = 0.76 ± 0.12, Mid AMH = 0.46 ± 0.1, High AMH = 0.34 ± 0.08, p=0.02). Baseline AMH and plaque size were also correlated negatively (r = −0.31, p = 0.01). Plasma lipids were also correlated significantly with plaque extent (all p’s <0.01), but not with AMH. Conclusions We report for the first time an inverse relationship between a marker of ovarian reserve (AMH) and subsequent atherosclerosis risk. PMID:22929037

  11. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study.

    PubMed

    Li, Feiyu; McDermott, Mary McGrae; Li, Debiao; Carroll, Timothy J; Hippe, Daniel S; Kramer, Christopher M; Fan, Zhaoyang; Zhao, Xihai; Hatsukami, Thomas S; Chu, Baocheng; Wang, Jinnan; Yuan, Chun

    2010-07-01

    Atherosclerotic plaque morphology and components are predictors of subsequent cardiovascular events. However, associations of plaque eccentricity with plaque morphology and plaque composition are unclear. This study investigated associations of plaque eccentricity with plaque components and morphology in the proximal superficial femoral artery using cardiovascular magnetic resonance (CMR). Twenty-eight subjects with an ankle-brachial index less than 1.00 were examined with 1.5 T high-spatial-resolution, multi-contrast weighted CMR. One hundred and eighty diseased locations of the proximal superficial femoral artery (about 40 mm) were analyzed. The eccentric lesion was defined as [(Maximum wall thickness- Minimum wall thickness)/Maximum wall thickness] >or= 0.5. The arterial morphology and plaque components were measured using semi-automatic image analysis software. One hundred and fifteen locations were identified as eccentric lesions and sixty-five as concentric lesions. The eccentric lesions had larger wall but similar lumen areas, larger mean and maximum wall thicknesses, and more calcification and lipid rich necrotic core, compared to concentric lesions. For lesions with the same lumen area, the degree of eccentricity was associated with an increased wall area. Eccentricity (dichotomous as eccentric or concentric) was independently correlated with the prevalence of calcification (odds ratio 3.78, 95% CI 1.47-9.70) after adjustment for atherosclerotic risk factors and wall area. Plaque eccentricity is associated with preserved lumen size and advanced plaque features such as larger plaque burden, more lipid content, and increased calcification in the superficial femoral artery.

  12. Pathologic Intimal Thickening Plaque Phenotype: Not as Innocent as Previously Thought. A Serial 3D Intravascular Ultrasound Virtual Histology Study.

    PubMed

    Kovarnik, Tomas; Chen, Zhi; Wahle, Andreas; Zhang, Ling; Skalicka, Hana; Kral, Ales; Lopez, John J; Horak, Jan; Sonka, Milan; Linhart, Ales

    2017-01-01

    Pathologic intimal thickening (PIT) has been considered a benign plaque phenotype. We report plaque phenotypic changes in a baseline/follow-up intravascular ultrasound-based virtual histology study. A total of 61 patients with stable coronary artery disease were analyzed from the HEAVEN trial (89 patients randomized between routine statin therapy vs atorvastatin 80mg and ezetimibe 10mg) with serial intravascular ultrasound imaging of nonculprit vessels. We compared changes in 693 baseline and follow-up 5-mm long segments in a novel risk score, Liverpool Active Plaque Score (LAPS), plaque parameters, and plaque composition. The PIT showed the highest increase of risk score and, with fibrous plaque, also the LAPS. Necrotic core (NC) abutting to the lumen increased in PIT (22 ± 51.7; P = .0001) and in fibrous plaque (17.9 ± 42.6; P = .004) but decreased in thin cap fibroatheroma (TCFA) (⿿15.14 ± 52.2; P = .001). The PIT was the most likely of all nonthin cap fibroatheroma plaque types to transform into TCFA at follow-up (11% of all TCFA found during follow-up and 35.9% of newly-developed TCFA), but showed (together with fibrous plaque) the lowest stability during lipid-lowering therapy (24.7% of PIT remained PIT and 24.5% of fibrous plaque remained fibrous plaque). Over the 1-year follow-up, PIT was the most dynamic of the plaque phenotypes and was associated with an increase of risk score and LAPS (together with fibrous plaque), NC percentage (together with fibrous plaque) and NC abutting to the lumen, despite a small reduction of plaque volume during lipid-lowering therapy. The PIT was the main source for new TCFA segments. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Plaque components affect wall stress in stented human carotid artery: A numerical study

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-Min; Liu, Xiao; Du, Cheng-Fei; Sun, An-Qiang; Zhang, Nan; Fan, Zhan-Ming; Fan, Yu-Bo; Deng, Xiao-Yan

    2016-12-01

    Carotid artery stenting presents challenges of in-stent restenosis and late thrombosis, which are caused primarily by alterations in the mechanical environment of the artery after stent implantation. The present study constructed patient-specific carotid arterial bifurcation models with lipid pools and calcified components based on magnetic resonance imaging. We numerically analyzed the effects of multicomponent plaques on the distributions of von Mises stresses (VMSs) in the patient-specific models after stenting. The results showed that when a stent was deployed, the large soft lipid pool in atherosclerotic plaques cushioned the host artery and reduced the stress within the arterial wall; however, this resulted in a sharp increase of VMS in the fibrous cap. When compared with the lipid pool, the presence of the calcified components led to slightly increased stresses on the luminal surface. However, when a calcification was located close to the luminal surface of the host artery and the stenosis, the local VMS was elevated. Overall, compared with calcified components, large lipid pools severely damaged the host artery after stenting. Furthermore, damage due to the calcified component may depend on location.

  14. Intra-plaque production of platelet-activating factor correlates with neoangiogenesis in human carotid atherosclerotic lesions.

    PubMed

    Lupia, Enrico; Pucci, Angela; Peasso, Paolo; Merlo, Maurizio; Baron, Paolo; Zanini, Cristina; Del Sorbo, Lorenzo; Rizea-Savu, Simona; Silvestro, Luigi; Forni, Marco; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-09-01

    Platelet-activating factor (PAF) is a phospholipid mediator synthesized by activated inflammatory and endothelial cells. Recently PAF has been shown to contribute to neoangiogenesis in several experimental models. Here we evaluated the presence of PAF and its potential role in neovascularization within human atherosclerotic plaques. The amount of PAF extracted from 18 carotid plaques (266.65+/-40.07 pg/100 mg dry tissue; mean +/- SE) was significantly higher than that extracted from 18 normal arterial specimens (6 from carotid artery and 12 from aorta) (4.72+/-2.31 pg/100 mg dry tissue; mean +/- SE). The levels of PAF significantly correlated with the infiltration of CD68-positive monocytes and the extent of neovascularization, detected as von Willebrand Factor-positive cells. The amount of PAF also correlated with the area occupied by TNF-alpha-expressing cells. The absence of enhanced level of PAF in the circulation of atherosclerotic patients suggests a local production of this mediator within the plaque. The lipid extracts of atherosclerotic plaques containing high levels of PAF-bioactivity, but not those of control arteries, were angiogenic in a murine Matrigel model. WEB 2170, a specific PAF receptor antagonist, significantly prevented angiogenesis induced by the lipid extracts of atherosclerotic plaques. Our results indicate a local production of PAF within the atherosclerotic plaques and suggest that it may contribute to intra-plaque neoangiogenesis.

  15. The vulnerable plaque: the real villain in acute coronary syndromes.

    PubMed

    Liang, Michael; Puri, Aniket; Devlin, Gerard

    2011-01-01

    The term "vulnerable plaque" refers to a vascular lesion that is prone to rupture and may result in life-threatening events which include myocardial infarction. It consists of thin-cap fibroatheroma and a large lipid core which is highly thrombogenic. Acute coronary syndromes often result from rupture of vulnerable plaques which frequently are only moderately stenosed and not visible by conventional angiography. Several invasive and non-invasive strategies have been developed to assess the burden of vulnerable plaques. Intravascular ultrasound provides a two-dimensional cross-sectional image of the arterial wall and can help assess the plaque burden and composition. Optical coherent tomography offers superior resolution over intravascular ultrasound. High-resolution magnetic resonance imaging provides non-invasive imaging for visualizing fibrous cap thickness and rupture in plaques. In addition, it may be of value in assessing the effects of treatments, such as lipid-lowering therapy. Technical issues however limit its clinical applicability. The role of multi-slice computed tomography, a well established screening tool for coronary artery disease, remains to be determined. Fractional flow reserve (FFR) may provide physiological functional assessment of plaque vulnerability; however, its role in the management of vulnerable plaque requires further studies. Treatment of the vulnerable patient may involve systemic therapy which currently include statins, ACE inhibitors, beta-blockers, aspirin, and calcium-channel blockers and in the future local therapeutic options such as drug-eluting stents or photodynamic therapy.

  16. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification.

    PubMed

    Jansen, Krista; van Soest, Gijs; van der Steen, Antonius F W

    2014-06-01

    The vulnerable atherosclerotic plaque is believed to be at the root of the majority of acute coronary events. Even though the exact origins of plaque vulnerability remain elusive, the thin-cap fibroatheroma, characterized by a lipid-rich necrotic core covered by a thin fibrous cap, is considered to be the most prominent type of vulnerable plaque. No clinically available imaging technique can characterize atherosclerotic lesions to the extent needed to determine plaque vulnerability prognostically. Intravascular photoacoustic imaging (IVPA) has the potential to take a significant step in that direction by imaging both plaque structure and composition. IVPA is a natural extension of intravascular ultrasound that adds tissue type specificity to the images. IVPA utilizes the optical contrast provided by the differences in the absorption spectra of plaque components to image composition. Its capability to image lipids in human coronary atherosclerosis has been shown extensively ex vivo and has recently been translated to an in vivo animal model. Other disease markers that have been successfully targeted are calcium and inflammatory markers, such as macrophages and matrix metalloproteinase; the latter two through application of exogenous contrast agents. By simultaneously displaying plaque morphology and composition, IVPA can provide a powerful prognostic marker for disease progression, and as such has the potential to transform the current practice in percutaneous coronary intervention. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. What We Have Learned from the Recent Meta-analyses on Diagnostic Methods for Atherosclerotic Plaque Regression.

    PubMed

    Biondi-Zoccai, Giuseppe; Mastrangeli, Simona; Romagnoli, Enrico; Peruzzi, Mariangela; Frati, Giacomo; Roever, Leonardo; Giordano, Arturo

    2018-01-17

    Atherosclerosis has major morbidity and mortality implications globally. While it has often been considered an irreversible degenerative process, recent evidence provides compelling proof that atherosclerosis can be reversed. Plaque regression is however difficult to appraise and quantify, with competing diagnostic methods available. Given the potential of evidence synthesis to provide clinical guidance, we aimed to review recent meta-analyses on diagnostic methods for atherosclerotic plaque regression. We identified 8 meta-analyses published between 2015 and 2017, including 79 studies and 14,442 patients, followed for a median of 12 months. They reported on atherosclerotic plaque regression appraised with carotid duplex ultrasound, coronary computed tomography, carotid magnetic resonance, coronary intravascular ultrasound, and coronary optical coherence tomography. Overall, all meta-analyses showed significant atherosclerotic plaque regression with lipid-lowering therapy, with the most notable effects on echogenicity, lipid-rich necrotic core volume, wall/plaque volume, dense calcium volume, and fibrous cap thickness. Significant interactions were found with concomitant changes in low density lipoprotein cholesterol, high density lipoprotein cholesterol, and C-reactive protein levels, and with ethnicity. Atherosclerotic plaque regression and conversion to a stable phenotype is possible with intensive medical therapy and can be demonstrated in patients using a variety of non-invasive and invasive imaging modalities.

  18. Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Marcu, Laura; Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C

    2009-05-01

    Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally (360-550 nm range) and temporally (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths (1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and (2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS-based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk.

  19. Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hui, Jie; Li, Rui; Wang, Pu; Phillips, Evan; Bruning, Rebecca; Liao, Chien-Sheng; Sturek, Michael; Goergen, Craig J.; Cheng, Ji-Xin

    2015-03-01

    Atherosclerotic plaque at the carotid bifurcation is the underlying cause of the majority of ischemic strokes. Noninvasive imaging and quantification of the compositional changes preceding gross anatomic changes within the arterial wall is essential for diagnosis of disease. Current imaging modalities such as duplex ultrasound, computed tomography, positron emission tomography are limited by the lack of compositional contrast and the detection of flow-limiting lesions. Although high-resolution magnetic resonance imaging has been developed to characterize atherosclerotic plaque composition, its accessibility for wide clinical use is limited. Here, we demonstrate a fiber-based multispectral photoacoustic tomography system for excitation of lipids and external acoustic detection of the generated ultrasound. Using sequential ultrasound imaging of ex vivo preparations we achieved ~2 cm imaging depth and chemical selectivity for assessment of human arterial plaques. A multivariate curve resolution alternating least squares analysis method was applied to resolve the major chemical components, including intravascular lipid, intramuscular fat, and blood. These results show the promise of detecting carotid plaque in vivo through esophageal fiber-optic excitation of lipids and external acoustic detection of the generated ultrasound. This imaging system has great potential for serving as a point-ofcare device for early diagnosis of carotid artery disease in the clinic.

  20. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.

    PubMed

    Lee, Sunki; Lee, Min Woo; Cho, Han Saem; Song, Joon Woo; Nam, Hyeong Soo; Oh, Dong Joo; Park, Kyeongsoon; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2014-08-01

    Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to ≤20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (P<0.01). Ex vivo peak plaque target-to-background ratios were significantly higher in ICG-injected rabbits than in controls (P<0.01) on fluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (P<0.01; r=0.85) without significant bias (0.41). Cellular ICG uptake, correlative fluorescence microscopy, and histopathology also corroborated the in vivo imaging findings. Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. © 2014 American Heart Association, Inc.

  1. The usefulness of optical analyses for detecting vulnerable plaques using rabbit models

    NASA Astrophysics Data System (ADS)

    Nakai, Kanji; Ishihara, Miya; Kawauchi, Satoko; Shiomi, Masashi; Kikuchi, Makoto; Kaji, Tatsumi

    2011-03-01

    Purpose: Carotid artery stenting (CAS) has become a widely used option for treatment of carotid stenosis. Although technical improvements have led to a decrease in complications related to CAS, distal embolism continues to be a problem. The purpose of this research was to investigate the usefulness of optical methods (Time-Resolved Laser- Induced Fluorescence Spectroscopy [TR-LIFS] and reflection spectroscopy [RS] as diagnostic tools for assessment of vulnerable atherosclerotic lesions, using rabbit models of vulnerable plaque. Materials & Methods: Male Japanese white rabbits were divided into a high cholesterol diet group and a normal diet group. In addition, we used a Watanabe heritable hyperlipidemic (WHHL) rabbit, because we confirmed the reliability of our animal model for this study. Experiment 1: TR-LIFS. Fluorescence was induced using the third harmonic wave of a Q switch Nd:YAG laser. The TR-LIFS was performed using a photonic multi-channel analyzer with ICCD (wavelength range, 200 - 860 nm). Experiment 2: RS. Refection spectra in the wavelength range of 900 to 1700 nm were acquired using a spectrometer. Results: In the TR-LIFS, the wavelength at the peak was longer by plaque formation. The TR-LIFS method revealed a difference in peak levels between a normal aorta and a lipid-rich aorta. The RS method showed increased absorption from 1450 to 1500 nm for lipid-rich plaques. We observed absorption around 1200 nm due to lipid only in the WHHL group. Conclusion: These methods using optical analysis might be useful for diagnosis of vulnerable plaques. Keywords: Carotid artery stenting, vulnerable plaque, Time-Resolved Laser-Induced Fluorescence

  2. DECT evaluation of noncalcified coronary artery plaque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravanfar Haghighi, Rezvan; Chatterjee, S.; Tabin, Milo

    2015-10-15

    Purpose: Composition of the coronary artery plaque is known to have critical role in heart attack. While calcified plaque can easily be diagnosed by conventional CT, it fails to distinguish between fibrous and lipid rich plaques. In the present paper, the authors discuss the experimental techniques and obtain a numerical algorithm by which the electron density (ρ{sub e}) and the effective atomic number (Z{sub eff}) can be obtained from the dual energy computed tomography (DECT) data. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques. Methods: For the purposemore » of calibration of the CT machine, the authors prepare aqueous samples whose calculated values of (ρ{sub e}, Z{sub eff}) lie in the range of (2.65 × 10{sup 23} ≤ ρ{sub e} ≤ 3.64 × 10{sup 23}/cm{sup 3}) and (6.80 ≤ Z{sub eff} ≤ 8.90). The authors fill the phantom with these known samples and experimentally determine HU(V{sub 1}) and HU(V{sub 2}), with V{sub 1},V{sub 2} = 100 and 140 kVp, for the same pixels and thus determine the coefficients of inversion that allow us to determine (ρ{sub e}, Z{sub eff}) from the DECT data. The HU(100) and HU(140) for the coronary artery plaque are obtained by filling the channel of the coronary artery with a viscous solution of methyl cellulose in water, containing 2% contrast. These (ρ{sub e}, Z{sub eff}) values of the coronary artery plaque are used for their characterization on the basis of theoretical models of atomic compositions of the plaque materials. These results are compared with histopathological report. Results: The authors find that the calibration gives ρ{sub e} with an accuracy of ±3.5% while Z{sub eff} is found within ±1% of the actual value, the confidence being 95%. The HU(100) and HU(140) are found to be considerably different for the same plaque at the same position and there is a linear trend between these two HU values. It is noted that pure lipid type plaques are practically nonexistent, and microcalcification, as observed in histopathology, has to be taken into account to explain the nature of the observed (ρ{sub e}, Z{sub eff}) data. This also enables us to judge the composition of the plaque in terms of basic model which considers the plaque to be composed of fibres, lipids, and microcalcification. Conclusions: This simple and reliable method has the potential as an effective modality to investigate the composition of noncalcified coronary artery plaques and thus help in their characterization. In this inversion method, (ρ{sub e}, Z{sub eff}) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρ{sub e}, Z{sub eff}) does not interfere with each other and the nature of the plaque can be identified in terms of a three component model.« less

  3. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model

    PubMed Central

    Mensah, Solomon; Hirshberg, Carly; Tarbell, John M.

    2016-01-01

    Background and aims Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. Methods 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE−/−) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. Results Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71±23%, non-plaque: 97±3%, p= 0.02; thickness plaque: 0.85±0.15 μm, non-plaque: 1.2±0.21 μm, p= 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92±3%, p= 0.7 vs. non-plaque ApoE−/−, thickness WT: 1.1±0.06 μm, p= 0.2 vs. non-plaque ApoE−/−). Endothelial cell apoptosis was significantly increased in ApoE−/− mice compared to wild type mice (ApoE−/− :64.3±33.0, WT: 1.1±0.5 TUNEL-pos/cm, p= 2×10−7). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p= 3×10−5). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. Conclusions Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques. PMID:27529818

  4. Characterising human atherosclerotic carotid plaque tissue composition and morphology using combined spectroscopic and imaging modalities.

    PubMed

    Barrett, Hilary E; Mulvihill, John J; Cunnane, Eoghan M; Walsh, Michael T

    2015-01-01

    Calcification is a marked pathological component in carotid artery plaque. Studies have suggested that calcification may induce regions of high stress concentrations therefore increasing the potential for rupture. However, the mechanical behaviour of the plaque under the influence of calcification is not fully understood. A method of accurately characterising the calcification coupled with the associated mechanical plaque properties is needed to better understand the impact of calcification on the mechanical behaviour of the plaque during minimally invasive treatments. This study proposes a comparison of biochemical and structural characterisation methods of the calcification in carotid plaque specimens to identify plaque mechanical behaviour. Biochemical analysis, by Fourier Transform Infrared (FTIR) spectroscopy, was used to identify the key components, including calcification, in each plaque sample. However, FTIR has a finite penetration depth which may limit the accuracy of the calcification measurement. Therefore, this FTIR analysis was coupled with the identification of the calcification inclusions located internally in the plaque specimen using micro x-ray computed tomography (μX-CT) which measures the calcification volume fraction (CVF) to total tissue content. The tissue characterisation processes were then applied to the mechanical material plaque properties acquired from experimental circumferential loading of human carotid plaque specimen for comparison of the methods. FTIR characterised the degree of plaque progression by identifying the functional groups associated with lipid, collagen and calcification in each specimen. This identified a negative relationship between stiffness and 'lipid to collagen' and 'calcification to collagen' ratios. However, μX-CT results suggest that CVF measurements relate to overall mechanical stiffness, while peak circumferential strength values may be dependent on specific calcification geometries. This study demonstrates the need to fully characterise the calcification structure of the plaque tissue and that a combination of FTIR and μX-CT provides the necessary information to fully understand the mechanical behaviour of the plaque tissue.

  5. From Lipid Retention to Immune-Mediate Inflammation and Associated Angiogenesis in the Pathogenesis of Atherosclerosis.

    PubMed

    Usman, Ammara; Ribatti, Domenico; Sadat, Umar; Gillard, Jonathan H

    2015-08-26

    Atherosclerosis is a leading cause of mortality and long-term morbidity worldwide. It is a lipoprotein-driven disease that leads to plaque formation at focal areas in the arterial blood vessels through intimal inflammation, necrosis, fibrosis, and calcification. Adventitial and intimal angiogenesis contributes to the progression of intimal hyperplasia and the development of a necrotic core. The volatile nature of an atheromatous plaque is responsible for approximately 60% of symptomatic carotid artery diseases and about 75% of acute coronary events. In this review the pathogenesis of atherosclerosis is discussed from the initial step of lipid retention to advanced stages of immune-mediate inflammation and associated angiogenesis. Mechanisms of plaque rupture are also discussed.

  6. Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling.

    PubMed

    Matthäus, Christian; Krafft, Christoph; Dietzek, Benjamin; Brehm, Bernhard R; Lorkowski, Stefan; Popp, Jürgen

    2012-10-16

    Monocyte-derived macrophages play a key role in atherogenesis because their transformation into foam cells is responsible for deposition of lipids in plaques within arterial walls. The appearance of cytosolic lipid droplets is a hallmark of macrophage foam cell formation, and the molecular basics involved in this process are not well understood. Of particular interest is the intracellular fate of different individual lipid species, such as fatty acids or cholesterol. Here, we utilize Raman microscopy to image the metabolism of such lipids and to trace their subsequent storage patterns. The combination of microscopic information with Raman spectroscopy provides a powerful molecular imaging method, which allows visualization at the diffraction limit of the employed laser light and biochemical characterization through associated spectral information. In order to distinguish the molecules of interest from other naturally occurring lipids spectroscopically, deuterium labels were introduced. Intracellular distribution and metabolic changes were observed for serum albumin-complexed palmitic and oleic acid and cholesterol and quantitatively evaluated by monitoring the increase in CD scattering intensities at 0.5, 1, 3, 6, 24, 30, and 36 h. This approach may also allow for investigating the cellular trafficking of other molecules, such as nutrients, metabolites, and drugs.

  7. Lipid detection by intravascular photoacoustic imaging with flexible catheter at 20 fps (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Min; Daeichin, Verya; Springeling, Geert; van der Steen, Antonius F. W.; van Soest, Gijs

    2016-02-01

    Intravascular Photoacoustic (IVPA) imaging is a promising new technology to assess lipid content of coronary atherosclerotic plaque, an important determinant of the risk associated with the plaque triggering a heart attack. Clinical translation of IVPA imaging requires real-time image acquisition, which has been a technological challenge. In this work, we demonstrate a high-speed, dual-wavelength IVPA imaging system at 1.7 µm wavelength, operating with a flexible catheter of 1.2 mm outer diameter (including outer sheath). The catheter was custom designed and fabricated, and used a 40 MHz transducer for intravascular ultrasound (IVUS) and IVPA imaging. The optical excitation is provided by a dual OPO system, pumped by CW diode-pumped Q-switched Nd:YAG lasers, with a repetition rate of 5 kHz. Each OPO can be tuned to a custom wavelength between 1690 and 1750 nm; two wavelengths only are needed to discriminate between plaque lipids and adipose tissue. The pulse energy is about 80 µJ. We tested the imaging performance of the presented system in a polyvinyl-alcohol (PVA) vessel mimicking phantom and human coronary arteries ex vivo. IVPA identified lipid deposits inside atherosclerotic plaque, while IVUS showed tissue structure. We demonstrated IVPA imaging at a speed of 20 frames per second, with 250 A-scans per frame. This is significantly faster than previous IVPA imaging systems, and will enable the translation of IVPA imaging into clinical practice.

  8. Fast integrated intravascular photoacoustic/ultrasound catheter

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Cho, Seunghee; Kim, Taehoon; Park, Sungjo; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Jang, Kiyuk; Kim, Chulhong

    2016-03-01

    In cardiology, a vulnerable plaque is considered to be a key subject because it is strongly related to atherosclerosis and acute myocardial infarction. Because conventional intravascular imaging devices exhibit several limitations with regard to vulnerable plaque detection, the need for an effective lipid imaging modality has been continuously suggested. Photoacoustic (PA) imaging is a medical imaging technique with a high level of ultrasound (US) resolution and strong optical contrast. In this study, we successfully developed an integrated intravascular photoacoustic/ultrasound (IV-PAUS) imaging system with a catheter diameter of 1.2 mm for lipid-rich atherosclerosis imaging. An Nd:YAG pulsed laser with an excitation wavelength of 1064 nm was utilized. IV-PAUS offers 5-mm depth penetration and axial and lateral PA imaging resolutions of 94 μm and 203 μm, respectively, as determined by imaging a 6-μm carbon fiber. We initially obtained 3-dimensional (3D) co-registered PA/US images of metal stents. Subsequently, we successfully obtained 3D coregistered PA/US ex vivo images using an iliac artery from a rabbit atherosclerosis model. Accordingly, lipid-rich plaques were sufficiently differentiated from normal tissue in the ex vivo experiment. We validated these findings histologically to confirm the lipid content.

  9. Detection of Rupture-Prone Atherosclerotic Plaques by Time-Resolved Laser Induced Fluorescence Spectroscopy

    PubMed Central

    Marcu, Laura; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J. Dennis; Freischlag, Julie A.; Fishbein, Michael C.

    2009-01-01

    Objective Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. Methods The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally- (360–550 nm range) and temporally- (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). Results We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths 1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and 2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Conclusion Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk. PMID:18926540

  10. Atherosclerotic plaque in the left carotid artery is more vulnerable than in the right.

    PubMed

    Selwaness, Mariana; van den Bouwhuijsen, Quirijn; van Onkelen, Robbert S; Hofman, Albert; Franco, Oscar H; van der Lugt, Aad; Wentzel, Jolanda J; Vernooij, Meike

    2014-11-01

    Ischemic stroke is more often diagnosed in the left hemisphere than in the right. It is unknown whether this asymmetrical prevalence relates to differences in carotid atherosclerosis. We compared atherosclerotic plaque prevalence, severity, and composition between left and right carotid arteries. In a population-based cohort, carotid MRI scanning was performed in 1414 stroke-free participants (≥45 years). Using a multisequence MRI protocol, we assessed the prevalence, stenosis, and thickness of the plaque and its predominant component (ie, lipid core, intraplaque hemorrhage, calcification, or fibrous tissue in each carotid artery). Differences between left and right side were tested using paired t tests, McNemar test and Generalized Estimating Equation analyses. The majority (85%) of the participants had bilateral carotid plaques. Unilateral plaques were twice more prevalent on the left than on the right side (67% versus 33%; P<0.001). Plaque thickness was also greater on the left (3.1±1.2 versus 2.9±1.3 mm; P<0.001); degree of stenosis did not differ. Intraplaque hemorrhage and fibrous tissue were more prevalent on the left (9.1 versus 5.9%; P<0.001 and 45.0 versus 38.5%; P<0.001), whereas calcification occurred more often on the right (37.4 versus 31.6% at the left; P<0.001). Lipid was equally distributed. Carotid atherosclerotic plaque size and composition are not symmetrically distributed. Predominance of intraplaque hemorrhage in left-sided carotid plaques suggests a greater vulnerability as opposed to right-sided plaques, which are more calcified and therefore considered more stable. © 2014 American Heart Association, Inc.

  11. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Bouma, Brett E.

    2002-04-01

    Improved methods are needed to identify the vulnerable coronary plaques responsible for acute myocardial infraction or sudden cardiac death. We describe a method for characterizing the structure and biomechanical properties of atherosclerotic plaques based on speckle pattern fluctuations. Near-field speckle images were acquired from five human aortic specimens ex vivo. The speckle decorrelation time constant varied significantly for vulnerable aortic plaques (τ = 40 ms) versus stable plaques (τ = 400 ms) and normal aorta (τ = 500 ms). These initial results indicate that different atherosclerotic plaque types may be distinguished by analysis of temporal and spatial speckle pattern fluctuations.

  12. Effect of rosuvastatin on coronary atheroma in stable coronary artery disease: multicenter coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS).

    PubMed

    Takayama, Tadateru; Hiro, Takafumi; Yamagishi, Masakazu; Daida, Hiroyuki; Hirayama, Atsushi; Saito, Satoshi; Yamaguchi, Tetsu; Matsuzaki, Masunori

    2009-11-01

    It has been suggested that intensive lipid-lowering therapy using statins significantly decreases atheromatous plaque volume. The effect of rosuvastatin on plaque volume in patients with stable coronary artery disease (CAD), including those receiving prior lipid-lowering therapy, was examined in the present study. A 76-week open-label trial was performed at 37 centers in Japan. Eligible patients began treatment with rosuvastatin 2.5 mg/day, which could be increased at 4-week intervals to

  13. Fluorescence lifetime intravascular ultrasound (FLIm-IVUS) and the quest to discriminate between early and advanced lipid cores in atherosclerosis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer E.; Bec, Julien; Vela, Deborah; Buja, L. Maximilian; Southard, Jeffrey A.; Margulies, Kenneth B.; Marcu, Laura

    2017-02-01

    FL-IVUS combines intravascular ultrasound with fluorescence lifetime imaging to obtain morphologic and biochemical details from the arterial wall. Ultrasound measurements alone provide morphologic information (plaque burden, remodeling index and presence of calcium). Fluorescence lifetime can determine the presence of a thick fibrous cap, macrophage infiltration, and lipid cores beneath thin fibrous caps. These details are important to assess plaque vulnerability. In this study, we focused on the ability of FL-IVUS to differentiate between early and advanced lipid cores-advanced cores are vulnerable to rupture. We imaged N=12 ex vivo human coronary arteries and performed hematoxylin and eosin, Movat's pentachrome and CD68 immunohistochemistry at 500 micron intervals throughout the length of the vessels. We found only N=1 thin-capped fibroatheroma (TCFA) with an advanced necrotic core and N=7 cases of foam cell infiltration, early lipid cores or deep necrotic cores. IVUS was able to observe the increased plaque burden and calcification of the advanced and deep necrotic cores, but could not identify early lipid cores, foam cell infiltration or discriminate between deep necrotic cores and TCFA. The addition of FLIm to IVUS allowed the TCFA to be discriminated from early lipid accumulation, particularly at 542+/-50 nm (355 nm pulsed excitation): 7.6 +/- 0.5 ns compared to 6.6 +/- 0.4 ns, respectively (P<0.001 by ANOVA analysis). These differences need to be validated in a larger cohort, but exist due to specific lipid content in the necrotic core as well as increased extracellular matrix in early lesions.

  14. Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2014-03-01

    Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.

  15. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model.

    PubMed

    Cancel, Limary M; Ebong, Eno E; Mensah, Solomon; Hirschberg, Carly; Tarbell, John M

    2016-09-01

    Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE(-/-)) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71 ± 23%, non-plaque: 97 ± 3%, p = 0.02; thickness plaque: 0.85 ± 0.15 μm, non-plaque: 1.2 ± 0.21 μm, p = 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92 ± 3%, p = 0.7 vs. non-plaque ApoE(-/-), thickness WT: 1.1 ± 0.06 μm, p = 0.2 vs. non-plaque ApoE(-/-)). Endothelial cell apoptosis was significantly increased in ApoE(-/-) mice compared to wild type mice (ApoE(-/-):64.3 ± 33.0, WT: 1.1 ± 0.5 TUNEL-pos/cm, p = 2 × 10(-7)). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p = 3 × 10(-5)). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Quantitative colorimetry of atherosclerotic plaque using the L*a*b* color space during angioscopy for the detection of lipid cores underneath thin fibrous caps.

    PubMed

    Ishibashi, Fumiyuki; Yokoyama, Shinya; Miyahara, Kengo; Dabreo, Alexandra; Weiss, Eric R; Iafrati, Mark; Takano, Masamichi; Okamatsu, Kentaro; Mizuno, Kyoichi; Waxman, Sergio

    2007-12-01

    Yellow plaques seen during angioscopy are thought to represent lipid cores underneath thin fibrous caps (LCTCs) and may be indicative of vulnerable sites. However, plaque color assessment during angioscopy has been criticized because of its qualitative nature. The purpose of the present study was to test the ability of a quantitative colorimetric system to measure yellow color intensity of atherosclerotic plaques during angioscopy and to characterize the color of LCTCs. Using angioscopy and a quantitative colorimetry system based on the L*a*b* color space [L* describes brightness (-100 to +100), b* describes blue to yellow (-100 to +100)], the optimal conditions for measuring plaque color were determined in three flat standard color samples and five artificial plaque models in cylinder porcine carotid arteries. In 88 human tissue samples, the colorimetric characteristics of LCTCs were then evaluated. In in-vitro samples and ex-vivo plaque models, brightness L* between 40 and 80 was determined to be optimal for acquiring b* values, and the variables unique to angioscopy in color perception did not impact b* values after adjusting for brightness L* by manipulating light or distance. In ex-vivo human tissue samples, b* value >/=23 (35.91 +/- 8.13) with L* between 40 and 80 was associated with LCTCs (fibrous caps <100 mum). Atherosclerotic plaque color can be consistently measured during angioscopy with quantitative colorimetry. High yellow color intensity, determined by this system, was associated with LCTCs. Quantitative colorimetry during angioscopy may be used for detection of LCTCs, which may be markers of vulnerability.

  17. Atherosclerotic plaque rupture and thrombosis. Evolving concepts.

    PubMed

    Fuster, V; Stein, B; Ambrose, J A; Badimon, L; Badimon, J J; Chesebro, J H

    1990-09-01

    Rupture of an atherosclerotic plaque associated with partial or complete thrombotic vessel occlusion is fundamental to the development of ischemic coronary syndromes. Plaques that produce only mild-to-moderate angiographic luminal stenosis are frequently those that undergo abrupt disruption, leading to unstable angina or acute myocardial infarction. Plaques with increased lipid content appear more prone to rupture, particularly when the lipid pool is localized eccentrically within the intima. Macrophages appear to play an important role in atherogenesis, perhaps by participating in the uptake and metabolism of lipoproteins, secretion of growth factors, and production of enzymes and toxic metabolites that may facilitate plaque rupture. In addition, the particular composition or configuration of a plaque and the hemodynamic forces to which it is exposed may determine its susceptibility to disruption. Exposure of collagen, lipids, and smooth muscle cells after plaque rupture leads to the activation of platelets and the coagulation cascade system. The resulting thrombus may lead to marked reduction in myocardial perfusion and the development of an unstable coronary syndrome, or it may become organized and incorporated into the diseased vessel, thus contributing to the progression of atherosclerosis. In unstable angina, plaque disruption leads to thrombosis, which is usually labile and results in only a transient reduction in myocardial perfusion. Release of vasoactive substances, arterial spasm, or increases in myocardial oxygen demand may contribute to ischemia. In acute myocardial infarction, plaque disruption results in a more persistent thrombotic vessel occlusion; the extent of necrosis depends on the size of the artery, the duration of occlusion, the presence of collateral flow, and the integrity of the fibrinolytic system. Thrombi that undergo lysis expose a highly thrombogenic surface to the circulating blood, which has the capacity of activating platelets and the coagulation cascade system and may lead to thrombotic reocclusion. Measurements aimed at reversing the process of atherosclerosis via cholesterol reduction and enhanced high density lipoprotein activity are encouraging. Active research is being focused on the development of new antithrombotic tools, such as inhibitors of thrombin, thromboxane, and serotonin receptor antagonists, and monoclonal antibodies aimed at blocking platelet membrane receptors or adhesive proteins. These compounds may prove useful when immediate and potent inhibition of the hemostatic system is desired. Intensive research is still needed in the areas of pathogenesis and therapeutic intervention in atherosclerosis.

  18. High-speed Intravascular Photoacoustic Imaging of Lipid-laden Atherosclerotic Plaque Enabled by a 2-kHz Barium Nitrite Raman Laser

    PubMed Central

    Wang, Pu; Ma, Teng; Slipchenko, Mikhail N.; Liang, Shanshan; Hui, Jie; Shung, K. Kirk; Roy, Sukesh; Sturek, Michael; Zhou, Qifa; Chen, Zhongping; Cheng, Ji-Xin

    2014-01-01

    Lipid deposition inside the arterial wall is a key indicator of plaque vulnerability. An intravascular photoacoustic (IVPA) catheter is considered a promising device for quantifying the amount of lipid inside the arterial wall. Thus far, IVPA systems suffered from slow imaging speed (~50 s per frame) due to the lack of a suitable laser source for high-speed excitation of molecular overtone vibrations. Here, we report an improvement in IVPA imaging speed by two orders of magnitude, to 1.0 s per frame, enabled by a custom-built, 2-kHz master oscillator power amplifier (MOPA)-pumped, barium nitrite [Ba(NO3)2] Raman laser. This advancement narrows the gap in translating the IVPA technology to the clinical setting. PMID:25366991

  19. Doxycycline Stabilizes Vulnerable Plaque via Inhibiting Matrix Metalloproteinases and Attenuating Inflammation in Rabbits

    PubMed Central

    Dong, Mei; Zhong, Lin; Chen, Wen Qiang; Ji, Xiao Ping; Zhang, Mei; Zhao, Yu Xia; Li, Li; Yao, Gui Hua; Zhang, Peng Fei; Zhang, Cheng; Zhang, Lei; Zhang, Yun

    2012-01-01

    Enhanced matrix metalloproteinases (MMPs) activity is implicated in the process of atherosclerotic plaque instability. We hypothesized that doxycycline, a broad MMPs inhibitor, was as effective as simvastatin in reducing the incidence of plaque disruption. Thirty rabbits underwent aortic balloon injury and were fed a high-fat diet for 20 weeks. At the end of week 8, the rabbits were divided into three groups for 12-week treatment: a doxycycline-treated group that received oral doxycycline at a dose of 10 mg/kg/d, a simvastatin-treated group that received oral simvastatin at a dose of 5 mg/kg/d, and a control group that received no treatment. At the end of week 20, pharmacological triggering was performed to induce plaque rupture. Biochemical, ultrasonographic, pathologic, immunohistochemical and mRNA expression studies were performed. The results showed that oral administration of doxycycline resulted in a significant increase in the thickness of the fibrous cap of the aortic plaque whereas there was a substantial reduction of MMPs expression, local and systemic inflammation, and aortic plaque vulnerability. The incidence of plaque rupture with either treatment (0% for both) was significantly lower than that for controls (56.0%, P<0.05). There was no significant difference between doxycycline-treated group and simvastatin-treated group in any serological, ultrasonographic, pathologic, immunohistochemical and mRNA expression measurement except for the serum lipid levels that were higher with doxycycline than with simvastatin treatment. In conclusion, doxycycline at a common antimicrobial dose stabilizes atherosclerotic lesions via inhibiting matrix metalloproteinases and attenuating inflammation in a rabbit model of vulnerable plaque. These effects were similar to a large dose of simvastatin and independent of serum lipid levels. PMID:22737253

  20. Morphologic Characteristic of Coronary Artery Disease, with Emphasis on Thromboses, in Patients Younger Than 40 Years of Age

    PubMed Central

    Tavora, Fabio; Li, Ling; Ripple, Mary; Fowler, David; Burke, Allen

    2010-01-01

    There are few pathologic descriptions of fatal coronary artery disease in the young. The morphologic characteristics of sudden coronary deaths in 47 hearts from patients younger than 40 years were studied. Numbers of plaques with necrotic cores were quantitated in each heart. Compared to 194 sudden coronary deaths >40 years, heart weight was lower, acute plaque erosions more frequent, and extent of disease less in the ≤40 years group. Plaque burden was less in hearts with erosions, and healed infarcts more common in hearts with stable plaque. The numbers of fibroatheromas increased with age until the 6th decade (P < .0001) as well as the proportion of total plaques that were atheromatous. Plaques in younger patients have fewer lipid-rich cores. Most thrombi show areas of organization, with layering frequent in erosions, suggesting a possible method of plaque enlargement in the absence of necrotic core formation. PMID:21151510

  1. A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques.

    PubMed

    Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Sutcliffe, Michael P F; Huang, Yuan; Brown, Adam J; Jing, Zaiping; Lu, Qingsheng; Gillard, Jonathan H

    2015-11-05

    Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material strength and extreme extensibility of atherosclerotic components from human carotid plaques. Tissue strips of fibrous cap, media, lipid core and intraplaque hemorrhage/thrombus were obtained from 21 carotid endarterectomy samples of symptomatic patients. Uni-extension test with tissue strips was performed until they broke or slid. The Cauchy stress and stretch ratio at the peak loading of strips broken about 2mm away from the clamp were used to characterize their ultimate strength and extensibility. Results obtained indicated that ultimate strength of fibrous cap and media were 158.3 [72.1, 259.3] kPa (Median [Inter quartile range]) and 247.6 [169.0, 419.9] kPa, respectively; those of lipid and intraplaque hemorrhage/thrombus were 68.8 [48.5, 86.6] kPa and 83.0 [52.1, 124.9] kPa, respectively. The extensibility of each tissue type were: fibrous cap - 1.18 [1.10, 1.27]; media - 1.21 [1.17, 1.32]; lipid - 1.25 [1.11, 1.30] and intraplaque hemorrhage/thrombus - 1.20 [1.17, 1.44]. Overall, the strength of fibrous cap and media were comparable and so were lipid and intraplaque hemorrhage/thrombus. Both fibrous cap and media were significantly stronger than either lipid or intraplaque hemorrhage/thrombus. All atherosclerotic components had similar extensibility. Moreover, fibrous cap strength in the proximal region (closer to the heart) was lower than that of the distal. These results are helpful in understanding the material behavior of atherosclerotic plaques. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Multimodality Intracoronary Imaging With Near-Infrared Spectroscopy and Intravascular Ultrasound in Asymptomatic Individuals With High Calcium Scores.

    PubMed

    Madder, Ryan D; VanOosterhout, Stacie; Klungle, David; Mulder, Abbey; Elmore, Matthew; Decker, Jeffrey M; Langholz, David; Boyden, Thomas F; Parker, Jessica; Muller, James E

    2017-10-01

    This study sought to determine the frequency of large lipid-rich plaques (LRP) in the coronary arteries of individuals with high coronary artery calcium scores (CACS) and to determine whether the CACS correlates with coronary lipid burden. Combined near-infrared spectroscopy and intravascular ultrasound was performed in 57 vessels in 20 asymptomatic individuals (90% on statins) with no prior history of coronary artery disease who had a screening CACS ≥300 Agatston units. Among 268 10-mm coronary segments, near-infrared spectroscopy images were analyzed for LRP, defined as a bright yellow block on the near-infrared spectroscopy block chemogram. Lipid burden was assessed as the lipid core burden index (LCBI), and large LRP were defined as a maximum LCBI in 4 mm ≥400. Vessel plaque volume was measured by quantitative intravascular ultrasound. Vessel-level CACS significantly correlated with plaque volume by intravascular ultrasound ( r =0.69; P <0.0001) but not with LCBI by near-infrared spectroscopy ( r =0.24; P =0.07). Despite a high CACS, no LRP was detected in 8 (40.0%) subjects. Large LRP having a maximum LCBI in 4 mm ≥400 were infrequent, found in only 5 (25.0%) of 20 subjects and in only 5 (1.9%) of 268 10-mm coronary segments analyzed. Among individuals with a CACS ≥300 Agatston units mostly on statins, CACS correlated with total plaque volume but not LCBI. This observation may have implications on coronary risk among individuals with a high CACS considering that it is coronary LRP, rather than calcification, that underlies the majority of acute coronary events. © 2017 American Heart Association, Inc.

  3. Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound.

    PubMed

    Takahashi, Shigekiyo; Kawasaki, Masanori; Miyata, Shusaku; Suzuki, Keita; Yamaura, Makoto; Ido, Takahisa; Aoyama, Takuma; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2016-01-01

    Recently, a new generation of multi-detector row computed tomography (CT) with 320-detector rows (DR) has become available in the clinical settings. The purpose of the present study was to determine the cutoff values of Hounsfield unit (HU) for discrimination of plaque components by comparing HU of coronary plaques with integrated backscatter intravascular ultrasound (IB-IVUS) serving as a gold standard. Seventy-seven coronary atherosclerotic lesions in 77 patients with angina were visualized by both 320-DR CT (Aquilion One, Toshiba, Japan) and IB-IVUS at the same site. To determine the thresholds for discrimination of plaque components, we compared HU with IB values as a gold standard. Optimal thresholds were determined from receiver operating characteristic (ROC) curves analysis. The HU values of lipid pool (n = 115), fibrosis (n = 93), vessel lumen and calcification (n = 73) were 28 ± 19 HU (range -18 to 69 HU), 98 ± 31 HU (44 to 195 HU), 357 ± 65 HU (227 to 534 HU) and 998 ± 236 HU (366 to 1,489 HU), respectively. The thresholds of 56 HU, 210 HU and 490 HU were the most reliable predictors of lipid pool, fibrosis, vessel lumen and calcification, respectively. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS (r = 0.63, p < 0.05), whereas fibrous volume measured by 320-DR CT was not. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS, whereas fibrous volume was not correlated with that measured by IB-IVUS because manual exclusion of the outside of vessel hindered rigorous discrimination between fibrosis and extravascular components.

  4. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    PubMed

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.

  5. Surface modified gold nanoparticles for SERS based detection of vulnerable plaque formations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Dugandžić, Vera; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2017-02-01

    Cardiovascular diseases are the leading cause of death worldwide. Atherosclerosis is closely related to the majority of these diseases, as a process of thickening and stiffening of the arterial walls through accumulation of lipids, which is a consequence of aging and life style. Atherosclerosis affects all people in some extent, but not all arterial plaques will necessarily lead to the complications, such as thrombosis, stroke and heart attack. One of the greatest challenges in the risk assessment of atherosclerotic depositions is the detection and recognition of plaques which are unstable and prone to rupture. These vulnerable plaques usually consist of a lipid core that attracts macrophages, a type of white blood cells that are responsible for the degradation of lipids. It has been hypothesized that the amount of macrophages relates to the overall plaque stability. As phagocytes, macrophages also act as recipients for nanoscale particles or structures. Administered gold nanoparticles are usually rabidly taken up by macrophages residing within arterial walls and can therefore be indirectly detected. A very sensitive strategy for probing gold nanoparticles is by utilizing surface enhanced Raman scattering (SERS). By modifying the surface of these particles with SERS active labels it is possible to generate highly specific signals that exhibit sensitivity comparable to fluorescence. SERS labeled gold nanoparticles have been synthesized and the uptake dynamics and efficiency on macrophages in cell cultures was investigated using Raman microscopic imaging. The results clearly show that nanoparticles are taken up by macrophages and support the potential of SERS spectroscopy for the detection of vulnerable plaques. Acknowledgements: Financial support from the Carl Zeiss Foundation is highly acknowledged. The project "Jenaer Biochip Initiative 2.0" (03IPT513Y) within the framework "InnoProfile Transfer - Unternehmen Region" is supported by the Federal Ministry of Education and Research, Germany (BMBF).

  6. Vulnerable atherosclerotic plaque detection by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Boydston-White, Susie; Weisberg, Arel; Wang, Wubao; Sordillo, Laura A.; Perotte, Adler; Tomaselli, Vincent P.; Sordillo, Peter P.; Pei, Zhe; Shi, Lingyan; Alfano, Robert R.

    2016-12-01

    A clear correlation has been observed between the resonance Raman (RR) spectra of plaques in the aortic tunica intimal wall of a human corpse and three states of plaque evolution: fibrolipid plaques, calcified and ossified plaques, and vulnerable atherosclerotic plaques (VPs). These three states of atherosclerotic plaque lesions demonstrated unique RR molecular fingerprints from key molecules, rendering their spectra unique with respect to one another. The vibrational modes of lipids, cholesterol, carotenoids, tryptophan and heme proteins, the amide I, II, III bands, and methyl/methylene groups from the intrinsic atherosclerotic VPs in tissues were studied. The salient outcome of the investigation was demonstrating the correlation between RR measurements of VPs and the thickness measurements of fibrous caps on VPs using standard histopathology methods, an important metric in evaluating the stability of a VP. The RR results show that VPs undergo a structural change when their caps thin to 66 μm, very close to the 65-μm empirical medical definition of a thin cap fibroatheroma plaque, the most unstable type of VP.

  7. Bone marrow endothelial progenitors in atherosclerotic plaque resolution

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Barlic-Dicen, Jana

    2013-01-01

    Atherosclerosis is a major cause of morbidity and mortality in the United States. Persistently elevated circulating low-density lipoprotein, or hypercholesterolemia, and deposition of low-density lipoprotein in the vascular wall are the main inducers of atherosclerosis, which manifests itself as arterial lesions or plaques. Some plaques become thrombosis-prone and rupture, causing acute myocardial infarction or stroke. Lowering plasma cholesterol through the use of statins is the primary intervention against atherosclerosis. Treatment with statins slows progression of atherosclerosis but can only support limited plaque regression. Partially regressed plaques continue to pose a serious threat due to their remaining potential to rupture. Thus, new interventions inducing complete reversal of atherosclerosis are being sought. Implementation of new therapies will require clear understanding of the mechanisms driving plaque resolution. In this Commentary, we highlight the role of bone marrow endothelial progenitors in atherosclerotic plaque regression and discuss how regenerative cell-based interventions could be used in combination with plasma lipid-lowering to induce plaque reversal in order to prevent and/or reduce adverse cardiovascular events. PMID:23538778

  8. Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque.

    PubMed

    Smith, Edward; Croca, Sara; Waddington, Kirsty E; Sofat, Reecha; Griffin, Maura; Nicolaides, Andrew; Isenberg, David A; Torra, Ines Pineda; Rahman, Anisur; Jury, Elizabeth C

    2016-12-02

    Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients. Copyright © 2016, American Association for the Advancement of Science.

  9. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque at speed of video-rate level

    NASA Astrophysics Data System (ADS)

    Hui, Jie; Cao, Yingchun; Zhang, Yi; Kole, Ayeeshik; Wang, Pu; Yu, Guangli; Eakins, Gregory; Sturek, Michael; Chen, Weibiao; Cheng, Ji-Xin

    2017-03-01

    Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipidladen plaques by providing simultaneous morphological and lipid-specific chemical information of an artery wall. The clinical utility of IVPA-US technology requires real-time imaging and display at speed of video-rate level. Here, we demonstrate a compact and portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter, differentiated A-line strategy, and real-time image processing and display algorithms. By imaging pulsatile motion at different imaging speeds, 16 frames per second was deemed to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. Our lateral resolution results further verified the number of A-lines used for a cross-sectional IVPA image reconstruction. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology.

  10. Assessment of vulnerable plaque composition by matching the deformation of a parametric plaque model to measured plaque deformation.

    PubMed

    Baldewsing, Radj A; Schaar, Johannes A; Mastik, Frits; Oomens, Cees W J; van der Steen, Antonius F W

    2005-04-01

    Intravascular ultrasound (IVUS) elastography visualizes local radial strain of arteries in so-called elastograms to detect rupture-prone plaques. However, due to the unknown arterial stress distribution these elastograms cannot be directly interpreted as a morphology and material composition image. To overcome this limitation we have developed a method that reconstructs a Young's modulus image from an elastogram. This method is especially suited for thin-cap fibroatheromas (TCFAs), i.e., plaques with a media region containing a lipid pool covered by a cap. Reconstruction is done by a minimization algorithm that matches the strain image output, calculated with a parametric finite element model (PFEM) representation of a TCFA, to an elastogram by iteratively updating the PFEM geometry and material parameters. These geometry parameters delineate the TCFA media, lipid pool and cap regions by circles. The material parameter for each region is a Young's modulus, EM, EL, and EC, respectively. The method was successfully tested on computer-simulated TCFAs (n = 2), one defined by circles, the other by tracing TCFA histology, and additionally on a physical phantom (n = 1) having a stiff wall (measured EM = 16.8 kPa) with an eccentric soft region (measured EL = 4.2 kPa). Finally, it was applied on human coronary plaques in vitro (n = 1) and in vivo (n = 1). The corresponding simulated and measured elastograms of these plaques showed radial strain values from 0% up to 2% at a pressure differential of 20, 20, 1, 20, and 1 mmHg respectively. The used/reconstructed Young's moduli [kPa] were for the circular plaque EL = 50/66, EM = 1500/1484, EC = 2000/2047, for the traced plaque EL = 25/1, EM = 1000/1148, EC = 1500/1491, for the phantom EL = 4.2/4 kPa, EM = 16.8/16, for the in vitro plaque EL = n.a./29, EM = n.a./647, EC = n.a./1784 kPa and for the in vivo plaque EL = n.a./2, EM = n.a./188, Ec = n.a./188 kPa.

  11. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.

    PubMed

    Verjans, Johan W; Osborn, Eric A; Ughi, Giovanni J; Calfon Press, Marcella A; Hamidi, Ehsan; Antoniadis, Antonios P; Papafaklis, Michail I; Conrad, Mark F; Libby, Peter; Stone, Peter H; Cambria, Richard P; Tearney, Guillermo J; Jaffer, Farouc A

    2016-09-01

    This study sought to determine whether indocyanine green (ICG)-enhanced near-infrared fluorescence (NIRF) imaging can illuminate high-risk histologic plaque features of human carotid atherosclerosis, and in coronary atheroma of living swine, using intravascular NIRF-optical coherence tomography (OCT) imaging. New translatable imaging approaches are needed to identify high-risk biological signatures of atheroma. ICG is a U.S. Food and Drug Administration-approved NIRF imaging agent that experimentally targets plaque macrophages and lipid in areas of enhanced endothelial permeability. However, it is unknown whether ICG can target atheroma in patients. Eight patients were enrolled in the BRIGHT-CEA (Indocyanine Green Fluorescence Uptake in Human Carotid Artery Plaque) trial. Five patients were injected intravenously with ICG 99 ± 25 min before clinically indicated carotid endarterectomy. Three saline-injected endarterectomy patients served as control subjects. Excised plaques underwent analysis by intravascular NIRF-OCT, reflectance imaging, microscopy, and histopathology. Next, following ICG intravenous injection, in vivo intracoronary NIRF-OCT and intravascular ultrasound imaged 3 atheroma-bearing coronary arteries of a diabetic, cholesterol-fed swine. ICG was well tolerated; no adverse clinical events occurred up to 30 days post-injection. Multimodal NIRF imaging including intravascular NIRF-OCT revealed that ICG accumulated in all endarterectomy specimens. Plaques from saline-injected control patients exhibited minimal NIRF signal. In the swine experiment, intracoronary NIRF-OCT identified ICG uptake in all intravascular ultrasound-identified plaques in vivo. On detailed microscopic evaluation, ICG localized to plaque areas exhibiting impaired endothelial integrity, including disrupted fibrous caps, and within areas of neovascularization. Within human plaque areas of endothelial abnormality, ICG was spatially related to localized zones of plaque macrophages and lipid, and, notably, intraplaque hemorrhage. This study demonstrates that ICG targets human plaques exhibiting endothelial abnormalities and provides new insights into its targeting mechanisms in clinical and experimental atheroma. Intracoronary NIRF-OCT of ICG may offer a novel, clinically translatable approach to image pathobiological aspects of coronary atherosclerosis. (Indocyanine Green Fluorescence Uptake in Human Carotid Artery Plaque [BRIGHT-CEA]; NCT01873716). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  13. Impact of Dual Lipid-Lowering Strategy With Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients With Percutaneous Coronary Intervention: The Multicenter Randomized Controlled PRECISE-IVUS Trial.

    PubMed

    Tsujita, Kenichi; Sugiyama, Seigo; Sumida, Hitoshi; Shimomura, Hideki; Yamashita, Takuro; Yamanaga, Kenshi; Komura, Naohiro; Sakamoto, Kenji; Oka, Hideki; Nakao, Koichi; Nakamura, Sunao; Ishihara, Masaharu; Matsui, Kunihiko; Sakaino, Naritsugu; Nakamura, Natsuki; Yamamoto, Nobuyasu; Koide, Shunichi; Matsumura, Toshiyuki; Fujimoto, Kazuteru; Tsunoda, Ryusuke; Morikami, Yasuhiro; Matsuyama, Koushi; Oshima, Shuichi; Kaikita, Koichi; Hokimoto, Seiji; Ogawa, Hisao

    2015-08-04

    Despite standard statin therapy, a majority of patients retain a high "residual risk" of cardiovascular events. The aim of this study was to evaluate the effects of ezetimibe plus atorvastatin versus atorvastatin monotherapy on the lipid profile and coronary atherosclerosis in Japanese patients who underwent percutaneous coronary intervention (PCI). This trial was a prospective, randomized, controlled, multicenter study. Eligible patients who underwent PCI were randomly assigned to atorvastatin alone or atorvastatin plus ezetimibe (10 mg) daily. Atorvastatin was uptitrated with a treatment goal of low-density lipoprotein cholesterol (LDL-C) <70 mg/dl. Serial volumetric intravascular ultrasound was performed at baseline and again at 9 to 12 months to quantify the coronary plaque response in 202 patients. The combination of atorvastatin/ezetimibe resulted in lower levels of LDL-C than atorvastatin monotherapy (63.2 ± 16.3 mg/dl vs. 73.3 ± 20.3 mg/dl; p < 0.001). For the absolute change in percent atheroma volume (PAV), the mean difference between the 2 groups (-1.538%; 95% confidence interval [CI]: -3.079% to 0.003%) did not exceed the pre-defined noninferiority margin of 3%, but the absolute change in PAV did show superiority for the dual lipid-lowering strategy (-1.4%; 95% CI: -3.4% to -0.1% vs. -0.3%; 95% CI: -1.9% to 0.9% with atorvastatin alone; p = 0.001). For PAV, a significantly greater percentage of patients who received atorvastatin/ezetimibe showed coronary plaque regression (78% vs. 58%; p = 0.004). Both strategies had acceptable side effect profiles, with a low incidence of laboratory abnormalities and cardiovascular events. Compared with standard statin monotherapy, the combination of statin plus ezetimibe showed greater coronary plaque regression, which might be attributed to cholesterol absorption inhibition-induced aggressive lipid lowering. (Plaque Regression With Cholesterol Absorption Inhibitor or Synthesis Inhibitor Evaluated by Intravascular Ultrasound [PRECISE-IVUS]; NCT01043380). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice.

    PubMed

    Ulrich, Victoria; Rotllan, Noemi; Araldi, Elisa; Luciano, Amelia; Skroblin, Philipp; Abonnenc, Mélanie; Perrotta, Paola; Yin, Xiaoke; Bauer, Ashley; Leslie, Kristen L; Zhang, Pei; Aryal, Binod; Montgomery, Rusty L; Thum, Thomas; Martin, Kathleen; Suarez, Yajaira; Mayr, Manuel; Fernandez-Hernando, Carlos; Sessa, William C

    2016-06-01

    Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target genes of the ECM (col1A and col3A) resulting in reduced lesion size, enhanced fibrous cap thickness, and reduced necrotic zones. Sustained LNA-miR-29 treatment did not affect circulating lipids, blood chemistry, or ECM of solid organs including liver, lung, kidney, spleen, or heart. Collectively, these data support the idea that antagonizing miR-29 may promote beneficial plaque remodeling as an independent approach to stabilize vulnerable atherosclerotic lesions. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Effects of Combination of Ezetimibe and Rosuvastatin on Coronary Artery Plaque in Patients with Coronary Heart Disease.

    PubMed

    Wang, Xiaofang; Zhao, Xiaoyan; Li, Ling; Yao, Haimu; Jiang, Yan; Zhang, Jinying

    2016-05-01

    In approximately 80% of cardiovascular disease-related deaths, patients suffer from coronary atherosclerotic heart disease. Ezetimibe is the first intestinal cholesterol absorption inhibitor. Its combination with statins for treating coronary atherosclerotic heart disease has attracted attention worldwide. The study group comprised 106 patients with coronary atherosclerotic heart disease and hyperlipidaemia. Each was randomly assigned to one of two groups: (1) Ezetimibe (10mg, once a night) plus rosuvastatin (10mg, once a night) (n=55) or (2) Rosuvastatin alone (10mg, once a night) (n=51). The primary endpoint was new or recurrent myocardial infarction, unstable angina pectoris, cardiac death, and stroke. Blood lipid, high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9) levels were measured before treatment and at one, six and 12 months after treatment. Coronary plaque size and compositional changes were determined using intravascular ultrasonography. The combination of ezetimibe plus rosuvastatin decreased total cholesterol, low-density lipoprotein cholesterol, hsCRP, IL-6, and MMP-9 levels at six and 12 months after treatment. Statistical significance was detected between two groups. At 12 months, the plaque burden, plaque cross-sectional area, and percentage of necrotic plaque composition were significantly lower in the combination group than in rosuvastatin alone group (P<0.05). And compared with rosuvastatin alone group, the primary endpoint decreased more effectively in combination group. The combination of ezetimibe and rosuvastatin apparently diminishes lipid levels and plaque burden and improves plaque stability, which may be associated with the potent inhibitory effects of ezetimibe and rosuvastatin on inflammatory cytokines. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  16. Rationale and design of the PREDICT (Plaque Registration and Evaluation Detected In Computed Tomography) registry.

    PubMed

    Yamamoto, Hideya; Awai, Kazuo; Kuribayashi, Sachio; Kihara, Yasuki

    2014-01-01

    At least two-thirds of cases of acute coronary syndrome are caused by disruption of an atherosclerotic plaque. The natural history of individual plaques is unknown and needs to be established. The Plaque Registration and Evaluation Detected In Computed Tomography (PREDICT) registry is a prospective, multicenter, longitudinal, observational registry. This registry was designed to examine the relationships among coronary CT angiography (CTA) findings and clinical findings, mortality, and morbidity. The relationships among progression of coronary atherosclerosis, including changes in plaque characteristics on coronary CTA, and serum lipid levels and modification of coronary risk factors will also be evaluated. From October 2009 to December 2012, 3015 patients who underwent coronary CTA in 29 centers in Japan were enrolled. These patients were followed for 2 years. The primary end points were considered as all-cause mortality and major cardiac events, including cardiac death, nonfatal myocardial infarction, and unstable angina that required hospitalization. The secondary end points were heart failure that required administration of diuretics, target vessel revascularization, cerebral infarction, peripheral arterial disease, and invasive coronary angiography. Blood pressure, serum lipid, and C-reactive protein levels and all cardiovascular events were recorded at 1 and 2 years. If the initial coronary CTA showed any stenosis or plaques, follow-up coronary CTA was scheduled at 2 years to determine changes in coronary lesions, including changes in plaque characteristics. Analysis of the PREDICT registry data will clarify the relationships between coronary CTA findings and cardiovascular mortality and morbidity in a collaborative multicenter fashion. This trial is registered at www.clinicaltrials.gov as NCT 00991835. Copyright © 2014 Society of Cardiovascular Computed Tomography. All rights reserved.

  17. Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hirano, Mitsuharu; Tonosaki, Shozo; Ueno, Takahiro; Tanaka, Masato; Hasegawa, Takemi

    2014-02-01

    We report an improved method to visualize lipid distribution in axial and lateral direction within arterial vessel walls by spectroscopic spectral-domain Optical Coherence Tomography (OCT) at 1.7μm wavelength for identification of lipidrich plaque that is suspected to cause coronary events. In our previous method, an extended InGaAs-based line camera detects an OCT interferometric spectrum from 1607 to 1766 nm, which is then divided into twenty subbands, and A-scan OCT profile is calculated for each subband, resulting in a tomographic spectrum. This tomographic spectrum is decomposed into lipid spectrum having an attenuation peak at 1730 nm and non-lipid spectrum independent of wavelength, and the weight of each spectrum, that is, lipid and non-lipid score is calculated. In this paper, we present an improved algorithm, in which we have combined the lipid score and the non-lipid score to derive a corrected lipid score. We have found that the corrected lipid score is better than the raw lipid score in that the former is more robust against false positive occurring due to abrupt change in reflectivity at vessel surface. In addition, we have optimized spatial smoothing filter and reduced false positive and false negative due to detection noise and speckle. We have verified this improved algorithm by the use of measuring data of normal porcine coronary artery and lard as a model of lipid-rich plaque and confirmed that both the sensitivity and the specificity of lard are 92%.

  18. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis

    PubMed Central

    Luo, Yongting; Duan, Hongxia; Qian, Yining; Feng, Liqun; Wu, Zhenzhen; Wang, Fei; Feng, Jing; Yang, Dongling; Qin, Zhihai; Yan, Xiyun

    2017-01-01

    The persistence of cholesterol-engorged macrophages (foam cells) in the artery wall fuels the development of atherosclerosis. However, the mechanism that regulates the formation of macrophage foam cells and impedes their emigration out of inflamed plaques is still elusive. Here, we report that adhesion receptor CD146 controls the formation of macrophage foam cells and their retention within the plaque during atherosclerosis exacerbation. CD146 is expressed on the macrophages in human and mouse atheroma and can be upregulated by oxidized low-density lipoprotein (oxLDL). CD146 triggers macrophage activation by driving the internalization of scavenger receptor CD36 during lipid uptake. In response to oxLDL, macrophages show reduced migratory capacity toward chemokines CCL19 and CCL21; this capacity can be restored by blocking CD146. Genetic deletion of macrophagic CD146 or targeting of CD146 with an antibody result in much less complex plaques in high-fat diet-fed ApoE−/− mice by causing lipid-loaded macrophages to leave plaques. Collectively, our findings identify CD146 as a novel retention signal that traps macrophages within the artery wall, and a promising therapeutic target in atherosclerosis treatment. PMID:28084332

  19. Atherosclerosis is a vascular stem cell disease caused by insulin.

    PubMed

    Traunmüller, Friederike

    2018-07-01

    The present article proposes the hypothesis that when multipotent vascular stem cells are exposed to excessive insulin in a rhythmic pattern of sharply rising and falling concentrations, their differentiation is misdirected toward adipogenic and osteogenic cell lineages. This results in plaque-like accumulation of adipocytes with fat and cholesterol deposition from adipocyte debris, and osteogenic (progenitor) cells with a calcified matrix in advanced lesions. The ingrowth of capillaries and infiltration with macrophages, which upon uptake of lipids turn into foam cells, are unspecific pro-resolving reactions. Epidemiological, histopathological, pharmacological, and experimental evidence in favour of this hypothesis is summarised. Copyright © 2018. Published by Elsevier Ltd.

  20. Sex Differences in Nonculprit Coronary Plaque Microstructures on Frequency-Domain Optical Coherence Tomography in Acute Coronary Syndromes and Stable Coronary Artery Disease.

    PubMed

    Kataoka, Yu; Puri, Rishi; Hammadah, Muhammad; Duggal, Bhanu; Uno, Kiyoko; Kapadia, Samir R; Tuzcu, E Murat; Nissen, Steven E; King, Peta; Nicholls, Stephen J

    2016-08-01

    Numerous reports suggest sex-related differences in atherosclerosis. Frequency-domain optical coherence tomography has enabled visualization of plaque microstructures associated with disease instability. The prevalence of plaque microstructures between sexes has not been characterized. We investigated sex differences in plaque features in patients with coronary artery disease. Nonculprit plaques on frequency-domain optical coherence tomography imaging were compared between men and women with either stable coronary artery disease (n=320) or acute coronary syndromes (n=115). A greater prevalence of cardiovascular risk factors was observed in women. Nonculprit plaques in women with stable coronary artery disease were more likely to exhibit plaque erosion (8.6% versus 0.3%; P=0.03) and a smaller lipid arc (163.1±71.4° versus 211.2±71.2°; P=0.03), and less likely to harbor cholesterol crystals (17.2% versus 27.5%; P=0.01) and calcification (15.4% versus 34.4%; P=0.008), whereas fibrous cap thickness (105.2±62.1 versus 96.1±40.4 µm; P=0.57), the prevalence of thin-cap fibroatheroma (26.5% versus 25.2%; P=0.85), and microchannels (19.2% versus 20.5%; P=0.95) were comparable. In women with acute coronary syndrome, a smaller lipid arc (171.6±53.2° versus 235.8±86.4°; P=0.03), a higher frequency of plaque erosion (11.4% versus 0.6%; P=0.04), and a lower prevalence of cholesterol crystal (28.6% versus 38.2%; P=0.03) and calcification (10.0% versus 23.7%; P=0.01) were observed. These differences persisted after adjusting clinical demographics. Although thin-cap fibroatheromas in men clustered within proximal arterial segments, thin-cap fibroatheromas were evenly distributed in women. Despite more comorbid risk factors in women, their nonculprit plaques exhibited more plaque erosion, and less cholesterol and calcium content. This distinct phenotype suggests sex-related differences in the pathophysiology of atherosclerosis. © 2016 American Heart Association, Inc.

  1. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  2. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations.

    PubMed

    Teng, Zhongzhao; Sadat, Umar; Brown, Adam J; Gillard, Jonathan H

    2014-03-03

    Stroke remains the most prevalent disabling illness today, with internal carotid artery luminal stenosis due to atheroma formation responsible for the majority of ischemic cerebrovascular events. Severity of luminal stenosis continues to dictate both patient risk stratification and the likelihood of surgical intervention. But there is growing evidence to suggest that plaque morphology may help improve pre-existing risk stratification criteria. Plaque components such a fibrous tissue, lipid rich necrotic core and calcium have been well investigated but plaque hemorrhage (PH) has been somewhat overlooked. In this review we discuss the pathogenesis of PH, its role in dictating plaque vulnerability, PH imaging techniques, marterial properties of atherosclerotic tissues, in particular, those obtained based on in vivo measurements and effect of PH in modulating local biomechanics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Symptomatic and asymptomatic carotid artery plaque

    PubMed Central

    Mughal, Majid M; Khan, Mohsin K; DeMarco, J Kevin; Majid, Arshad; Shamoun, Fadi; Abela, George S

    2011-01-01

    Carotid atherosclerotic plaques represent both stable and unstable atheromatous lesions. Atherosclerotic plaques that are prone to rupture owing to their intrinsic composition such as a large lipid core, thin fibrous cap and intraplaque hemorrhage are associated with subsequent thromboembolic ischemic events. At least 15–20% of all ischemic strokes are attributable to carotid artery atherosclerosis. Characterization of plaques may enhance the understanding of natural history and ultimately the treatment of atherosclerotic disease. MRI of carotid plaque and embolic signals during transcranial Doppler have identified features beyond luminal stenosis that are predictive of future transient ischemic attacks and stroke. The value of specific therapies to prevent stroke in symptomatic and asymptomatic patients with severe carotid artery stenosis are the subject of current research and analysis of recently published clinical trials that are discussed in this article. PMID:21985544

  4. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    PubMed Central

    Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.

    2013-01-01

    Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602

  5. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  6. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase.

    PubMed

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2015-02-01

    We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.

  7. Insulin-like Growth Factor I Reduces Lipid Oxidation and Foam Cell Formation via Downregulation of 12/15-lipoxygenase

    PubMed Central

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2014-01-01

    Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319

  8. A Salmon Protein Hydrolysate Exerts Lipid-Independent Anti-Atherosclerotic Activity in ApoE-Deficient Mice

    PubMed Central

    Busnelli, Marco; Bjørndal, Bodil; Holm, Sverre; Brattelid, Trond; Manzini, Stefano; Ganzetti, Giulia S.; Dellera, Federica; Halvorsen, Bente; Aukrust, Pål; Sirtori, Cesare R.; Nordrehaug, Jan E.; Skorve, Jon; Berge, Rolf K.; Chiesa, Giulia

    2014-01-01

    Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids. PMID:24840793

  9. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core.

    PubMed

    Yamada, Kiyofumi; Song, Yan; Hippe, Daniel S; Sun, Jie; Dong, Li; Xu, Dongxiang; Ferguson, Marina S; Chu, Baocheng; Hatsukami, Thomas S; Chen, Min; Zhou, Cheng; Yuan, Chun

    2012-11-29

    Carotid intraplaque hemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. The aim of this study was to evaluate the quantitative relationships between high intensity signals (HIS) in the plaque on TOF-MRA and IPH or LRNC volumes as measured by multicontrast weighted CMR. Seventy six patients with a suspected carotid artery stenosis or carotid plaque by ultrasonography underwent multicontrast carotid CMR. HIS presence and volume were measured from TOF-MRA MIP images while IPH and LRNC volumes were separately measured from multicontrast CMR. For detecting IPH, HIS on MIP images overall had high specificity (100.0%, 95% CI: 93.0 - 100.0%) but relatively low sensitivity (32%, 95% CI: 20.8 - 47.9%). However, the sensitivity had a significant increasing relationship with underlying IPH volume (p = 0.033) and degree of stenosis (p = 0.022). Mean IPH volume was 2.7 times larger in those with presence of HIS than in those without (142.8 ± 97.7 mm(3) vs. 53.4 ± 56.3 mm(3), p = 0.014). Similarly, mean LRNC volume was 3.4 times larger in those with HIS present (379.8 ± 203.4 mm(3) vs. 111.3 ± 122.7 mm(3), p = 0.001). There was a strong correlation between the volume of the HIS region and the IPH volume measured from multicontrast CMR (r = 0.96, p < 0.001). MIP images are easily reformatted from three minute, routine, clinical TOF sequences. High intensity signals in carotid plaque on TOF-MRA MIP images are associated with increased intraplaque hemorrhage and lipid-rich necrotic core volumes. The technique is most sensitive in patients with moderate to severe stenosis.

  10. Evaluating practice patterns for managing moderate to severe plaque psoriasis

    PubMed Central

    Poulin, Yves; Wasel, Norman; Chan, Daphne; Bernstein, Geula; Andrew, Robin; Fraquelli, Elisa; Papp, Kim

    2012-01-01

    Abstract Objective To describe practice patterns for care of Canadian patients with moderate to severe plaque psoriasis. Design Online survey of a consumer panel. Setting Participants were drawn from a population-wide Canadian consumer database. Participants To be eligible to participate, respondents had to have been diagnosed with plaque psoriasis within the past 5 years, and to have had body surface area involvement of 3% or greater in the past 5 years, or to have psoriasis on a sensitive area of the body (hands, feet, scalp, face, or genitals), or to be currently receiving treatment with systemic agents or phototherapy for psoriasis. Main outcome measures Proportion of respondents with psoriasis managed by FPs and other specialists, psoriasis therapies, comorbidities, and patient satisfaction. Results Invitations were sent to 3845 panelists with self-reported psoriasis, of which 514 qualified to complete the survey. Family physicians were reported to be the primary providers for diagnosis and ongoing care of psoriasis in all provinces except Quebec. Overall physician care was reported to be satisfactory by 62% of respondents. Most respondents receiving over-the-counter therapies (55%) or prescribed topical therapies (61%) reported that their psoriasis was managed by FPs. Respondents receiving prescription oral or injectable medications or phototherapy were mainly managed by dermatologists (42%, 74%, and 71% of respondents, respectively). Ongoing management of respondents with body surface area involvement of 10% or greater was mainly split between dermatologists (47%) and FPs (45%), compared with rheumatologists (4%) or other health care professionals (4%). Of those respondents receiving medications for concomitant health conditions, treatment for high blood pressure was most common (92%), followed by treatment for heart disease (75%) and elevated cholesterol and lipid levels (68%). Conclusion Patient-reported practice patterns for the diagnosis and management of moderate to severe psoriasis vary among provinces and in primary and secondary care settings. PMID:22859642

  11. Hippocampal lipid differences in Alzheimer's disease: a human brain study using matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Mendis, Lakshini H S; Grey, Angus C; Faull, Richard L M; Curtis, Maurice A

    2016-10-01

    Alzheimer's disease (AD), the leading cause of dementia, is pathologically characterized by β-amyloid plaques and tau tangles. However, there is also evidence of lipid dyshomeostasis-mediated AD pathology. Given the structural diversity of lipids, mass spectrometry is a useful tool for studying lipid changes in AD. Although there have been a few studies investigating lipid changes in the human hippocampus in particular, there are few reports on how lipids change in each hippocampal subfield (e.g., Cornu Ammonis [CA] 1-4, dentate gyrus [DG] etc.). Since each subfield has its own function, we postulated that there could be lipid changes that are unique to each. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry to investigate specific lipid changes in each subfield in AD. Data from the hippocampus region of six age- and gender-matched normal and AD pairs were analyzed with SCiLS lab 2015b software (SCiLS GmbH, Germany; RRID:SCR_014426), using an analysis workflow developed in-house. Hematoxylin, eosin, and luxol fast blue staining were used to precisely delineate each anatomical hippocampal subfield. Putative lipid identities, which were consistent with published data, were assigned using MS/MS. Both positively and negatively charged lipid ion species were abundantly detected in normal and AD tissue. While the distribution pattern of lipids did not change in AD, the abundance of some lipids changed, consistent with trends that have been previously reported. However, our results indicated that the majority of these lipid changes specifically occur in the CA1 region. Additionally, there were many lipid changes that were specific to the DG. Matrix-assisted laser desorption/ionization-imaging mass spectrometry and our analysis workflow provide a novel method to investigate specific lipid changes in hippocampal subfields. Future work will focus on elucidating the role that specific lipid differences in each subfield play in AD pathogenesis.

  12. [Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm].

    PubMed

    Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian

    2017-06-01

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

  13. Advances in MRI for the evaluation of carotid atherosclerosis

    PubMed Central

    Teng, Z; Patterson, A J; Lin, J-M; Young, V; Graves, M J; Gillard, J H

    2015-01-01

    Carotid artery atherosclerosis is an important source of mortality and morbidity in the Western world with significant socioeconomic implications. The quest for the early identification of the vulnerable carotid plaque is already in its third decade and traditional measures, such as the sonographic degree of stenosis, are not selective enough to distinguish those who would really benefit from a carotid endarterectomy. MRI of the carotid plaque enables the visualization of plaque composition and specific plaque components that have been linked to a higher risk of subsequent embolic events. Blood suppressed T1 and T2 weighted and proton density-weighted fast spin echo, gradient echo and time-of-flight sequences are typically used to quantify plaque components such as lipid-rich necrotic core, intraplaque haemorrhage, calcification and surface defects including erosion, disruption and ulceration. The purpose of this article is to review the most important recent advances in MRI technology to enable better diagnostic carotid imaging. PMID:25826233

  14. Cystatin C–Adiponectin Complex in Plasma Associates with Coronary Plaque Instability

    PubMed Central

    Matsuoka, Tetsuro; Kayama, Kento; Onishi, Sumire; Matsuo, Natsumi

    2017-01-01

    Aim: Adiponectin (APN) is an adipocyte-derived bioactive molecule with antiatherogenic properties. We previously reported that cystatin C (CysC) abolished the anti-atherogenic effects of APN. We aimed to elucidate the clinical significance of CysC–APN complex in patients with coronary artery disease (CAD). Methods: We enrolled 43 stable CAD male patients to examine the relationship between CysC–APN complex and coronary plaque characteristics. Serum was immunoprecipitated by the anti-APN antibody and immunoblotted by the anti-CysC antibody to demonstrate the presence of CysC–APN complexes in vivo. To confirm their binding in vitro, HEK293T cell lysates overexpressing myc-APN and FLAG-CysC were immunoprecipitated with an anti-myc or anti-FLAG antibody, followed by immunoblotting with an anti-APN or anti-CysC antibody. Results: CysC was identified as a specific co-immunoprecipitant with APN by the anti-APN antibody in human serum. In vitro, FLAG-CysC was co-immunoprecipitated with myc-APN by the antimyc antibody and myc-APN was co-immunoprecipitated with FLAG-CysC by the anti-FLAG antibody. Among CAD patients, serum CysC–APN complex levels negatively correlated with fibrotic components of coronary plaques and positively correlated with either necrotic or lipidic plus necrotic components. Plaque burden negatively correlated with serum APN levels but not serum CysC–APN complex levels. Serum CysC levels had no association with plaque characteristics. In multivariate analysis, CysC–APN complex levels were identified as the strongest negative factor for fibrotic components and the strongest positive factor for both necrotic and lipidic plus necrotic components. Conclusion: Measuring serum CysC–APN complex levels is helpful for evaluating coronary plaque instability in CAD patients. PMID:28321013

  15. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    PubMed

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  16. Ezetimibe reduces plaque inflammation in a rabbit model of atherosclerosis and inhibits monocyte migration in addition to its lipid-lowering effect

    PubMed Central

    Gómez-Garre, D; Muñoz-Pacheco, P; González-Rubio, ML; Aragoncillo, P; Granados, R; Fernández-Cruz, A

    2009-01-01

    Background and purpose: Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, might also suppress inflammatory components of atherogenesis. We have studied the effects of ezetimibe on two characteristics of atherosclerotic plaques (infiltrate and fibrosis) and on expression of inflammatory genes in a rabbit model of accelerated atherosclerosis. Experimental approach: Femoral atherosclerosis was induced by a combination of endothelial desiccation and atherogenic diet. Animals were randomized to ezetimibe (0.6 mg·kg−1·day−1), simvastatin (5 mg·kg−1·day−1), ezetimibe plus simvastatin or no treatment, still on atherogenic diet. A control group of rabbits received normolipidemic diet. Key results: Rabbits fed the normolipidemic diet showed normal plasma lipid levels. Either the normolipidemic diet or drug treatment reduced the intima/media ratio (normolipidemic diet: 22%, ezetimibe: 13%, simvastatin: 27%, ezetimibe + simvastatin: 28%), compared with rabbits with atherosclerosis. Ezetimibe also decreased macrophage content and monocyte chemoattractant protein-1 expression in atherosclerotic lesions. Furthermore, ezetimibe reduced the increased activity of nuclear factor κB in peripheral blood leucocytes and plasma C-reactive protein levels in rabbits with atherosclerosis. In THP-1 cells, ezetimibe decreased monocyte chemoattractant protein-1-induced monocyte migration. Importantly, the combination of ezetimibe with simvastatin was associated with a more significant reduction in plaque monocyte/macrophage content and some proinflammatory markers than observed with each drug alone. Conclusions and implications: Ezetimibe had beneficial effects both on atherosclerosis progression and plaque stabilization and showed additional anti-atherogenic benefits when combined with simvastatin. Its effect on monocyte migration provides a potentially beneficial action, in addition to its effects on lipids. PMID:19222481

  17. Near-Infrared Spectroscopy Enhances Intravascular Ultrasound Assessment of Vulnerable Coronary Plaque: A Combined Pathological and In Vivo Study.

    PubMed

    Puri, Rishi; Madder, Ryan D; Madden, Sean P; Sum, Stephen T; Wolski, Kathy; Muller, James E; Andrews, Jordan; King, Karilane L; Kataoka, Yu; Uno, Kiyoko; Kapadia, Samir R; Tuzcu, E Murat; Nissen, Steven E; Virmani, Renu; Maehara, Akiko; Mintz, Gary S; Nicholls, Stephen J

    2015-11-01

    Pathological studies demonstrate the dual significance of plaque burden (PB) and lipid composition for mediating coronary plaque vulnerability. We evaluated relationships between intravascular ultrasound (IVUS)-derived PB and arterial remodeling with near-infrared spectroscopy (NIRS)-derived lipid content in ex vivo and in vivo human coronary arteries. Ex vivo coronary NIRS and IVUS imaging was performed through blood in 116 coronary arteries of 51 autopsied hearts, followed by 2-mm block sectioning (n=2070) and histological grading according to modified American Heart Association criteria. Lesions were defined as the most heavily diseased 2-mm block per imaged artery on IVUS. IVUS-derived PB and NIRS-derived lipid core burden index (LCBI) of each block and lesion were analyzed. Block-level analysis demonstrated significant trends of increasing PB and LCBI across more complex atheroma (Ptrend <0.001 for both LCBI and PB). Lesion-based analyses demonstrated the highest LCBI and remodeling index within coronary fibroatheroma (Ptrend <0.001 and 0.02 versus all plaque groups, respectively). Prediction models demonstrated similar abilities of PB, LCBI, and remodeling index for discriminating fibroatheroma (c indices: 0.675, 0.712, and 0.672, respectively). A combined PB+LCBI analysis significantly improved fibroatheroma detection accuracy (c index 0.77, P=0.028 versus PB; net-reclassification index 43%, P=0.003), whereas further adding remodeling index did not (c index 0.80, P=0.27 versus PB+LCBI). In vivo comparisons of 43 age- and sex-matched patients (to the autopsy cohort) undergoing combined NIRS-IVUS coronary imaging yielded similar associations to those demonstrated ex vivo. Adding NIRS to conventional IVUS-derived PB imaging significantly improves the ability to detect more active, potentially vulnerable coronary atheroma. © 2015 American Heart Association, Inc.

  18. Valsartan Promoting Atherosclerotic Plaque Stabilization by Upregulating Renalase: A Potential-Related Gene of Atherosclerosis.

    PubMed

    Zhou, Mingxue; Ma, Chao; Liu, Weihong; Liu, Hongxu; Wang, Ning; Kang, Qunfu; Li, Ping

    2015-09-01

    Renalase is a protein that can regulate sympathetic nerve activity by metabolizing catecholamines, while redundant catecholamines are thought to contribute to atherosclerosis (As). Catecholamine release can be facilitated by angiotensin (Ang) II by binding to Ang II type 1 (AT1) receptors. Valsartan, a special AT1 antagonist, can dilate blood vessels and reduce blood pressure, but it remained unclear whether valsartan can promote the stability of atherosclerotic plaque by affecting renalase. This study examined the tissue distribution of renalase in ApoE(-/-) mice fed with a high-fat diet and the effect of valsartan on expression of renalase. ApoE(-/-) mice were fed with a high-fat diet for 13 or 26 weeks. As a control, 10 C57BL mice were fed with a standard chow diet. After 13 weeks on the high-fat diet, the ApoE(-/-) mice were randomized (10 mice/group) and treated with valsartan, simvastatin, or distilled water (control group) for an additional 13 weeks accompanied by a high-fat diet. Knockout of ApoE caused a dramatic increase in expression of renalase in mice adipose tissue. With the disturbance of lipid metabolism induced by a high-fat diet, renalase expression decreased in the liver. Renalase can be expressed in smooth muscle cells and M2 macrophages in atherosclerotic plaque, and its expression gradually decreases in the fibrous cap during the transition from stable to vulnerable atherosclerotic plaque. Valsartan, an AT1 receptor antagonist, promotes the stabilization of atherosclerotic plaque by increasing the levels of renalase in serum and the expression of renalase in the fibrous cap of atherosclerotic plaque. It also reduces triglyceride levels in serum and increases the expression of renalase in the liver. Renalase may be a potential-related gene of lipid metabolism and As, and it may be the possible molecular target of valsartan to help stabilize atherosclerotic plaque. © The Author(s) 2015.

  19. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy

    PubMed Central

    Small, David M.; Jones, Jason S.; Tendler, Irwin I.; Miller, Paul E.; Ghetti, Andre; Nishimura, Nozomi

    2017-01-01

    Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool. PMID:29359098

  20. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  1. Detection and characterization of early plaque formations by Raman probe spectroscopy and optical coherence tomography: an in vivo study on a rabbit model

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Dochow, Sebastian; Egodage, Kokila D.; Romeike, Bernd F.; Brehm, Bernhard R.; Popp, Jürgen

    2018-01-01

    Intravascular imaging techniques provide detailed specification about plaque appearance and morphology, but cannot deliver information about the biochemical composition of atherosclerotic plaques. As the biochemical composition is related to the plaque type, important aspects such as the risk of a plaque rupture and treatment are still difficult to assess. Currently, various spectroscopic techniques are tested for potential applications for the chemical analysis of plaque depositions. Here, we employ Raman spectroscopy in combination with optical coherence tomography (OCT) for the characterization of plaques on rabbits in vivo. Experiments were carried out on New Zealand white rabbits treated with a fat- and cholesterol-enriched diet, using a Raman probe setup with a 785-nm multimode laser as an excitation source. Subsequently, OCT images were acquired with a swept source at 1305±55 nm at 22.6 mW. Raman spectra were recorded from normal regions and regions with early plaque formations. The probe positioning was monitored by x-ray angiography. The spectral information identified plaque depositions consisting of lipids, with triglycerides as the major component. Afterward, OCT images of the spectroscopically investigated areas were obtained. The spectral information correlates well with the observed intravascular morphology and is in good agreement with histology. Raman spectroscopy can provide detailed biochemical specification of atherosclerotic plaques.

  2. [Imprints of coronary plaque particles in the PTCA balloon surface during the dilatation processing].

    PubMed

    Werner, D; Behrend, D; Schmitz, K P; Urbaszek, W

    1995-05-01

    Seventy-six PTCA-balloons after coronary angioplasty were studied for superficial changes using scanning electron microscopy (SEM) after fixing in glutardialdehyde. Coronary plaque particles were identified on the balloon surface in 52 cases (68%). Twelve new and unused balloons were subjected to the same chemical treatment and SEM showed no imprints. The average length of the longest imprinted plaques was 128 +/- 201 microns and the average number of plaque particles per balloon was 4.9 +/- 2.7. The maximal dilatation pressure and the number of dilatations showed no influence on the impregnation of plaque particles. However, longer plaque imprints tended to occur under low dilatation pressure. Imprints of plaque particles were significantly higher in patients with low cholesterol (p = 0.0001) and low triglycerides (p = 0.0016). No correlation was seen between imprint length and lipid levels. Similarly, the different balloon materials (polyethylene, polyolefincopolymer) showed no significant differences with regard to plaque occurrence. The PTCA-balloons, plaque particles and six coronary plaques obtained after endatherectomy were subjected to energy dispersive x-ray analysis (EDX) under SEM as EDX reveals qualitative and quantitative information about the structural elements. Highly significant differences in calcium, sodium, phosphorus and silicon contents (p = 0.0000) between plaque particles and balloon surface were observed, owing to the absence of these in balloon material. Thus EDX offers additional advantages over SEM in that it clearly differentiates deformed balloon surface, plaque particle, and retained contrast medium. Plaque particles can be recovered from balloon surfaces after PTCA. Depending upon their size, they could lead to coronary spasm or microembolic phenomenon.

  3. Fractal analysis of plaque border, a novel method for the quantification of atherosclerotic plaque contour irregularity, is associated with pro-atherogenic plasma lipid profile in subjects with non-obstructive carotid stenoses.

    PubMed

    Moroni, Francesco; Magnoni, Marco; Vergani, Vittoria; Ammirati, Enrico; Camici, Paolo G

    2018-01-01

    Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation.

  4. 3.0 T plaque imaging.

    PubMed

    Hinton-Yates, Denise P; Cury, Ricardo C; Wald, Lawrence L; Wiggins, Graham C; Keil, Boris; Seethmaraju, Ravi; Gangadharamurthy, Dakshinamurthy; Ogilvy, Christopher S; Dai, Guangping; Houser, Stuart L; Stone, James R; Furie, Karen L

    2007-10-01

    The aim of this article is to evaluate 3.0 T magnetic resonance imaging for characterization of vessel morphology and plaque composition. Emphasis is placed on early and moderate stages of carotid atherosclerosis, where increases in signal-to-noise (SNR) and contrast-to-noise (CNR) ratios compared with 1.5 T are sought. Comparison of in vivo 3.0 T imaging to histopathology is performed for validation. Parallel acceleration methods applied with an 8-channel carotid array are investigated as well as higher field ex vivo imaging to explore even further gains. The overall endeavor is to improve prospective assessment of atherosclerosis stage and stability for reduction of atherothrombotic event risk. A total of 10 male and female subjects ranging in age from 22 to 72 years (5 healthy and 5 with cardiovascular disease) participated. Custom-built array coils were used with endogenous and exogenous multicontrast bright and black-blood protocols for 3.0 T carotid imaging. Comparisons were performed to 1.5 T, and ex vivo plaque was stained with hematoxylin and eosin for histology. Imaging (9.4 T) was also performed on intact specimens. The factor of 2 gain in signal-to-noise SNR is realized compared with 1.5 T along with improved wall-lumen and plaque component CNR. Post-contrast black-blood imaging within 5-10 minutes of gadolinium injection is optimal for detection of the necrotic lipid component. In a preliminary 18-month follow-up study, this method provided measurement of a 50% reduction in lipid content with minimal change in plaque size in a subject receiving aggressive statin therapy. Parallel imaging applied with signal averaging further improves 3.0 T black-blood vessel wall imaging. The use of 3.0 T for carotid plaque imaging has demonstrated increases in SNR and CNR compared with 1.5 T. Quantitative prospective studies of moderate and early plaques are feasible at 3.0 T. Continued improvements in coil arrays, 3-dimensional pulse sequences, and the use of novel molecular imaging agents implemented at high field will further improve magnetic resonance plaque characterization.

  5. Mesenchymal Stem Cells Stabilize Atherosclerotic Vulnerable Plaque by Anti-Inflammatory Properties.

    PubMed

    Wang, Shuang-shuang; Hu, Si-wang; Zhang, Qing-hua; Xia, Ai-xiang; Jiang, Zhi-xin; Chen, Xiao-min

    2015-01-01

    Formation and progression of atherosclerotic vulnerable plaque (VP) is the primary cause of many cardio-cerebrovascular diseases such as acute coronary syndrome and stroke. It has been reported that bone marrow mesenchymal stem cells (MSC) exhibit protective effects against many kinds of diseases including myocardial infarction. Here, we examined the effects of intravenous MSC infusion on a VP model and provide novel evidence of its influence as a therapy in this animal disease model. Thirty healthy male New Zealand white rabbits were randomly divided into a MSC, VP or stable plaque (SP) group (n = 10/group) and received high fat diet and cold-induced common carotid artery intimal injury with liquid nitrogen to form atherosclerotic plaques. Serum hs-CRP, TNF-α, IL-6 and IL-10 levels were measured by ELISA at 1, 2, 3, 7, 14, 21 and 28 days after MSC transplantation. The animals were sacrificed at 4 weeks after MSC transplantation. Lesions in the right common carotid were observed using H&E and Masson staining, and the fibrous cap/lipid core ratio of atherosclerotic plaques were calculated. The expression of nuclear factor κB (NF-κB) and matrix metalloproteinase 1, 2, 9 (MMP-1,2,9) in the plaque were detected using immunohistochemistry, and apoptotic cells in the plaques were detected by TUNEL. In addition, the level of TNF-α stimulated gene/protein 6 (TSG-6) mRNA and protein were measured by quantitative Real-Time PCR and Western blotting, respectively. Two rabbits in the VP group died of lung infection and cerebral infarction respectively at 1 week after plaque injury by liquid nitrogen. Both H&E and Masson staining revealed that the plaques from the SP and MSC groups had more stable morphological structure and a larger fibrous cap/lipid core ratio than the VP group. Serum hs-CRP, TNF-α and IL-6 were significantly down-regulated, whereas IL-10 was significantly up-regulated in the MSC group compared with the VP group. .Immunohistochemistry analysis revealed that NF-κB and MMP expression was reduced in the MSC and SP groups compared to the VP group. Cell apoptosis decreased significantly in both the MSC and SP groups in comparison to the VP group. TSG-6 mRNA and protein expression were higher in the plaques of the MSC group compared to the VP and SP groups. Our study results suggest that MSC transplantation can effectively stabilize vulnerable plaques in atherosclerotic rabbits. This may potentially offer a new clinical application of MSC in atherosclerosis.

  6. Study design and rationale of "Synergistic Effect of Combination Therapy with Cilostazol and ProbUcol on Plaque Stabilization and Lesion REgression (SECURE)" study: a double-blind randomised controlled multicenter clinical trial

    PubMed Central

    2011-01-01

    Background Probucol, a cholesterol-lowering agent that paradoxically also lowers high-density lipoprotein cholesterol has been shown to prevent progression of atherosclerosis. The antiplatelet agent cilostazol, which has diverse antiatherogenic properties, has also been shown to reduce restenosis in previous clinical trials. Recent experimental studies have suggested potential synergy between probucol and cilostazol in preventing atherosclerosis, possibly by suppressing inflammatory reactions and promoting cholesterol efflux. Methods/design The Synergistic Effect of combination therapy with Cilostazol and probUcol on plaque stabilization and lesion REgression (SECURE) study is designed as a double-blind, randomised, controlled, multicenter clinical trial to investigate the effect of cilostazol and probucol combination therapy on plaque volume and composition in comparison with cilostazol monotherapy using intravascular ultrasound and Virtual Histology. The primary end point is the change in the plaque volume of index intermediate lesions between baseline and 9-month follow-up. Secondary endpoints include change in plaque composition, neointimal growth after implantation of stents at percutaneous coronary intervention target lesions, and serum levels of lipid components and biomarkers related to atherosclerosis and inflammation. A total of 118 patients will be included in the study. Discussion The SECURE study will deliver important information on the effects of combination therapy on lipid composition and biomarkers related to atherosclerosis, thereby providing insight into the mechanisms underlying the prevention of atherosclerosis progression by cilostazol and probucol. Trial registration number ClinicalTrials (NCT): NCT01031667 PMID:21226953

  7. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice.

    PubMed

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-11-08

    Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE -/- ) mice. LGG or TLM supplementation to HF diet was studied. Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.

  8. [A clinical study on the effect of nattokinase on carotid artery atherosclerosis and hyperlipidaemia].

    PubMed

    Ren, N N; Chen, H J; Li, Y; Mcgowan, G W; Lin, Y G

    2017-07-11

    Objective: To evaluate the efficacy of oral nattokinase (NK) in the reduction of common carotid artery intimal medial thickness (CCA-IMT) and carotid artery plaque size and in lowering blood lipids, and to explore the underlying mechanism of actions of NK and its potential clinical use. Methods: All enrolled patients were from the Out-Patient Clinic of the Department of TCM at the 3(rd) Affiliated Hospital of Sun Yat-sen University. Using randomised picking method, all patients were randomly assigned to one of two groups, NK and Statin (ST) group. NK Group-patients were given NK at a daily dose of 6 000 FU and ST Group-patients were treated with statin (simvastatin 20 mg) daily. The treatment course was 26 weeks. CCA-IMT, carotid plaque size and blood lipid profile of the patients were measured before and after treatment. Results: A total of 82 patients were enrolled in the study and 76 patients (NK 39, ST 37) completed the study. Following the treatments for 26 weeks, there was a significant reduction in CCA-IMT and carotid plaque size in both groups compared with the baseline before treatment. The carotid plaque size and CCA-IMT reduced from(0.25±0.12)cm(2) to (0.16±0.10)cm(2) and from (1.13±0.12)mm to (1.01±0.11)mm, repectively. The reduction in the NK group was significantly profound ( P <0.01, 36.6% reduction in plaque size in NK group versus 11.5% change in ST group). Both treatments reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). While the reduction in both groups was shown to be statistically significant ( P <0.01), the reduction of TC, LDL-C and TG in ST group was significantly greater ( P <0.05). In addition, NK significantly increased the level of high-density lipoprotein cholesterol (HDL-C) ( P <0.05), in contrast, HDL-C in the ST group did not change. The lipid lowering effect observed in the NK group was not correlated to the reduction of CCA-IMT and carotid artery plaque size ( r =0.35, P =0.09). Conclusions: Our findings from this pioneer clinical study suggests that daily NK supplementation is an effective way to manage the progression of atherosclerosis and potentially may be a better alternative to statins which are commonly used to reduce atherosclerosis and further to prevent cardiovascular attack and stroke in patients. The mechanism underlying the reduction of carotid atherosclerosis by NK may be independent from its lipid-lowering effect, which is different from that of statins.

  9. A Review of Intravascular Ultrasound–Based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques

    PubMed Central

    Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk

    2015-01-01

    Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676

  10. Detection and characterization of atherosclerotic plaques by Raman probe spectroscopy and optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Dochow, Sebastian; Egodage, Kokila D.; Schie, Iwan; Romeike, Bernd F.; Brehm, Bernhard R.; Popp, Jürgen

    2017-02-01

    Visualization and characterization of inner arterial plaque depositions is of vital diagnostic interest. Established intravascular imaging techniques provide valuable morphological information, but cannot deliver information about the chemical composition of individual plaques. Probe based Raman spectroscopy offers the possibility for a biochemical characterization of atherosclerotic plaque formations during an intravascular intervention. From post mortem studies it is well known that the severity of a plaque and its stability are strongly correlated with its biochemical composition. Especially the identification of vulnerable plaques remains one of the most important and challenging aspects in cardiology. Thus, specific information about the composition of a plaque would greatly improve the risk assessment and management. Furthermore, knowledge about the composition can offer new therapeutic and medication strategies. Plaque calcifications as well as major lipid components such as cholesterol, cholesterol esters and triglycerides can be spectroscopically easily differentiated. Intravascular optical coherence tomography (OCT) is currently a prominent catheter based imaging technique for the localization and visualization of atherosclerotic plaque depositions. The high resolution of OCT with 10 to 15 µm allows for very detailed characterization of morphological features such as different plaque formations, thin fibrous caps and accurate measurements of lesion lengths. In combination with OCT imaging the obtained spectral information can provide substantial information supporting on on-site diagnosis of various plaque types and therefor an improved risk assessment. The potential and feasibility of combining OCT with Raman spectroscopy is demonstrated on excised plaque samples, as well as under in vivo conditions. Acknowledgements: Financial support from the Carl Zeiss Foundation is greatly acknowledged.

  11. Assessment of MMP-9, TIMP-1, and COX-2 in normal tissue and in advanced symptomatic and asymptomatic carotid plaques

    PubMed Central

    2011-01-01

    Background Mature carotid plaques are complex structures, and their histological classification is challenging. The carotid plaques of asymptomatic and symptomatic patients could exhibit identical histological components. Objectives To investigate whether matrix metalloproteinase 9 (MMP-9), tissue inhibitor of MMP (TIMP), and cyclooxygenase-2 (COX-2) have different expression levels in advanced symptomatic carotid plaques, asymptomatic carotid plaques, and normal tissue. Methods Thirty patients admitted for carotid endarterectomy were selected. Each patient was assigned preoperatively to one of two groups: group I consisted of symptomatic patients (n = 16, 12 males, mean age 66.7 ± 6.8 years), and group II consisted of asymptomatic patients (n = 14, 8 males, mean age 67.6 ± 6.81 years). Nine normal carotid arteries were used as control. Tissue specimens were analyzed for fibromuscular, lipid and calcium contents. The expressions of MMP-9, TIMP-1 and COX-2 in each plaque were quantified. Results Fifty-eight percent of all carotid plaques were classified as Type VI according to the American Heart Association Committee on Vascular Lesions. The control carotid arteries all were classified as Type III. The median percentage of fibromuscular tissue was significantly greater in group II compared to group I (p < 0.05). The median percentage of lipid tissue had a tendency to be greater in group I than in group II (p = 0.057). The percentages of calcification were similar among the two groups. MMP-9 protein expression levels were significantly higher in group II and in the control group when compared with group I (p < 0.001). TIMP-1 expression levels were significantly higher in the control group and in group II when compared to group I, with statistical difference between control group and group I (p = 0.010). COX-2 expression levels did not differ among groups. There was no statistical correlation between MMP-9, COX-2, and TIMP-1 levels and fibrous tissue. Conclusions MMP-9 and TIMP-1 are present in all stages of atherosclerotic plaque progression, from normal tissue to advanced lesions. When sections of a plaque are analyzed without preselection, MMP-9 concentration is higher in normal tissues and asymptomatic surgical specimens than in symptomatic specimens, and TIMP-1 concentration is higher in normal tissue than in symptomatic specimens. PMID:21457581

  12. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{submore » 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and intimal area. • Lovastatin promoted smooth muscle cell recruitment into plaques. • Lovastatin reduced the expression of vasoactive mediators (iNOS, COX-2, and ET-1). • Lovastatin did not reduce blood lipid levels in PM{sub 10}-exposed rabbits.« less

  13. The dental calculus metabolome in modern and historic samples.

    PubMed

    Velsko, Irina M; Overmyer, Katherine A; Speller, Camilla; Klaus, Lauren; Collins, Matthew J; Loe, Louise; Frantz, Laurent A F; Sankaranarayanan, Krithivasan; Lewis, Cecil M; Martinez, Juan Bautista Rodriguez; Chaves, Eros; Coon, Joshua J; Larson, Greger; Warinner, Christina

    2017-01-01

    Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.

  14. Catheter design optimization for practical intravascular photoacoustic imaging (IVPA) of vulnerable plaques

    NASA Astrophysics Data System (ADS)

    Iskander-Rizk, Sophinese; Wu, Min; Springeling, Geert; Mastik, Frits; Beurskens, Robert H. S. H.; van der Steen, Antonius F. W.; van Soest, Gijs

    2018-02-01

    Intravascular photoacoustic/ultrasound imaging (IVPA/US) can image the structure and composition of atherosclerotic lesions identifying lipid-rich plaques ex vivo and in vivo. In the literature, multiple IVPA/US catheter designs were presented and validated both in ex-vivo models and preclinical in-vivo situations. Since the catheter is a critical component of the imaging system, we discuss here a catheter design oriented to imaging plaque in a realistic and translatable setting. We present a catheter optimized for light delivery, manageable flush parameters and robustness with reduced mechanical damage risks at the laser/catheter joint interface. We also show capability of imaging within sheath and in water medium.

  15. Foam cell formation by particulate matter (PM) exposure: a review.

    PubMed

    Cao, Yi; Long, Jimin; Ji, Yuejia; Chen, Gui; Shen, Yuexin; Gong, Yu; Li, Juan

    2016-11-01

    Increasing evidence suggests that exposure of particulate matter (PM) from traffic vehicles, e.g., diesel exhaust particles (DEP), was associated with adverse vascular effects, e.g., acceleration of atherosclerotic plaque progression. By analogy, engineered nanoparticles (NPs) could also induce similar effects. The formation of lipid laden foam cells, derived predominately from macrophages and vascular smooth muscle cells (VSMC), is closely associated with the development of atherosclerosis and adverse vascular effects. We reviewed current studies about particle exposure-induced lipid laden foam cell formation. In vivo studies using animal models have shown that exposure of air pollution by PM promoted lipid accumulation in alveolar macrophages or foam cells in plaques, which was likely associated with pulmonary inflammation or systemic oxidative stress, but not blood lipid profile. In support of these findings, in vitro studies showed that direct exposure of cultured macrophages to DEP or NP exposure, with or without further exposure to external lipids, promoted intracellular lipid accumulation. The mechanisms remained unknown. Although a number studies found increased reactive oxygen species (ROS) or an adaptive response to oxidative stress, the exact role of oxidative stress in mediating particle-induced foam cell formation requires future research. There is currently lack of reports concerning VSMC as a source for foam cells induced by particle exposure. In the future, it is necessary to explore the role of foam cell formation in particle exposure-induced atherosclerosis development. In addition, the formation of VSMC derived foam cells by particle exposure may also need extensive studies.

  16. Xanthelasma Palpebrarum with Arcus Cornea: A Clinical and Biochemical Study.

    PubMed

    Nair, Pragya Ashok; Patel, Chaitali R; Ganjiwale, Jaishree D; Diwan, Nilofar Gulamsha; Jivani, Nidhi Bhimjibhai

    2016-01-01

    Xanthelasma palpebrarum (XP) is characterized by sharply demarcated yellowish flat plaques on upper and lower eyelids. It is commonly seen in women with a peak incidence at 30-50 years. It is also considered as the cutaneous marker of underlying atherosclerosis along with the disturbed lipid metabolism. XP and corneal arcus are associated with increased levels of serum cholesterol and low-density lipoprotein (LDL) cholesterol. To study the clinical pattern of XP, its relationship with lipid profile and association with arcus cornea. This study was conducted at Department of Dermatology and Opthalmology, between August 2013 and January 2015. Patients with clinical diagnosis of XP who visited skin outpatient department and willing to undergo lipid profile test and eye examination were included in the study. Data regarding demographics, clinical findings, family history, and past history were noted along with the lipid profile details. Data of age-matched healthy controls were taken for comparison. The clinical profile of the participants was presented using frequency and proportions. Gender wise analysis comparing the lipid profile in cases with XP and without XP was done using independent sample t-test. Total 49 patients of XP, 81.6% were females. Maximum, 35% patients were among 50-60 years of age and 69.4% were homemakers by occupation. The average lipid values were-cholesterol 210.57 mg%, triglyceride 123.06 mg%. LDL 142.79 mg% and VLDL 30.95 mg% among patients of XP. Arcus cornea was found in 20% cases of XP. Patients of XP requires proper investigation at the onset and regular follow-up thereafter for any altered lipid profile and early diagnosis of coronary artery disease.

  17. Xanthelasma Palpebrarum with Arcus Cornea: A Clinical and Biochemical Study

    PubMed Central

    Nair, Pragya Ashok; Patel, Chaitali R; Ganjiwale, Jaishree D; Diwan, Nilofar Gulamsha; Jivani, Nidhi Bhimjibhai

    2016-01-01

    Background: Xanthelasma palpebrarum (XP) is characterized by sharply demarcated yellowish flat plaques on upper and lower eyelids. It is commonly seen in women with a peak incidence at 30–50 years. It is also considered as the cutaneous marker of underlying atherosclerosis along with the disturbed lipid metabolism. XP and corneal arcus are associated with increased levels of serum cholesterol and low-density lipoprotein (LDL) cholesterol. Aims and Objectives: To study the clinical pattern of XP, its relationship with lipid profile and association with arcus cornea. Materials and Methods: This study was conducted at Department of Dermatology and Opthalmology, between August 2013 and January 2015. Patients with clinical diagnosis of XP who visited skin outpatient department and willing to undergo lipid profile test and eye examination were included in the study. Data regarding demographics, clinical findings, family history, and past history were noted along with the lipid profile details. Data of age-matched healthy controls were taken for comparison. The clinical profile of the participants was presented using frequency and proportions. Gender wise analysis comparing the lipid profile in cases with XP and without XP was done using independent sample t-test. Results: Total 49 patients of XP, 81.6% were females. Maximum, 35% patients were among 50–60 years of age and 69.4% were homemakers by occupation. The average lipid values were-cholesterol 210.57 mg%, triglyceride 123.06 mg%. LDL 142.79 mg% and VLDL 30.95 mg% among patients of XP. Arcus cornea was found in 20% cases of XP. Conclusions: Patients of XP requires proper investigation at the onset and regular follow-up thereafter for any altered lipid profile and early diagnosis of coronary artery disease. PMID:27293250

  18. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture.

    PubMed

    Bobryshev, Y V; Killingsworth, M C; Lord, R S A; Grabs, A J

    2008-10-01

    Plaque rupture is the most common type of plaque complication and leads to acute ischaemic events such as myocardial infarction and stroke. Calcification has been suggested as a possible indicator of plaque instability. Although the role of matrix vesicles in the initial stages of arterial calcification has been recognized, no studies have yet been carried out to examine a possible role of matrix vesicles in plaque destabilization. Tissue specimens selected for the present study represented carotid specimens obtained from patients undergoing carotid endarterectomy. Serial frozen cross-sections of the tissue specimens were cut and mounted on glass slides. The thickness of the fibrous cap (FCT) in each advanced atherosclerotic lesion, containing a well developed lipid/necrotic core, was measured at its narrowest sites in sets of serial sections. According to established criteria, atherosclerotic plaque specimens were histologically subdivided into two groups: vulnerable plaques with thin fibrous caps (FCT <100 microm) and presumably stable plaques, in which fibrous caps were thicker than 100 microm. Twenty-four carotid plaques (12 vulnerable and 12 presumably stable plaques) were collected for the present analysis of matrix vesicles in fibrous caps. In order to provide a sufficient number of representative areas from each plaque, laser capture microdissection (LCM) was carried out. The quantification of matrix vesicles in ultrathin sections of vulnerable and stable plaques revealed that the numbers of matrix vesicles were significantly higher in fibrous caps of vulnerable plaques than those in stable plaques (8.908+0.544 versus 6.208+0.467 matrix vesicles per 1.92 microm2 standard area; P= 0.0002). Electron microscopy combined with X-ray elemental microanalysis showed that some matrix vesicles in atherosclerotic plaques were undergoing calcification and were characterized by a high content of calcium and phosphorus. The percentage of calcified matrix vesicles/microcalcifications was significantly higher in fibrous caps in vulnerable plaques compared with that in stable plaques (6.705+/-0.436 versus 5.322+/-0494; P= 0.0474). The findings reinforce a view that the texture of the extracellular matrix in the thinning fibrous cap of atherosclerotic plaque is altered and this might contribute to plaque destabilization.

  19. Effects of atorvastatin on serum lipids, serum inflammation and plaque morphology in patients with stable atherosclerotic plaques.

    PubMed

    Guo, Suxia; Wang, Ruxing; Yang, Zhenyu; Li, Kulin; Wang, Qiang

    2012-12-01

    Statin treatment in patients with coronary heart disease is associated with a reduced incidence of short-term adverse events and endpoint cardiac events. However, the effects of statin treatment on atherosclerotic plaques, particularly stable plaques, remain poorly defined. In total, 228 consecutive patients with stable atherosclerotic plaques who had undergone coronary arteriography (CAG) and intravascular ultrasound (IVUS) were randomly assigned to receive placebo (placebo group, n=54) or atorvastatin (ATOR) at a single daily dose of 10 mg (ATOR 10 mg group, n=47), 20 mg (ATOR 20 mg group, n=45), 40 mg (ATOR 40 mg group, n=43) or 80 mg (ATOR 80 mg group, n=39). Endpoints, including serum lipids, serum inflammation, plaque volume and percentage of plaque necrosis were assessed after 3-6 months. At baseline, mean low-density lipoprotein (LDL), high-density lipoprotein (HDL) and high-sensitivity C-reactive protein (hs-CRP) levels, as well as plaque volumes and percentages of plaque necrosis, were similar between all groups. At 6 months of follow-up, the LDL levels in the ATOR groups were below those at their respective baselines (P<0.01). HDL levels in the ATOR 80 mg group following treatment were significantly higher compared with baseline (P=0.001). Additionally, they were significantly higher compared with those in the placebo, ATOR 10, 20 and 40 mg groups (P<0.01, P=0.001, P=0.048, P=0.047, respectively). Hs-CRP levels in the placebo group following treatment were higher compared with baseline levels (6.87±2.62 vs. 5.07±1.80, P<0.01), but hs-CRP levels in the ATOR 80 mg group following treatment were lower compared with baseline (3.59±1.07 vs. 6.10±2.12, P<0.01). According to the virtual histology (VH) of IVUS, the percentages of plaque necrosis following treatment in the placebo and ATOR 10 mg groups rose above baseline levels (15.51±12.56 vs. 7.69±1.31%, 13.54±11.76 vs. 7.83±1.43%, P<0.01) and conformed to the diagnostic criteria for unstable plaques (15.51±12.56, 13.54±11.76%). By contrast, in the ATOR 20, 40 and 80 mg groups, percentages of plaque necrosis remained stable following treatment compared with baseline (P=0.069, 0.846 and 0.643, respectively). Plaque volumes following treatment in the placebo, ATOR 10 and 20 mg groups were similar to baseline levels. However, in the ATOR 40 and 80 mg groups, plaque volumes decreased following treatment compared with baseline plaque volumes (30.69±8.12 vs. 37.09±12.01 mm(3), 24.99±1.01 vs. 36.47±14.68 mm(3), P=0.019, P<0.01, respectively). ATOR (20 mg/day) is able to lower LDL to standard levels while ATOR 40 mg/day was superior to 20 mg/day and had similar effects to 80 mg/day. Only ATOR 80 mg/day was able to increase HDL levels. Hs-CRP in patients without ATOR was higher and ATOR 80 mg/day decreased levels. ATOR ≥20 mg/day is able to stabilize plaques and ATOR 80 mg/day was superior to 20 and 40 mg/day. Thus, ATOR 40-80 mg/day reduces the volume of plaques.

  20. Effects of atorvastatin on serum lipids, serum inflammation and plaque morphology in patients with stable atherosclerotic plaques

    PubMed Central

    GUO, SUXIA; WANG, RUXING; YANG, ZHENYU; LI, KULIN; WANG, QIANG

    2012-01-01

    Statin treatment in patients with coronary heart disease is associated with a reduced incidence of short-term adverse events and endpoint cardiac events. However, the effects of statin treatment on atherosclerotic plaques, particularly stable plaques, remain poorly defined. In total, 228 consecutive patients with stable atherosclerotic plaques who had undergone coronary arteriography (CAG) and intravascular ultrasound (IVUS) were randomly assigned to receive placebo (placebo group, n=54) or atorvastatin (ATOR) at a single daily dose of 10 mg (ATOR 10 mg group, n=47), 20 mg (ATOR 20 mg group, n=45), 40 mg (ATOR 40 mg group, n=43) or 80 mg (ATOR 80 mg group, n=39). Endpoints, including serum lipids, serum inflammation, plaque volume and percentage of plaque necrosis were assessed after 3–6 months. At baseline, mean low-density lipoprotein (LDL), high-density lipoprotein (HDL) and high-sensitivity C-reactive protein (hs-CRP) levels, as well as plaque volumes and percentages of plaque necrosis, were similar between all groups. At 6 months of follow-up, the LDL levels in the ATOR groups were below those at their respective baselines (P<0.01). HDL levels in the ATOR 80 mg group following treatment were significantly higher compared with baseline (P=0.001). Additionally, they were significantly higher compared with those in the placebo, ATOR 10, 20 and 40 mg groups (P<0.01, P=0.001, P=0.048, P=0.047, respectively). Hs-CRP levels in the placebo group following treatment were higher compared with baseline levels (6.87±2.62 vs. 5.07±1.80, P<0.01), but hs-CRP levels in the ATOR 80 mg group following treatment were lower compared with baseline (3.59±1.07 vs. 6.10±2.12, P<0.01). According to the virtual histology (VH) of IVUS, the percentages of plaque necrosis following treatment in the placebo and ATOR 10 mg groups rose above baseline levels (15.51±12.56 vs. 7.69±1.31%, 13.54±11.76 vs. 7.83±1.43%, P<0.01) and conformed to the diagnostic criteria for unstable plaques (15.51±12.56, 13.54±11.76%). By contrast, in the ATOR 20, 40 and 80 mg groups, percentages of plaque necrosis remained stable following treatment compared with baseline (P=0.069, 0.846 and 0.643, respectively). Plaque volumes following treatment in the placebo, ATOR 10 and 20 mg groups were similar to baseline levels. However, in the ATOR 40 and 80 mg groups, plaque volumes decreased following treatment compared with baseline plaque volumes (30.69±8.12 vs. 37.09±12.01 mm3, 24.99±1.01 vs. 36.47±14.68 mm3, P=0.019, P<0.01, respectively). ATOR (20 mg/day) is able to lower LDL to standard levels while ATOR 40 mg/day was superior to 20 mg/day and had similar effects to 80 mg/day. Only ATOR 80 mg/day was able to increase HDL levels. Hs-CRP in patients without ATOR was higher and ATOR 80 mg/day decreased levels. ATOR ≥20 mg/day is able to stabilize plaques and ATOR 80 mg/day was superior to 20 and 40 mg/day. Thus, ATOR 40–80 mg/day reduces the volume of plaques. PMID:23226776

  1. Mesenchymal Stem Cells Stabilize Atherosclerotic Vulnerable Plaque by Anti-Inflammatory Properties

    PubMed Central

    Wang, Shuang-shuang; Hu, Si-wang; Zhang, Qing-hua; Xia, Ai-xiang

    2015-01-01

    Background and objectives Formation and progression of atherosclerotic vulnerable plaque (VP) is the primary cause of many cardio-cerebrovascular diseases such as acute coronary syndrome and stroke. It has been reported that bone marrow mesenchymal stem cells (MSC) exhibit protective effects against many kinds of diseases including myocardial infarction. Here, we examined the effects of intravenous MSC infusion on a VP model and provide novel evidence of its influence as a therapy in this animal disease model. Subjects and methods Thirty healthy male New Zealand white rabbits were randomly divided into a MSC, VP or stable plaque (SP) group (n = 10/group) and received high fat diet and cold-induced common carotid artery intimal injury with liquid nitrogen to form atherosclerotic plaques. Serum hs-CRP, TNF-α, IL-6 and IL-10 levels were measured by ELISA at 1, 2, 3, 7, 14, 21 and 28 days after MSC transplantation. The animals were sacrificed at 4 weeks after MSC transplantation. Lesions in the right common carotid were observed using H&E and Masson staining, and the fibrous cap/lipid core ratio of atherosclerotic plaques were calculated. The expression of nuclear factor κB (NF-κB) and matrix metalloproteinase 1, 2, 9 (MMP-1,2,9) in the plaque were detected using immunohistochemistry, and apoptotic cells in the plaques were detected by TUNEL. In addition, the level of TNF-α stimulated gene/protein 6 (TSG-6) mRNA and protein were measured by quantitative Real-Time PCR and Western blotting, respectively. Results Two rabbits in the VP group died of lung infection and cerebral infarction respectively at 1 week after plaque injury by liquid nitrogen. Both H&E and Masson staining revealed that the plaques from the SP and MSC groups had more stable morphological structure and a larger fibrous cap/lipid core ratio than the VP group. Serum hs-CRP, TNF-α and IL-6 were significantly down-regulated, whereas IL-10 was significantly up-regulated in the MSC group compared with the VP group. .Immunohistochemistry analysis revealed that NF-κB and MMP expression was reduced in the MSC and SP groups compared to the VP group. Cell apoptosis decreased significantly in both the MSC and SP groups in comparison to the VP group. TSG-6 mRNA and protein expression were higher in the plaques of the MSC group compared to the VP and SP groups. Conclusions Our study results suggest that MSC transplantation can effectively stabilize vulnerable plaques in atherosclerotic rabbits. This may potentially offer a new clinical application of MSC in atherosclerosis. PMID:26288013

  2. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    PubMed

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  3. Quantification of carotid atherosclerotic plaque components using feature space analysis and magnetic resonance imaging.

    PubMed

    Karmonik, Christof; Basto, Pamela; Morrisett, Joel D

    2006-01-01

    Atherosclerosis is one of the main causes of cardiovascular disease, accounting for more than one third of all deaths in the United States, there is a growing need to develop non-invasive techniques to assess the severity of atherosclerotic plaque burden. Recent research has suggested that not the size of the atherosclerotic plaque but rather its composition is indicative for plaque rupture as the underlying event of stroke and acute coronary syndrome. With its excellent soft-tissue contrast, magnetic resonance imaging (MRI) is a favored modality for examining plaque composition. In an ex-vivo study, aimed to show the feasibility of quantifying the components of carotid atherosclerotic plaques in-vivo, we acquired multi-contrast MRI images of 13 freshly excised endarterectomy tissues with commercially available MRI sequences and a human surface coil. Feature space analysis (FSA) was utilized in four representative tissues to determine the total relative abundance of calcific, lipidic, fibrotic, thrombotic and normal components as well as in consecutive 2 mm sections across the carotid bifurcation in each tissue. Excellent qualitative agreement between the FSA results and the results obtained from histological methods was observed. This study demonstrates the feasibility of combining MRI with FSA to quantify carotid atherosclerotic plaques in-vivo.

  4. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis.

    PubMed

    Mattana, Sara; Caponi, Silvia; Tamagnini, Francesco; Fioretto, Daniele; Palombo, Francesca

    2017-11-01

    Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β -amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons , giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β -amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β -pleated sheet conformation ( β -amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

  5. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis

    PubMed Central

    Mattana, Sara; Caponi, Silvia; Tamagnini, Francesco; Fioretto, Daniele; Palombo, Francesca

    2017-01-01

    Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy. PMID:29151920

  6. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease.

    PubMed

    Pasterkamp, Gerard; den Ruijter, Hester M; Libby, Peter

    2017-01-01

    The concept of the 'vulnerable plaque' originated from pathological observations in patients who died from acute coronary syndrome. This recognition spawned a generation of research that led to greater understanding of how complicated atherosclerotic plaques form and precipitate thrombotic events. In current practice, an increasing number of patients who survive their first event present with non-ST-segment elevation myocardial infarction (NSTEMI) rather than myocardial infarction (MI) with ST-segment elevation (STEMI). The culprit lesions that provide the pathological substrate for NSTEMI can vary considerably from the so-called 'vulnerable plaque'. The shift in clinical presentation of MI and stroke corresponds temporally to a progressive change in the characteristics of human plaques away from the supposed characteristics of vulnerability. These alterations in the structure and function of human atherosclerotic lesions might mirror the modifications that are produced in experimental plaques by lipid lowering, inspired by the vulnerable plaque construct. The shift in the clinical presentations of the acute coronary syndromes mandates a critical reassessment of the underlying mechanisms, proposed risk scores, the results and interpretation of preclinical experiments, as well as recognition of the limitations of the use of population data and samples collected before the application of current preventive interventions.

  7. The simulation of magnetic resonance elastography through atherosclerosis.

    PubMed

    Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R

    2016-06-14

    The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Long-Term Marathon Running Is Associated with Low Coronary Plaque Formation in Women.

    PubMed

    Roberts, William O; Schwartz, Robert S; Kraus, Stacia Merkel; Schwartz, Jonathan G; Peichel, Gretchen; Garberich, Ross F; Lesser, John R; Oesterle, Stephen N; Wickstrom, Kelly K; Knickelbine, Thomas; Harris, Kevin M

    2017-04-01

    Marathon running is presumed to improve cardiovascular risk, but health benefits of high volume running are unknown. High-resolution coronary computed tomography angiography and cardiac risk factor assessment were completed in women with long-term marathon running histories to compare to sedentary women with similar risk factors. Women who had run at least one marathon per year for 10-25 yr underwent coronary computed tomography angiography, 12-lead ECG, blood pressure and heart rate measurement, lipid panel, and a demographic/health risk factor survey. Sedentary matched controls were derived from a contemporaneous clinical study database. CT scans were analyzed for calcified and noncalcified plaque prevalence, volume, stenosis severity, and calcium score. Women marathon runners (n = 26), age 42-82 yr, with combined 1217 marathons (average 47) exhibited significantly lower coronary plaque prevalence and less calcific plaque volume. The marathon runners also had less risk factors (smoking, hypertension, and hyperlipidemia); significantly lower resting heart rate, body weight, body mass index, and triglyceride levels; and higher high-density lipoprotein cholesterol levels compared with controls (n = 28). The five women runners with coronary plaque had run marathons for more years and were on average 12 yr older (65 vs 53) than the runners without plaque. Women marathon runners had minimal coronary artery calcium counts, lower coronary artery plaque prevalence, and less calcified plaque volume compared with sedentary women. Developing coronary artery plaque in long-term women marathon runners appears related to older age and more cardiac risk factors, although the runners with coronary artery plaque had accumulated significantly more years running marathons.

  9. Rationale and design of dal-PLAQUE: A study assessing efficacy and safety of dalcetrapib on progression or regression of atherosclerosis using magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Fayad, Zahi A.; Mani, Venkatesh; Woodward, Mark; Kallend, David; Bansilal, Sameer; Pozza, Joseph; Burgess, Tracy; Fuster, Valentin; Rudd, James H. F.; Tawakol, Ahmed; Farkouh, Michael E.

    2014-01-01

    dal-PLAQUE is a placebo-controlled multicenter study designed to assess the effect of dalcetrapib on imaging measures of plaque inflammation and plaque burden. dal-PLAQUE is a multimodality imaging study in the context of the large dal-HEART Program. Decreased high-density lipoprotein cholesterol is linked to increased risk of coronary heart disease (CHD). Dalcetrapib, a compound that increases high-density lipoprotein cholesterol by modulating cholesteryl ester transfer protein, is being studied to assess if it can reduce the progression of atherosclerotic disease and thereby decrease cardiovascular morbidity and mortality. Patients with CHD or CHD-risk equivalents were randomized to receive 600 mg dalcetrapib or placebo daily for 24 months, in addition to conventional lipid-lowering medication and other medications for cardiovascular risk factors. The primary outcomes are the effect of dalcetrapib on 18F-fluorodeoxyglucose positron emission tomography target-to-background ratio after 6 months and magnetic resonance imaging (MRI) plaque burden (wall area, wall thickness, total vessel area, and wall area/total vessel area ratio) after 12 months. Secondary objectives include positron emission tomography target-to-background ratio at 3 months and MRI plaque burden at 6 and 24 months; plaque composition at 6, 12, and 24 months; and aortic compliance at 6 months. A tertiary objective is to examine the dynamic contrast-enhanced MRI parameters of plaque neovascularization. In total, 189 subjects entered screening, and 130 were randomized. dal-PLAQUE will provide important information on the effects of dalcetrapib on markers of inflammation and atherosclerotic plaque burden and, thereby, on the safety of cholesteryl ester transfer protein modulation with dalcetrapib. Results are expected in 2011. PMID:21835280

  10. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome.

    PubMed

    Yang, Mingjie; Zhang, Yingmei; Ren, Jun

    2018-01-01

    As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.

  11. Patterns and severity of vascular amyloid in Alzheimer's disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer's disease.

    PubMed

    Mann, David M A; Davidson, Yvonne S; Robinson, Andrew C; Allen, Nancy; Hashimoto, Tadafumi; Richardson, Anna; Jones, Matthew; Snowden, Julie S; Pendleton, Neil; Potier, Marie-Claude; Laquerrière, Annie; Prasher, Vee; Iwatsubo, Takeshi; Strydom, Andre

    2018-05-16

    In this study, we have compared the severity of amyloid plaque formation and cerebral amyloid angiopathy (CAA), and the subtype pattern of CAA pathology itself, between APP genetic causes of AD (APPdup, APP mutations), older individuals with Down syndrome (DS) showing the pathology of Alzheimer's disease (AD) and individuals with sporadic (early and late onset) AD (sEOAD and sLOAD, respectively). The aim of this was to elucidate important group differences and to provide mechanistic insights related to clinical and neuropathological phenotypes. Since lipid and cholesterol metabolism is implicated in AD as well as vascular disease, we additionally aimed to explore the role of APOE genotype in CAA severity and subtypes. Plaque formation was greater in DS and missense APP mutations than in APPdup, sEOAD and sLOAD cases. Conversely, CAA was more severe in APPdup and missense APP mutations, and in DS, compared to sEOAD and sLOAD. When stratified by CAA subtype from 1 to 4, there were no differences in plaque scores between the groups, though in patients with APPdup, APP mutations and sEOAD, types 2 and 3 CAA were more common than type 1. Conversely, in DS, sLOAD and controls, type 1 CAA was more common than types 2 and 3. APOE ε4 allele frequency was greater in sEOAD and sLOAD compared to APPdup, missense APP mutations, DS and controls, and varied between each of the CAA phenotypes with APOE ε4 homozygosity being more commonly associated with type 3 CAA than types 1 and 2 CAA in sLOAD and sEOAD. The differing patterns in CAA within individuals of each group could be a reflection of variations in the efficiency of perivascular drainage, this being less effective in types 2 and 3 CAA leading to a greater burden of CAA in parenchymal arteries and capillaries. Alternatively, as suggested by immunostaining using carboxy-terminal specific antibodies, it may relate to the relative tissue burdens of the two major forms of Aβ, with higher levels of Aβ 40 promoting a more 'aggressive' form of CAA, and higher levels of Aβ 42(3) favouring a greater plaque burden. Possession of APOE ε4 allele, especially ε4 homozygosity, favours development of CAA generally, and as type 3 particularly, in sEOAD and sLOAD.

  12. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction

    PubMed Central

    XU, PENG; LV, LULU; LI, SHAODONG; GE, HAITAO; RONG, YUTAO; HU, CHUNFENG; XU, KAI

    2015-01-01

    The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI. PMID:26668651

  13. [Association of human epicardial adipose tissue volume and inflammatory mediators with atherosclerosis and vulnerable coronary atherosclerotic plaque].

    PubMed

    Zhou, Liangliang; Gong, Jianbin; Li, Demin; Lu, Guangming; Chen, Dong; Wang, Jing

    2015-02-01

    To investigate the relation of epicardial adipose tissue volume (EATV) determined by dual-source CT (DSCT) cardiac angiography and EAT-derived inflammatory factors to coronary heart disease (CHD) and vulnerable plaque. A total of 260 patients underwent cardiac computed tomography to evaluate stenosis of coronary artery, and blood samples were obtained from each patient. CHD was confirmed in 180 patients by DSA and CHD was excluded in the remaining 80 patients (NCHD). Vascular remodeling index and plaque vulnerability parameters (fatty volume, fibrous volume and calcification volume and fiber volume) were measured in CHD patients and correlation with EATV was analyzed. Epicardial adipose tissue (EAT) and intrathoracic adipose tissue (TAT) were collected from 40 CHD patients undergoing CABG surgery, and, mRNA and protein expressions of leptin and MMP9 were detected by RT-PCR and Western blot analysis. (1) The EATV was significantly higher in the CHD group than in NCHD group ((121.2 ± 40.6) mm³ vs. (74.7 ± 18.1) mm³, P = 0.01). (2) Subgroup analysis of the CHD patients demonstrated that EATV was significantly higher in patients with positive remodeling than in patients without positive remodeling ((97.6 ± 42.0) cm³ vs. (75.5 ± 25.4) cm³, P = 0.01). Lipid plaque volume was positively correlated with EATV (r = 0.34, P = 0.002); however, fiber plaque volume was negatively correlated with EATV (r = -0.30, P = 0.008). (3) Logistic regression analysis indicated that EATV was an independent risk factor for positive vascular remodeling (OR = 2.01, 95% CI: 1.30-2.32, P = 0.01). (4) mRNA and protein expression of leptin and MMP9 in EAT was significantly upregulated in 40 CHD patients who received CABG surgery compared to 40 NCHD patients (P < 0.01). However, there was no significant difference (P > 0.05) in mRNA and protein expression of leptin and MMP9 from the SAT between CHD and NCHD patients. (5) In the CHD group, leptin and MMP9 levels in EAT and EATV were positively correlated with lipid plaque volume and fibrous plaque volume (P < 0.05). EATV is an independent risk factors of coronary heart disease and plaque vulnerability; EAT secretion of inflammatory cytokines from CHD patients is significant increased compared to NCHD patients, EAT secretion of inflammatory cytokines are positively correlated with EATV, both of which are determinants affecting vascular remodeling. Reducing EATV might help to attenuate inflammation and plaque vulnerability and reduce the risk of coronary heart disease.

  14. LDL-Induced Impairment of Human Vascular Smooth Muscle Cells Repair Function Is Reversed by HMG-CoA Reductase Inhibition

    PubMed Central

    Padró, Teresa; Lugano, Roberta; García-Arguinzonis, Maisa; Badimon, Lina

    2012-01-01

    Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins. PMID:22719992

  15. Intravascular laser speckle imaging for the mechanical analysis of coronary plaques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hosoda, Masaki; Wang, Jing; Tsikudi, Diane; Nadkarni, Seemantini

    2016-02-01

    Acute myocardial infarction is frequently caused by the rupture of coronary plaques with severely compromised viscoelastic properties. We have developed a new optical technology termed intravascular laser speckle imaging (ILSI) that evaluates plaque viscoelastic properties, by measuring the time scale (time constant, τ) of temporally evolving laser speckle fluctuations. To enable coronary evaluation in vivo, an optical ILSI catheter has been developed that accomplishes omni-directional illumination and viewing of the entire coronary circumference without the need for mechanical rotation. Here, we describe the capability of ILSI for evaluating human coronary atherosclerosis in cadaveric hearts. ILSI was conducted in conjunction with optical coherence tomography (OCT) imaging in five human cadaveric hearts. The left coronary artery (LCA), left anterior descending (LAD), left circumflex artery (LCx), and right coronary artery (RCA) segments were resected and secured on custom-developed coronary holders to enable accurate co-registration between ILSI, OCT, and histopathology. Speckle time constants, τ, calculated from each ILSI section were compared with lipid and collagen content measured from quantitative Histopathological analysis of the corresponding Oil Red O and Picrosirius Red stained sections. Because the presence of low viscosity lipid elicits rapid speckle fluctuations, we observed an inverse correlation between τ measured by ILSI and lipid content (R= -0.64, p< 0.05). In contrast, the higher viscoelastic modulus of fibrous regions resulted in a positive correlation between τ and collagen content (R= 0.54, p< 0.05). These results demonstrate the feasibility of conducting ILSI evaluation of arterial mechanical properties using a miniaturized omni-directional catheter.

  16. Impact of intensive lipid lowering on lipid profiles over time and tolerability in stable coronary artery disease: insights from a subanalysis of the coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS).

    PubMed

    Kawashiri, Masa-Aki; Yamagishi, Masakazu; Sakamoto, Tomohiro; Takayama, Tadateru; Hiro, Takafumi; Daida, Hiroyuki; Hirayama, Atsushi; Saito, Satoshi; Yamaguchi, Tetsu; Matsuzaki, Masunori

    2013-12-01

    Previous studies have demonstrated that intensive lipid lowering using rosuvastatin results in regression of coronary plaques. However, few data exist regarding lipid profiles over time, drug tolerability, and the effects of prior use of lipid lowering agents in patients on rosuvastatin treatment. Therefore, we studied these matters in a subanalysis of the Coronary Atherosclerosis Study Measuring Effects of Rosuvastatin Using Intravascular Ultrasound in Japanese Subjects (COSMOS). Rosuvastatin was titrated for 76 weeks to attain LDL-C < 80 mg/dL in 213 Japanese dyslipidemic patients with CAD. Clinic visits were scheduled for every 4 weeks during the 76-week study period. Changes over time in lipid parameters, changes in those according to prior lipid-lowering therapy, and changes in those according to baseline lipid levels were evaluated in this subanalysis. Overall, 126 patients completed the study. The mean rosuvastatin dose at the last observation carried forward was 16.9 mg (range, 2.5-20 mg). Rosuvastatin significantly increased HDL-C, lowered LDL-C, and improved the LDL-C/HDL-C ratio (all, P < 0.0001). Increases in serum HDL-C levels were significantly greater in patients with HDL-C < 40 mg/dL than in those with HDL-C ≥ 40 mg/dL at baseline (P = 0.0005). The estimated glomerular filtration rate increased significantly by 2.84 ± 9.01 mL/min/1.73 m(2) (P < 0.0001). Of 166 adverse events in 74 patients, 113 events in 54 patients were laboratory values beyond the normal range. Rosuvastatin significantly improved lipid profiles, with an acceptable safety profile, contributing to plaque regression in Japanese patients with CAD. © 2013 John Wiley & Sons Ltd.

  17. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture

    PubMed Central

    Bobryshev, Y V; Killingsworth, M C; Lord, R S A; Grabs, A J

    2008-01-01

    Plaque rupture is the most common type of plaque complication and leads to acute ischaemic events such as myocardial infarction and stroke. Calcification has been suggested as a possible indicator of plaque instability. Although the role of matrix vesicles in the initial stages of arterial calcification has been recognized, no studies have yet been carried out to examine a possible role of matrix vesicles in plaque destabilization. Tissue specimens selected for the present study represented carotid specimens obtained from patients undergoing carotid endarterectomy. Serial frozen cross-sections of the tissue specimens were cut and mounted on glass slides. The thickness of the fibrous cap (FCT) in each advanced atherosclerotic lesion, containing a well developed lipid/necrotic core, was measured at its narrowest sites in sets of serial sections. According to established criteria, atherosclerotic plaque specimens were histologically subdivided into two groups: vulnerable plaques with thin fibrous caps (FCT <100 μm) and presumably stable plaques, in which fibrous caps were thicker than 100 μm. Twenty-four carotid plaques (12 vulnerable and 12 presumably stable plaques) were collected for the present analysis of matrix vesicles in fibrous caps. In order to provide a sufficient number of representative areas from each plaque, laser capture microdissection (LCM) was carried out. The quantification of matrix vesicles in ultrathin sections of vulnerable and stable plaques revealed that the numbers of matrix vesicles were significantly higher in fibrous caps of vulnerable plaques than those in stable plaques (8.908±0.544 versus 6.208±0.467 matrix vesicles per 1.92 μm2 standard area; P= 0.0002). Electron microscopy combined with X-ray elemental microanalysis showed that some matrix vesicles in atherosclerotic plaques were undergoing calcification and were characterized by a high content of calcium and phosphorus. The percentage of calcified matrix vesicles/microcalcifications was significantly higher in fibrous caps in vulnerable plaques compared with that in stable plaques (6.705±0.436 versus 5.322±0A94; P= 0.0474). The findings reinforce a view that the texture of the extracellular matrix in the thinning fibrous cap of atherosclerotic plaque is altered and this might contribute to plaque destabilization. PMID:18194456

  18. Rosuvastatin-Induced Carotid Plaque Regression in Patients With Inflammatory Joint Diseases: The Rosuvastatin in Rheumatoid Arthritis, Ankylosing Spondylitis and Other Inflammatory Joint Diseases Study.

    PubMed

    Rollefstad, S; Ikdahl, E; Hisdal, J; Olsen, I C; Holme, I; Hammer, H B; Smerud, K T; Kitas, G D; Pedersen, T R; Kvien, T K; Semb, A G

    2015-07-01

    Patients with rheumatoid arthritis (RA) and carotid artery plaques have an increased risk of acute coronary syndromes. Statin treatment with the goal of achieving a low-density lipoprotein (LDL) cholesterol level of ≤1.8 mmoles/liter (≤70 mg/dl) is recommended for individuals in the general population who have carotid plaques. The aim of the ROsuvastatin in Rheumatoid Arthritis, Ankylosing Spondylitis and other inflammatory joint diseases (RORA-AS) study was to evaluate the effect of 18 months of intensive lipid-lowering treatment with rosuvastatin with regard to change in carotid plaque height. Eighty-six patients (60.5% of whom were female) with carotid plaques and inflammatory joint disease (55 with RA, 21 with AS, and 10 with psoriatic arthritis) were treated with rosuvastatin to obtain the LDL cholesterol goal. Carotid plaque height was evaluated by B-mode ultrasonography. The mean ± SD age of the patients was 60.8 ± 8.5 years, and the median compliance with rosuvastatin treatment was 97.9% (interquartile range [IQR] 96.0-99.4). At baseline, the median number and height of the carotid plaques were 1.0 (range 1-8) and 1.80 mm (IQR 1.60-2.10), respectively. The mean ± SD change in carotid plaque height after 18 months of treatment with rosuvastatin was -0.19 ± 0.35 mm (P < 0.0001). The mean ± SD baseline LDL cholesterol level was 4.0 ± 0.9 mmoles/liter (154.7 ± 34.8 mg/dl), and the mean reduction in the LDL cholesterol level was -2.3 mmoles/liter (95% confidence interval [95% CI] -2.48, -2.15) (-88.9 mg/dl [95% CI -95.9, -83.1]). The mean ± SD LDL cholesterol level during the 18 months of rosuvastatin treatment was 1.7 ± 0.4 mmoles/liter (area under the curve). After adjustment for age/sex/blood pressure, no linear relationship between a reduction in carotid plaque height and the level of LDL cholesterol exposure during the study period was observed. Attainment of the LDL cholesterol goal of ≤1.8 mmoles/liter (≤70 mg/dl) or the amount of change in the LDL cholesterol level during the study period did not influence the degree of carotid plaque height reduction. Intensive lipid-lowering treatment with rosuvastatin induced atherosclerotic regression and reduced the LDL cholesterol level significantly in patients with inflammatory joint disease. © 2015, American College of Rheumatology.

  19. Cholesterol, inflammasomes, and atherogenesis

    USDA-ARS?s Scientific Manuscript database

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  20. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and experiments. Experiments showed that detecting the coronary plaques using the proposed technique is possible. The proposed technique has the potential for fast and accurate detection of vulnerable coronary and other intravascular plaques.

  1. Effect of medicinal plants on the crystallization of cholesterol

    NASA Astrophysics Data System (ADS)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  2. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice.

    PubMed

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2014-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Comparison of the Protective Effects of Individual Components of Particulated trans-Sialidase (PTCTS), PTC and TS, against High Cholesterol Diet-Induced Atherosclerosis in Rabbits.

    PubMed

    Garavelo, Shérrira M; Higuchi, Maria de Lourdes; Pereira, Jaqueline J; Reis, Marcia M; Kawakami, Joyce T; Ikegami, Renata N; Palomino, Suely A P; Wadt, Nilsa S Y; Agouni, Abdelali

    2017-01-01

    Previous studies showed the presence of Mycoplasma pneumoniae ( M. pneumoniae ) and membrane-shed microparticles (MPs) in vulnerable atherosclerotic plaques. H&S Science and Biotechnology developed PTCTS, composed by natural particles from medicinal plants (PTC) combined with trans -Sialidase (TS), to combat MPs and Mycoplasma pneumoniae . Our aim was to determine the effects of the different components of PTCTS in a rabbit model of atherosclerosis. Rabbits were fed with high cholesterol diet for 12 weeks and treated during the last 6 weeks with either vehicle, PTC, TS, or PTCTS. Lipid profile and quantification of MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens were carried out. Aortas and organs were then histologically analyzed. PTCTS reduced circulating MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens, reduced the plaque area in the abdominal aorta, and caused positive remodeling of the ascendant aorta. PTC caused positive remodeling and reduced plaque area in the abdominal aorta; however, TS had a lipid lowering effect. PTCTS components combined were more effective against atherosclerosis than individual components. Our data reinforce the infectious theory of atherosclerosis and underscore the potential role of circulating MPs. Therefore, the removal of Mycoplasma -derived MPs could be a new therapeutic approach in the treatment of atherosclerosis.

  4. Rationale and design of the EPISTEME trial: efficacy of post-stroke intensive rosuvastatin treatment for aortogenic embolic stroke.

    PubMed

    Ueno, Yuji; Yamashiro, Kazuo; Tanaka, Yasutaka; Watanabe, Masao; Shimada, Yoshiaki; Kuroki, Takuma; Miyamoto, Nobukazu; Daimon, Masao; Tanaka, Ryota; Miyauchi, Katsumi; Daida, Hiroyuki; Hattori, Nobutaka; Urabe, Takao

    2014-02-01

    Large atheromatous aortic plaques (AAPs) are associated with stroke recurrence. Rosuvastatin is a potent lipid-lowering agent and suppresses carotid and coronary artery atherosclerosis. It is unclear whether rosuvastatin has anti-atherogenic effects against AAPs in stroke patients. We designed a clinical trial in stroke patients to analyze changes in AAPs after rosuvastatin treatment using repeated transesophageal echocardiography (TEE). This trial is a prospective randomized open label study. Inclusion criteria were patients were ischemic stroke with hypercholesterolemia and AAPs ≥ 4 mm in thickness. The patients are randomly assigned to either a group treated with 5 mg/day rosuvastatin or a control group. Primary endpoint is the changes in volume and composition of AAPs after 6 months using transesophageal echocardiography (TEE). Biochemical findings are analyzed. By using repeated TEE and binary image analysis, we will be able to compare the dynamic changes in plaque composition of AAPs before and after therapy in the two groups. The EPISTEME trial will provide information on the changes in plaque volume and composition achieved by improvement of lipid profiles with rosuvastatin therapy in stroke patients with aortic atherosclerosis. The results of the study may provide evidence for a therapeutic strategy for aortogenic brain embolism. This study is registered with UMIN-CTR (UMIN000010548).

  5. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    PubMed

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  6. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  7. Association between increased epicardial adipose tissue volume and coronary plaque composition.

    PubMed

    Yamashita, Kennosuke; Yamamoto, Myong Hwa; Ebara, Seitarou; Okabe, Toshitaka; Saito, Shigeo; Hoshimoto, Koichi; Yakushiji, Tadayuki; Isomura, Naoei; Araki, Hiroshi; Obara, Chiaki; Ochiai, Masahiko

    2014-09-01

    To assess the relationship between epicardial adipose tissue volume (EATV) and plaque vulnerability in significant coronary stenosis using a 40-MHz intravascular ultrasound (IVUS) imaging system (iMap-IVUS), we analyzed 130 consecutive patients with coronary stenosis who underwent dual-source computed tomography (CT) and cardiac catheterization. Culprit lesions were imaged by iMap-IVUS before stenting. The iMAP-IVUS system classified coronary plaque components as fibrous, lipid, necrotic, or calcified tissue, based on the radiofrequency spectrum. Epicardial adipose tissue was measured as the tissue ranging from -190 to -30 Hounsfield units. EATV, calculated as the sum of the fat areas on short-axis images, was 85.0 ± 34.0 cm(3). There was a positive correlation between EATV and the percentage of necrotic plaque tissue (R (2) = 0.34, P < 0.01), while there was a negative correlation between EATV and the percentage of fibrous tissue (R (2) = 0.24, P < 0.01). Multivariate analysis revealed that an increased low-density lipoprotein cholesterol level (β = 0.15, P = 0.03) and EATV (β = 0.14, P = 0.02) were independently associated with the percentage of necrotic plaque tissue. An increase in EATV was associated with the development of coronary atherosclerosis and, potentially, with the most dangerous type of plaque.

  8. [Effects of black and red rice on the formation of aortic plaques and blood lipids in rabbits].

    PubMed

    Chen, Q; Ling, W; Ma, J; Mei, J

    2000-05-30

    In order to observe the antiatherosclerotic effects of black and red rice and to find out their mechanism, 24 New Zealand male white rabbits (average body weight 1.91 kg) were divided randomly into three groups (white rice, black rice and red rice groups). The rabbits were fed a cholesterol-enriched diet (cholesterol 5 g/kg, lard 35 g/kg) containing 300 g/kg white, black and red rice powder respectively. The rabbits were sacrificed 10 weeks later. The aorta was dissected and stained in 0.5% oilred-isopropanol solution. The plaque area and total area of aorta were measured by an automatic image analyzer. Serum lipids were determined by an automatic analyzer. The results showed that the plaque area (% of total surface) in the black and red rice groups was significantly lower than that in the white rice group (P < 0.05). Serum TG, TC, LDL-C, ApoB and ApoAI/ApoB were not significantly different among the three groups (P > 0.05). However, the concentrations of HDL-C and ApoAI were significantly higher in the black and red rice groups than those in the white groups (P < 0.05). No significant difference was found between the black and red rice groups. It is concluded that black and red rice might be effective in reducing atherosclerotic plaques on the aorta of rabbits fed a cholesterol-enriched diet. The effectiveness of black and red rice against atherosclerosis might be related to the high level of serum HDL-C and ApoAI.

  9. Candida spp. and gingivitis in children with nephrotic syndrome or type 1 diabetes.

    PubMed

    Olczak-Kowalczyk, Dorota; Pyrżak, Beata; Dąbkowska, Maria; Pańczyk-Tomaszewska, Małgorzata; Miszkurka, Grażyna; Rogozińska, Izabela; Swoboda-Kopeć, Ewa; Gozdowski, Dariusz; Kalińska, Angelika; Piróg, Anna; Mizerska-Wasiak, Małgorzata; Roszkowska-Blaim, Maria

    2015-05-08

    Diabetes and Nephrotic syndrome (NS) promote plaque-related gingivitis and yeast-like fungal infections. The study assesses the impact of Candida spp. and general disease- or treatment-related factors on plaque-related gingivitis severity in children and adolescents with Nephrotic syndrome /diabetes. Body mass index (BMI), BMI standard deviation score, and oral cavity (Plaque Index--PLI, Gingival Index--GI, mucosa status, presence and Candida enzymatic activity) were assessed in 96 patients (32 with NS: 30- immunosuppressive treatment, 35--type 1 diabetes, and 29 generally healthy), aged; 3-18 years. Laboratory included cholesterol and triglyceride measurements; in diabetic subjects- glycated haemoglobin, in NS: total protein, albumin, creatinine, haemoglobin, haematocrit, white cell count, urinary protein excretion. Medical records supplied information on disease duration and treatment. A statistical analysis was performed; Kendall Tau coefficient, chi-square test, t-test, and multiple regression analysis ( P < 0.05). Candida spp. often occurred in healthy patients, but oral candidiasis was found only in the NS and diabetes groups (9.37% and 11.43%). Gingivitis occurred more frequently in patients with NS/diabetes. Gingivitis severity was correlated with PLI, age, and yeast enzyme activity in NS--to with immunosuppressive treatment with >1 drug, drug doses, treatment duration, lipid disorders, and BMI; in diabetes, with blood glucose and glycated haemoglobin >8%. Poor hygiene control is the main cause of gingivitis. Gingivitis severity is most likely related to age, lipid disorders and increase in body mass. Candida spp., in uncompensated diabetes and in those using immunosuppressive treatment, might intensify plaque-related gingivitis.

  10. Risk Factor Differences in Calcified and Non-Calcified Aortic Plaque: The Framingham Heart Study

    PubMed Central

    Chuang, Michael L.; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S.; Salton, Carol J.; Hoffmann, Udo; Manning, Warren J.; O'Donnell, Christopher J.

    2014-01-01

    Objective Determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. Approach and Results 1016 Framingham Offspring cohort members (64±9y, 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; BMI; blood pressure; LDL and HDL cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes, smoking; use of antihypertensive, diabetes or lipid-lowering drugs) were compared between participants with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining p<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalences of CMR and CT AP were 49% and 82% respectively. AP burdens by CMR and CT were correlated, r=0.28, p<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose, prevalent AP by CT with hypertension treatment and with adverse lipid profile. Conclusions AP by CMR and CT are both associated with smoking and increasing age, but other risk factors differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. PMID:24833796

  11. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet.

    PubMed

    Dhar-Mascareno, Manya; Rozenberg, Inna; Iqbal, Jahangir; Hussain, M Mahmood; Beckles, Daniel; Mascareno, Eduardo

    2017-02-01

    Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively. Published by Elsevier Ltd.

  12. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    PubMed

    Verdugo, Ricardo A; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S; Münzel, Thomas; Lackner, Karl J; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.

  13. Clinical factors associated with high-risk carotid plaque features as assessed by magnetic resonance imaging in patients with established vascular disease (from the AIM-HIGH Study).

    PubMed

    Zhao, Xue-Qiao; Hatsukami, Thomas S; Hippe, Daniel S; Sun, Jie; Balu, Niranjan; Isquith, Daniel A; Crouse, John R; Anderson, Todd; Huston, John; Polissar, Nayak; O'Brien, Kevin; Yuan, Chun

    2014-11-01

    Association between clinical factors and high-risk plaque features, such as, thin or ruptured cap, intraplaque hemorrhage, presence of lipid-rich necrotic core (LRNC), and increased LRNC volume as assessed by magnetic resonance imaging (MRI), was examined in patients with established vascular disease in the Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides (AIM-HIGH) trial. A total of 214 subjects underwent carotid MRI and had acceptable image quality for assessment of plaque burden, tissue contents, and MRI-modified American Heart Association lesion type by a core laboratory. We found that 77% of subjects had carotid plaques, 52% had lipid-containing plaques, and 11% had advanced American Heart Association type-VI lesions with possible surface defect, intraplaque hemorrhage, or mural thrombus. Type-VI lesions were associated with older age (odds ratio [OR] = 2.6 per 5 years increase, p <0.001). After adjusting for age, these lesions were associated with history of cerebrovascular disease (OR = 4.1, p = 0.01), higher levels of lipoprotein(a) (OR = 2.0 per 1 SD increase, p = 0.02), and larger percent wall volume (PWV [OR = 4.6 per 1 SD increase, p <0.001]) but, were negatively associated with metabolic syndrome (OR = 0.2, p = 0.02). Presence of LRNC was associated with the male gender (OR = 3.2, p = 0.02) and PWV (OR = 3.8 per 1 SD, p <0.001); however, it was negatively associated with diabetes (OR = 0.4, p = 0.02) and high-density lipoprotein cholesterol levels (OR = 0.7 per 1 SD, p = 0.02). Increased percent LRNC was associated with PWV (regression coefficient = 0.36, p <0.001) and negatively associated with ApoA1 levels (regression coefficient = -0.20, p = 0.03). In conclusion, older age, male gender, history of cerebrovascular disease, larger plaque burden, higher lipoprotein(a), and lower high-density lipoprotein cholesterol or ApoA1 level have statistically significant associations with high-risk plaque features. Metabolic syndrome and diabetes showed negative associations in this population. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling.

    PubMed

    Morel, Sandrine

    2014-01-01

    Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.

  15. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis

    PubMed Central

    2016-01-01

    Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease. PMID:27795867

  16. Complex patterns of response to oral hygiene instructions: longitudinal evaluation of periodontal patients.

    PubMed

    Amoo-Achampong, Felice; Vitunac, David E; Deeley, Kathleen; Modesto, Adriana; Vieira, Alexandre R

    2018-05-02

    Oral hygiene instruction is an intervention widely practiced but increased knowledge about oral health does not necessarily dramatically impact oral disease prevalence in populations. We aimed to measure plaque and bleeding in periodontal patients over time to determine patterns of patient response to oral hygiene instructions. Longitudinal plaque and bleeding index data were evaluated in 227 periodontal patients to determine the impact of oral hygiene instructions. Over multiple visits, we determined relative plaque accumulation and gingival bleeding for each patient. Subsequently, we grouped them in three types of oral hygiene status in response to initial instructions, using the longitudinal data over the period they were treated and followed for their periodontal needs. These patterns of oral hygiene based on the plaque and gingival bleeding indexes were evaluated based on age, sex, ethnic background, interleukin 1 alpha and beta genotypes, diabetes status, smoking habits, and other concomitant diseases. Chi-square and Fisher's exact tests were used to determine if any differences between these variables were statistically significant with alpha set at 0.05. Three patterns in response to oral hygiene instructions emerged. Plaque and gingival bleeding indexes improved, worsened, or fluctuated over time in the periodontal patients studied. Out of all the confounders considered, only ethnic background showed statistically significant differences. White individuals more often than other ethnic groups fluctuated in regards to oral hygiene quality after instructions. There are different responses to professional oral hygiene instructions. These responses may be related to ethnicity.

  17. Quantitative T1 and T2* carotid atherosclerotic plaque imaging using a three-dimensional multi-echo phase-sensitive inversion recovery sequence: a feasibility study.

    PubMed

    Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro

    2018-06-01

    Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.

  18. Association between traditional cholesterol parameters, lipoprotein particle concentration, novel biomarkers and carotid plaques in retired National Football League players.

    PubMed

    Virani, Salim S; Pompeii, Lisa; Lincoln, Andrew E; Dunn, Reginald E; Tucker, Andrew M; Nambi, Vijay; Nasir, Khurram; Vogel, Robert A; Boone, Jeffrey L; Roberts, Arthur J; Ballantyne, Christie M

    2012-06-01

    We assessed whether low-density lipoprotein particle concentration (LDL-P) and high-sensitivity C-reactive protein [hs-CRP] can identify subclinical atherosclerosis better than traditional cholesterol parameters in retired National Football League (NFL) players. It is not known whether LDL-P and the biomarker hs-CRP can identify subclinical atherosclerosis better than low-density lipoprotein cholesterol (LDL-C) or non-high-density-lipoprotein cholesterol (non-HDL-C) in retired NFL players, given high prevalence of metabolic syndrome in these players. Carotid artery plaque screening was performed with traditional lipids, LDL-P, and hs-CRP in 996 retired players. Logistic regression analyses comparing highest with the lowest quartile were performed. Carotid artery plaques were seen in 41%. LDL-C (odds ratio [OR] 1.66, 95% confidence interval [CI] 1.06-2.59), non-HDL-C (OR 1.67, 95% CI 1.04-2.67), and LDL-P (OR 2.21, 95% CI 1.35-3.62) were associated with plaques in adjusted models. Among 187 retired players with metabolic syndrome, LDL-C (OR 1.40, 95% CI 0.53-3.72) was not associated with carotid plaques, whereas LDL-P (OR 3.71, 95% CI 1.16-11.84) and non-HDL-C (OR 2.63, 95% CI 0.91-7.63, p=0.07; borderline significant) were associated with carotid plaques. hs-CRP (OR 1.13, 95% CI 0.71-1.79) was not associated with carotid plaques. Carotid artery plaques were common in retired NFL players and were strongly associated with LDL-P, especially among those with metabolic syndrome. hs-CRP was not associated with carotid plaques in this cohort. Published by Elsevier Ireland Ltd.

  19. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis.

    PubMed

    He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha

    2018-03-01

    Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Composition of plasma and atheromatous plaque among coronary artery disease subjects consuming coconut oil or sunflower oil as the cooking medium.

    PubMed

    Palazhy, Sabitha; Kamath, Prakash; Rajesh, P C; Vaidyanathan, Kannan; Nair, Shiv K; Vasudevan, D M

    2012-12-01

    Coconut oil, which is rich in medium-chain saturated fatty acids, is the principal cooking medium of the people of Kerala, India. Replacement of saturated fat with polyunsaturated fat is effective in reducing serum cholesterol levels. However, the effect of substituting coconut oil with sunflower oil on the fatty acid composition of plaque has not been thoroughly investigated. We therefore evaluated and compared the fatty acid composition of plasma and plaque among subjects consuming coconut oil or sunflower oil as the cooking medium. Endarterectomy samples and plasma samples were obtained from subjects who underwent coronary artery bypass grafts (n = 71). The subjects were grouped based on the type of oil they were using as their cooking medium (coconut oil or sunflower oil). The fatty acid composition in the plaques and the plasma was determined by HPLC and the data were analyzed statistically. Sunflower oil consumers had elevated concentrations of linoleic acid (p = 0.001) in plasma, while coconut oil users had higher myristic acid levels (p = 0.011) in plasma. Medium-chain fatty acids did not differ significantly between the two groups in the plasma. Medium-chain fatty acids were detected in the plaques in both groups of subjects. In contrast to previous reports, long-chain saturated fatty acids dominated the lipid content of plaque in this population, and the fatty acid composition of plaque was not significantly different between the two groups. No correlation between fatty acids of plasma and plaque was observed in either group. A change in cooking medium, although it altered the plasma fatty acid composition, was not reflected in the plaque composition.

  1. Nuclear magnetic resonance lipoprotein abnormalities in newly-diagnosed type 2 diabetes and their association with preclinical carotid atherosclerosis.

    PubMed

    Amor, Antonio J; Catalan, Marta; Pérez, Antonio; Herreras, Zoe; Pinyol, Montserrat; Sala-Vila, Aleix; Cofán, Montserrat; Gilabert, Rosa; Ros, Emilio; Ortega, Emilio

    2016-04-01

    Atherogenic dyslipidemia is common in type 2 diabetes (T2DM) and predicts cardiovascular disease, but information on the association of its components with atherosclerosis is scarce. We aimed to assess differences in the lipoprotein profile in newly-diagnosed T2DM and matched control individuals and their associations with preclinical carotid atherosclerosis. In a case-control study, we evaluated lipoprotein profiles by nuclear magnetic resonance (NMR) spectroscopy and determined carotid intima-media thickness (IMT) and plaque presence (IMT ≥1.5 mm) by B-mode ultrasonography. We assessed 96 T2DM patients (median age 63 years, 44% women, 19% smokers, 54% hypertension, 38% dyslipidemia) and 90 non-diabetic controls matched for age, sex, and cardiovascular risk factors. In T2DM VLDL-particles (mainly large and enriched in cholesterol and triglycerides) were increased, and large HDL-particles (enriched in triglycerides and depleted in cholesterol) were reduced (p < 0.05; all comparisons). Regarding associations with preclinical atherosclerosis, VLDL triglyceride content (odds ratio [OR], 8.975; 95% confidence interval [CI], 2.330-34.576), total number of VLDL particles (OR, 2.713; CI, 1.601-4.598) and VLDL size (OR, 2.044; CI, 1.320-3.166), and the ratio cholesterol/triglycerides in HDL (OR, 0.638; CI, 0.477-0.852) were associated with plaque burden (≥3 plaques) independently of confounders, including conventional lipid levels. NMR-assessed advanced lipoprotein profile identifies lipid abnormalities associated with newly-diagnosed T2DM and preclinical atherosclerosis that are not captured by the traditional lipid profile. At this early stage of diabetes, NMR lipoproteins could be useful to identify candidates for a more comprehensive cardiovascular risk prevention strategy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)

    NASA Astrophysics Data System (ADS)

    Giattina, Susanne D.; Courtney, Brian K.; Herz, Paul R.; Harman, Michelle; Shortkroff, Sonya; Stamper, Debra L.; Liu, Bin; Fujimoto, James G.; Brezinski, Mark E.

    2006-02-01

    Current evidence indicates that most plaques classified as vulnerable or ruptured plaques do not lead to unstable angina or myocardial infarction. Improved methods are needed to risk stratify plaques to identify those which lead to most acute coronary syndromes. Collagen depletion in the intima overlying lipid collections appears to be a critical component of unstable plaques. In this study, we use polarization sensitive optical coherence tomography (PS-OCT) for the assessment of coronary plaque collagen. Collagen is birefringent, meaning that different polarization states travel through it at different velocities. Changes in PS-OCT images are a measure of tissue birefringence. Twenty-two coronary artery segments were imaged with PS-OCT and analyzed by picrosirius staining (a measure of collagen intensity and fiber size) and trichrome blue. The regression plot between PS-OCT changes and measured collagen yielded a correlation coefficient value of 0.475 (p<0.002). Good correlation was noted between two blinded investigators both with respect to PS-OCT measurements as well as luminosity as assessed by picrosirius. The predictive value of a PS-OCT measurement of negligible birefringence (less than 33% change) for minimal collagen was 93% while the predictive value of high birefringence (greater than 66% change) for high collagen concentrations was 89%. The effect of fiber type (chemical composition) was minimal relative to the effect due to fiber concentration. The capability of PS-OCT to assess plaque collagen content, in addition to its ability to generate high resolution structural assessments, make it a potentially powerful technology for identifying high risk plaques.

  3. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  4. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1

    PubMed Central

    Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.

    2017-01-01

    Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798

  5. NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation.

    PubMed

    Plotkin, Jesse D; Elias, Michael G; Dellinger, Anthony L; Kepley, Christopher L

    2017-08-01

    The transformation of monocyte-derived macrophages into lipid-laden foam cells is one inflammatory process underlying atherosclerotic disease. Previous studies have demonstrated that fullerene derivatives (FDs) have inflammation-blunting properties. Thus, it was hypothesized that FD could inhibit the transformation process underlying foam cell formation. Fullerene derivatives inhibited the phorbol myristic acid/oxidized low-density lipoprotein-induced differentiation of macrophages into foam cells as determined by lipid staining and morphology.Lipoprotein-induced generation of TNF-α, C5a-induced MC activation, ICAM-1 driven adhesion, and CD36 expression were significantly inhibited in FD treated cells compared to non-treated cells. Inhibition appeared to be mediated through the NF-κB pathway as FD reduced expression of NF-κB and atherosclerosis-associated genes. Compared to controls, FD dramatically inhibited plaque formation in arteries of apolipoprotein E null mice. Thus, FD may be an unrecognized therapy to prevent atherosclerotic lesions via inhibition of foam cell formation and MC stabilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.

    PubMed

    Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia

    2015-02-04

    Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.

  7. Longitudinal MRI Study on the Natural History of Carotid Artery Plaques in Symptomatic Patients

    PubMed Central

    Kwee, Robert M.; Truijman, Martine T. B.; van Oostenbrugge, Robert J.; Mess, Werner H.; Prins, Martin H.; Franke, Cees L.; Korten, Arthur G. G. C.; Wildberger, Joachim E.; Kooi, M. Eline

    2012-01-01

    Purpose To investigate the natural history of carotid atherosclerosis in patients who experienced a TIA or ischemic stroke. Patients and Methods Ninety-two TIA/stroke patients (57 men, mean age 67.7±9.8 years) with ipsilateral <70% carotid stenosis underwent multisequence MRI of the plaque ipsilateral to the symptomatic side at baseline and after one year. For each plaque, several parameters were assessed at both time points. Results Carotid lumen, wall and total vessel ( = carotid lumen and wall) volume did not significantly change. Forty-four patients had a plaque with a lipid-rich necrotic core (LRNC) at baseline, of which 34 also had a LRNC after one year. In three patients a LRNC appeared after one year. Thirty patients had a plaque with a thin and/or ruptured fibrous cap (FC) at both time points. In seven patients, FC status changed from thin and/or ruptured into thick and intact. In three patients, FC status changed from thick and intact into thin and/or ruptured. Twenty patients had intraplaque hemorrhage (IPH) at both time points. In four patients, IPH disappeared, whereas in three patients, new IPH appeared at follow-up. Conclusion In TIA/stroke patients, carotid plaque morphology does not significantly change over a one-year period. IPH and FC status change in a minority of patients. PMID:22860130

  8. Carotid Artery Plaque Morphology and Composition in Relation to Incident Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Zavodni, Anna E. H.; Wasserman, Bruce A.; McClelland, Robyn L.; Gomes, Antoinette S.; Folsom, Aaron R.; Polak, Joseph F.; Lima, João A. C.

    2014-01-01

    Purpose To determine if carotid plaque morphology and composition with magnetic resonance (MR) imaging can be used to identify asymptomatic subjects at risk for cardiovascular events. Materials and Methods Institutional review boards at each site approved the study, and all sites were Health Insurance Portability and Accountability Act (HIPAA) compliant. A total of 946 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) were evaluated with MR imaging and ultrasonography (US). MR imaging was used to define carotid plaque composition and remodeling index (wall area divided by the sum of wall area and lumen area), while US was used to assess carotid wall thickness. Incident cardiovascular events, including myocardial infarction, resuscitated cardiac arrest, angina, stroke, and death, were ascertained for an average of 5.5 years. Multivariable Cox proportional hazards models, C statistics, and net reclassification improvement (NRI) for event prediction were determined. Results Cardiovascular events occurred in 59 (6%) of participants. Carotid IMT as well as MR imaging remodeling index, lipid core, and calcium in the internal carotid artery were significant predictors of events in univariate analysis (P < .001 for all). For traditional risk factors, the C statistic for event prediction was 0.696. For MR imaging remodeling index and lipid core, the C statistic was 0.734 and the NRI was 7.4% and 15.8% for participants with and those without cardiovascular events, respectively (P = .02). The NRI for US IMT in addition to traditional risk factors was not significant. Conclusion The identification of vulnerable plaque characteristics with MR imaging aids in cardiovascular disease prediction and improves the reclassification of baseline cardiovascular risk. © RSNA, 2014 PMID:24592924

  9. Risk factor differences in calcified and noncalcified aortic plaque: the Framingham Heart Study.

    PubMed

    Chuang, Michael L; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S; Salton, Carol J; Hoffmann, Udo; Manning, Warren J; O'Donnell, Christopher J

    2014-07-01

    The objective of this study was to determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. A total of 1016 Framingham Heart Study Offspring cohort members (64 ± 9 years; 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; body mass index; blood pressure; low-density lipoprotein and high-density lipoprotein cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes mellitus, smoking; use of antihypertensive, diabetes mellitus, or lipid-lowering drugs) were compared between participants, with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining P<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex, and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalence of CMR and CT AP was 49% and 82%, respectively. AP burdens by CMR and CT were correlated, r=0.28, P<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose and prevalent AP by CT with hypertension treatment and adverse lipid profile. AP by CMR and CT are both associated with smoking and increasing age, but other RFs differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. © 2014 American Heart Association, Inc.

  10. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis.

    PubMed

    Ackers, Ian; Szymanski, Candice; Duckett, K Jordan; Consitt, Leslie A; Silver, Mitchell J; Malgor, Ramiro

    Wnt5a is a highly studied member of the Wnt family and recently has been implicated in the pathogenesis of atherosclerosis, but its precise role is unknown. Foam cell development is a critical process to atherosclerotic plaque formation. In the present study, we investigated the role of noncanonical Wnt5a signaling in the development of foam cells. Human carotid atherosclerotic tissue and THP-1-derived macrophages were used to investigate the contribution of Wnt5a signaling in the formation of foam cells. Immunohistochemistry was used to evaluate protein expression of scavenger receptors and noncanonical Wnt5a receptors [frizzled 5 (Fz5) and receptor tyrosine kinase-like orphan receptor 2 (Ror2)] in human atherosclerotic macrophages/foam cells. Changes in protein expression in response to Wnt5a stimulation/inhibition were determined by Western blot, and lipid accumulation was evaluated by fluorescent lipid droplet staining. Wnt5a (P<.05), Fz5 (P<.01), and Ror2 (P<.01) were significantly expressed in advanced atherosclerotic lesions compared to less advanced lesions (N=10). Wnt5a, Fz5, and Ror2 were expressed in macrophages/foam cells within the plaque. In vitro studies revealed that Wnt5a significantly increased the expression of the lipid uptake receptor CD36 (P<.05) but not the lipid efflux receptor ATP-binding cassette transporter (P>.05). rWnt5a also significantly increased lipid accumulation in THP-1 macrophages (P<.05). Furthermore, inhibition of Wnt5a signaling with Box5 prevented lipid accumulation (P<.01) and prevented CD36 up-regulation (P<.01). These results suggest a direct role for Wnt5a signaling in the pathogenesis of atherosclerosis, specifically the accumulation of lipid in macrophages and the formation of foam cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Inhaled Diesel Emissions Alter Atherosclerotic Plaque Composition in ApoE−/− Mice

    PubMed Central

    Campen, Matthew J.; Lund, Amie K.; Knuckles, Travis L.; Conklin, Daniel J.; Bishop, Barbara; Young, David; Seilkop, Steven; Seagrave, JeanClare; Reed, Matthew D.; McDonald, Jacob D.

    2009-01-01

    Recent epidemiological studies suggest that traffic-related air pollution may have detrimental effects on cardiovascular health. Previous studies reveal that gasoline emissions can induce several enzyme pathways involved in the formation and development of atherosclerotic plaques. As a direct comparison, the present study examined the impact of diesel engine emissions on these pathways, and further examined the effects on vascular lesion pathology. Apolipoprotein E-null mice were simultaneously placed on a high fat chow diet and exposed to four concentrations, plus a high concentration exposure with particulates (PM) removed by filtration, of diesel emissions for 6 h/d for 50 days. Aortas were subsequently assayed for alteration in matrix metalloproteinase-9, endothelin-1, and several other biomarkers. Diesel induced dose-related alterations in gene markers of vascular remodeling and aortic lipid peroxidation; filtration of PM did not significantly alter these vascular responses, indicating that the gaseous portion of the exhaust was a principal driver. Immunohistochemical analysis of aortic leaflet sections revealed no net increase in lesion area, but a significant decrease in lipid-rich regions and increasing trends in macrophage accumulation and collagen content, suggesting that plaques were advanced to a more fragile, potentially more vulnerable state by diesel exhaust exposure. Combined with previous studies, these results indicate that whole emissions from mobile sources may have a significant role in promoting chronic vascular disease. PMID:19891982

  12. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques.

    PubMed Central

    Woods, Alan A; Linton, Stuart M; Davies, Michael J

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The detection of elevated levels of DOPA and o-Tyr, which have been previously attributed to the occurrence of oxygen-radical-mediated reactions, by HOCl treatment, suggests an alternative route to the formation of these materials in plaques. This is believed to involve the formation and subsequent decomposition of protein chloramines. PMID:12456264

  13. Arterial ageing: from endothelial dysfunction to vascular calcification.

    PubMed

    Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N

    2017-05-01

    Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  14. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin

    PubMed Central

    Li, Dongye; Wu, Weiheng; Gong, Lei; Li, Yong; Zhang, Qingdui; Zhang, Tao; Zhang, Chao; Zhang, Yu

    2015-01-01

    Background Rupture of an atherosclerotic plaque is the primary cause of acute cardiovascular and cerebrovascular syndromes. Early and non-invasive detection of vulnerable atherosclerotic plaques (VP) would be significant in preventing some aspects of these syndromes. As a new contrast agent, dimercaptosuccinic acid (DMSA) modified ultra-small super paramagnetic iron oxide (USPIO) was synthesized and used to identify VP and rupture plaque by magnetic resonance imaging (MRI). Methods Atherosclerosis was induced in male New Zealand White rabbits by feeding a high cholesterol diet (n = 30). Group A with atherosclerosis plaque (n = 10) were controls. VP was established in groups B (n = 10) and C (n = 10) using balloon-induced endothelial injury of the abdominal aorta. Adenovirus-carrying p53 genes were injected into the aortic segments rich in plaques after 8 weeks. Group C was treated with atorvastatin for 8 weeks. Sixteen weeks later, all rabbits underwent pharmacological triggering, and imaging were taken daily for 5 d after DMSA-USPIO infusion. At the first day and before being killed, serum MMP-9, sCD40L, and other lipid indicators were measured. Results DMSA-USPIO particles accumulated in VP and rupture plaques. Rupture plaques appeared as areas of hyper-intensity on DMSA-USPIO enhanced MRI, especially T2*-weighted sequences, with a signal strength peaking at 96 h. The group given atorvastatin showed few DMSA-USPIO particles and had lower levels of serum indicators. MMP-9 and sCD40L levels in group B were significantly higher than in the other 2 groups (P <0.05). Conclusion After successfully establishing a VP model in rabbits, DMSA-USPIO was used to enhance MRI for clear identification of plaque inflammation and rupture. Rupture plaques were detectable in this way probably due to an activating inflammatory process. Atorvastatin reduced the inflammatory response and stabilizing VP possibly by decreasing MMP-9 and sCD40L levels. PMID:25973795

  15. High speed photoacoustic imaging with fast OPO laser at 1.7 μm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Teng, Ma; Li, Jiawen; Qu, Yueqiao; Yu, Mingyue; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-03-01

    Acute cardiovascular events are mostly due to a blood clot or thrombus induced by the sudden rupture of vulnerable atherosclerotic plaques within coronary artery walls. Based on the high optical absorption contrast of the lipid rich plaques within the vessel wall, intravascular photoacoustic (IVPA) imaging at 1.7 μm spectral band has shown promising capabilities for detecting of lipid composition, but the translation of the technology for in vivo application is limited by the slow imaging speed. In this work, we will present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm (5 nm linewidth). A miniature catheter with 1.0 mm outer diameter was designed with a polished 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. Two optical illumination methods by gradient-index (GRIN) lens and ball lens are introduced and compared for higher spatial resolution. At 1725 nm, atherosclerotic rabbit abdominal aorta was imaged at two frame per second, which is more than one order of magnitude faster than previous reported IVPA imaging. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo.

  16. A catheter-based near-infrared scanning spectroscopy system for imaging lipid-rich plaques in human coronary arteries in vivo

    NASA Astrophysics Data System (ADS)

    Gardner, Craig M.; Lisauskas, Jennifer; Hull, Edward L.; Tan, Huwei; Sum, Stephen; Meese, Thomas; Jiang, Chunsheng; Madden, Sean; Caplan, Jay; Muller, James E.

    2007-09-01

    Although heart disease remains the leading cause of death in the industrialized world, there is still no method, even under cardiac catheterization, to reliably identify those atherosclerotic lesions most likely to lead to heart attack and death. These lesions, which are often non-stenotic, are frequently comprised of a necrotic, lipid-rich core overlaid with a thin fibrous cap infiltrated with inflammatory cells. InfraReDx has developed a scanning, near-infrared, optical-fiber-based, spectroscopic cardiac catheter system capable of acquiring NIR reflectance spectra from coronary arteries through flowing blood under automated pullback and rotation in order to identify lipid-rich plaques (LRP). The scanning laser source and associated detection electronics produce a spectrum in 5 ms at a collection rate of 40 Hz, yielding thousands of spectra in a single pullback. The system console analyzes the spectral data with a chemometric model, producing a hyperspectral image (a Chemogram, see figure below) that identifies LRP encountered in the region interrogated by the system. We describe the system architecture and components, explain the experimental procedure by which the chemometric model was constructed from spectral data and histology-based reference information collected from autopsy hearts, and provide representative data from ongoing ex vivo and clinical studies.

  17. Intra-individual comparison of carotid and femoral atherosclerotic plaque features with in vivo MR plaque imaging.

    PubMed

    Helck, Andreas; Bianda, Nicola; Canton, Gador; Yuan, Chun; Hippe, Daniel S; Reiser, Maximilian F; Gallino, Augusto; Wyttenbach, Rolf; Saam, Tobias

    2015-12-01

    The purpose of this study was to evaluate differences of plaque composition and morphology within the same patient in different vascular beds using non-invasive MR-plaque imaging. 28 patients (67.8 ± 7.4 years, 8 females) with high Framingham general cardiovascular disease 10-year risk score and mild-to-moderate atherosclerosis were consecutively included in the study. All subjects underwent a dedicated MRI-plaque imaging protocol using TOF and T1w and T2w black-blood-sequences with fat suppression at 1.5 T. The scan was centered on the carotid bulb of the carotid arteries and on the most stenotic lesion of the ipsilateral femoral artery, respectively. Plaques were classified according to the American Heart Association (AHA) lesion type classification and area measurements of lumen, wall and the major plaque components, such as calcification, necrotic core and hemorrhage were determined in consensus by two blinded reviewers using dedicated software (Cascade, Seattle, USA). Plaque components were recorded as maximum percentages of the wall area. Carotid arteries had larger maximum wall and smaller minimum lumen areas (p < 0.001) than femoral arteries, whereas no significant difference was find with respect to the max. NWI (p = 0.87). Prevalence of lipid-rich AHA lesion type IV/V and complicated AHA lesion type VI with hemorrhage/thrombus/fibrous cap rupture was significantly higher in the carotid arteries compared to the femoral arteries. Plaque composition as percentage of the vessel wall differed significantly between carotid and femoral arteries: Max. %necrotic core and max. %hemorrhage were significantly higher in the carotid arteries compared to the femoral arteries (p = 0.001 and p = 0.02, respectively). Max. %calcification did not differ significantly. Average stenotic degree of carotid arteries at duplex was 49.7 ± 12.5 (%). Non-invasive MR plaque-imaging is able to visualize differences in plaque composition across the vascular tree. We observed significant differences in quantitative and qualitative plaque features between carotid and femoral arteries within the same patient, which in the future could help to improve risk stratification in patients with atherosclerosis.

  18. Incremental Value of Plaque Enhancement in Patients with Moderate or Severe Basilar Artery Stenosis: 3.0 T High-Resolution Magnetic Resonance Study.

    PubMed

    Wang, Wanqian; Yang, Qi; Li, Debiao; Fan, Zhaoyang; Bi, Xiaoming; Du, Xiangying; Wu, Fang; Wu, Ye; Li, Kuncheng

    2017-01-01

    To investigate the clinical relevance of plaque's morphological characteristics and distribution pattern using 3.0 T high-resolution magnetic resonance imaging (HRMRI) in patients with moderate or severe basilar artery (BA) atherosclerosis stenosis. Fifty-seven patients (33 symptomatic patients and 24 asymptomatic patients) were recruited for 3.0 T HRMRI scan; all of them had >50% stenosis on the BA. The intraplaque hemorrhage (IPH), contrast-enhancement pattern, and distribution of BA plaques were compared between the symptomatic and asymptomatic groups. Factors potentially associated with posterior ischemic stroke were calculated by multivariate analyses. Enhancement of BA plaque was more frequently observed in symptomatic than in asymptomatic patients (27/33, 81.8% versus 11/24, 45.8%; p < 0.01). In multivariate regression analysis, plaque enhancement (OR = 7.193; 95% CI: 1.880-27.517; p = 0.004) and smoking (OR = 4.402; 95% CI: 2.218-15.909; p = 0.024) were found to be independent risk factors of posterior ischemic events in patients with BA stenosis >50%. Plaques were mainly distributed at the ventral site (39.3%) or involved more than two arcs (21.2%) in the symptomatic group but were mainly distributed at left (33.3%) and right (25.0%) sites in the asymptomatic group.

  19. Association between Carotid Plaque Characteristics and Cerebral White Matter Lesions: One-Year Follow-Up Study by MRI

    PubMed Central

    Kwee, Robert M.; Hofman, Paul A. M.; Gronenschild, Ed H. B. M.; van Oostenbrugge, Robert J.; Mess, Werner H.; Berg, Johannes W. M. ter.; Franke, Cees L.; Korten, Arthur G. G. C.; Meems, Bé J.; van Engelshoven, Jos M. A.; Wildberger, Joachim E.; Kooi, M. Eline

    2011-01-01

    Objective To prospectively assess the relation between carotid plaque characteristics and the development of new cerebral white matter lesions (WMLs) at MRI. Methods Fifty TIA/stroke patients with ipsilateral 30–69% carotid stenosis underwent MRI of the plaque at baseline. Total plaque volume and markers of vulnerability to thromboembolism (lipid-rich necrotic core [LRNC] volume, fibrous cap [FC] status, and presence of intraplaque hemorrhage [IPH]) were assessed. All patients also underwent brain MRI at baseline and after one year. Ipsilateral cerebral WMLs were quantified with a semiautomatic method. Results Mean WML volume significantly increased over a one-year period (6.52 vs. 6.97 mm3, P = 0.005). WML volume at baseline and WML progression did not significantly differ (P>0.05) between patients with 30–49% and patients with 50–69% stenosis. There was a significant correlation between total plaque volume and baseline ipsilateral WML volume (Spearman ρ = 0.393, P = 0.005). There was no significant correlation between total plaque volume and ipsilateral WML progression. There were no significant associations between LRNC volume and WML volume at baseline and WML progression. WML volume at baseline and WML progression did not significantly differ between patients with a thick and intact FC and patients with a thin and/or ruptured FC. WML volume at baseline and WML progression also did not significantly differ between patients with and without IPH. Conclusion The results of this study indicate that carotid plaque burden is significantly associated with WML severity, but that there is no causal relationship between carotid plaque vulnerability and the occurrence of WMLs. PMID:21347225

  20. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression.

    PubMed

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-05-01

    Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1-CXCR2 and CX3CL1-CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    PubMed Central

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1–CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  2. Molecular intravascular imaging approaches for atherosclerosis.

    PubMed

    Press, Marcella Calfon; Jaffer, Farouc A

    2014-10-01

    Coronary artery disease (CAD) is an inflammatory process that results in buildup of atherosclerosis, typically lipid-rich plaque in the arterial wall. Progressive narrowing of the vessel wall and subsequent plaque rupture can lead to myocardial infarction and death. Recent advances in intravascular fluorescence imaging techniques have provided exciting coronary artery-targeted platforms to further characterize the molecular changes that occur within the vascular wall as a result of atherosclerosis and following coronary stent-induced vascular injury. This review will summarize exciting recent developments in catheter-based imaging of coronary arterial-sized vessels; focusing on two-dimensional near-infrared fluorescence imaging (NIRF) molecular imaging technology as an approach to specifically identify inflammation and fibrin directly within coronary artery-sized vessels. Intravascular NIRF is anticipated to provide new insights into the in vivo biology underlying high-risk plaques, as well as high-risks stents prone to stent restenosis or stent thrombosis.

  3. Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534

  4. Porphyromonas gingivalis Accelerates Inflammatory Atherosclerosis in the Innominate Artery of ApoE Deficient Mice

    PubMed Central

    Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andres G.; Gibson, Frank C.; Hamilton, James A.; Genco, Caroline A.

    2011-01-01

    Objective Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Methods and Results Apolipoprotein E-deficient (ApoE−/−) mice were orally infected with P. gingivalis, and Magnetic Resonance Imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. Conclusions These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in-vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. PMID:21251656

  5. Assessment of plaque vulnerability in atherosclerosis via intravascular photoacoustic imaging of targeted liposomal ICG J-aggregates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Harris, Justin T.; Dumani, Diego S.; Cook, Jason R.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.; Homan, Kimberly A.

    2017-03-01

    While molecular and cellular imaging can be used to visualize the conventional morphology characteristics of vulnerable plaques, there is a need to monitor other physiological factors correlated with high rupture rates; a high M1 activated macrophage concentration is one such indicator of high plaque vulnerability. Here, we present a molecularly targeted contrast agent for intravascular photoacoustic (IVPA) imaging consisting of liposomes loaded with indocyanine green (ICG) J-aggregates with high absorption at 890 nm, allowing for imaging in the presence of blood. This "Lipo-ICG" was targeted to a biomarker of M1 activated macrophages in vulnerable plaques: folate receptor beta (FRβ). The targeted liposomes accumulate in plaques through areas of endothelial dysfunction, while the liposome encapsulation prevents nonspecific interaction with lipids and endothelium. Lipo-ICG specifically interacts with M1 activated macrophages, causing a spectral shift and change in the 890/780 nm photoacoustic intensity ratio upon breakdown of J-aggregates. This sensing mechanism enables assessment of the M1 activated macrophage concentration, providing a measure of plaque vulnerability. In a pilot in vivo study utilizing ApoE deficient mouse models of atherosclerosis, diseased mice showed increased uptake of FRβ targeted Lipo-ICG in the heart and arteries vs. normal mice. Likewise, targeted Lipo-ICG showed increased uptake vs. two non-targeted controls. Thus, we successfully synthesized a contrast agent to detect M1 activated macrophages in high risk atherosclerotic plaques and exhibited targeting both in vitro and in vivo. This biocompatible agent could enable M1 macrophage detection, allowing better clinical decision making in treatment of atherosclerosis.

  6. Magnetic Resonance Imaging-Based Assessment of Carotid Atheroma: a Comparative Study of Patients with and without Coronary Artery Disease.

    PubMed

    Usman, Ammara; Sadat, Umar; Teng, Zhongzhao; Graves, Martin J; Boyle, Jonathan R; Varty, Kevin; Hayes, Paul D; Gillard, Jonathan H

    2017-02-01

    Functional magnetic resonance (MR) imaging of atheroma using contrast media enables assessment of the systemic severity of atherosclerosis in different arterial beds. Whether black-blood imaging has similar ability remains widely unexplored. In this study, we evaluate whether black-blood imaging can differentiate carotid plaques of patients with and without coronary artery disease (CAD) in terms of morphological and biomechanical features of plaque vulnerability, thereby allowing assessment of the systemic severity nature of atherosclerosis in different arterial beds. Forty-one patients with CAD and 59 patients without CAD underwent carotid black-blood MR imaging. Plaque components were segmented to identify large lipid core (LC), ruptured fibrous cap (FC), and plaque hemorrhage (PH). These segmented contours of plaque components were used to quantify maximum structural biomechanical stress. Patients with CAD and without CAD had comparable demographics and comorbidities. Both groups had comparable prevalence of morphological features of plaque vulnerability (FC rupture, 44% versus 41%, P = .90; PH, 58% versus 47%, P = .78; large LC, 32% versus 47%, P = .17), respectively. The maximum biomechanical stress was not significantly different for both groups (241versus 278 kPa, P = .14) respectively. Black-blood imaging does not appear to have the ability to differentiate between the morphological and biomechanical features of plaque vulnerability when comparing patients with and without symptomatic atherosclerotic disease in a distant arterial territory such as coronary artery. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss

    NASA Technical Reports Server (NTRS)

    Lazaro, Ester; Escarmis, Cristina; Perez-Mercader, Juan; Manrubia, Susanna C.; Domingo, Esteban

    2003-01-01

    RNA viruses display high mutation rates and their populations replicate as dynamic and complex mutant distributions, termed viral quasispecies. Repeated genetic bottlenecks, which experimentally are carried out through serial plaque-to-plaque transfers of the virus, lead to fitness decrease (measured here as diminished capacity to produce infectious progeny). Here we report an analysis of fitness evolution of several low fitness foot-and-mouth disease virus clones subjected to 50 plaque-to-plaque transfers. Unexpectedly, fitness decrease, rather than being continuous and monotonic, displayed a fluctuating pattern, which was influenced by both the virus and the state of the host cell as shown by effects of recent cell passage history. The amplitude of the fluctuations increased as fitness decreased, resulting in a remarkable resistance of virus to extinction. Whereas the frequency distribution of fitness in control (independent) experiments follows a log-normal distribution, the probability of fitness values in the evolving bottlenecked populations fitted a Weibull distribution. We suggest that multiple functions of viral genomic RNA and its encoded proteins, subjected to high mutational pressure, interact with cellular components to produce this nontrivial, fluctuating pattern.

  8. Natural history of dental plaque accumulation in mechanically ventilated adults: a descriptive correlational study.

    PubMed

    Jones, Deborah J; Munro, Cindy L; Grap, Mary Jo

    2011-12-01

    The purpose of this study was to describe the pattern of dental plaque accumulation in mechanically ventilated adults. Accumulation of dental plaque and bacterial colonisation of the oropharynx is associated with a number of systemic diseases including ventilator associated pneumonia. Data were collected from mechanically ventilated critically ill adults (n=137), enrolled within 24 hours of intubation. Dental plaque, counts of decayed, missing and filled teeth and systemic antibiotic use was assessed on study days 1, 3, 5 and 7. Dental plaque averages per study day, tooth type and tooth location were analysed. Medical respiratory, surgical trauma and neuroscience ICU's of a large tertiary care centre in the southeast United States. Plaque: all surfaces >60% plaque coverage from day 1 to day 7; molars and premolars contained greatest plaque average >70%. Systemic antibiotic use on day 1 had no significant effect on plaque accumulation on day 3 (p=0.73). Patients arrive in critical care units with preexisting oral hygiene issues. Dental plaque tends to accumulate in the posterior teeth (molars and premolars) that may be hard for nurses to visualise and reach; this problem may be exacerbated by endotracheal tubes and other equipment. Knowing accumulation trends of plaque will guide the development of effective oral care protocols. Published by Elsevier Ltd.

  9. [Study on the effect of rhizoma Chuanxiong, radix paeoniae rubra and the compound of their active ingredients, Xiongshao Capsule, on stability of atherosclerotic plaque in ApoE(-/-) mice].

    PubMed

    Xu, Hao; Wen, Chuan; Chen, Ke-Ji

    2007-06-01

    To observe the effect of Rhizoma chuanxiong (RC), Radix Paeoniae rubra (RP) and Xiongshao Capsule (XC, a compound of their active ingredients, Chuanxingols and Paeoniflorins) on stability of atherosclerotic plaque in ApoE-/- mice and to explore the probable mechanisms. The effect of RC, RP and XC in stabilizing atherosclerotic plaque, in terms of pathologic morphology, cell composition and inflammatory reaction, in the atherosclerosis model established on ApoE-/- mice was studied by using optical microscope, immunohistochemical method and computerized imaging analysis respectively. After the ApoE-/- mice being fed with high fat diet for 26 weeks, obvious atherosclerotic lesion with typical unstable characteristics was found in their aortic root. Both RC and RP had certain effects in lowering total cholesterol and increasing the thickness of fibre cap. RC could also lower the serum triglyceride (TC) level and the lipid-core/plaque area ratio as well as reduce the macrocytic infiltration. In addition to the same effects as above mentioned, XS could also raise the levels of high density lipoprotein-cholesterol (HDL-C), lower TC/HDL-C ratio, reduce inflammatory reaction and enlarge the collagen area in plaque. The acting links of RC and RP on atherosclerosis are different, the compound of their active ingredients, XS, shows a more evident effect in intervening unstable plaque. It demonstrates the effect-enhancing power of TCM compound and is worth further studying.

  10. Relation of ABO Blood Groups to the Plaque Characteristic of Coronary Atherosclerosis.

    PubMed

    Huang, Xingtao; Zou, Yongpeng; Li, Lulu; Chen, Shuyuan; Hou, Jingbo; Yu, Bo

    2017-01-01

    The ABO blood types related to morphological characteristics of atherosclerosis plaque are not clear. We aimed to evaluate the relationship between ABO blood groups and the coronary plaque characteristic. We retrospectively identified the target lesions in 392 acute coronary syndrome patients who underwent optical coherence tomography examination before stenting. Subjects were divided into different groups according to different blood types. The fibrous cap thickness was significantly thicker in O type compared with non-O type (0.075 ± 0.033 mm versus 0.061 ± 0.024, p < 0.001). Meanwhile, the incidence of thin-cap fibroatheroma was also significantly higher in O type compared with non-O type (51.0% versus 71.5%, p < 0.001). The O type showed a significantly larger minimum lumen area [1.26 (0.82, 2.13) versus 1.05 (0.67, 1.82), p = 0.020] and minimum lumen diameter [1.03 (0.74, 1.31) versus 0.95 (0.66, 1.25), p = 0.039] compared with non-O type. There were no differences found in incidence of lipid plaque, plaque rupture, and thrombus between different blood type groups even between O type and non-O type group ( p > 0.05). The plaques of O type blood group were exhibited more stably compared with non-O type blood group. Moreover, the non-O type blood group have more serious coronary artery stenosis than O type blood group.

  11. Early supra- and subgingival plaque formation in experimental gingivitis in smokers and never-smokers.

    PubMed

    Branco, Paula; Weidlich, Patricia; Oppermann, Rui Vicente; Rösing, Cassiano Kuchenbecker

    2015-01-01

    To evaluate supragingival and subgingival plaque formation on the dentogingival area in smokers and never smokers using the experimental gingivitis model and a plaque scoring system that considers the presence of an area free of plaque between plaque and the gingival sulcus called the plaque free zone (PFZ). Male volunteers, 9 current smokers and 10 never-smokers, refrained from oral hygiene procedures in the maxillary incisors and canines (test teeth) for 25 days. Under conditions of clinically healthy gingiva (phase 1) and gingival inflammation (phase 2), the supragingival plaque formation pattern was observed for 4 days in the dentogingival area. Gingival crevicular fluid was also measured. Plaque was dyed with fucsine and its presence was recorded by a calibrated examiner based on a 3-criteria scoring system: 0 - absence of stained plaque; 1 - presence of stained plaque and supragingival PFZ; 2 - presence of stained plaque and absence of PFZ, indicating that subgingival plaque formation has taken place. In both phases, smokers presented a significantly lower relative frequency of sites with subgingival plaque compared to never-smokers (P < 0.001). Mean gingival crevicular fluid was significantly higher in the presence of gingival inflammation for both groups (P = 0.001), whereas smokers demonstrated a significantly lower frequency of gingival bleeding than did non-smokers (23.6% vs 66.1%; P < 0.001). Smokers presented significantly lower percentages of sites with subgingival plaque in all experimental periods and presented less gingival inflammation as shown by GBI and gingival crevicular fluid quantification.

  12. Sleep Characteristics and Carotid Atherosclerosis Among Midlife Women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; von Känel, Roland; Barinas-Mitchell, Emma; Jennings, J Richard; Hall, Martica H; Santoro, Nanette; Buysse, Daniel J; Matthews, Karen A

    2017-02-01

    Midlife, which encompasses the menopause transition in women, can be a time of disrupted sleep and accelerated atherosclerosis accumulation. Short or poor sleep quality has been associated with cardiovascular disease (CVD) risk; few studies have investigated relations among midlife women. We tested whether shorter actigraphy sleep time or poorer subjective sleep quality was associated with carotid atherosclerosis among midlife women. Two hundred fifty-six peri- and postmenopausal women aged 40-60 years completed 3 days of wrist actigraphy, hot flash monitoring, questionnaires (Pittsburgh Sleep Quality Index [PSQI], Berlin), a blood draw, and carotid ultrasound [intima media thickness (IMT), plaque]. Associations of objective (actigraphy) and subjective (PSQI) sleep with IMT/plaque were tested in regression models (covariates: age, race, education, body mass index, blood pressure, lipids, insulin resistance, medications, snoring, depressive symptoms, sleep hot flashes, and estradiol). Shorter objective sleep time was associated with higher odds of carotid plaque (for each hour shorter sleep, plaque score ≥ 2, odds ratio (OR) [95% confidence interval, CI] = 1.58 [1.11-2.27], p = .01; plaque score = 1, OR [95% CI] = 0.95 [0.68-1.32], p = .75, vs. no plaque, multivariable). Poorer subjective sleep quality was associated with higher mean IMT [β, b (standard error, SE) = 0.004 (0.002), p = .03], maximal IMT [b (SE) = 0.009 (0.003), p = .005], and plaque [plaque score ≥ 2, OR (95% CI) = 1.23 (1.09-1.40), p = .001; score = 1, OR (95% CI) = 1.06 (0.93-1.21), p = .37, vs. no plaque] in multivariable models. Findings persisted additionally adjusting for sleep hot flashes and estradiol. Shorter actigraphy-assessed sleep time and poorer subjective sleep quality were associated with increased carotid atherosclerosis among midlife women. Associations persisted adjusting for CVD risk factors, hot flashes, and estradiol. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. High HbA1c levels correlate with reduced plaque regression during statin treatment in patients with stable coronary artery disease: results of the coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS).

    PubMed

    Daida, Hiroyuki; Takayama, Tadateru; Hiro, Takafumi; Yamagishi, Masakazu; Hirayama, Atsushi; Saito, Satoshi; Yamaguchi, Tetsu; Matsuzaki, Masunori

    2012-07-25

    The incidence of cardiac events is higher in patients with diabetes than in people without diabetes. The Coronary Atherosclerosis Study Measuring Effects of Rosuvastatin Using Intravascular Ultrasound in Japanese Subjects (COSMOS) demonstrated significant plaque regression in Japanese patients with chronic coronary disease after 76 weeks of rosuvastatin (2.5 mg once daily, up-titrated to a maximum of 20 mg/day to achieve LDL cholesterol <80 mg/dl). In this subanalysis of COSMOS, we examined the association between HbA1c and plaque regression in 40 patients with HbA1c ≥6.5% (high group) and 86 patients with HbA1c <6.5% (low group). In multivariate analyses, HbA1c and plaque volume at baseline were major determinants of plaque regression. LDL cholesterol decreased by 37% and 39% in the high and low groups, respectively, while HDL cholesterol increased by 16% and 22%, respectively. The reduction in plaque volume was significantly (p = 0.04) greater in the low group (from 71.0 ± 39.9 to 64.7 ± 34.7 mm(3)) than in the high group (from 74.3 ± 34.2 to 71.4 ± 32.3 mm(3)). Vessel volume increased in the high group but not in the low group (change from baseline: +4.2% vs -0.8%, p = 0.02). Change in plaque volume was significantly correlated with baseline HbA1c. Despite similar improvements in lipid levels, plaque regression was less pronounced in patients with high HbA1c levels compared with those with low levels. Tight glucose control during statin therapy may enhance plaque regression in patients with stable coronary disease. ClinicalTrials.gov, Identifier NCT00329160.

  14. SNX31: A Novel Sorting Nexin Associated with the Uroplakin-Degrading Multivesicular Bodies in Terminally Differentiated Urothelial Cells

    PubMed Central

    Liang, Feng-Xia; Liao, Yi; Chang, Jennifer; Zhou, Ge; Zheng, Weiyue; Simon, Jean-Pierre; Ding, Mingxiao; Wu, Xue-Ru; Romih, Rok; Kreibich, Gert; Sun, Tung-Tien

    2014-01-01

    Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but ‘softened’) membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation. PMID:24914955

  15. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-01-01

    Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256

  16. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees

    NASA Astrophysics Data System (ADS)

    Kolluru, Chaitanya; Prabhu, David; Gharaibeh, Yazan; Wu, Hao; Wilson, David L.

    2018-02-01

    Intravascular Optical Coherence Tomography (IVOCT) is a high contrast, 3D microscopic imaging technique that can be used to assess atherosclerosis and guide stent interventions. Despite its advantages, IVOCT image interpretation is challenging and time consuming with over 500 image frames generated in a single pullback volume. We have developed a method to classify voxel plaque types in IVOCT images using machine learning. To train and test the classifier, we have used our unique database of labeled cadaver vessel IVOCT images accurately registered to gold standard cryoimages. This database currently contains 300 images and is growing. Each voxel is labeled as fibrotic, lipid-rich, calcified or other. Optical attenuation, intensity and texture features were extracted for each voxel and were used to build a decision tree classifier for multi-class classification. Five-fold cross-validation across images gave accuracies of 96 % +/- 0.01 %, 90 +/- 0.02% and 90 % +/- 0.01 % for fibrotic, lipid-rich and calcified classes respectively. To rectify performance degradation seen in left out vessel specimens as opposed to left out images, we are adding data and reducing features to limit overfitting. Following spatial noise cleaning, important vascular regions were unambiguous in display. We developed displays that enable physicians to make rapid determination of calcified and lipid regions. This will inform treatment decisions such as the need for devices (e.g., atherectomy or scoring balloon in the case of calcifications) or extended stent lengths to ensure coverage of lipid regions prone to injury at the edge of a stent.

  17. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest the existence of distinct differences in the organization of amyloid in subjects with different clinical presentations.« less

  18. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. As a result, we demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest the existence of distinct differences in the organization of amyloid in subjects with different clinical presentations.« less

  19. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    DOE PAGES

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; ...

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. As a result, we demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest the existence of distinct differences in the organization of amyloid in subjects with different clinical presentations.« less

  20. Detection of Vulnerable Atherosclerotic Plaques in Experimental Atherosclerosis with the USPIO-Enhanced MRI.

    PubMed

    Qi, Chun-Mei; Du, Lili; Wu, Wei-Heng; Li, Dong-Ye; Hao, Ji; Gong, Lei; Deng, Liangrong; Zhang, Tao; Zhang, Chao; Zhang, Yu

    2015-11-01

    This study's goal was to assess the diagnostic value of the USPIO-(ultra-small superparamagnetic iron oxide) enhanced magnetic resonance imaging (MRI) in detection of vulnerable atherosclerotic plaques in abdominal aorta in experimental atherosclerosis. Thirty New Zealand rabbits were randomly divided into two groups, Group A and Group B. Each group comprised 15 animals which were fed with high cholesterol diet for 8 weeks and then subjected to balloon-induced endothelial injury of the abdominal aorta. After another 8 weeks, animals in Group B received adenovirus carrying p53 gene that was injected through a catheter into the aortic segments rich in plaques. Two weeks later, all rabbits were challenged with the injection of Chinese Russell's viper venom and histamine. Pre-contrast images and USPIO-enhanced MRI images were obtained after pharmacological triggering with injection of USPIO for 5 days. Blood specimens were taken for biochemical and serological tests at 0 and 18 weeks. Abdominal aorta was histologically studied. The levels of serum ICAM-1 and VCAM-1 were quantified by ELISA. Vulnerable plaques appeared as a local hypo-intense signal on the USPIO-enhanced MRI, especially on T2*-weighted sequences. The signal strength of plaques reached the peak at 96 h. Lipid levels were significantly (p < 0.05) higher in both Group A and B compared with the levels before the high cholesterol diet. The ICAM-1 and VCAM-1 levels were significantly (p < 0.05) higher in Group B compared with Group A. The USPIO-enhanced MRI efficiently identifies vulnerable plaques due to accumulation of USPIO within macrophages in abdominal aorta plaques.

  1. Circulating Immunoglobulins Are Not Associated with Intraplaque Mast Cell Number and Other Vulnerable Plaque Characteristics in Patients with Carotid Artery Stenosis

    PubMed Central

    Quax, Paul H. A.; de Borst, Gert Jan; de Vries, Jean-Paul P. M.; Moll, Frans L.; Kuiper, Johan; Toes, René E. M.; de Jager, Saskia C. A.; de Kleijn, Dominique P. V.; Hoefer, Imo E.; Pasterkamp, Gerard; Bot, Ilze

    2014-01-01

    Background Recently, we have shown that intraplaque mast cell numbers are associated with atherosclerotic plaque vulnerability and with future cardiovascular events, which renders inhibition of mast cell activation of interest for future therapeutic interventions. However, the endogenous triggers that activate mast cells during the progression and destabilization of atherosclerotic lesions remain unidentified. Mast cells can be activated by immunoglobulins and in the present study, we aimed to establish whether specific immunoglobulins in plasma of patients scheduled for carotid endarterectomy were related to (activated) intraplaque mast cell numbers and plasma tryptase levels. In addition, the levels were related to other vulnerable plaque characteristics and baseline clinical data. Methods and Results OxLDL-IgG, total IgG and total IgE levels were measured in 135 patients who underwent carotid endarterectomy. No associations were observed between the tested plasma immunoglobulin levels and total mast cell numbers in atherosclerotic plaques. Furthermore, no associations were found between IgG levels and the following plaque characteristics: lipid core size, degree of calcification, number of macrophages or smooth muscle cells, amount of collagen and number of microvessels. Interestingly, statin use was negatively associated with plasma IgE and oxLDL-IgG levels. Conclusions In patients suffering from carotid artery disease, total IgE, total IgG and oxLDL-IgG levels do not associate with plaque mast cell numbers or other vulnerable plaque histopathological characteristics. This study thus does not provide evidence that the immunoglobulins tested in our cohort play a role in intraplaque mast cell activation or grade of atherosclerosis. PMID:24586471

  2. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation

    PubMed Central

    Jeong, Jeong-Hee; Na, Hyun Sik; Kim, Eun-Kyung; Lee, Seung Hoon; Jung, KyungAh; Min, Jun-Ki; Cho, Mi-La

    2017-01-01

    Atherosclerosis is a chronic inflammatory disease caused by the accumulation of excess lipid in the aorta and the severity is regulated by T lymphocytes subsets. Rebamipide has therapeutic activity in collagen induced arthritis (CIA) by controlling the balance between T helper (Th) 17 and regulatory T (Treg) cells. In this study, we aimed to determine whether rebamipide reduces the development of atherosclerosis. To investigate the therapeutic effect of rebamipide, ApoE-KO mice fed a western diet were administered rebamipide orally for 8 weeks. Mice were sacrificed followed by the evaluation of plaque formation in the aorta or immunohistochemistry for IL-17 and Foxp3. Serum was also prepared to determine the pro-inflammatory cytokine levels. The ability of rebamipide to regulate lipid metabolism or inflammation was confirmed ex vivo. Results The oral administration of rebamipide decreased plaque formation in atherosclerotic lesions as well as the markers of metabolic disorder in ApoE-deficient mice with atherosclerosis. Pro-inflammatory cytokines were also suppressed by rebamapide. In addition, the population of Th17 was decreased, whereas Treg was increased in the spleen of rebamipide-treated ApoE deficient mice. Rebamipide also ameliorated the severity of obese arthritis and has the capability to reduce the development of atherosclerosis by controlling the balance between Th17 and Treg cells. Thus, rebamipide could be a therapeutic agent to improve the progression of inflammation in metabolic diseases. PMID:28241014

  3. Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier.

    PubMed

    Won, Sang Ho; Lee, Jong Uk; Sim, Sang Jun

    2013-06-01

    A crucial issue for current liposomal carriers in clinical applications is the sustained-release property of the encapsulated drugs. We have developed novel fluorogenic pH-sensitive polymerized liposomes composed of polydiacetylene (PDA) lipids and other types of lipids. Unilamellar liposomes containing 10,12-pentacosadiynoic acid (PCDA), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and N-palmitoyl homocysteine (PHC) were loaded with ampicillin. These liposomes fused to each other rapidly when the medium pH was lowered from 7 to 4. The polymerized liposomes were characterized in terms of particle size distribution. The liposome size increased approximately 20-fold from 110.0 +/- 19.3 nm to 2046.7 +/- 487.4 nm as the pH was lowered. Cross-linking of the diacetylene lipids prevents drug leakage and the encapsulated drug can be instantaneously released at acidic pH condition. The ampicillin was nearly completely released (74.4 +/- 3.9%) from liposomes within 4 h under acidic pH conditions and the released amounts of ampicillin were analyzed by HPLC. Finally, the therapeutic effect was observed by the appearance of plaques on a lawn of E. coli, and fluorescent images of the PDA liposomes were taken from the plaques for drug release monitoring. As a result, this research demonstrates that such novel pH-sensitive polymerized liposomes have great prospects as a drug carrier.

  4. Effect of AVE 0991 angiotensin-(1-7) receptor agonist treatment on elemental and biomolecular content and distribution in atherosclerotic plaques of apoE-knockout mice

    NASA Astrophysics Data System (ADS)

    Kowalska, J.; Gajda, M.; Jawień, J.; Kwiatek, W. M.; Appel, K.; Dumas, P.

    2013-12-01

    Gene-targeted apolipoprotein E-knockout (apoE-KO) mice display early and highly progressive vascular lesions containing lipid deposits and they became a reliable animal model to study atherosclerosis. The aim of the present study was to investigate the effect of AVE 0991 angiotensin-(1-7) receptor agonist on the distribution of selected pro- and anti- inflammatory elements as well as biomolecules in atherosclerotic plaques of apoE-knockout mice. Synchrotron radiation-based X-ray fluorescence (micro-XRF) and Fourier Transform Infrared (micro-FTIR) microspectroscopies were applied. Two-month-old apoE-KO mice were fed for following four months diet supplemented with AVE 0991 (0.58 μmol/kg b.w. per day). Histological sections of ascending aortas were analyzed spectroscopically. The distribution of P, Ca, Fe and Zn were found to correspond with histological structure of the lesion. Significantly lower contents of P, Ca, Zn and significantly higher content of Fe were observed in animals treated with AVE 0991. Biomolecular analysis showed lower lipids saturation level and lower lipid to protein ratio in AVE 0991 treated group. Protein secondary structure was studied according to the composition of amide I band (1660 cm-1) and it demonstrated higher proportion of β-sheet structure as compared to α-helix in both studied groups.

  5. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice.

    PubMed

    Perez-Ternero, Cristina; Claro, Carmen; Parrado, Juan; Herrera, Maria Dolores; Alvarez de Sotomayor, Maria

    2017-05-01

    Rice bran is a by-product of rice milling and is rich in bioactive molecules such as γ-oryzanol, phytosterols, and tocotrienols. The rice bran enzymatic extract (RBEE) previously showed vessel remodeling prevention and lipid-lowering, antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of this study was to identify RBEE hypolipidemic mechanisms and to study the effects of RBEE on the progression of atherosclerosis disease and linked vascular dysfunction and liver steatosis in apolipoprotein E-knockout (ApoE-/-) mice fed low- or high-fat (LFD, HFD, respectively) and cholesterol diets. ApoE-/- mice were fed LFD (13% kcal) or HFD (42% kcal) supplemented or not supplemented with 1 or 5% RBEE (w/w) for 23 wk. Then, serum, aorta, liver, and feces were collected and flash frozen for further analysis. RBEE supplementation of HFD improved serum values by augmenting high-density lipoprotein cholesterol and preventing total cholesterol and aspartate aminotransferase increase. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was attenuated (1 and 5% RBEE) and cholesterol excretion increased (5% RBEE). Diet supplementation with 5% RBEE reduced plaque development regardless of the diet. In HFD-fed mice, both doses of RBEE reduced lipid deposition and macrophage infiltration in the aortic sinus and downregulated intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. None of these effects was observed in mice fed LFD. Liver steatosis was reduced by RBEE supplementation of LFD (1% RBEE) and HFD (1 and 5% RBEE) and nuclear peroxisome proliferator-activated receptor-α expression upregulated in the HDF 5% RBEE group. Regular consumption of RBEE-supplemented HFD reduced plaque development and liver steatosis by decreasing inflammation and hyperlipidemia through an HMG-CoA reductase activity and lipid excretion-related mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The basics of intravascular optical coherence tomography

    PubMed Central

    Jąkała, Jacek; Kałuża, Grzegorz L.; Partyka, Łukasz; Proniewska, Klaudia; Pociask, Elżbieta; Zasada, Wojciech; Wojakowski, Wojciech; Gąsior, Zbigniew; Dudek, Dariusz

    2015-01-01

    Optical coherence tomography (OCT) has opened new horizons for intravascular coronary imaging. It utilizes near-infrared light to provide a microscopic insight into the pathology of coronary arteries in vivo. Optical coherence tomography is also capable of identifying the chemical composition of atherosclerotic plaques and detecting traits of their vulnerability. At present it is the only tool to measure the thickness of the fibrous cap covering the lipid core of the atheroma, and thus it is an exceptional modality to detect plaques that are prone to rupture (thin fibrous cap atheromas). Moreover, it facilitates distinguishing between plaque rupture and plaque erosion as a cause of acute intracoronary thrombosis. Optical coherence tomography is applied to guide angioplasties of coronary lesions and to assess outcomes of percutaneous coronary interventions broadly. It identifies stent malapposition, dissections, and thrombosis with unprecedented precision. Furthermore, OCT helps to monitor vessel healing after stenting. It evaluates the coverage of stent struts by the neointima and detects in-stent neoatherosclerosis. With so much potential, new studies are warranted to determine OCT's clinical impact. The following review presents the technical background, basics of OCT image interpretation, and practical tips for adequate OCT imaging, and outlines its established and potential clinical application. PMID:26161097

  7. Non-clinical development of CER-001.

    PubMed

    Barbaras, Ronald

    2015-01-01

    Cardiovascular disease remains the most pressing healthcare issue for the developed world and is becoming so for developing countries. There are no currently approved therapies that can rapidly reduce the burden of unstable, inflamed plaque in the overall coronary vascular bed. High-density lipoprotein (HDL) has multiple actions that could lead to plaque stabilization, such as rapid removal of large quantities of cholesterol from the vasculature through the process of reverse lipid transport, improvement in endothelial function, protection against oxidative damage, and reduction in inflammation. Short-term infusion of HDL-mimetics in animal models as well as in humans has shown promising effects on the plaque size and morphology. Cerenis Therapeutics has developed CER-001, a negatively charged lipoprotein complex consisting of phospholipid and recombinant human apoA-I that mimics the structure and function of natural HDL. Three clinical trials using CER-001 infusions have demonstrated improvements in the carotid wall thickness of patients with familial hypercholesterolaemia and in patients with hypo-alphalipoproteinaemia, as well as an impact on coronary plaque burden measured by intravascular ultrasonography at the lowest tested dose (3 mg/kg) in post-ACS patients. Here, we reviewed the non-clinical data leading to the demonstration that CER-001 is a full HDL mimetic.

  8. Effect of rosuvastatin on atherosclerotic plaque stability: An intravascular ultrasound elastography study.

    PubMed

    Li, Zhaohuan; Wang, Lin; Hu, Xiaobo; Zhang, Pengfei; Chen, Yifei; Liu, Xinxin; Xu, Mingjun; Zhang, Yun; Zhang, Mei

    2016-05-01

    The present study aimed to investigate the effect of potent rosuvastatin therapy on plaque mechanical stabilization as seen on IVUSE. 14 purebred New Zealand rabbits were fed a high-cholesterol diet; the abdominal aorta endothelium was balloon-injured after 2 weeks; at week 13, 7 rabbits received rosuvastatin (1.5 mg/kg/day), and the other 7 received an equal volume of saline. IVUS images of abdominal aortas were acquired, and 2 consecutive frames near the end-diastole images in situ were used to construct an IVUS elastogram. Control rabbits showed a significant increase in shear strain (SS) and area strain (AS) in total plaques. The rosuvastatin group showed no change in SS and AS, but serum TG and LDL-C levels were reduced, with less lipid deposition, macrophage infiltration, production of proinflammatory cytokines and apoptosis in plaques. The changes in SS and AS from baseline between groups significantly differed (SS: 1.15 (1.96) % vs. -0.99 ± 2.83%, p = 0.013; AS: 1.25 (2.29) % vs. -1.67 ± 5.05%, p = 0.022). At follow-up, for controls, strain values were increased in the shoulder of eccentric plaques (SS: 2.66 ± 1.31% vs. 4.86 ± 1.93%, p = 0.016; AS: 4.45 ± 2.33% vs. 7.91 ± 2.74%, p = 0.009) but not the plaque body. Changes in SS and AS in the plaque shoulder differed between the control and rosuvastatin groups (SS: 2.20 ± 2.17% vs. -0.87 ± 3.31%, p = 0.028; AS: 2.10 (4.61) % vs. -2.75 ± 5.97%, p = 0.009). Rosuvastatin therapy in rabbits with atherosclerotic plaques led to less vulnerable plaque features. IVUSE is a very sensitive technique for detecting pharmacologically-induced mechanical changes in rabbit atherosclerotic plaques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Differentiation of early from advanced coronary atherosclerotic lesions: systematic comparison of CT, intravascular US, and optical frequency domain imaging with histopathologic examination in ex vivo human hearts.

    PubMed

    Maurovich-Horvat, Pál; Schlett, Christopher L; Alkadhi, Hatem; Nakano, Masataka; Stolzmann, Paul; Vorpahl, Marc; Scheffel, Hans; Tanaka, Atsushi; Warger, William C; Maehara, Akiko; Ma, Shixin; Kriegel, Matthias F; Kaple, Ryan K; Seifarth, Harald; Bamberg, Fabian; Mintz, Gary S; Tearney, Guillermo J; Virmani, Renu; Hoffmann, Udo

    2012-11-01

    To establish an ex vivo experimental setup for imaging coronary atherosclerosis with coronary computed tomographic (CT) angiography, intravascular ultrasonography (US), and optical frequency domain imaging (OFDI) and to investigate their ability to help differentiate early from advanced coronary plaques. All procedures were performed in accordance with local and federal regulations and the Declaration of Helsinki. Approval of the local Ethics Committee was obtained. Overall, 379 histologic cuts from nine coronary arteries from three donor hearts were acquired, coregistered among modalities, and assessed for the presence and composition of atherosclerotic plaque. To assess the discriminatory capacity of the different modalities in the detection of advanced lesions, c statistic analysis was used. Interobserver agreement was assessed with the Cohen κ statistic. Cross sections without plaque at coronary CT angiography and with fibrous plaque at OFDI almost never showed advanced lesions at histopathologic examination (odds ratio [OR]: 0.02 and 0.06, respectively; both P<.0001), while mixed plaque at coronary CT angiography, calcified plaque at intravascular US, and lipid-rich plaque at OFDI were associated with advanced lesions (OR: 2.49, P=.0003; OR: 2.60, P=.002; and OR: 31.2, P<.0001, respectively). OFDI had higher accuracy for discriminating early from advanced lesions than intravascular US and coronary CT angiography (area under the receiver operating characteristic curve: 0.858 [95% confidence interval {CI}: 0.802, 0.913], 0.631 [95% CI: 0.554, 0.709], and 0.679 [95% CI: 0.618, 0.740]; respectively, P<.0001). Interobserver agreement was excellent for OFDI and coronary CT angiography (κ=0.87 and 0.85, respectively) and was good for intravascular US (κ=0.66). Systematic and standardized comparison between invasive and noninvasive modalities for coronary plaque characterization in ex vivo specimens demonstrated that coronary CT angiography and intravascular US are reasonably associated with plaque composition and lesion grading according to histopathologic findings, while OFDI was strongly associated. These data may help to develop initial concepts of sequential imaging strategies to identify patients with advanced coronary plaques. © RSNA, 2012

  10. NATURAL HISTORY OF DENTAL PLAQUE ACCUMULATION IN MECHANICALLY VENTILATED ADULTS: A DESCRIPTIVE CORRELATIONAL STUDY

    PubMed Central

    Jones, Deborah J.; Munro, Cindy L.; Grap, Mary Jo

    2011-01-01

    Summary Objective The purpose of this study was to describe the pattern of dental plaque accumulation in mechanically ventilated adults. Accumulation of dental plaque and bacterial colonization of the oropharynx is associated with a number of systemic diseases including ventilator associated pneumonia. Research Methodology/Design Data were collected from mechanically ventilated critically ill adults (n=137), enrolled within 24 hours of intubation. Dental plaque, counts of decayed, missing and filled teeth and systemic antibiotic use was assessed on study days 1, 3, 5 and 7. Dental plaque averages per study day, tooth type and tooth location were analyzed. Setting Medical Respiratory, Surgical Trauma and Neuroscience ICU’s of a large tertiary care center in the southeast United States. Results Plaque: All surfaces > 60% plaque coverage from day 1 to day 7; Molars and Premolars contained greatest plaque average >70%. Systemic antibiotic use on day 1 had no significant effect on plaque accumulation on day 3 (p=0.73). Conclusions Patients arrive in critical care units with preexisting oral hygiene issues. Dental plaque tends to accumulate in the posterior teeth (molars and premolars) that may be hard for nurses to visualize and reach; this problem may be exacerbated by endotracheal tubes and other equipment. Knowing accumulation trends of plaque will guide the development of effective oral care protocols. PMID:22014582

  11. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization

    PubMed Central

    Zhang, Zong-Kang; Li, Jie; Yan, De-Xin; Leung, Wing-Nang; Zhang, Bao-Ting

    2016-01-01

    Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg−1·day−1) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques. PMID:26828485

  12. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    PubMed Central

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2017-01-01

    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316

  13. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy.

    PubMed

    Tardif, Pier-Luc; Bertrand, Marie-Jeanne; Abran, Maxime; Castonguay, Alexandre; Lefebvre, Joël; Stähli, Barbara E; Merlet, Nolwenn; Mihalache-Avram, Teodora; Geoffroy, Pascale; Mecteau, Mélanie; Busseuil, David; Ni, Feng; Abulrob, Abedelnasser; Rhéaume, Éric; L'Allier, Philippe; Tardif, Jean-Claude; Lesage, Frédéric

    2016-12-15

    Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.

  14. Optical pathology study of human abdominal aorta tissues using confocal micro resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Boydston-White, Susie; Wang, Wubao; Sordillo, Laura A.; Shi, Lingyan; Weisberg, Arel; Tomaselli, Vincent P.; Sordillo, Peter P.; Alfano, Robert R.

    2016-03-01

    Resonance Raman (RR) spectroscopic technique has a high potential for label-free and in-situ detection of biomedical lesions in vivo. This study evaluates the ability of RR spectroscopy method as an optical histopathology tool to detect the atherosclerotic plaque states of abdominal aorta in vitro. This part demonstrates the RR spectral molecular fingerprint features from different sites of the atherosclerotic abdominal aortic wall tissues. Total 57 sites of five pieces aortic samples in intimal and adventitial wall from an autopsy specimen were examined using confocal micro Raman system of WITec 300R with excitation wavelength of 532nm. The preliminary RR spectral biomarkers of molecular fingerprints indicated that typical calcified atherosclerotic plaque (RR peak at 964cm-1) tissue; fibrolipid plaque (RR peaks at 1007, 1161, 1517 and 2888cm-1) tissue, lipid pool with the fatty precipitation cholesterol) with collagen type I (RR peaks at 864, 1452, 1658, 2888 and 2948cm-1) in the soft tissue were observed and investigated.

  15. Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: Progress and future directions

    PubMed Central

    Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L.; Tsimikas, Sotirios

    2014-01-01

    Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to noninvasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using “natural” antibodies, lipopeptides and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940

  16. A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.

    PubMed

    Thon, Moritz P; Ford, Hugh Z; Gee, Michael W; Myerscough, Mary R

    2018-01-01

    There are a growing number of studies that model immunological processes in the artery wall that lead to the development of atherosclerotic plaques. However, few of these models use parameters that are obtained from experimental data even though data-driven models are vital if mathematical models are to become clinically relevant. We present the development and analysis of a quantitative mathematical model for the coupled inflammatory, lipid and macrophage dynamics in early atherosclerotic plaques. Our modeling approach is similar to the biologists' experimental approach where the bigger picture of atherosclerosis is put together from many smaller observations and findings from in vitro experiments. We first develop a series of three simpler submodels which are least-squares fitted to various in vitro experimental results from the literature. Subsequently, we use these three submodels to construct a quantitative model of the development of early atherosclerotic plaques. We perform a local sensitivity analysis of the model with respect to its parameters that identifies critical parameters and processes. Further, we present a systematic analysis of the long-term outcome of the model which produces a characterization of the stability of model plaques based on the rates of recruitment of low-density lipoproteins, high-density lipoproteins and macrophages. The analysis of the model suggests that further experimental work quantifying the different fates of macrophages as a function of cholesterol load and the balance between free cholesterol and cholesterol ester inside macrophages may give valuable insight into long-term atherosclerotic plaque outcomes. This model is an important step toward models applicable in a clinical setting.

  17. Assessment of serum leptin, pregnancy-associated plasma protein A and CRP levels as indicators of plaque vulnerability in patients with acute coronary syndrome.

    PubMed

    Lodh, Moushumi; Goswami, Binita; Parida, Ashok; Patra, Surajeet; Saxena, Alpana

    2012-07-01

    A multifactorial aetiology of coronary artery disease (CAD) has been established in the recent past. Extensive research is now underway to understand the mechanisms responsible for plaque vulnerability. The identification of a novel biomarker that will help in the assessment of plaque status is urgently needed for the purpose of patient stratification and prognostication. The aim of the present study was to evaluate leptin, pregnancy-associated plasma protein A (PAPP-A) and C-reactive protein (CRP) levels in patients with acute coronary syndrome and to assess their diagnostic efficacy in the identification of vulnerable plaques. The study group comprised 105 patients who had chest pain along with ECG changes (ST elevation, ST depression, T inversion) and raised cardiac enzyme levels. Sixty-two patients with chest pain and ECG changes but with normal cardiac enzyme profiles were included in the control group. Lipid profiles, and leptin, PAPP-A and CRP levels were assessed in these two groups. Receiver operating characteristics (ROC) curves were plotted to determine the utility of the parameters under study as markers of plaque vulnerability. Significantly higher levels of serum lipoprotein (a), leptin, PAPP-A and high-sensitivity CRP (hs-CRP) were observed in the cases than in the controls. A positive correlation was observed between CRP and PAPP-A levels as well as CRP and leptin concentrations. ROC curve analysis revealed similar efficacies of CRP and PAPP-A levels in their ability to detect unstable plaques with areas under the curve of 0.762 and 0.732, respectively. Multivariate analysis established the superiority of hs-CRP as a predictor of plaque instability. Our study highlights the utility of both CRP and PAPP-A levels as determinants of plaque instability. Our findings necessitate population-based follow-up studies to establish the superiority of either of the two biomarkers in the field of preventive cardiology.

  18. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy

    PubMed Central

    Zhang, Mengyuan; He, Jianhua; Jiang, Cuiping; Zhang, Wenli; Yang, Yun; Wang, Zhiyu; Liu, Jianping

    2017-01-01

    Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core–shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium–macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of mediating cellular cholesterol efflux. PMID:28144137

  19. Development of a high resolution MRI intracranial atherosclerosis imaging phantom.

    PubMed

    Chueh, Ju-Yu; van der Marel, Kajo; Gounis, Matthew J; LeMatty, Todd; Brown, Truman R; Ansari, Sameer A; Carroll, Timothy J; Buck, Amanda K; Zhou, Xiaohong Joe; Chatterjee, A Rano; King, Robert M; Mao, Hui; Zheng, Shaokuan; Brooks, Olivia W; Rappleye, Jeff W; Swartz, Richard H; Feldmann, Edward; Turan, Tanya N

    2018-02-01

    Currently, there is neither a standard protocol for vessel wall MR imaging of intracranial atherosclerotic disease (ICAD) nor a gold standard phantom to compare MR sequences. In this study, a plaque phantom is developed and characterized that provides a platform for establishing a uniform imaging approach for ICAD. A patient specific injection mold was 3D printed to construct a geometrically accurate ICAD phantom. Polyvinyl alcohol hydrogel was infused into the core shell mold to form the stenotic artery. The ICAD phantom incorporated materials mimicking a stenotic vessel and plaque components, including fibrous cap and lipid core. Two phantoms were scanned using high resolution cone beam CT and compared with four different 3 T MRI systems across eight different sites over a period of 18 months. Inter-phantom variability was assessed by lumen dimensions and contrast to noise ratio (CNR). Quantitative evaluation of the minimum lumen radius in the stenosis showed that the radius was on average 0.80 mm (95% CI 0.77 to 0.82 mm) in model 1 and 0.77 mm (95% CI 0.74 to 0.81 mm) in model 2. The highest CNRs were observed for comparisons between lipid and vessel wall. To evaluate manufacturing reproducibility, the CNR variability between the two models had an average absolute difference of 4.31 (95% CI 3.82 to 5.78). Variation in CNR between the images from the same scanner separated by 7 months was 2.5-6.2, showing reproducible phantom durability. A plaque phantom composed of a stenotic vessel wall and plaque components was successfully constructed for multicenter high resolution MRI standardization. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries.

    PubMed

    Pazos, Valérie; Mongrain, Rosaire; Tardif, Jean-Claude

    2010-06-01

    Clinical studies on lipid-lowering therapy have shown that changing the composition of lipid pools reduced significantly the risk of cardiac events associated with plaque rupture. It has been shown also that changing the composition of the lipid pool affects its mechanical properties. However, knowledge about the mechanical properties of human atherosclerotic lesions remains limited due to the difficulty of the experiments. This paper aims to assess the feasibility of characterizing a lipid pool embedded in the wall of a pressurized vessel using finite-element simulations and an optimization algorithm. Finite-element simulations of inflation experiments were used together with nonlinear least squares algorithm to estimate the material model parameters of the wall and of the inclusion. An optimal fit of the simulated experiment and the real experiment was sought with the parameter estimation algorithm. The method was first tested on a single-layer polyvinyl alcohol (PVA) cryogel stenotic vessel, and then, applied on a double-layered PVA cryogel stenotic vessel with a lipid inclusion.

  1. Clinical Relevance of 18F-Sodium Fluoride Positron-Emission Tomography in Noninvasive Identification of High-Risk Plaque in Patients With Coronary Artery Disease.

    PubMed

    Lee, Joo Myung; Bang, Ji-In; Koo, Bon-Kwon; Hwang, Doyeon; Park, Jonghanne; Zhang, Jinlong; Yaliang, Tong; Suh, Minseok; Paeng, Jin Chul; Shiono, Yasutsugu; Kubo, Takashi; Akasaka, Takashi

    2017-11-01

    18 F-sodium fluoride ( 18 F-NaF) positron-emission tomography has been introduced as a potential noninvasive imaging tool to identify plaques with high-risk characteristics in patients with coronary artery disease. We sought to evaluate the clinical relevance of 18 F-NaF uptake using optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography in patients with coronary artery disease. The target population consisted of 51 prospectively enrolled patients (93 stenoses) who underwent 18 F-NaF positron-emission tomography before invasive coronary angiography. 18 F-NaF uptake was compared with IVUS- and OCT-derived plaque characteristics. In the coronary computed tomography angiography subgroup (46 lesions), qualitative lesion characteristics were compared between 18 F-NaF-positive and 18 F-NaF-negative plaques using adverse plaque characteristics. The plaques with 18 F-NaF uptake showed significantly higher plaque burden, more frequent posterior attenuation and positive remodeling in IVUS, and significantly higher maximum lipid arc and more frequent microvessels in OCT (all P <0.05). There were no differences in minimum lumen area and area of calcium between 18 F-NaF-positive and 18 F-NaF-negative lesions. Among 51 lesions with 18 F-NaF-positive uptake, 48 lesions (94.1%) had at least one of high-risk characteristics. The 18 F-NaF tissue-to-background ratio in plaques with high-risk characteristics was significantly higher than in those without (1.09 [95% confidence interval, 0.85-1.34] versus 0.62 [95% confidence interval, 0.42-0.82], P <0.001 for IVUS definition; 0.76 [95% confidence interval, 0.54-0.98] versus 0.42 [95% confidence interval, 0.21-0.62], P =0.014 for OCT definition). Among the 15 lesions that met both IVUS- and OCT-defined criteria for high-risk plaque, 14 (93.3%) showed 18 F-NaF-positive uptake. There was no difference in the prevalence of plaques with any adverse plaque characteristics between 18 F-NaF-positive and 18 F-NaF-negative plaques in the coronary computed tomography angiography subgroup (85.2% versus 78.9%; P =0.583). This study's results suggest that 18 F-NaF positron-emission tomography can be a useful noninvasive diagnostic tool to identify and localize plaque with high-risk characteristics. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02388412. © 2017 American Heart Association, Inc.

  2. Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice

    PubMed Central

    Fraga-Silva, Rodrigo A.; Montecucco, Fabrizio; Costa-Fraga, Fabiana P.; Nencioni, Alessio; Caffa, Irene; Bragina, Maiia E.; Mach, François; Raizada, Mohan K.; Santos, Robson A.S.; da Silva, Rafaela F.; Stergiopulos, Nikolaos

    2017-01-01

    Angiotensin (Ang) II contributes to the development of atherosclerosis, while Ang-(1–7) has atheroprotective actions. Accordingly, angiotensin-converting enzyme 2 (ACE2), which breaks-down Ang II and forms Ang-(1–7), has been suggested as a target against atherosclerosis. Here we investigated the actions of diminazene, a recently developed ACE2 activator compound, in a model of vulnerable atherosclerotic plaque. Atherosclerotic plaque formation was induced in the carotid artery of ApoE-deficient mice by a shear stress (SS) modiffer device. The animals were treated with diminazene (15 mg/kg/day) or vehicle. ACE2 was strongly expressed in the aortic root and low SS-induced carotid plaques, but poorly expressed in the oscillatory SS-induced carotid plaques. Diminazene treatment did not change the lesion size, but ameliorated the composition of aortic root and low SS-induced carotid plaques by increasing collagen content and decreasing both MMP-9 expression and macrophage infiltration. Interestingly, these beneficial effects were not observed in the oscillatory SS-induced plaque. Additionally, diminazene treatment decreased intraplaque ICAM-1 and VCAM-1 expression, circulating cytokine and chemokine levels and serum triglycerides. In summary, ACE2 was distinctively expressed in atherosclerotic plaques, which depends on the local pattern of shear stress. Moreover, diminazene treatment enhances the stability of atherosclerotic plaques. PMID:26304699

  3. Recolonization of the oral cavity by Streptococcus mutans after a combined mechanical/chemical antisepsis protocol.

    PubMed

    Farina, R; Squarzoni, M A; Calura, G; Trombelli, L

    2009-06-01

    The bacterial colonization of teeth by Streptococcus mutans (StrepM) represents a major risk factor for the development of dental caries. At present, no clinical studies have explored the effect of a combined mechanical-chemical antisepsis protocol in a periodontally-healthy population and the pattern of recolonization of StrepM in subjects whose StrepM infection was successfully eradicated. The present study was designed in order to 1) determine the salivary and plaque changes in StrepM content after a combined mechanical/chemical antisepsis protocol; and 2) evaluate the pattern of recolonization when StrepM was successfully eradicated from saliva and plaque. Thirty-five periodontally-healthy and caries-susceptible subjects successfully entered and concluded the study. At baseline, non-surgical periodontal therapy was performed according to the principles of full mouth disinfection. Adjunctive home-based rinsing with a 0.2% chlorhexidine mouthrinse was requested for the following week. StrepM concentration was assessed in saliva and plaque at the initial contact appointment, at baseline, and 1-week, 1-month, 3-month and 6-month follow-up. A significant effect of ''time'' on StrepM concentration in saliva and plaque was observed (P<0.000). In subjects with successful eradication of StrepM at 1 week (N=17 plaque samples), StrepM infection recurrence occurred within 3-6 months. The results of the present study demonstrated that 1) the application of the investigated mechanical/chemical antisepsis protocol can effectively reduce StrepM colonies in saliva and plaque of periodontally healthy subjects; and 2) in plaque samples, StrepM infection recurrence tends to occur within 3-6 months.

  4. Bone Genes in the Kidney of Stone Formers

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.; Bledsoe, Sharon B.

    2008-09-01

    Intraoperative papillary biopsies from kidneys of idiopathic-calcium oxalate stone formers (ICSF) have revealed a distinct pattern of mineral deposition in the interstitium of the renal papilla. The earliest sites of these deposits, termed Randall's plaque, are found in the basement membrane of thin loops of Henle and appear to spread into the surrounding interstitium down to the papillary epithelium. Recent studies show kidney stones of ICSF patients grow attached to the renal papilla and at sites of Randall's plaque. Together these observations suggest that plaque formation may be the critical step in stone formation. In order to control plaque formation and thereby reduce future kidney stone development, the mechanism of plaque deposition must be understood. Because the renal papilla has unique anatomical features similar to bone and the fact that the interstitial deposits of ICSF patients are formed of biological apatite, this paper tests the hypothesis that sites of interstitial plaque form as a result of cell-mediated osteoblast-like activity.

  5. High HbA1c levels correlate with reduced plaque regression during statin treatment in patients with stable coronary artery disease: Results of the coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS)

    PubMed Central

    2012-01-01

    Background The incidence of cardiac events is higher in patients with diabetes than in people without diabetes. The Coronary Atherosclerosis Study Measuring Effects of Rosuvastatin Using Intravascular Ultrasound in Japanese Subjects (COSMOS) demonstrated significant plaque regression in Japanese patients with chronic coronary disease after 76 weeks of rosuvastatin (2.5 mg once daily, up-titrated to a maximum of 20 mg/day to achieve LDL cholesterol <80 mg/dl). Methods In this subanalysis of COSMOS, we examined the association between HbA1c and plaque regression in 40 patients with HbA1c ≥6.5% (high group) and 86 patients with HbA1c <6.5% (low group). Results In multivariate analyses, HbA1c and plaque volume at baseline were major determinants of plaque regression. LDL cholesterol decreased by 37% and 39% in the high and low groups, respectively, while HDL cholesterol increased by 16% and 22%, respectively. The reduction in plaque volume was significantly (p = 0.04) greater in the low group (from 71.0 ± 39.9 to 64.7 ± 34.7 mm3) than in the high group (from 74.3 ± 34.2 to 71.4 ± 32.3 mm3). Vessel volume increased in the high group but not in the low group (change from baseline: +4.2% vs −0.8%, p = 0.02). Change in plaque volume was significantly correlated with baseline HbA1c. Conclusions Despite similar improvements in lipid levels, plaque regression was less pronounced in patients with high HbA1c levels compared with those with low levels. Tight glucose control during statin therapy may enhance plaque regression in patients with stable coronary disease. Trial registration ClinicalTrials.gov, Identifier NCT00329160 PMID:22831708

  6. Graphical Modeling of Gene Expression in Monocytes Suggests Molecular Mechanisms Explaining Increased Atherosclerosis in Smokers

    PubMed Central

    Verdugo, Ricardo A.; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S.; Münzel, Thomas; Lackner, Karl J.; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path “smoking→gene expression→plaques”. Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the “smoking→gene expression→plaques” causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone. PMID:23372645

  7. Saphenous vein graft near-infrared spectroscopy imaging insights from the lipid core plaque association with clinical events near-infrared spectroscopy (ORACLE-NIRS) registry.

    PubMed

    Danek, Barbara A; Karatasakis, Aris; Alame, Aya J; Nguyen-Trong, Phuong-Khanh J; Karacsonyi, Judit; Rangan, Bavana; Roesle, Michele; Atwell, Amy; Resendes, Erica; Martinez-Parachini, Jose Roberto; Iwnetu, Rahel; Kalsaria, Pratik; Siddiqui, Furqan; Muller, James E; Banerjee, Subhash; Brilakis, Emmanouil

    2017-05-01

    We sought to examine near-infrared spectroscopy (NIRS) imaging findings of aortocoronary saphenous vein grafts (SVGs). SVGs are prone to develop atherosclerosis similar to native coronary arteries. They have received little study using NIRS. We examined the clinical characteristics and imaging findings from 43 patients who underwent NIRS imaging of 45 SVGs at our institution between 2009 and 2016. The mean patient age was 67 ± 7 years and 98% were men, with high prevalence of diabetes mellitus (56%), hypertension (95%), and dyslipidemia (95%). Mean SVG age was 7 ± 7 years, mean SVG lipid core burden index (LCBI) was 53 ± 60 and mean maxLCBI 4 mm was 194 ± 234. Twelve SVGs (27%) had lipid core plaques (2 yellow blocks on the block chemogram), with a higher prevalence in SVGs older than 5 years (46% vs. 5%, P = 0.002). Older SVG age was associated with higher LCBI (r = 0.480, P < 0.001) and higher maxLCBI 4 mm (r = 0.567, P < 0.001). On univariate analysis, greater annual total cholesterol exposure was associated with higher SVG LCBI (r = 0.30, P = 0.042) and annual LDL-cholesterol and triglyceride exposure were associated with higher SVG maxLCBI 4 mm (LDL-C: r = 0.41, P = 0.020; triglycerides: r = 0.36, P = 0.043). On multivariate analysis, the only independent predictor of SVG LCBI and maxLCBI 4mm was SVG age. SVG percutaneous coronary intervention was performed in 63% of the patients. An embolic protection device was used in 96% of SVG PCIs. Periprocedural myocardial infarction occurred in one patient. Older SVG age and greater lipid exposure are associated with higher SVG lipid burden. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined two photon fluorescence, second-harmonic generation and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2014-02-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires a morpho-functional approach. Multimodal non-linear microscopy has the potential to bridge this gap by providing morpho-functional information on the examined tissues in a label-free way. Here we employed multiple non-linear microscopy techniques, including CARS, TPF, and SHG to provide intrinsic optical contrast from various tissue components in both arterial wall and atherosclerotic plaques. CARS and TPF microscopy were used to respectively image lipid depositions within plaques and elastin in the arterial wall. Cholesterol deposition in the lumen and collagen in the arterial wall were selectively imaged by SHG microscopy and distinguished by forward-backward SHG ratio. Image pattern analysis allowed characterizing collagen organization in different tissue regions. Different values of fiber mean size, distribution and anisotropy are calculated for lumen and media prospectively allowing for automated classification of atherosclerotic lesions. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  9. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    PubMed

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    PubMed

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.

  11. Non-clinical development of CER-001

    PubMed Central

    Barbaras, Ronald

    2015-01-01

    Cardiovascular disease remains the most pressing healthcare issue for the developed world and is becoming so for developing countries. There are no currently approved therapies that can rapidly reduce the burden of unstable, inflamed plaque in the overall coronary vascular bed. High-density lipoprotein (HDL) has multiple actions that could lead to plaque stabilization, such as rapid removal of large quantities of cholesterol from the vasculature through the process of reverse lipid transport, improvement in endothelial function, protection against oxidative damage, and reduction in inflammation. Short-term infusion of HDL-mimetics in animal models as well as in humans has shown promising effects on the plaque size and morphology. Cerenis Therapeutics has developed CER-001, a negatively charged lipoprotein complex consisting of phospholipid and recombinant human apoA-I that mimics the structure and function of natural HDL. Three clinical trials using CER-001 infusions have demonstrated improvements in the carotid wall thickness of patients with familial hypercholesterolaemia and in patients with hypo-alphalipoproteinaemia, as well as an impact on coronary plaque burden measured by intravascular ultrasonography at the lowest tested dose (3 mg/kg) in post-ACS patients. Here, we reviewed the non-clinical data leading to the demonstration that CER-001 is a full HDL mimetic. PMID:26500552

  12. A comparative CFD study on the hemodynamics of flow through an idealized symmetric and asymmetric stenosed arteries

    NASA Astrophysics Data System (ADS)

    Prashantha, B.; Anish, S.

    2017-04-01

    The aim of the present study is to numerically evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low wall shear stress (WSS) zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

  13. Quantitative Evaluation of Atherosclerotic Plaque Using Ultrasound Tissue Characterization.

    NASA Astrophysics Data System (ADS)

    Yigiter, Ersin

    Evaluation of therapeutic methods directed toward interrupting and/or delaying atherogenesis is impeded by the lack of a reliable, non-invasive means for monitoring progression or regression of disease. The ability to characterize the predominant component of plaque may be very valuable in the study of this disease's natural history. The earlier the lesion, the more likely is lipid to be the predominant component. Progression of plaque is usually by way of overgrowth of fibrous tissues around the fatty pool. Calcification is usually a feature of the older or complicated lesion. To explore the feasibility of using ultrasound to characterize plaque we have conducted measurements of the acoustical properties of various atherosclerotic lesions found in freshly excised samples of human abdominal aorta. Our objective has been to determine whether or not the acoustical properties of plaque correlate with the type and/or chemical composition of plaque and, if so, to define a measurement scheme which could be done in-vivo and non-invasively. Our current data base consists of individual tissue samples from some 200 different aortas. Since each aorta yields between 10 to 30 tissue samples for study, we have data on some 4,468 different lesions or samples. Measurements of the acoustical properties of plaque were found to correlate well with the chemical composition of plaque. In short, measurements of impedance and attenuation seem sufficient to classify plaque as to type and to composition. Based on the in-vitro studies, the parameter of attenuation was selected as a means of classifying the plaque. For these measurements, an intravascular ultrasound scanner was modified according to our specifications. Signal processing algorithms were developed which would analyze the complex ultrasound waveforms and estimate tissue properties such as attenuation. Various methods were tried to estimate the attenuation from the pulse-echo backscattered signal. Best results were obtained by comparing averaged power spectra in small time windows at different depths for a series of A-lines. Comparisons between consequent averaged spectra at different depths provided the magnitude and frequency dependence of attenuation. Non-invasive characterization of the physical state of the tissue with quantitative ultrasound holds great promise for the extension of the diagnostic power of conventional B-mode imaging.

  14. Can insoluble polysaccharide concentration in dental plaque, sugar exposure and cariogenic microorganisms predict early childhood caries? A follow-up study.

    PubMed

    Parisotto, T M; Stipp, R; Rodrigues, L K A; Mattos-Graner, R O; Costa, L S; Nobre-Dos-Santos, M

    2015-08-01

    Insoluble polysaccharide (IP) has been associated with caries prevalence in young children. However, the power of IP to predict ECC needs to be demonstrated. To assess the relationships between early childhood caries (ECC) and extracellular insoluble polysaccharides (IP) in dental plaque, sugar exposure and cariogenic microorganisms. Visible plaque on maxillary incisors was recorded, followed by caries diagnosis in 65 preschoolers (3-4 years) at baseline and after 1 year. Plaque was collected for mutans streptococci (MS), total microorganism (TM) and lactobacilli (LB) enumerations in selective media, as well as for IP analysis, which was later assessed by colorimetry. Sugar/sucrose exposure was assessed by a diet chart. Positive correlations were found among the prevalence of caries and MS, TM, LB, solid sucrose and visible dental plaque. Additionally, children with IP concentrations in dental plaque higher than 2.36 μg/mg (odds ratio-OR=6.8), with visible plaque on maxillary incisors (OR=4.3), harbouring LB (OR=13) and exposed to solid sugar more than twice/day (OR=5) showed higher risk of developing caries (p<0.05). Extracellular insoluble polysaccharides, solid sugar/sucrose, visible dental plaque and cariogenic microorganisms could predict caries development, partially explaining the ECC pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Adherence to a Mediterranean diet is associated with the presence and extension of atherosclerotic plaques in middle-aged asymptomatic adults: The Aragon Workers' Health Study.

    PubMed

    Mateo-Gallego, Rocío; Uzhova, Irina; Moreno-Franco, Belén; León-Latre, Montserrat; Casasnovas, José A; Laclaustra, Martín; Peñalvo, José L; Civeira, Fernando

    The Mediterranean diet (MeDi) is known to prevent cardiovascular events but the mechanisms mediating this association are not fully understood. The objective of the study was to examine the association between MeDi adherence and the presence and extent of atherosclerotic plaques in carotid, femoral, and aorta territories and its relationship with risk factors in asymptomatic middle-aged adults. Cross-sectional analysis of the Aragon Workers' Health Study, a cohort of 2588 subjects (94.9% men aged 51.3 ± 3.89 years) without previous cardiovascular history. Participants underwent carotid, femoral, and aorta ultrasound for the quantification of number and thickness of plaques and intima-media thickness. To estimate the participant's adherence to MeDi, we computed the Alternative MEDiterranean index (aMED). The overall aMED score was 4.19 ± 1.70, representing a moderate adherence to MeDi. aMED score was associated with the presence of plaque in femoral arteries (odds ratio highest vs lowest aMED score quartile: 0.63; 95% confidence interval: 0.48-0.83; P trend = .045) independently of risk factors and mediators. The strongest association between aMED quartiles and presence of plaque was found among smokers, both in femoral (0.39 [0.22-0.69]; P trend = .001) and in any territory (0.33 [0.14-0.79], P trend = .008). aMED was inversely associated with the number of plaques in all territories except for carotids. MeDi adherence showed a dose-dependent protective association with the presence, number, and thickness of plaques independent of other risk factors. The association was strongest for femoral arteries and among smokers. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  16. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes.

    PubMed

    Ariyoshi, Kyoko; Okuya, Shigeru; Kunitsugu, Ichiro; Matsunaga, Kimie; Nagao, Yuko; Nomiyama, Ryuta; Takeda, Komei; Tanizawa, Yukio

    2015-01-01

    Measurements of plaque echogenicity, the gray-scale median (GSM), were shown to correlate inversely with risk factors for cerebro-cardiovascular disease (CVD). The eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio is a potential predictor of CVD risk. In the present study, we assessed the usefulness of carotid plaque GSM values and EPA/AA ratios in atherosclerotic diabetics. A total of 84 type 2 diabetics with carotid artery plaques were enrolled. On admission, platelet aggregation and lipid profiles, including EPA and AA, were examined. Using ultrasound, mean intima media thickness and plaque score were measured in carotid arteries. Plaque echogenicity was evaluated using computer-assisted quantification of GSM. The patients were then further observed for approximately 3 years. Gray-scale median was found to be a good marker of CVD events. On multivariate logistic regression analysis, GSM <32 and plaque score ≥5 were significantly associated with past history and onset of CVD during the follow-up period, the odds ratios being 7.730 (P = 0.014) and 4.601 (P = 0.046), respectively. EPA/AA showed a significant correlation with GSM (P = 0.012) and high-density lipoprotein cholesterol (P = 0.039), and an inverse correlation with platelet aggregation (P = 0.046) and triglyceride (P = 0.020). Although most patients with CVD had both low GSM and low EPA/AA values, an association of EPA/AA with CVD events could not be statistically confirmed. The present results suggest the GSM value to be useful as a reference index for CVD events in high-risk atherosclerotic diabetics. Associations of the EPA/AA ratio with known CVD risk factors warrant a larger and more extensive study to show the usefulness of this parameter.

  17. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes

    PubMed Central

    Ariyoshi, Kyoko; Okuya, Shigeru; Kunitsugu, Ichiro; Matsunaga, Kimie; Nagao, Yuko; Nomiyama, Ryuta; Takeda, Komei; Tanizawa, Yukio

    2015-01-01

    Aims/Introduction Measurements of plaque echogenicity, the gray-scale median (GSM), were shown to correlate inversely with risk factors for cerebro-cardiovascular disease (CVD). The eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio is a potential predictor of CVD risk. In the present study, we assessed the usefulness of carotid plaque GSM values and EPA/AA ratios in atherosclerotic diabetics. Materials and Methods A total of 84 type 2 diabetics with carotid artery plaques were enrolled. On admission, platelet aggregation and lipid profiles, including EPA and AA, were examined. Using ultrasound, mean intima media thickness and plaque score were measured in carotid arteries. Plaque echogenicity was evaluated using computer-assisted quantification of GSM. The patients were then further observed for approximately 3 years. Results Gray-scale median was found to be a good marker of CVD events. On multivariate logistic regression analysis, GSM <32 and plaque score ≥5 were significantly associated with past history and onset of CVD during the follow-up period, the odds ratios being 7.730 (P = 0.014) and 4.601 (P = 0.046), respectively. EPA/AA showed a significant correlation with GSM (P = 0.012) and high-density lipoprotein cholesterol (P = 0.039), and an inverse correlation with platelet aggregation (P = 0.046) and triglyceride (P = 0.020). Although most patients with CVD had both low GSM and low EPA/AA values, an association of EPA/AA with CVD events could not be statistically confirmed. Conclusions The present results suggest the GSM value to be useful as a reference index for CVD events in high-risk atherosclerotic diabetics. Associations of the EPA/AA ratio with known CVD risk factors warrant a larger and more extensive study to show the usefulness of this parameter. PMID:25621138

  18. Connexin channels and phospholipids: association and modulation

    PubMed Central

    Locke, Darren; Harris, Andrew L

    2009-01-01

    Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581

  19. Endoplasmic reticulum stress in perivascular adipose tissue promotes destabilization of atherosclerotic plaque by regulating GM-CSF paracrine.

    PubMed

    Ying, Ru; Li, Sheng-Wei; Chen, Jia-Yuan; Zhang, Hai-Feng; Yang, Ying; Gu, Zhen-Jie; Chen, Yang-Xin; Wang, Jing-Feng

    2018-04-18

    Perivascular adipose tissue (PVAT) accelerates plaque progression and increases cardiovascular risk. We tested the hypothesis that PVAT contributed to plaque vulnerability and investigated whether endoplasmic reticulum stress (ER stress) in PVAT played an important role in vulnerable plaque. We transplanted thoracic aortic PVAT or subcutaneous adipose tissue as a control, from donor mice to carotid arteries of recipient apolipoprotein E deficient (apoE -/- ) mice after removing carotid artery collar placed for 6 weeks. Two weeks after transplantation, ER stress inhibitor 4-phenyl butyric acid (4-PBA) was locally administrated to the transplanted PVAT and then animals were euthanized after 4 weeks. Immunohistochemistry was performed to quantify plaque composition and neovascularization. Mouse angiogenesis antibody array kit was used to test the angiogenic factors produced by transplanted adipose tissue. In vitro tube formation assay, scratch wound migration assay and mouse aortic ring assay were used to assess the angiogenic capacity of supernatant of transplanted PVAT. Ultrastructural detection by transmission electron microscopy showed transplanted PVAT was a mixed population of white and brown adipocytes with abundant mitochondria. Transplanted PVAT increased the intraplaque macrophage infiltration, lipid core, intimal and vasa vasorum neovascularization and MMP2/9 expression in plaque while decreased smooth muscle cells and collagen in atherosclerotic plaque, which were restored by local 4-PBA-treatment. Antibody array analysis showed that 4-PBA reduced several angiogenic factors [Granulocyte Macrophage Colony Stimulating Factor (GM-CSF), MCP-1, IL-6] secreted by PVAT. Besides, conditioned medium from 4-PBA treated-PVAT inhibited tube formation and migration capacity of endothelial cells and ex vivo mouse aortic ring angiogenesis compared to conditioned medium from transplanted PVAT. mRNA expression and protein levels of GM-CSF were markedly elevated in adipocytes under ER stress which would be suppressed by 4-PBA. In addition, ER stress enhanced NF-κB binding to the promoter of the mouse GM-CSF gene in adipocytes confirmed by Chromatin immunoprecipitation analyses. Our findings demonstrate that ER stress in PVAT destabilizes atherosclerotic plaque, in part through increasing GM-CSF paracrine via transcription factor NF-κB.

  20. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE−/− mice

    PubMed Central

    Prasad, Sakamuri Siva Sankara Vara; Higashi, Yusuke; Sukhanov, Sergiy; Siddesha, Jalahalli M; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani

    2016-01-01

    Background and aims Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. Methods TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2−/− and ApoE−/− mice. ApoE−/− mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell content by histomorphometry, and aortic gene expression by RT-qPCR. Results The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE−/− mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and smooth muscle cell contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice showed a markedly reduced expression of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing- Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). Conclusions TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases. PMID:27237075

  1. Prevention of oxLDL uptake leads to decreased atherosclerosis in hematopoietic NPC1-deficient Ldlr-/- mice.

    PubMed

    Jeurissen, Mike L J; Walenbergh, Sofie M A; Houben, Tom; Gijbels, Marion J J; Li, Jieyi; Hendrikx, Tim; Oligschlaeger, Yvonne; van Gorp, Patrick J; Binder, Christoph J; Donners, Marjo M P C; Shiri-Sverdlov, Ronit

    2016-12-01

    Atherosclerosis is a chronic inflammatory disease of medium and large vessels and is typically characterized by the predominant accumulation of low-density lipoprotein (LDL)-cholesterol inside macrophages that reside in the vessel walls. Previous studies clearly demonstrated an association specifically between the oxidized type of LDL (oxLDL) and atherosclerotic lesion formation. Further observations revealed that these atherosclerotic lesions displayed enlarged, lipid-loaded lysosomes. By increasing natural antibodies against oxLDL, pneumococcal vaccination has been shown to reduce atherosclerosis in LDL receptor knockout (Ldlr -/- ) mice. Relevantly, loss of the lysosomal membrane protein Niemann-Pick Type C1 (NPC1) led to lysosomal accumulation of various lipids and promoted atherosclerosis. Yet, the importance of lysosomal oxLDL accumulation inside macrophages, compared to non-modified LDL, in atherosclerosis has never been established. By transplanting NPC1 bone marrow into lethally irradiated Ldlr -/- mice, a hematopoietic mouse model for lysosomal cholesterol accumulation was created. Through injections with heat-inactivated pneumococci, we aimed to demonstrate the specific contribution of lysosomal oxLDL accumulation inside macrophages in atherosclerosis development. While there were no differences in plaque morphology, a reduction in plaque size and plaque inflammation was found in immunized NPC1 mut -transplanted mice, compared to non-immunized NPC1 mut -transplanted mice. Lysosomal oxLDL accumulation within macrophages contributes to murine atherosclerosis. Future intervention strategies should focus specifically on preventing oxLDL, unlike non-modified LDL, from being internalized into lysosomes. Such an intervention can have an additive effect to current existing treatments against atherosclerosis. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic.

    PubMed

    Lutgens, S P M; Kisters, N; Lutgens, E; van Haaften, R I M; Evelo, C T A; de Winther, M P J; Saftig, P; Daemen, M J A P; Heeneman, S; Cleutjens, K B J M

    2006-11-01

    Recently, we showed that cathepsin K deficiency reduces atherosclerotic plaque progression, induces plaque fibrosis, but aggravates macrophage foam cell formation in the ApoE -/- mouse. To obtain more insight into the molecular mechanisms by which cathepsin K disruption evokes the observed phenotypic changes, we used microarray analysis for gene expression profiling of aortic arches of CatK -/-/ApoE -/- and ApoE -/- mice on a mouse oligo microarray. Out of 20 280 reporters, 444 were significantly differentially expressed (p-value of < 0.05, fold change of > or = 1.4 or < or = - 1.4, and intensity value of > 2.5 times background in at least one channel). Ingenuity Pathway Analysis and GenMAPP revealed upregulation of genes involved in lipid uptake, trafficking, and intracellular storage, including caveolin - 1, - 2, - 3 and CD36, and profibrotic genes involved in transforming growth factor beta (TGFbeta) signalling, including TGFbeta2, latent TGFbeta binding protein-1 (LTBP1), and secreted protein, acidic and rich in cysteine (SPARC), in CatK -/-/ApoE -/- mice. Differential gene expression was confirmed at the mRNA and protein levels. In vitro modified low density lipoprotein (LDL) uptake assays, using bone marrow derived macrophages preincubated with caveolae and scavenger receptor inhibitors, confirmed the importance of caveolins and CD36 in increasing modified LDL uptake in the absence of cathepsin K. In conclusion, we suggest that cathepsin K deficiency alters plaque phenotype not only by decreasing proteolytic activity, but also by stimulating TGFbeta signalling. Besides this profibrotic effect, cathepsin K deficiency has a lipogenic effect owing to increased lipid uptake mediated by CD36 and caveolins. Copyright 2006 Pathological Society of Great Britain and Ireland.

  3. Local Non-Esterified Fatty Acids Correlate With Inflammation in Atheroma Plaques of Patients With Type 2 Diabetes

    PubMed Central

    Mas, Sebastián; Martínez-Pinna, Roxana; Martín-Ventura, Jose Luis; Pérez, Raul; Gomez-Garre, Dulcenombre; Ortiz, Alberto; Fernandez-Cruz, Arturo; Vivanco, Fernando; Egido, Jesús

    2010-01-01

    OBJECTIVE Atherosclerosis is prevalent in diabetic patients, but there is little information on the localization of nonesterified fatty acids (NEFAs) within the plaque and their relationship with inflammation. We sought to characterize the NEFA composition and location in human diabetic atheroma plaques by metabolomic analysis and imaging and to address their relationship with inflammation activity. RESEARCH DESIGN AND METHODS Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used for metabolomic analysis imaging of frozen carotid atheroma plaques. Carotid endarterectomy specimens were used for conventional immunohistochemistry, laser-capture microdissection quantitative PCR, and in situ Southwestern hybridization. Biological actions of linoleic acid were studied in cultured vascular smooth muscle cells (VSMCs). RESULTS TOF-SIMS imaging evidenced a significant increase in the quantity of several NEFA in diabetic versus nondiabetic atheroma plaques. Higher levels of NEFA were also found in diabetic sera. The presence of LPL mRNA in NEFA-rich areas of the atheroma plaque, as well as the lack of correlation between serum and plaque NEFA, suggests a local origin for plaque NEFA. The pattern of distribution of plaque NEFA is similar to that of MCP-1, LPL, and activated NF-κB. Diabetic endarterectomy specimens showed higher numbers of infiltrating macrophages and T-lymphocytes—a finding that associated with higher NEFA levels. Finally, linoleic acid activates NF-κB and upregulates NF-κB–mediated LPL and MCP-1 expression in cultured VSMC. DISCUSSION There is an increased presence of NEFA in diabetic plaque neointima. NEFA levels are higher in diabetic atheroma plaques than in nondiabetic subjects. We hypothesize that NEFA may be produced locally and contribute to local inflammation. PMID:20200316

  4. A rotational ablation tool for calcified atherosclerotic plaque removal.

    PubMed

    Kim, Min-Hyeng; Kim, Hyung-Jung; Kim, Nicholas N; Yoon, Hae-Sung; Ahn, Sung-Hoon

    2011-12-01

    Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

  5. Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice.

    PubMed

    Krieger, M H; Santos, K F R; Shishido, S M; Wanschel, A C B A; Estrela, H F G; Santos, L; De Oliveira, M G; Franchini, K G; Spadari-Bratfisch, R C; Laurindo, F R M

    2006-02-01

    The pathophysiology of the NO/NO synthase system and dysfunctional changes in the endothelium in the early phases of the atherogenic process are incompletely understood. In this study, we investigated the effects of the nitrosothiol NO donor S-nitroso-N-acetylcysteine (SNAC) in the early prevention of plaque development in the hypercholesterolemic LDLr-/- mice as well as the changes in endothelium-dependent relaxation and NO synthase expression. LDLr-/- mice were fed a 1.25% cholesterol-enriched diet for 15 days. Plasma cholesterol/triglyceride levels increased and this increase was accompanied by the development of aortic root lesions. Aortic vasorelaxation to acetylcholine was increased, although endothelium-independent relaxation in response to sodium nitroprusside did not change, which suggest stimulated NO release enhanced. This dysfunction was associated with enhanced aortic superoxide production and with increased levels of constitutive NOS isoform expression, particularly neuronal NOS. SNAC (S-nitroso-N-acetylcysteine) administration (0.51 micromol/kg/day i.p. for 15 days) decreased the extent of the plaque by 55% in hypercholesterolemic mice, but had no effects on vasomotor changes. It did, however, lead to a decrease in constitutive NOS expression. The SNAC induced only minor changes in plasma lipid profile. The present study has shown that, in early stages of plaque development in LDLr-/- mice, specific changes in NO/NO synthase system develop, that are characterized by increased endothelium-dependent vasorelaxation and increased constitutive NOS expression. Since the development of plaque and the indicator of endothelial cell dysfunction were prevented by SNAC, such treatment may constitute a novel strategy for the halting of progression of early plaque.

  6. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability.

    PubMed

    Brinjikji, Waleed; Huston, John; Rabinstein, Alejandro A; Kim, Gyeong-Moon; Lerman, Amir; Lanzino, Giuseppe

    2016-01-01

    Carotid artery stenosis is a well-established risk factor of ischemic stroke, contributing to up to 10%-20% of strokes or transient ischemic attacks. Many clinical trials over the last 20 years have used measurements of carotid artery stenosis as a means to risk stratify patients. However, with improvements in vascular imaging techniques such as CT angiography and MR angiography, ultrasonography, and PET/CT, it is now possible to risk stratify patients, not just on the degree of carotid artery stenosis but also on how vulnerable the plaque is to rupture, resulting in ischemic stroke. These imaging techniques are ushering in an emerging paradigm shift that allows for risk stratifications based on the presence of imaging features such as intraplaque hemorrhage (IPH), plaque ulceration, plaque neovascularity, fibrous cap thickness, and presence of a lipid-rich necrotic core (LRNC). It is important for the neurosurgeon to be aware of these new imaging techniques that allow for improved patient risk stratification and outcomes. For example, a patient with a low-grade stenosis but an ulcerated plaque may benefit more from a revascularization procedure than a patient with a stable 70% asymptomatic stenosis with a thick fibrous cap. This review summarizes the current state-of-the-art advances in carotid plaque imaging. Currently, MRI is the gold standard in carotid plaque imaging, with its high resolution and high sensitivity for identifying IPH, ulceration, LRNC, and inflammation. However, MRI is limited due to time constraints. CT also allows for high-resolution imaging and can accurately detect ulceration and calcification, but cannot reliably differentiate LRNC from IPH. PET/CT is an effective technique to identify active inflammation within the plaque, but it does not allow for assessment of anatomy, ulceration, IPH, or LRNC. Ultrasonography, with the aid of contrast enhancement, is a cost-effective technique to assess plaque morphology and characteristics, but it is limited in sensitivity and specificity for detecting LRNC, plaque hemorrhage, and ulceration compared with MRI. Also summarized is how these advanced imaging techniques are being used in clinical practice to risk stratify patients with low- and high-grade carotid artery stenosis. For example, identification of IPH on MRI in patients with low-grade carotid artery stenosis is a risk factor for failure of medical therapy, and studies have shown that such patients may fair better with carotid endarterectomy (CEA). MR plaque imaging has also been found to be useful in identifying revascularization candidates who would be better candidates for CEA than carotid artery stenting (CAS), as high intraplaque signal on time of flight imaging is associated with vulnerable plaque and increased rates of adverse events in patients undergoing CAS but not CEA.

  7. [Expression and antagonist role of endothelin and nitric oxide synthase in atherosclerotic plaque].

    PubMed

    Song, L; Wang, D; Wang, T

    1997-02-01

    To study the pathogenetic mechanism of atherosclerotic plaque, the action of mediation and antagonism of endothelin (ET) and nitric oxide synthase (NOS) was investigated. In situ hybridization, RT-PCR on endothelin and NOS, cytochemistry on NOS were measured using the rabbit atherosclerosis model and cultured vascular smooth muscle cells (VSMC) from normal rabbit. Transcription of endothelin mRNA increased and transcription of NOS mRNA decreased in astherosclerotic plaque: compared with normal aorta, expression of ET gene in plaque was increased by 1.2 times and the expression of NOS gene was decreased by 22.2%; cytochemistry combined with image pattern analysis showed that ET could inhibit NOS protien synthesis in VSMC; type A receptor antagonist of ET could inhibit the role of ET which causes a decrease of NOS protein in VSMC. The imbalance between NOS and ET, namely abnormal increase of ET and/or obvious decrease of NOS, is related to atherosclerotic plaque formation.

  8. Development of an intravascular ultrasound elastography based on a dual-element transducer

    NASA Astrophysics Data System (ADS)

    Shih, Cho-Chiang; Chen, Pei-Yu; Ma, Teng; Zhou, Qifa; Shung, K. Kirk; Huang, Chih-Chung

    2018-04-01

    The ability to measure the elastic properties of plaques and vessels would be useful in clinical diagnoses, particularly for detecting a vulnerable plaque. This study demonstrates the feasibility of the combination of intravascular ultrasound (IVUS) and acoustic radiation force elasticity imaging for detecting the distribution of stiffness within atherosclerotic arteries ex vivo. A dual-frequency IVUS transducer with two elements was used to induce the propagation of the shear wave (by the 8.5 MHz pushing element) which could be simultaneously monitored by the 31 MHz imaging element. The wave-amplitude image and the wave-velocity image were reconstructed by measuring the peak displacement and wave velocity of shear wave propagation, respectively. System performance was verified using gelatin phantoms. The phantom results demonstrate that the stiffness differences of shear modulus of 1.6 kPa can be distinguished through the wave-amplitude and wave-velocity images. The stiffness distributions of the atherosclerotic aorta from a rabbit were obtained, for which the values of peak displacement and the shear wave velocity were 3.7 ± 1.2 µm and 0.38 ± 0.19 m s-1 for the lipid-rich plaques, and 1.0 ± 0.2 µm and 3.45 ± 0.45 m s-1 for the arterial walls, respectively. These results indicate that IVUS elasticity imaging can be used to distinguish the elastic properties of plaques and vessels.

  9. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images

    PubMed Central

    Ughi, Giovanni Jacopo; Adriaenssens, Tom; Sinnaeve, Peter; Desmet, Walter; D’hooge, Jan

    2013-01-01

    Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for the in vivo investigation of coronary artery disease. While IVOCT visualizes atherosclerotic plaques with a resolution <20µm, image analysis in terms of tissue composition is currently performed by a time-consuming manual procedure based on the qualitative interpretation of image features. We illustrate an algorithm for the automated and systematic characterization of IVOCT atherosclerotic tissue. The proposed method consists in a supervised classification of image pixels according to textural features combined with the estimated value of the optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in vivo IVOCT data sets, constituted the algorithm’s training and testing data sets. Validation was obtained by comparing automated analysis results to the manual assessment of atherosclerotic plaques. An overall pixel-wise accuracy of 81.5% with a classification feasibility of 76.5% and per-class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich tissue respectively, was found. Moreover, measured optical properties were in agreement with previous results reported in literature. As such, an algorithm for automated tissue characterization was developed and validated using in vivo human data, suggesting that it can be applied to clinical IVOCT data. This might be an important step towards the integration of IVOCT in cardiovascular research and routine clinical practice. PMID:23847728

  10. Evaluation of the biomechanics of atherosclerosis by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshifumi; Nitta, Shin-ichi; Schiott Jorgensen, Claus; Falk, Erling

    2001-07-01

    Acoustic microscopy provides not only the morphology, but also the biomechanical properties of the biological soft tissues. The biomechanics of atherosclerosis is important because the pathophysiology of atherosclerosis is closely related with mechanical properties and mechanical stress. Rupture of the fibrous cap of atheromatous plaque is the initial event in acute coronary syndrome such as acute myocardial infarction or unstable angina. In addition to extrinsic physical stresses to the plaque, the intrinsic biomechanical property of the plaque is important for assessing the mechanism of the rupture. Two sets of SAMs operating in 100 to 200 MHz and in 800 MHz to 1.3 GHz were equipped to measure the acoustic properties of atherosclerosis of human or mouse arteries. The values of attenuation and sound speed in the tissue components of atherosclerosis were measured by analyzing the frequency dependent characteristics of the amplitude and phase signals. Both values were highest in calcification and lowest in lipid pool. Although attenuation and sound speed were relatively high in intimal fibrosis, the inhomogeneity of acoustic parameters was found within the fibrous cap. Polarized microscopy for the collagen stained with Picrosirius red showed that the attenuation of ultrasound was significantly higher in type I collagen with orange polarized color compared to type III collagen with green color. SAM has shown the possibility to detect the plaque vulnerability and it might improve our understanding of the sudden rupture from micro-mechanical point of view.

  11. MOLECULAR DYNAMICS SIMULATION AND EXPERIMENTAL STUDIES OF GOLD NANOPARTICLE TEMPLATED HDL-LIKE NANOPARTICLES FOR CHOLESTEROL (POSTPRINT)

    DTIC Science & Technology

    2016-12-21

    STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL...9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory...removing excess cholesterol from arterial plaques. Gold nanoparticles (AuNPs) functionalized with apolipoprotein A-I and with the lipids 1,2

  12. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice

    PubMed Central

    Olszanecki, Rafał; Totoń-Żurańska, Justyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-01-01

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation. PMID:28777310

  13. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice.

    PubMed

    Wiśniewska, Anna; Olszanecki, Rafał; Totoń-Żurańska, Justyna; Kuś, Katarzyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-08-04

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.

  14. Optical mechanisms for detection of lipid-rich atherosclerotic plaques by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hull, Edward L.; Gardner, Craig M.; Muller, James E.; Muller, Vianna J.; Salvato, Christopher V.; Lisauskas, Jennifer B.; Caplan, Jay D.

    2008-02-01

    InfraReDx has developed a spectroscopic cardiac catheter system capable of acquiring near-infrared (NIR) reflectance spectra from coronary arteries in vivo for identification of lipid-rich plaques of interest (LRP). The spectral data are analyzed with a chemometric model, producing a hyperspectral image (a chemogram) used to identify LRP in the interrogated region. In this paper, we describe a FT-IR microscopy system for measurement of the NIR scattering and absorption properties of healthy and diseased regions of human coronary arteries in small volumes (~10 μl). Scattering and absorption coefficients are obtained from sequential 140 um x 140 um regions of interest across the face of 500-micron thick, saline-irrigated fresh coronary artery sections. A customized FTIR microscope, measurement protocol, and inversion algorithm are used for optical property determination, and the system is calibrated using measurements of tissue-simulating phantoms having well-characterized optical properties. Tissue optical properties are co-registered with brightfield transmission images as well as with stained histologic thin sections (H&E, Movat Pentachrome, and Oil Red O) acquired from an immediately-adjacent section. The ultimate goal of these experiments is to establish a mechanistic link between the multivariate model predictions displayed on the InfraReDx chemogram and the light-tissue interactions that govern the measured NIR reflectance spectra.

  15. Structural changes in the myocardium and serum lipid spectrum in experimental hypercholesterolemia and hypothyroidism.

    PubMed

    Nepomnyashchikh, L M; Lushnikova, E L; Polyakov, L P; Molodykh, O P; Klinnikova, M G; Russkikh, G S; Poteryaeva, O N; Nepomnyashchikh, R D; Pichigin, V I

    2013-09-01

    We studied the peculiarities of lipid spectrum of the blood and structural reorganization of the myocardium in experimental hypercholesterolemia with and without hypothyroidism. It was found that alimentary hypercholesterolemia accompanied by elevated total cholesterol, LDL, HDL, and triglyceride concentrations led to a decrease in body weight, heart weight, number of cardiomyocytes in the heart and induced pronounced lytic changes in cardiomyocytes, circulation disorders (sludge syndrome, echinocytosis of erythrocytes, lymphostasis), diffuse fibrosis of the stroma, and appearance of foam cells among diffuse mononuclear infiltrate cells. The combination of hypercholesterolemia with hypothyroid status caused more pronounced changes in the lipid spectrum and atherogenic index and more pronounced lytic and necrobiotic changes in cardiomyocytes. These findings suggest that elevated cholesterol concentrations in the blood, especially against the background of suppressed thyroid function, can directly induce considerable damage to cardiomyocytes, intramural vessels, and erythrocytes without the development of myocardial ischemia and in the absence of atherosclerotic plaques.

  16. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration.

    PubMed

    Kefayati, Sarah; Milner, Jaques S; Holdsworth, David W; Poepping, Tamie L

    2014-01-01

    Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry) and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases) were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration). The level of laminar (ensemble-averaged) shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS) and approximately double (4-36 Pa) for wall shear stress (WSS). Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque) resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms) through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent) shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.

  17. Mass transfer of therapeutics through natural human plaque biofilms: a model for therapeutic delivery to pathological bacterial biofilms.

    PubMed

    Robinson, Colin

    2011-09-01

    Bacterial biofilms in the mouth are prime mediators of the destruction of the dental and oral tissues. This brief review summarises recent work using a device for generating intact plaque in the mouth on natural enamel surfaces such that quantitative studies of mass transfer through natural plaque biofilms could be carried out in relation to plaque architecture. This data is discussed against the background of existing information. The device revealed complex plaque architecture with high a surface area to mass ratio decreasing from the exterior of the biofilm towards the tissue surface. Fluoride, a potent inhibitor of caries was concentrated in the outer regions of the biofilm. This implies some restriction of diffusion and possibly binding to the high surface area of the outer biofilm. Whilst all components examined conformed to this distribution pattern, some relatively uncharged materials penetrated the bacterial biomass whilst other, more highly charged materials tended to be restricted to the channels or biomass surface. Plaque architecture was robust but could be altered using detergent indicating that biomass architecture and chemistry could be manipulated as a possible means of facilitating mass transport of therapeutics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.

    PubMed

    Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa

    2013-06-01

    More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.

  19. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  20. Oxidative stress in Alzheimer disease

    PubMed Central

    Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765

  1. Oxidative stress in Alzheimer disease.

    PubMed

    Gella, Alejandro; Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.

  2. Near-infrared hyperspectral imaging of atherosclerotic tissue phantom

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Kitayabu, A.; Awazu, K.

    2013-06-01

    A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by hyperspectral imaging in near-infrared range (NIR-HSI) for an angioscopic application. In this study, NIR-HSI of atherosclerotic tissue phantoms was demonstrated under simulated angioscopic conditions. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, detections of the lipid area in the atherosclerotic tissue phantom under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode.

  3. Surfaces modulate beta-amyloid peptide aggregation associated with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yates, Elizabeth Anne

    A hallmark of Alzheimer's disease, a late onset neurodegenerative disease, is the presence of neuritic amyloid plaques deposited within the brain composed of beta-amyloid (Abeta) peptide aggregates. Abeta can aggregate into a variety of polymorphic aggregate structures under different chemical environments, specifically affected by the presence of differing surfaces. There are several point mutations clustered around the central hydrophobic core of Abeta (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy to typical Alzheimer's disease pathology with both plaques and tangles. To determine how these different point mutations, which modify both peptide charge and hydrophobic character, altered Abeta aggregation and morphology under free solution conditions, at an anionic surface/liquid interface and in the presence of supported lipid bilayers, atomic force microscopy was used. Additionally, the non-native conformation of Abeta leads to the formation of nanoscale, toxic aggregates which have been shown to strongly interact with supported lipid bilayers, which may represent a key step in potential toxic mechanisms. Understanding how specific regions of Abeta regulate its aggregation in the absence and presence of surfaces can provide insight into the fundamental interaction of Abeta with cellular surfaces. Specific fragments of Abeta (Abeta1-11, Abeta 1-28, Abeta10-26, Abeta12-24, Abeta 16-22, Abeta22-35, and Abeta1-40), represent a variety of chemically unique regions along Abeta, i.e., the extracellular domain, the central hydrophobic core, and transmembrane domain. Using various scanning probe microscopic techniques, the interaction of these Abeta sequences with lipid membranes was shown to alter aggregate morphology and induce mechanical changes of lipid bilayers compared to aggregates formed under free solution conditions. Lastly, in order to determine how chemical environment can lead to distinct polymorph fibril formation influencing disease pathology, various peptide preparation and fibril growth conditions of Abeta were studied in free solution and with a model lipid membrane.

  4. Decreased inducibility of TNF expression in lipid-loaded macrophages

    PubMed Central

    Ares, Mikko PS; Stollenwerk, Maria; Olsson, Anneli; Kallin, Bengt; Jovinge, Stefan; Nilsson, Jan

    2002-01-01

    Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL) for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages. PMID:12366867

  5. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  6. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    PubMed

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. APP Function and Lipids: A Bidirectional Link

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Grimm, Heike S.; Hartmann, Tobias

    2017-01-01

    Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer’s disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways. PMID:28344547

  8. Tissue velocity imaging of coronary artery by rotating-type intravascular ultrasound.

    PubMed

    Saijo, Yoshifumi; Tanaka, Akira; Owada, Naoki; Akino, Yoshihisa; Nitta, Shinichi

    2004-04-01

    Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.

  9. Manual versus Automated Carotid Artery Plaque Component Segmentation in High and Lower Quality 3.0 Tesla MRI Scans

    PubMed Central

    Smits, Loek P.; van Wijk, Diederik F.; Duivenvoorden, Raphael; Xu, Dongxiang; Yuan, Chun; Stroes, Erik S.; Nederveen, Aart J.

    2016-01-01

    Purpose To study the interscan reproducibility of manual versus automated segmentation of carotid artery plaque components, and the agreement between both methods, in high and lower quality MRI scans. Methods 24 patients with 30–70% carotid artery stenosis were planned for 3T carotid MRI, followed by a rescan within 1 month. A multicontrast protocol (T1w,T2w, PDw and TOF sequences) was used. After co-registration and delineation of the lumen and outer wall, segmentation of plaque components (lipid-rich necrotic cores (LRNC) and calcifications) was performed both manually and automated. Scan quality was assessed using a visual quality scale. Results Agreement for the detection of LRNC (Cohen’s kappa (k) is 0.04) and calcification (k = 0.41) between both manual and automated segmentation methods was poor. In the high-quality scans (visual quality score ≥ 3), the agreement between manual and automated segmentation increased to k = 0.55 and k = 0.58 for, respectively, the detection of LRNC and calcification larger than 1 mm2. Both manual and automated analysis showed good interscan reproducibility for the quantification of LRNC (intraclass correlation coefficient (ICC) of 0.94 and 0.80 respectively) and calcified plaque area (ICC of 0.95 and 0.77, respectively). Conclusion Agreement between manual and automated segmentation of LRNC and calcifications was poor, despite a good interscan reproducibility of both methods. The agreement between both methods increased to moderate in high quality scans. These findings indicate that image quality is a critical determinant of the performance of both manual and automated segmentation of carotid artery plaque components. PMID:27930665

  10. A comparison study between 3D T2-weighted SPACE and conventional 2D T2-weighted turbo spin echo in assessment of carotid plaque.

    PubMed

    Lv, Peng; Dai, Yuanyuan; Lin, Jiang; Zhang, Weisheng; Liu, Hao; Liu, Hui; Tang, Xiao

    2017-03-01

    The aim of this study was to compare 3D T2-weighted sampling perfection with application optimized contrast using different flip angle evolutions (T2w SPACE) with conventional 2D T2w turbo-spin echo (TSE) in plaque imaging of carotid artery. 45 patients underwent 3.0-T MRI for carotid arteries imaging. MR sequences included T2w SPACE, T2w TSE, Time of flight (TOF) and T1-weighted (T1w) TSE. The signal intensity of intra-plaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), and loose matrix (LM) were measured and their contrast ratios (CRs) against adjacent muscle were calculated. CRs from T2w SPACE and T2w TSE were compared to each other. CRs of LM, LRNC, and IPH measured on T2w SPACE were 1.74-3.04 (2.44), 0.98-1.66 (1.39), and 1.91-2.93 (2.51), respectively. CRs of LM, LRNC, and IPH on T2w TSE were 1.97-3.41 (2.44), 1.18-1.73 (1.43), and 2.26-3.75 (2.26), respectively. There was no significant difference of CR of the carotid plaques between T2w SPACE and T2w TSE (p = 0.455). Markedly significant differences of CRs were found between LM and LRNC (p < 0.001), and between LRNC and IPH (p < 0.001) on T2w SPACE and T2w TSE. T2w SPACE was comparable with conventional T2w TSE in characterization of carotid plaque.

  11. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential.

    PubMed

    Martinet, Wim; De Meyer, Guido R Y

    2009-02-13

    Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.

  12. Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells.

    PubMed

    Burch, Micah L; Getachew, Robel; Osman, Narin; Febbraio, Mark A; Little, Peter J

    2013-03-08

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis.

  13. Oral microbiota in patients with atherosclerosis.

    PubMed

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran; Bäckhed, Fredrik

    2015-12-01

    Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested to increase the systemic inflammatory level of the host, which may in turn influence plaque composition and rupture. We previously showed that bacteria from the oral cavity and the gut could be found in atherosclerotic plaques. To elucidate whether the oral microbiota composition differed between patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. The overall microbial structure was similar in controls and atherosclerosis patients, but patients with symptomatic atherosclerosis had higher relative abundance of Anaeroglobus (mean 0.040% (SD 0.049)) than the control group (0.010% (SD 0.028)) (P = 0.03). Using linear regression analysis, we found that Parvimonas associated positively with uCRP and Capnocytophaga, Catonella and Lactobacillus associated with blood lipid markers. In conclusion, abundance of Anaeroglobus in the oral cavity could be associated with symptomatic atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Regressing Atherosclerosis by Resolving Plaque Inflammation

    DTIC Science & Technology

    2017-07-01

    Atherosclerosis is a chronic inflammatory disease that develops in the setting of hyperlipidemia, with progression a consequence of the failure to...measured in distilled water because of the increased ionic strength on the surface of NPs in PBS solution [29]. In contrast, NPs(550) with a lipid-PEG...J.A. is a recipient of a Scientist Development Grant from the American Heart Association (16SDG27550012). A.M. was supported by an NYU training

  15. Phylogenetic Analysis Shows That Neolithic Slate Plaques from the Southwestern Iberian Peninsula Are Not Genealogical Recording Systems

    PubMed Central

    García Rivero, Daniel; O'Brien, Michael J.

    2014-01-01

    Prehistoric material culture proposed to be symbolic in nature has been the object of considerable archaeological work from diverse theoretical perspectives, yet rarely are methodological tools used to test the interpretations. The lack of testing is often justified by invoking the opinion that the slippery nature of past human symbolism cannot easily be tackled by the scientific method. One such case, from the southwestern Iberian Peninsula, involves engraved stone plaques from megalithic funerary monuments dating ca. 3,500–2,750 B.C. (calibrated age). One widely accepted proposal is that the plaques are ancient mnemonic devices that record genealogies. The analysis reported here demonstrates that this is not the case, even when the most supportive data and techniques are used. Rather, we suspect there was a common ideological background to the use of plaques that overlay the southwestern Iberian Peninsula, with little or no geographic patterning. This would entail a cultural system in which plaque design was based on a fundamental core idea, with a number of mutable and variable elements surrounding it. PMID:24558384

  16. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Ikuko, E-mail: nakamuri@riken.jp; Department of Cardiovascular Medicine, Saga University, Saga; Hasegawa, Koki

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectinmore » mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin mAb accumulated selectively in aortic atherosclerotic plaques and was detectable by PET and CT fusion imaging in Ldlr-/- mice. Conclusions: P-selectin is a candidate target molecule for early-phase detection by PET and CT fusion imaging of atherosclerotic plaques.« less

  17. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice.

    PubMed

    Liu, Peng; Reichl, John H; Rao, Eshaan R; McNellis, Brittany M; Huang, Eric S; Hemmy, Laura S; Forster, Colleen L; Kuskowski, Michael A; Borchelt, David R; Vassar, Robert; Ashe, Karen H; Zahs, Kathleen R

    2017-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β protein precursor (AβPP) with Alzheimer's disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.

  18. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Precursor Protein Transgenic Mice

    PubMed Central

    Liu, Peng; Reichl, John H.; Rao, Eshaan R.; McNellis, Brittany M.; Huang, Eric S.; Hemmy, Laura S.; Forster, Colleen L.; Kuskowski, Michael A.; Borchelt, David R.; Vassar, Robert; Ashe, Karen H.; Zahs, Kathleen R.

    2016-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β precursor protein (AβPP) with Alzheimer’s disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ~4.5 times that of 21-month Tg2576 mice and ~15 times that of 21–24-month rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort. PMID:28059792

  19. Long-term follow-up after near-infrared spectroscopy coronary imaging: Insights from the lipid cORe plaque association with CLinical events (ORACLE-NIRS) registry.

    PubMed

    Danek, Barbara Anna; Karatasakis, Aris; Karacsonyi, Judit; Alame, Aya; Resendes, Erica; Kalsaria, Pratik; Nguyen-Trong, Phuong-Khanh J; Rangan, Bavana V; Roesle, Michele; Abdullah, Shuaib; Banerjee, Subhash; Brilakis, Emmanouil S

    Coronary lipid core plaque may be associated with the incidence of subsequent cardiovascular events. We analyzed outcomes of 239 patients who underwent near-infrared spectroscopy (NIRS) coronary imaging between 2009-2011. Multivariable Cox regression was used to identify variables independently associated with the incidence of major adverse cardiovascular events (MACE; cardiac mortality, acute coronary syndromes (ACS), stroke, and unplanned revascularization) during follow-up. Mean patient age was 64±9years, 99% were men, and 50% were diabetic, presenting with stable coronary artery disease (61%) or an acute coronary syndrome (ACS, 39%). Target vessel pre-stenting median lipid core burden index (LCBI) was 88 [interquartile range, IQR 50-130]. Median LCBI in non-target vessels was 57 [IQR 26-94]. Median follow-up was 5.3years. The 5-year MACE rate was 37.5% (cardiac mortality was 15.0%). On multivariable analysis the following variables were associated with MACE: diabetes mellitus, prior percutaneous coronary intervention performed at index angiography, and non-target vessel LCBI. Non-target vessel LCBI of 77 was determined using receiver-operating characteristic curve analysis to be a threshold for prediction of MACE in our cohort. The adjusted hazard ratio (HR) for non-target vessel LCBI ≥77 was 14.05 (95% confidence interval (CI) 2.47-133.51, p=0.002). The 5-year cumulative incidence of events in the above-threshold group was 58.0% vs. 13.1% in the below-threshold group. During long-term follow-up of patients who underwent NIRS imaging, high LCBI in a non-PCI target vessel was associated with increased incidence of MACE. Published by Elsevier Inc.

  20. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT).

    PubMed

    Pai, Vinay M; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-01

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO(4) ) solution. As a tissue-staining contrast agent, OsO(4) is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO(4) preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE(-/-) ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO(4) and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts. Published 2012. This article is a US Government work and is in the public domain in the USA. Journal of Anatomy © 2012 Anatomical Society.

  1. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall andmore » surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.« less

  2. Loganic acid and anthocyanins from cornelian cherry (Cornus mas L.) fruits modulate diet-induced atherosclerosis and redox status in rabbits.

    PubMed

    Sozański, Tomasz; Kucharska, Alicja Z; Dzimira, Stanisław; Magdalan, Jan; Szumny, Dorota; Matuszewska, Agnieszka; Nowak, Beata; Piórecki, Narcyz; Szeląg, Adam; Trocha, Małgorzata

    2018-04-25

    Cornelian cherry (Cornus mas L.) is a plant growing in southeast Europe, in the past used in folk medicine. There are many previous publications showing the preventive effects of (poly)phenolic compounds, especially anthocyanins, on cardiovascular diseases, but there is a lack of studies comparing the effects of (poly)phenolics and other constituents of fruits. We have attempted to determine if iridoids and anthocyanins from cornelian cherry fruits may affect the formation of atherosclerotic plaques in the aorta as well as lipid peroxidation and oxidative stress in the livers of cholesterol-fed rabbits. Fractions of iridoids and anthocyanins were analyzed using the high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods. Loganic acid (20 mg/kg b.w.) and a mixture of anthocyanins (10 mg/kg b.w.) were administered orally for 60 days to rabbits fed with 1% cholesterol. Histopathological samples of the aortas and the livers were stained with hematoxylin and eosin. Lipid peroxidation (malondialdehyde - MDA) and redox status (glutathione - GSH, glutathione peroxidase - Gpx and superoxide dismutase - SOD) were analyzed using spectrophotometrical methods. Both loganic acid (an iridoid) and a mixture of anthocyanins diminished the formation of atherosclerotic plaques in the aorta. Both substances also diminished lipid peroxidation, measured as a decrease of MDA, and attenuated oxidative stress, measured as an increase of GSH in the livers depleted by cholesterol feeding. Unexpectedly, cholesterol feeding decreased the Gpx activity in the liver, which was reversed by both investigated substances. We have shown that both iridoids and anthocyanins help prevent fed-induced atherosclerosis, and the consumption of fruits rich in these substances may elicit beneficial effects on the cardiovascular system.

  3. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB.

    PubMed

    Li, Xuesong; Zhang, Xin; Zheng, Longbin; Kou, Jiayuan; Zhong, Zhaoyu; Jiang, Yueqing; Wang, Wei; Dong, Zengxiang; Liu, Zhongni; Han, Xiaobo; Li, Jing; Tian, Ye; Zhao, Yajun; Yang, Liming

    2016-12-22

    Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques.

  4. Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves

    PubMed Central

    Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina

    2013-01-01

    In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis. PMID:23762432

  5. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N‑truncated Abeta in sporadic Alzheimer disease cases and mouse models.

    PubMed

    Bouter, Yvonne; Lopez Noguerola, Jose Socrates; Tucholla, Petra; Crespi, Gabriela A N; Parker, Michael W; Wiltfang, Jens; Miles, Luke A; Bayer, Thomas A

    2015-11-01

    Solanezumab and Crenezumab are two humanized antibodies targeting Amyloid-β (Aβ) which are currently tested in multiple clinical trials for the prevention of Alzheimer's disease. However, there is a scientific discussion ongoing about the target engagement of these antibodies. Here, we report the immunohistochemical staining profiles of biosimilar antibodies of Solanezumab, Crenezumab and Bapineuzumab in human formalin-fixed, paraffin-embedded tissue and human fresh frozen tissue. Furthermore, we performed a direct comparative immunohistochemistry analysis of the biosimilar versions of the humanized antibodies in different mouse models including 5XFAD, Tg4-42, TBA42, APP/PS1KI, 3xTg. The staining pattern with these humanized antibodies revealed a surprisingly similar profile. All three antibodies detected plaques, cerebral amyloid angiopathy and intraneuronal Aβ in a similar fashion. Remarkably, Solanezumab showed a strong binding affinity to plaques. We also reaffirmed that Bapineuzumab does not recognize N-truncated or modified Aβ, while Solanezumab and Crenezumab do detect N-terminally modified Aβ peptides Aβ4-42 and pyroglutamate Aβ3-42. In addition, we compared the results with the staining pattern of the mouse NT4X antibody that recognizes specifically Aβ4-42 and pyroglutamate Aβ3-42, but not full-length Aβ1-42. In contrast to the biosimilar antibodies of Solanezumab, Crenezumab and Bapineuzumab, the murine NT4X antibody shows a unique target engagement. NT4X does barely cross-react with amyloid plaques in human tissue. It does, however, detect cerebral amyloid angiopathy in human tissue. In Alzheimer mouse models, NT4X detects intraneuronal Aβ and plaques comparable to the humanized antibodies. In conclusion, the biosimilar antibodies Solanezumab, Crenezumab and Bapineuzumab strongly react with amyloid plaques, which are in contrast to the NT4X antibody that hardly recognizes plaques in human tissue. Therefore, NT4X is the first of a new class of therapeutic antibodies.

  6. Software and Algorithms for Biomedical Image Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Lambert, James; Lam, Raymond

    2004-01-01

    A new software equipped with novel image processing algorithms and graphical-user-interface (GUI) tools has been designed for automated analysis and processing of large amounts of biomedical image data. The software, called PlaqTrak, has been specifically used for analysis of plaque on teeth of patients. New algorithms have been developed and implemented to segment teeth of interest from surrounding gum, and a real-time image-based morphing procedure is used to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The PlaqTrak system integrates these components into a single software suite with an easy-to-use GUI (see Figure 1) that allows users to do an end-to-end run of a patient s record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image. The automated and accurate processing of the captured images to segment each tooth [see Figure 2(a)] and then detect plaque on a tooth-by-tooth basis is a critical component of the PlaqTrak system to do clinical trials and analysis with minimal human intervention. These features offer distinct advantages over other competing systems that analyze groups of teeth or synthetic teeth. PlaqTrak divides each segmented tooth into eight regions using an advanced graphics morphing procedure [see results on a chipped tooth in Figure 2(b)], and a pattern recognition classifier is then used to locate plaque [red regions in Figure 2(d)] and enamel regions. The morphing allows analysis within regions of teeth, thereby facilitating detailed statistical analysis such as the amount of plaque present on the biting surfaces on teeth. This software system is applicable to a host of biomedical applications, such as cell analysis and life detection, or robotic applications, such as product inspection or assembly of parts in space and industry.

  7. Association of body flexibility and carotid atherosclerosis in Japanese middle-aged men: a cross-sectional study

    PubMed Central

    Imoto, Takayuki; Kida, Akira; Yokochi, Takashi; Iwase, Mitsunori; Kozawa, Kenji

    2018-01-01

    Objective This study examined the associations of body flexibility with carotid arterial remodelling, including intima–media thickness (IMT) and plaque formation in middle-aged men. Methods The subjects of this cross-sectional study included 1354 Japanese men aged 35–59 years without histories of stroke or cardiac diseases. The arm extensibility test, which can estimate flexibility of the upper extremity (composed of shoulder external rotation and forearm supination), and the sit-and-reach test were performed. Common carotid IMT and plaque formation (≥1.1 mm) were estimated by ultrasound. Results The proportion of subjects who fully completed the arm extensibility test was 55.0%, and who had plaques in the common carotid artery was 37.8%. IMT was associated with poor arm extensibility (β=–0.073, 95% CI –0.02224 to –0.00041, P=0.004), while plaque formation was associated with poor sit-and-reach (OR 0.98579, 95% CI 0.97257 to 0.99919, P=0.038) after adjustment by all covariates. Conclusions This study demonstrated that poor upper extremity and trunk flexibility were associated with characteristics of early onset of atherosclerosis. Furthermore, these associations were independent of covariates such as age, blood pressure, blood lipids glucose levels and abdominal fat accumulation, handgrip strength and lifestyle, including sleeping, drinking, exercise and smoking habits. Poor flexibility may reflect subclinical atherosclerosis in middle-aged men. PMID:29306892

  8. Dental plaque development on a hydroxyapatite disk in young adults observed by using a barcoded pyrosequencing approach

    PubMed Central

    Takeshita, Toru; Yasui, Masaki; Shibata, Yukie; Furuta, Michiko; Saeki, Yoji; Eshima, Nobuoki; Yamashita, Yoshihisa

    2015-01-01

    Dental plaque is a dynamic microbial biofilm ecosystem that comprises hundreds of species including difficult-to-cultivate bacteria. We observed the assembly of a plaque bacterial community through 16S rRNA gene analysis. Plaque samples that accumulated on a hydroxyapatite disk for 1, 2, 3, 4, 5, and 7 days with saliva on day 0 were collected from 19 young adults using a removable resin splint. Quantitative PCR analysis showed that the total bacterial amount gradually increased and reached a plateau on day 4. Barcoded pyrosequencing analysis revealed that the microbial richness and diversity particularly increased between days 5 and 7. A principal coordinate analysis plot based on unweighted UniFrac showed the community assembly in a time-related manner, which became increasingly similar to the salivary microbiota. Facultative anaerobic bacteria such as Streptococcus, Neisseria, Abiotrophia, Gemella, and Rothia were predominant in the plaque bacterial community in the earlier days, whereas obligate anaerobes, such as Porphyromonas, Fusobacterium, Prevotella, and Capnocytophaga showed increased dominance on later days. UniFrac analysis also demonstrated that dental caries experience had a significant effect on the assembly process. Our results reveal the development pattern of the plaque bacterial community as well as the inter-individual differences associated with dental caries experience. PMID:25633431

  9. Dental plaque development on a hydroxyapatite disk in young adults observed by using a barcoded pyrosequencing approach.

    PubMed

    Takeshita, Toru; Yasui, Masaki; Shibata, Yukie; Furuta, Michiko; Saeki, Yoji; Eshima, Nobuoki; Yamashita, Yoshihisa

    2015-01-30

    Dental plaque is a dynamic microbial biofilm ecosystem that comprises hundreds of species including difficult-to-cultivate bacteria. We observed the assembly of a plaque bacterial community through 16S rRNA gene analysis. Plaque samples that accumulated on a hydroxyapatite disk for 1, 2, 3, 4, 5, and 7 days with saliva on day 0 were collected from 19 young adults using a removable resin splint. Quantitative PCR analysis showed that the total bacterial amount gradually increased and reached a plateau on day 4. Barcoded pyrosequencing analysis revealed that the microbial richness and diversity particularly increased between days 5 and 7. A principal coordinate analysis plot based on unweighted UniFrac showed the community assembly in a time-related manner, which became increasingly similar to the salivary microbiota. Facultative anaerobic bacteria such as Streptococcus, Neisseria, Abiotrophia, Gemella, and Rothia were predominant in the plaque bacterial community in the earlier days, whereas obligate anaerobes, such as Porphyromonas, Fusobacterium, Prevotella, and Capnocytophaga showed increased dominance on later days. UniFrac analysis also demonstrated that dental caries experience had a significant effect on the assembly process. Our results reveal the development pattern of the plaque bacterial community as well as the inter-individual differences associated with dental caries experience.

  10. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2016-03-01

    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  11. Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT.

    PubMed

    Fuchigami, Takeshi; Yamashita, Yuki; Haratake, Mamoru; Ono, Masahiro; Yoshida, Sakura; Nakayama, Morio

    2014-05-01

    We report radioiodinated chalcone derivatives as new SPECT imaging probes for amyloid β (Aβ) plaques. The monoethyleneoxy derivative 2 and allyloxy derivative 8 showed a high affinity for Aβ(1-42) aggregates with Ki values of 24 and 4.5 nM, respectively. Fluorescent imaging demonstrated that 2 and 8 clearly stained thioflavin-S positive Aβ plaques in the brain sections of Tg2576 transgenic mice. In vitro autoradiography revealed that [(125)I]2 displayed no clear accumulation toward Aβ plaques in the brain sections of Tg2576 mice, whereas the accumulation pattern of [(125)I]8 matched with the presence of Aβ plaques both in the brain sections of Tg2576 mice and an AD patient. In biodistribution studies using normal mice, [(125)I]2 showed preferable in vivo pharmacokinetics (4.82%ID/g at 2 min and 0.45%ID/g at 60 min), while [(125)I]8 showed only a modest brain uptake (1.62%ID/g at 2 min) with slow clearance (0.56%ID/g at 60 min). [(125)I]8 showed prospective binding properties for Aβ plaques, although further structural modifications are needed to improve the blood brain barrier permeability and washout from brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Functional expression of dental plaque microbiota.

    PubMed

    Peterson, Scott N; Meissner, Tobias; Su, Andrew I; Snesrud, Erik; Ong, Ana C; Schork, Nicholas J; Bretz, Walter A

    2014-01-01

    Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.

  13. Functional expression of dental plaque microbiota

    PubMed Central

    Peterson, Scott N.; Meissner, Tobias; Su, Andrew I.; Snesrud, Erik; Ong, Ana C.; Schork, Nicholas J.; Bretz, Walter A.

    2014-01-01

    Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota. PMID:25177549

  14. Utility of 3-dimensional ultrasound imaging to evaluate carotid artery stenosis: comparison with magnetic resonance angiography.

    PubMed

    Igase, Keiji; Kumon, Yoshiaki; Matsubara, Ichiro; Arai, Masamori; Goishi, Junji; Watanabe, Hideaki; Ohnishi, Takanori; Sadamoto, Kazuhiko

    2015-01-01

    We evaluated the utility of 3-dimensional (3-D) ultrasound imaging for assessment of carotid artery stenosis, as compared with similar assessment via magnetic resonance angiography (MRA). Subjects comprised 58 patients with carotid stenosis who underwent both 3-D ultrasound imaging and MRA. We studied whether abnormal findings detected by ultrasound imaging could be diagnosed using MRA. Ultrasound images were generated using Voluson 730 Expert and Voluson E8. The degree of stenosis was mild in 17, moderate in 16, and severe in 25 patients, according to ultrasound imaging. Stenosis could not be recognized using MRA in 4 of 17 patients diagnosed with mild stenosis using ultrasound imaging. Ultrasound imaging showed ulceration in 13 patients and mobile plaque in 6 patients. When assessing these patients, MRA showed ulceration in only 2 of 13 patients and did not detect mobile plaque in any of these 6 patients. Static 3-D B mode images demonstrated distributions of plaque, ulceration, and mobile plaque, and static 3-D flow images showed flow configuration as a total structure. Real-time 3-D B mode images demonstrated plaque and vessel movement. Carotid artery stenting was not selected for patients diagnosed with ulceration or mobile plaque. Ultrasound imaging was necessary to detect mild stenosis, ulcerated plaque, or mobile plaque in comparison with MRA, and 3-D ultrasound imaging was useful to recognize carotid stenosis and flow pattern as a total structure by static and real-time 3-D demonstration. This information may contribute to surgical planning. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Effects of induction/inhibition of endogenous heme oxygenase-1 on lipid metabolism, endothelial function, and atherosclerosis in rabbits on a high fat diet.

    PubMed

    Liu, Danan; He, Zuoyun; Wu, Lirong; Fang, Ying

    2012-01-01

    The heme oxygenase-1 (HO-1) / carbon monoxide (CO) system has been presumed as a therapeutic target for preventing atherosclerosis. However, the exact mechanism(s) underlying this system remains largely undefined. This study aims to examine the influence of induction/inhibition of HO-1 on atherosclerotic plaque using pharmacological approaches and to elucidate potential mechanisms. Rabbits were randomly assigned to receive a standard diet (control group), high fat diet (HFD), HFD plus HO inducer hemin (HFD + H group), and HFD plus an HO inhibitor, zinc protoporphyrin-9 (ZnPP9, HFD + Z group). Atherosclerotic plaque was evaluated using oil red O staining and histological analyses. Immunohistochemistry, western blotting, and RT-PCR were employed to study the expression of HO-1 and endothelin-1 (ET-1). Levels of CO, nitric oxide (NO), eNOS/iNOS activities, NF-κB activity, and TNF-α level were determined. No significant differences of serum lipid levels were observed among the HFD, HFD + Z, and HFD + H groups. In rabbits, HFD induced typical atherosclerotic plaque and increased intima/media thickness ratio, which was markedly reduced in the HFD + H group and further aggravated in the HFD + Z group. Furthermore, hemin increased HO-1 expression, CO levels, and eNOS activity, while decreasing iNOS levels, ET-1 expression, NF-κB activity, and TNF-α level. ZnPP9 caused opposite effects. Induction of the endogenous HO-1/CO system by hemin can prevent atherosclerosis though increasing CO levels, regulating eNOS activity, NF-κB activity, TNF-α levels, and ET-1 levels in rabbits. Our results add new evidence for the importance of HO-1 in the genesis and development of atherosclerosis and provide several possible mechanisms underlying the anti-atherosclerosis effects of HO-1.

  16. Amalgamation of Chlamydia pneumoniae inclusions with lipid droplets in foam cells in human atherosclerotic plaque.

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Tran, Dihn; Lord, Reginald

    2008-07-01

    Chlamydia pneumoniae (Chlamydophila pneumoniae) infect macrophages and accelerates foam cell formation in in vitro experiments, but whether this might occur in human atherosclerosis is unknown. In the present study, we examined 17 carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. Electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae in the cytoplasm of macrophage foam cells. The volume of the cytoplasm that was free from vacuoles and lipid droplets in C. pneumoniae-infected foam cells was dramatically reduced, and a phenomenon of the amalgamation of C. pneumoniae inclusions with lipid droplets was detected. Double immunohistochemistry showed that C. pneumoniae-infected foam cells contained a large number of oxidized low-density lipoproteins. The observations provide support to the hypothesis that C. pneumoniae could affect foam cell formation in human atherosclerosis.

  17. Current OCT Approaches Do Not Reliably Identify TCFAs

    PubMed Central

    Brezinski, Mark E.; Harjai, Kishore J

    2017-01-01

    It is now clearly established that Thin-Capped Fibroatheromas (TCFAs) lead to most Acute Coronary Syndromes (ACSs). The ability to selectively intervene on TCFAs predisposed to rupture and ACSs would dramatically alter the practice of cardiology. While the ability of OCT to identify thin walled plaques at micron scale resolutions has represented a major advance, it is a misconception that it can reliably identify TCFAs. One major reason is that the ‘diffuse border’ criteria currently used to determine ‘lipid plaque’ is almost undoubtedly from high scattering in the intima and not because of core composition (necrotic core). A second reason is that, rather than looking at lipid collections, studies need to be focused on identifying necrotic cores with OCT. Necrotic cores are characteristic of TCFAs and not lipid collections. Numerous other OCT approaches are available which can potentially accurately assess TCFAs, but these have not been aggressively pursed which we believe likely stems in part from the misconceptions over the efficacy of ‘diffuse borders’. PMID:29250457

  18. Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables.

    PubMed

    Runnel, Riina; Mäkinen, Kauko K; Honkala, Sisko; Olak, Jana; Mäkinen, Pirkko-Liisa; Nõmmela, Rita; Vahlberg, Tero; Honkala, Eino; Saag, Mare

    2013-12-01

    The objective of the present paper is to report results from oral biologic studies carried out in connection with a caries study. Samples of whole-mouth saliva and dental plaque were collected from initially 7- to 8-year-old subjects who participated in a 3-year school-based programme investigating the effect of the consumption of polyol-containing candies on caries rates. The subjects were randomized in three cohorts, consumed erythritol, xylitol, or sorbitol candies. The daily polyol consumption from the candies was approximately 7.5 g. A significant reduction in dental plaque weight from baseline (p<0.05) occurred in the erythritol group during almost all intervention years while no changes were found in xylitol and sorbitol groups. Usage of polyol candies had no significant or consistent effect on the levels of plaque protein, glucose, glycerol, or calcium, determined yearly in connection with caries examinations. After three years, the plaque of erythritol-receiving subjects contained significantly (p<0.05) lower levels of acetic acid and propionic acid than that of subjects receiving xylitol or sorbitol. Lactic acid levels partly followed the same pattern. The consumption of erythritol was generally associated with significantly (p<0.05) lower counts of salivary and plaque mutans streptococci compared with the other groups. There was no change in salivary Lactobacillus levels. Three-year consumption of erythritol-containing candies by initially 7- to 8-year old children was associated with reduced plaque growth, lower levels of plaque acetic acid and propionic acid, and reduced oral counts of mutans streptococci compared with the consumption of xylitol or sorbitol candies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Clinical validation of robot simulation of toothbrushing - comparative plaque removal efficacy

    PubMed Central

    2014-01-01

    Background Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Methods Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33–47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33–47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. Results The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. Conclusions The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing. This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning. PMID:24996973

  20. Clinical validation of robot simulation of toothbrushing--comparative plaque removal efficacy.

    PubMed

    Lang, Tomas; Staufer, Sebastian; Jennes, Barbara; Gaengler, Peter

    2014-07-04

    Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33-47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33-47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing.This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning.

  1. Association of body flexibility and carotid atherosclerosis in Japanese middle-aged men: a cross-sectional study.

    PubMed

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi; Iwase, Mitsunori; Kozawa, Kenji

    2018-01-05

    This study examined the associations of body flexibility with carotid arterial remodelling, including intima-media thickness (IMT) and plaque formation in middle-aged men. The subjects of this cross-sectional study included 1354 Japanese men aged 35-59 years without histories of stroke or cardiac diseases. The arm extensibility test, which can estimate flexibility of the upper extremity (composed of shoulder external rotation and forearm supination), and the sit-and-reach test were performed. Common carotid IMT and plaque formation (≥1.1 mm) were estimated by ultrasound. The proportion of subjects who fully completed the arm extensibility test was 55.0%, and who had plaques in the common carotid artery was 37.8%. IMT was associated with poor arm extensibility (β=-0.073, 95% CI -0.02224 to - 0.00041, P=0.004), while plaque formation was associated with poor sit-and-reach (OR 0.98579, 95% CI 0.97257 to 0.99919, P=0.038) after adjustment by all covariates. This study demonstrated that poor upper extremity and trunk flexibility were associated with characteristics of early onset of atherosclerosis. Furthermore, these associations were independent of covariates such as age, blood pressure, blood lipids glucose levels and abdominal fat accumulation, handgrip strength and lifestyle, including sleeping, drinking, exercise and smoking habits. Poor flexibility may reflect subclinical atherosclerosis in middle-aged men. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation.

    PubMed

    Rangé, Hélène; Labreuche, Julien; Louedec, Liliane; Rondeau, Philippe; Planesse, Cynthia; Sebbag, Uriel; Bourdon, Emmanuel; Michel, Jean-Baptiste; Bouchard, Philippe; Meilhac, Olivier

    2014-10-01

    Epidemiological, biological and clinical links between periodontal and cardiovascular diseases are now well established. Several human studies have detected bacterial DNA corresponding to periodontal pathogens in cardiovascular samples. Intraplaque hemorrhage has been associated with a higher risk of atherosclerotic plaque rupture, potentially mediated by neutrophil activation. In this study, we hypothesized that plaque composition may be related to periodontal pathogens. Carotid culprit plaque samples were collected from 157 patients. Macroscopic characterization was performed at the time of collection: presence of blood, lipid core, calcification and fibrosis. Markers of neutrophil activation released by carotid samples were quantified (myeloperoxidase or MPO, cell-free DNA and DNA-MPO complexes). PCR analysis using specific primers for Porphyromonas gingivalis, Aggregatibacter actinomycetemcommitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia was used to detect DNA from periodontal pathogens in carotid tissues. In addition, bacterial lipopolysaccharide (LPS) and Immunoglobulins G against T. forsythia were quantified in atherosclerotic carotid conditioned medium. Intraplaque hemorrhage was present in 73/157 carotid samples and was associated with neutrophil activation, reflected by the release of MPO, cell-free DNA and MPO-DNA complexes. LPS levels were also linked to intraplaque hemorrhage but not with the neutrophil activation markers. Seventy-three percent of the carotid samples were positive for periodontal bacterial DNA. Furthermore, hemoglobin levels were associated with the detection of T. forsythia and neutrophil activation/inflammation markers. This study suggests a potential role of periodontal microorganisms, especially T. forsythia, in neutrophil activation within hemorrhagic atherosclerotic carotid plaques. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque.

    PubMed

    Bonin, L R; Madden, K; Shera, K; Ihle, J; Matthews, C; Aziz, S; Perez-Reyes, N; McDougall, J K; Conroy, S C

    1999-03-01

    The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2 novel plaque cell lines exhibiting various features of plaque SMC biology; pdSMC2 may represent an earlier plaque SMC phenotype, whereas pdSMC1A may be representative of cells comprising an advanced atherosclerotic lesion.

  4. Emerging applications of nanotechnology for the diagnosis and management of vulnerable atherosclerotic plaques

    PubMed Central

    Yu, Shann S.; Ortega, Ryan A.; Reagan, Brendan W.; McPherson, John A.; Sung, Hak-Joon; Giorgio, Todd D.

    2017-01-01

    An estimated 16 million people in the United States have coronary artery disease (CAD), and approximately 325,000 people die annually from cardiac arrest. About two-thirds of unexpected cardiac deaths occur without prior recognition of cardiac disease. A vast majority of these deaths are attributable to the rupture of ‘Vulnerable atherosclerotic plaques’. Clinically, plaque vulnerability is typically assessed through imaging techniques, and ruptured plaques leading to acute myocardial infarction are treated through angioplasty or stenting. Despite significant advances, it is clear that current imaging methods are insufficiently capable for elucidating plaque composition—which is a key determinant of vulnerability. Further, the exciting improvement in the treatment of CAD afforded by stenting procedures has been buffered by significant undesirable host-implant effects, including restenosis and late thrombosis. Nanotechnology has led to some potential solutions to these problems by yielding constructs that interface with plaque cellular components at an unprecedented size scale. By leveraging the innate ability of macrophages to phagocytose nanoparticles, contrast agents can now be targeted to plaque inflammatory activity. Improvements in nano-patterning procedures have now led to increased ability to regenerate tissue isotropy directly on stents, enabling gradual regeneration of normal, physiologic vascular structures. Advancements in immunoassay technologies promise lower costs for biomarker measurements, and in the near future, may enable the addition of routine blood testing to the clinician’s toolbox—decreasing the costs of atherosclerosis-related medical care. These are merely three examples among many stories of how nanotechnology continues to promise advances in the diagnosis and treatment of vulnerable atherosclerotic plaques. PMID:21834059

  5. Continuity of monolayer-bilayer junctions for localization of lipid raft microdomains in model membranes

    DOE PAGES

    Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; ...

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less

  6. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes

    PubMed Central

    Ryu, Yong-Sang; Wittenberg, Nathan J.; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N.; Lee, Sin-Doo

    2016-01-01

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates. PMID:27230411

  7. Tocotrienols and cardiovascular health.

    PubMed

    Prasad, Kailash

    2011-01-01

    This review emphasizes the effects of tocotrienols on the risk factors for atherosclerosis, plaque instability and thrombogenesis, and compares these effects with tocopherol. Tocotrienols reduce serum lipids and raise serum HDL-C. Alpha-tocopherol, on the other hand, has no effect on serum lipids. Tocotrienols have greater antioxidant activity than tocopherols. Both reduce the serum levels of C-reactive protein (CRP) and advanced glycation end products, and expression of cell adhesion molecules. The CRP-lowering effects of tocotrienols are greater than tocopherol. Tocotrienols reduce inflammatory mediators, δ-tocotrienol being more potent, followed by γ- and α-tocotrienol. Tocotrienols are antithrombotic and suppress the expression of matrix metalloproteinases. They suppress, regress and slow the progression of atherosclerosis, while tocopherol only suppresses, and has no effect on regression and slowing of progression of atherosclerosis. Tocotrienol reduces risk factors for destabilization of atherosclerotic plaques. There are no firm data to suggest that tocotrienols are effective in reducing the risk of cardiac events in established ischemic heart disease. Alpha-tocopherol is effective in primary prevention of coronary artery disease (CAD), but has no conclusive evidence that it has beneficial effects in patients with established ischemic heart disease. Tocotrienols are effective in reducing ischemia-reperfusion cardiac injury in experimental animals and has the potential to be used in patients undergoing angioplasty, stent implantation and aorto-coronary bypass surgery. In conclusion, experimental data suggest that tocotrienols have a potential for cardiovascular health, but long-term randomized clinical trials are needed to establish their efficacy in primary and secondary prevention of CAD.

  8. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    PubMed Central

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  9. Cluster analysis: a new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients.

    PubMed

    Guo, Qi; Lu, Xiaoni; Gao, Ya; Zhang, Jingjing; Yan, Bin; Su, Dan; Song, Anqi; Zhao, Xi; Wang, Gang

    2017-03-07

    Grading of essential hypertension according to blood pressure (BP) level may not adequately reflect clinical heterogeneity of hypertensive patients. This study was carried out to explore clinical phenotypes in essential hypertensive patients using cluster analysis. This study recruited 513 hypertensive patients and evaluated BP variations with ambulatory blood pressure monitoring. Four distinct hypertension groups were identified using cluster analysis: (1) younger male smokers with relatively high BP had the most severe carotid plaque thickness but no coronary artery disease (CAD); (2) older women with relatively low diastolic BP had more diabetes; (3) non-smokers with a low systolic BP level had neither diabetes nor CAD; (4) hypertensive patients with BP reverse dipping were most likely to have CAD but had least severe carotid plaque thickness. In binary logistic analysis, reverse dipping was significantly associated with prevalence of CAD. Cluster analysis was shown to be a feasible approach for investigating the heterogeneity of essential hypertension in clinical studies. BP reverse dipping might be valuable for prediction of CAD in hypertensive patients when compared with carotid plaque thickness. However, large-scale prospective trials with more information of plaque morphology are necessary to further compare the predicative power between BP dipping pattern and carotid plaque.

  10. Cluster analysis: a new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients

    PubMed Central

    Guo, Qi; Lu, Xiaoni; Gao, Ya; Zhang, Jingjing; Yan, Bin; Su, Dan; Song, Anqi; Zhao, Xi; Wang, Gang

    2017-01-01

    Grading of essential hypertension according to blood pressure (BP) level may not adequately reflect clinical heterogeneity of hypertensive patients. This study was carried out to explore clinical phenotypes in essential hypertensive patients using cluster analysis. This study recruited 513 hypertensive patients and evaluated BP variations with ambulatory blood pressure monitoring. Four distinct hypertension groups were identified using cluster analysis: (1) younger male smokers with relatively high BP had the most severe carotid plaque thickness but no coronary artery disease (CAD); (2) older women with relatively low diastolic BP had more diabetes; (3) non-smokers with a low systolic BP level had neither diabetes nor CAD; (4) hypertensive patients with BP reverse dipping were most likely to have CAD but had least severe carotid plaque thickness. In binary logistic analysis, reverse dipping was significantly associated with prevalence of CAD. Cluster analysis was shown to be a feasible approach for investigating the heterogeneity of essential hypertension in clinical studies. BP reverse dipping might be valuable for prediction of CAD in hypertensive patients when compared with carotid plaque thickness. However, large-scale prospective trials with more information of plaque morphology are necessary to further compare the predicative power between BP dipping pattern and carotid plaque. PMID:28266630

  11. Aneurysm flow characteristics in realistic carotid artery aneurysm models induced by proximal virtual stenotic plaques: a computational hemodynamics study

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Peloc, Nora L.; Chien, Aichi; Goldberg, Ezequiel; Putman, Christopher M.; Cebral, Juan R.

    2015-03-01

    Cerebral aneurysms may rarely coexist with a proximal artery stenosis. In that small percent of patients, such coexistence poses a challenge for interventional neuroradiologists and neurosurgeons to make the best treatment decision. According to previous studies, the incidence of cerebral aneurysms in patients with internal carotid artery stenosis is no greater than five percent, where the aneurysm is usually incidentally detected, being about two percent for aneurysms and stenoses in the same cerebral circulation. Those cases pose a difficult management decision for the physician. Case reports showed patients who died due to aneurysm rupture months after endarterectomy but before aneurysm clipping, while others did not show any change in the aneurysm after plaque removal, having optimum outcome after aneurysm coiling. The aim of this study is to investigate the intra-aneurysmal hemodynamic changes before and after treatment of stenotic plaque. Virtually created moderate stenoses in vascular models of internal carotid artery aneurysm patients were considered in a number of cases reconstructed from three dimensional rotational angiography images. The strategy to create those plaques was based on parameters analyzed in a previous work where idealized models were considered, including relative distance and stenosis grade. Ipsilateral and contralateral plaques were modeled. Wall shear stress and velocity pattern were computed from finite element pulsatile blood flow simulations. The results may suggest that wall shear stress changes depend on relative angular position between the aneurysm and the plaque.

  12. Fabrication of patterned surface by soft lithographic technique for confinement of lipid bilayer

    NASA Astrophysics Data System (ADS)

    Moulick, Ranjita Ghosh; Mayer, Dirk

    2018-04-01

    In this paper we demonstrated that a 3D pattern can be well transferred from a silicon Master to a gold substrate using µcontact printing. In this process 1-Octadecanthiol served as an ink and printing followed by etching generated the desired pattern on the gold substrate. The prepatterned substrate was also used for lipid vesicle fusion and revealed that lipid molecules selectively bind to the gold layer.

  13. Core hydrophobicity tuning of a self-assembled particle results in efficient lipid reduction and favorable organ distribution.

    PubMed

    Banik, Bhabatosh; Wen, Ru; Marrache, Sean; Kumar, Anil; Kolishetti, Nagesh; Howerth, Elizabeth W; Dhar, Shanta

    2017-12-21

    Atherosclerosis, the deadliest disease in the United States, arises due to the build up of plaques in the arteries as a result of excessive cholesterol deposition and an impaired cholesterol removal process. High density lipoproteins (HDL), popularly known as "good cholesterol", are naturally occurring nano-sized particles that, along with apolipoproteins, are deployed to maintain cholesterol homeostasis in the body. Both cholesterol efflux, from the fat-laden macrophages in the arteries, and intracellular lipid transport, to deliver cholesterol to the mitochondria of liver cells for metabolism, hold key responsibilities to maintain healthy lipid levels inside the body. We designed a library of nine mitochondria targeted polymer-lipid hybrid nanoparticles (NPs), comprised of completely synthetic yet biodegradable components, that are capable of performing HDL-like functions. Using this library, we optimized a superior mitochondria targeted NP candidate, which can show favourable organ distribution, therapeutic potential, and non-toxic properties. Two targeted NP formulations with optimum NP size, zeta potential, and cholesterol binding and release properties were identified. Lipid reduction and anti-oxidative properties of these two NPs demonstrated cholesterol removal ability. In vivo therapeutic evaluation of the targeted-NP formulations in apolipoprotein E knockout (apoE - / - ) mice indicated lipid reduction and anti-inflammatory properties compared to non-targeted NPs. This synthetic targeted NP with potential abilities to participate in both extra- and intracellular cholesterol transport might potentiate therapeutic interventions for heart diseases.

  14. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    PubMed

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  15. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    NASA Astrophysics Data System (ADS)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by spontaneous Raman spectroscopy. We used synthesized highly-deuterated cholesterol to track its compartmentalization in adrenal cells, revealing heterogeneous lipid droplet content. These examples illustrate the potential of label-free nonlinear optical microscopy for unveiling complex physiological processes by direct visualization of lipids. Detailed image analysis and combined microscopy modalities will continue to reveal and quantify fundamental biology that will support the advance of biomedicine.

  16. Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves.

    PubMed

    Hennig, Martin; Neumann, Jürgen; Wixforth, Achim; Rädler, Joachim O; Schneider, Matthias F

    2009-11-07

    In the past decades supported lipid bilayers (SLBs) have been an important tool in order to study the physical properties of biological membranes and cells. So far, controlled manipulation of SLBs is very limited. Here we present a new technology to create lateral patterns in lipid membranes controllable in both space and time. Surface acoustic waves (SAWs) are used to generate lateral standing waves on a piezoelectric substrate which create local "traps" in the lipid bilayer and lead to a lateral modulation in lipid concentration. We demonstrate that pattern formation is reversible and does not affect the integrity of the lipid bilayer as shown by extracting the diffusion constant of fluid membranes. The described method could possibly be used to design switchable interfaces for the lateral transport and organization of membrane bound macromolecules to create dynamic bioarrays and control biofilm formation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less

  18. Ultrastructure and morphology of biofilms on thermoplastic orthodontic appliances in 'fast' and 'slow' plaque formers.

    PubMed

    Low, Bernard; Lee, Wilson; Seneviratne, C J; Samaranayake, Lakshman P; Hägg, Urban

    2011-10-01

    The aim of this study was to investigate the morphological features and distribution of biofilms on Invisalign orthodontic appliances, in a sample of 'slow' and 'fast' plaque formers using scanning electron microscopy (SEM). Fifty-six Chinese male/female volunteers (aged 19-39 years) were screened for their plaque-forming rate using the plaque percentage index (PPI) coupled with digital photography and computer-based image analysis, after a period of 48 hours of abstinence from oral hygiene procedures. Eleven volunteers (seven males/four females) representing the lowest and highest ends of the plaque formation spectrum were chosen as slow and fast plaque formers, respectively. The subjects wore a full-coverage splint appliance, in which four tiles of Invisalign material were embedded. These tiles were collected at intervals of 1, 3, 6, 12, 24, and 48 hours, as well as 3, 7, and 14 days, immediately fixed in 10 per cent paraformaldehyde in 0.2 M cacodylate buffer solution and prepared for SEM. The surface configuration of the Invisalign appliance was visualized, as well as the chronological pattern of biofilm formation. Significance between fast and slow plaque formers was determined using a Student's t-test. Colonization appeared to centre initially on the raised edges or textured surfaces of the appliance, and initial adhesion was quicker and more abundant in the fast plaque-forming group. In the later stages of biofilm development, both groups showed no discernible differences in biofilm accrual on the surfaces, but the fast group displayed a more complex biofilm structure. More recessed and sheltered areas of the appliance, such as the cusp tips and attachment dimples, harboured more biofilm than the flat surfaces. Hence, it seems that the novel Invisialign orthodontic appliance is a useful tool to investigate the features of biofilm formation in time-course studies.

  19. Dietary pattern as identified by factorial analysis and its association with lipid profile and fasting plasma glucose among Iranian individuals with spinal cord injury.

    PubMed

    Sabour, Hadis; Soltani, Zahra; Latifi, Sahar; Javidan, Abbas Norouzi

    2016-07-01

    Plasma lipids (triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C)) may be associated with dietary intakes. The purpose of this study was to identify the most common food patterns among Iranian persons with spinal cord injury (SCI) and investigate their associations with lipid profile. Cross-sectional. Tertiary rehabilitation center. Referred individuals to Brain and Spinal Injury Research Center (BASIR) from 2011 to 2014. Dietary intakes were assessed by 24-hour dietary recall interviews in three non-consecutive days. Principal component analysis (PCA) was used to identify dietary patterns. Total of 100 persons (83 male and 17 female) entered the study. Four food patterns were detected. The most common dietary pattern (Pattern 1) included processed meat, sweets desserts and soft drink and was similar to 'Western' food pattern described previously. Pattern 1 was related to higher levels of TC and LDL-C (r = 0.09; P = 0.04 and r = 0.11; P = 0.03 for TC and LDL-C, respectively) only in male participants. Pattern 2 which included tea, nuts, vegetable oil and sugars had a positive association with TC level (r = 0.11; P = 0.02) again in male participants. Pattern 3 which represented a healthy food pattern showed no significant influence on lipid profiles. In this study, the four most common dietary patterns among Iranian individuals with SCI have been identified. Western food pattern was the most common diet and was associated with increased TC and LDL-C. The healthy food pattern, in which the major source of calories was protein, was not associated with variance in lipid profile.

  20. Low dose dietary nitrate improves endothelial dysfunction and plaque stability in the ApoE-/- mouse fed a high fat diet.

    PubMed

    Bakker, J R; Bondonno, N P; Gaspari, T A; Kemp-Harper, B K; McCashney, A J; Hodgson, J M; Croft, K D; Ward, N C

    2016-10-01

    Nitric oxide (NO) is an important vascular signalling molecule. NO is synthesised endogenously by endothelial nitric oxide synthase (eNOS). An alternate pathway is exogenous dietary nitrate, which can be converted to nitrite and then stored or further converted to NO and used immediately. Atherosclerosis is associated with endothelial dysfunction and subsequent lesion formation. This is thought to arise due to a reduction in the bioavailability and/or bioactivity of endogenous NO. To determine if dietary nitrate can protect against endothelial dysfunction and lesion formation in the ApoE -/- mouse fed a high fat diet (HFD). ApoE -/- fed a HFD were randomized to receive (i) high nitrate (10mmol/kg/day, n=12), (ii) moderate nitrate (1mmol/kg/day, n=8), (iii) low nitrate (0.1mmol/kg/day, n=8), or (iv) sodium chloride supplemented drinking water (control, n=10) for 10 weeks. A group of C57BL6 mice (n=6) received regular water and served as a healthy reference group. At 10 weeks, ACh-induced vessel relaxation was significantly impaired in ApoE -/- mice versus C57BL6. Mice supplemented with low or moderate nitrate showed significant improvements in ACh-induced vessel relaxation compared to ApoE -/- mice given the high nitrate or sodium chloride. Plaque collagen expression was increased and lipid deposition reduced following supplementation with low or moderate nitrate compared to sodium chloride, reflecting increased plaque stability with nitrate supplementation. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water. Low and moderate dose nitrate significantly improved endothelial function and atherosclerotic plaque composition in ApoE -/- mice fed a HFD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Special Operations Soldier With Cardiac Family History: Use of CCTA and Protein Biomarker Testing to Detect Risk of Heart Attack From Noncalcified Plaque.

    PubMed

    Singh, Millee; Kroman, Anne; Singh, Juile; Tariq, Hassan; Amin, Shetal; Morales-Pablon, Cesar Alberto; Cahill, Kristina Vanessa; Harrison, Eric Edward

    2015-01-01

    We sought to characterize the risk of a heart attack in a 48-year-old asymptomatic US Special Operations Command (SOCOM) Soldier without known coronary artery disease (CAD). CAD continues to be a leading cause of morbidity and mortality among most age groups in the United States. Much research is dedicated to establishing new techniques to predict myocardial infarction (MI). Coronary computed tomography (CT) angiography, also known as CCTA, along with 7-protein serum biomarker risk assessment was performed for risk evaluation. A 48-year-old SOCOM Soldier with a family history of heart disease had skeletal chest pain from war injuries and a 5-fold higher risk of heart attack over the next 5 years on the basis of protein markers. A nonobstructive left anterior descending coronary artery (LAD) plaque with a lipid-rich core and a thin fibrous cap (i.e., vulnerable plaque) was detected by CCTA. The patient was warned about his risk and prescribed four cardiac medications and scheduled for angioplasty even though he fell outside the guidelines by not having a severe obstructive blockage. Four days later, unfortunately, he had a heart attack before starting his medications and before angioplasty. CCTA with biomarker testing may have an important role in predicating acute coronary syndrome (ACS) in Special Operations Forces (SOF) Soldiers with at least one risk factor. Conventional stress testing and nuclear scanning would not detect non-flow-limiting vulnerable plaques in vulnerable patients. In order to collect more data, the PROTECT Registry has been started to evaluate asymptomatic Soldiers with at least one risk factor referred to the clinic by military physicians. 2015.

  2. 17β-estradiol suppresses the macrophage foam cell formation associated with SOCS3.

    PubMed

    Liang, X; He, M; Chen, T; Wu, Y; Tian, Y; Zhao, Y; Shen, Y; Liu, Y; Yuan, Z

    2013-06-01

    Evidence from clinical trials and animal experiments has shown that estrogen has anti-atherosclerotic effects when administered to young women or experimental animals. The mechanisms involve the modulation of vascular inflammation, growth factor expression, and oxidative stress injured arteries. However, whether estrogen modulates the foam cell formation in plaque remains unknown. Here, we investigated the effects of 17β-estradiol (E2) on cholesterol efflux in vivo and in vitro. ApoE null mice underwent an ovariectomy at 5(th) week of age and then were treated with E2 or vehicle for the following 8 weeks. Compared with the vehicle-treated mice, the serum total cholesterol level, atherosclerotic plaque size, and lipid deposits were decreased and meanwhile ATP-binding cassette transporter A1 (ABCA1) expression in the plaque was increased in mice with E2 treatment. E2 also increased suppressor of cytokine signaling 3 (SOCS3) expression in the atherosclerotic plaques and in RAW264.7 cells. In vitro, E2 treatment reversed janus kinase/signal transducers and activators of transcription (JAK/STAT)-inhibited ABCA1 expression in RAW264.7 cells but had no effect on ABCA1 expression in SOCS3 knockdown cells. SOCS3 overexpression elevated ABCA1 expression through the inhibition of JAK2/STAT3 phosphorylation. Finally, we also found that E2 enhanced the cholesterol efflux to apoA I in RAW264.7 cells. In summary, E2 reduces atherosclerosis in ApoE null mice associated with upregulating ABCA1 expression and modulating the cholesterol efflux, which are dependent on SOCS3 upregulation. These results provide new insight into the athero-protective effects of estrogen. © Georg Thieme Verlag KG Stuttgart · New York.

  3. miR33 inhibition overcomes deleterious effects of diabetes mellitus on atherosclerosis plaque regression in mice.

    PubMed

    Distel, Emilie; Barrett, Tessa J; Chung, Kellie; Girgis, Natasha M; Parathath, Saj; Essau, Christine C; Murphy, Andrew J; Moore, Kathryn J; Fisher, Edward A

    2014-10-10

    Diabetes mellitus increases cardiovascular disease risk in humans and remains elevated despite cholesterol-lowering therapy with statins. Consistent with this, in mouse models, diabetes mellitus impairs atherosclerosis plaque regression after aggressive cholesterol lowering. MicroRNA 33 (miR33) is a key negative regulator of the reverse cholesterol transport factors, ATP-binding cassette transporter A1 and high-density lipoprotein, which suggested that its inhibition may overcome this impairment. To assess the effects of miR33 inhibition on atherosclerosis regression in diabetic mice. Reversa mice, which are deficient in the low-density lipoprotein receptor and in which hypercholesterolemia is reversed by conditional inactivation of the microsomal triglyceride transfer protein gene, were placed on an atherogenic diet for 16 weeks, then either made diabetic by streptozotocin injection or kept normoglycemic. Lipid-lowering was induced by microsomal triglyceride transfer protein gene inactivation, and mice were treated with anti-miR33 or control oligonucleotides. Although regression was impaired in diabetic mice treated with control oligonucleotides, anti-miR33 treatment decreased plaque macrophage content and inflammatory gene expression in these mice. The decreased macrophage content in anti-miR33 treated diabetic mice was associated with a blunting of hyperglycemia-induced monocytosis and reduced monocyte recruitment to the plaque, which was traced to an inhibition of the proliferation of bone marrow monocyte precursors associated with the upregulation of their Abca1. miR33 inhibition overcomes deleterious effects of diabetes mellitus in atherosclerosis regression in mice, which suggests a therapeutic strategy in diabetic patients, who remain at elevated cardiovascular disease risk, despite plasma cholesterol lowering. © 2014 American Heart Association, Inc.

  4. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoEnull Mice

    PubMed Central

    Chukkapalli, Sasanka S.; Velsko, Irina M.; Rivera-Kweh, Mercedes F.; Zheng, Donghang; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model. PMID:26619277

  5. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoE null Mice.

    PubMed

    Chukkapalli, Sasanka S; Velsko, Irina M; Rivera-Kweh, Mercedes F; Zheng, Donghang; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoE null mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoE null hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoE null mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.

  6. Lipid Microarray Biosensor for Biotoxin Detection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates bymore » TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4« less

  7. Analysis of Toxic Amyloid Fibril Interactions at Natively Derived Membranes by Ellipsometry

    PubMed Central

    Smith, Rachel A. S.; Nabok, Aleksey; Blakeman, Ben J. F.; Xue, Wei-Feng; Abell, Benjamin; Smith, David P.

    2015-01-01

    There is an ongoing debate regarding the culprits of cytotoxicity associated with amyloid disorders. Although small pre-fibrillar amyloid oligomers have been implicated as the primary toxic species, the fibrillar amyloid material itself can also induce cytotoxicity. To investigate membrane disruption and cytotoxic effects associated with intact and fragmented fibrils, the novel in situ spectroscopic technique of Total Internal Reflection Ellipsometry (TIRE) was used. Fibril lipid interactions were monitored using natively derived whole cell membranes as a model of the in vivo environment. We show that fragmented fibrils have an increased ability to disrupt these natively derived membranes by causing a loss of material from the deposited surface when compared with unfragmented fibrils. This effect was corroborated by observations of membrane disruption in live cells, and by dye release assay using synthetic liposomes. Through these studies we demonstrate the use of TIRE for the analysis of protein-lipid interactions on natively derived lipid surfaces, and provide an explanation on how amyloid fibrils can cause a toxic gain of function, while entangled amyloid plaques exert minimal biological activity. PMID:26172440

  8. Foamy Monocytes Are Enriched in cis-7-Hexadecenoic Fatty Acid (16:1n-9), a Possible Biomarker for Early Detection of Cardiovascular Disease.

    PubMed

    Guijas, Carlos; Meana, Clara; Astudillo, Alma M; Balboa, María A; Balsinde, Jesús

    2016-06-23

    Human monocytes respond to arachidonic acid, a secretory product of endothelial cells, by activating the de novo pathway of fatty acid biosynthesis, resulting in the acquisition of a foamy phenotype due to accumulation of cytoplasmic lipid droplets. Recruitment of foamy monocytes to endothelium is a key step in the formation of atherosclerotic plaques. Here we describe that lipid droplets of foamy monocytes are enriched in a rather uncommon fatty acid, cis-7-hexadecenoic acid (16:1n-9), a positional isomer of palmitoleic acid. 16:1n-9 was found to possess an anti-inflammatory activity both in vitro and in vivo that is comparable with that of omega-3 fatty acids and clearly distinguishable from the effects of palmitoleic acid. Selective accumulation in neutral lipids of phagocytic cells of an uncommon fatty acid reveals an early phenotypic change that may provide a biomarker of proatherogenicity, and a potential target for intervention in the early stages of cardiovascular disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A review of plant-based compounds and medicinal plants effective on atherosclerosis

    PubMed Central

    Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications. PMID:28461816

  10. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers.

    PubMed

    Chukkapalli, Sasanka S; Rivera-Kweh, Mercedes F; Velsko, Irina M; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-04-01

    Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A review of plant-based compounds and medicinal plants effective on atherosclerosis.

    PubMed

    Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications.

  12. Polar lipid composition of a new halobacterium

    NASA Technical Reports Server (NTRS)

    Tindall, B. J.; Tomlinson, G. A.; Hochstein, L. I.

    1987-01-01

    Investigations of the polar lipid composition of a new aerobic, extremely halophilic aracheabacterium capable of nitrate reduction have shown that this organism contains two previously unknown phospholycolipids derived from diphytanyl glycerol diethers. Comparison of the lipid pattern from this new isolate with other known strains indicate that this organism is novel. On the basis of the unique polar lipid pattern it can be concluded that this organism represents a new taxon, at least at the species level.

  13. Rapid Succession within the Veillonella Population of a Developing Human Oral Biofilm In Situ

    PubMed Central

    Palmer, Robert J.; Diaz, Patricia I.; Kolenbrander, Paul E.

    2006-01-01

    Streptococci are the primary component of the multispecies oral biofilm known as supragingival dental plaque; they grow by fermentation of sugars to organic acids, e.g., lactic acid. Veillonellae, a ubiquitous component of early plaque, are unable to use sugars; they ferment organic acids, such as lactate, to a mixture of shorter-chain-length acids, CO2, and hydrogen. Certain veillonellae bind to (coaggregate with) streptococci in vitro. We show that, between 4 and 8 hours into plaque development, the dominant strains of Veillonella change in their phenotypic characteristics (coaggregation and antibody reactivity) as well as in their genotypic characteristics (16S RNA gene sequences as well as strain level fingerprint patterns). This succession is coordinated with the development of mixed-species bacterial colonies. Changes in community structure can occur very rapidly in natural biofilm development, and we suggest that this process may influence evolution within this ecosystem. PMID:16707703

  14. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    PubMed

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  15. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial.

    PubMed

    Tenore, Gian Carlo; Caruso, Domenico; Buonomo, Giuseppe; D'Avino, Maria; Campiglia, Pietro; Marinelli, Luciana; Novellino, Ettore

    2017-03-01

    Cardiovascular diseases are nowadays preferential targets of preventive medicine through a straightforward therapy on lipid profile. However, statins, the first-line lipid-lowering drug therapy, specifically act on low-density lipoprotein cholesterol (LDL-C), having a modest effect on plasma high-density lipoprotein cholesterol (HDL-C) concentrations. Today, a number of novel HDL-targeted therapies are emerging, along with unexpected side effects. Thus, novel and possibly safe substances, able to correct impaired lipid profile in humans, are still in great demand. Herein, based on encouraging clinical data, we formulated a nutraceutical product (AppleMetS ® , AMS), based on a polyphenolic extract from Annurca apple, and demonstrated that two capsules a day of AMS, after one month, have a LDL-C lowering outcome equivalent to 40 mg of simvastatin or 10 mg of atorvastatin. Nevertheless, different from statin-based therapy, AMS exerted a notable effect on HDL (+49.2%). Based on the trial results, we can assert that AMS formulation could effectively integrate the current therapeutic arsenal to correct impaired lipid profile in humans. Specifically, AMS may be considered a complementary and/or alternative safe substance suitable for the treatment of mildly hypercholesterolemic subjects who do not present occurrence of atheromatous plaques yet.

  16. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial

    PubMed Central

    Tenore, Gian Carlo; Caruso, Domenico; Buonomo, Giuseppe; D'Avino, Maria; Campiglia, Pietro; Marinelli, Luciana

    2017-01-01

    Abstract Cardiovascular diseases are nowadays preferential targets of preventive medicine through a straightforward therapy on lipid profile. However, statins, the first-line lipid-lowering drug therapy, specifically act on low-density lipoprotein cholesterol (LDL-C), having a modest effect on plasma high-density lipoprotein cholesterol (HDL-C) concentrations. Today, a number of novel HDL-targeted therapies are emerging, along with unexpected side effects. Thus, novel and possibly safe substances, able to correct impaired lipid profile in humans, are still in great demand. Herein, based on encouraging clinical data, we formulated a nutraceutical product (AppleMetS®, AMS), based on a polyphenolic extract from Annurca apple, and demonstrated that two capsules a day of AMS, after one month, have a LDL-C lowering outcome equivalent to 40 mg of simvastatin or 10 mg of atorvastatin. Nevertheless, different from statin-based therapy, AMS exerted a notable effect on HDL (+49.2%). Based on the trial results, we can assert that AMS formulation could effectively integrate the current therapeutic arsenal to correct impaired lipid profile in humans. Specifically, AMS may be considered a complementary and/or alternative safe substance suitable for the treatment of mildly hypercholesterolemic subjects who do not present occurrence of atheromatous plaques yet. PMID:28296588

  17. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors

    PubMed Central

    Morou-Bermudez, E; Elias-Boneta, A; Billings, RJ; Burne, RA; Garcia-Rivas, V; Brignoni-Nazario, V; Suarez-Perez, E

    2011-01-01

    Bacterial urease activity in dental plaque and in saliva generates ammonia, which can increase the plaque pH and can protect acid-sensitive oral bacteria. Recent cross-sectional studies suggest that reduced ability to generate ammonia from urea in dental plaque can be an important caries risk factor. In spite of this proposed important clinical role, there is currently no information available regarding important clinical aspects of oral ureolysis in children. OBJECTIVE The objective of this study was to evaluate the distribution and pattern of urease activity in the dental plaque and in the saliva of children during a three-year period, and to examine the relationship of urease with some important caries risk factors. METHODS A longitudinal study was conducted with repeated measures over a three-year period on a panel of 80 children, ages three to six years at recruitment. The dynamics of change in urease activity were described and associated with clinical, biological, and behavioral caries risk factors. RESULTS Urease activity in plaque showed a trend to remain stable during the study period and was negatively associated with sugar consumption (P<0.05). Urease activity in unstimulated saliva increased with age, and it was positively associated with the levels of mutans streptococci in saliva and with the educational level of the parents (P<0.05). CONCLUSIONS The results of this study reveal interesting and complex interactions between oral urease activity and some important caries risk factors. Urease activity in saliva could be an indicator of mutans infection in children. PMID:21616477

  18. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors.

    PubMed

    Morou-Bermudez, E; Elias-Boneta, A; Billings, R J; Burne, R A; Garcia-Rivas, V; Brignoni-Nazario, V; Suarez-Perez, E

    2011-11-01

    Bacterial urease activity in dental plaque and in saliva generates ammonia, which can increase the plaque pH and can protect acid-sensitive oral bacteria. Recent cross-sectional studies suggest that reduced ability to generate ammonia from urea in dental plaque can be an important caries risk factor. In spite of this proposed important clinical role, there is currently no information available regarding important clinical aspects of oral ureolysis in children. The objective of this study was to evaluate the distribution and pattern of urease activity in the dental plaque and in the saliva of children during a three-year period, and to examine the relationship of urease with some important caries risk factors. A longitudinal study was conducted with repeated measures over a three-year period on a panel of 80 children, aged 3-6 years at recruitment. The dynamics of change in urease activity were described and associated with clinical, biological, and behavioural caries risk factors. Urease activity in plaque showed a trend to remain stable during the study period and was negatively associated with sugar consumption (P<0.05). Urease activity in unstimulated saliva increased with age, and it was positively associated with the levels of mutans streptococci in saliva and with the educational level of the parents (P<0.05). The results of this study reveal interesting and complex interactions between oral urease activity and some important caries risk factors. Urease activity in saliva could be an indicator of mutans infection in children. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases.

    PubMed

    Fay, Francois; Sanchez-Gaytan, Brenda L; Cormode, David P; Skajaa, Torjus; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2013-02-01

    Lipoproteins are natural nanoparticles composed of phospholipids and apolipoproteins that transport lipids throughout the body. As key effectors of lipid homeostasis, the functions of lipoproteins have been demonstrated to be crucial during the development of cardiovascular diseases. Therefore various strategies have been used to study their biology and detect them in vivo. A recent approach has been the production of lipoprotein biomimetic particles loaded with diagnostically active nanocrystals in their core. These include, but are not limited to: quantum dots, iron oxide or gold nanocrystals. Inclusion of these nanocrystals enables the utilization of lipoproteins as probes for a variety of imaging modalities (computed tomography, magnetic resonance imaging, fluorescence) while preserving their biological activity. Furthermore as some lipoproteins naturally accumulate in atherosclerotic plaque or specific tumor tissues, nanocrystal core lipoprotein biomimetics have been developed as contrast agents for early diagnosis of these diseases.

  20. Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases

    PubMed Central

    Fay, Francois; Sanchez-Gaytan, Brenda L.; Cormode, David P.; Skajaa, Torjus; Fisher, Edward A.; Fayad, Zahi A.

    2013-01-01

    Lipoproteins are natural nanoparticles composed of phospholipids and apolipoproteins that transport lipids throughout the body. As key effectors of lipid homeostasis, the functions of lipoproteins have been demonstrated to be crucial during the development of cardiovascular diseases. Therefore various strategies have been used to study their biology and detect them in vivo. A recent approach has been the production of lipoprotein biomimetic particles loaded with diagnostically active nanocrystals in their core. These include, but are not limited to: quantum dots, iron oxide or gold nanocrystals. Inclusion of these nanocrystals enables the utilization of lipoproteins as probes for a variety of imaging modalities (computed tomography, magnetic resonance imaging, fluorescence) while preserving their biological activity. Furthermore as some lipoproteins naturally accumulate in atherosclerotic plaque or specific tumor tissues, nanocrystal core lipoprotein biomimetics have been developed as contrast agents for early diagnosis of these diseases. PMID:23687557

  1. PLEIOTROPIC EFFECTS OF STATINS

    PubMed Central

    Liao, James K.; Laufs, Ulrich

    2009-01-01

    Statins are potent inhibitors of cholesterol biosynthesis. In clinical trials, statins are beneficial in the primary and secondary prevention of coronary heart disease. However, the overall benefits observed with statins appear to be greater than what might be expected from changes in lipid levels alone, suggesting effects beyond cholesterol lowering. Indeed, recent studies indicate that some of the cholesterol-independent or “pleiotropic” effects of statins involve improving endothelial function, enhancing the stability of atherosclerotic plaques, decreasing oxidative stress and inflammation, and inhibiting the thrombogenic response. Furthermore, statins have beneficial extrahepatic effects on the immune system, CNS, and bone. Many of these pleiotropic effects are mediated by inhibition of isoprenoids, which serve as lipid attachments for intracellular signaling molecules. In particular, inhibition of small GTP-binding proteins, Rho, Ras, and Rac, whose proper membrane localization and function are dependent on isoprenylation, may play an important role in mediating the pleiotropic effects of statins. PMID:15822172

  2. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  3. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice

    PubMed Central

    Bielicki, John K.; Zhang, Haiyan; Cortez, Yuan; Zheng, Ying; Narayanaswami, Vasanthy; Patel, Arti; Johansson, Jan; Azhar, Salman

    2010-01-01

    Here, we report the creation of a single-helix peptide (ATI-5261) that stimulates cellular cholesterol efflux with Km molar efficiency approximating native apolipoproteins. Anti-atherosclerosis activity of ATI-5261 was evaluated in LDLR−/− and apolipoprotein (apo)E−/− mice ∼5–7 months of age, following 13–18 weeks on a high-fat Western diet (HFWD). Treatment of fat-fed LDLR−/− mice with daily intraperitoneal injections of ATI-5261 (30 mg/kg) for 6 weeks reduced atherosclerosis by 30%, as judged by lesion area covering the aorta (7.9 ± 2 vs.11.3 ± 2.5% control, P = 0.011) and lipid-content of aortic sinus plaque (25 ± 5.8 vs. 33 ± 4.9% control, P = 0.014). In apoE−/− mice, the peptide administered 30 mg/kg ip on alternate days for 6 weeks reduced atherosclerosis by ∼45% (lesion area = 15 ± 7 vs. 25 ± 8% control, P = 0.00016; plaque lipid-content = 20 ± 6 vs. 32 ± 8% control, P < 0.0001). Similar reductions in atherosclerosis were achieved using ATI-5261:POPC complexes. Single intraperitoneal injection of ATI-5261 increased reverse cholesterol transport from macrophage foam-cells to feces over 24–48 h. In summary, relatively short-term treatment of mice with the potent cholesterol efflux peptide ATI-5261 reduced substantial atherosclerosis. This was achieved using an L-amino acid peptide, in the presence of severe hypercholesterolemia/HFWD, and did not require daily injections or formulation with phospholipids when administered via intraperitoneal injection. PMID:20075422

  4. Eating patterns and lipid levels in older adolescent girls.

    PubMed

    Bradlee, M L; Singer, M R; Daniels, S R; Moore, L L

    2013-03-01

    Few studies have evaluated the effects of food-based eating patterns on adolescent lipid levels. This study examines whether usual adolescent eating patterns (ages 9-17 years) predict lipid levels at 18-20 years of age. This study uses previously collected data from the longitudinal NHLBI Growth and Health Study in which 2379 girls were enrolled at ages 9-10 years and followed for ten years. Food-based eating patterns were derived from multiple 3-day diet records. After adjusting for age, race, socioeconomic status, height, physical activity, and television viewing, girls with higher intakes of dairy, fruit and non-starchy vegetables had about a 40-50% reduced risk an LDL-C ≥ 170 mg/dL and non-HDL-C ≥ 145 mg/dL. Diets characterized by higher intakes of dairy and whole grains had similar benefits on TC and LDL-C. Girls consuming more fruits and non-starchy vegetables as well as more whole grains were much less likely to have high-risk lipid levels. Lean meat, poultry and fish when consumed in the context of other healthy eating patterns had no adverse effects on lipid levels in late adolescence. In fact when consumed with higher amounts of fruit and non-starchy vegetables, lean meat, poultry and fish had beneficial effects on HDL. Finally, dietary patterns that included more whole grains tended to be associated with lower TG levels. Healthy childhood eating patterns characterized by higher intakes of a variety of fruits, vegetables, whole grains, dairy, lean meat, poultry and fish are important modifiable predictors of lipid levels in late adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Multiparameter Assessments To Determine the Effects of Sugars and Antimicrobials on a Polymicrobial Oral Biofilm

    PubMed Central

    Yang, Ying; Sreenivasan, Prem K.; Subramanyam, Ravi; Cummins, Diane

    2006-01-01

    Clinical studies indicate relationships between dental plaque, a naturally formed biofilm, and oral diseases. The crucial role of nonmicrobial biofilm constituents in maintaining biofilm structure and biofilm-specific attributes, such as resistance to shear and viscoelasticity, is increasingly recognized. Concurrent analyses of the diverse nonmicrobial biofilm components for multiparameter assessments formed the focus of this investigation. Comparable numbers of Actinomyces viscosus, Streptococcus sanguinis, Streptococcus mutans, Neisseria subflava, and Actinobacillus actinomycetemcomitans cells were seeded into multiple wells of 96-well polystyrene plates for biofilm formation. Quantitative fluorescence and confocal laser scanning microscopy (CLSM) examined the influences of dietary sugars, incubation conditions, ingredients in oral hygiene formulations, and antibiotics on biofilm components. Biofilm extracellular polymeric substances (EPS) were examined with an optimized mixture of fluorescent lectins, with biofilm proteins, lipids, and nucleic acids detected with specific fluorescent stains. Anaerobic incubation of biofilms resulted in significantly more biofilm EPS and extractable carbohydrates than those formed under aerobic conditions (P < 0.05). Sucrose significantly enhanced biofilm EPS in comparison to fructose, galactose, glucose, and lactose (P < 0.05). CLSM demonstrated thicker biofilms under sucrose-replete conditions, along with significant increases in biofilm EPS, proteins, lipids, and nucleic acids, than under conditions of sucrose deficiency (P < 0.05). Agents in oral hygiene formulations (chlorhexidine, ethanol, and sodium lauryl sulfate), a mucolytic agent (N-acetyl-l-cysteine), and antibiotics with different modes of action (amoxicillin, doxycycline, erythromycin, metronidazole, and vancomycin) inhibited biofilm components (P < 0.05). Multiparameter analysis indicated a dose-dependent inhibition of biofilm EPS and protein by chlorhexidine and sodium lauryl sulfate, along with distinctive inhibitory patterns for subinhibitory concentrations of antibiotics. Collectively, these results highlight multiparameter assessments as a broad platform for simultaneous assessment of diverse biofilm components. PMID:17021225

  6. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide.

    PubMed

    Wang, Zhan; Li, Jianjun; Altman, Eleonora

    2006-12-11

    The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.

  7. Interthalamic hematoma secondary to cerebrovascular atherosclerosis in an aged grizzly bear (Ursus arctos horribilis) with primary cardiac schwannoma.

    PubMed

    Miller, Andrew David; McDonough, Sean

    2008-12-01

    A 38-year-old intact female Grizzly bear (Ursus arctos horribilis) was evaluated for progressive seizure activity, pale mucous membranes, deficient pupillary light and menace responses, and irregular shallow respiration. Because of poor response to treatment, the animal was euthanized. Gross examination revealed abundant hemorrhage in both lateral ventricles; a large, encapsulated mass within the rostral interthalamic region; and a well-demarcated, round white mass in the apex of the right ventricle. Histologic examination of the interthalamic mass revealed a resolving hematoma composed of stratified layers of fibrin and white blood cells that was surrounded by a thick fibrous capsule. Most meningeal and intraparenchymal blood vessels had multifocal degeneration, fragmentation, and fraying of the internal elastic lamina with prominent intimal proliferations and plaques. The plaques were formed by small numbers of lipid-laden macrophages (foam cells) that were intermixed with occasional lymphocytes and plasma cells. The cardiac mass was composed of pallisading and interlacing spindle cells with parallel nuclei and abundant, pale eosinophilic cytoplasm consistent with a schwannoma.

  8. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  9. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    PubMed

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  10. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation.

    PubMed

    Jhun, JooYeon; Kwon, Jeong-Eun; Kim, Se-Young; Jeong, Jeong-Hee; Na, Hyun Sik; Kim, Eun-Kyung; Lee, Seung Hoon; Jung, KyungAh; Min, Jun-Ki; Cho, Mi-La

    2017-01-01

    The oral administration of rebamipide decreased plaque formation in atherosclerotic lesions as well as the markers of metabolic disorder in ApoE-deficient mice with atherosclerosis. Pro-inflammatory cytokines were also suppressed by rebamapide. In addition, the population of Th17 was decreased, whereas Treg was increased in the spleen of rebamipide-treated ApoE deficient mice. Rebamipide also ameliorated the severity of obese arthritis and has the capability to reduce the development of atherosclerosis by controlling the balance between Th17 and Treg cells. Thus, rebamipide could be a therapeutic agent to improve the progression of inflammation in metabolic diseases.

  11. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  12. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE−/− mice

    PubMed Central

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O.; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-01-01

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (−/−) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)−/− mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system. PMID:28380440

  13. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

    PubMed

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-05-16

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.

  14. Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes.

    PubMed

    Aengevaeren, Vincent L; Mosterd, Arend; Braber, Thijs L; Prakken, Niek H J; Doevendans, Pieter A; Grobbee, Diederick E; Thompson, Paul D; Eijsvogels, Thijs M H; Velthuis, Birgitta K

    2017-07-11

    Higher levels of physical activity are associated with a lower risk of cardiovascular events. Nevertheless, there is debate on the dose-response relationship of exercise and cardiovascular disease outcomes and whether high volumes of exercise may accelerate coronary atherosclerosis. We aimed to determine the relationship between lifelong exercise volumes and coronary atherosclerosis. Middle-aged men engaged in competitive or recreational leisure sports underwent a noncontrast and contrast-enhanced computed tomography scan to assess coronary artery calcification (CAC) and plaque characteristics. Participants reported lifelong exercise history patterns. Exercise volumes were multiplied by metabolic equivalent of task (MET) scores to calculate MET-minutes per week. Participants' activity was categorized as <1000, 1000 to 2000, or >2000 MET-min/wk. A total of 284 men (age, 55±7 years) were included. CAC was present in 150 of 284 participants (53%) with a median CAC score of 35.8 (interquartile range, 9.3-145.8). Athletes with a lifelong exercise volume >2000 MET-min/wk (n=75) had a significantly higher CAC score (9.4 [interquartile range, 0-60.9] versus 0 [interquartile range, 0-43.5]; P =0.02) and prevalence of CAC (68%; adjusted odds ratio [OR adjusted ]=3.2; 95% confidence interval [CI], 1.6-6.6) and plaque (77%; OR adjusted =3.3; 95% CI, 1.6-7.1) compared with <1000 MET-min/wk (n=88; 43% and 56%, respectively). Very vigorous intensity exercise (≥9 MET) was associated with CAC (OR adjusted =1.47; 95% CI, 1.14-1.91) and plaque (OR adjusted =1.56; 95% CI, 1.17-2.08). Among participants with CAC>0, there was no difference in CAC score ( P =0.20), area ( P =0.21), density ( P =0.25), and regions of interest ( P =0.20) across exercise volume groups. Among participants with plaque, the most active group (>2000 MET-min/wk) had a lower prevalence of mixed plaques (48% versus 69%; OR adjusted =0.35; 95% CI, 0.15-0.85) and more often had only calcified plaques (38% versus 16%; OR adjusted =3.57; 95% CI, 1.28-9.97) compared with the least active group (<1000 MET-min/wk). Participants in the >2000 MET-min/wk group had a higher prevalence of CAC and atherosclerotic plaques. The most active group, however, had a more benign composition of plaques, with fewer mixed plaques and more often only calcified plaques. These observations may explain the increased longevity typical of endurance athletes despite the presence of more coronary atherosclerotic plaque in the most active participants. © 2017 American Heart Association, Inc.

  15. Necrobiotic xanthogranuloma without a monoclonal gammopathy.

    PubMed

    Seastrom, Stacey; Bookout, Angela; Hogan, Daniel J

    2014-12-01

    Necrobiotic xanthogranuloma (NXG) is an indolent non-Langerhans cell histiocytosis characterized by yellow xanthomatous plaques that tend to ulcerate. Necrobiotic xanthogranulomas have a predilection for the bilateral periorbital region and often present with consequential ophthalmic findings. Histopathology usually reveals a distinctive pattern of histiocytic xanthogranuloma with hyaline necrobiosis. Necrobiotic xanthogranuloma has been documented to have a close association with paraproteinemia. We report the case of a 76-year-old man with periorbital NXG without development of a monoclonal gammopathy. Clinically, the patient presented with dry eyes and substantial periorbital edema with multiple yellow indurated plaques. He developed the condition 30 years prior to presentation at which time it was initially diagnosed as xanthelasma. He underwent surgical excision of the lesions 10 years prior to the current presentation and biopsy results revealed a diagnosis of NXG. The periorbital lesions recurred several years prior to presentation, prompting annual computed tomography scans to rule out ocular invasion. Periorbital edema and plaques improved during a 6-month regimen of acitretin but returned to baseline just months after discontinuation.

  16. A comparative evaluation of the in vitro penetration performance of the improved Crest Complete toothbrush versus the Colgate Total toothbrush and the Oral-B Advantage toothbrush.

    PubMed

    Volpenhein, D W; Hartman, W L

    1996-01-01

    Removal of plaque and debris from interproximal surfaces during toothbrushing has generally been difficult to achieve, in large part because traditional flat-bristled toothbrushes do not offer good interproximal penetration. As a result, a number of varying bristle designs have been developed, with the rippled-design brush shown to be particularly effective at removing interproximal plaque. Recently, an existing rippled brush, the original Crest Complete, was modified to offer longer rippled outer tufts to clean along the gumline more effectively. Therefore, this study evaluated the overall and gumline interproximal penetration of three bristle designs: rippled, raised pattern (Improved Crest Complete); and two multi-level patterns (Colgate Total and Oral-B Advantage). The study used a previously reported in vitro model for determining interproximal penetration of manual toothbrushes (J Clin Dent 5:27-33, 1994). In order to effectively mimic the in-use characteristics of toothbrushing, this model is based on analysis of videotaped consumer brushing habits, tooth morphology, and in vivo plaque tenacity characteristics, and uses the three most predominantly used brushing techniques (circular, up-and-down, and back-and-forth with the brush held at both 45 degrees and 90 degrees to the tooth surface). In addition, the model's brush stroke length, brush force, and brush speed are likewise based on an analysis of consumer brushing patterns. The results of this study indicate that the Improved Crest Complete with longer rippled outer bristles provided significantly superior (p < 0.05) interproximal penetration overall and at the gumline than the Colgate Total and Oral-B Advantage brushes.

  17. HDL and CER-001 Inverse-Dose Dependent Inhibition of Atherosclerotic Plaque Formation in apoE-/- Mice: Evidence of ABCA1 Down-Regulation

    PubMed Central

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Cholez, Guy; Ackermann, Rose; Sy, Gavin; Keyserling, Constance; Lalwani, Narendra; Paolini, John F.; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2015-01-01

    Objective CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). Methods and Results CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse “flow cessation model,” in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. Conclusions These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that high doses of HDL and CER-001 induce a rapid and strong down-regulation of ABCA1 both in vitro and in vivo. In conclusion, maximally efficient HDL- or CER-001-mediated cholesterol removal from atherosclerotic plaque is achieved by maximizing macrophage-mediated efflux from the plaque while minimizing dose-dependent down-regulation of ABCA1 expression. These observations may help define the optimal dose of HDL mimetics for testing in clinical trials of atherosclerotic burden regression. PMID:26335690

  18. HDL and CER-001 Inverse-Dose Dependent Inhibition of Atherosclerotic Plaque Formation in apoE-/- Mice: Evidence of ABCA1 Down-Regulation.

    PubMed

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Cholez, Guy; Ackermann, Rose; Sy, Gavin; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2015-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse "flow cessation model," in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that high doses of HDL and CER-001 induce a rapid and strong down-regulation of ABCA1 both in vitro and in vivo. In conclusion, maximally efficient HDL- or CER-001-mediated cholesterol removal from atherosclerotic plaque is achieved by maximizing macrophage-mediated efflux from the plaque while minimizing dose-dependent down-regulation of ABCA1 expression. These observations may help define the optimal dose of HDL mimetics for testing in clinical trials of atherosclerotic burden regression.

  19. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia.

    PubMed

    Razavi, Seyed-Mostafa; Gholamin, Sharareh; Eskandari, Ali; Mohsenian, Nakta; Ghorbanihaghjo, Amir; Delazar, Abbas; Rashtchizadeh, Nadereh; Keshtkar-Jahromi, Maryam; Argani, Hassan

    2013-03-01

    Hyperlipidemia can lead to atherosclerosis by lipoprotein deposition inside the vessel wall and oxidative stress induction that leads to the formation of atherosclerotic plaque. Oxidized low-density lipoprotein particles (Ox-LDL) have a key role in the pathogenesis of atherosclerosis. The lipid-lowering properties and antioxidants of the grape seed can be beneficial in atherosclerosis prevention. We conducted a randomized double-blind placebo-controlled crossover clinical trial. Fifty-two mildly hyperlipidemic individuals were divided into two groups that received either 200 mg/day of the red grape seed extract (RGSE) or placebo for 8 weeks. After an 8-week washout period, the groups were crossed over for another 8 weeks. Lipid profiles and Ox-LDL were measured at the beginning and the end of each phase. RGSE consumption reduced total cholesterol (-10.68±26.76 mg/dL, P=.015), LDL cholesterol (-9.66±23.92 mg/dL, P=.014), and Ox-LDL (-5.47±12.12 mg/dL, P=.008). While triglyceride and very low-density lipoprotein cholesterol were decreased and high-density lipoprotein cholesterol was increased by RGSE, the changes were not statistically significant. RGSE consumption decreases Ox-LDL and has beneficial effects on lipid profile-consequently decreasing the risk of atherosclerosis and cardiovascular disorders-in mild hyperlipidemic individuals.

  20. α-Tocopherol Is Ineffective in Preventing the Decomposition of Preformed Lipid Peroxides and May Promote the Accumulation of Toxic Aldehydes: A Potential Explanation for the Failure of Antioxidants to Affect Human Atherosclerosis

    PubMed Central

    Raghavamenon, Achuthan; Garelnabi, Mahdi; Babu, Sainath; Aldrich, Alex; Litvinov, Dmitry

    2009-01-01

    Abstract The decomposition of peroxidized lipids of low-density lipoprotein (LDL) has been suggested to be involved in atherosclerosis. In this study, an in vitro system with 13-hydroperoxylinoleic acid (13-HPODE) was used to determine the effects of antioxidants on its decomposition. Decomposition of 13-HPODE was not affected by α-tocopherol, several other antioxidants, or antioxidant enzymes. Moreover, the inclusion of α-tocopherol during the decomposition of 13-HPODE resulted in an accumulation of aldehydes. Further oxidation of aldehydes to carboxylic acids by a number of oxidases was prevented by α-tocopherol. Conversely, the formation of carboxylic acids may be conducive to plaque stabilization via immunomodulation, rapid degradation, and by calcium sequestration. Thus, the inhibition of formation of carboxylic acids could be a serious deleterious effect of antioxidant treatment. In contrast, α-keto acids, like pyruvic acid, promoted the conversion of 13-HPODE to 13-hydroxylinoleic acid (13-HODE) by readily undergoing decarboxylation into acetate. These observations suggest that agents that promote the reduction of lipid peroxides into lipid hydroxides could be far more effective in treating cardiovascular diseases as opposed α-tocopherol–like antioxidants that could affect additional steps in the oxidation cascade. Antioxid. Redox Signal. 11, 1237–1248. PMID:19186999

  1. [Assessment of lipid layer thickness of tear film in the diagnosis of dry-eye syndrome in children after the hematopoietic stem cell transplantation].

    PubMed

    Kurpińska, Małgorzata; Gorczyńska, Ewa; Owoc-Lempach, Joanna; Bernacka, Aleksandra; Misiuk-Hojło, Marta; Chybicka, Alicja

    2011-01-01

    Dry eye syndrome (DES), also known as keratoconjunctivitis sicca (KCS) is recognized as the most frequent ocular complication after allogeneic stem cell transplantation (allo-SCT). KCS can appear either due to insufficient tear production or excessive tear evaporation, both resulting in tears hyperosmolarity that leads to ocular damage. The evaporation rate and better film stability is determined primarily by the status of the lipid layer. Observation and classification of tear film lipid layer interference patterns in normal and dry eyes in patients after allogeneic stem cell transplantation with a follow-up time of 6 months-5 years (median 26.54 months). Investigation of the relation between the lipid layer interference patterns in normal and dry eyes and the results of other dry eye examinations and complaints. Relation between DES and conditioning regimes, including total body irradiation and high-dose chemotherapy, immunosuppressive drugs, the time after allogeneic stem cell transplantation and chronic graft-versus-host disease. Precorneal tears lipid layer interference patterns, were examined in 114 eyes in treatment group with the Tearscope-plus. Patient with dry eye were identified on the basis of Schirmer test scores and/or tear breakup time, and positive lissamine and/or fluorescein staining. 42 of 114 eyes (36.8%) developed DES after allo-SCT A significant correlation between thickness of lipid layer and BUT, Schirmer test, lissamine green and fluorescein staining was found in the treatment group. A significant association was found between present chronic GVHD and DES in children. DES was not associated with TBI, corticosteroids, immunosuppressive drugs and the time in the present study. Tears lipid layer interference patterns are highly correlated with the diagnosis of DES. Tears lipid layer interference patterns ( noninvasive method), can be used to diagnose early DES in children after allo-SCT. Chronic GVHD play a major role in development of DES. dry eye syndrome, graft versus host disease, stem cell transplantation.

  2. Macrophage-Specific Expression of IL-37 in Hyperlipidemic Mice Attenuates Atherosclerosis.

    PubMed

    McCurdy, Sara; Baumer, Yvonne; Toulmin, Emma; Lee, Bog-Hieu; Boisvert, William A

    2017-11-15

    Atherosclerosis, the progressive buildup of plaque within arterial blood vessels, can lead to fatal downstream events, such as heart attack or stroke. A key event contributing to the development of atherosclerosis is the infiltration of monocytes and its associated inflammation, as well as the formation of lipid-laden macrophage foam cells within the vessel wall. IL-37 is recognized as an important anti-inflammatory cytokine expressed especially by immune cells. This study was undertaken to elucidate the role of macrophage-expressed IL-37 in reducing the production and effects of proinflammatory cytokines, preventing foam cell formation, and reducing the development of atherosclerosis. Expression of human IL-37 was achieved with a macrophage-specific overexpression system, using the CD68 promoter in mouse primary bone marrow-derived macrophages via retroviral transduction. Macrophage IL-37 expression in vitro resulted in decreased mRNA (e.g., IL-1B, IL-6, and IL-12) and secreted protein production (e.g., IL-6, M-CSF, and ICAM-1) of key inflammatory mediators. IL-37 expression also inhibited macrophage proliferation, apoptosis, and transmigration, as well as reduced lipid uptake, compared with controls in vitro. The in vivo effects of macrophage-expressed IL-37 were investigated through bone marrow transplantation of transduced hematopoietic stem cells into irradiated atherosclerosis-prone Ldlr -/- mice. After 10 wk on a high-fat/high-cholesterol diet, mice with IL-37-expressing macrophages showed reduced disease pathogenesis, which was demonstrated by significantly less arterial plaque development and systemic inflammation compared with control mice. The athero-protective effect of macrophage-expressed IL-37 has implications for development of future therapies to treat atherosclerosis, as well as other chronic inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Pharmacologic Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis

    PubMed Central

    Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.

    2012-01-01

    Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982

  4. Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis.

    PubMed

    Joffre, Jeremie; Potteaux, Stephane; Zeboudj, Lynda; Loyer, Xavier; Boufenzer, Amir; Laurans, Ludivine; Esposito, Bruno; Vandestienne, Marie; de Jager, Saskia C A; Hénique, Carole; Zlatanova, Ivana; Taleb, Soraya; Bruneval, Patrick; Tedgui, Alain; Mallat, Ziad; Gibot, Sebastien; Ait-Oufella, Hafid

    2016-12-27

    Innate immune responses activated through myeloid cells contribute to the initiation, progression, and complications of atherosclerosis in experimental models. However, the critical upstream pathways that link innate immune activation to foam cell formation are still poorly identified. This study sought to investigate the hypothesis that activation of the triggering receptor expressed on myeloid cells (TREM-1) plays a determinant role in macrophage atherogenic responses. After genetically invalidating Trem-1 in chimeric Ldlr -/- Trem-1 -/- mice and double knockout ApoE -/- Trem-1 -/- mice, we pharmacologically inhibited Trem-1 using LR12 peptide. Ldlr -/- mice reconstituted with bone marrow deficient for Trem-1 (Trem-1 -/- ) showed a strong reduction of atherosclerotic plaque size in both the aortic sinus and the thoracoabdominal aorta, and were less inflammatory compared to plaques of Trem-1 +/+ chimeric mice. Genetic invalidation of Trem-1 led to alteration of monocyte recruitment into atherosclerotic lesions and inhibited toll-like receptor 4 (TLR 4)-initiated proinflammatory macrophage responses. We identified a critical role for Trem-1 in the upregulation of cluster of differentiation 36 (CD36), thereby promoting the formation of inflammatory foam cells. Genetic invalidation of Trem-1 in ApoE -/- /Trem-1 -/- mice or pharmacological blockade of Trem-1 in ApoE -/- mice using LR-12 peptide also significantly reduced the development of atherosclerosis throughout the vascular tree, and lessened plaque inflammation. TREM-1 was expressed in human atherosclerotic lesions, mainly in lipid-rich areas with significantly higher levels of expression in atheromatous than in fibrous plaques. We identified TREM-1 as a major upstream proatherogenic receptor. We propose that TREM-1 activation orchestrates monocyte/macrophage proinflammatory responses and foam cell formation through coordinated and combined activation of CD36 and TLR4. Blockade of TREM-1 signaling may constitute an attractive novel and double-hit approach for the treatment of atherosclerosis. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway.

    PubMed

    Thompson, D; Morrice, N; Grant, L; Le Sommer, S; Ziegler, K; Whitfield, P; Mody, N; Wilson, H M; Delibegović, M

    2017-08-01

    Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Myeloid-PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE 2 ), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE -/- mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  6. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques.

    PubMed

    Teng, Zhongzhao; Yuan, Jianmin; Feng, Jiaxuan; Zhang, Yongxue; Brown, Adam J; Wang, Shuo; Lu, Qingsheng; Gillard, Jonathan H

    2015-11-05

    Calculating high stress concentration within carotid atherosclerotic plaques has been shown to be complementary to anatomical features in assessing vulnerability. Reliability of stress calculation may depend on the constitutive laws/strain energy density functions (SEDFs) used to characterize tissue material properties. Different SEDFs, including neo-Hookean, one-/two-term Ogden, Yeoh, 5-parameter Mooney-Rivlin, Demiray and modified Mooney-Rivlin, have been used to describe atherosclerotic tissue behavior. However, the capacity of SEDFs to fit experimental data and the difference in the stress calculation remains unexplored. In this study, seven SEDFs were used to fit the stress-stretch data points of media, fibrous cap, lipid and intraplaque hemorrhage/thrombus obtained from 21 human carotid plaques. Semi-analytic solution, 2D structure-only and 3D fully coupled fluid-structure interaction (FSI) analyses were used to quantify stress using different SEDFs and the related material stability examined. Results show that, except for neo-Hookean, all other six SEDFs fitted the experimental points well, with vessel stress distribution in the circumferential and radial directions being similar. 2D structural-only analysis was successful for all seven SEDFs, but 3D FSI were only possible with neo-Hookean, Demiray and modified Mooney-Rivlin models. Stresses calculated using Demiray and modified Mooney-Rivlin models were nearly identical. Further analyses indicated that the energy contours of one-/two-term Ogden and 5-parameter Mooney-Rivlin models were not strictly convex and the material stability indictors under homogeneous deformations were not always positive. In conclusion, considering the capacity in characterizing material properties and stabilities, Demiray and modified Mooney-Rivlin SEDF appear practical choices for mechanical analyses to predict the critical mechanical conditions within carotid atherosclerotic plaques. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Interaction between VEGF receptor-2 gene polymorphisms and dietary patterns on blood glucose and lipid levels in Chinese Malaysian adults.

    PubMed

    Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Hon, Wei Min; Masaki, Motofumi

    2011-01-01

    The prevalence of lifestyle-related chronic diseases is increasing and gene-diet interaction studies are limited among the Malaysian population. This study was conducted to evaluate the association and interaction effects of vascular endothelial growth factor receptor-2(VEGFR2) gene polymorphisms and dietary patterns on anthropometric and biochemical risk factors of chronic diseases in 179 Chinese Malaysian adults. Genotyping of rs1870377 and rs2071559 was performed by real-time PCR using TaqMan probes. Dietary patterns were constructed from the food frequency questionnaire using factor analysis. Anthropometric measurements: body mass index (BMI), systolic and diastolic blood pressure and biomarkers: blood glucose, glycated hemoglobin A1c (HbA1c) and lipids were obtained. Two dietary patterns: 'Balanced diet' and 'Meat, rice and noodles diet' (MRND) were extracted. MRND was associated with higher BMI, blood pressure, blood glucose and lipids, while T alleles in both rs1870377 and rs2071559 were associated with higher blood lipids (p < 0.05). The interaction of MRND and rs1870377 had a borderline effect on blood HbA1c after adjusting for confounders (p = 0.057). A dietary pattern of MRND and VEGFR2 gene polymorphisms were both associated with increased health risks of lifestyle-related chronic diseases particularly blood glucose and lipid levels in Chinese Malaysian adults. Copyright © 2012 S. Karger AG, Basel.

  8. A study of the comparative effects of hawthorn fruit compound and simvastatin on lowering blood lipid levels.

    PubMed

    Xu, Hong; Xu, Hou-En; Ryan, Damien

    2009-01-01

    This project studied the lowering blood lipids effect in atherosclerotic ApoE-deficient mice. Group A mice (n = 6), fed with a normal diet, served as the negative control. The experimental groups used mice fed with a high cholesterol diet (HCD) for eight weeks, and then selected for inclusion in the study on the basis of high blood lipid levels and the formation of atherosclerotic lesion plaque, which was indicated by an ultrasound biomicroscopy test. Eighteen mice met the selection criteria (atherosclerotic mice with high blood lipid levels) and these were randomly assigned into three groups B, C and D (n = 6). Group B fed with a HCD, served as the positive control. The intervention Group C was fed with HCD and Simvastatin. The intervention Group D was fed with a HCD and Hawthorn fruit compound (HFC includes Hawthorn and Kiwi fruit extract) for eight weeks. The results showed that after feeding on a HCD, Group B had significantly higher blood lipid levels compared to Group A and this confirmed the validity of Group A and Group B controls in this study. The results also showed that compared to Group B, in both Group C and D, there was a significant reduction in triglyceride and in the ratio between low-density lipoprotein cholesterol (LDL-C) and serum cholesterol. Moreover a reduction of LDL-C was evident in Group D, whereas a similar effect did not occur in Group C. The results indicate that HFC can be considered for the treatment of hyperlipidemia and prevention of atherosclerosis.

  9. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors

    PubMed Central

    2014-01-01

    Background Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. Results Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. Conclusion This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but also a number of targeted genes that can be used for a systematic metabolic engineering. Besides, our results also represented the feasibility of lipid production through trophic transition cultivation modes, throwing light on a two-stage microalgal lipid production strategy with which heterotrophy stage provides sufficient robust seed and nitrogen-starvation photoautotrophy stage enhances the overall lipid productivity. PMID:24479413

  10. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression

    NASA Astrophysics Data System (ADS)

    Aryal, Binod; Rotllan, Noemi; Araldi, Elisa; Ramírez, Cristina M.; He, Shun; Chousterman, Benjamin G.; Fenn, Ashley M.; Wanschel, Amarylis; Madrigal-Matute, Julio; Warrier, Nikhil; Martín-Ventura, Jose L.; Swirski, Filip K.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2016-07-01

    Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.

  11. Triglycerides: A reappraisal.

    PubMed

    Wiesner, Philipp; Watson, Karol E

    2017-08-01

    Elevated cholesterol levels are clearly independently associated with adverse cardiovascular events. Another class of lipid particles, triglycerides, is also abundant in the human body and has been found in atherosclerotic plaques. Recent observational studies have demonstrated an association between elevated triglyceride levels and increased risk for future cardiovascular events. With this knowledge and the discovery of effective agents to lower triglyceride levels, the management of triglycerides is currently undergoing a renaissance. Unfortunately, no randomized, controlled clinical trials have been completed to date, proving that lowering triglycerides will reduce cardiovascular events. In this review we highlight some of the evidence that led to this stage and discuss the current data on pharmacologic intervention of triglyceride levels and the effect on clinical outcomes. Lastly, we want to give the reader insight on what the most recent lipid guidelines state about clinical triglyceride management, mention new pharmacological agents, and highlight the clinical evidence for safe and effective lowering of triglycerides levels with life style modification. Copyright © 2017. Published by Elsevier Inc.

  12. PCSK9 Inhibitors: Treating the Right Patients in Daily Practice.

    PubMed

    King, Peta; Nicholls, Stephen J

    2017-08-01

    Monoclonal antibodies that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged as a novel approach to low-density lipoprotein cholesterol (LDL-C) lowering. The potential role of PCSK9 inhibitors in clinical practice will be reviewed. Clinical trials have demonstrated that PCSK9 inhibitors produce robust LDL-C lowering when administered either as monotherapy or in combination with statins. This provides the opportunity to achieve effective lipid lowering in familial hypercholesterolemia, patients with either established atherosclerotic cardiovascular disease or high risk primary prevention and an important opportunity to treat patients with statin intolerance. The findings from plaque imaging and patients with established atherosclerotic cardiovascular disease suggest that PCSK9 inhibition has favorable outcomes beyond improving lipid profiles, which has the opportunity to expand their use. PCSK9 inhibitors represent a new approach to achieving effective cardiovascular risk reduction in a broader number of patients. How these agents will be taken up in clinical practice remains to be determined.

  13. Metals and lipid oxidation. Contemporary issues.

    PubMed

    Schaich, K M

    1992-03-01

    Lipid oxidation is now recognized to be a critically important reaction in physiological and toxicological processes as well as in food products. This provides compelling reasons to understand what causes lipid oxidation in order to be able to prevent or control the reactions. Redox-active metals are major factors catalyzing lipid oxidation in biological systems. Classical mechanisms of direct electron transfer to double bonds by higher valence metals and of reduction of hydroperoxides by lower valence metals do not always account for patterns of metal catalysis of lipid oxidation in multiphasic or compartmentalized biological systems. To explain why oxidation kinetics, mechanisms, and products in molecular environments which are both chemically and physically complex often do not follow classical patterns predicted by model system studies, increased consideration must be given to five contemporary issues regarding metal catalysis of lipid oxidation: hypervalent non-heme iron or iron-oxygen complexes, heme catalysis mechanism(s), compartmentalization of reactions and lipid phase reactions of metals, effects of metals on product mixes, and factors affecting the mode of metal catalytic action.

  14. Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes With a Low Atherosclerotic Risk Profile.

    PubMed

    Merghani, Ahmed; Maestrini, Viviana; Rosmini, Stefania; Cox, Andrew T; Dhutia, Harshil; Bastiaenan, Rachel; David, Sarojini; Yeo, Tee Joo; Narain, Rajay; Malhotra, Aneil; Papadakis, Michael; Wilson, Mathew G; Tome, Maite; AlFakih, Khaled; Moon, James C; Sharma, Sanjay

    2017-07-11

    Studies in middle-age and older (masters) athletes with atherosclerotic risk factors for coronary artery disease report higher coronary artery calcium (CAC) scores compared with sedentary individuals. Few studies have assessed the prevalence of coronary artery disease in masters athletes with a low atherosclerotic risk profile. We assessed 152 masters athletes 54.4±8.5 years of age (70% male) and 92 controls of similar age, sex, and low Framingham 10-year coronary artery disease risk scores with an echocardiogram, exercise stress test, computerized tomographic coronary angiogram, and cardiovascular magnetic resonance imaging with late gadolinium enhancement and a 24-hour Holter. Athletes had participated in endurance exercise for an average of 31±12.6 years. The majority (77%) were runners, with a median of 13 marathon runs per athlete. Most athletes (60%) and controls (63%) had a normal CAC score. Male athletes had a higher prevalence of atherosclerotic plaques of any luminal irregularity (44.3% versus 22.2%; P =0.009) compared with sedentary males, and only male athletes showed a CAC ≥300 Agatston units (11.3%) and a luminal stenosis ≥50% (7.5%). Male athletes demonstrated predominantly calcific plaques (72.7%), whereas sedentary males showed predominantly mixed morphology plaques (61.5%). The number of years of training was the only independent variable associated with increased risk of CAC >70th percentile for age or luminal stenosis ≥50% in male athletes (odds ratio, 1.08; 95% confidence interval, 1.01-1.15; P =0.016); 15 (14%) male athletes but none of the controls revealed late gadolinium enhancement on cardiovascular magnetic resonance imaging. Of these athletes, 7 had a pattern consistent with previous myocardial infarction, including 3(42%) with a luminal stenosis ≥50% in the corresponding artery. Most lifelong masters endurance athletes with a low atherosclerotic risk profile have normal CAC scores. Male athletes are more likely to have a CAC score >300 Agatston units or coronary plaques compared with sedentary males with a similar risk profile. The significance of these observations is uncertain, but the predominantly calcific morphology of the plaques in athletes indicates potentially different pathophysiological mechanisms for plaque formation in athletic versus sedentary men. Coronary plaques are more abundant in athletes, whereas their stable nature could mitigate the risk of plaque rupture and acute myocardial infarction. © 2017 American Heart Association, Inc.

  15. Antimicrobial proteins in human unstimulated whole saliva in relation to each other, and to measures of health status, dental plaque accumulation and composition.

    PubMed

    Rudney, J D; Krig, M A; Neuvar, E K; Soberay, A H; Iverson, L

    1991-01-01

    Saliva antimicrobial proteins may interact in a common system to influence the oral ecology. Clinical studies of antimicrobial protein action thus may require a multiple-protein approach. Multivariate statistical methods have been used to describe possible patterns of interaction for lysozyme, lactoferrin, salivary peroxidase and secretory IgA in stimulated parotid saliva. However, oral microbes are most likely to encounter antimicrobial proteins in mixed resting saliva. Relationships among levels of lysozyme, lactoferrin, salivary peroxidase, and secretory IgA therefore were investigated in whole saliva from 216 subjects, and an attempt made to relate interperson variation in those proteins to differences in health and status, and dental plaque accumulation and composition. All proteins were significantly (alpha = 0.05) correlated with each other (r = 0.38-0.52, p less than 0.001). There was only one axis of common variation among proteins, and that axis was significantly correlated (p less than 0.001) with total protein (r = 0.84) and flow rate (r = -0.56). That pattern deviated from the previous finding that proteins of acinar origin tended to vary independently from proteins of ductal origin in stimulated parotid saliva. The difference between parotid and whole saliva may reflect constitutive secretion of all proteins at low levels of stimulation. Common variation of unstimulated saliva proteins suggests that antimicrobial actions can be compared in subjects at population extremes. There were no significant associations between antimicrobial proteins in whole saliva and measures of health status or plaque accumulation. However, the proportions of Streptococcus sanguis were significantly correlated with lysozyme (r = -0.26), lactoferrin (r = -0.34), peroxidase (r = -0.30), total protein (r = -0.37), flow rate (r = 0.24) and principal-components scores (r = -0.33) in a subset of subjects (n = 85) where commercial biochemical tests were used to supplement species identification by colony morphology. Those findings may indicate that saliva antimicrobial proteins can affect the composition of dental plaque.

  16. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer's disease.

    PubMed

    Boon, Baayla D C; Hoozemans, Jeroen J M; Lopuhaä, Boaz; Eigenhuis, Kristel N; Scheltens, Philip; Kamphorst, Wouter; Rozemuller, Annemieke J M; Bouwman, Femke H

    2018-05-29

    While most patients with Alzheimer's disease (AD) present with memory complaints, 30% of patients with early disease onset present with non-amnestic symptoms. This atypical presentation is thought to be caused by a different spreading of neurofibrillary tangles (NFT) than originally proposed by Braak and Braak. Recent studies suggest a prominent role for neuroinflammation in the spreading of tau pathology. We aimed to explore whether an atypical spreading of pathology in AD is associated with an atypical distribution of neuroinflammation. Typical and atypical AD cases were selected based on both NFT distribution and amnestic or non-amnestic clinical presentation. Immunohistochemistry was performed on the temporal pole and superior parietal lobe of 10 typical and 9 atypical AD cases. The presence of amyloid-beta (N-terminal; IC16), pTau (AT8), reactive astrocytes (GFAP), microglia (Iba1, CD68, and HLA-DP/DQ/DR), and complement factors (C1q, C3d, C4b, and C5b-9) was quantified by image analysis. Differences in lobar distribution patterns of immunoreactivity were statistically assessed using a linear mixed model. We found a temporal dominant distribution for amyloid-beta, GFAP, and Iba1 in both typical and atypical AD. Distribution of pTau, CD68, HLA-DP/DQ/DR, C3d, and C4b differed between AD variants. Typical AD cases showed a temporal dominant distribution of these markers, whereas atypical AD cases showed a parietal dominant distribution. Interestingly, when quantifying for the number of amyloid-beta plaques instead of stained surface area, atypical AD cases differed in distribution pattern from typical AD cases. Remarkably, plaque morphology and localization of neuroinflammation within the plaques was different between the two phenotypes. Our data show a different localization of neuroinflammatory markers and amyloid-beta plaques between AD phenotypes. In addition, these markers reflect the atypical distribution of tau pathology in atypical AD, suggesting that neuroinflammation might be a crucial link between amyloid-beta deposits, tau pathology, and clinical symptoms.

  17. Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease

    PubMed Central

    Rask-Madsen, Christian; Kahn, C. Ronald

    2012-01-01

    Summary Impaired insulin signaling is central to the development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension and a proinflammatory state. However, insulin action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes. Recent advances in our understanding of the complex pathophysiology of insulin’s effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders. PMID:22895666

  18. Increased plasma lipid levels exacerbate muscle pathology in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Milad, Nadia; White, Zoe; Tehrani, Arash Y; Sellers, Stephanie; Rossi, Fabio M V; Bernatchez, Pascal

    2017-09-12

    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin expression and leads to severe ambulatory and cardiac function decline. However, the dystrophin-deficient mdx murine model of DMD only develops a very mild form of the disease. Our group and others have shown vascular abnormalities in animal models of MD, a likely consequence of the fact that blood vessels express the same dystrophin-associated glycoprotein complex (DGC) proteins as skeletal muscles. To test the blood vessel contribution to muscle damage in DMD, mdx 4cv mice were given elevated lipid levels via apolipoprotein E (ApoE) gene knockout combined with normal chow or lipid-rich Western diets. Ambulatory function and heart function (via echocardiogram) were assessed at 4 and 7 months of age. After sacrifice, muscle histology and aortic staining were used to assess muscle pathology and atherosclerosis development, respectively. Plasma levels of total cholesterol, high-density lipoprotein (HDL), triglycerides, and creatine kinase (CK) were also measured. Although there was an increase in left ventricular heart volume in mdx-ApoE mice compared to that in mdx mice, parameters of heart function were not affected. Compared with wild-type and ApoE-null, only mdx-ApoE KO mice showed significant ambulatory dysfunction. Despite no significant difference in plasma CK, histological analyses revealed that elevated plasma lipids in chow- and Western diet-fed mdx-ApoE mice was associated with severe exacerbation of muscle pathology compared to mdx mice: significant increase in myofiber damage and fibrofatty replacement in the gastrocnemius and triceps brachii muscles, more reminiscent of human DMD pathology. Finally, although both ApoE and mdx-ApoE groups displayed increased plasma lipids, mdx-ApoE exhibited atherosclerotic plaque deposition equal to or less than that of ApoE mice. Since others have shown that lipid abnormalities correlate with DMD severity, our data suggest that plasma lipids could be primary contributors to human DMD severity and that the notoriously mild phenotype of mdx mice might be attributable in part to their endogenously low plasma lipid profiles. Hence, DMD patients may benefit from lipid-lowering and vascular-targeted therapies.

  19. Risk factor profile for sudden cardiac death during mountain hiking.

    PubMed

    Burtscher, M; Pachinger, O; Schocke, M F H; Ulmer, H

    2007-07-01

    Mountain hiking is associated with a death rate of about 4 deaths per 100,000 hikers annually. About 50 % of all fatalities during mountain hiking are sudden cardiac deaths (SCDs). But there are only few data available regarding risk factors and triggers associated with SCD during mountain hiking. Thus, a case-control analysis between persons who died suddenly during mountain hiking and randomly selected controls was carried out. Risk factor profiles of 179 males over the age of 34 who suffered SCD during mountain hiking were compared to those of 537 matched controls. Hikers who died suddenly during mountain hiking were much more likely to have had a prior MI (17% vs. 0.9%; p < 0.001), known coronary artery disease (CAD) without prior MI (17 % vs. 4%; p < 0.001), diabetes (6% vs. 1 %; p < 0.001), hypercholesterolemia (54 % vs. 20%; p < 0.001), and were less engaged in regular mountain sports activities (31% vs. 58%; p < 0.001) compared to hikers from the control group. Based on the reported relationship between traditional risk factors and coronary plaque morphology, acute plaque rupture with thrombus formation and subsequent lethal arrhythmias may be assumed to be a dominant mechanism precipitating SCD during hiking. In contrast, in skiers especially non-occlusive plaques may precipitate ischemia leading to an imbalance between oxygen demand and supply and subsequent lethal arrhythmias. As preventive measures recommended to hikers at risk, adaptation to regular mountain sports activities by an adequate training program and pharmacological interventions, e.g. lipid lowering drugs, aspirin, and beta-blockers, should be considered.

  20. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  1. Atherosclerosis. Potential targets for stabilization and regression.

    PubMed

    Schwartz, C J; Valente, A J; Sprague, E A; Kelley, J L; Cayatte, A J; Mowery, J

    1992-12-01

    Reviewed are various aspects of atherosclerotic plaque stabilization and regression in humans and experimental animals. Plaque regression is a function of the dynamic balance among initiation, progression, stabilization, and removal of plaque constituents. Pseudoregression, the result of the triad thrombolysis, age- or lesion-dependent arterial dilatation, and relaxation of vasospasm, may readily give rise to angiographic misinterpretation. Although lowering of plasma cholesterol and low density lipoprotein-cholesterol has demonstrated significant clinical benefits in a number of clinical trials, the magnitude of angiographic regressive changes is relatively small despite aggressive lipid-lowering regimens. The emerging need for alternative or complementary therapeutic interventions has been emphasized. In particular, they should be targeted to pivotal cellular or molecular mechanisms in initiation, progression, or stabilization. Potentially important therapeutic targets include the use of antioxidants or free radical scavengers such as Probucol or its analogues, butylated hydroxytoluene, tocopherols, and possibly the tocotrienols. Other therapeutic targets include intimal monocyte-macrophage recruitment, macrophage cholesterol acyltransferase inhibition, stimulation of the high density lipoprotein-mediated reverse cholesterol transport system, smooth muscle cell migration to and proliferation in the arterial intima, and intimal connective tissue synthesis. Whether the isoprenylated proteins associated with the cholesterol biosynthetic pathway will give rise to compounds regulating smooth muscle cell growth has yet to be determined. Because of the importance of thrombosis in the pathogenesis and progression of lesions, the need to develop interventional strategies targeted at endothelial cell thromboresistance and thromboregulation must assume a high priority in future research and development. Other areas of therapeutic promise include the calcium channel blockers and angiotensin converting enzyme inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Toward intravascular morphological and biochemical imaging of atherosclerosis with optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Kim, Wihan; Serafino, Michael; Walton, Brian; Jo, Javier A.; Applegate, Brian E.

    2017-02-01

    We have shown in an ex vivo human coronary artery study that the biochemical information derived from FLIM interpreted in the context of the morphological information from OCT enables a detailed classification of human coronary plaques associated with atherosclerosis. The identification of lipid-rich plaques prone to erosion or rupture and associated with sudden coronary events can impact current clinical practice as well as future development of targeted therapies for "vulnerable" plaques. In order to realize clinical translation of intravascular OCT/FLIM we have had to develop several key technologies. A multimodal catheter endoscope capable of delivering near UV excitation for FLIM and shortwave IR for OCT has been fabricated using a ball lens design with a double clad fiber. The OCT illumination and the FLIM excitation propogate down the inner core while the large outer multimode core captures the fluorescence emission. To enable intravascular pullback imaging with this endoscope we have developed an ultra-wideband fiber optic rotary joint using the same double clad fiber. The rotary joint is based on a lensless design where two cleaved fibers, one fixed and one rotating, are brought into close proximity but not touching. Using water as the lubricant enabled operation over the near UV-shortwave IR range. Transmission over this bandwidth has been measured to be near 100% at rotational frequencies up to 147 Hz. The entire system has been assembled and placed on a mobile cart suitable for cath lab based imaging. System development, performance, and early ex vivo imaging results will be discussed.

  3. [Intima-media thickness in a middle-old age sample of the Spanish general population].

    PubMed

    Calmarza, Pilar; Trejo, José María; Lapresta, Carlos; López, Pilar

    2015-01-01

    To ascertain reference values of carotid intima-media thickness (cIMT) in a middle and old-aged sample of the Spanish general population and to establish the 75(th) percentile above which it is necessary to control more strictly other cardiovascular risk factors. To determine cIMT values and the number of carotid plaques in age and sex subgroups, and whether there are differences between them. Lipids, apolipoproteins, number of carotid atherosclerotic plaques if any, and cIMT of both common carotid arteries were determined in 171 individuals, representative of the adult general population of Burgos (Spain). The median age of the patients was 63 years (interquartile range = 20) and the 75th percentile of carotid IMT was 0,88 mm and 0,81 mm in men and women, respectively. This study shows that the values of cIMT median increase with age and are higher in men than in women in all age groups, except in individuals over 74 years where cIMT median values are similar. The presence or absence of atherosclerotic plaques was not statistically different between men and women at different ages. This population study shows the reference values of cIMT in a middle and old-aged sample of the Spanish population and shows that age, male gender, systolic blood pressure (SBP) and personal history of coronary heart disease are the main determinants of increased cIMT. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  4. Genetic variation within the Y chromosome is not associated with histological characteristics of the atherosclerotic carotid artery or aneurysmal wall.

    PubMed

    Haitjema, Saskia; van Setten, Jessica; Eales, James; van der Laan, Sander W; Gandin, Ilaria; de Vries, Jean-Paul P M; de Borst, Gert J; Pasterkamp, Gerard; Asselbergs, Folkert W; Charchar, Fadi J; Wilson, James F; de Jager, Saskia C A; Tomaszewski, Maciej; den Ruijter, Hester M

    2017-04-01

    Haplogroup I, a common European paternal lineage of the Y chromosome, is associated with increased risk of coronary artery disease in British men. It is unclear whether this haplogroup or any other haplogroup on the Y chromosome is associated with histological characteristics of the diseased vessel wall in other vascular manifestations of cardiovascular diseases showing a male preponderance. We examined Dutch men undergoing either carotid endarterectomy from the Athero-Express biobank (AE, n = 1217) or open aneurysm repair from the Aneurysm-Express biobank (AAA, n = 393). Upon resolving the Y chromosome phylogeny, each man was assigned to one of the paternal lineages based on combinations of single nucleotide polymorphisms of the male-specific region of the Y chromosome. We examined the associations between the Y chromosome and the histological characteristics of the carotid plaque and aneurysm wall, including lipid content, leukocyte infiltration and intraplaque haemorrhage, in all men. A majority of men were carriers of either haplogroup I (AE: 28% AAA: 24%) or haplogroup R (AE: 59% AAA: 61%). We found no association between Y chromosomal haplogroups and histological characteristics of plaque collected from carotid arteries or tissue specimens of aneurysms. Moreover, the distribution of frequency for all Y chromosomal haplogroups in both cohorts was similar to that of a general population of Dutch men. Our data show that genetic variation on the Y chromosome is not associated with histological characteristics of the plaques from carotid arteries or specimens of aneurysms in men of Dutch origin. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Can pleiotropic effects of eicosapentaenoic acid (EPA) impact residual cardiovascular risk?

    PubMed

    Nelson, John R; True, Wayne S; Le, Viet; Mason, R Preston

    2017-11-01

    Residual cardiovascular (CV) risk persists even in statin-treated patients with optimized low-density lipoprotein cholesterol (LDL-C) levels. Other pathways beyond cholesterol contribute to CV risk and the key to reducing residual risk may be addressing non-cholesterol risk factors through pleiotropic mechanisms. The purpose of this review is to examine the literature relating to the potential role of the omega-3 fatty acid eicosapentaenoic acid (EPA) in reducing residual CV risk. The literature shows that EPA can robustly lower plasma triglyceride (TG) levels without raising LDL-C levels and documents EPA to have a broad range of beneficial effects on the atherosclerotic pathway, including those on lipids, lipoproteins, inflammation, oxidation, phospholipid membranes, and the atherosclerotic plaque itself. Clinical imaging studies have consistently demonstrated that EPA decreases plaque vulnerability and prevents plaque progression. The evidence therefore points to a potential role for EPA to reduce residual CV risk. A large randomized study of statin-treated Japanese patients demonstrated that EPA ethyl ester reduced major coronary events by 19% (P = 0.011). However, while there has been significant benefit demonstrated in this and another Japanese CV outcomes study, the question as to whether EPA can play a role in reducing residual CV risk remains to be addressed in broader populations. The large, global, ongoing, randomized, placebo-controlled REDUCE-IT study of high-risk statin-treated patients with persistent hypertriglyceridemia is currently underway to investigate the potential of icosapent ethyl (high-purity prescription EPA ethyl ester) as an add-on therapy to reduce residual CV risk.

  6. Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient.

    PubMed

    Champagne, Alex M; Muñoz-Garcia, Agustí; Shtayyeh, Tamer; Tieleman, B Irene; Hegemann, Arne; Clement, Michelle E; Williams, Joseph B

    2012-12-15

    Intercellular and covalently bound lipids within the stratum corneum (SC), the outermost layer of the epidermis, are the primary barrier to cutaneous water loss (CWL) in birds. We compared CWL and intercellular SC lipid composition in 20 species of birds from desert and mesic environments. Furthermore, we compared covalently bound lipids with CWL and intercellular lipids in the lark family (Alaudidae). We found that CWL increases in birds from more mesic environments, and this increase was related to changes in intercellular SC lipid composition. The most consistent pattern that emerged was a decrease in the relative amount of cerebrosides as CWL increased, a pattern that is counterintuitive based on studies of mammals with Gaucher disease. Although covalently bound lipids in larks did not correlate with CWL, we found that covalently bound cerebrosides correlated positively with intercellular cerebrosides and intercellular cholesterol ester, and intercellular cerebrosides correlated positively with covalently bound free fatty acids. Our results led us to propose a new model for the organization of lipids in the avian SC, in which the sugar moieties of cerebrosides lie outside of intercellular lipid layers, where they may interdigitate with adjacent intercellular cerebrosides or with covalently bound cerebrosides.

  7. Objective categorization of interferential tear film lipid layer pattern: validation of the technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, C.; Giráldez, M. J.; Barreira, N.; Penedo, M. G.; Yebra-Pimentel, E.

    2011-05-01

    Purpose: The lipid layer of the tear film limits evaporation during the inter-blink interval and also affects tear stability. This study was designed to validate a new software application designed to characterize the tear film lipid layer through texture and colour pattern recognition. Methods: Using the Tearscope-plus (slit lamp magnification 200X), the lipid layer was examined in 105 healthy young adults and interference photographs acquired with a Topcon DV-3 digital camera. The photographs were classified by the new software and by 2 further observers (observer 1 and observer 2) with experience in examining the eye surface. Results: Strong correlation was detected between the categories determined by the new application, observer 1 and observer 2 (Cramer's V, from 0.81 to 0.87, p<0.001). Best agreement (96.2%) was noted between the new method and observers 1 and 2 for recognizing meshwork patterns, whereas observers 1 and 2 showed greatest correspondence when classifying colour fringe patterns. Conclusions: The new application can objectively categorize LLPs using the Tearscope-plus.

  8. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age.

    PubMed

    van Bergen, J M G; Li, X; Quevenco, F C; Gietl, A F; Treyer, V; Meyer, R; Buck, A; Kaufmann, P A; Nitsch, R M; van Zijl, P C M; Hock, C; Unschuld, P G

    2018-03-13

    The accumulation of β-amyloid plaques is a hallmark of Alzheimer's disease (AD), and recently published data suggest that increased brain iron burden may reflect pathologies that synergistically contribute to the development of cognitive dysfunction. While preclinical disease stages are considered most promising for therapeutic intervention, the link between emerging AD-pathology and earliest clinical symptoms remains largely unclear. In the current study we therefore investigated local correlations between iron and β-amyloid plaques, and their possible association with cognitive performance in healthy older adults. 116 older adults (mean age 75 ± 7.4 years) received neuropsychological testing to calculate a composite cognitive score of performance in episodic memory, executive functioning, attention, language and communication. All participants were scanned on a combined PET-MRI instrument and were administered T1-sequences for anatomical mapping, quantitative susceptibility mapping (QSM) for assessing iron, and 18F-Flutemetamol-PET for estimating β-amyloid plaque load. Biological parametric mapping (BPM) was used to generate masks indicating voxels with significant (p < 0.05) correlation between susceptibility and 18F-Flutemetamol-SUVR. We found a bilateral pattern of clusters characterized by a statistical relationship between magnetic susceptibility and 18F-Flutemetamol-SUVR, indicating local correlations between iron and β-amyloid plaque deposition. For two bilateral clusters, located in the frontal and temporal cortex, significant relationships (p<0.05) between local β-amyloid and the composite cognitive performance score could be observed. No relationship between whole-cortex β-amyloid plaque load and cognitive performance was observable. Our data suggest that the local correlation of β-amyloid plaque load and iron deposition may provide relevant information regarding cognitive performance of healthy older adults. Further studies are needed to clarify pathological correlates of the local interaction of β-amyloid, iron and other causes of altered magnetic susceptibility. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Part I: In-situ fluorometric quantification of microalgal neutral lipids. Part II: Thermal degradation behavior of investment casting polymer patterns

    NASA Astrophysics Data System (ADS)

    Zhao, Hongfang

    Research described in this dissertation covers two topics. Part-I is focused on in-situ determination of neutral lipid content of microalgae using a lipophilic fluorescent dye. The traditional Nile red stain-based method for detecting microalgal intracellular lipids is limited due to varying composition and thickness of rigid cell walls. In this study, the addition of dilute acid and heating of solution, were found to greatly enhance staining efficiency of Nile red for microalgal species evaluated. Oil-in-water (O/W) microemulsion stabilized by a non-ionic surfactant was employed as a pseudo-standard that mimics lipid-bearing microalgal cells suspended in water. The average neutral lipid contents determined were very close to the results obtained by traditional gravimetric method and solid phase extraction. Part II of the dissertation explores thermo-physico-chemical properties of polymeric pattern materials, including expanded polystyrene (EPS) foam, polyurethane foam, and epoxy stereolithography (SLA) patterns, that are used in investment casting. Density, elastic modulus, expansion coefficient, thermal degradation behavior, etc. were experimentally investigated for their effects on metal casting quality. The reduction in toxic hydrogen cyanide (HCN) generated during thermal decomposition of polyurethane pattern was achieved by increasing either oxidant level or residence time in heated zone. Thermal degradation kinetics of the pattern materials were examined with a thermogravimetric analysis and activation energies were determined by Kissinger and Flynn-Wall-Ozawa methods.

  10. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial.

    PubMed

    Liu, Ting; Maurovich-Horvat, Pál; Mayrhofer, Thomas; Puchner, Stefan B; Lu, Michael T; Ghemigian, Khristine; Kitslaar, Pieter H; Broersen, Alexander; Pursnani, Amit; Hoffmann, Udo; Ferencik, Maros

    2018-02-01

    Semi-automated software can provide quantitative assessment of atherosclerotic plaques on coronary CT angiography (CTA). The relationship between established qualitative high-risk plaque features and quantitative plaque measurements has not been studied. We analyzed the association between quantitative plaque measurements and qualitative high-risk plaque features on coronary CTA. We included 260 patients with plaque who underwent coronary CTA in the Rule Out Myocardial Infarction/Ischemia Using Computer Assisted Tomography (ROMICAT) II trial. Quantitative plaque assessment and qualitative plaque characterization were performed on a per coronary segment basis. Quantitative coronary plaque measurements included plaque volume, plaque burden, remodeling index, and diameter stenosis. In qualitative analysis, high-risk plaque was present if positive remodeling, low CT attenuation plaque, napkin-ring sign or spotty calcium were detected. Univariable and multivariable logistic regression analyses were performed to assess the association between quantitative and qualitative high-risk plaque assessment. Among 888 segments with coronary plaque, high-risk plaque was present in 391 (44.0%) segments by qualitative analysis. In quantitative analysis, segments with high-risk plaque had higher total plaque volume, low CT attenuation plaque volume, plaque burden and remodeling index. Quantitatively assessed low CT attenuation plaque volume (odds ratio 1.12 per 1 mm 3 , 95% CI 1.04-1.21), positive remodeling (odds ratio 1.25 per 0.1, 95% CI 1.10-1.41) and plaque burden (odds ratio 1.53 per 0.1, 95% CI 1.08-2.16) were associated with high-risk plaque. Quantitative coronary plaque characteristics (low CT attenuation plaque volume, positive remodeling and plaque burden) measured by semi-automated software correlated with qualitative assessment of high-risk plaque features.

  11. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis.

    PubMed

    Canfrán-Duque, Alberto; Rotllan, Noemi; Zhang, Xinbo; Fernández-Fuertes, Marta; Ramírez-Hidalgo, Cristina; Araldi, Elisa; Daimiel, Lidia; Busto, Rebeca; Fernández-Hernando, Carlos; Suárez, Yajaira

    2017-09-01

    Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells in the artery wall. Aberrant expression of microRNAs has been implicated in the pathophysiological processes underlying the progression of atherosclerosis. Here, we define the contribution of miR-21 in hematopoietic cells during atherogenesis. Interestingly, we found that miR-21 is the most abundant miRNA in macrophages and its absence results in accelerated atherosclerosis, plaque necrosis, and vascular inflammation. miR-21 expression influences foam cell formation, sensitivity to ER-stress-induced apoptosis, and phagocytic clearance capacity. Mechanistically, we discovered that the absence of miR-21 in macrophages increases the expression of the miR-21 target gene, MKK3, promoting the induction of p38-CHOP and JNK signaling. Both pathways enhance macrophage apoptosis and promote the post-translational degradation of ABCG1, a transporter that regulates cholesterol efflux in macrophages. Altogether, these findings reveal a major role for hematopoietic miR-21 in atherogenesis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging.

    PubMed

    Daeichin, Verya; Chen, Chao; Ding, Qing; Wu, Min; Beurskens, Robert; Springeling, Geert; Noothout, Emile; Verweij, Martin D; van Dongen, Koen W A; Bosch, Johan G; van der Steen, Antonius F W; de Jong, Nico; Pertijs, Michiel; van Soest, Gijs

    2016-05-01

    Intravascular photoacoustic (IVPA) imaging can visualize the coronary atherosclerotic plaque composition on the basis of the optical absorption contrast. Most of the photoacoustic (PA) energy of human coronary plaque lipids was found to lie in the frequency band between 2 and 15 MHz requiring a very broadband transducer, especially if a combination with intravascular ultrasound is desired. We have developed a broadband polyvinylidene difluoride (PVDF) transducer (0.6 × 0.6 mm, 52 μm thick) with integrated electronics to match the low capacitance of such a small polyvinylidene difluoride element (<5 pF/mm(2)) with the high capacitive load of the long cable (∼100 pF/m). The new readout circuit provides an output voltage with a sensitivity of about 3.8 μV/Pa at 2.25 MHz. Its response is flat within 10 dB in the range 2 to 15 MHz. The root mean square (rms) output noise level is 259 μV over the entire bandwidth (1-20 MHz), resulting in a minimum detectable pressure of 30 Pa at 2.25 MHz. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton.

    PubMed

    Cañavate, José Pedro; Armada, Isabel; Hachero-Cruzado, Ismael

    2017-01-01

    The response of marine microalgal lipids to phosphorus is of central importance in phytoplankton ecology but remains poorly understood. We determined how taxonomically diverse microalgal species remodelled their lipid class profile in response to phosphorus availability and whether these changes coincided with those already known to occur in land plants and in the limited number of phytoplankton species for which data are available. The complete lipid class profile and specific lipid ratios influenced by phosphorus availability were quantified in two green microalgae and seven Chromalveolates exposed to phosphorus repletion, deprivation and replenishment. Lipid class cell quota changes in the two green microalgae resembled the currently described pattern of betaine lipids substituting for phospholipids under phosphorus depletion, whereas only two of the studied Chromalveolates showed this pattern. Sulpholipids counterbalanced phosphatidylglycerol only in Picochlorum atomus. In all other species, both lipids decreased simultaneously under phosphorus deprivation, although sulpholipids declined more slowly. Phosphorus deprivation always induced a decrease in digalactosyl-diacylglycerol. However, the ratio of digalactosyl-diacylglycerol to total phospholipids increased in eight species and remained unchanged in Isochrysis galbana. Marine phytoplankton seems to have evolved a diversified mechanism for remodelling its lipid class profile under the influence of phosphorus, with cryptophytes and particularly haptophytes exhibiting previously unobserved lipid responses to phosphorus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation.

    PubMed

    Huang, Tai-Chun; Lu, Kwok-Tung; Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β-amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production.

  15. Resveratrol Protects Rats from Aβ-induced Neurotoxicity by the Reduction of iNOS Expression and Lipid Peroxidation

    PubMed Central

    Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β–amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production. PMID:22220203

  16. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children.

    PubMed

    Fragkou, S; Balasouli, C; Tsuzukibashi, O; Argyropoulou, A; Menexes, G; Kotsanos, N; Kalfas, S

    2016-10-01

    This was to examine the occurrence of S. mutans, S. sobrinus and C. albicans in dental plaque and saliva from caries-free and caries-active Greek children. Saliva and dental plaque samples from 46 caries-free and 51 caries-active 3-to-13-year-old children were examined using selective media for the three microbes. Identification of isolated mutans streptococci (S. mutans and S. sobrinus) was performed with biochemical test and specific DNA probes. The salivary levels of mutans streptococci were additionally determined by a chair-side test (Dentocult ® SM strips). The isolation frequencies of S. mutans, S. sobrinus and C. albicans were 66, 11 and 18 %, respectively. Caries-active children harboured more frequently and at significantly higher numbers the specific microbes than caries-free children. A similar pattern was observed with the Dentocult ® SM strip scores. No correlation was found between the presence of these microbes and the age or gender of the children. Caries experience was statistically significantly related to the presence of all three microbes under study, both in dental plaque and saliva.

  17. Breastfeeding keratosis: this frictional keratosis of newborns may mimic thrush.

    PubMed

    Kiat-Amnuay, Sudarat; Bouquot, Jerry

    2013-09-01

    We report the first example, to our knowledge, of a frictional keratosis from exuberant sucking in a breastfeeding infant. A 2-month-old girl was referred for evaluation of a well-demarcated, nonsloughing white keratotic plaque of the lower lip mucosa, just inside the vermilion border. The plaque had a slightly irregular surface, had no surrounding erythema, and was the only such plaque in the mouth. It had been present for at least 3 weeks and had been unsuccessfully treated by her pediatrician via oral Mycostatin (nystatin). Her parents sought a second opinion when the infant was prescribed a full course of oral Diflucan (fluconazole). A cytopathology smear (Papanicolaou test) revealed abundant mature keratinocytes with no evidence of Candida. The mother admitted that the infant "worked hard" at sucking during breastfeeding and continued sucking long after feeding. The parents were unaware of any other habit or potential irritation of the lips. After 3 months of age the infant's sucking pattern became more "normal" and the keratosis disappeared; it did not recur during 3 years of follow-up. We propose the term "breastfeeding keratosis" for this entity.

  18. Effect of Euterpe oleracea Mart. (Açaí) Oil on Dyslipidemia Caused by Cocos nucifera L. Saturated Fat in Wistar Rats.

    PubMed

    Faria E Souza, Belmira S; Carvalho, Helison O; Taglialegna, Talisson; Barros, Albenise Santana A; da Cunha, Edilson Leal; Ferreira, Irlon Maciel; Keita, Hady; Navarrete, Andres; Carvalho, José Carlos Tavares

    2017-09-01

    Dyslipidemia is caused by disturbances in lipid metabolism that lead to chronic elevations of serum lipids, especially low-density lipoprotein (LDL)-cholesterol and triglycerides, increasing the risk of metabolic syndrome, obesity, diabetes, atherogenic processes, and cardiovascular diseases. The oil from the fruits of Euterpe oleracea (OFEO) is rich in unsaturated fatty acids with potential for treating alterations in lipid metabolism. In this study, we aimed to investigate the effect of OFEO on hyperlipidemia induced by Cocos nucifera L. saturated fat (GSC) in Wistar rats. Chromatographic profile showed that unsaturated fatty acids account for 66.08% in OFEO, predominately oleic acid (54.30%), and saturated fatty acids (palmitic acid 31.6%) account for 33.92%. GSC-induced dyslipidemia resulted in an increase in total cholesterol, LDL-cholesterol, triglycerides, glucose, and liver and abdominal fat, as well as atherogenic processes in the thoracic aorta. OFEO treatment did not reduce hypertriglyceridemia, but did reduce total cholesterol and LDL-cholesterol, thus contributing to the antiatherogenic action of OFEO. OFEO treatment inhibited the formation of atheromatous plaques in the vascular endothelium of the treated rats, as well as those who were treated with simvastatin. The results obtained suggest that OFEO has an antiatherogenic effect in a rat model of dyslipidemia.

  19. Cardiovascular disease and type 2 diabetes in evolutionary perspective: A critical role for helminths?

    PubMed Central

    Gurven, Michael D.; Trumble, Benjamin C.; Stieglitz, Jonathan; Blackwell, Aaron D.; Michalik, David E.; Finch, Caleb E.; Kaplan, Hillard S.

    2016-01-01

    Heart disease and type 2 diabetes are commonly believed to be rare among contemporary subsistence-level human populations, and by extension prehistoric populations. Although some caveats remain, evidence shows these diseases to be unusual among well-studied hunter-gatherers and other subsistence populations with minimal access to healthcare. Here we expand on a relatively new proposal for why these and other populations may not show major signs of these diseases. Chronic infections, especially helminths, may offer protection against heart disease and diabetes through direct and indirect pathways. As part of a strategy to insure their own survival and reproduction, helminths exert multiple cardio-protective effects on their host through their effects on immune function and blood lipid metabolism. Helminths consume blood lipids and glucose, alter lipid metabolism, and modulate immune function towards Th-2 polarization—which combined can lower blood cholesterol, reduce obesity, increase insulin sensitivity, decrease atheroma progression, and reduce likelihood of atherosclerotic plaque rupture. Traditional cardiometabolic risk factors, coupled with the mismatch between our evolved immune systems and modern, hygienic environments may interact in complex ways. In this review, we survey existing studies in the non-human animal and human literature, highlight unresolved questions and suggest future directions to explore the role of helminths in the etiology of cardio-metabolic disease. PMID:27666719

  20. Antiseptic mouth rinses: an update on comparative effectiveness, risks and recommendations.

    PubMed

    Osso, Diane; Kanani, Nehal

    2013-02-01

    Antiseptic mouth rinses are widely recommended and marketed to improve oral health. This article summarizes current studies on the comparative effectiveness of selected antiseptic mouth rinses in controlling plaque and gingivitis, as well as risks associated with daily exposure, including salivary flow rate, oral cancer and wear of composite restorations. Electronic database searches were conducted using Google Scholar and PubMed to identify articles comparing the effectiveness of 4 commercially marketed antiseptic mouth rinses differing in active ingredients (0.12% chlorhexidine gluconate, essential oils (menthol, thymol and eucalyptol) and methyl salicylate, 0.7% cetylpyridinium chloride and 20% aloe vera gel) for controlling plaque and gingivitis. Criteria for inclusion included controlled clinical trials and systematic reviews appearing in English language publications evaluating the comparative effectiveness of the mouth rinses in controlling plaque and gingivitis, as well as risks associated with daily usage. The majority of studies have shown mouth rinses containing chlorhexidine gluconate or essential oils and methyl salicylate provide clinically significant anti-gingivitis and anti-plaque benefits. Cetylpyridinium chloride has been found to provide only limited clinical benefits compared to inactive control mouth rinse. Inadequate evidence is available to evaluate the clinical effectiveness of aloe vera gel. Chlorhexidine, essential oils and cetylpyridinium have been found to be safe. However, limited data are available on the effects of the mouth rinse on wear patterns of dental restorations. Studies reviewed reported no significant difference in salivary flow rate related to alcohol based mouth rinse. Research supports the effectiveness of antiseptic mouth rinses in reducing plaque and gingivitis as an adjunct to home care. Insufficient evidence is available to support the claim that oral antiseptics can reduce the risk of developing periodontitis or the rate of progression of periodontitis.

  1. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques.

    PubMed

    Greißel, A; Culmes, M; Napieralski, R; Wagner, E; Gebhard, H; Schmitt, M; Zimmermann, A; Eckstein, H-H; Zernecke, A; Pelisek, J

    2015-08-01

    Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development.

  2. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations

    PubMed Central

    Herberstein, Marie E.

    2017-01-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates. PMID:28228539

  3. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations.

    PubMed

    Wolff, Jonas O; Herberstein, Marie E

    2017-02-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).

  4. Introducing Euro-Glo, a rare earth metal chelate with numerous applications for the fluorescent localization of myelin and amyloid plaques in brain tissue sections.

    PubMed

    Schmued, Larry; Raymick, James

    2017-03-01

    The vast majority of fluorochromes are organic in nature and none of the few existing chelates have been applied as histological tracers for localizing brain anatomy and pathology. In this study we have developed and characterized a Europium chelate with the ability to fluorescently label normal and pathological myelin in control and toxicant-exposed rats, as well as the amyloid plaques in aged AD/Tg mice. This study demonstrates how Euro-Glo can be used for the detailed labeling of both normal myelination in the control rat as well as myelin pathology in the kainic acid exposed rat. In addition, this study demonstrates how E-G will label the shell of amyloid plaques in an AD/Tg mouse model of Alzheimer's disease a red color, while the plaque core appears blue in color. The observed E-G staining pattern is compared with that of well characterized tracers specific for the localization of myelin (Black-Gold II), degenerating neurons (Fluoro-Jade C), A-beta aggregates (Amylo-Glo) and glycolipids (PAS). This study represents the first time a rare earth metal (REM) chelate has been used as a histochemical tracer in the brain. This novel tracer, Euro-Glo (E-G), exhibits numerous advantages over conventional organic fluorophores including high intensity emission, high resistance to fading, compatibility with multiple labeling protocols, high Stoke's shift value and an absence of bleed-through of the signal through other filters. Euro-Glo represents the first fluorescent metal chelate to be used as a histochemical tracer, specifically to localize normal and pathological myelin as well as amyloid plaques. Copyright © 2016. Published by Elsevier B.V.

  5. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oakmore » Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.« less

  6. CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs

    PubMed Central

    de Jong, Annemieke; Arce, Eva Casas; Cheng, Tan-Yun; van Summeren, Ruben P.; Feringa, Ben L.; Dudkin, Vadim; Crich, David; Matsunaga, Isamu; Minnaard, Adriaan J.; Moody, D. Branch

    2009-01-01

    Summary Human CD1c is a protein that activates αβ T cells by presenting self antigens, synthetic mannosyl phosphodolichols and mycobacterial mannosyl phosphopolyketides. To determine which molecular structures of antigens mediate a T cell response, we measured activation by structurally divergent M. tuberculosis mannosyl-β1-phosphomycoketides as well as by synthetic analogs produced by two methods that yield either stereorandom or stereospecific methyl branching patterns. T cell responses required both a phosphate and a β-linked mannose unit, and showed preference for C30–34 lipid units with methyl branches in the S-configuration. Thus, in all cases T cell responses were strongest for synthetic compounds that mimicked the natural branched lipids produced by mycobacterial polyketide synthase 12. Incorporation of methylmalonate to form branched lipids is a common bacterial lipid synthesis pathway that is absent in vertebrates, so the preferential recognition of branched lipids may represent a new type of lipid-based pathogen associated molecular pattern (PAMP). PMID:18022562

  7. Polyunsaturated fats, carbohydrates and carotid disease: The Atherosclerosis Risk in Communities (ARIC) Carotid MRI study

    PubMed Central

    Dearborn, Jennifer L.; Qiao, Ye; Guallar, Eliseo; Steffen, Lyn M.; Gottesman, Rebecca F.; Zhang, Yiyi; Wasserman, Bruce A.

    2016-01-01

    Background and aims Carbohydrates and fat intake have both been linked to development of atherosclerosis. We examined associations between glycemic index GI and fat intake with carotid atherosclerosis. Methods The Atherosclerosis Risk in Communities (ARIC) cohort enrolled participants during the period 1987–1989 and the Carotid MRI sub-study occurred between 2004 and 2006 (1,672 participants attending both visits). Measures of carbohydrate quality (usual GI), fat intake (total, polyunsaturated and saturated) and overall dietary quality index (DASH Diet Score) were derived from a 66-item food frequency questionnaire administered at baseline. Trained readers measured lipid core presence and maximum wall thickness. Using multivariate logistic regression, we determined the odds of lipid core presence by quintile (Q) of energy-adjusted dietary components. Restricted cubic spline models were used to examine non-linear associations between dietary components and maximum wall thickness. Results Mean daily polyunsaturated fat intake was 5 g (SD 1.4). GI and polyunsaturated fat intake had a nonlinear relationship with maximum wall thickness. Low (1–4 g) and high (6–12 g) polyunsaturated fat intake were associated with a statistically significant decreased odds of lipid core presence compared to intake in a majority of participants (OR Q5 vs. Q2–4: 0.64, 95% CI 0.42 to 0.98; OR Q1 vs. Q2–4: 0.64, 95% CI 0.42, 0.96), however, the association with lipid core was attenuated by adjustment for maximum wall thickness, hypertension, hyperlipidemia, and diabetes. Conclusions GI and polyunsaturated fat intake were not associated with high-risk plaque features, such as lipid core presence, independent of traditional vascular risk factors. PMID:27234460

  8. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation, amelioration of lipid profiles, anti-inflammatory action and anti-oxidative effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Lipid Lowering Effect of Antioxidant Alpha-Lipoic Acid in Experimental Atherosclerosis

    PubMed Central

    Amom, Zulkhairi; Zakaria, Zaiton; Mohamed, Jamaluddin; Azlan, Azrina; Bahari, Hasnah; Taufik Hidayat Baharuldin, Mohd; Aris Moklas, Mohd; Osman, Khairul; Asmawi, Zanariyah; Kamal Nik Hassan, Mohd

    2008-01-01

    Accumulating data demonstrated that hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group N, HCD and ALA (n = 6). Group N (normal control) was fed with normal chow, the rest (HCD and ALA) were fed with 100 g/head/day of 1% cholesterol rich diet to induce hypercholesterolemia. Four point two mg/body weight of alpha lipoic acid was concomintantly supplemented to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning, week 5 and week 10. Plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. At the end of the experiment, the animals were sacrificed and the aorta were excised for intimal lesion analysis. The plasma total cholesterol (TC) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the HCD group (p<0.05). Similarly, low level of MDA (p<0.05) in ALA group was observed compared to that of the HCD group showing a significant reduction of lipid peroxidation activity. Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to HCD group. These findings suggested that alpha lipoic acid posses a dual lipid lowering and anti-atherosclerotic properties indicated with low plasma TC and LDL levels and reduction of athero-lesion formation in hypercholesterolemic-induced rabbits. PMID:18818758

  10. Polyunsaturated fats, carbohydrates and carotid disease: The Atherosclerosis Risk in Communities (ARIC) Carotid MRI study.

    PubMed

    Dearborn, Jennifer L; Qiao, Ye; Guallar, Eliseo; Steffen, Lyn M; Gottesman, Rebecca F; Zhang, Yiyi; Wasserman, Bruce A

    2016-08-01

    Carbohydrates and fat intake have both been linked to development of atherosclerosis. We examined associations between glycemic index (GI) and fat intake with carotid atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) cohort enrolled participants during the period 1987-1989 and the Carotid MRI sub-study occurred between 2004 and 2006 (1672 participants attending both visits). Measures of carbohydrate quality (usual GI), fat intake (total, polyunsaturated and saturated) and overall dietary quality index (DASH Diet Score) were derived from a 66-item food frequency questionnaire administered at baseline. Trained readers measured lipid core presence and maximum wall thickness. Using multivariate logistic regression, we determined the odds of lipid core presence by quintile (Q) of energy-adjusted dietary components. Restricted cubic spline models were used to examine non-linear associations between dietary components and maximum wall thickness. Mean daily polyunsaturated fat intake was 5 g (SD 1.4). GI and polyunsaturated fat intake had a nonlinear relationship with maximum wall thickness. Low (1-4 g) and high (6-12 g) polyunsaturated fat intake were associated with a statistically significant decreased odds of lipid core presence compared to intake in a majority of participants (OR Q5 vs. Q2-4: 0.64, 95% CI 0.42 to 0.98; OR Q1 vs. Q2-4: 0.64, 95% CI 0.42, 0.96), however, the association with lipid core was attenuated by adjustment for maximum wall thickness, hypertension, hyperlipidemia, and diabetes. GI and polyunsaturated fat intake were not associated with high-risk plaque features, such as lipid core presence, independent of traditional vascular risk factors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  12. Altered lipid metabolism in brain injury and disorders.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, J F

    2008-01-01

    Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-alpha and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-alpha and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice. Eicosapentaenoic acid supplementation provided improvement in schizophrenia patients, while the combination of (eicosapentaenoic acid + docosahexaenoic acid) provided benefit in bipolar disorders. The ketogenic diet where >90% of calories are derived from fat is an effective treatment for epilepsy. Understanding cytokine-induced changes in lipid metabolism will promote novel concepts and steer towards bench-to-bedside transition for therapies.

  13. Patterning of supported lipid bilayers and proteins using material selective nitrodopamine-mPEG.

    PubMed

    Spycher, Philipp R; Hall, Heike; Vogel, Viola; Reimhult, Erik

    2015-01-01

    We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single μm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin-streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.

  14. A comparative evaluation of the in vitro penetration performance of the improved Crest complete toothbrush versus the Current Crest complete toothbrush, the Colgate Precision toothbrush and the Oral-B P40 toothbrush.

    PubMed

    Volpenhein, D W; Handel, S E; Hughes, T J; Wild, J

    1996-01-01

    Removal of plaque and debris from interproximal surfaces during toothbrushing has generally been difficult to achieve, in large part because traditional flat-bristled toothbrushes do not offer good interproximal penetration. As a result, a number of varying bristle designs have been developed, with the rippled-design brush shown to be particularly effective at removing interproximal plaque. Recently, an existing brush, the original Crest Complete, was modified to offer a more deeply rippled version. This study evaluated the interproximal penetration of four bristle designs: rippled pattern (original Crest Complete), deeper rippled pattern (improved Crest Complete), multi-level (Colgate Precision), and flat-tufted (Oral-B P40). The study used a previously reported in vitro model for determining interproximal penetration of manual toothbrushes (J Clin Dent 5:27-33, 1994). In order to effectively mimic the in-use characteristics of toothbrushing, this model is based on analysis of videotaped consumer brushing habits, tooth morphology, and in vivo plaque tenacity characteristics and uses the three most predominantly used brushing techniques (circular, up-and-down, and back-and-forth, with the brush held at both 45 and 90 degrees to the tooth surface). In addition, the model's brush stroke length, brush force, and brush speed are likewise based on analysis of consumer brushing patterns. The results of the study indicate that the new Crest Complete with deeper rippled bristles provided significantly superior (p < or = 0.05) interproximal penetration than the Colgate Precision and Oral-B brushes overall and for three of the four brush strokes tested. In addition, the new Crest Complete was found to provide significantly superior interproximal penetration to the original Crest Complete overall and in circular and up-and-down strokes, and the original Crest Complete provided superior overall interproximal penetration to the Colgate and Oral-B brushes.

  15. Analysis of cutin and suberin biomarker patterns in alluvial sedi-ments

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Sesterheim, Anna; König, Frauke; Fuchs, Elmar

    2015-04-01

    Cutin and suberin are the primary source of hydrolysable aliphatic lipid polyesters in soil organic matter (SOM). They are known as geochemical biomarkers to estimate the contribution of different plant species and tissues to SOM. Despite their potential as biomarkers, cutin and suberin have received less attention as flood plain sediment biomarkers. The objectives of this study were to investigate the efficiency of cutin and suberin as biomarkers in floodplains. Therefore similarities between the lipid pattern in alluvial sediments and in the actual vegetation were considered. Lipids of plant tissues (roots, twigs, leaves) from different species (reed (e.g. Phalaris arun-diacea), Salix alba, Ulmus laevis and grassland (e.g. Carex spec.)) and of the un-derlying soils and sediments were obtained and investigated at four sites in the nature reserve Knoblauchsaue (Hessen, Germany). The four sampling sites differ not only with respect to their vegetation, but also within their distance to the river Rhine. Cutin and suberin monomers of plants and soils were analysed by alkaline hydrolysis, methylation and acetylation and subsequent gas chromatography-mass spectrometry. Resulting lipid patterns were specific for the appropriate plant species and tissues. However, the traceability of single selected lipids was decreasing alongside the soil profile, with the exception of monomers in softwood floodplain soils. Selected tissue specific lipid ratios showed a higher traceability due to strong attributions of lipid ratios in soils and roots of U. laevis and Carex spec. and in leaves of U. laevis and S. alba. In contrast, there was no accordance between the suberin specific lipid ratios in soils and roots of S. alba and P. arundiacea. The most robust interpretations were afforded when a set of multiple biomarkers (i.e. a combination of free lipid ratios and ratios of hydrolysable lipids) was used to collectively reconstruct the source vegetation of different sediment layers.

  16. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus.

    PubMed

    Piffanelli, P; Ross, J H; Murphy, D J

    1997-03-01

    Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2-3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3-4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3-5 mm bud stages, with the SAD and EAR gene products detected in 4-7 mm buds. This pattern of expression coincided with accumulation of the intracellular storage and membrane lipid components of pollen. These results suggest that, although the same genes may be expressed in the sporophytic tapetal cells and in gametophytic tissues, they are regulated differentially leading to the production of the various contrasting lipidic structures that are assembled together to give rise to a viable, fertile pollen grain.

  17. 2013 ACC/AHA versus 2004 NECP ATP III Guidelines in the Assignment of Statin Treatment in a Korean Population with Subclinical Coronary Atherosclerosis.

    PubMed

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Yang, Dong Hyun; Kang, Joon-Won; Kim, Eun Hee; Park, Duk-Woo; Park, Joong-Yeol; Kim, Hong-Kyu; Lee, Woo Je

    2015-01-01

    The usefulness of the 2013 ACC/AHA guidelines for the management of blood cholesterol in the Asian population remains controversial. In this study, we investigated whether eligibility for statin therapy determined by the 2013 ACC/AHA guidelines is better aligned with the presence of subclinical coronary atherosclerosis detected by CCTA (coronary computed tomography angiography) compared to the previously recommended 2004 NCEP ATP III guidelines. We collected the data from 5,837 asymptomatic subjects who underwent CCTA using MDCT during routine health examinations. Based on risk factor assessment and lipid data, we determined guideline-based eligibility for statin therapy according to the 2013 ACC/AHA and 2004 NCEP ATP III guidelines. We defined the presence and severity of subclinical coronary atherosclerosis detected in CCTA according to the presence of significant coronary artery stenosis (defined as >50% stenosis), plaques, and the degree of coronary calcification. As compared to the 2004 ATP III guidelines, a significantly higher proportion of subjects with significant coronary stenosis (61.8% vs. 33.8%), plaques (52.3% vs. 24.7%), and higher CACS (CACS >100, 63.6% vs. 26.5%) was assigned to statin therapy using the 2013 ACC/AHA guidelines (P < .001 for all variables). The area under the curves of the pooled cohort equation of the new guidelines in detecting significant stenosis, plaques, and higher CACS were significantly higher than those of the Framingham risk calculator. Compared to the previous ATP III guidelines, the 2013 ACC/AHA guidelines were more sensitive in identifying subjects with subclinical coronary atherosclerosis detected by CCTA in an Asian population.

  18. 2013 ACC/AHA versus 2004 NECP ATP III Guidelines in the Assignment of Statin Treatment in a Korean Population with Subclinical Coronary Atherosclerosis

    PubMed Central

    Kang, Yu Mi; Yang, Dong Hyun; Kang, Joon-Won; Kim, Eun Hee; Park, Duk-Woo; Park, Joong-Yeol; Kim, Hong-Kyu; Lee, Woo Je

    2015-01-01

    Background The usefulness of the 2013 ACC/AHA guidelines for the management of blood cholesterol in the Asian population remains controversial. In this study, we investigated whether eligibility for statin therapy determined by the 2013 ACC/AHA guidelines is better aligned with the presence of subclinical coronary atherosclerosis detected by CCTA (coronary computed tomography angiography) compared to the previously recommended 2004 NCEP ATP III guidelines. Methods We collected the data from 5,837 asymptomatic subjects who underwent CCTA using MDCT during routine health examinations. Based on risk factor assessment and lipid data, we determined guideline-based eligibility for statin therapy according to the 2013 ACC/AHA and 2004 NCEP ATP III guidelines. We defined the presence and severity of subclinical coronary atherosclerosis detected in CCTA according to the presence of significant coronary artery stenosis (defined as >50% stenosis), plaques, and the degree of coronary calcification. Results As compared to the 2004 ATP III guidelines, a significantly higher proportion of subjects with significant coronary stenosis (61.8% vs. 33.8%), plaques (52.3% vs. 24.7%), and higher CACS (CACS >100, 63.6% vs. 26.5%) was assigned to statin therapy using the 2013 ACC/AHA guidelines (P < .001 for all variables). The area under the curves of the pooled cohort equation of the new guidelines in detecting significant stenosis, plaques, and higher CACS were significantly higher than those of the Framingham risk calculator. Conclusions Compared to the previous ATP III guidelines, the 2013 ACC/AHA guidelines were more sensitive in identifying subjects with subclinical coronary atherosclerosis detected by CCTA in an Asian population. PMID:26372638

  19. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.

    PubMed

    Vogel, Megan E; Idelman, Gila; Konaniah, Eddy S; Zucker, Stephen D

    2017-04-01

    Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice and elucidate the molecular processes underlying this effect. Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to Ldlr -/- mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression. Bilirubin suppresses atherosclerotic plaque formation in Ldlr -/- mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Anti-atherosclerotic effects of pravastatin in brachiocephalic artery in comparison with en face aorta and aortic roots in ApoE/LDLR-/- mice.

    PubMed

    Kostogrys, Renata B; Franczyk-Zarow, Magdalena; Gasior-Glogowska, Marlena; Kus, Edyta; Jasztal, Agnieszka; Wrobel, Tomasz P; Baranska, Malgorzata; Czyzynska-Cichon, Izabela; Drahun, Anna; Manterys, Angelika; Chlopicki, Stefan

    2017-02-01

    Cholesterol-dependent and independent mechanisms were proposed to explain anti-atherosclerotic action of statins in humans. However, their effects in murine models of atherosclerosis have not been consistently demonstrated. Here, we studied the effects of pravastatin on atherosclerosis in ApoE/LDLR -/- mice fed a control and atherogenic diet. ApoE/LDLR -/- mice were fed a control (CHOW) or an atherogenic (Low Carbohydrate High Protein, LCHP) diet. Two doses of pravastatin (40mg/kg and 100mg/kg) were used. The anti-atherosclerotic effects of pravastatin in en face aorta, cross-sections of aortic roots and brachiocephalic artery (BCA) were analysed. The lipid profile was determined. Fourier Transform Infrared Spectroscopy followed by Fuzzy C-Means (FCM) clustering was used for the quantitative assessment of plaque composition. Treatment with pravastatin (100mg/kg) decreased total and LDL cholesterol only in the LCHP group, but displayed a pronounced anti-atherosclerotic effect in BCA and abdominal aorta. The anti-atherosclerotic effect of pravastatin (100mg/kg) in BCA was associated with significant alterations of the chemical plaque composition, including a fall in cholesterol and cholesterol esters contents independently on total cholesterol and LDL concentration in plasma. Pravastatin at high (100mg/kg), but not low dose displayed a pronounced anti-atherosclerotic effect in ApoE/LDLR -/- mice fed a CHOW or LCHP diet that was remarkable in BCA, visible in en face aorta, whereas it was not observed in aortic roots, suggesting that previous inconsistencies might have been due to the various sites of atherosclerotic plaque analysis. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  1. Myeloperoxidase-mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I*

    PubMed Central

    Chan, Gary K. L.; Witkowski, Andrzej; Gantz, Donald L.; Zhang, Tianqi O.; Zanni, Martin T.; Jayaraman, Shobini; Cavigiolio, Giorgio

    2015-01-01

    High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo. PMID:25759391

  2. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  3. 4-phenylbutyrate and valproate treatment attenuates the progression of atherosclerosis and stabilizes existing plaques.

    PubMed

    Huang, Aric; Young, Tayler L; Dang, Vi T; Shi, Yuanyuan; McAlpine, Cameron S; Werstuck, Geoff H

    2017-11-01

    Recent evidence suggests that endoplasmic reticulum (ER) stress signaling through glycogen synthase kinase (GSK)-3α/β is involved in the activation of pro-atherosclerotic processes. In this study, we examined the effects of small molecules that interfere with ER stress-GSK3α/β signaling on the progression and regression of atherosclerosis in a mouse model. To examine atherosclerotic progression, low-density lipoprotein receptor deficient (Ldlr -/- ) mice were placed on a high-fat diet (HFD) and treated with the chemical chaperone, 4-phenylbutyrate (4PBA, 3.8  g/L drinking water), or the GSK3α/β inhibitor, valproate (VPA, 625 mg VPA/kg diet), for 10 weeks. To examine potential effects on atherosclerotic regression, 4 week old Ldlr -/- mice were placed on a HFD for 16 weeks. Subsets of mice were harvested at this time or switched to a chow (low fat) diet, or a chow diet with 4PBA or VPA treatment for 4 weeks. In the progression model, the 4PBA- and VPA-treated mice had significantly reduced lesion and necrotic core size. Treatments had no effect on metabolic parameters, including plasma and hepatic lipid levels, or plaque composition. In the regression model, mice with 4PBA or VPA treatment showed no alterations in lesion size, but the lesions had significantly smaller necrotic cores, increased vascular smooth muscle cell content, and increased collagen content. These features are consistent with more stable plaques. The pharmacological attenuation of ER stress or inhibition of GSK3α/β impedes the development of atherosclerosis in Ldlr -/- mice and appears to promote the stabilization of existing lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Characterisation of Atherogenic Effects of Low Carbohydrate, High Protein Diet (LCHP) in ApoE/LDLR-/- Mice.

    PubMed

    Kostogrys, R B; Johann, C; Czyżyńska, I; Franczyk-Żarów, M; Drahun, A; Maślak, E; Jasztal, A; Gajda, M; Mateuszuk, Ł; Wrobel, T P; Baranska, M; Wybrańska, I; Jezkova, K; Nachtigal, P; Chlopicki, S

    2015-08-01

    Low Carbohydrate High Protein diet represents a popular strategy to achieve weight loss. The aim of this study was to characterize effects of low carbohydrate, high protein diet (LCHP) on atherosclerotic plaque development in brachiocephalic artery (BCA) in apoE/LDLR-/- mice and to elucidate mechanisms of proatherogenic effects of LCHP diet. Atherosclerosis plaques in brachiocephalic artery (BCA) as well as in aortic roots, lipoprotein profile, inflammation biomarkers, expression of SREBP-1 in the liver as well as mortality were analyzed in Control diet (AIN-93G) or LCHP (Low Carbohydrate High Protein) diet fed mice. Area of atherosclerotic plaques in aortic roots or BCA from LCHP diet fed mice was substantially increased as compared to mice fed control diet and was characterized by increased lipids and cholesterol contents (ORO staining, FT-IR analysis), increased macrophage infiltration (MOMA-2) and activity of MMPs (zymography). Pro-atherogenic phenotype of LCHP fed apoE/LDLR-/- mice was associated with increased plasma total cholesterol concentration, and in LDL and VLDL fractions, increased TG contents in VLDL, and a modest increase in plasma urea. LCHP diet increased SCD-1 index, activated SREBP-1 transcription factor in the liver and triggered acute phase response as evidence by an increased plasma concentration of haptoglobin, CRP or AGP. Finally, in long-term experiment survival of apoE/LDLR-/- mice fed LCHP diet was substantially reduced as compared to their counterparts fed control diet suggesting overall detrimental effects of LCHP diet on health. The pro-atherogenic effect of LCHP diet in apoE/LDLR-/- mice is associated with profound increase in LDL and VLDL cholesterol, VLDL triglicerides, liver SREBP-1 upregulation, and systemic inflammation.

  5. Omega-3 fatty acids, inflammation and angiogenesis: basic mechanisms behind the cardioprotective effects of fish and fish oils.

    PubMed

    Massaro, M; Scoditti, E; Carluccio, M A; Campana, M C; De Caterina, R

    2010-02-25

    Atherosclerosis is now widely accepted to be an inflammatory disease, characterized by degenerative as well as proliferative changes and extracellular accumulation of lipid and cholesterol, in which an ongoing inflammatory reaction plays an important role both in initiation and progression/destabilization, converting a chronic process into an acute disorder. Neovascularization has also been recognized as an important process for the progression/destabilization of atherosclerotic plaques. In fact, vulnerable atherosclerotic plaques prone to rupture are characterized by an enlarged necrotic core, containing an increased number of vasa vasorum, apoptotic macrophages, and more frequent intraplaque haemorrhage. Various functional roles have been assigned to intimal microvessels, however the relationship between the process of angiogenesis and its causal association with the progression and complications of atherosclerosis are still challenging and controversial. In the past 30 years, the dietary intake of omega-3 (n-3) polyunsaturated fatty acids--mainly derived from fish--has emerged as an important way to modify cardiovascular risk through beneficial effects on all stages of atherosclerosis, including plaque angiogenesis. This review specifically focuses on the modulating effects of n-3 fatty acids on molecular events involved in early and late atherogenesis, including effects on endothelial expression of adhesion molecules, as well as pro-inflammatory and pro-angiogenic enzymes. By accumulating in endothelial membrane phospholipids, omega-3 fatty acids have been shown to decrease the transcriptional activation of several genes through an attenuation of activation of the nuclear factor-kappaB system of transcription factors. This occurs secondary to decreased generation of intracellular reactive oxygen species. This series of investigations configures a clear example of nutrigenomics--i.e., how nutrients may affect gene expression, ultimately affecting a wide spectrum of human diseases.

  6. Association of neointimal morphology by optical coherence tomography with rupture of neoatherosclerotic plaque very late after coronary stent implantation.

    NASA Astrophysics Data System (ADS)

    Karanasos, Antonios; Ligthart, Jurgen; Witberg, Karen; Toutouzas, Konstantinos; Daemen, Joost; van Soest, Gijs; Gnanadesigan, Muthukaruppan; van Geuns, Robert-Jan; de Jaegere, Peter; Regar, Evelyn

    2013-03-01

    Purpose: Neoatherosclerosis within a stent has been recently described as a culprit of late stent failure. We investigated by optical coherence tomography (OCT) the association of neoatherosclerotic plaque morphology with neointimal rupture (NR) and clinical presentation in patients late after coronary stent implantation. Methods: From 1/1/2007 to 31/1/2012, 74 patients from two institutions underwent OCT assessment of a coronary stent implanted at least 18 months prior to OCT study. Native atherosclerosis criteria were used for neointimal characterization. Results: Neoatherosclerosis was observed in 59.5% of the stents (n=44). Stents with neoatherosclerosis were more often associated with symptoms compared to stents without neoatherosclerosis (59.1% acute coronary syndrome (ACS), 25% stable angina (SA), and 15.9% asymptomatic versus 43.3% ACS, 6.7% SA, 50% asymptomatic, p<0.01). Among neoatherosclerotic lesions (n=44), NR was detected in 19 (43.2%) and had higher incidence in ACS (61.5%) than in SA (18.2%) and asymptomatic (14.3%) (p<0.05). Thrombus was detected in all NR cases. Fibrous cap thickness was lower in NR lesions compared to lesions without NR (48+/-21 μm versus 104+/-58μm, p<0.01). Lipid content tended to be higher in lesions with NR (260+/-103° versus 203+/-85°, p=0.051). Lesions with NR had more often dense macrophage infiltration (84.2% versus 44.0%, p<0.05). There were no differences in neovascularization or calcifications between lesions with or without NR. Conclusions: Neoatherosclerosis is frequent and more common among symptomatic patients. Importantly, neointimal rupture is associated with ACS late after stent implantation. Specific morphological characteristics, such as cap thickness and macrophage infiltration are associated with rupture of neoatherosclerotic plaques.

  7. Periodontal Pathogens Invade Gingiva and Aortic Adventitia and Elicit Inflammasome Activation in αvβ6 Integrin-Deficient Mice

    PubMed Central

    Velsko, Irina M.; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Zheng, Donghang; Aukhil, Ikramuddin; Lucas, Alexandra R.; Larjava, Hannu

    2015-01-01

    The American Heart Association supports an association between periodontal diseases and atherosclerosis but not a causal association. This study explores the use of the integrin β6−/− mouse model to study the causality. We investigated the ability of a polymicrobial consortium of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum to colonize the periodontium and induce local and systemic inflammatory responses. Polymicrobially infected Itgβ6−/− mice demonstrate greater susceptibility to gingival colonization/infection, with severe gingival inflammation, apical migration of the junctional epithelium, periodontal pocket formation, alveolar bone resorption, osteoclast activation, bacterial invasion of the gingiva, a greater propensity for the bacteria to disseminate hematogenously, and a strong splenic T cell cytokine response. Levels of atherosclerosis risk factors, including serum nitric oxide, oxidized low-density lipoprotein, serum amyloid A, and lipid peroxidation, were significantly altered by polybacterial infection, demonstrating an enhanced potential for atherosclerotic plaque progression. Aortic gene expression revealed significant alterations in specific Toll-like receptor (TLR) and nucleotide-binding domain- and leucine-rich-repeat-containing receptor (NLR) pathway genes in response to periodontal bacterial infection. Histomorphometry of the aorta demonstrated larger atherosclerotic plaques in Itgβ6−/− mice than in wild-type (WT) mice but no significant difference in atherosclerotic plaque size between mice with polybacterial infection and mice with sham infection. Fluorescence in situ hybridization demonstrated active invasion of the aortic adventitial layer by P. gingivalis. Our observations suggest that polybacterial infection elicits distinct aortic TLR and inflammasome signaling and significantly increases local aortic oxidative stress. These results are the first to demonstrate the mechanism of the host aortic inflammatory response induced by polymicrobial infection with well-characterized periodontal pathogens. PMID:26371120

  8. Greater adherence to a Mediterranean dietary pattern is associated with improved plasma lipid profile: the Aragon Health Workers Study cohort.

    PubMed

    Peñalvo, José L; Oliva, Belén; Sotos-Prieto, Mercedes; Uzhova, Irina; Moreno-Franco, Belén; León-Latre, Montserrat; Ordovás, José María

    2015-04-01

    There is wide recognition of the importance of healthy eating in cardiovascular health promotion. The purpose of this study was to identify the main dietary patterns among a Spanish population, and to determine their relationship with plasma lipid profiles. A cross-sectional analysis was conducted of data from 1290 participants of the Aragon Workers Health Study cohort. Standardized protocols were used to collect clinical and biochemistry data. Diet was assessed through a food frequency questionnaire, quantifying habitual intake over the past 12 months. The main dietary patterns were identified by factor analysis. The association between adherence to dietary patterns and plasma lipid levels was assessed by linear and logistic regression. Two dietary patterns were identified: a Mediterranean dietary pattern, high in vegetables, fruits, fish, white meat, nuts, and olive oil, and a Western dietary pattern, high in red meat, fast food, dairy, and cereals. Compared with the participants in the lowest quintile of adherence to the Western dietary pattern, those in the highest quintile had 4.6 mg/dL lower high-density lipoprotein cholesterol levels (P < .001), 8 mg/dL lower apolipoprotein A1 levels (P = .005) and a greater risk of having decreased high-density lipoprotein cholesterol (odds ratio = 3.19; 95% confidence interval, 1.36-7.5; P-trend = .03). Participants adhering to the Mediterranean dietary pattern had 3.3mg/dL higher high-density lipoprotein cholesterol levels (P < .001), and a ratio of triglycerides to high-density lipoprotein cholesterol that was 0.43 times lower (P = .043). Adherence to the Mediterranean dietary pattern is associated with improved lipid profile compared with a Western dietary pattern, which was associated with a lower odds of optimal high-density lipoprotein cholesterol levels in this population. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids.

    PubMed

    Castillo, D; Higuera, G; Villa, M; Middelboe, M; Dalsgaard, I; Madsen, L; Espejo, R T

    2012-03-01

    Flavobacterium psychrophilum causes rainbow trout fry syndrome (RTFS) and cold water disease (CWD) in salmonid aquaculture. We report characterization of F. psychrophilum strains and their bacteriophages isolated in Chilean salmonid aquaculture. Results suggest that under laboratory conditions phages can decrease mortality of salmonids from infection by their F. psychrophilum host strain. Twelve F. psychrophilum isolates were characterized, with DNA restriction patterns showing low diversity between strains despite their being obtained from different salmonid production sites and from different tissues. We isolated 15 bacteriophages able to infect some of the F. psychrophilum isolates and characterized six of them in detail. DNA genome sizes were close to 50 Kbp and corresponded to the Siphoviridae and Podoviridae families. One isolate, 6H, probably contains lipids as an essential virion component, based on its chloroform sensitivity and low buoyant density in CsCl. Each phage isolate rarely infected F. psychrophilum strains other than the strain used for its enrichment and isolation. Some bacteriophages could decrease mortality from intraperitoneal injection of its host strain when added together with the bacteria in a ratio of 10 plaque-forming units per colony-forming unit. While we recognize the artificial laboratory conditions used for these protection assays, this work is the first to demonstrate that phages might be able protect salmonids from RTFS or CWD. © 2012 Blackwell Publishing Ltd.

  10. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Gui-bo; Qin, Meng; Ye, Jing-xue

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protectsmore » against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H{sub 2}O{sub 2})-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H{sub 2}O{sub 2}-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H{sub 2}O{sub 2}-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H{sub 2}O{sub 2} induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up regulates eNOS activity in HUVECs. • Myricitrin down regulates P53 expression and MAPKs phosphorylation in HUVECs.« less

  11. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis

    PubMed Central

    1978-01-01

    Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate- sized filaments is discussed. PMID:569157

  12. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis.

    PubMed

    Drochmans, P; Freudenstein, C; Wanson, J C; Laurent, L; Keenan, T W; Stadler, J; Leloup, R; Franke, W W

    1978-11-01

    Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome-tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate-sized filaments is discussed.

  13. Lipid metabolism-related gene expression pattern of Atlantic bluefin tuna (Thunnus thynnus L.) larvae fed on live prey.

    PubMed

    Betancor, Mónica B; Ortega, Aurelio; de la Gándara, Fernando; Tocher, Douglas R; Mourente, Gabriel

    2017-04-01

    The present study is the first to evaluate lipid metabolism in first-feeding Atlantic bluefin tuna (ABT; Thunnus thynnus L.) larvae fed different live prey including enriched rotifers Brachionus plicatilis and Acartia sp. copepod nauplii from 2 days after hatch. Understanding the molecular basis of lipid metabolism and regulation in ABT will provide insights to optimize diet formulations for this high-value species new to aquaculture. To this end, we investigated the effect of dietary lipid on whole larvae lipid class and fatty acid compositions and the expression of key genes involved in lipid metabolism in first feeding ABT larvae fed different live prey. Additionally, the expression of lipid metabolism genes in tissues of adult broodstock ABT was evaluated. Growth and survival data indicated that copepods were the best live prey for first feeding ABT and that differences in growth performance and lipid metabolism observed between larvae from different year classes could be a consequence of broodstock nutrition. In addition, expression patterns of lipid metabolic genes observed in ABT larvae in the trials could reflect differences in lipid class and fatty acid compositions of the live prey. The lipid nutritional requirements, including essential fatty acid requirements of larval ABT during the early feeding stages, are unknown, and the present study represents a first step in addressing these highly relevant issues. However, further studies are required to determine nutritional requirements and understand lipid metabolism during development of ABT larvae and to apply the knowledge to the commercial culture of this iconic species.

  14. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy.

    PubMed

    Zimmer, Dana; Kruse, Jens; Baum, Christel; Borca, Camelia; Laue, Michael; Hause, Gerd; Meissner, Ralph; Leinweber, Peter

    2011-09-01

    Under changing redox conditions some plants create plaques at their root surface, which may affect the mobility and uptake of As and heavy metals but it is unknown to what extent this also holds true for willows in contaminated floodplain soils. Therefore, willow roots were sampled from a phytoremediation trial in the contaminated floodplain of the river Elbe (Germany), cryofixed, freeze-dried, and cross sections were mapped for the distribution of As, Ca, Cu, Fe, K, Mn, Ni, S and Zn by synchrotron based X-ray fluorescence spectroscopy. The elements Ca, Cu, Ni, S and Zn were concentrated in the aerenchymatic tissue, and not associated with Fe and Mn. Mixed Fe-Mn plaques covered the surface of the willow roots and As was accumulated in these plaques. The observed association pattern between As and Fe was explained by the different sorption/desorption properties of As(III) and As(V). The Cu and Zn intensities were not associated with the intensity of Fe in the plaque, which seems to be a willow-specific difference compared to other wetland plants. These results suggested that willows are especially suited to stabilize low-phytoextractable elements like Cu and As in their roots and rhizosphere. Thus, short rotation coppicing of willows may be a practical approach to mitigate the adverse effects of floodplain soil contamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan F.; Frischer, Josa M.; Webb, Samuel M.

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distributionmore » of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Furthermore, upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.« less

  16. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

    DOE PAGES

    Popescu, Bogdan F.; Frischer, Josa M.; Webb, Samuel M.; ...

    2017-03-22

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distributionmore » of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Furthermore, upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.« less

  17. Numerical analysis of the hemodynamic effect of plaque ulceration in the stenotic carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Wong, Emily Y.; Milner, Jaques S.; Steinman, David A.; Poepping, Tamie L.; Holdsworth, David W.

    2009-02-01

    The presence of ulceration in carotid artery plaque is an independent risk factor for thromboembolic stroke. However, the associated pathophysiological mechanisms - in particular the mechanisms related to the local hemodynamics in the carotid artery bifurcation - are not well understood. We investigated the effect of carotid plaque ulceration on the local time-varying three-dimensional flow field using computational fluid dynamics (CFD) models of a stenosed carotid bifurcation geometry, with and without the presence of ulceration. CFD analysis of each model was performed with a spatial finite element discretization of over 150,000 quadratic tetrahedral elements and a temporal discretization of 4800 timesteps per cardiac cycle, to adequately resolve the flow field and pulsatile flow, respectively. Pulsatile flow simulations were iterated for five cardiac cycles to allow for cycle-to-cycle analysis following the damping of initial transients in the solution. Comparison between models revealed differences in flow patterns induced by flow exiting from the region of the ulcer cavity, in particular, to the shape, orientation and helicity of the high velocity jet through the stenosis. The stenotic jet in both models exhibited oscillatory motion, but produced higher levels of phase-ensembled turbulence intensity in the ulcerated model. In addition, enhanced out-of-plane recirculation and helical flow was observed in the ulcerated model. These preliminary results suggest that local fluid behaviour may contribute to the thrombogenic risk associated with plaque ulcerations in the stenotic carotid artery bifurcation.

  18. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi

    2014-01-01

    The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948

  19. Simple Analysis of Lipid Inhibition Activity on an Adipocyte Micro-Cell Pattern Chip.

    PubMed

    Kim, Gi Yong; Yeom, Su-Jin; Jang, Sung-Chan; Lee, Chang-Soo; Roh, Changhyun; Jeong, Heon-Ho

    2018-06-04

    Polydimethyl-siloxane (PDMS) is often applied to fabricate cell chips. In this study, we fabricated an adipocyte microcell pattern chips using PDMS to analyze the inhibition activity of lipid droplets in mouse embryo fibroblast cells (3T3-L1) with anti-obesity agents. To form the PDMS based micropattern, we applied the micro-contact printing technique using PDMS micro-stamps that had been fabricated by conventional soft lithography. This PDMS micro-pattern enabled the selective growth of 3T3-L1 cells onto the specific region by preventing cell adhesion on the PDMS region. It then allowed growth of the 3T3-L1 cells in the chip for 10 days and confirmed that lipid droplets were formed in the 3T3-L1 cells. After treatment of orlistat and quercetin were treated in an adipocyte micro-cell pattern chip with 3T3-L1 cells for six days, we found that orlistat and quercetin exhibited fat inhibition capacities of 19.3% and 24.4% from 0.2 μM of lipid droplets in 3T3-L1 cells. In addition, we conducted a direct quantitative analysis of 3T3-L1 cell differentiation using Oil Red O staining. In conclusion, PDMS-based adipocyte micro-cell pattern chips may contribute to the development of novel bioactive compounds.

  20. Imbalanced gp130 signalling in ApoE-deficient mice protects against atherosclerosis.

    PubMed

    Jones, Gareth W; McLeod, Louise; Kennedy, Catherine L; Bozinovski, Steven; Najdovska, Meri; Jenkins, Brendan J

    2015-02-01

    Interleukin (IL)-6 is a key modulator of the acute phase response (APR), and while both are implicated in atherosclerosis, the pathological role of specific IL-6 signalling cascades is ill-defined. Since IL-6 employs the cytokine receptor gp130 to primarily activate the STAT3 pathway, here we evaluate whether gp130-dependent STAT3 activation modulates atherosclerosis. High-fat diet-induced atherosclerosis was established in ApoE(-/-) mice crossed with gp130(F/F) knock-in mice displaying elevated gp130-dependent STAT3 activation and production of the APR protein, serum amyloid A (SAA). Also generated were gp130(F/F):Stat3(-/+):ApoE(-/-) mice displaying genetically-normalised STAT3 activation and SAA levels, and bone marrow chimeras involving ApoE(-/-) and gp130(F/F):ApoE(-/-) mice. At 10 weeks post high-fat diet, aortic atherosclerotic lesions, including the presence of CD68(+) macrophages, and plasma lipid and SAA profiles, were assessed. Aortic plaque development and plasma triglyceride levels in gp130(F/F):ApoE(-/-) mice were significantly reduced (3-fold, P < 0.001) compared to ApoE(-/-) littermates. By contrast, in gp130(F/F):ApoE(-/-) mice, atherosclerotic plaques contained augmented CD68(+) macrophage infiltrates, and plasma SAA levels were elevated, compared to ApoE(-/-) mice. Atherosclerotic lesion development and plasma triglyceride levels in gp130(F/F):ApoE(-/-) and gp130(F/F):Stat3(-/+):ApoE(-/-) mice were comparable, despite a significant (P < 0.05) reduction in macrophage numbers in lesions, and also plasma SAA levels, in gp130(F/F):Stat3(-/+):ApoE(-/-) mice. Aortic plaque development and plasma triglyceride levels were comparable in ApoE(-/-) mice reconstituted with gp130(F/F):ApoE(-/-) (ApoE(F/F:ApoE)) or ApoE(-/-) (ApoE(ApoE)) bone marrow cells. Deregulation of gp130/STAT3 signalling augments the APR and macrophage infiltration during atherosclerosis without impacting on the development of aortic plaques. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Eicosapentaenoic acid to arachidonic acid (EPA/AA) ratio as an associated factor of high risk plaque on coronary computed tomography in patients without coronary artery disease.

    PubMed

    Nagahara, Yasuomi; Motoyama, Sadako; Sarai, Masayoshi; Ito, Hajime; Kawai, Hideki; Takakuwa, Yoko; Miyagi, Meiko; Shibata, Daisuke; Takahashi, Hiroshi; Naruse, Hiroyuki; Ishii, Junichi; Ozaki, Yukio

    2016-07-01

    Coronary computed tomography angiography (CCTA)-verified high risk plaque (HRP) characteristics including positive remodeling and low attenuation plaque have been associated with acute coronary syndromes. Several studies reported that the n-3 polyunsaturated fatty acids have been associated with cardiovascular events. However, the relationship between serum eicosapentaenoic acid to arachidonic acid (EPA/AA) ratio and CCTA-verified HRP in patients without known coronary artery disease (CAD) is unclear. We aimed at investigating the relation between EPA/AA and CCTA-verified HRP in patients without known CAD. We included 193 patients undergoing CCTA without known CAD (65.5 ± 12.0 years, 55.0% male). No patient has been treated with EPA. The relation of coronary risk factors, lipid profile, high-sensitivity C-reactive protein, coronary artery calcification score (CACS), number of vessel disease, plaque burden, and EPA/AA with the presence of HRP was evaluated by logistic regression analysis. Incremental value of EPA/AA to predict HRP was also analyzed by C-index, NRI, and IDI. A Cox proportional hazards model was used to estimate the time to cardiovascular event. HRP was observed in 37 (19%) patients. Multivariable logistic regression analysis revealed that current smoking (OR 2.58; p=0.046), number of vessel disease (OR 1.87; p=0.031), and EPA/AA ratio (OR 0.65; p=0.0006) were independent associated factors of HRP on CCTA. Although the addition of EPA/AA to the baseline model did not significantly improve C-index, both NRI (0.60, p=0.0049) and IDI (0.054, p=0.0072) were significantly improved. Patients with HRP had significantly higher rate of events compared with patients without HRP (14% vs. 3%, Logrank p=0.0004). On multivariable Cox hazard analysis, baseline EPA/AA ratio was an independent predictor (HR 0.57, p=0.047). Low EPA/AA was an associated factor of HRP on CCTA in patients without CAD. In addition to conventional coronary risk factors and CACS, EPA/AA and CCTA might be useful for risk stratification of CAD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Paradigm Shift in the Pharmacological Management of Periodontal Diseases

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Van Dyke, Thomas E.

    2015-01-01

    It is becoming clear that variations in inflammatory response are a major determinant in susceptibility to periodontitis. However, our understanding of the relationship of the causal agents in periodontitis to the pathogenesis is not as clear as we once thought, and thus therapies based on etiopathogenesis are similarly in question. We are entering a new era of therapeutic discovery that may have a major impact on our management of the periodontal diseases. Fundamentally, periodontitis is an irreversible condition and once both soft and hard tissues are lost, the healthy periodontal architecture cannot be completely or predictably rebuilt. The discovery of new families of lipid mediators of resolution of inflammation (the lipoxins) and eicosapentaenoic-acid-and docosahexaenoic-acid-derived chemical mediators (the resolvins and protectins) opens new avenues to designing resolution-targeted therapies to control the unwanted side effects of excessive inflammation. The novel protective and therapeutic actions of pro-resolution lipid mediators following microbial challenge are mediated by regulation of the local and systemic inflammatory response that has a direct impact on the organization of the biofilm (plaque) and suggests a new paradigm in clinical periodontal therapeutics. PMID:22142963

  3. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chun; Ge, Beihai; He, Chao

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, anmore » effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.« less

  4. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes.

    PubMed

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Pericytes are pluripotent cells that can be found in the vascular wall of both microvessels and large arteries and veins. They have distinct morphology with long branching processes and form numerous contacts with each other and with endothelial cells, organizing the vascular wall cells into a three-dimensional network. Accumulating evidence demonstrates that pericytes may play a key role in the pathogenesis of vascular disorders, including atherosclerosis. Macrovascular pericytes are able to accumulate lipids and contribute to growth and vascularization of the atherosclerotic plaque. Moreover, they participate in the local inflammatory process and thrombosis, which can lead to fatal consequences. At the same time, pericytes can represent a useful model for studying the atherosclerotic process and for the development of novel therapeutic approaches. In particular, they are suitable for testing various substances' potential for decreasing lipid accumulation induced by the incubation of cells with atherogenic low-density lipoprotein. In this review we will discuss the application of cellular models for studying atherosclerosis and provide several examples of successful application of these models to drug research.

  5. A comparison between plaque-based and vessel-based measurement for plaque component using volumetric intravascular ultrasound radiofrequency data analysis.

    PubMed

    Shin, Eun-Seok; Garcia-Garcia, Hector M; Garg, Scot; Serruys, Patrick W

    2011-04-01

    Although percent plaque components on plaque-based measurement have been used traditionally in previous studies, the impact of vessel-based measurement for percent plaque components have yet to be studied. The purpose of this study was therefore to correlate percent plaque components derived by plaque- and vessel-based measurement using intravascular ultrasound virtual histology (IVUS-VH). The patient cohort comprised of 206 patients with de novo coronary artery lesions who were imaged with IVUS-VH. Age ranged from 35 to 88 years old, and 124 patients were male. Whole pullback analysis was used to calculate plaque volume, vessel volume, and absolute and percent volumes of fibrous, fibrofatty, necrotic core, and dense calcium. The plaque and vessel volumes were well correlated (r = 0.893, P < 0.001). There was a strong correlation between percent plaque components volumes calculated by plaque and those calculated by vessel volumes (fibrous; r = 0.927, P < 0.001, fibrofatty; r = 0.972, P < 0.001, necrotic core; r = 0.964, P < 0.001, dense calcium; r = 0.980, P < 0.001,). Plaque and vessel volumes correlated well to the overall plaque burden. For percent plaque component volume, plaque-based measurement was also highly correlated with vessel-based measurement. Therefore, the percent plaque component volume calculated by vessel volume could be used instead of the conventional percent plaque component volume calculated by plaque volume.

  6. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  7. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  8. High-throughput simultaneous analysis of RNA, protein, and lipid biomarkers in heterogeneous tissue samples.

    PubMed

    Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S

    2011-11-01

    With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.

  9. Changes in patterns of persistent halogenated compounds through a pelagic food web in the Baltic Sea.

    PubMed

    Stephansen, Diana A; Svendsen, Tore C; Vorkamp, Katrin; Frier, Jens-Ole

    2012-02-01

    The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting of sediment, zooplankton, sprat, Atlantic salmon and anadromous brown trout. Lipid-normalized concentrations generally increased from low trophic levels to high trophic levels, with the exception of HCHs. Due to high concentrations of PBDEs in some zooplankton samples, biomagnification of BDE-47 was only observed for salmon/sprat and trout/sprat. Sprat collected individually and from salmon stomach had significantly different lipid-normalized concentrations and varied in their PHC pattern as well, possibly indicating a large natural variation within the Baltic Sea. The highest lipid-normalized concentrations were found in brown trout. Salmon and brown trout were similar in their PHC pattern suggesting similar food sources. Variation in PHC patterns among trophic levels was not smaller than that among geographically distinct locations, confirming the importance of comparable trophic levels for the assessment of PHC patterns, e.g. for tracing migratory fish. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comparative atomic-scale hydration of the ceramide and phosphocholine headgroup in solution and bilayer environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillams, Richard J.; McLain, Sylvia E., E-mail: sylvia.mclain@bioch.ox.ac.uk; Lorenz, Christian D., E-mail: chris.lorenz@kcl.ac.uk

    2016-06-14

    Previous studies have used neutron diffraction to elucidate the hydration of the ceramide and the phosphatidylcholine headgroup in solution. These solution studies provide bond-length resolution information on the system, but are limited to liquid samples. The work presented here investigates how the hydration of ceramide and phosphatidylcholine headgroups in a solution compares with that found in a lipid bilayer. This work shows that the hydration patterns seen in the solution samples provide valuable insight into the preferential location of hydrating water molecules in the bilayer. There are certain subtle differences in the distribution, which result from a combination of themore » lipid conformation and the lipid-lipid interactions within the bilayer environment. The lipid-lipid interactions in the bilayer will be dependent on the composition of the bilayer, whereas the restricted exploration of conformational space is likely to be applicable in all membrane environments. The generalized description of hydration gathered from the neutron diffraction studies thus provides good initial estimation for the hydration pattern, but this can be further refined for specific systems.« less

  11. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    DOE PAGES

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; ...

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less

  12. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  13. Assessing the use of Quantitative Light-induced Fluorescence-Digital as a clinical plaque assessment.

    PubMed

    Han, Sun-Young; Kim, Bo-Ra; Ko, Hae-Youn; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The aims of this study were to compare the relationship between red fluorescent plaque (RF plaque) area by Quantitative Light-induced Fluorescence-Digital (QLF-D) and disclosed plaque area by two-tone disclosure, and to assess the bacterial composition of the RF plaque by real time-PCR. Fifty healthy subjects were included and 600 facial surfaces of their anterior teeth were examined. QLF-D was taken on two separate occasions (before and after disclosing), and the RF plaque area was calculated based on Plaque Percent Index (PPI). After disclosing, the stained plaque area was analyzed to investigate the relationship with the RF plaque area. The relationship was evaluated using Pearson correlation and paired t-test. Then, the RF and non-red fluorescent (non-RF) plaque samples were obtained from the same subject for real-time PCR test. Total 10 plaque samples were compared the ratio of the 6 of bacteria using Wilcoxon signed rank test. Regarding the paired t-test, the blue-staining plaque area (9.3±9.2) showed significantly similarity with the RF plaque area (9.1±14.9, p=0.80) at ΔR20, however, the red-staining plaque area (31.6±20.9) presented difference from the RF plaque area (p<0.0001). In addition, bacterial composition of Prevotella intermedia and Streptococcus anginosus was associated with substantially more the RF plaque than the non-RF plaque (p<0.05). The plaque assessment method using QLF-D has potential to detect mature plaque, and the plaque area was associated with the blue-staining area using two-tone disclosure. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Comparison of red autofluorescing plaque and disclosed plaque-a cross-sectional study.

    PubMed

    Volgenant, Catherine M C; Fernandez Y Mostajo, Mercedes; Rosema, Nanning A M; van der Weijden, Fridus A; Ten Cate, Jacob M; van der Veen, Monique H

    2016-12-01

    The aim of this cross-sectional study was to assess the correlation between dental plaque scores determined by the measurement of red autofluorescence or by visualization with a two-tone solution. Clinical photographs were used for this study. Overnight plaque from the anterior teeth of 48 participants was assessed for red fluorescence on photographs (taken with a QLF-camera) using a modified Quigley & Hein (mQH) index. A two-tone disclosing solution was applied. Total disclosed plaque was clinically assessed using the mQH index. In addition, total and blue disclosed plaque was scored on clinical photographs using the mQH index. A strong correlation was observed between the total disclosed plaque scored on photographs and the clinical scores (r = 0.70 at site level; r = 0.88 at subject level). The correlation between red fluorescent plaque and total plaque, as assessed on the photographs, was moderate to strong and significant (r = 0.50 at the site level; r = 0.70 at the subject level), with the total plaque scores consistently higher than the red fluorescent plaque scores. The correlation between red fluorescent plaque and blue disclosed plaque was weak to moderate and significant (r = 0.30 at the site level; r = 0.50 at the subject level). Plaque, as scored on white-light photographs, corresponds well with clinically assessed plaque. A weak to moderate correlation between red fluorescing plaque and total disclosed plaque or blue disclosed plaque was found. What at present is considered to be matured dental plaque, which appears blue following the application of a two-tone disclosing solution, is not in agreement with red fluorescent dental plaque assessment.

  15. The effect of blue light on periodontal biofilm growth in vitro.

    PubMed

    Fontana, Carla R; Song, Xiaoqing; Polymeri, Angeliki; Goodson, J Max; Wang, Xiaoshan; Soukos, Nikolaos S

    2015-11-01

    We have previously shown that blue light eliminates the black-pigmented oral bacteria Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, and Prevotella melaninogenica. In the present study, the in vitro photosensitivity of the above black-pigmented microorganisms and four Fusobacteria species (Fusobacterium nucleatum ss. nucleatum, F. nucleatum ss. vincentii, F. nucleatum ss. polymorphum, Fusobacterium periodonticum) was investigated in pure cultures and human dental plaque suspensions. We also tested the hypothesis that phototargeting the above eight key periodontopathogens in plaque-derived biofilms in vitro would control growth within the dental biofilm environment. Cultures of the eight bacteria were exposed to blue light at 455 nm with power density of 80 mW/cm2 and energy fluence of 4.8 J/cm2. High-performance liquid chromatography (HPLC) analysis of bacteria was performed to demonstrate the presence and amounts of porphyrin molecules within microorganisms. Suspensions of human dental plaque bacteria were also exposed once to blue light at 455 nm with power density of 50 mW/cm2 and energy fluence of 12 J/cm2. Microbial biofilms developed from the same plaque were exposed to 455 nm blue light at 50 mW/cm2 once daily for 4 min (12 J/cm2) over a period of 3 days (4 exposures) in order to investigate the cumulative action of phototherapy on the eight photosensitive pathogens as well as on biofilm growth. Bacterial growth was evaluated using the colony-forming unit (CFU) assay. The selective phototargeting of pathogens was studied using whole genomic probes in the checkerboard DNA-DNA format. In cultures, all eight species showed significant growth reduction (p < 0.05). HPLC demonstrated various porphyrin patterns and amounts of porphyrins in bacteria. Following phototherapy, the mean survival fractions were reduced by 28.5 and 48.2% in plaque suspensions and biofilms, respectively, (p < 0.05). DNA probe analysis showed significant reduction in relative abundances of the eight bacteria as a group in plaque suspensions and biofilms. The cumulative blue light treatment suppressed biofilm growth in vitro. This may introduce a new avenue of prophylactic treatment for periodontal diseases.

  16. Regression Patterns of Iris Melanoma after Palladium-103 (103Pd) Plaque Brachytherapy.

    PubMed

    Chaugule, Sonal S; Finger, Paul T

    2017-07-01

    To evaluate the patterns of regression of iris melanoma after treatment with palladium-103 ( 103 Pd) plaque brachytherapy. Retrospective, nonrandomized, interventional case series. Fifty patients with primary malignant melanoma of the iris. Palladium-103 plaque brachytherapy. Changes in tumor size, pigmentation, and vascularity; incidence of iris neovascularization; and radiation-related complications. The mean age in the case series was 61.2±14.9 years. The mean tumor thickness was 1.4±0.6 mm. According to the American Joint Committee on Cancer, eighth edition, staging criteria for iris melanoma, 21 tumors (42%) were T1a, 5 tumors (10%) were T1b, and 24 tumors (48%) were T2a. The tumor was melanotic in 37 cases (74%) and amelanotic in 13 cases (26%); of these, 13 tumors (26%) showed variable pigmentation. After brachytherapy, mean tumor thickness decreased to 0.9±0.2 mm. Pigmentation increased in 32 tumors (64%), decreased in 11 tumors (22%), and was unchanged in 6 tumors (12%). For intrinsic vascularity (n = 19), 12 tumors (63%) showed decrease and 7 tumors (37%) showed complete resolution. Appearance of ectropion uveae showed diminution in 15 tumors (43%); newly present corectopia was observed in 6 patients (12%). On high-frequency ultrasound imaging, of the 42 tumors (84%) with low to moderate internal reflectivity, 30 tumors (60%) showed an increase in internal reflectivity on regression. Iris stromal atrophy was noted in 26 patients (52%), progression or new-onset cataract was noted in 22 patients (44%), neovascular glaucoma was noted in 1 patient (2%), and there were no cases of corneal opacity. There was no clinical evidence (0%) of radiation-induced retinopathy, maculopathy, or optic neuropathy. Mean follow-up in this series was 5.2 years (range, 0.5-17 years). The most common findings related to iris melanoma regression after 103 Pd plaque brachytherapy included decreased intrinsic tumor vascularity, increased tumor pigmentation, and decreased tumor thickness with synchronous increase in internal ultrasonographic reflectivity. No irreversible sight-limiting complications were noted. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. [Technical complications rates and plaque control of fixed dental prostheses in patients treated for periodontal disease].

    PubMed

    Xie, Yesi; Meng, Huanxin; Han, Jie; Pan, Shaoxia; Zhang, Li; Shi, Dong

    2016-02-01

    To compare the incidence of technical complications of implant-supported fixed dental prostheses in Chinese patients with a history of moderate or severe periodontitis and periodontally healthy patients(PHP) and analyze the effects of interproximal papillae patterns on food impaction and efficacy of plaque control. A total of 103 partially edentulous patients treated with implant-supported fixed dental prostheses between December 2009 and December 2012 for a minimum 1-year follow-up period were recruited from Department of Periodontology, Peking University, School and Hospital of Stomatology. Based on the initial periodontal examination, the participants were divided into three groups: 30 PHP, 36 moderate periodontally compromised patients(mPCP) and 37 severe periodontally compromised patients(sPCP). Implant survival/loss, technical complications, plaque index, papilla index, food impaction and degree of proximal contact tightness of each patient were assessed around the implants at follow-up. According to the implant papilla index, the implants were divided into two groups: the "filling" group with the mesial and distal aspects with papilla index=3 and the "no filling" group with at least one aspect with papilla index<3. Data on implant survival, technical complications were analyzed. Comparisons of the incidence of technical complications were performed between the patients with different periodontal conditions with chi-square or Fisher's exact test. The influences of the interproximal papillae loss on food impaction and efficacy of plaque control were estimated with chi-square and Mann-Whitney U tests. The total implant survival rate was 100%(162/162) for all three groups. Technical complications were as following: veneer fractures(1.9%, 3/162), abutment screw loosening(1.9%, 3/162), prosthetic screw loosening(3.1%, 5/162) and decementation(3.1%, 5/162) in all subjects. No implant/screw fracture was noted. The incidence of technical complications in sPCP, mPCP and PHP did not yield statistically significant differences(P>0.05). The proportion of the implant with the mesial and distal papilla index=3 in the sPCP was less than that in the PHP and mPCP. The interproximal papillae loss did not appear to affect the food impaction and the plaque index in all three groups(P>0.05). However, for the PHP, the accumulation of plaque at buccal aspect was more in the "no filling" group compared with the "filling" group (implant plaque index[M(Q)]: 1[1] vs 0[0]), and for the sPCP, the accumulation of plaque at lingual aspect was more in the "filling" group compared with the "no filling" group(implant plaque index[M(Q)]: 1[1] vs 0[1], (P<0.05). The patients with a history of severe periodontitis did not exhibit more technical problems compared with the periodontally healthy patients. The interproximal papillae loss did not show a negative impact on the plaque control and food impaction. However, for the sPCP, changing the morphology and the position of the interproximal contact point to reduce the interdental black triangle may lead to accumulation of plaque at lingual aspect. More attention should be placed on the morphology design of prosthesis, but not the papillae filling up the interproximal space.

  18. Abnormal levels of expression of plasma microRNA-33 in patients with psoriasis.

    PubMed

    García-Rodríguez, S; Arias-Santiago, S; Orgaz-Molina, J; Magro-Checa, C; Valenzuela, I; Navarro, P; Naranjo-Sintes, R; Sancho, J; Zubiaur, M

    2014-06-01

    Circulating microRNAs (miRNA) are involved in the posttranscriptional regulation of genes associated with lipid metabolism (miRNA-33) and vascular function and angiogenesis (miRNA-126). The objective of this exploratory study was to measure plasma levels of miRNA-33 and miRNA-126 in patients with plaque psoriasis and evaluate their association with clinical parameters. We studied 11 patients with plaque psoriasis. The median Psoriasis Area Severity Index (PASI) was 13 (interquartile range [IQR], 9-14) and body surface area involvement was 12 (IQR, 11-15). Eleven healthy controls matched for age and sex were also included. We analyzed cardiovascular risk factors and subclinical carotid atheromatosis. Plasma miRNAs were evaluated using quantitative real-time polymerase chain reaction. Carotid intima-media thickness was greater in patients (0.57mm; IQR, 0.54-0.61; n=11) than in controls (0.50mm; IQR, 0.48-0.54; data available for 9 controls) (P=.0055, Mann-Whitney). Expression of miRNA-33 in patients (5.34; IQR, 3.12-7.96; n=11) was significantly higher than in controls (2.33; IQR, 1.71-2.84; only detected in 7 of 11 controls) (P=.0049, Wilcoxon signed rank). No differences in miRNA-126 levels were observed between patients and controls. In patients (n=11), we observed a positive correlation between miRNA-33 and insulin levels (r=0.7289, P=.0109) and a negative correlation between miRNA-126 and carotid intima-media thickness (r=-0.6181, P=.0426). In psoriasis patients plasma levels of lipid and glucose metabolism-related miRNA-33 are increased and correlated with insulin. The study of circulating miRNA-33 in psoriasis may provide new insights about the associated systemic inflammatory abnormalities. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  19. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis

    PubMed Central

    Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A.

    2014-01-01

    Objective Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein (LDL)- treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of microRNAs regulated in primary macrophages by modified LDL, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. Approach and Results The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3′UTR activity of mouse Abca1 by 48% and human ABCA1 by 45%. Additionally, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with LDL receptor deficiency (Ldlr−/−) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma HDL levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by approximately 25% as well as a more stable plaque morphology with reduced signs of inflammation. Conclusions These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. PMID:25524771

  20. Chemopreventive effect of different ratios of fish oil and corn oil on prognostic markers, DNA damage and cell cycle in colon carcinogenesis.

    PubMed

    Sarotra, Pooja; Kansal, Shevali; Sandhir, Rajat; Agnihotri, Navneet

    2012-03-01

    Fish oil (FO) rich in n-3 polyunsaturated fatty acids (PUFAs) have a protective role in autoimmune disorders, type 2 diabetes, rheumatoid arthritis, and cancer, whereas corn oil (CO) rich in n-6 PUFAs has a proinflammatory and procarcinogenic effect. A balanced n-3/n-6 PUFA ratio in diet rather than absolute intake of either may be responsible for decreasing cancer incidence. This study was designed to evaluate the chemopreventive effect of different ratios of FO and CO on prognostic markers, DNA damage, and cell cycle distribution in colon carcinogenesis. Male Wistar rats were divided into control, N,N'-dimethylhydrazine dihydrochloride (DMH) treated, FO+CO(1 : 1)+DMH, and FO+CO(2.5 : 1)+DMH. All the groups, except control, received a weekly injection of DMH for 4 weeks. The animals were given modified AIN-76A diets and killed either 48 h later (initiation phase) or kept for 16 weeks (postinitiation phase). The animals treated with DMH in both the phases showed an increase in multiple plaque lesions, total sialic acid, lipid associated sialic acid, DNA damage and cell proliferation. However, levels of p53 in the postinitiation and cyclin D1 in both the phases were significantly elevated. FO+CO(2.5 : 1)+DMH treatment in both the phases led to a decrease in multiple plaque lesions, DNA damage, total sialic acid, lipid associated sialic acid as compared with the DMH treated group. There was a G1 arrest with a decrease in p53 and cyclin D1 levels in FO+CO(2.5 : 1) in both the phases whereas treatment with FO+CO(1 : 1)+DMH led to same results in the postinitiation phase only. This study suggests that FO+CO(2.5 : 1) is more effective in chemoprevention of experimental colon carcinogenesis.

  1. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.

    PubMed

    Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A

    2015-02-01

    Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein-treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of miRs regulated in primary macrophages by modified low-density lipoprotein, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3' untranslated regions (UTR) activity of mouse Abca1 by 48% and human ABCA1 by 45%. In addition, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with low-density lipoprotein receptor deficiency (Ldlr(-/-)) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma high-density lipoprotein levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by ≈25% and a more stable plaque morphology with reduced signs of inflammation. These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. © 2014 American Heart Association, Inc.

  2. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance.

    PubMed

    Bolmont, Tristan; Haiss, Florent; Eicke, Daniel; Radde, Rebecca; Mathis, Chester A; Klunk, William E; Kohsaka, Shinichi; Jucker, Mathias; Calhoun, Michael E

    2008-04-16

    Microglial cells aggregate around amyloid plaques in Alzheimer's disease, but, despite their therapeutic potential, various aspects of their reactive kinetics and role in plaque pathogenesis remain hypothetical. Through use of in vivo imaging and quantitative morphological measures in transgenic mice, we demonstrate that local resident microglia rapidly react to plaque formation by extending processes and subsequently migrating toward plaques, in which individual transformed microglia somata remain spatially stable for weeks. The number of plaque-associated microglia increased at a rate of almost three per plaque per month, independent of plaque volume. Larger plaques were surrounded by larger microglia, and a subset of plaques changed in size over time, with an increase or decrease related to the volume of associated microglia. Far from adopting a more static role, plaque-associated microglia retained rapid process and membrane movement at the plaque/glia interface. Microglia internalized systemically injected amyloid-binding dye at a much higher rate in the vicinity of plaques. These results indicate a role for microglia in plaque maintenance and provide a model with multiple targets for therapeutic intervention.

  3. Dynamics of the Microglial/Amyloid Interaction Indicate a Role in Plaque Maintenance

    PubMed Central

    Bolmont, Tristan; Haiss, Florent; Eicke, Daniel; Radde, Rebecca; Mathis, Chester A.; Klunk, William E.; Kohsaka, Shinichi; Jucker, Mathias

    2008-01-01

    Microglial cells aggregate around amyloid plaques in Alzheimer's disease, but, despite their therapeutic potential, various aspects of their reactive kinetics and role in plaque pathogenesis remain hypothetical. Through use of in vivo imaging and quantitative morphological measures in transgenic mice, we demonstrate that local resident microglia rapidly react to plaque formation by extending processes and subsequently migrating toward plaques, in which individual transformed microglia somata remain spatially stable for weeks. The number of plaque-associated microglia increased at a rate of almost three per plaque per month, independent of plaque volume. Larger plaques were surrounded by larger microglia, and a subset of plaques changed in size over time, with an increase or decrease related to the volume of associated microglia. Far from adopting a more static role, plaque-associated microglia retained rapid process and membrane movement at the plaque/glia interface. Microglia internalized systemically injected amyloid-binding dye at a much higher rate in the vicinity of plaques. These results indicate a role for microglia in plaque maintenance and provide a model with multiple targets for therapeutic intervention. PMID:18417708

  4. Flow pattern analysis in a highly stenotic patient-specific carotid bifurcation model using a turbulence model.

    PubMed

    Li, Zhi-Yong; Tan, Felicia P P; Soloperto, Giulia; Wood, Nigel B; Xu, Xiao Y; Gillard, Jonathan H

    2015-08-01

    The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.

  5. ALA16VAL-MnSOD gene polymorphism and stroke: Association with dyslipidemia and glucose levels.

    PubMed

    Flores, Ariane Ethur; Pascotini, Eduardo Tanuri; Kegler, Aline; Gabbi, Patricia; Bochi, Guilherme Vargas; Barbisan, Fernanda; Duarte, Thiago; Prado, Ana Lucia Cervi; Duarte, Marta M M F; da Cruz, Ivana B M; Moresco, Rafael Noal; Santos, Adair Roberto Soares; Bresciani, Guilherme; Royes, Luiz Fernando Freire; Fighera, Michele Rechia

    2017-09-05

    Stroke risk has been associated to the progression of carotid plaques due to high glucose levels and lipid accumulation, which are greatly associated to cerebral injury, brain oxidative stress, and apoptosis. The ALA16VAL-MnSOD gene single nucleotide polymorphism (SNP) has shown to modulate risk factors of several metabolic and vascular diseases, such as blood glucose (GLU) and lipid levels. However, the association of these factors in stroke patients has not been studied to date. Thus, we evaluated the influence of the Ala16Val-MnSOD SNP on lipid profile, GLU levels, oxidative and DNA damage of 44 patients in a late phase of stroke (>6months). The statistical analysis showed a greater proportion of VV carries in stroke patients. The results also indicated that stroke patients had higher cholesterol (CHO) and GLU levels when compared to healthy counterparts. Interestingly, V allele carriers with stroke showed higher levels of CHO and GLU when compared to AA stroke and healthy counterparts. Our findings suggest that oxidative stress markers are still increased even after 6 months of cerebral injury. Furthermore, we propose that the Ala16Val-MnSOD SNPs may contribute to hypercholesterolemia and higher GLU levels, increasing the risk to neurovascular events that may lead to stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells

    PubMed Central

    Tsakiris, Ioannis; Torocsik, Daniel; Gyongyosi, Adrienn; Dozsa, Aniko; Szatmari, Istvan; Szanto, Attila; Soos, Gyorgyike; Nemes, Zoltan; Igali, Laszlo; Marton, Ildiko; Takats, Zoltan; Nagy, Laszlo; Dezso, Balazs

    2012-01-01

    Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-γ, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyte–MA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and foam MA detections in tissue sections. Furthermore, the present data offer CPM for the first time to be a novel marker and cellular player in lipid uptake and/or metabolism of MAs by promoting foam cell formation. PMID:22157720

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, P; Molloy, JA; Rivard, MJ

    Purpose: To investigate the effect of plaque design and radionuclides on eye plaque dosimetry. Methods: The Monte Carlo N-particle Code version 6 (MCNP6) was used for radiation transport simulations. The 14 mm and 16 mm diameter COMS plaques and the model EP917 plaque were simulated using brachytherapy seeds containing I-125, Pd-103, and Cs-131 radionuclides. The origin was placed at the scleral inner surface. The central axis (CAX) doses of both COMS plaques at −1 mm, 0 mm, 1 mm, 2 mm, 5 mm, 10 mm, 15 mm, 20 mm, and 22.6 mm were compared to the model EP917 plaque. Dosemore » volume histograms (DVHs) were also created for both COMS plaques for the tumor and outer sclera then compared to results for the model EP917 plaque. Results: For all radionuclides, the EP917 plaque delivered higher dose (max 343%) compared to the COMS plaques, except for the 14 mm COMS plaque with Cs-131 at 1 mm and 2 mm depths from outer sclera surface. This could be due to source design. For all radionuclides, the 14 mm COMS plaque delivered higher doses compared to the 16 mm COMS plaque for the depths up to 5 mm. Dose differences were not significant beyond depths of 10 mm due to ocular lateral scatter for the different plaque designs. Tumor DVHs for the 16 mm COMS plaque with Cs-131 provided better dose homogeneity and conformity compared to other COMS plaques with I-125 and Pd-103. Using Pd-103, DVHs for the 16 mm COMS plaque delivered less dose to outer sclera compared to other plaques. Conclusion: This study identified improved tumor homogeneity upon considering radionuclides and plaque designs, and found that scleral dose with the model EP917 plaque was higher than for the 16 mm COMS plaque for all the radionuclides studied.« less

  8. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  9. Construction of Reference Data for Tissue Characterization of Arterial Wall Based on Elasticity Images

    NASA Astrophysics Data System (ADS)

    Inagaki, Jun; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2005-06-01

    Previously, we developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness during one heartbeat and the elasticity of the arterial wall. By comparing pathological images with elasticity images measured with ultrasound, elasticity distributions for respective tissues in the arterial wall were determined. We have already measured the elasticity distributions for lipids and fibrous tissues (mixtures of smooth-muscle and collagen fiber) [H. Kanai et al.: Circulation 107 (2003) 3018]. In this study, elasticity distributions were measured for blood clots and calcified tissues. We discuss whether these elasticity distributions, which were measuerd in vitro, can be used as reference data for classifying cross-sectional elasticity images measured in vivo into respective tissues. In addition to the measurement of elasticity distributions, correlations between collagen content and elasticity were investigated with respect to fibrous tissue to estimate the collagen and smooth-muscle content based on elasticity. Collagen and smooth-muscle content may be important factors in determining the stability of the fibrous cap of atherosclerotic plaque. Therefore, correlations between elasticity and elements of the tissue in the arterial wall may provide useful information for the noninvasive diagnosis of plaque vulnerability.

  10. Radial Modulation Contrast Imaging Using a 20-MHz Single-Element Intravascular Ultrasound Catheter

    PubMed Central

    Yu, Francois T. H.; Villanueva, Flordeliza S.; Chen, Xucai

    2014-01-01

    Contrast-enhanced intravascular ultrasound imaging is a promising tool for the characterization of coronary vasa vasorum proliferation, which has been identified as a marker of, and possible etiologic factor in, the development of high-risk atherosclerotic plaques. Resonance-based nonlinear detection methods have required the development of prototype catheters which are not commercially available, thus limiting clinical translation. In this study, we investigated the performances of a radial modulation imaging approach (25/3 MHz combination) using simulations, implemented it on a clinical 20-MHz rotating catheter, and tested it in a wall-less tissue-mimicking flow phantom perfused with lipid-encapsulated microbubbles (MBs). The effects of the phase lag, low-frequency pressure, and MB concentration on the envelope subtracted radial modulation signals were investigated as a function of depth. Our dual-pulse dual-frequency approach produced contrast-specific images with contrast-to-tissue improvements over B-mode of 15.1 ± 2.1 dB at 2 mm and 6.8 ± 0.1 dB at 4 mm depths. Using this imaging strategy, 200-μm-diameter cellulose tubing perfused with MBs could be resolved while surrounding tissue scattering was suppressed. These results raise promise for the detection of coronary vasa vasorum and may ultimately facilitate the detection of plaque at risk for rupture. PMID:24803134

  11. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    PubMed

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.

  12. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9

    PubMed Central

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2013-01-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis. PMID:22042083

  13. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.

    PubMed Central

    Kume, S.; Takeya, M.; Mori, T.; Araki, N.; Suzuki, H.; Horiuchi, S.; Kodama, T.; Miyauchi, Y.; Takahashi, K.

    1995-01-01

    To elucidate the deposition of advanced glycation end products (AGEs) in aortic atherosclerosis, aortic walls were obtained from 25 autopsy cases and examined immunohistochemically and immunoelectron microscopically with a monoclonal antibody specific for AGEs, 6D12. Among the autopsy cases, atherosclerotic lesions were found in the aortas of 22 cases and were composed of diffuse intimal thickening, fatty streaks, atherosclerotic plaques, and/or complicated lesions. In these cases, intracellular AGE accumulation was demonstrated in the intimal lesions of aortic atherosclerosis in 12 cases. Compared with the diffuse intimal thickening, intracellular AGE accumulation was marked in the fatty streaks and atherosclerotic plaques. Immunohistochemical double staining with 6D12 and monoclonal antibodies for macrophages or muscle actin or a polyclonal antibody for scavenger receptors demonstrated that the AGE accumulation in macrophages or their related foam cells was marked in the diffuse intimal thickening and fatty streak lesions and that almost all macrophages and macrophage-derived foam cells possessed scavenger receptors. Immunoelectron microscopic observation revealed the localization of 6D12-positive reaction in lysosomal lipid vacuoles or electron-dense granules of the foam cells. These results indicate that AGE accumulation occurs in macrophages, smooth muscle cells, and their related foam cells. Images Figure 2 Figure 3 Figure 6 PMID:7545874

  14. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology.

    PubMed

    Barone, Eugenio; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2017-10-01

    Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography

    PubMed Central

    Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus

    2017-01-01

    The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer’s. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer’s disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50–100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell. PMID:28240273

  16. Effects of ezetimibe and anticoagulant combined therapy on progressing stroke: a randomized, placebo-controlled study.

    PubMed

    Yang, Lan; Zhao, Pingping; Zhao, Jing; Wang, Juan; Shi, Lei; Wang, Xiaopeng

    2016-12-01

    Despite the high prevalence of progressing stroke in patients with acute stroke, preventative treatments are still the unmet needs for those patients. The aim of this study was to evaluate, prospectively, the efficacy and safety of ezetimibe in the prevention of acute progressing stroke and thereby the improvement of patient outcome. A total of 423 patients (267 men and 156 women with a mean age of 65.2 years) were randomly assigned to receive ezetimibe (10 mg daily oral administration, n = 209) or placebo (n = 214) for 14 consecutive days. Analytical procedures performed at baseline (i.e., day 1) and 14 days after the treatments were completed. These included a real-time three-dimensional ultrasound (RT-3DU) examination for carotid plaque volume, clinical laboratory analyses of serum levels of IL-6 and MMP-9, as well as lipid parameters and liver dysfunction marker ALT and TBIL. Ezetimibe significantly reduced the average NIHSS score after 14 days of treatment and attenuated the stroke progression rate, which was associated with reduction in carotid plaque volume and attenuation of serum levels of IL-6, MMP-9, and LDL, without inducing liver dysfunction. Ezetimibe treatment may be a beneficial and effective strategy for preventing progressing stroke.

  17. Comparison of frequency of calcified versus non-calcified coronary lesions by computed tomographic angiography in patients with stable versus unstable angina pectoris.

    PubMed

    Meijs, Matthijs F L; Meijboom, W Bob; Bots, Michiel L; Kyrzopoulos, Stamatis; Eu, Rick Neoh; Prokop, Mathias; Doevendans, Pieter A; de Feyter, Pim J; Cramer, Maarten J

    2009-08-01

    Computed tomographic coronary angiography (CTCA) can noninvasively identify calcified and noncalcified coronary plaques. The aim of this study was to compare the phenotypes of all plaques and of culprit plaques between patients with unstable angina pectoris (UAP) and those with stable angina pectoris (SAP), because plaque characteristics may differ between these patients. In 110 patients with UAP and 189 with SAP from a multicenter study comparing 64-slice CTCA with conventional coronary angiography, the number and phenotypes (noncalcified, mixed, and calcified) of coronary plaques were compared. In a subanalysis in 50 patients with UAP and 64 with SAP, culprit plaque characteristics, including culprit plaque cross-sectional area relative to total vessel cross-sectional area, culprit plaque length, remodeling index, and spotty calcification, were determined. Odds ratios for the presence of UAP, adjusted for clinical variables and the total number of plaques, were calculated for plaque characteristics on CTCA. Although the number of plaques was similar for patients with UAP and those with SAP, plaques in patients with UAP were more frequently noncalcified than in patients with SAP. The odds ratio for UAP was 1.3 (95% confidence interval [CI] 1.1 to 1.5) per noncalcified plaque. In the culprit plaque subanalysis, odds ratios for UAP were 0.99 (95% CI 0.96 to 1.01) per millimeter culprit plaque length, 2.7 (95% CI 1.2 to 6.4) for noncalcified culprit plaque, and 1.06 (95% CI 0.99 to 1.13) per percentage relative culprit plaque cross-sectional area. No significant relation was found between remodeling index or spotty calcification and UAP. In conclusion, noncalcified plaques and large noncalcified culprit plaques are more frequently found in patients with UAP than in those with SAP.

  18. Fingerprints and cardiovascular risk. The San Valentino fingerprint vascular screening project (SanVal/FP).

    PubMed

    Belcaro, G; Cesarone, M R; Ledda, A; Cornelli, U; Dugall, M; Di Renzo, A; Hosoi, M; Stuard, S; Vinciguerra, G; Pellegrini, L; Gizzi, G

    2008-10-01

    Fingerprints (FP), characteristic of humans, are impressions due to skin marks (ridges) on fingertips. Ridges are present on fingers/hands forming curved lines of different sizes/patterns. The point where a line stops or splits is defined typica' (their number/amount constitute identification patterns). FP are permanent and unique. This study compared FP patterns with cardiovascular risk factors: 7 main types of FP were used: 1. Arch: lines form waves from one site to the other side. 2. Tentarch: like arches but with a rising stick in the middle. 3. Loop: lines coming from one site returning in the middle to the same site. 4. Double loop: like loops but with two loops inside: one standing, one hanging. 5. Pocked loop: like the loop but with a small circle in the turning point. 6. Whorl: lines make circles. 7. Mixed figure: composed of different figures. There are two kinds of real typica: A. Ending line; B. Splitting lines (bifurcations). Several combinations may result. Ultrasound evaluation of carotid/femoral arteries in asymptomatic subjects. Arteries were evaluated with high-resolution ultrasound at the bifurcations. Four classes were defined: 1: normal intima-media (IMT) complex; 2: IMT thickening; 3: non-stenosing plaques (<50% stenosis); 4: stenosing plaque (>50%). Subjects in classes 1, 2, 3 were included into the analysis made comparing FP patterns and ultrasound. For each FP pattern: A. the main proportion of subjects with cardiovacular risk factors (91%) had arches (41.2%) and loops (either single, 38.2% or double 11.7% for a total of 49.9%). B. The remaining classes were statistically less important. C. The number of ridges per square mm was comparable in all pattern classes. D. The analysis of typica and other ridges characteristics requires a more elaborated system. Future research must define simple, low cost screening methods for preselection of subjects at higher cardiovascular risk or for exclusion of low risk subjects. The evaluation of fingerprint pattern may be useful to define risk groups.

  19. Mechanical properties of human atherosclerotic intima tissue.

    PubMed

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Plaque levels of patients with fixed orthodontic appliances measured by digital plaque image analysis.

    PubMed

    Klukowska, Malgorzata; Bader, Annike; Erbe, Christina; Bellamy, Philip; White, Donald J; Anastasia, Mary Kay; Wehrbein, Heiner

    2011-05-01

    A digital plaque image analysis system was developed to objectively assess dental plaque formation and coverage in patients treated with fixed orthodontic appliances. The technique was used to assess plaque levels of 52 patients undergoing treatment with fixed appliances in the Department of Orthodontics at Johannes Gutenberg University in Mainz, Germany. Plaque levels ranged from 5.1% to 85.3% of the analyzed tooth areas. About 37% of the patients had plaque levels over 50% of the dentition, but only 10% exhibited plaque levels below 15% of tooth coverage. The mean plaque coverage was 41.9% ± 18.8%. Plaque was mostly present along the gum line and around the orthodontic brackets and wires. The digital plaque image analysis system might provide a convenient quantitative technique to assess oral hygiene in orthodontic patients with multi-bracket appliances. Plaque coverage in orthodontic patients is extremely high and is 2 to 3 times higher than levels observed in high plaque-forming adults without appliances participating in clinical studies of the digital plaque image analysis system. Improved hygiene, chemotherapeutic regimens, and compliance are necessary in these patients. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

Top