Science.gov

Sample records for plasma based inactivation

  1. Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution.

    PubMed

    Weng, Chih-Chiang; Liao, Juinn-Der; Chen, Hsin-Hung; Lin, Tung-Yi; Huang, Chih-Ling

    2011-09-01

    An aqueous solution containing Escherichia coli can be completely inactivated within a short treatment time using a capillary-tube-based oxygen/argon micro-plasma source. A capillary-tube-based oxygen/argon micro-plasma system with a hollow inner electrode was ignited by a 13.56 MHz radio frequency power supply with a matching network and characterised by optical emission spectroscopy. An aqueous solution containing E. coli was then treated at various the working distances, plasma exposure durations, and oxygen ratios in argon micro-plasma. The treated bacteria were then assessed and qualitatively investigated. The morphologies of treated bacteria were examined using a scanning electron microscope (SEM). In the proposed oxygen/argon micro-plasma system, the intensities of the main emission lines of the excited species, nitric oxide (NO), hydrated oxide (OH), argon (Ar), and atomic oxygen (O), fluctuated with the addition of oxygen to argon micro-plasma. Under a steady state of micro-plasma generation, the complete inactivation of E. coli in aqueous solution was achieved within 90 s of argon micro-plasma exposure time with a working distance of 3 mm. SEM micrographs reveal obvious morphological damage to the treated E. coli. The addition of oxygen to argon micro-plasma increased the variety of O-containing excited species. At a given supply power, the relative intensities of the excited species, NO and OH, correlated with the ultraviolet (UV) intensity, decreased. For the proposed capillary-tube-based micro-plasma system with a hollow inner electrode, the oxygen/argon micro-plasma source is efficient in inactivating E. coli in aqueous solution. The treatment time required for the inactivation process decreases with decreasing working distance or the increasing synthesised effect of reactive species and UV intensity.

  2. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet

    SciTech Connect

    Zhang Qian; Wang Ruixue; Sun Peng; Feng Hongqing; Liang Yongdong; Zhu Weidong; Becker, Kurt H.; Zhang Jue; Fang Jing

    2012-06-15

    Three types of gases, pure argon (99.999%), argon with 2% oxygen, and argon with 2% oxygen and 10% nitrogen were used as operating gases of a direct current atmospheric pressure cold plasma jet to inactivate Staphylococcus aureus (S. aureus) suspended in a liquid. The inactivation efficacies for the plasma jets operating in the three gases decrease from Ar/O{sub 2}(2%) to Ar/O{sub 2}(2%)/N{sub 2}(10%) to pure Ar. Optical emission spectroscopy, electron spin resonance spectroscopy, high performance liquid chromatography, and atomic absorption spectrophotometry were employed to identify and monitor the reactive species in the plasma-liquid system for the three operating gases and revealed the presence of O, {sup 1}O{sub 2}, OH, NO, H{sub 2}O{sub 2}, O{sub 3}, and NO{sub 3}{sup -}/NO{sub 2}{sup -} as well as Cu{sup +}/Cu{sup 2+}. The S. aureus inactivation results indicate that atomic oxygen (O) is the key inactivation agent, while other species play a lesser role in the inactivation progress studied here.

  3. Pathogen Inactivated Plasma Concentrated: Preparation and Uses

    DTIC Science & Technology

    2004-09-01

    ultrasound to cold plasma. The ultrasound generates pure ice crystals, which are then removed to leave concentrated plasma. Testing: Porcine parvovirus ...of decontamination, porcine parvovirus (PPV) was selected as a model virus; B19 is the form that infects humans. PPV is an interesting pathogen...that all of the plasma is treated quite uniformly. Porcine Parvovirus Inactivation with Ozone 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 1.0 1.5 2.0 2.5 3.0

  4. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    NASA Astrophysics Data System (ADS)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  5. Cold plasma inactivation of chronic wound bacteria.

    PubMed

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Bacterial Inactivation by Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Deng, Sanxi; Cheng, Cheng; Ni, Guohua; Meng, Yuedong; Chen, Hua

    2008-08-01

    Bacillus subtilis and Escherichia coli seeded in two media (agar and filter papers) were exposed to after-glow plasma emitted from a atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator in open air with a temperature of about 30-80 °C. In order to estimate the inactivation of microorganism using DBD plasma jet, various plasma conditions (such as treatment time and feed-gas composition of plasma jet) were changed. The results shown that the effective area of inactivation increased with the plasma treatment time as the bacteria seeded in Agar medium. The effective area of inactivation was much bigger than plasma jet treatment area after 5 min treatment. With the use of filter papers as the supporting media, the addition of reactive gases (oxygen, hydrogen peroxide vapor) into the plasma jet system, compared with only pure noble gas, led to a significant improvement in the bacterial Inactivation efficacy.

  7. The effectiveness of riboflavin photochemical-mediated virus inactivation and changes in protein retention in fresh-frozen plasma treated using a flow-based treatment device.

    PubMed

    Zhu, Liguo; Pan, Jichun; Wei, Chao; Wang, Haibao; Xiang, Rong; Zhang, Jingang; Wang, Deqing

    2015-01-01

    A flow-based treatment device using riboflavin and ultraviolet (UV) light was developed to inactivate viruses in fresh-frozen plasma (FFP). The objective of this study was to evaluate the in vitro effectiveness of virus inactivation and changes in protein quality in FFP treated with this device. FFP-contaminating viruses were treated with riboflavin and UV light using a one-pass linear flow device. The infectivity of viruses was measured using established biologic assays. Real-time polymerase chain reaction (PCR) was performed to detect damage to viral nucleotides after treatment. Treated plasma was analyzed using standard coagulation assays. FFP treated at the UV dose of 3.6 J/cm(2) (J) exhibited a mean reduction of virus titer of more than 4 logs. The effectiveness increased significantly at higher doses. Real-time PCR showed that the cycle threshold values for both complete inactivation and virus recultivation were higher than that of the untreated sample. At doses of 3.6, 5.4, and 7.2 J, the protein recovery rates were 60.2 ± 8.6, 46.6 ± 9.4, and 28.0 ± 1.0% for fibrinogen; 67.0 ± 3.1, 57.3 ± 8.0, and 49.2 ± 3.8% for Factor VIII; 93.6 ± 2.8, 89.6 ± 6.1, and 86.5 ± 5.3% for antithrombin-III; and 72.1 ± 5.6, 59.8 ± 14.2, and 49.2 ± 8.4% for Protein C, respectively. The effectiveness of virus inactivation was enhanced, but total activity of plasma factors was reduced, in a UV dose-dependent manner. © 2014 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  8. Inactivation of viruses in platelet and plasma products using a riboflavin-and-UV-based photochemical treatment.

    PubMed

    Keil, Shawn D; Bengrine, Abderrahmane; Bowen, Richard; Marschner, Susanne; Hovenga, Nick; Rouse, Lindsay; Gilmour, Denise; Duverlie, Gilles; Goodrich, Raymond P

    2015-07-01

    Multilayered blood safety programs reduce the risk of transfusion-transmitted diseases; however, there remains a risk of window period transmission of screened viruses and transmission of unscreened and emerging viruses from asymptomatic donors. To reduce this risk, a riboflavin-and-UV-light-based pathogen reduction process was evaluated against eight viral agents. Riboflavin and UV light was evaluated against the following eight viral agents: encephalomyocarditis virus (EMC), hepatitis A virus (HAV), hepatitis C virus (HCV), influenza A (FLUAV), La Crosse virus (LACV), pseudorabies virus (PRV), sindbis virus (SINV), and vesicular stomatitis virus (VSV). Before treatment, a sample was removed to determine the product's initial viral load. After treatment the product's viral load was reevaluated and the log reduction was calculated. Virus reduction after treatment with riboflavin and UV light is equivalent in platelet (PLT) and plasma units, as demonstrated by a 3.2-log reduction of EMC in plasma, PLTs, and PLT additive solution containing 35% plasma. Additionally, the following viral reductions values were observed: HAV 1.8 log, HCV at least 4.1 log, FLUAV at least 5.0 log, LACV at least 3.5 log, PRV 2.5 log, SINV 3.2 log, and VSV at least 6.3 log. The results observed in this study suggest that treating PLT and plasma products with a riboflavin-and-UV-light-based pathogen reduction process could potentially eliminate window period transmission of screened viruses and greatly reduce the risk of transfusion transmission of unscreened viruses. © 2015 AABB.

  9. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  10. Degradation and inactivation of Shiga toxins by nitrogen gas plasma.

    PubMed

    Sakudo, Akikazu; Imanishi, Yuichiro

    2017-12-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) leads to food poisoning by causing hemorrhagic colitis and hemolytic uremic syndrome. Some STEC produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), a relatively stable protein toxin, necessitating the development of an efficient inactivation method. Here we applied a nitrogen gas plasma apparatus to the inactivation of Stx. Samples of Stx1 and Stx2 were treated with a nitrogen gas plasma generated by a plasma device using a short high-voltage pulse applied by a static induction thyristor power supply at 1.5 kpps (kilo pulse per second). The recovered Stx samples were then analyzed for immunological and biological activities. Immunochromatography demonstrated that Stx1 and Stx2 were degraded by the gas plasma. Quantification by enzyme-linked immunosorbent assay (ELISA) showed that both toxins were efficiently degraded to less than 1/10th of their original concentration within 5 min of treatment. Western blotting further showed the gas plasma treatment degraded the A subunit, which mediates the toxicity of Stx. Moreover, an assay using HEp-2 cells as an index of cytotoxicity showed that gas plasma treatment reduced the toxic activity of Stx. Therefore, nitrogen gas plasma might be an efficient method for the inactivation of Stx.

  11. Non-thermal plasma for inactivated-vaccine preparation.

    PubMed

    Wang, Guomin; Zhu, Ruihao; Yang, Licong; Wang, Kaile; Zhang, Qian; Su, Xia; Yang, Bing; Zhang, Jue; Fang, Jing

    2016-02-17

    Vaccines are of great importance in controlling the spread of infectious diseases in poultry farming. The safety and efficacy of vaccines are also essential. To explore the feasibility of a novel technology (non-thermal plasma) in inactivated vaccine preparation, an alternating current atmospheric pressure non-thermal plasma (NTP) jet with Ar/O2/N2 as the operating gas was used to inactivate a Newcastle disease virus (NDV, LaSota) strain and H9N2 avian influenza virus (AIV, A/Chicken/Hebei/WD/98) for vaccine preparation. The results showed that complete inactivation could be achieved with 2 min of NTP treatment for both NDV and AIV. Moreover, a proper NTP treatment time is needed for inactivation of a virus without destruction of the antigenic determinants. Compared to traditional formaldehyde-inactivated vaccine, the vaccine made from NDV treated by NTP for 2 min (NTP-2 min-NDV-vaccine) could induce a higher NDV-specific antibody titer in specific pathogen-free (SPF) chickens, and the results of a chicken challenge experiment showed that NTP-2 min-NDV-vaccine could protect SPF chickens from a lethal NDV challenge. Vaccines made from AIV treated by NTP for 2 min (NTP-2 min-AIV-vaccine) also showed a similar AIV-specific antibody titer compared with traditional AIV vaccines prepared using formaldehyde inactivation. Studies of the morphological changes of the virus, chemical analysis of NDV allantoic fluid and optical emission spectrum analysis of NTP suggested that reactive oxygen species and reactive nitrogen species produced by NTP played an important role in the virus inactivation process. All of these results demonstrated that it could be feasible to use non-thermal NTP as an alternative strategy to prepare inactivated vaccines for Newcastle disease and avian influenza.

  12. Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores

    NASA Astrophysics Data System (ADS)

    Halfmann, H.; Denis, B.; Bibinov, N.; Wunderlich, J.; Awakowicz, P.

    2007-10-01

    The identification of sterilization agents is mandatory to achieve sterilization mechanisms in low-pressure discharges. A detailed account of each agent is required for improvements, development and establishment of plasma sterilization as an alternative to traditional sterilization processes. Sterilization agents are VUV and UV radiation, photodesorption producing volatile species and etching of spore coat and membrane. This work focuses on VUV and UV radiation as a sterilization agent of Bacillus atrophaeus spores. Four wavelength ranges are distinguished: the emission spectra above 300 nm, above 235 nm, above 112 nm and a full emission spectrum including active species. The range from 235 up to 300 nm without active species is identified to be the most capable for sterilizing Bacillus atrophaeus spores.

  13. Inactivation of Escherichia coli using atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kuwahata, Hiroshi; Yamaguchi, Takeshi; Ohyama, Ryu-ichiro; Ito, Atsushi

    2015-01-01

    An atmospheric-pressure argon (Ar) plasma jet was applied to the inactivation of Escherichia coli. The Ar plasma jet was generated at a frequency of 10 kHz, an applied voltage of 10 kV, and an Ar gas flow rate of 10 L/min at atmospheric pressure. E. coli cells seeded on an agar medium in a Petri dish were inactivated by Ar plasma jet irradiation for 1 s. Scanning electron microscopy (SEM) revealed that E. coli cells were killed because their cell wall and membrane were disrupted. To determine the causes of the disruption of the cell wall and membrane of E. coli, we performed the following experiments: the measurement of the surface temperature of an agar medium using a thermograph, the analysis of an emission spectrum of a plasma jet obtained using a multichannel spectrometer, and the determination of the distribution of the concentration of hydrogen peroxide (H2O2) generated on an agar medium by plasma jet irradiation using semiquantitative test strips. Moreover, H2O2 solutions of different concentrations were dropped onto an agar medium seeded with E. coli cells to examine the contribution of H2O2 to the death of E. coli. The results of these experiments showed that the cell wall and membrane of E. coli were disrupted by electrons in the plasma jet, as well as by electroneutral excited nitrogen molecules (N2) and hydroxyl (OH) radicals in the periphery of the plasma jet.

  14. Inactivation of Campylobacter jejuni with dielectric barrier discharge plasma using air and nitrogen gases.

    PubMed

    Kim, Joo-Sung; Lee, Eun-Jung; Kim, Yun-Ji

    2014-08-01

    Air and nitrogen gas are commonly used feed gases for plasma generation and are economically useful in industrial applications. The two gases were compared in dielectric barrier discharge plasma for the inactivation of Campylobacter jejuni on an agar surface. Plasma treatment with nitrogen gas for 20 s did not yield any reduction (p>0.05) in viable cell count. However, a 0.8-log reduction (p<0.05) in colony-forming units (CFU) occurred when the nitrogen gas was supplemented with 2% (vol/vol) air. The use of air only, air supplemented with 2% (vol/vol) nitrogen, or oxygen only further decreased the viable cell counts by 0.7-1.7-log CFU (p<0.05). These results suggest that oxygen in plasma generation is critically important for the increased inactivation effect. Scanning electron microscopy analysis showed much cell debris including fragmented flagella in the sample exposed to air plasma, while no cell debris was found in the sample exposed to nitrogen plasma. In transmission electron microscopy analysis, many C. jejuni cells exposed to air plasma had truncated flagella with sharp bends, while the cells exposed to nitrogen plasma were normal, strongly suggesting that the air plasma can reduce the virulence of C. jejuni. A BacLight assay showed that air plasma damaged the cellular membrane (p<0.05), whereas nitrogen plasma did not after 5- or 20-s treatment. The damage to the membrane was consistent with the reduced viable cell count. Based on confocal microscopic analysis, the similar results were found by visualizing the fluorescent-dye-stained cells. In addition, the prolonged nitrogen plasma for 2 min also damaged many cellular membranes. This study shows that air, especially oxygen, is more effective and destructive than nitrogen and provides evidence that membrane damage may be a major mechanism for the inactivation of C. jejuni exposed to plasma.

  15. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  16. Pathogen inactivation treatment of plasma and platelet concentrates and their predicted functionality in massive transfusion protocols.

    PubMed

    Arbaeen, Ahmad F; Schubert, Peter; Serrano, Katherine; Carter, Cedric J; Culibrk, Brankica; Devine, Dana V

    2017-05-01

    Trauma transfusion packages for hemorrhage control consist of red blood cells, plasma, and platelets at a set ratio. Although pathogen reduction improves the transfusion safety of platelet and plasma units, there is an associated reduction in quality. This study aimed to investigate the impact of riboflavin/ultraviolet light-treated plasma or platelets in transfusion trauma packages composed of red blood cell, plasma, and platelet units in a ratio of 1:1:1 in vitro by modeling transfusion scenarios for trauma patients and assessing function by rotational thromboelastometry. Pathogen-reduced or untreated plasma and buffy coat platelet concentrate units produced in plasma were used in different combinations with red blood cells in trauma transfusion packages. After reconstitution of these packages with hemodiluted blood, the hemostatic functionality was analyzed by rotational thromboelastometry. Hemostatic profiles of pathogen-inactivated buffy coat platelet concentrate and plasma indicated decreased activity compared with their respective controls. Reconstitution of hemodiluted blood (hematocrit = 20%) with packages that contained treated or nontreated components resulted in increased alpha and maximum clot firmness and enhanced clot-formation time. Simulating transfusion scenarios based on 30% blood replacement with a transfusion trauma package resulted in a nonsignificant difference in rotational thromboelastometry parameters between packages containing treated and nontreated blood components (p ≥ 0.05). Effects of pathogen inactivation treatment were evident when the trauma package percentage was 50% or greater and contained both pathogen inactivation-treated plasma and buffy coat platelet concentrate. Rotational thromboelastometry investigations suggest that there is relatively little impact of pathogen inactivation treatment on whole blood clot formation unless large amounts of treated components are used. © 2017 AABB.

  17. TnBP⁄Triton X-45 Treatment of Plasma for Transfusion Efficiently Inactivates Hepatitis C Virus

    PubMed Central

    Chou, Ming-Li; Burnouf, Thierry; Chang, Shun-Pang; Hung, Ting-Chun; Lin, Chun-Ching; Richardson, Christopher D.; Lin, Liang-Tzung

    2015-01-01

    Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human

  18. Contribution a l'etude de l'inactivation de micro-organismes par plasma

    NASA Astrophysics Data System (ADS)

    Benhacene-Boudam, Mustafa-Karim

    The present work is a deepening of some specific research aspects concerning medical device sterilization by ionized gases, that were initiated almost ten years ago and pursued since then by the "Sterilization team" of the Groupe de physique des plasmas. Initially, the thesis was directed at spore inactivation by atmospheric-pressure plasmas with the intent of showing that it was possible to reach sterility mainly by the action of UV photons, therefore minimizing damage to materials (in contrast to using chemically reactive species from the plasma) and, at the same time, achieving a greater control of the process through its better understanding. We actually succeeded in demonstrating the possibility of spore inactivation based on the dominant action of UV photons issued from an atmospheric-pressure plasma. However, the low inactivation efficiency and the practical difficulty of the atmospheric-pressure plasma used made us turn to low-pressure post-discharge sterilization systems. To comply with this new goal, we first characterized, essentially through emission spectroscopy, the flowing afterglow of a N2-O2 low-pressure discharge, concentrating on the properties and effects of the early and late post-discharges as far as sterilization is concerned. We demonstrated that the early afterglow is responsible for heavy damage to processed polymers but that it is possible to reduce its influence provided a minimum percentage of O2 is added in the N2-O2 mixture and also by moving away the plasma source from the sterilization chamber entrance. We then studied the combined effects, on the kinetics of spore inactivation, of the species (UV photons, radicals) issued from the plasma and of the heating of the petri dish, using B. atrophaeus spores as reference microorganisms. We clearly proved the existence of synergy between UV photons and heating in inactivating spores, provided UV photons and heating act simultaneously. Whatever the O2% in the mixture, and thus the UV

  19. Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment.

    PubMed

    Keil, Shawn D; Bowen, Richard; Marschner, Susanne

    2016-12-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has been identified as a potential threat to the safety of blood products. The Mirasol Pathogen Reduction Technology System uses riboflavin and ultraviolet (UV) light to render blood-borne pathogens noninfectious while maintaining blood product quality. Here, we report on the efficacy of riboflavin and UV light against MERS-CoV when tested in human plasma. MERS-CoV (EMC strain) was used to inoculate plasma units that then underwent treatment with riboflavin and UV light. The infectious titers of MERS-CoV in the samples before and after treatment were determined by plaque assay on Vero cells. The treatments were initially performed in triplicate using pooled plasma (n = 3) and then repeated using individual plasma units (n = 6). In both studies, riboflavin and UV light reduced the infectious titer of MERS-CoV below the limit of detection. The mean log reductions in the viral titers were ≥4.07 and ≥4.42 for the pooled and individual donor plasma, respectively. Riboflavin and UV light effectively reduced the titer of MERS-CoV in human plasma products to below the limit of detection, suggesting that the treatment process may reduce the risk of transfusion transmission of MERS-CoV. © 2016 AABB.

  20. Inactivation of Zika virus in plasma with amotosalen and ultraviolet A illumination.

    PubMed

    Aubry, Maite; Richard, Vaea; Green, Jennifer; Broult, Julien; Musso, Didier

    2016-01-01

    Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) transmitted by mosquitoes. The potential for ZIKV transmission through blood transfusion was demonstrated during the ZIKV outbreak that occurred in French Polynesia from October 2013 to April 2014. Pathogen inactivation of blood products is a proactive strategy that provides the potential to reduce transfusion-transmitted diseases. Inactivation of arboviruses by amotosalen and ultraviolet A (UVA) illumination was previously demonstrated for chikungunya, West Nile, and dengue viruses. We report here the efficiency of this process for ZIKV inactivation of human plasma. Plasma units were spiked with ZIKV. Viral titers and RNA loads were measured in plasma before and after amotosalen and UVA photochemical treatment. The mean ZIKV titers and RNA loads in plasma before inactivation were respectively 6.57 log TCID50 /mL and 10.25 log copies/mL. After inactivation, the mean ZIKV RNA loads was 9.51 log copies/mL, but cell cultures inoculated with inactivated plasma did not result in infected cells and did not produce any replicative virus after one passage, nor detectable viral RNA from the second passage. In this study we demonstrate that amotosalen combined with UVA light inactivates ZIKV in fresh-frozen plasma. This inactivation process is of particular interest to prevent plasma transfusion-transmitted ZIKV infections in areas such as French Polynesia, where several arboviruses are cocirculating. © 2015 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  1. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    SciTech Connect

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  2. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  3. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment

    PubMed Central

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores. PMID:26300855

  4. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment.

    PubMed

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores.

  5. Inactivation of Acanthamoeba spp. and Other Ocular Pathogens by Application of Cold Atmospheric Gas Plasma

    PubMed Central

    Shama, Gilbert; Andrew, Peter W.

    2016-01-01

    Currently there are estimated to be approximately 3.7 million contact lens wearers in the United Kingdom and 39.2 million in North America. Contact lens wear is a major risk factor for developing an infection of the cornea known as keratitis due to poor lens hygiene practices. While there is an international standard for testing disinfection methods against bacteria and fungi (ISO 14729), no such guidelines exist for the protozoan Acanthamoeba, which causes a potentially blinding keratitis most commonly seen in contact lens wearers, and as a result, many commercially available disinfecting solutions show incomplete disinfection after 6 and 24 h of exposure. Challenge test assays based on international standard ISO 14729 were used to determine the antimicrobial activity of cold atmospheric gas plasma (CAP) against Pseudomonas aeruginosa, Candida albicans, and trophozoites and cysts of Acanthamoeba polyphaga and Acanthamoeba castellanii. P. aeruginosa and C. albicans were completely inactivated in 0.5 min and 2 min, respectively, and trophozoites of A. polyphaga and A. castellanii were completely inactivated in 1 min and 2 min, respectively. Furthermore, for the highly resistant cyst stage of both species, complete inactivation was achieved after 4 min of exposure to CAP. This study demonstrates that the CAP technology is highly effective against bacterial, fungal, and protozoan pathogens. The further development of this technology has enormous potential, as this approach is able to deliver the complete inactivation of ocular pathogens in minutes, in contrast to commercial multipurpose disinfecting solutions that require a minimum of 6 h. PMID:26994079

  6. Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Robert, H.; Merbahi, N.; Fontagné-Faucher, C.; Yousfi, M.; Romain, C. E.; Eichwald, O.; Rondel, C.; Gabriel, B.

    2012-08-01

    This work is devoted to the evaluation of the efficiency of a new low-temperature plasma jet driven in ambient air by a dc-corona discharge to inactivate adherent cells and biofilms of Gram-positive bacteria. The selected microorganisms were lactic acid bacteria, a Weissella confusa strain which has the particularity to excrete a polysaccharide polymer (dextran) when sucrose is present. Both adherent cells and biofilms were treated with the low-temperature plasma jet for different exposure times. The antimicrobial efficiency of the plasma was tested against adherent cells and 48 h-old biofilms grown with or without sucrose. Bacterial survival was estimated using both colony-forming unit counts and fluorescence-based assays for bacterial cell viability. The experiments show the ability of the low-temperature plasma jet at atmospheric pressure to inactivate the bacteria. An increased resistance of bacteria embedded within biofilms is clearly observed. The resistance is also significantly higher with biofilm in the presence of sucrose, which indicates that dextran could play a protective role.

  7. Inactivation of human pathogenic dermatophytes by non-thermal plasma.

    PubMed

    Scholtz, Vladimír; Soušková, Hana; Hubka, Vit; Švarcová, Michaela; Julák, Jaroslav

    2015-12-01

    Non-thermal plasma (NTP) was tested as an in vitro deactivation method on four human pathogenic dermatophytes belonging to all ecological groups including anthropophilic Trichophyton rubrum and Trichophyton interdigitale, zoophilic Arthroderma benhamiae, and geophilic Microsporum gypseum. The identification of all strains was confirmed by sequencing of ITS rDNA region (internal transcribed spacer region of ribosomal DNA). Dermatophyte spores were suspended in water or inoculated on agar plates and exposed to NTP generated by a positive or negative corona discharge, or cometary discharge. After 15 min of exposure to NTP a significant decrease in the number of surviving spores in water suspensions was observed in all species. Complete spore inactivation and thus decontamination was observed in anthropophilic species after 25 min of exposure. Similarly, a significant decrease in the number of surviving spores was observed after 10-15 min of exposure to NTP on the surface of agar plates with full inhibition after 25 min in all tested species except of M. gypseum. Although the sensitivity of dermatophytes to the action of NTP appears to be lower than that of bacteria and yeast, our results suggest that NTP has the potential to be used as an alternative treatment strategy for dermatophytosis and could be useful for surface decontamination in clinical practice.

  8. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  9. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  10. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    PubMed

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation.

  11. Solvent/detergent-treated plasma: a virus-inactivated substitute for fresh frozen plasma.

    PubMed

    Horowitz, B; Bonomo, R; Prince, A M; Chin, S N; Brotman, B; Shulman, R W

    1992-02-01

    Fresh frozen plasma (FFP) is prepared in blood banks world-wide as a by-product of red blood cell concentrate preparation. Appropriate clinical use is for coagulation factor disorders where appropriate concentrates are unavailable and when multiple coagulation factor deficits occur such as in surgery. Viral safety depends on donor selection and screening; thus, there continues to be a small but defined risk of viral transmission comparable with that exhibited by whole blood. We have prepared a virus sterilized FFP (S/D-FFP) by treatment of FFP with 1% tri(n-butyl)phosphate (TNBP) and 1% Triton X-100 at 30 degrees C for 4 hours. Added reagents are removed by extraction with soybean oil and chromatography on insolubilized C18 resin. Treatment results in the rapid and complete inactivation of greater than or equal to 10(7.5) infectious doses (ID50) of vesicular stomatitis virus (VSV) and greater than or equal to 10(6.9) ID50 of sindbis virus (used as marker viruses), greater than or equal to 10(6.2) ID50 of human immunodeficiency virus (HIV), greater than or equal to 10(6) chimp infectious doses (CID50) of hepatitis B virus (HBV), and greater than or equal to 10(5) CID50 of hepatitis C virus (HCV). Immunization of rabbits with S/D-FFP and subsequent adsorption of elicited antibodies with untreated FFP confirmed the absence of neoimmungen formation. Coagulation factor content was comparable with that found in FFP. Based on these laboratory and animal studies, together with the extensive history of the successful use of S/D-treated coagulation factor concentrates, we conclude that replacement of FFP with S/D-FFP, prepared in a manufacturing facility, will result in improved virus safety and product uniformity with no loss of efficacy.

  12. Inactivation of factor XII active fragment in normal plasma. Predominant role of C-1-inhibitor.

    PubMed Central

    de Agostini, A; Lijnen, H R; Pixley, R A; Colman, R W; Schapira, M

    1984-01-01

    To define the factors responsible for the inactivation of the active fragment derived from Factor XII (Factor XIIf ) in plasma, we studied the inactivation kinetics of Factor XIIf in various purified and plasma mixtures. We also analyzed the formation of 125I-Factor XIIf -inhibitor complexes by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In purified systems, the bimolecular rate constants for the reactions of Factor XIIf with C-1-inhibitor, alpha 2-antiplasmin, and antithrombin III were 18.5, 0.91, and 0.32 X 10(4) M-1 min-1, respectively. Furthermore, SDS-PAGE analysis revealed that 1:1 stoichiometric complexes were formed between 125I-Factor XIIf and each of these three inhibitors. In contrast, kinetic and SDS-PAGE studies indicated that Factor XIIf did not react with alpha 1-antitrypsin or alpha 2-macroglobulin. The inactivation rate constant of Factor XIIf by prekallikrein-deficient plasma was 14.4 X 10(-2) min-1, a value that was essentially identical to the value predicted from the studies in purified systems (15.5 X 10(-2) min-1). This constant was reduced to 1.8 X 10(-2) min-1 when Factor XIIf was inactivated by prekallikrein-deficient plasma that had been immunodepleted (less than 5%) of C-1-inhibitor. In addition, after inactivation in normal plasma, 74% of the active 125I-Factor XIIf was found to form a complex with C-1-inhibitor, whereas 26% of the enzyme formed complexes with alpha 2-antiplasmin and antithrombin III. Furthermore, 42% of the labeled enzyme was still complexed with C-1-inhibitor when 125I-Factor XII was inactivated in hereditary angioedema plasma that contained 32% of functional C-1-inhibitor. This study quantitatively demonstrates the dominant role of C-1-inhibitor in the inactivation of Factor XIIf in the plasma milieu. Images PMID:6725552

  13. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection.

  14. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  15. Development of High Hydrostatic Pressure Applied in Pathogen Inactivation for Plasma

    PubMed Central

    Yang, Hong; Zhang, Xinmin; Chen, Limin; Wang, Jingxing

    2016-01-01

    High hydrostatic pressure has been used to inactivate pathogens in foods for decades. There is a great potential to adapt this technology to inactivate pathogens in plasma and derivatives. To better evaluate the potential of this method, pathogen inoculated plasma samples were pressurized under different pressure application modes and temperatures. The inactivation efficacy of pathogens and activities of plasma proteins were monitored after treatment. The CFUs of E.coli was examined as the indicator of the inactivation efficiency. The factor V and VIII were chosen as the indicator of the plasma function. Preliminary experiments identified optimized treatment conditions: 200-250MPa, with 5×1 minute multi-pulsed high pressure at near 0°C (ice-water bath). Under this conditions, the inactivation efficacy of EMCV was >8.5log. The CFUs of E. coli were reduced by 7.5log, B. cereus were 8log. However, PPV and S. aureus cannot be inactivated efficiently. The activities of factor II, VII, IX, X, XI, XII, fibrinogen, IgG, IgM stayed over 95% compared to untreated. Factor V and VIII activity was maintained at 46–63% and 77–82%, respectively. PMID:27561010

  16. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    SciTech Connect

    Kang, Sung Kil; Lee, Jae Koo; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Collins, George J.; Mohamed, Abdel-Aleam H.

    2011-04-04

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H{sub 2}O{sub 2} entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state OH generation inside the plasma and relative OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing OH generation and reached a maximum 5-log{sub 10} reduction with 0.6%H{sub 2}O{sub 2} vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H{sub 2}O{sub 2} vapor to the plasma.

  17. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo

    2011-04-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.

  18. Highly effective fungal inactivation in He+O{sub 2} atmospheric-pressure nonequilibrium plasmas

    SciTech Connect

    Xiong, Z.; Lu, X. P.; Pan, Y.; Feng, A.; Ostrikov, K.

    2010-12-15

    Highly effective (more than 99.9%) inactivation of a pathogenic fungus Candida albicans commonly found in oral, respiratory, digestive, and reproduction systems of a human body using atmospheric-pressure plasma jets sustained in He+O{sub 2} gas mixtures is reported. The inactivation is demonstrated in two fungal culture configurations with open (Petri dish without a cover) and restricted access to the atmosphere (Petri dish with a cover) under specific experimental conditions. It is shown that the fungal inactivation is remarkably more effective in the second configuration. This observation is supported by the scanning and transmission electron microscopy of the fungi before and after the plasma treatment. The inactivation mechanism explains the experimental observations under different experimental conditions and is consistent with the reports by other authors. The results are promising for the development of advanced health care applications.

  19. Highly effective fungal inactivation in He+O2 atmospheric-pressure nonequilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Lu, X. P.; Feng, A.; Pan, Y.; Ostrikov, K.

    2010-12-01

    Highly effective (more than 99.9%) inactivation of a pathogenic fungus Candida albicans commonly found in oral, respiratory, digestive, and reproduction systems of a human body using atmospheric-pressure plasma jets sustained in He+O2 gas mixtures is reported. The inactivation is demonstrated in two fungal culture configurations with open (Petri dish without a cover) and restricted access to the atmosphere (Petri dish with a cover) under specific experimental conditions. It is shown that the fungal inactivation is remarkably more effective in the second configuration. This observation is supported by the scanning and transmission electron microscopy of the fungi before and after the plasma treatment. The inactivation mechanism explains the experimental observations under different experimental conditions and is consistent with the reports by other authors. The results are promising for the development of advanced health care applications.

  20. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?

    PubMed

    Joaquin, Jonathan C; Kwan, Calvin; Abramzon, Nina; Vandervoort, Kurt; Brelles-Mariño, Graciela

    2009-03-01

    Conventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using Chromobacterium violaceum, a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml(-1) followed by a much slower decline with D values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation.

  1. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  2. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    SciTech Connect

    Scholtz, V. Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  3. Inactivation of Microorganisms in Model Biofilms by an Atmospheric Pressure Pulsed Non-thermal Plasma

    NASA Astrophysics Data System (ADS)

    Akishev, Yuri; Trushkin, N.; Grushin, M.; Petryakov, A.; Karal'nik, V.; Kobzev, E.; Kholodenko, V.; Chugunov, V.; Kireev, G.; Rakitsky, Yu.; Irkhina, I.

    Non-thermal plasma jet formed by self-running pulsed-periodical high-current spark generator (PPSG) was used for atmospheric pressure inactivation of microorganisms including biofilms. A distinctive feature of the PPSG is a formation of transient hot plasma clouds (plasma bullets) periodically flying out to the target. We experimented with model biofilms of E. coli and Bacillus subtilis monocultures which were grown on agar and surfaces of steel and polypropylene coupons. High efficiency of plasma inactivation was demonstrated. This effect is associated primarily with an interaction of transient hot plasma clouds with biofilms. Besides complete or partial degradation of the cell membrane, weakening of the cell wall of E.coli culture by active plasma was found.

  4. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet.

    PubMed

    Takamatsu, Toshihiro; Uehara, Kodai; Sasaki, Yota; Hidekazu, Miyahara; Matsumura, Yuriko; Iwasawa, Atsuo; Ito, Norihiko; Kohno, Masahiro; Azuma, Takeshi; Okino, Akitoshi

    2015-01-01

    Various gas atmospheric nonthermal plasmas were generated using a multigas plasma jet to treat microbial suspensions. Results indicated that carbon dioxide and nitrogen plasma had high sterilization effects. Carbon dioxide plasma, which generated the greatest amount of singlet oxygen than other gas plasmas, killed general bacteria and some fungi. On the other hand, nitrogen plasma, which generated the largest amount of OH radical, killed ≥ 6 log of 11 species of microorganisms, including general bacteria, fungi, acid-fast bacteria, spores, and viruses in 1-15 min. To identify reactive species responsible for bacterial inactivation, antioxidants were added to bacterial suspensions, which revealed that singlet oxygen and OH radicals had greatest inactivation effects.

  5. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure.

    PubMed

    Shintani, Hideharu; Shimizu, Naohiro; Imanishi, Yuichiro; Sekiya, Takayuki; Tamazawa, Kahoru; Taniguchi, Akira; Kido, Nobuo

    2007-12-01

    The plasma of several different gases has shown a sporicidal activity. From these gases, nitrogen gas was most difficult to produce atomic nitrogen radicals. However, these radicals have a high energy, indicating that nitrogen gas plasma could be used to sterilize microorganisms and inactivate endotoxins. The sterilization mechanism of nitrogen gas plasma is the synergistic effect of a high rising-up voltage pulse, UV irradiation and atomic nitrogen radicals. Thus, the target cells were damaged by degradation, which resulted in death. The biological indicator (BI) used in this study was Geobacillus stearothermophilus ATCC 7953 at a population of 1 x 10(6) CFU/sheet. Sterility assurance was confirmed by using the BI. Moreover, endotoxins were successfully inactivated. More than 5 log reduction of endotoxins could be attained with 30 minutes of nitrogen gas plasma exposure. Material functionality influenced by nitrogen gas plasma presented a satisfactory result. No deterioration of polymers could be observed by nitrogen gas plasma exposure.

  6. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically.

    PubMed

    Lackmann, Jan-Wilm; Schneider, Simon; Edengeiser, Eugen; Jarzina, Fabian; Brinckmann, Steffen; Steinborn, Elena; Havenith, Martina; Benedikt, Jan; Bandow, Julia E

    2013-12-06

    Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.

  7. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically

    PubMed Central

    Lackmann, Jan-Wilm; Schneider, Simon; Edengeiser, Eugen; Jarzina, Fabian; Brinckmann, Steffen; Steinborn, Elena; Havenith, Martina; Benedikt, Jan; Bandow, Julia E.

    2013-01-01

    Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma. PMID:24068175

  8. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  9. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    PubMed

    Vandervoort, Kurt G; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  10. Plasma-Mediated Inactivation of Pseudomonas aeruginosa Biofilms Grown on Borosilicate Surfaces under Continuous Culture System

    PubMed Central

    Vandervoort, Kurt G.; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturabilty are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  11. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes.

    PubMed

    Ye, Zhuoliang; Berson, R Eric

    2014-09-01

    The rate of enzymatic hydrolysis of cellulose reaction is known to decrease significantly as the reaction proceeds. Factors such as reaction temperature, time, and surface area of substrate that affect cellulose conversion were analyzed relative to their role in a mechanistic model based on first order inactivation of adsorbed cellulases. The activation energies for the hydrolytic step and inactivation step were very close in magnitude: 16.3 kcal mol(-1) for hydrolysis and 18.0 kcal mol(-1) for inactivation, respectively. Therefore, increasing reaction temperature would cause a significant increase in the inactivation rate in addition to the catalytic reaction rate. Vmax,app was only 20% or less of the value at 72 h compared to at 2h as a result of inactivation of adsorbed cellulases, suggesting prolonged hydrolysis is not an efficient way to improve cellulose hydrolysis. Hydrolysis rate increased with corresponding increases in available substrate surface binding area.

  12. Beta-lactamase inactivation by mechanism-based reagents.

    PubMed

    Fisher, J; Belasco, J G; Charnas, R L; Khosla, S; Knowles, J R

    1980-05-16

    The mechanistic pathway followed by the E. coli RTEM beta-lactamase has been studied with a view to clarifying the mode of action of a number of recently discovered inactivators of the enzyme. There is clear evidence that the beta-lactamase-catalysed hydrolysis of the 7-alpha-methoxycephem, cefoxitin, proceeds via an acyl-enzyme intermediate. An analysis of the inactivation reactions of all the known beta-lactam derivatives that result in irreversible loss of enzyme activity permits the identification of three structural features required for a beta-lactamase inactivator. The application of these principles suggests a new group of mechanism-based inactivators of the enzyme: the sulphones of N-acyl derivatives of 6-beta-aminopenicillanic acid that are themselves poor substrates for the enzyme. These sulphones are powerful inactivators of the beta-lactamase.

  13. Single-use technology for solvent/detergent virus inactivation of industrial plasma products.

    PubMed

    Hsieh, Yao-Ting; Mullin, Lori; Greenhalgh, Patricia; Cunningham, Michael; Goodrich, Elizabeth; Shea, Jessica; Youssef, Eric; Burnouf, Thierry

    2016-06-01

    Virus inactivation of plasma products is conducted using stainless-steel vessels. Single-use technology can offer significant benefits over stainless such as operational flexibility, reduced capital infrastructure costs, and increased efficiency by minimizing the time and validation requirements associated with hardware cleaning. This study qualifies a single-use bag system for solvent/detergent (S/D) virus inactivation. Human plasma and immunoglobulin test materials were S/D-treated in Mobius single-use bags using 1% tri-n-butyl phosphate (TnBP) with 1% Triton X-100 or 1% Tween 80 at 31°C for 4 to 6 hours to evaluate the impact on protein quality. Volatile and nonvolatile organic leachables from low-density polyethylene film (Pureflex film) used in 1-L-scale studies after exposure to S/D in phosphate-buffered saline were identified compared to controls in glass containers. Virus inactivation studies were performed with xenotropic murine leukemia virus (XMuLV) and bovine viral diarrhea virus (BVDV) to determine the kinetics of virus inactivation, measured using infectivity assays. S/D treatment in Mobius bags did not impact the protein content and profile of plasma and immunoglobulin, including proteolytic enzymes and thrombin generation. Cumulative leachable levels after exposure to S/D were 1.5 and 1.85 ppm when using 0.3% TnBP combined with 1% Tween 80 or 1% Triton X-100, respectively. Efficient inactivation of both XMuLV and BVDV was observed, with differences in the rate of inactivation dependent on both virus and S/D mixture. Effective S/D virus inactivation in single-use container technology is achievable. It does not alter plasma proteins and induces minimal release of leachables. © 2016 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  14. Imaging of the Staphylococcus aureus Inactivation Process Induced by a Multigas Plasma Jet.

    PubMed

    Takamatsu, Toshihiro; Kawano, Hiroaki; Sasaki, Yota; Uehara, Kodai; Miyahara, Hidekazu; Matsumura, Yuriko; Iwasawa, Atsuo; Azuma, Takeshi; Okino, Akitoshi

    2016-12-01

    To identify mechanisms underlying the bacterial inactivation process by atmospheric nonthermal plasma using a unique plasma jet that can generate various gas plasmas, Staphylococcus aureus were irradiated with carbon dioxide plasma, which produces a large amount of singlet oxygens, and nitrogen plasma, which produces a large amount of OH radicals. And damaged areas of plasma-treated bacteria were observed by field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. As a result, bacteria were damaged by both gas plasmas, but the site of damage differed according to gas species. Therefore, it suggests that singlet oxygen generated by carbon dioxide plasma or other reactive species caused by singlet oxygen contributes to the damage of internal structures of bacteria through the cell wall and membrane, and OH radicals generated by nitrogen plasma or other reactive species derived from OH radicals contribute to damage of the cell wall and membrane.

  15. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Hofmann, S.; Boekema, B. K. H. L.; Brandenburg, R.; Bruggeman, P. J.

    2013-05-01

    A radio-frequency atmospheric pressure argon plasma jet is used for the inactivation of bacteria (Pseudomonas aeruginosa) in solutions. The source is characterized by measurements of power dissipation, gas temperature, absolute UV irradiance as well as mass spectrometry measurements of emitted ions. The plasma-induced liquid chemistry is studied by performing liquid ion chromatography and hydrogen peroxide concentration measurements on treated distilled water samples. Additionally, a quantitative estimation of an extensive liquid chemistry induced by the plasma is made by solution kinetics calculations. The role of the different active components of the plasma is evaluated based on either measurements, as mentioned above, or estimations based on published data of measurements of those components. For the experimental conditions being considered in this work, it is shown that the bactericidal effect can be solely ascribed to plasma-induced liquid chemistry, leading to the production of stable and transient chemical species. It is shown that HNO2, ONOO- and H2O2 are present in the liquid phase in similar quantities to concentrations which are reported in the literature to cause bacterial inactivation. The importance of plasma-induced chemistry at the gas-liquid interface is illustrated and discussed in detail.

  16. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge.

    PubMed

    Butscher, Denis; Van Loon, Hanne; Waskow, Alexandra; Rudolf von Rohr, Philipp; Schuppler, Markus

    2016-12-05

    Fresh produce is frequently contaminated by microorganisms, which may lead to spoilage or even pose a threat to human health. In particular sprouts are considered to be among the most risky foods sold at retail since they are grown in an environment practically ideal for growth of bacteria and usually consumed raw. Because heat treatment has a detrimental effect on the germination abilities of sprout seeds, alternative treatment technologies need to be developed for microbial inactivation purposes. In this study, non-thermal plasma decontamination of sprout seeds is evaluated as a promising option to enhance food safety while maintaining the seed germination capabilities. In detail, investigations focus on understanding the efficiency of non-thermal plasma inactivation of microorganisms as influenced by the type of microbial contamination, substrate surface properties and moisture content, as well as variations in the power input to the plasma device. To evaluate the impact of these parameters, we studied the reduction of native microbiota or artificially applied E. coli on alfalfa, onion, radish and cress seeds exposed to non-thermal plasma in an atmospheric pressure pulsed dielectric barrier discharge streamed with argon. Plasma treatment resulted in a maximum reduction of 3.4 logarithmic units for E. coli on cress seeds. A major challenge in plasma decontamination of granular food products turned out to be the complex surface topology, where the rough surface with cracks and crevices can shield microorganisms from plasma-generated reactive species, thus reducing the treatment efficiency. However, improvement of the inactivation efficiency was possible by optimizing substrate characteristics such as the moisture level and by tuning the power supply settings (voltage, frequency) to increase the production of reactive species. While the germination ability of alfalfa seeds was considerably decreased by harsh plasma treatment, enhanced germination was observed under

  17. Low-Pressure Plasma Application for the Inactivation of the Seed-borne Pathogen Xanthomonas campestris.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Mishima, Tomoko; Kawaradani, Mitsuo; Tanimoto, Hideo; Okada, Kiyotsugu; Misawa, Tatsuya; Kusakari, Shinichi

    2016-01-01

    The aim of this study was to investigate the effect of low-pressure plasma treatment on seed disinfection and the possible mechanisms underlying this effect. Seed-borne disease refers to plant diseases that are transmitted by seeds; seed disinfection is an important technique for prevention of such diseases. In this study, the effectiveness of low-pressure plasma treatment in the inactivation of the seed-borne plant pathogenic bacterium, Xanthomonas campestris, inoculated on cruciferous seeds, was evaluated. The highest inactivation effect was observed when the treatment voltage and argon gas flow rate were 5.5 kV and 0.5 L/min, respectively. The viable cell number of X. campestris was 6.6 log cfu/seed before plasma treatment, and decreased by 3.9 log after 5 min of treatment and by 6.6 log after 40 min. Ethidium monoazide treatment and quantitative real-time PCR results indicated that both the cell membrane and target DNA region were damaged following 5 min of plasma treatment. Although both heat and ozone were generated during the plasma treatment, the contribution of both factors to the inactivation of X. campestris was small by itself in our low-pressure plasma system. Overall, we have shown that our low-pressure plasma system has great applicability to controlling plant pathogenic bacterium contamination of seeds.

  18. Enzymatic inactivation of N-nitroso compounds in murine blood plasma.

    PubMed

    Brundrett, R B; Aukerman, S L

    1985-03-01

    Murine blood plasma rapidly inactivates nitrosamides and nitrosocarbamates but not nitrosoureas. The mechanism of this inactivation in murine blood plasma has been investigated. The vast majority of activity (greater than 97%) was inhibited by serine hydroxylase inhibitors. Also, 92% of the activity was inhibited by bis(p-nitrophenyl)phosphate, a selective inhibitor of carboxylesterases. Decomposition products formed after blood plasma action on N-ethyl-N-nitrosoacetamide or N-methyl-N-nitrosoethylcarbamate were separated and identified by gas chromatography. The products formed were consistent with a hydrolytic cleavage of the amidic bond. These observations are consistent with the idea that the major active factor(s) in plasma is a carboxylesterase(s).

  19. Inactivation of Escherichia coli on blueberries using cold plasma with chemical augmentation inside a partial vacuum

    USDA-ARS?s Scientific Manuscript database

    Justification: The mechanism by which cold plasma inactivates pathogens is through the production of free reactive chemical species. Unfortunately, the most reactive chemical species have the shortest half-life. In a vacuum their half-life is believed to be prolonged. Additionally, these reactive sp...

  20. Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasma - treatment time effects

    USDA-ARS?s Scientific Manuscript database

    The objective was to investigate the effect of treatment time of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) on inactivation of spoilage bacteria, Pseudomonas fluorescens and Macrococcus caseolyticus. P. fluorescens and M. caseolyticus were isolated from spoiled chicken carcasses ...

  1. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma

    USDA-ARS?s Scientific Manuscript database

    Viruses are currently the leading cause of foodborne outbreaks, most of which are associated with foods consumed raw. Cold plasma (CP) is an emerging novel nonthermal technology that can be used to surface decontaminate foods. This study investigated CP technology for the nonthermal inactivation of ...

  2. Antimicrobial and cold plasma treatments for inactivation of listeria monocytogenes on whole apple surface

    USDA-ARS?s Scientific Manuscript database

    Introduction: Produce and bacterial cell surface structure play an important role as to where and how bacteria attach to produce surfaces. The efficacy of a novel antimicrobial solution developed in our laboratory was investigated in combination with cold plasma treatments for inactivation of Liste...

  3. Single channel atmospheric pressure transporting plasma and plasma stream demultiplexing: physical characterization and application to E. coli bacteria inactivation

    NASA Astrophysics Data System (ADS)

    Valinataj Omran, A.; Sohbatzadeh, F.; Siadati, S. N.; Hosseinzadeh Colagar, A.; Akishev, Y.; Arefi-Khonsari, F.

    2017-08-01

    In this article, we developed transporting plasma sources that operate at atmospheric pressure. The effect of electrode configuration on plasma transporting was investigated. In order to increase the transporting plasma cross-section, we converted a plasma stream into four plasma channels by a cylindrical housing. Electron excitation and rotational temperatures were estimated using optical emission spectroscopy. Furthermore, the electrical and temporal characteristics of the plasma, discharge power and charge deposition on the target were investigated. The propagation characteristics of single and multi-channel transporting plasma were compared with the same cross-sectional area. Two configurations for multi-channels were designed for this purpose. Escherichia coli bacteria were exposed to the single and multi-channel transporting discharge for different time durations. After exposure, the results indicated that the inactivation zones were significantly increased by a multi-channel transporting plasma. Finally, E. coli inactivation by those plasma apparatuses was compared with that of several standard antimicrobial test discs such as Gentamicin, Tetracycline, Amoxicillin and Cefixime.

  4. Pathogen inactivation and removal methods for plasma-derived clotting factor concentrates.

    PubMed

    Klamroth, Robert; Gröner, Albrecht; Simon, Toby L

    2014-05-01

    Pathogen safety is crucial for plasma-derived clotting factor concentrates used in the treatment of bleeding disorders. Plasma, the starting material for these products, is collected by plasmapheresis (source plasma) or derived from whole blood donations (recovered plasma). The primary measures regarding pathogen safety are selection of healthy donors donating in centers with appropriate epidemiologic data for the main blood-transmissible viruses, screening donations for the absence of relevant infectious blood-borne viruses, and release of plasma pools for further processing only if they are nonreactive for serologic markers and nucleic acids for these viruses. Despite this testing, pathogen inactivation and/or removal during the manufacturing process of plasma-derived clotting factor concentrates is required to ensure prevention of transmission of infectious agents. Historically, hepatitis viruses and human immunodeficiency virus have posed the greatest threat to patients receiving plasma-derived therapy for treatment of hemophilia or von Willebrand disease. Over the past 30 years, dedicated virus inactivation and removal steps have been integrated into factor concentrate production processes, essentially eliminating transmission of these viruses. Manufacturing steps used in the purification of factor concentrates have also proved to be successful in reducing potential prion infectivity. In this review, current techniques for inactivation and removal of pathogens from factor concentrates are discussed. Ideally, production processes should involve a combination of complementary steps for pathogen inactivation and/or removal to ensure product safety. Finally, potential batch-to-batch contamination is avoided by stringent cleaning and sanitization methods as part of the manufacturing process.

  5. Effective bacterial inactivation using low temperature radio frequency plasma.

    PubMed

    Sureshkumar, A; Sankar, R; Mandal, Mahitosh; Neogi, Sudarsan

    2010-08-30

    Staphylococcus aureus is one of the most common pathogens responsible for hospital-acquired infections. In this study, S. aureus was exposed to 13.56MHz radiofrequency (RF) plasma generated by two different gases namely nitrogen and nitrogen-oxygen mixture and their sterilization efficacies were compared. Nitrogen plasma had a significant effect on sterilization due to generation of ultraviolet (UV) radiation. However, the addition of 2% oxygen showed enhanced effect on the sterilization of bacteria through nitric oxide (NO) emission and various reactive species. The presence of these reactive species was confirmed by optical emission spectroscopy (OES). Scanning electron microscopy (SEM) analysis was carried out to study the morphological changes of bacteria after plasma treatment. From the SEM results, it was observed that the bacterial cells treated by N(2)-O(2) mixture plasma were severely damaged. As a result, a log(10) reduction factor of 6 was achieved using N(2)-O(2) plasma after 5min treatment with 100W RF power. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Inactivation of Bacteria using Combined Effects of Magnetic Field, Low Pressure and Ultra Low Frequency Plasma Discharges (ULFP)

    NASA Astrophysics Data System (ADS)

    Galaly, A. R.; Zahran, H. H.

    2013-04-01

    Inactivating viable cells at very short application times has been studied using Ultra Low Frequency Plasma (ULFP) at one Kilo Hertz, using an RF source. The targeted fashion is to inactivate Escherichia coli (E. coli) in the absence and in the presence of magnetic field. Adding oxygen (O2) to argon (Ar) in the discharge leads to a complete bacterial inactivation, where the inactivation rate increased as the concentration of O2 increases. Analyses of the experimental data of the initial and final densities of viable cells, using survival curves, showed a dramatic inhibitory effect of plasma discharge to the residual survival of microbial ratio due to the influence of the magnetic field.

  7. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  8. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus

    PubMed Central

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066

  9. A key inactivation factor of HeLa cell viability by a plasma flow

    NASA Astrophysics Data System (ADS)

    Sato, Takehiko; Yokoyama, Mayo; Johkura, Kohei

    2011-09-01

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H2O2 in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H2O2, we assessed the differences in the effects of plasma-treated medium and H2O2-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H2O2 into the cells, response to H2O2 decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H2O2 is one of the main factors responsible for inactivation of HeLa cell viability.

  10. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  11. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  12. Design and Mechanism of Tetrahydrothiophene-based GABA Aminotransferase Inactivators

    PubMed Central

    Le, Hoang V.; Hawker, Dustin D.; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-01

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally-restricted, tetrahydrothiophene-based GABA analogs with a properly-positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is eight times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bond interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O=C interaction with Glu-270, thereby inactivating the enzyme. PMID:25781189

  13. Design and Mechanism of Tetrahydrothiophene-based GABA Aminotransferase Inactivators

    SciTech Connect

    Le, Hoang V.; Hawker, Dustin D.; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B

    2015-04-08

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  14. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma.

    PubMed

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F

    2017-01-02

    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment. Copyright © 2016. Published by Elsevier B.V.

  15. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    PubMed Central

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  16. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet.

    PubMed

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-07-01

    A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances.

  17. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  18. Inactivation of key factors of the plasma proteinase cascade systems by Bacteroides gingivalis.

    PubMed Central

    Nilsson, T; Carlsson, J; Sundqvist, G

    1985-01-01

    The effect of Bacteroides gingivalis W83 on various key components of the human plasma proteinase cascade systems was studied. When purified C1-inhibitor was incubated with the bacterium, the inhibitor was rapidly inactivated by limited proteolytic cleavage. In citrated whole plasma, C1-inhibitor, antithrombin, plasminogen, prekallikrein, prothrombinase complex, the clotting factor X, and most of the alpha 2-antiplasmin were functionally eliminated after 30 min of incubation with the bacterium. Fibrinogen disappeared from the plasma almost immediately upon mixing with the bacterial suspension. In contrast, there was no appreciable decrease in the bulk of other plasma proteins, such as various transport proteins (albumin, prealbumin, transferrin) and immunoglobulins, during 4 h of incubation with the bacterium. Most of the observed effects can be assigned to the proteolytic activity of the bacterium itself, since there was little evidence for generation of intrinsic plasma proteinase activity, despite the loss of proteinase inhibitory activities. B. gingivalis W83 thus seems to be equipped with proteolytic enzyme systems which selectively recognize and rapidly inactivate the most important proteinase inhibitors and proenzymes present in human plasma. This bacterium therefore seems to be able to efficiently paralyze the host's various defenses against invading microorganisms. Images PMID:3902645

  19. Proteolytic inactivation of plasma C1- inhibitor in sepsis.

    PubMed Central

    Nuijens, J H; Eerenberg-Belmer, A J; Huijbregts, C C; Schreuder, W O; Felt-Bersma, R J; Abbink, J J; Thijs, L G; Hack, C E

    1989-01-01

    Activation of both the complement system and the contact system of intrinsic coagulation is implicated in the pathophysiology of sepsis. Because C1 inhibitor (C1-Inh) regulates the activation of both cascade systems, we studied the characteristics of plasma C1-Inh in 48 patients with severe sepsis on admission to the Intensive Care Unit at the Free University of Amsterdam. The ratio between the level of functional and antigenic C1-Inh (functional index) was significantly reduced in the patients with sepsis compared with healthy volunteers (P = 0.004). The assessment of modified (cleaved), inactive C1-Inh (iC1-Inh), and complexed forms of C1-Inh (nonfunctional C1-Inh species) revealed that the reduced functional index was mainly due to the presence of iC1-Inh. On SDS-PAGE, iC1-Inh species migrated with a lower apparent molecular weight (Mr 98,000, 91,000, and 86,000) than native C1-Inh (Mr 110,000). Elevated iC1-Inh levels (greater than or equal to 0.13 microM) were found in 81% of all patients, sometimes up to 1.6 microM. Levels of iC1-Inh on admission appeared to be of prognostic value: iC1-Inh was higher in 27 patients who died than in 21 patients who survived (P = 0.003). The mortality in 15 patients with iC1-Inh levels up to 0.2 microM was 27%, but in 12 patients with plasma iC1-Inh exceeding 0.44 microM, the mortality was 83%. The overall mortality in the patients with sepsis was 56%. We propose that the cleavage of C1-Inh in patients with sepsis reflects processes that play a major role in the development of fatal complications during sepsis. Images PMID:2668333

  20. Inactivation of Yeast on Grapes by Plasma-Activated Water and Its Effects on Quality Attributes.

    PubMed

    Guo, Jian; Huang, Kang; Wang, Xiao; Lyu, Chenang; Yang, Nannan; Li, Yanbin; Wang, Jianping

    2017-02-01

    Plasma-activated water (PAW) is a promising nonthermal technology in food preservation and food safety. The inactivation efficacy of PAW was investigated against Saccharomyces cerevisiae CICC 1374 inoculated on grape berries. PAW30 and PAW60 were obtained by activating water with plasma for 30 and 60 min, respectively. Grapes were directly treated with PAW, and a 0.38- to 0.53-log CFU/ml reduction of S. cerevisiae was achieved in a time-dependent manner (P < 0.05). The oxidation-reduction potential and pH values of PAW30 and PAW60 were also in a time-dependent manner (P < 0.05). Grape quality assessment demonstrated no significant change in surface color and total anthocyanin content after 30 min of PAW60 treatment (P > 0.05). Although grape quality was unaffected by PAW in this study, this technology should be optimized to enhance inactivation efficiency.

  1. A H2 very high frequency capacitively coupled plasma inactivates glyceraldehyde 3-phosphate dehydrogenase(GapDH) more efficiently than UV photons and heat combined

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Lackmann, Jan-Wilm; Buerger, Ines; Bandow, Julia Elisabeth; Awakowicz, Peter

    2014-02-01

    Plasma sterilization is a promising alternative to commonly used sterilization techniques, because the conventional methods suffer from certain limitations, e.g. incompatibility with heat-sensitive materials, or use of toxic agents. However, plasma-based sterilization mechanisms are not fully understood yet. A low-pressure very high frequency capacitively coupled plasma is used to investigate the impact of a hydrogen discharge on the protein glyceraldehyde 3-phosphate dehydrogenase (GapDH). GapDH is an enzyme of glycolysis. As a part of the central metabolism, it occurs in nearly all organisms from bacteria to humans. The plasma is investigated with absolutely calibrated optical emission spectroscopy in order to identify and to quantify plasma components that can contribute to enzyme inactivation. The contribution of UV photons and heat to GapDH inactivation is investigated separately, and neither seems to be a major factor. In order to investigate the mechanisms of GapDH inactivation by the hydrogen discharge, samples are investigated for etching, induction of amino acid backbone breaks, and chemical modifications. While neither etching nor strand breaks are observed, chemical modifications occur at different amino acid residues of GapDH. Deamidations of asparagines as well as methionine and cysteine oxidations are detected after VHF-CCP treatment. In particular, oxidation of the cysteine in the active centre is known to lead to GapDH inactivation.

  2. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma.

    PubMed

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Alahakoon, Amali U; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    Pathogen inactivation induced by atmospheric pressure dielectric barrier discharge (DBD) (250 W, 15 kHz, air discharge) produced in a rectangular plastic container and the effect of post-treatment storage time on inactivation were evaluated using agar plates and cheese slices. When agar plates were treated with plasma, populations of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes showed 3.57, 6.69, and 6.53 decimal reductions at 60 s, 45 s, and 7 min, respectively. When the pathogens tested were inoculated on cheese slices, 2.67, 3.10, and 1.65 decimal reductions were achieved at the same respective treatment times. The post-treatment storage duration following plasma treatment potently affected further reduction in pathogen populations. Therefore, the newly developed encapsulated DBD-plasma system for use in a container can be applied to improve the safety of sliced cheese, and increasing post-treatment storage time can greatly enhance the system's pathogen-inactivation efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce.

    PubMed

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile; Zhang, Jue; Fang, Jing

    2015-12-30

    Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  4. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials.

    PubMed

    Traba, Christian; Chen, Long; Liang, Jun F

    2013-03-20

    The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations.

  5. Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas.

    PubMed

    Yu, Q S; Huang, C; Hsieh, F-H; Huff, H; Duan, Yixiang

    2007-01-01

    This study investigated the bacterial inactivation/sterilization effects of a new atmospheric plasma source, which is a brush-shaped argon glow discharge created under 1 atm pressure. Such an atmospheric plasma brush requires extremely low power of less than 20 W to operate; and therefore is essentially a low-temperature discharge as confirmed by gas-phase temperature measurements. Two bacteria, Escherichia coli (E. coli) and Micrococcus luteus (M. luteus), seeded in various media were subjected to plasma treatment and their survivability was examined. It was found that such argon atmospheric plasma brush is very effective in destruction of the bacteria cells. With nutrient broth and standard methods agar as supporting media, a cell reduction in a level of 6 orders of magnitude was observed for E. coli within 3-4 min plasma treatment. A similar level of cell reduction was also observed for M. luteus in the two media with 2 or 3 min plasma treatment. The plasma treatment effects on the bacteria cell structures were also examined using scanning electron microscopy and the cell structure damages due to the plasma exposure were observed on both bacteria. The possible sterilization mechanism of the argon plasmas is also discussed in this article.

  6. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH.) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media. PMID:23799081

  7. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  8. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    NASA Astrophysics Data System (ADS)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  9. Comparative effectiveness of plasma prepared with amotosalen-UVA pathogen inactivation and conventional plasma for support of liver transplantation.

    PubMed

    Cinqualbre, Jacques; Kientz, Daniel; Remy, Emilie; Huang, Norman; Corash, Laurence; Cazenave, Jean Pierre

    2015-07-01

    Liver transplant may require large-volume plasma transfusion with increased risk of transfusion-transmitted infection (TTI). Pathogen inactivation of plasma with amotosalen-UVA offers the potential to mitigate TTI risk. A retrospective cohort design was used to compare the therapeutic efficacy and key safety outcomes for liver transplants supported with quarantine plasma (Q-FFP [reference]) or amotosalen-UVA plasma (IBS plasma [test]). The outcomes evaluated were volume of plasma, the numbers of red blood cell (RBC) components, and the total dose of platelets (PLTs) transfused during and 7 days after transplant. The safety outcomes were acute hepatic artery thrombosis (HAT) and mortality. Transplantation and transfusion records for 212 Q-FFP transplants and 215 IBS plasma transplants were reviewed. Not all transplants required plasma; 161 received Q-FFP and 174 received IBS plasma. Among the transplants that required plasma, there were significant differences in median values between cohorts for delay to transplantation (p=0.002), model end-stage liver disease score (p<0.001), pretransplant hematocrit (p=0.006), and graft cold perfusion time (p=0.033). The median volumes of plasma transfused were not different for test and reference (2.160 L vs. 1.969 L, p=0.292). Transplants in the test cohort required a mean of 3.7% more RBC components (p=0.767) and on average a 16.5% increase in total PLT dose (p=0.518). No significant differences were observed for the frequency of acute HAT or mortality. In this retrospective study, IBS plasma provided therapeutic support of liver transplant not different from Q-FFP. © 2015 Cerus Corporation. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  10. Plasma-Based Sterilization

    DTIC Science & Technology

    2003-07-20

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014940 TITLE: Plasma-Based Sterilization DISTRIBUTION: Approved for...compilation report: ADP014936 thru ADP015049 UNCLASSIFIED Plasma-Based Sterilization Mounir Laroussi Electrical & Computer Engineering Department Old...Dominion University Norfolk, VA 23529 Rapid, safe, and effective sterilization is of the utmost importance when it comes to protecting the public in

  11. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology.

    PubMed

    Fernández, A; Noriega, E; Thompson, A

    2013-02-01

    Cold atmospheric gas plasma treatment (CAP) is an alternative approach for the decontamination of fresh and minimally processed food. In this study, the effects of growth phase, growth temperature and chemical treatment regime on the inactivation of Salmonella enterica serovar Typhimurium (S. Typhimurium) by Nitrogen CAP were examined. Furthermore, the efficacy of CAP treatment for decontaminating lettuce and strawberry surfaces and potato tissue inoculated with S. Typhimurium was evaluated. It was found that the rate of inactivation of S. Typhimurium was independent of the growth phase, growth temperature and chemical treatment regime. Under optimal conditions, a 2 min treatment resulted in a 2.71 log-reduction of S. Typhimurium viability on membrane filters whereas a 15 min treatment was necessary to achieve 2.72, 1.76 and 0.94 log-reductions of viability on lettuce, strawberry and potato, respectively. We suggest that the differing efficiency of CAP treatment on the inactivation of S. Typhimurium on these different types of fresh foods is a consequence of their surface features. Scanning electron microscopy of the surface structures of contaminated samples of lettuce, strawberry and potato revealed topographical features whereby S. Typhimurium cells could be protected from the active species generated by plasma.

  12. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  13. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation

    PubMed Central

    Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.

    2016-01-01

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829

  14. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    PubMed

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  15. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws

    PubMed Central

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther

    2013-01-01

    Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085

  16. The low photo-inactivation rate of bacteria in human plasma II. Inhibition of methylene blue bleaching in plasma and effective bacterial destruction by the addition of dilute acetic acid to human plasma.

    PubMed

    Chen, Jie; Cesario, Thomas C; Li, Runze; Er, Ali O; Rentzepis, Peter M

    2015-10-01

    Methylene blue (MB) and other photo-sensitizer molecules have been recognized as effective means for the inactivation of bacteria and other pathogens owing to their ability to photo-generate reactive oxygen species (ROS) including singlet oxygen. These reactive species react with the membrane of the bacteria causing their destruction. However, the efficiency of MB to destroy bacteria in plasma is very low because the MB 660 nm absorption band, that is responsible for the ROS generation, is bleached. The bleaching of MB, in plasma, is caused by the attachment of a hydrogen atom to the central ring nitrogen of MB, which destroys the ring conjugation and forms Leuco-MB which does not absorb in the 600 nm region. In this paper we show that addition of dilute acetic acid, ∼10(-4) M, to human plasma, prevents H-atom attachment to MB, allowing MB to absorb at 660 nm, generates singlet oxygen and thus inactivates bacteria. The mechanism proposed, for preventing MB bleaching in plasma, is based on the oxidation of cysteine to cystine, by reaction with added dilute acetic acid, thus eliminating the availability of the thiol hydrogen atom which attaches to the MB nitrogen. It is expected that the addition of acetic acid to plasma will be effective in the sterilization of plasma and killing of bacteria in wounds and burns.

  17. Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage.

    PubMed

    Yost, Adam D; Joshi, Suresh G

    2015-01-01

    We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death.

  18. Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage

    PubMed Central

    Yost, Adam D.; Joshi, Suresh G.

    2015-01-01

    We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death. PMID:26461113

  19. Ultraviolet (UV-C) inactivation of Enterococcus faecium, Salmonella choleraesuis and Salmonella typhimurium in porcine plasma

    PubMed Central

    Blázquez, Elena; Rodríguez, Carmen; Ródenas, Jesús; Pérez de Rozas, Ana; Segalés, Joaquim; Pujols, Joan

    2017-01-01

    The objective of this study was to assess the effectiveness of an ultraviolet (UV-C, 254 nm) irradiation system on reducing the load of Salmonella typhimurium (S. typhimurium), Salmonella choleraesuis (S. choleraesuis) resistant to streptomycin and Enterococcus faecium (E. faecium) inoculated in sterile porcine plasma and then subjected to different UV-C irradiation doses (750, 1500, 3000, 6000 and 9000 J/L) using a pilot plant UV-C device working under turbulent flow. Results indicated that UV-C treatment induced a viability reduction of 0.38, 1.18, 3.59, 4.72 and 5.06 log10 S. typhimurium when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The observed log10 reduction of S. choleraesuis was 1.44, 2.68, 5.55, 7.07 and 7.97 at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The best-fit inactivation for S. choleraesuis was the Weibull distribution curve, while the best-fit curve for S. typhimurium was the Weibull plus tail model, indicating that around 102 cfu/mL resistant S. typhimurium was detected when the liquid plasma was UV-C irradiated at doses up to 9000 J/L. Viability reduction for E. faecium was 0.44, 1.01, 3.70, 5.61 and 6.22 log10 when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively, with no bacterial resistance observed with UV-C doses of 6000 J/L or higher. The biphasic model was the best fit model for the inactivation curve for E. faecium. For the three microorganisms tested, about a 4 log-unit reduction was achieved when the liquid plasma was irradiated at 3000J/L. Overall results demonstrate the usefulness of the UV-C system to inactivate bacteria in liquid plasma before spray-drying. We conclude that the UV-C system can provide an additional biosafety feature that can be incorporated into the manufacturing process for spray-dried animal plasma. PMID:28399166

  20. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    PubMed

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal.

  1. Inactivation Process of Penicillium digitatum Spores Treated with Non-equilibrium Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Mori, Takumi; Iseki, Sachiko; Hori, Masaru; Ito, Masafumi

    2013-05-01

    To investigate the inactivation process of Penicillium digitatum spores treated with a non-equilibrium atmospheric pressure plasma, the spores were observed using a fluorescent microscope and compared with those treated with ultraviolet (UV) light or moist heat. The treated spores were stained with two fluorescent dyes, 1,1'-dioctadecyl-3,3,Y,3'-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as cell membranes in the spores treated with the plasma were stained with DiI without a major morphological change of the membranes, while the organelles were never stained in the spores treated with UV light or moist heat. Moreover, DPPP staining revealed that organelles were oxidized by plasma treatment unlike UV light or moist heat treatments. These results suggest that only plasma treatment induces a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles without a major deformation of the membranes through the penetration of reactive oxygen species generated by the plasma into the cell.

  2. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws.

    PubMed

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther; Moeller, Ralf

    2013-07-01

    A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.

  3. Effect of Surface Roughness in Model and Fresh Fruit Systems on Microbial Inactivation Efficacy of Cold Atmospheric Pressure Plasma.

    PubMed

    Bhide, Siddharth; Salvi, Deepti; Schaffner, Donald W; Karwe, Mukund V

    2017-08-01

    This study investigates the efficacy of cold atmospheric pressure plasma (CAPP) on microbial inactivation as influenced by surface roughness of two types of surfaces: sandpaper and fresh fruit peel. Different grits of closed-coat sandpaper were selected, with their roughness (Pq) values ranging from 6 to 16 μm. Apple, orange, and cantaloupe peels were selected for roughness values that were similar to the sandpapers. The sandpapers and the fruit peel surfaces were spot inoculated with Enterobacter aerogenes (10(9) CFU/63.64 cm(2)) and exposed to CAPP for 492 s. Similar microbial enumeration techniques were used for both systems to quantify the microbial inactivation. The smoothest sandpaper showed a 0.52-log higher inactivation of E. aerogenes (2.08 log CFU/63.64 cm(2) sandpaper surface inactivation) than did the roughest sandpaper (1.56 log CFU/63.64 cm(2) sandpaper surface inactivation), and the difference was statistically significant (P < 0.05). The smoothest fresh fruit peel surface (apple) showed a 1.25-log higher inactivation of the microorganism (1.86 log CFU/63.64 cm(2) fruit peel surface inactivation) than did the roughest fresh fruit peel surface (cantaloupe; 0.61 log CFU/63.64 cm(2) fruit peel surface inactivation), and the difference was statistically significant (P < 0.05). As the surface roughness increased, microbial inactivation efficacy of CAPP decreased for both systems. The results from sandpaper show that, in a scenario in which the surface roughness was the only parameter of difference, the microbial inactivation efficacy of CAPP decreased with increasing surface roughness. The results from fruit surfaces show high variability and were not directly predictable from the sandpaper data. This suggests that the microbial inactivation efficacy of CAPP in real-world food systems, such as on fresh fruit peels, is affected by factors in addition to surface roughness.

  4. Pseudomonas aeruginosa Biofilm Inactivation: Decreased Cell Culturability, Adhesiveness to Surfaces, and Biofilm Thickness Upon High-Pressure Nonthermal Plasma Treatment

    PubMed Central

    Zelaya, Anna J.; Stough, Gregory; Rad, Navid; Vandervoort, Kurt; Brelles-Mariño, Graciela

    2011-01-01

    Bacterial biofilms are more resilient to standard killing methods than free-living bacteria. Pseudomonas aeruginosa PAO1 biofilms grown on borosilicate coupons were treated with gas-discharge plasma for various exposure times. Almost 100% of the cells were inactivated after a 5-min plasma exposure. Atomic force microscopy was used to image the biofilms and study their micromechanical properties. Results show that the adhesiveness to borosilicate and the thickness of the Pseudomonas biofilms are reduced upon plasma treatment. PMID:21544254

  5. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets.

    PubMed

    Lee, Hyun Jung; Jung, Heesoo; Choe, Wonho; Ham, Jun Sang; Lee, Jun Heon; Jo, Cheorun

    2011-12-01

    An apparatus for generating atmospheric pressure plasma (APP) jet was used to investigate the inactivation of Listeria monocytogenes on the surface of agar plates and slices of cooked chicken breast and ham. He, N₂ (both 7 L/min), and mixtures of each with O₂ (0.07 L/min) were used to produce the plasma jets. After treatment for 2 min with APP jets of He, He + O₂, N₂, or N₂ + O₂, the numbers of L. monocytogenes on agar plates were reduced by 0.87, 4.19, 4.26, and 7.59 log units, respectively. Similar treatments reduced the L. monocytogenes inoculated onto sliced chicken breast and ham by 1.37 to 4.73 and 1.94 to 6.52 log units, respectively, according to the input gas used with the N₂ + O₂ mixture being the most effective. Most APP jets reduced the numbers of aerobic bacteria on the meat surfaces to <10² CFU/g, and the numbers remained below that level of detection after storage at 10 °C for 7 days. The results indicate that APP jets are effective for the inactivation of L. monocytogenes on sliced meats and for prolonging the shelf-life of such foods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. N2 Gas Plasma Inactivates Influenza Virus by Inducing Changes in Viral Surface Morphology, Protein, and Genomic RNA

    PubMed Central

    Shimizu, Naohiro; Imanishi, Yuichiro

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma. PMID:24195077

  7. N 2 gas plasma inactivates influenza virus by inducing changes in viral surface morphology, protein, and genomic RNA.

    PubMed

    Sakudo, Akikazu; Shimizu, Naohiro; Imanishi, Yuichiro; Ikuta, Kazuyoshi

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma.

  8. Inactivation of Microcystis aeruginosa by DC glow discharge plasma: Impacts on cell integrity, pigment contents and microcystins degradation.

    PubMed

    Zhang, Hong; Yang, Linfang; Yu, Zengliang; Huang, Qing

    2014-03-15

    We proposed a method to inactivate M. aeruginosa by using discharge plasma taking at the gas-solution interface supplied by DC power. Multiple analysis techniques including fluorescence excitation-emission matrix (EEM) and flow cytometry (FCM) were used to reveal the inactivation mechanism of M. aeruginosa. The photosynthetic pigment contents including phycocyanin, chlorophyll and metabolites were examined quantitatively. The DC glow discharge plasma caused an increased level of reactive oxygen species (ROS), and the damage of M. aeruginosa cells are mainly attributed to the oxidative stress including OH attack and H2O2 oxidation. Our findings demonstrate that plasma oxidation is a promising technology for inactivation of M. aeruginosa cells with simultaneous removal of microcystins and so it may lead us to a new route to efficient treatment of cyanobacterial blooms.

  9. Radiation-induced inactivation of enzymes - Molecular mechanism based on inactivation of dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Gerszon, Joanna; Puchala, Mieczyslaw; Bartosz, Grzegorz

    2016-11-01

    Proteins, which have enzymatic activities play a fundamental role in the cell due to participation in most of biological processes. Oxidative-induced damage of enzymes often have marked effects on cellular processes, which in consequence determine cell functioning and survival. In this review, we focused on the radiation-induced inactivation of enzymes with particular emphasis on the inactivation of dehydrogenases. For a better understanding of this issue, the efficiency of products of water radiolysis (•OH, O2•- and H2O2) in enzyme inactivation has been analysed. Reactions of reactive oxygen species (ROS) with amino acids present in the active site of enzymes appear to have the greatest impact on enzyme inactivation.

  10. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.

    2016-06-01

    The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus ( A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.

  11. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

  12. Inactivation of a Foodborne Norovirus Outbreak Strain with Nonthermal Atmospheric Pressure Plasma

    PubMed Central

    Ahlfeld, Birte; Li, Yangfang; Boulaaba, Annika; Binder, Alfred; Schotte, Ulrich; Zimmermann, Julia L.; Morfill, Gregor

    2015-01-01

    ABSTRACT  Human norovirus (NoV) is the most frequent cause of epidemic nonbacterial acute gastroenteritis worldwide. We investigated the impact of nonthermal or cold atmospheric pressure plasma (CAPP) on the inactivation of a clinical human outbreak NoV, GII.4. Three different dilutions of a NoV-positive stool sample were prepared and subsequently treated with CAPP for various lengths of time, up to 15 min. NoV viral loads were quantified by quantitative real-time reverse transcription PCR (RT-qPCR). Increased CAPP treatment time led to increased NoV reduction; samples treated for the longest time had the lowest viral load. From the initial starting quantity of 2.36 × 104 genomic equivalents/ml, sample exposure to CAPP reduced this value by 1.23 log10 and 1.69 log10 genomic equivalents/ml after 10 and 15 min, respectively (P < 0.01). CAPP treatment of surfaces carrying a lower viral load reduced NoV by at least 1 log10 after CAPP exposure for 2 min (P < 0.05) and 1 min (P < 0.05), respectively. Our results suggest that NoV can be inactivated by CAPP treatment. The lack of cell culture assays prevents our ability to estimate infectivity. It is possible that some detectable, intact virus particles were rendered noninfectious. We conclude that CAPP treatment of surfaces may be a useful strategy to reduce the risk of NoV transmission in crowded environments. Importance  Human gastroenteritis is most frequently caused by noroviruses, which are spread person to person and via surfaces, often in facilities with crowds of people. Disinfection of surfaces that come into contact with infected humans is critical for the prevention of cross-contamination and further transmission of the virus. However, effective disinfection cannot be done easily in mass catering environments or health care facilities. We evaluated the efficacy of cold atmospheric pressure plasma, an innovative airborne disinfection method, on surfaces inoculated with norovirus. We used a clinically

  13. In-Package Inactivation of Pathogenic and Spoilage Bacteria Associated with Poultry Using Dielectric Barrier Discharge-Cold Plasma Treatments.

    PubMed

    Rothrock, Michael J; Zhuang, Hong; Lawrence, Kurt C; Bowker, Brian C; Gamble, Gary R; Hiett, Kelli L

    2017-02-01

    The goal of this study was to test the efficacy of in-package dielectric barrier discharge-cold plasma (DBD-CP) treatment to inactivate poultry-associated spoilage (Pseudomonas fluorescens) and pathogenic (Salmonella enterica Typhimurium, Campylobacter jejuni) bacteria. Liquid cultures of the bacterial isolates were sealed within packages containing ambient air (Trial 1) or modified air (65% O2:30% CO2:5% N2; Trial 2). The packages were subjected to treatment times ranging from 30 to 180 s, and after 24 h incubation at 4 °C, bacterial titers were determined. The DBD-CP system completely inactivated the four isolates tested, although the in-package gas composition and treatment times were isolate-specific. Both C. jejuni isolates were completely inactivated between 30 s (modified air) and 120 s (ambient air), while modified air was required for the complete inactivation of S. typhimurium (90 s) and P. fluorescens (180 s). This DBD-CP system is effective for inactivating major poultry-associated spoilage and pathogenic bacteria in liquid culture, and through this study, system parameters to optimize inactivation were determined. This study demonstrates the potential for DBD-CP treatment to inactivate major bacteria of economic interest to the poultry industry, thus potentially allowing for reduced spoilage (e.g., longer shelf life) and increased safety of poultry products.

  14. Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli.

    PubMed

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Choe, Wonho; Oh, Mi Wha; Jo, Cheorun

    2014-08-01

    Atmospheric pressure plasma (APP) is an emerging nonthermal microbial inactivation technique. In this study, agar and raw chicken breast were inoculated with Escherichia coli and treated with an APP jet based on cold arc plasma. The aim of this study was to investigate the optimum conditions for the plasma treatment of an APP jet in order to maximize the efficiency of E. coli inactivation. The combination of N2+O2 (10 standard cubic centimeters per minute) and a longer treatment time (10 min) resulted in the highest inactivation of E. coli on agar plates with an optimum treatment distance of 20 mm. The samples in dry and wet conditions showed similar reductions in E. coli count when one side of the samples was treated at a given treatment time. Treating both sides-2.5 min on each side-resulted in a higher growth inhibition of E. coli than treatment of a single side only for 5 min. However, there was no significant difference between one-side treated samples (10 min) and both-sides treated samples (5+5 min). When the concentration of E. coli in the chicken breast sample was 10(4) colony-forming units (CFU)/g, the reduction rate of the E. coli was the highest, followed by 10(5), 10(6), and 10(7) CFU/g; however, no difference was found between 10(3) and 10(4) CFU/g. In conclusion, various treatment conditions may affect the inactivation efficiency of E. coli. In the present study, the optimum condition was determined as the treatment distance of 20 mm and longer treatment time (10 min) with the addition of oxygen to the nitrogen gas flow. Furthermore, the cell concentration of sample was an important parameter for the efficacy of the inactivation process.

  15. Modeling of inactivation of surface borne microorganisms occurring on seeds by cold atmospheric plasma (CAP)

    NASA Astrophysics Data System (ADS)

    Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.

    2012-10-01

    Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.

  16. Inactivation of Escherichia coli ATCC 11775 in fresh produce using atmospheric pressure cold plasma

    NASA Astrophysics Data System (ADS)

    Bermudez-Aguirre, Daniela; Wemlinger, Erik; Barbosa-Canovas, Gustavo; Pedrow, Patrick; Garcia-Perez, Manuel

    2011-10-01

    Food-borne outbreaks are associated with the presence of pathogenic bacteria in food products such as fresh produce. One of the target microorganisms is Escherichia coli which exhibits resistance to being inactivated with conventional disinfection methods for vegetables. Atmospheric pressure cold plasma (APCP) was tested to disinfect three vegetables with challenge surfaces, lettuce, carrots and tomatoes. The produce was inoculated with the bacteria to reach an initial microbial concentration of 107 cfu/g. Vegetables were initially exposed to the APCP discharges from a needle array at 5.7 kV RMS in argon, processing times of 0.5, 3 and 5 min. Initial results indicate that microbial decontamination is effective on the lettuce (1.2 log reduction) when compared with other vegetables. To claim disinfection, a 3 log reduction or more is needed, which makes APCP treatment very promising technology for decontamination of produce. We propose that with method refinements full disinfection can be achieved using APCP.

  17. Inactivation of Escherichia coli ATCC 11775 in fresh produce using atmospheric pressure cold plasma

    NASA Astrophysics Data System (ADS)

    Bermudez-Aguirre, Daniela; Wemlinger, Erik; Barbosa-Canovas, Gustavo; Pedrow, Patrick; Garcia-Perez, Manuel

    2011-10-01

    Food-borne outbreaks are associated with the presence of pathogenic bacteria in food products such as fresh produce. One of the target microorganisms is Escherichia coli which exhibits resistance to being inactivated with conventional disinfection methods for vegetables. Atmospheric pressure cold plasma (APCP) was tested to disinfect three vegetables with challenge surfaces, lettuce, carrots and tomatoes. The produce was inoculated with the bacteria to reach an initial microbial concentration of 107 cfu/g. Vegetables were initially exposed to the APCP discharges from a needle array at 5.7 kV RMS in argon, processing times of 0.5, 3 and 5 min. Initial results indicate that microbial decontamination is effective on the lettuce (1.2 log reduction) when compared with other vegetables. To claim disinfection, a 3 log reduction or more is needed, which makes APCP treatment very promising technology for decontamination of produce. We propose that with method refinements full disinfection can be achieved using APCP.

  18. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma.

    PubMed

    Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Sites, Joseph; Boyd, Glenn; Kingsley, David H; Li, Xinhui; Chen, Haiqiang

    2017-05-01

    Viruses are currently the leading cause of foodborne outbreaks, most of which are associated with foods consumed raw. Cold plasma (CP) is an emerging novel nonthermal technology that can be used to surface decontaminate foods. This study investigated CP technology for the nonthermal inactivation of human norovirus surrogates, Tulane virus (TV) and murine norovirus (MNV), on the surface of blueberries. Blueberries (5 g) were weighed into sterile 4 oz. glass jars and inoculated with TV, 5 log PFU/g. Samples were treated with atmospheric CP for 0, 15, 30, 45, and 60 s at a working distance of 7.5 cm with 4 cubic feet/minute (cfm) of CP jet. Temperature readings were taken with an infrared camera prior to, and immediately following, CP treatments. In order to establish the impact of air flow during CP treatment (4 cfm), an additional 7 cfm jet of room temperature air was introduced from a separate nozzle. The experiment was repeated with 90 and 120 s as additional treatment time points. Viral titers were measured immediately after each treatment with a plaque assay using LLC-MK2 cells (TV) or RAW 264.7 cells (MNV). TV was significantly reduced 1.5 PFU/g compared to the control after treatment time of 45s, which was achieved regardless of temperature conditions. With the addition of 7 cfm of ambient air, the maximum log reduction for TV was 3.5 log PFU/g after 120s of treatment. MNV was significantly reduced by 0.5 log PFU/g compare to the control at 15s, and further treatment of MNV with ambient air brought the log reduction to greater than 5 log PFU/g at 90 s of treatment (Fig. 3). These results demonstrate that CP viral inactivation does not rely on thermal inactivation, and is therefore nonthermal in nature. With further optimization, CP may be used by food processors as a means of nonthermal inactivation of foodborne viruses.

  19. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  20. Inactivation of Zika virus by solvent/detergent treatment of human plasma and other plasma-derived products and pasteurization of human serum albumin.

    PubMed

    Kühnel, Denis; Müller, Sebastian; Pichotta, Alexander; Radomski, Kai Uwe; Volk, Andreas; Schmidt, Torben

    2017-03-01

    In 2016 the World Health Organization declared the mosquito-borne Zika virus (ZIKV) a "public health emergency of international concern." ZIKV is a blood-borne pathogen, which therefore causes concerns regarding the safety of human plasma-derived products due to potential contamination of the blood supply. This study investigated the effectiveness of viral inactivation steps used during the routine manufacturing of various plasma-derived products to reduce ZIKV infectivity. Human plasma and intermediates from the production of various plasma-derived products were spiked with ZIKV and subjected to virus inactivation using the identical techniques (either solvent/detergent [S/D] treatment or pasteurization) and conditions used for the actual production of the respective products. Samples were taken and the viral loads measured before and after inactivation. After S/D treatment of spiked intermediates of the plasma-derived products Octaplas(LG), Octagam, and Octanate, the viral loads were below the limit of detection in all cases. The mean log reduction factor (LRF) was at least 6.78 log for Octaplas(LG), at least 7.00 log for Octagam, and at least 6.18 log for Octanate after 60, 240, and 480 minutes of S/D treatment, respectively. For 25% human serum albumin (HSA), the mean LRF for ZIKV was at least 7.48 log after pasteurization at 60°C for 120 minutes. These results demonstrate that the commonly used virus inactivation processes utilized during the production of human plasma and plasma-derived products, namely, S/D treatment or pasteurization, are effective for inactivation of ZIKV. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  1. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  2. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

    PubMed

    Park, Ji Hoon; Kumar, Naresh; Park, Dae Hoon; Yusupov, Maksudbek; Neyts, Erik C; Verlackt, Christof C W; Bogaerts, Annemie; Kang, Min Ho; Uhm, Han Sup; Choi, Eun Ha; Attri, Pankaj

    2015-09-09

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.

  3. Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus

    PubMed Central

    Han, L.; Patil, S.; Milosavljević, V.; Cullen, P. J.

    2015-01-01

    Atmospheric cold plasma (ACP) is a promising nonthermal technology effective against a wide range of pathogenic microorganisms. Reactive oxygen species (ROS) play a crucial inactivation role when air or other oxygen-containing gases are used. With strong oxidative stress, cells can be damaged by lipid peroxidation, enzyme inactivation, and DNA cleavage. Identification of ROS and an understanding of their role are important for advancing ACP applications for a range of complex microbiological issues. In this study, the inactivation efficacy of in-package high-voltage (80 kV [root mean square]) ACP (HVACP) and the role of intracellular ROS were investigated. Two mechanisms of inactivation were observed in which reactive species were found to either react primarily with the cell envelope or damage intracellular components. Escherichia coli was inactivated mainly by cell leakage and low-level DNA damage. Conversely, Staphylococcus aureus was mainly inactivated by intracellular damage, with significantly higher levels of intracellular ROS observed and little envelope damage. However, for both bacteria studied, increasing treatment time had a positive effect on the intracellular ROS levels generated. PMID:26519396

  4. Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs.

    PubMed

    Sun, Yi; Yu, Shuang; Sun, Peng; Wu, Haiyan; Zhu, Weidong; Liu, Wei; Zhang, Jue; Fang, Jing; Li, Ruoyu

    2012-01-01

    We investigated the antifungal effect of non-thermal plasma, as well as its combination with common antifungal drugs, against Candida biofilms. A direct current atmospheric pressure He/O(2) (2%) plasma microjet (PMJ) was used to treat Candida biofilms in a 96-well plate. Inactivation efficacies of the biofilms were evaluated by XTT assay and counting colony forming units (CFUs). Morphological properties of the biofilms were evaluated by Scanning Electron Microscope (SEM). The sessile minimal inhibitory concentrations (SMICs) of fluconazole, amphotericin B, and caspofungin for the biofilms were also tested. Electron Spin Resonance (ESR) spectroscopy was used to detect the reactive oxygen species (ROS) generated directly and indirectly by PMJ. The Candida biofilms were completely inactivated after 1 min PMJ treatment, where severely deformed fungal elements were observed in SEM images. The SMICs of the tested antifungal drugs for the plasma-treated biofilms were decreased by 2-6 folds of dilution, compared to those of the untreated controls. ROS such as hydroxyl radical ((•)OH), superoxide anion radical ((•)O(2) (-)) and singlet molecular oxygen ((1)O(2)) were detected by ESR. We hence conclude that He/O(2) (2%) plasma alone, as well as in combination with common antifungal drugs, is able to inactivate Candida biofilms rapidly. The generation of ROS is believed to be one of the underlying mechanisms for the fungicidal activity of plasma.

  5. Observation of inactivation of Bacillus sbtilis spores under exposures of oxygen added argon atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Zhao, Ying; Xiao, Dezhi; Lan, Yan; Xie, Hongbing; Cheng, Junli; Meng, Yuedong; Li, Jiangang; Chu, Paul K.

    2014-11-01

    The inactivation of Bacillus subtilis spores by an Ar plasma jet mixed with different amounts of oxygen is reported. 5.8 × 106 B. subtilis spores are sterilized by an Ar/O2 (8.7%) plasma jet after exposure for 2 min. The densities of ozone and oxygen radicals in the Ar/O2 plasma jet increase with oxygen concentration and are estimated by optical spectroscopy diagnostic. The malondialdehyde (MDA) test shows that oxygen radicals participate in bacterial inactivation. Scanning electron microscopy (SEM) reveals the deformation of the spore shape due to etching by oxygen radicals and the dependence of the degree of deformation on the density of oxygen radicals.

  6. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma.

    PubMed

    Kwon, S Y; Kim, I S; Bae, J E; Kang, J W; Cho, Y J; Cho, N S; Lee, S W

    2014-10-01

    This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres. © 2014 International Society of Blood Transfusion.

  7. In vitro Quality of Platelets with Low Plasma Carryover Treated with Ultraviolet C Light for Pathogen Inactivation

    PubMed Central

    Johnson, Lacey; Hyland, Ryan; Tan, Shereen; Tolksdorf, Frank; Sumian, Chryslain; Seltsam, Axel; Marks, Denese

    2016-01-01

    Summary Background The THERAFLEX UV-Platelets system uses shortwave ultraviolet C light (UVC, 254 nm) to inactivate pathogens in platelet components. Plasma carryover influences pathogen inactivation and platelet quality following treatment. The plasma carryover in the standard platelets produced by our institution are below the intended specification (<30%). Methods A pool and split study was carried out comparing untreated and UVC-treated platelets with <30% plasma carryover (n = 10 pairs). This data was compared to components that met specifications (>30% plasma). The platelets were tested over storage for in vitro quality. Results Platelet metabolism was accelerated following UVC treatment, as demonstrated by increased glucose consumption and lactate production. UVC treatment caused increased externalization of phosphatidylserine on platelets and microparticles, activation of the GPIIb/IIIa receptor (PAC-1 binding), and reduced hypotonic shock response. Platelet function, as measured with thrombelastogram, was not affected by UVC treatment. Components with <30% plasma were similar to those meeting specification with the exception of enhanced glycolytic metabolism. Conclusion This in vitro analysis demonstrates that treatment of platelets with <30% plasma carryover with the THERAFLEX UV-Platelets system affects some aspects of platelet metabolism and activation, although in vitro platelet function was not negatively impacted. This study also provides evidence that the treatment specifications of plasma carryover could be extended to below 30%. PMID:27403091

  8. Inactivation of model viruses and bacteria in human fresh frozen plasma using riboflavin and long wave ultraviolet rays

    PubMed Central

    Elikaei, Ameneh; Hosseini, Seyed Masoud; Sharifi, Zohreh

    2017-01-01

    Background and Objectives: Pathogen reduction technologies are among methods to eliminate transfusion transmitted infections. Mirasol method using riboflavin in combination with ultraviolet rays is one of them. The aims of this study were to investigate the effectiveness of Mirasol method to inactivate some model pathogens as well as examination of the sensitivity of plasma proteins after treatment. Materials and Methods: Riboflavin in 50μM concentration and ultraviolet (365 nm) in three different energy doses (3.6, 7.2, and 10.8 j/cm2) were employed to inactivate model pathogens. Four standard viruses were used in this study including Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus1 (HSV-1), Bovine Viral Diarrhea Virus (BVDV) and Polio Virus. 50% Tissue Culture Infectious Dose (TCID50) and Reed–Muench Methods were used to estimate viruses’ titers. E. coli and Staphylococcus aureus were used as bacterial models. Four plasma proteins including factor V, VIII, fibrinogen and antithromin were used to determine their sensitivity to pathogen inactivation treatment. Results: The most pathogen reduction titre was determined for 15 minutes irradiation period equal to 10.8 J/cm2 that is corresponding to Log 6.10 for BVDV, Log 6.09 for HSV-1, Log 6.62 for VSV and Log 3.36 for Polio. Bacterial reduction titer was Log 6.94 for E. coli and Log 7.00 for S. aureus. Indicator proteins for plasma activity were determined to be 75% for factor V, 88% for factor VIII, 52% for fibrinogen and 94% for antithrombin. Conclusion: Results showed that the employed method can inactivate most of the pathogens in fresh frozen plasma. The acceptable activities of selected plasma proteins remained after treatment. PMID:28775824

  9. Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light.

    PubMed

    Fryk, Jesse J; Marks, Denese C; Hobson-Peters, Jody; Prow, Natalie A; Watterson, Daniel; Hall, Roy A; Young, Paul R; Reichenberg, Stefan; Sumian, Chryslain; Faddy, Helen M

    2016-09-01

    Arboviruses, such as dengue viruses (DENV) and chikungunya virus (CHIKV), pose a risk to the safe transfusion of blood components, including plasma. Pathogen inactivation is an approach to manage this transfusion transmission risk, with a number of techniques being used worldwide for the treatment of plasma. In this study, the efficacy of the THERAFLEX MB-Plasma system to inactivate all DENV serotypes (DENV-1, DENV-2, DENV-3, DENV-4) or CHIKV in plasma, using methylene blue and light illumination at 630 nm, was investigated. Pooled plasma units were spiked with DENV-1, DENV-2, DENV-3 DENV-4, or CHIKV and treated with the THERAFLEX MB-Plasma system at four light illumination doses: 20, 40, 60, and 120 (standard dose) J/cm(2) . Pre- and posttreatment samples were collected and viral infectivity was determined. The reduction in viral infectivity was calculated for each dose. Treatment of plasma with the THERAFLEX MB-Plasma system resulted in at least a 4.46-log reduction in all DENV serotypes and CHIKV infectious virus. The residual infectivity for each was at the detection limit of the assay used at 60 J/cm(2) , with dose dependency also observed. Our study demonstrated the THERAFLEX MB-Plasma system can reduce the infectivity of all DENV serotypes and CHIKV spiked into plasma to the detection limit of the assay used at half of the standard illumination dose. This suggests this system has the capacity to be an effective option for managing the risk of DENV or CHIKV transfusion transmission in plasma. © 2016 AABB.

  10. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  11. Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores

    PubMed Central

    Wang, Shiwei; Doona, Christopher J.; Setlow, Peter

    2016-01-01

    ABSTRACT Raman spectroscopy and phase-contrast microscopy were used to examine calcium dipicolinate (CaDPA) levels and rates of nutrient and nonnutrient germination of multiple individual Bacillus subtilis spores treated with cold atmospheric plasma (CAP). Major results for this work include the following: (i) >5 logs of spores deposited on glass surfaces were inactivated by CAP treatment for 3 min, while deposited spores placed inside an impermeable plastic bag were inactivated only ∼2 logs in 30 min; (ii) >80% of the spores treated for 1 to 3 min with CAP were nonculturable and retained CaDPA in their core, while >95% of spores treated with CAP for 5 to 10 min lost all CaDPA; (iii) Raman measurements of individual CAP-treated spores without CaDPA showed differences from spores that germinated with l-valine in terms of nucleic acids, lipids, and proteins; and (iv) 1 to 2 min of CAP treatment killed 99% of spores, but these spores still germinated with nutrients or exogenous CaDPA, albeit more slowly and to a lesser extent than untreated spores, while spores CAP treated for >3 min that retained CaDPA did not germinate via nutrients or CaDPA. However, even after 1 to 3 min of CAP treatment, spores germinated normally with dodecylamine. These results suggest that exposure to the present CAP configuration severely damages a spore's inner membrane and key germination proteins, such that the treated spores either lose CaDPA or can neither initiate nor complete germination with nutrients or CaDPA. Analysis of the various CAP components indicated that UV photons contributed minimally to spore inactivation, while charged particles and reactive oxygen species contributed significantly. IMPORTANCE Much research has shown that cold atmospheric plasma (CAP) is a promising tool for the inactivation of spores in the medical and food industries. However, knowledge about the effects of plasma treatment on spore properties is limited, especially at the single-cell level. In this

  12. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

    PubMed Central

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P. J.; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the

  13. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    PubMed

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P J; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition

  14. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes.

    PubMed

    Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Fan, Xuetong; Sites, Joseph; Boyd, Glenn; Chen, Haiqiang

    2015-04-01

    Cold plasma (CP) is a novel nonthermal technology, potentially useful in food processing settings. Berries were treated with atmospheric CP for 0, 15, 30, 45, 60, 90, or 120 s at a working distance of 7.5 cm with a mixture of 4 cubic feet/minute (cfm) of CP jet and 7 cfm of ambient air. Blueberries were sampled for total aerobic plate count (APC) and yeast/molds immediately after treatment and at 1, 2, and 7 days. Blueberries were also analyzed for compression firmness, surface color, and total anthocyanins immediately after each treatment. All treatments with CP significantly (P < 0.05) reduced APC after exposure, with reductions ranging from 0.8 to 1.6 log CFU/g and 1.5 to 2.0 log CFU/g compared to the control after 1 and 7 days, respectively. Treatments longer than 60s resulted in significant reductions in firmness, although it was demonstrated that collisions between the berries and the container contributed significantly to softening. A significant reduction in anthocyanins was observed after 90 s. The surface color measurements were significantly impacted after 120 s for the L* and a* values and 45 s for the b* values. CP can inactivate microorganisms on blueberries and could be optimized to improve the safety and quality of produce.

  15. The plasma membrane Ca2+ pump mutant lysine591 --> arginine retains some activity, but is still inactivated by fluorescein isothiocyanate.

    PubMed Central

    Adamo, H P; Filoteo, A G; Penniston, J T

    1996-01-01

    Inactivation of the wild-type human plasma membrane Ca2+ pump (isoform 4b) by fluorescein isothiocyanate is accompanied by covalent modification of Lys591. The mutation of Lys591 to arginine reduced the Ca2+ transport activity to 35% of the wild-type, and diminished the amount of acylphosphate formed from ATP by a corresponding amount. When this mutant was treated with fluorescein isothiocyanate; the enzyme was still irreversibly inactivated, even though no reactive residue was available at position 591. The results show that, although Ca2+ pump function is sensitive to the residue at position 591, Lys591 is not essential for enzyme activity. They also demonstrate that irreversible inhibition of the plasma membrane Ca2+ pump by fluorescein isothiocyanate does not require the covalent modification of Lys591. This indicates that fluorescein isothiocyanate reacts with lysine residues at other positions in addition to Lys591. PMID:8694784

  16. 2-Thioxanthines Are Mechanism-based Inactivators of Myeloperoxidase That Block Oxidative Stress during Inflammation*

    PubMed Central

    Tidén, Anna-Karin; Sjögren, Tove; Svensson, Mats; Bernlind, Alexandra; Senthilmohan, Revathy; Auchère, Francoise; Norman, Henrietta; Markgren, Per-Olof; Gustavsson, Susanne; Schmidt, Staffan; Lundquist, Stefan; Forbes, Louisa V.; Magon, Nicholas J.; Paton, Louise N.; Jameson, Guy N. L.; Eriksson, Håkan; Kettle, Anthony J.

    2011-01-01

    Myeloperoxidase (MPO) is a prime candidate for promoting oxidative stress during inflammation. This abundant enzyme of neutrophils uses hydrogen peroxide to oxidize chloride to highly reactive and toxic chlorine bleach. We have identified 2-thioxanthines as potent mechanism-based inactivators of MPO. Mass spectrometry and x-ray crystal structures revealed that these inhibitors become covalently attached to the heme prosthetic groups of the enzyme. We propose a mechanism whereby 2-thioxanthines are oxidized, and their incipient free radicals react with the heme groups of the enzyme before they can exit the active site. 2-Thioxanthines inhibited MPO in plasma and decreased protein chlorination in a mouse model of peritonitis. They slowed but did not prevent neutrophils from killing bacteria and were poor inhibitors of thyroid peroxidase. Our study shows that MPO is susceptible to the free radicals it generates, and this Achilles' heel of the enzyme can be exploited to block oxidative stress during inflammation. PMID:21880720

  17. Human immunodeficiency virus type 1 proteinase is rapidly and efficiently inactivated in human plasma by alpha 2-macroglobulin.

    PubMed

    Kisselev, A F; von der Helm, K

    1994-10-01

    Human plasma impairs the activity of the human immunodeficiency virus (HIV-1) proteinase to cleave the HIV-1 gag-polyprotein precursor. The inhibition is due to the entrapment of the proteinase by plasma alpha 2-macroglobulin (alpha 2M). In methylamine-treated plasma, where alpha 2M is inactivated, HIV proteinase is not blocked. The interaction of alpha 2M and HIV-1 proteinase resulting in covalent complexes of proteinase and alpha 2M was demonstrated by immunoblotting with antiserum either to alpha 2M or to the HIV proteinase. We suggest if HIV-1 proteinase would be released in vivo from infected patients' cells, alpha 2M entrapment may prevent or minimize a conceivable cleavage of extracellular matrix or plasma proteins by the HIV-1 enzyme.

  18. Hemostatic properties and protein expression profile of therapeutic apheresis plasma treated with amotosalen and ultraviolet A for pathogen inactivation.

    PubMed

    Ohlmann, Philippe; Hechler, Béatrice; Chafey, Philippe; Ravanat, Catherine; Isola, Hervé; Wiesel, Marie-Louise; Cazenave, Jean-Pierre; Gachet, Christian

    2016-09-01

    The INTERCEPT Blood System (IBS) using amotosalen-HCl and ultraviolet (UV)A inactivates a large spectrum of microbial pathogens and white blood cells in therapeutic plasma. Our aim was to evaluate to what extent IBS modifies the capacity of plasma to generate thrombin and induces qualitative or quantitative modifications of plasma proteins. Plasma units from four donors were collected by apheresis. Samples were taken before (control [CTRL]) and after IBS treatment and stored at -80°C until use. The activities of plasma coagulation factors and inhibitors and the thrombin generation potential were determined using assays measuring clotting times and the calibrated automated thrombogram (CAT), respectively. The proteomic profile of plasma proteins was examined using a two-dimensional differential in-gel electrophoresis (2D-DIGE) method. Nearly all of the procoagulant and antithrombotic factors tested retained at least 78% of their initial pre-IBS activity. Only FVII and FVIII displayed a lower level of conservation (67%), which nevertheless remained within the reference range for conventional plasma coagulation factors. The thrombin generation profile of plasma was conserved after IBS treatment. Among the 1331 protein spots revealed by 2D-DIGE analysis, only four were differentially expressed in IBS plasma compared to CTRL plasma and two were identified by mass spectrometric analysis as transthyretin and apolipoprotein A1. The IBS technique for plasma moderately decreases the activities of plasma coagulation factors and antithrombotic proteins, with no impact on the thrombin generation potential of plasma and very limited modifications of the proteomic profile. © 2016 AABB.

  19. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    NASA Astrophysics Data System (ADS)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  20. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria

    PubMed Central

    Vaze, Nachiket D.; Park, Sin; Brooks, Ari D.; Fridman, Alexander; Joshi, Suresh G.

    2017-01-01

    A lab-scale, tunable, single-filament, point-to-point nonthermal dieletric-barrier discharge (DBD) plasma device was built to study the mechanisms of inactivation of aerosolized bacterial pathogens. The system inactivates airborne antibiotic-resistant pathogens efficiently. Nebulization mediated pre-optimized (4 log and 7 log) bacterial loads were challenged to plasma-charged aerosols, and lethal and sublethal doses determined using colony assay, and cell viability assay; and the loss of membrane potential and cellular respiration were determined using cell membrane potential assay and XTT assay. Using the strategies of Escherichia coli wildtype, over-expression mutant, deletion mutants, and peroxide and heat stress scavenging, we analyzed activation of intracellular reactive oxygen species (ROS) and heat shock protein (hsp) chaperons. Superoxide dismutase deletion mutants (ΔsodA, ΔsodB, ΔsodAΔsodB) and catalase mutants ΔkatG and ΔkatEΔkatG did not show significant difference from wildtype strain, and ΔkatE and ΔahpC was found significantly more susceptible to cell death than wildtype. The oxyR regulon was found to mediate plasma-charged aerosol-induced oxidative stress in bacteria. Hsp deficient E. coli (ΔhtpG, ΔgroEL, ΔclpX, ΔgrpE) showed complete inactivation of cells at ambient temperature, and the treatment at cold temperature (4°C) significantly protected hsp deletion mutants and wildtype cells, and indicate a direct involvement of hsp in plasma-charged aerosol mediated E. coli cell death. PMID:28166240

  1. Synergy effect of heat and UV photons on bacterial-spore inactivation in an N2-O2 plasma-afterglow sterilizer

    NASA Astrophysics Data System (ADS)

    Boudam, M. K.; Moisan, M.

    2010-07-01

    As a rule, medical devices (MDs) made entirely from metals and ceramics can withstand, for sterilization purposes, elevated temperatures such as those encountered in autoclaves (moist heat >=120 °C) or Poupinel (Pasteur) ovens (dry heat >=160 °C). This not the case with MDs containing polymers: 70 °C seems to be a limit beyond which their structural and functional integrity will be compromised. Nonetheless, all the so-called low-temperature sterilization techniques, relying essentially on some biocidal chemistry (e.g. ethylene oxide, H2O2, O3), are operated at temperatures close to 65 °C, essentially to enhance the chemical reactivity of the biocidal agent. Based on this fact, we have examined the influence of increasing the temperature of the polystyrene Petri dish containing B. atrophaeus bacterial spores when exposing them to UV radiation coming from an N2-O2 flowing plasma afterglow. We have observed that, for a given UV radiation intensity, the inactivation rate increases with the temperature of the Petri dish, provided heat and UV photons are applied simultaneously, a clear case of synergistic effect. More specifically, it means that (i) simply heating the spores at temperatures below 65 °C without irradiating them with UV photons does not induce mortality; (ii) there is no additional increase in the inactivation rate when the Petri has been pre-heated and then brought back to ambient temperature before the spores are UV irradiated; (iii) no additional inactivation results from post-heating spores previously inactivated with UV radiation. Undoubtedly, the synergistic effect shows up only when the physico-chemical agents (UV photons and temperature) are simultaneously in action.

  2. Efficacy of inactivation of viral contaminants in hyperimmune horse plasma against botulinum toxin by low pH alone and combined with pepsin digestion.

    PubMed

    Torgeman, Amram; Mador, Nurit; Dorozko, Marina; Lifshitz, Aliza; Eschar, Naomi; White, Moshe D; Wolf, Dana G; Epstein, Eyal

    2017-07-01

    Assuring viral safety of horse plasma-derived products is fundamental for ethical and regulatory reasons. We previously demonstrated the ability of pepsin digestion at low pH to inactivate West Nile and Sindbis viruses in horse plasma. The present study further examined the efficiency of pepsin digestion to inactivate four additional viruses: HSV-1 and BVDV (lipid-enveloped), BPV and Reo-3 (nonenveloped). These viruses were spiked into hyperimmunized horse plasma against botulinum toxin and subjected to low pH (3.2) alone or combined with pepsin digestion (1200 units/ml). Peptic digestion inactivated the lipid-enveloped viruses, whereas the nonenveloped viruses were unaffected. Interestingly, HSV-1 was rapidly inactivated by acidic pH alone (≥4.9 ± 0.6 log10), whereas a non-robust but meaningful BVDV inactivation (2.9 ± 0.7 log10) was achieved by combined low pH and pepsin. The current study demonstrated the ability of low pH alone and in combination with pepsin digestion to inactivate enveloped viral contaminants in anti-toxin horse plasma. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  3. MS2 Virus Inactivation by Atmospheric-Pressure Cold Plasma Using Different Gas Carriers and Power Levels

    PubMed Central

    Wu, Yan; Liang, Yongdong; Wei, Kai; Li, Wei; Grinshpun, Sergey A.

    2014-01-01

    In this study, airborne MS2 bacteriophages were exposed for subsecond time intervals to atmospheric-pressure cold plasma (APCP) produced using different power levels (20, 24, and 28 W) and gas carriers (ambient air, Ar-O2 [2%, vol/vol], and He-O2 [2%, vol/vol]). In addition, waterborne MS2 viruses were directly subjected to the APCP treatment for up to 3 min. MS2 viruses with and without the APCP exposure were examined by scanning electron microscopy (SEM), reverse transcription-PCR (RT-PCR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Viral inactivation was shown to exhibit linear relationships with the APCP generation power and exposure time (R2 > 0.95 for all energy levels tested) up to 95% inactivation (1.3-log reduction) after a subsecond airborne exposure at 28 W; about the same inactivation level was achieved for waterborne viruses with an exposure time of less than 1 min. A larger amount of reactive oxygen species (ROS), such as atomic oxygen, in APCP was detected for a higher generation power with Ar-O2 and He-O2 gas carriers. SEM images, SDS-PAGE, and agarose gel analysis of exposed waterborne viruses showed various levels of damage to both surface proteins and their related RNA genes after the APCP exposure, thus leading to the loss of their viability and infectivity. PMID:25416775

  4. Molecular size of a Na sup + -dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation

    SciTech Connect

    McCormick, J.I.; Johnstone, R.M. ); Jette, M.; Beliveau, R. ); Potier, M. )

    1991-04-16

    Radiation inactivation was used to estimate the molecular size of a Na{sup +}-dependent amino acid transport system in Ehrlich ascites cell plasma membrane vesicles. Na{sup +}-dependent {alpha}-aminoisobutyric acid uptake was measured after membranes were irradiated at {minus}78.5C in a cryoprotective medium. Twenty-five percent of the transport activity was lost at low radiation doses (<0.5 Mrad), suggesting the presence of a high molecular weight transport complex. The remaining activity ({approximately}75% of total) decreased exponentially with increasing radiation dose, and a molecular size of 347 kDa was calculated for the latter carrier system. Radiation doses 2-3 fold higher than those required to inactivate amino acid transport were needed to cause significant volume changes. The relationship between the fragmentation of a 120-130-kDapeptide, a putative component of the Na{sup +}-dependent amino acid carrier and loss of transport activity in irradiated membranes was also examined. Peptide loss was quantitated by Western blot analysis. The data support the conclusion that fragmentation of the 120-130-kDa peptide is related to loss of amino acid transport in irradiation Ehrlich cell plasma membranes.

  5. Paper-based plasma sanitizers

    NASA Astrophysics Data System (ADS)

    Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F.; Mazzeo, Aaron D.

    2017-05-01

    This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nWṡcm-2ṡnm-1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.

  6. Suitability of thermal plasmas for large-area bacteria inactivation on temperature-sensitive surfaces - first results with Geobacillus stearothermophilus spores

    NASA Astrophysics Data System (ADS)

    Szulc, M.; Schein, S.; Schaup, J.; Zimmermann, S.; Schein, J.

    2017-04-01

    The application of thermal plasma for large-area bacteria inactivation on temperature-sensitive surfaces is not a common one. Nonetheless, there are thermal plasma generators which offer a high sheath homogeneity and have proven to be suitable for treatment of thermally sensitive materials in the past. To investigate the suitability of such plasmas, agar dishes plated with endospores of Geobacillus stearothermophilus have been treated with a long arc plasma generator called LARGE. The achieved results have been compared with a commercially available non-thermal plasma generator. A significant inactivation of the endospores could be observed only after 60 s of treatment with the thermal plasma source. This was not possible with the non-thermal generator. Moreover, no temperature damage or increase of the specimen could be detected. An attempt to determine the main agents responsible for the microbicidal effects have been made - the influence of plasma gas composition, discharge current and treatment time has been investigated. Significant improvements in the disinfection rates after adding small amounts of nitrogen to the plasma gas could be observed. A first discussion regarding the suitability of thermal plasmas for bacteria inactivation has been given.

  7. Mechanism-based inhibitors for the inactivation of the bacterial phosphotriesterase.

    PubMed

    Hong, S B; Mullins, L S; Shim, H; Raushel, F M

    1997-07-22

    1-Bromovinyl (I), Z-2-bromovinyl (II), 1,2-dibromoethyl (III), and a series of 4-(halomethyl)-2-nitrophenyl (IVa-c) diethyl phosphate esters were examined as substrates and mechanism-based inhibitors for the bacterial phosphotriesterase. All of these compounds were found to act as substrates for the enzyme. Inhibitor I rapidly inactivated the enzyme within 1 min, giving a partition ratio of 230. The newly formed covalent adduct with inhibitor I was susceptible to hydrolysis at elevated values of pH and dissociation by NH2OH. Azide was not able to protect the enzyme from inactivation with inhibitor I, implying that the reactive species was not released into solution prior to the inactivation event. The reactive species was proposed to be either an acyl bromide or a ketene intermediate formed by the enzymatic hydrolysis of inhibitor I. Compounds II and III were shown to be relatively poor substrates of phosphotriesterase and they did not induce any significant inactivation of the enzyme. The inhibitor, 4-(bromomethyl)-2-nitrophenyl diethyl phosphate (IVa), was found to irreversibly inactivate the enzyme with a KI = 7.9 mM and kinact = 1. 2 min-1 at pH 9.0. There was no effect on the rate of inactivation upon the addition of the exogenous nucleophiles, azide, and NH2OH. The species responsible for the covalent modification of the enzyme by IVa was most likely a quinone methide formed by the elimination of bromide from the phenolic intermediate. NMR experiments demonstrated that the quinone methide did not accumulate in solution. The chloro (IVb) and fluoro (IVc) analogues did not inactivate the enzyme. These results suggest that the elimination of the halide ion from the phenolic intermediate largely determines the partition ratio for inactivation.

  8. Evaluation of Mycoplasma Inactivation during Production of Biologics: Egg-Based Viral Vaccines as a Model▿

    PubMed Central

    David, Selwyn A. Wilson; Volokhov, Dmitriy V.; Ye, Zhiping; Chizhikov, Vladimir

    2010-01-01

    viral purification processes used for the manufacture of an inactivated egg-based vaccine. PMID:20228111

  9. Mechanism-based suicide inactivation of white Spanish broom (Cytisus multiflorus) peroxidase by excess hydrogen peroxide.

    PubMed

    Galende, Patricia Pérez; Cuadrado, Nazaret Hidalgo; Kostetsky, Eduard Ya; Roig, Manuel G; Kennedy, John F; Shnyrov, Valery L

    2015-11-01

    Suicide inactivation is a common mechanism observed for haem peroxidases, in which the enzyme is inactivated as a result of self-oxidation mediated by intermediate highly oxidizing enzyme forms during the catalytic cycle. The time-dependence and the inactivation mechanism of Cytisus multiflorus peroxidase (CMP) by hydrogen peroxide were studied kinetically with four co-substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferulic acid, guaiacol and o-dianisidine). Catalytic activity decreased following the sequence ABTS>guaiacol>ferulic acid>o-dianisidine. Once the intermediate complex (compound III-H2O2) had been formed, competition was established between the catalytic pathway and the suicide inactivation pathway. One mole of CMP afforded around 3790 turnovers of H2O2 for ABTS before its complete inactivation. These results suggest that CMP follows a suicide mechanism, the enzyme not being protected in this case. The mechanism of suicide inactivation is discussed with a view to establishing a broad knowledge base for future rational protein engineering.

  10. Imperatorin is a mechanism-based inactivator of CYP2B6.

    PubMed

    Zheng, Liwei; Cao, Jiaojiao; Lu, Dan; Ji, Lin; Peng, Ying; Zheng, Jiang

    2015-01-01

    Imperatorin (IMP) is the major active ingredient in many common medicinal herbs. We examined the irreversible inhibitory effect of IMP on CYP2B6. IMP produced a time- and concentration-dependent inactivation of CYP2B6. About 70% of activity of CYP2B6 was suppressed after its incubation with 1.5 μM IMP for 9 minutes. KI and kinact were found to be 0.498 μM and 0.079 min(-1), respectively. The loss of CYP2B6 activity required the presence of NADPH. Glutathione and catalase/superoxide dismutase showed little protection against the IMP-induced enzyme inactivation. Ticlopidine, a substrate of CYP2B6, showed protection of the enzyme against the inactivation induced by IMP. The estimated partition ratio of the inactivation was approximately 4. Additionally, a γ-ketoenal intermediate was identified in microsomal incubations with IMP. CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 were found to be involved in bioactivation of IMP. In conclusion, IMP is a mechanism-based inactivator of CYP2B6. The formation of γ-ketoenal intermediate may account for the enzyme inactivation.

  11. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma.

    PubMed

    Baier, Matthias; Janssen, Traute; Wieler, Lothar H; Ehlbeck, Jörg; Knorr, Dietrich; Schlüter, Oliver

    2015-09-01

    From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Bacterial Inactivation of Wound Infection in a Human Skin Model by Liquid-Phase Discharge Plasma

    PubMed Central

    Kim, Paul Y.; Kim, Yoon-Sun; Koo, Il Gyo; Jung, Jae Chul; Kim, Gon Jun; Choi, Myeong Yeol; Yu, Zengqi; Collins, George J.

    2011-01-01

    Background We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid. Principal Findings We observed statistically significant 3.83-log10 (p<0.001) and 1.59-log10 (p<0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed. Conclusions These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds. PMID:21897870

  13. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  14. Cold plasma technologies for the inactivation of human pathogens on fresh and fresh-cut produce

    USDA-ARS?s Scientific Manuscript database

    Research in cold plasma processing at the USDA’s Eastern Regional Research Center is focused on developing this technology into an effective tool to improve the safety of a variety of foods. Cold plasma applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley inoculated on the ...

  15. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  16. Psoralen, a mechanism-based inactivator of CYP2B6.

    PubMed

    Ji, Lin; Lu, Dan; Cao, Jiaojiao; Zheng, Liwei; Peng, Ying; Zheng, Jiang

    2015-10-05

    Furanocoumarin compound psoralen (PRN) is a major active ingredient found in herbaceous plants. PRN has been used for the treatment of various dermal diseases in China. We evaluated the inhibitory effect of PRN on cytochrome P450 2B6 (CYP2B6) and found that PRN induced a time-, concentration-, and NADPH-dependent inactivation of CYP2B6 with the values of KI and kinact being 110.2 μM and 0.200 min(-1), respectively. Ticlopidine, a CYP2B6 substrate, prevented the enzyme from the inactivation induced by PRN. Exogenous nucleophile glutathione (GSH) and catalase/superoxide dismutase showed limited protection of CYP2B6 from the inactivation. The estimated partition ratio of the inactivation was approximately 400. GSH trapping experiments indicates that an epoxide or/and γ-ketoenal intermediate was formed in microsomal incubations with PRN. In summary, PRN was characterized as a mechanism-based inactivator of CYP2B6.

  17. Purification of biologically active human plasma transthyretin by dye-affinity chromatography: studies on dye leakage and possibility of heat treatment for virus inactivation.

    PubMed

    Regnault, V; Rivat, C; Vallar, L; Geschier, C; Stolz, J F

    1992-12-11

    The application of a purification procedure for the industrial preparation from human plasma of a therapeutic protein may be hindered by several safety concerns. The dye leaching from Remazol Yellow GGL-Sepharose used for the affinity chromatography of human plasma transthyretin was quantitatively studied by a sensitive competitive enzyme immunoassay. The possibility of including a heat treatment step for virus inactivation in the purification process while preserving the biochemical and functional characteristics of the protein is also reported.

  18. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-12-01

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency.

  19. Inactivation of Escherichia coli 0157:H7 and aerobic microorganisms in Romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma

    USDA-ARS?s Scientific Manuscript database

    The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in Romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4 degrees C for 7 days. Effects ...

  20. In-package inactivation of human pathogenic bacteria and viruses on leafy greens using atmospheric cold plasma as a terminal processing step

    USDA-ARS?s Scientific Manuscript database

    Atmospheric cold plasma (ACP) treatment is a novel, promising antimicrobial method. Dieletric barrier discharge forms of ACP are of particular interest, due to their potential for in-package decontamination. The objectives of this work were to quantify ACP inactivation of E. coli O157:H7, Salmonella...

  1. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-01-01

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency. PMID:28004829

  2. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; Ken Ostrikov, Kostya

    2016-12-22

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency.

  3. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs

    PubMed Central

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E.; Campbell, Joy M.; Crenshaw, Joe D.; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 105.2±0.12 tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance. PMID:26171968

  4. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs.

    PubMed

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E; Campbell, Joy M; Crenshaw, Joe D; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 10(5.2 ± 0.12) tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance.

  5. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos.

    PubMed

    D'Agostino, Jaime; Zhang, Haoming; Kenaan, Cesar; Hollenberg, Paul F

    2015-07-20

    Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions.

  6. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  7. Molecular analysis and modeling of inactivation of human CYP2D6 by four mechanism based inactivators.

    PubMed

    Livezey, Mara; Nagy, Leslie D; Diffenderfer, Laura E; Arthur, Evan J; Hsi, David J; Holton, Jeffrey M; Furge, Laura Lowe

    2012-03-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine(SCH66712), (1-[(2-ethyl- 4-methyl-1H-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine(EMTPP), paroxetine, and 3,4- methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values.

  8. MOLECULAR ANALYSIS AND MODELING OF INACTIVATION OF HUMAN CYP2D6 BY FOUR MECHANISM BASED INACTIVATORS

    PubMed Central

    Livezey, Mara; Nagy, Leslie D.; Diffenderfer, Laura E.; Arthur, Evan J.; Hsi, David J.; Holton, Jeffrey M.; Furge, Laura Lowe

    2014-01-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH66712), (1-[(2-ethyl-4-methyl-1H(-EMTPP-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP), paroxetine, and 3,4-methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values. PMID:22372551

  9. Retrospective analysis of the prognostic role of p16 protein inactivation in plasma in patients with locally advanced non-small cell lung cancer.

    PubMed

    Sirera, Rafael; Gil, Mireia; Blasco, Ana; Cabrera, Andrea; Safont, María José; Iranzo, Vega; Cayuela, Diego; Rosell, Rafael; Camps, Carlos

    2008-07-01

    It has been analyzed the frequency of p16 inactivation in 67 blood samples of patients diagnosed with advanced non-small cell lung cancer (NSCLC), to establish the relationship between p16 inactivation and time to progression (TTP) and overall survival (OS), and its relationship with various clinical parameters. This is a retrospective study of 67 patients diagnosed with advanced NSCLC between August 2000 and July 2003 in the Hospital General de Valencia analysing p16 inactivation by assessing in plasma either loss of heterozygosity (LOH) or p16 promoter methylation. The study shows p16 inactivation in 28.3% (either by LOH or by p16 methylation). No significant differences were found between the group with p16 inactivation and the group without p16 inactivation, either in patients' TTP (31 weeks vs. 24 weeks; p=0.7) or in OS (53 weeks vs. 43 weeks; p=0.48). No relationship was found between the state of p16 and the clinical parameters analyzed (stage, ECOG, histology). Despite the fact that p16 is important in NSCLC carcinogenesis, the data obtained in our study do not allow the prognostic impact of this biological marker to be established.

  10. New Treatment Options for Osteosarcoma - Inactivation of Osteosarcoma Cells by Cold Atmospheric Plasma.

    PubMed

    Gümbel, Denis; Gelbrich, Nadine; Weiss, Martin; Napp, Matthias; Daeschlein, Georg; Sckell, Axel; Ender, Stephan A; Kramer, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2016-11-01

    Cold atmospheric plasma has been shown to inhibit tumor cell growth and induce tumor cell death. The aim of the study was to investigate the effects of cold atmospheric plasma treatment on proliferation of human osteosarcoma cells and to characterize the underlying cellular mechanisms. Human osteosarcoma cells (U2-OS and MNNG/HOS) were treated with cold atmospheric plasma and seeded in culture plates. Cell proliferation, p53 and phospho-p53 protein expression and nuclear morphology were assessed. The treated human osteosarcoma cell lines exhibited attenuated proliferation rates by up to 66%. The cells revealed an induction of p53, as well as phospho-p53 expression, by 2.3-fold and 4.5-fold, respectively, compared to controls. 4',6-diamidino-2-phenylindole staining demonstrated apoptotic nuclear condensation following cold atmospheric plasma treatment. Cold atmospheric plasma treatment significantly attenuated cell proliferation in a preclinical in vitro osteosarcoma model. The resulting increase in p53 expression and phospho-activation in combination with characteristic nuclear changes indicate this was through induction of apoptosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Efficacy of Two Peroxygen-Based Disinfectants for Inactivation of Cryptosporidium parvum Oocysts

    PubMed Central

    Quilez, Joaquin; Sanchez-Acedo, Caridad; Avendaño, Catalina; del Cacho, Emilio; Lopez-Bernad, Fernando

    2005-01-01

    Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4′,6′-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection. PMID:15870337

  12. Efficacy of two peroxygen-based disinfectants for inactivation of Cryptosporidium parvum oocysts.

    PubMed

    Quilez, Joaquin; Sanchez-Acedo, Caridad; Avendaño, Catalina; del Cacho, Emilio; Lopez-Bernad, Fernando

    2005-05-01

    Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4',6'-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.

  13. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces: In vitro study.

    PubMed

    Annunziata, Marco; Canullo, Luigi; Donnarumma, Giovanna; Caputo, Pina; Nastri, Livia; Guida, Luigi

    2016-01-01

    Surface treatment by argon plasma is widely used as the last step of the manufacturing process of titanium implant fixtures before their sterilization by gamma rays. The possibility of using such a technology in the daily clinical practice is particularly fascinating. The aim of the present study was to assess the effects of the argon plasma treatment on different titanium implant surfaces previously exposed in vitro to bacterial contamination. Sterile c.p. titanium implant discs with turned (T, Sa: 0.8μm), sandblasted/acid-etched (SAE, Sa: 1.3μm) and titanium plasma sprayed (TPS, Sa: 3.0μm) surface were used in this study. A strain of Aggregatibacter actinomycetemcomitans ATCC3718 was grown at 37°C under anaerobic conditions for 24 h and then transferred on six discs for each of the three surface types. After 24 hours, a half of the contaminated discs (control group) were directly used to evaluate the colony forming units (CFUs). The other half of the contaminated discs (test group) were treated in an argon plasma chamber for 12 minutes at room temperature prior to be analyzed for CFU counting. All assays were performed using triplicate samples of each material in 3 different experiments. When the CFU counting was carried out on control discs, a total of 1.50x106±1.4x105, 1.55x106±7.07x104 and 3.15x106±2.12x105 CFU was respectively assessed for T, SAE and TPS discs, without statistically significant differences among the three surfaces. On the contrary, any trace of bacterial contamination was assessed for titanium discs treated in the argon plasma chamber prior to be analyzed, irrespectively to the implant surface tested. Within the limit of this study, reported data suggested that the argon plasma technology could be efficiently used to decontaminate/sterilize previously infected titanium implant surfaces.

  14. A submerged dielectric barrier discharge plasma inactivation mechanism of biofilms produced by Escherichia coli O157:H7, Cronobacter sakazakii, and Staphylococcus aureus

    PubMed Central

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji

    2016-01-01

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used to inactivate biofilm produced by three different food-borne pathogens, namely Escherichia coli O157:H7 (ATCC 438), Cronobacter sakazakii (ATCC 29004), and Staphylococcus aureus (KCCM 40050). The inactivation that were obtained after 90 minutes of plasma operation were found to measure 5.50 log CFU/coupon, 6.88 log CFU/coupon and 4.20 log CFU/coupon for Escherichia coli O157:H7 (ATCC 438), Cronobacter sakazakii (ATCC 29004), and Staphylococcus aureus (KCCM 40050), respectively. Secondary Electron Images (SEI) obtained from Field Emission Scanning Electron Microscopy (FE-SEM) show the biofilm morphology and its removal trend by plasma operation at different time intervals. An attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurement was performed to elucidate the biochemical changes that occur on the bacterial cell and extracellular polymeric substance (EPS) of biofilm during the plasma inactivation process. The ATR-FTIR measurement shows the gradual reduction of carbohydrates, proteins, and lipid and DNA peak regions with increased plasma exposure time. The presence of an EPS layer on the upper surface of the biofilm plays a negative and significant role in its removal from stainless steel (SS) coupons.

  15. Inactivation of Candida Strains in Planktonic and Biofilm Forms Using a Direct Current, Atmospheric-Pressure Cold Plasma Micro-Jet

    NASA Astrophysics Data System (ADS)

    Zhu, Wei-Dong; Sun, Peng; Sun, Yi; Yu, Shuang; Wu, Haiyan; Liu, Wei; Zhang, Jue; Fang, Jing

    A direct-current, atmospheric-pressure, He/O2 (2%) cold plasma ­microjet is applied to Candida species (C. glabrata, C. albicansand C. krusei). Effective inactivation is achieved both in air and in water within 5 min of plasma treatment. Same plasma treatment also successfully inactivated candida biofilms on Petri dish. The inactivation was verified by cell viability test (XTT assay). Severe deformation of Candida biofilms after the plasma treatment was observed through scanning electron microscope (SEM). Optical emission spectroscopy shows strong atomic oxygen emission at 777 nm. Hydroxyl radical (•OH), superoxide anion radical (•O2-) and singlet molecular oxygen (1O2) are detected by electron spin resonance (ESR) spectroscopy. The sessile minimal inhibitory concentrations (SMICs) of fluconazole, amphotericin B, and caspofungin against the Candida spp. biofilms were decreased to 2-6 fold dilutions in plasma microjet treated group in comparison with the controls. This novel approach may become a new tool for the treatment of clinical dermatosis

  16. Efficient bacterial inactivation in aqueous solution by low-temperature atmospheric pressure plasma application with a reduction of the solution pH

    NASA Astrophysics Data System (ADS)

    Kitano, Katsuhisa; Ikawa, Satoshi; Tani, Atsushi; Ohnishi, Naofumi; Hamaguchi, Satoshi

    2009-10-01

    With some medical applications in mind, bacterial inactivation experiments in aqueous solution have been performed with the use of low-temperature atmospheric pressure plasmas. We have successfully found that efficient bactericidal activity can be achieved if the solution is sufficiently acidic. It is interesting to note that there is a critical pH value of about 4.7 for the bactericidal effects, below which the bacteria are efficiently inactivated and above which the bacteria are hardly affected by the plasma application. When the plasmas were exposed to E. coli suspensions at pH 5.2, 4.7, 4.2 and 3.7, D values were found to be 1.92, 0.96, 0.59, and 0.21 min., respectively, under our experimental conditions. It has been also found experimentally that the presence of superoxide anion radicals O2^-in the solution is essential for bacterial inactivation by the plasma application. The critical pH value may be associated with pKa of the dissociation equilibrium between O2^-and hydroperoxy radicals HOO,hich is known to be approximately 4.8. The formation of radicals in solution by such plasma has been confirmed from ESR (Electron Spin Resonance) with spin trapping agents. The ambient gas has been found to influence the radical formation in liquid significantly.

  17. Inactivation of Gram-Negative Bacteria by Low-Pressure RF Remote Plasma Excited in N2-O2 Mixture and SF6 Gases.

    PubMed

    Al-Mariri, Ayman; Saloum, Saker; Mrad, Omar; Swied, Ghayath; Alkhaled, Bashar

    2013-12-01

    The role of low-pressure RF plasma in the inactivation of Escherichia coli O157, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter sakazakii using N2-O2 and SF6 gases was assessed. 1×10(9) colony-forming units (CFUs) of each bacterial isolate were placed on three polymer foils. The effects of pressure, power, distance from the source, and exposure time to plasma gases were optimized. The best conditions to inactivate the four bacteria were a 91%N2-9%O2 mixture and a 30-minute exposure time. SF6 gas was more efficient for all the tested isolates in as much as the treatment time was reduced to only three minutes. Therefore, low-pressure plasma could be used to sterilize heat and/or moisture-sensitive medical instruments.

  18. Cold plasma inactivates salmonella on grape tomatoes in a commercial PET plastic container without affecting quality

    USDA-ARS?s Scientific Manuscript database

    Introduction: The number of outbreaks of foodborne illnesses associated with the consumption of fresh tomatoes has increased. Little research has been conducted on the effects of direct treatment of cold plasma (CP) on the microbial decontamination and preservation of bulk tomatoes packaged in comme...

  19. Atmospheric cold plasma inactivation of Aerobic Microorganisms on blueberries and effects on quality attributes

    USDA-ARS?s Scientific Manuscript database

    Cold plasma (CP) is a novel nonthermal technology, potentially useful in food processing settings. Berries were treated with atmospheric CP for 0, 15, 30, 45, 60, 90, or 120s at a working distance of 7.5 cm with a mixture of 4 cubic feet/minute (cfm) of CP jet and 7 cfm of ambient air. Blueberries w...

  20. Nonthermal inactivation of the norovirus surrogate tulane virus on blueberries using atmospheric cold plasma

    USDA-ARS?s Scientific Manuscript database

    Viruses are currently the leading cause of foodborne outbreaks, most of which are associated with foods consumed raw. Cold plasma (CP) is an emerging novel nonthermal technology that can be used for the surface decontamination of foods. This study investigated CP technology for the nonthermal inacti...

  1. Cold plasma inactivation of human pathogens on foods and regulatory status update

    USDA-ARS?s Scientific Manuscript database

    Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...

  2. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  3. Mechanism-based inactivators as probes of cytochrome P450 structure and function.

    PubMed

    Kent, U M; Juschyshyn, M I; Hollenberg, P F

    2001-09-01

    The cytochromes P450 superfamily of enzymes is a group of hemeproteins that catalyze the metabolism of an extensive series of compounds including drugs, chemical carcinogens, fatty acids, and steroids. They oxidize substrates ranging in size from ethylene to cyclosporin. Although significant efforts have been made to obtain structural information on the active sites of the microbial P450s, relatively little is currently known regarding the identities of the critical amino acid residues in the P450 active sites that are involved in substrate binding and catalysis. Since information on the crystal structures of the eukaryotic P450s has been relatively limited, investigators have used a variety of other techniques in attempts to elucide the structural features that play a role in the catalytic properties and substrate specificity at the enzyme active site. These include site-directed mutagenesis, natural mutations, homology modeling, mapping with aryl-iron complexes, affinity and photoaffinity labeling, and mechanism-based inactivators. A variety of different mechanism-based inactivators have proven to be useful in identifiying active site amino acid residues involved in substrate binding and catalysis. In this review we present a sampling of the types of studies that can be conducted using mechanism-based inactivators and highlight studies with several classes of compounds including acetylenes, isothiocyanates, xanthates, aminobenzotriazoles, phencyclidine, and furanocoumarins. Labeled peptides isolated from the inactivated proteins have been analyzed by N-terminal amino acid sequencing in conjunction with mass spectrometry to determine the sites of covalent modification. Mechanistic studies aimed at identifying the basis for the inactivation following adduct formation are also presented.

  4. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival.

    PubMed

    Mateos, Maria V; García-Sanz, Ramón; López-Pérez, Ricardo; Moro, Maria J; Ocio, Enrique; Hernández, Jose; Megido, Marta; Caballero, Maria D; Fernández-Calvo, Javier; Bárez, Abelardo; Almeida, Julia; Orfão, Alberto; González, Marcos; San Miguel, Jesús F

    2002-09-01

    In order to gain further insights into the role of the p16 gene in cell cycle regulation and the prognostic implications of its inactivation, we investigated the methylation status of the p16 gene in 98 untreated patients using a polymerase chain reaction assay based on the inability of some restriction enzymes to digest methylated sequences. Forty-one patients showed a p16 methylated gene (42%). The percentage of S-phase plasma cells (PC) in these patients was almost three times higher than in those with an unmethylated p16 gene (4.16% +/- 3.37%vs 1.5% +/- 1.41%, P < 0.001). The presence of p16 methylation also correlated with both elevated beta2-microglobulin serum levels and high C-reactive protein values. Patients with a p16 methylated gene had shorter overall and progression-free survival than those patients without p16 methylation. However, this feature did not retain independent prognostic influence on multivariate analysis, probably due to its association with the S-phase PC, which had more potent statistical significance in the Cox model. These findings showed methylation of the p16 gene was a frequent event inMM patients at diagnosis, and was associated with an increased proliferative rate of plasma cells and a poor prognosis, indicating an important role for p16 gene in the cell cycle regulation of multiple myeloma tumour cells, and thus in the clinical outcome of the disease.

  5. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure

    PubMed Central

    Quinton, Damien; Chavatte, Laurent; Le Bechec, Mickael; Cambus, Jean Pierre; Arbault, Stéphane; Nègre-Salvayre, Anne; Clément, Franck; Cousty, Sarah

    2017-01-01

    Cold atmospheric pressure plasmas (CAPPs) are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS) are not the only actors involved in E. coli’s death, electrical field and charged particles could play a significant role especially for He-O2 CAPP. PMID:28358809

  6. [Photochemical inactivation of pathogens in platelets and plasma: five years of clinical use in routine and hemovigilance. Towards a change of paradigm in transfusion safety].

    PubMed

    Cazenave, J-P

    2011-04-01

    The transfusion of labile blood products is vital and essential for patients in absence of alternative treatment. Patients and doctors have always feared transfusion-transmitted infections by blood, blood components and blood-derived drugs. Photochemical inactivation of platelet concentrates and plasma, using a technique associating amotosalen and UVA, has been used for five years in a French region for the whole population and a large spectrum of patients, with efficacy and safety. It would seem wise to introduce labile blood products, submitted to pathogen inactivation by a technique already approved by a regulatory agency and not to wait for a perfect system including red blood cells concentrates. Universal implementation of pathogen inactivation in labile blood products is a major and key step to improve safety against infection in transfusion.

  7. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli.

    PubMed

    Ziuzina, Dana; Han, Lu; Cullen, Patrick J; Bourke, Paula

    2015-10-01

    Microbial biofilms and bacteria internalised in produce tissue may reduce the effectiveness of decontamination methods. In this study, the inactivation efficacy of in-package atmospheric cold plasma (ACP) afterglow was investigated against Salmonella Typhimurium, Listeria monocytogenes and Escherichia coli in the forms of planktonic cultures, biofilms formed on lettuce and associated bacteria internalised in lettuce tissue. Prepared lettuce broth (3%) was inoculated with bacteria resulting in a final concentration of ~7.0 log10 CFU/ml. For biofilm formation and internalisation, lettuce pieces (5 × 5 cm) were dip-inoculated in bacterial suspension of ~7.0 log10 CFU/ml for 2 h and further incubated for 0, 24 and 48 h at either 4 °C or room temperature (~22 °C) in combination with light/dark photoperiod or at 4 °C under dark conditions. Inoculated samples were sealed inside a rigid polypropylene container and indirectly exposed (i.e. placed outside plasma discharge) to a high voltage (80 kVRMS) air ACP with subsequent storage for 24 h at 4 °C. ACP treatment for 30s reduced planktonic populations of Salmonella, L. monocytogenes and E. coli suspended in lettuce broth to undetectable levels. Depending on storage conditions, bacterial type and age of biofilm, 300 s of treatment resulted in reduction of biofilm populations on lettuce by a maximum of 5 log10 CFU/sample. Scanning electron and confocal laser microscopy pointed to the incidence of bacterial internalisation and biofilm formation, which influenced the inactivation efficacy of ACP. Measured intracellular reactive oxygen species (ROS) revealed that the presence of organic matter in the bacterial suspension might present a protective effect against the action of ROS on bacterial cells. This study demonstrated that high voltage in-package ACP could be a potential technology to overcome bacterial challenges associated with food produce. However, the existence of biofilms and internalised bacteria should be

  8. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package.

    PubMed

    Patil, S; Moiseev, T; Misra, N N; Cullen, P J; Mosnier, J P; Keener, K M; Bourke, P

    2014-11-01

    Non-thermal plasma has received much attention for elimination of microbial contamination from a range of surfaces. This study aimed to determine the effect of a range of dielectric barrier discharge high voltage atmospheric cold plasma (HVACP) parameters for inactivation of Bacillus atrophaeus spores inside a sealed package. A sterile polystyrene Petri dish containing B. atrophaeus spore strip (spore population 2.3 × 10(6)/strip i.e. 6.36 log10/strip) was placed in a sealed polypropylene container and was subjected to HVACP treatment. The HVACP discharge was generated between two aluminium plate electrodes using a high voltage of 70kVRMS. The effects of process parameters, including treatment time, mode of exposure (direct/indirect), and working gas types, were evaluated. The influence of relative humidity on HVACP inactivation efficacy was also assessed. The inactivation efficacy was evaluated using colony counts. Optical absorption spectroscopy (OAS) was used to assess gas composition following HVACP exposure. A strong effect of process parameters on inactivation was observed. Direct plasma exposure for 60s resulted in ≥6 log10 cycle reduction of spores in all gas types tested. However, indirect exposure for 60s resulted in either 2.1 or 6.3 log10 cycle reduction of spores depending on gas types used for HVACP generation. The relative humidity (RH) was a critical factor in bacterial spore inactivation by HVACP, where a major role of plasma-generated species other than ozone was noted. Direct and indirect HVACP exposure for 60s at 70% RH recorded 6.3 and 5.7 log10 cycle reduction of spores, respectively. In summary, a strong influence of process parameters on spore inactivation was noted. Rapid in-package HVACP inactivation of bacterial spores within 30-60s demonstrates the promising potential application for reduction of spores on medical devices and heat-sensitive materials. Copyright © 2014 The Healthcare Infection Society. All rights reserved.

  9. Hepatitis E virus derived from different sources exhibits different behaviour in virus inactivation and/or removal studies with plasma derivatives.

    PubMed

    Yunoki, Mikihiro; Tanaka, Hiroyuki; Takahashi, Kadue; Urayama, Takeru; Hattori, Shinji; Ideno, Shoji; Furuki, Rie; Sakai, Kaoru; Hagiwara, Katsuro; Ikuta, Kazuyoshi

    2016-09-01

    Hepatitis E virus (HEV) causes viral hepatitis, and is considered a risk factor for blood products. Although some HEV inactivation/removal studies have been reported, detailed investigations of different manufacturing steps as heat treatment, partitioning during cold ethanol fractionation, low pH treatment, and virus filtration have yet to be reported for plasma-derived medicinal products. In this study, human serum- and swine faeces-derived HEVs, with and without detergent treatment, were used. The kinetic patterns of inactivation, log reduction value, or partitioning during the process were evaluated. In addition, the mouse encephalomyocarditis virus (EMCV) and canine and porcine parvoviruses (CPV/PPV) were also evaluated as model viruses for HEV. Small pore size (19 or 15 nm) virus filtration demonstrated effective removal of HEV. Middle pore size (35 nm) virus filtration and 60 °C liquid heating demonstrated moderate inactivation/removal. Ethanol fractionation steps demonstrated limited removal of HEV. Unpurified HEV exhibited different properties than the detergent-treated HEV, and both forms displayed differences when compared with EMCV, CPV, and PPV. Limited or no inactivation of HEV was observed during low pH treatment. Untreated plasma-derived HEV from humans showed different properties compared to that of HEV treated with detergent or derived from swine faeces. Therefore, HEV spike preparation requires more attention.

  10. Structural Snapshots for Mechanism‐Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars

    PubMed Central

    Adamson, Christopher; Pengelly, Robert J.; Shamsi Kazem Abadi, Saeideh; Chakladar, Saswati; Draper, Jason

    2016-01-01

    Abstract Glycoside hydrolases (GHs) have attracted considerable attention as targets for therapeutic agents, and thus mechanism‐based inhibitors are of great interest. We report the first structural analysis of a carbocyclic mechanism‐based GH inactivator, the results of which show that the two Michaelis complexes are in 2H3 conformations. We also report the synthesis and reactivity of a fluorinated analogue and the structure of its covalently linked intermediate (flattened 2H3 half‐chair). We conclude that these inactivator reactions mainly involve motion of the pseudo‐anomeric carbon atom, knowledge that should stimulate the design of new transition‐state analogues for use as chemical biology tools. PMID:27783466

  11. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes.

    PubMed

    Jayasena, Dinesh D; Kim, Hyun Joo; Yong, Hae In; Park, Sanghoo; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    The effects of a flexible thin-layer dielectric barrier discharge (DBD) plasma system using a sealed package on microbial inactivation and quality attributes of fresh pork and beef were tested. Following a 10-min treatment, the microbial-load reductions of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium were 2.04, 2.54, and 2.68 Log CFU/g in pork-butt samples and 1.90, 2.57, and 2.58 Log CFU/g in beef-loin samples, respectively. Colorimetric analysis showed that DBD-plasma treatment did not significantly affect L* values (lightness) of pork and beef samples, but lowered a* values (redness) significantly after 5- and 7.5-min exposures. The plasma treatment significantly influenced lipid oxidation only after a 10-min exposure. The texture of both types of meat was unaffected by plasma treatment. All sensory parameters of treated and non-treated samples were comparable except for taste, which was negatively influenced by the plasma treatment (P < 0.05). This thin-layer DBD-plasma system can be applied to inactivate foodborne pathogens. The observed minor deterioration of meat quality might be prevented by the use of hurdle technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture

    NASA Astrophysics Data System (ADS)

    Boudam, M. K.; Moisan, M.; Saoudi, B.; Popovici, C.; Gherardi, N.; Massines, F.

    2006-08-01

    This paper comprises two main parts: a review of the literature on atmospheric-pressure discharges used for micro-organism inactivation, focused on the inactivation mechanisms, and a presentation of our research results showing, in particular, that UV photons can be the dominant species in the inactivation process. The possibility of achieving spore inactivation through UV radiation using an atmospheric-pressure discharge or its flowing afterglow is the object of a continuing controversy. In fact, the review of the literature that we present shows that a majority of researchers have come to the conclusion that, at atmospheric pressure, chemically reactive species such as free radicals, metastable atoms and molecules always control the inactivation process, while UV photons play only a minor role or no role at all. In contrast, only a few articles suggest or claim that UV photons coming from atmospheric-pressure discharges can, in some cases, inactivate micro-organisms, but the experimental data presented and the supporting arguments brought forward in that respect are relatively incomplete. Using a dielectric-barrier discharge operated at atmospheric pressure in an N2-N2O mixture, we present, for the first time, experiments where micro-organisms are subjected to plasma conditions such that, on the one hand, UV radiation is strong or, on the other hand, there is no UV radiation, the two different situations being obtained with the same experimental arrangement, including the same gas mixture, N2-N2O. To achieve maximum UV radiation, the concentration of the oxidant molecule (N2O) added to N2 needs to be tuned carefully, resulting then in the fastest inactivation rate. The concentration range of the oxidant molecule in the mixture for which the UV intensity is significant is extremely narrow, a fact that possibly explains why such a mode of plasma sterilization was not readily observed. The survival curves obtained under dominant UV radiation conditions are, as we

  13. Mycoplasma hyorhinis-encoded cytidine deaminase efficiently inactivates cytosine-based anticancer drugs.

    PubMed

    Vande Voorde, Johan; Vervaeke, Peter; Liekens, Sandra; Balzarini, Jan

    2015-01-01

    Mycoplasmas may colonize tumor tissue in patients. The cytostatic activity of gemcitabine was dramatically decreased in Mycoplasma hyorhinis-infected tumor cell cultures compared with non-infected tumor cell cultures. This mycoplasma-driven drug deamination could be prevented by exogenous administration of the cytidine deaminase (CDA) inhibitor tetrahydrouridine, but also by the natural nucleosides or by a purine nucleoside phosphorylase inhibitor. The M. hyorhinis-encoded CDAHyor gene was cloned, expressed as a recombinant protein and purified. CDAHyor was found to be more catalytically active than its human equivalent and efficiently deaminates (inactivates) cytosine-based anticancer drugs. CDAHyor expression at the tumor site may result in selective drug inactivation and suboptimal therapeutic efficiency.

  14. An efficient blue-white screening based gene inactivation system for Streptomyces.

    PubMed

    Li, Pengwei; Li, Jine; Guo, Zhengyan; Tang, Wei; Han, Jianshan; Meng, Xiangxi; Hao, Tingting; Zhu, Yaxin; Zhang, Lixin; Chen, Yihua

    2015-02-01

    Streptomyces is studied intensively for its outstanding ability to produce bioactive secondary metabolites and for its complicated morphological differentiation process. A classical genetic manipulation system for Streptomyces has been developed and widely used in the community for a long time, using antibiotic resistance markers to select for double-crossover mutants. The screening process is always laborious and time-consuming. However, the lack of a suitable chromogenic reporter for Streptomyces has limited the use of color-based screening system to simplify the selection process for double-crossover mutants. In this study, a blue reporter system for Streptomyces has been established by mining an indigoidine synthetase gene (idgS) from Streptomyces lavendulae CGMCC 4.1386, leading to the development of a time-saving gene inactivation system for Streptomyces by simple blue-white screening. A series of Streptomyces suicide and temperature-sensitive plasmids containing the idgS reporter cassette were constructed and used successfully to inactivate genes in Streptomyces, allowing a simple and efficient screening method to differentiate the colonies for double-crossover (white) and single-crossover (blue) mutants. Inactivation of the putative γ-butyrolactone synthase gene afsA-y via the idgS-based blue-white screening method revealed that the paulomycin production is negatively controlled by afsA-y in Streptomyces sp. YN86.

  15. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-01

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H2O and CO2 were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 106 spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  16. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    SciTech Connect

    Zhao Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-09

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H{sub 2}O and CO{sub 2} were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 10{sup 6} spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  17. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses.

    PubMed

    Willet, Mallory; Kurup, Drishya; Papaneri, Amy; Wirblich, Christoph; Hooper, Jay W; Kwilas, Steve A; Keshwara, Rohan; Hudacek, Andrew; Beilfuss, Stefanie; Rudolph, Grit; Pommerening, Elke; Vos, Adriaan; Neubert, Andreas; Jahrling, Peter; Blaney, Joseph E; Johnson, Reed F; Schnell, Matthias J

    2015-10-01

    We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced.

  18. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    PubMed

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  19. Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging.

    PubMed

    Luksiene, Z; Buchovec, I; Paskeviciute, E

    2010-11-01

    This study was focused on the possibility to inactivate food-borne pathogen Bacillus cereus by Na-chlorophyllin (Na-Chl)-based photosensitization in vitro and after attachment to the surface of packaging material. Bacillus cereus in vitro or attached to the packaging was incubated with Na-Chl (7·5×10(-8) to 7·5×10(-5) mol l(-1) ) for 2-60min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400nm and an energy density of 20mW cm(-2) . The illumination time varied 0-5min and subsequently the total energy dose was 0-6J cm(-2) . The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5×10(-7) mol l(-1) Na-Chl and following illumination were inactivated by 7log. The photoinactivation of B. cereus spores in vitro by 4log required higher (7·5×10(-6) mol l(-1) ) Na-Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5log at 7·5×10(-5) mol l(-1) Na-Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by <1log, 100ppm Na-hypochlorite reduces the pathogens about 1·7log and 200ppm Na-hypochlorite by 2·2log. Meanwhile, Na-Chl-based photosensitization reduces bacteria on the surface by 4·2 orders of magnitude. Food-borne pathogen B. cereus could be effectively inactivated (7log) by Na-Chl-based photosensitization in vitro and on the surface of packaging material. Spores are more resistant than vegetative cells to photosensitization-based inactivation. Comparison of different surface decontamination treatments indicates that Na-Chl-based photosensitization is much more effective antibacterial tool than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization has great potential for future application as an environment

  20. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Chang, Xijiang; Tei, Reitou; Nagatsu, Masaaki

    2016-06-01

    Using a vacuum ultraviolet (VUV) absorption spectroscopy with a compact low pressure plasma light source, the absolute nitrogen atom density was measured to study its role in the spore inactivation with low pressure N2/O2 gas mixture surface-wave plasmas (SWPs). Self-absorption effect of the resonance emission lines of nitrogen atoms near 120 nm was minimized by optimizing its discharge conditions of the plasma light source. Experimental results showed that excited nitrogen atom densities monotonically decreased with the decrease of N2 gas percentage in N2/O2 gas mixture SWPs, concomitantly with similar decrease of VUV/UV emission intensities of nitrogen atoms and molecules. In the pure N2 gas SWPs, it was confirmed that a dominant lethal factor was VUV/UV emission generated by N2 plasma, while spore etching occurred via physical and chemical interactions with nitrogen species. With an addition of O2 gas, significant spore etching by excited oxygen atoms made it much easier for the VUV/UV photons emitted by nitrogen atoms, N2 and NO molecules to penetrate through the etched spore coats to the core and cause the fatal DNA damage of the microorganisms. As a result, more rapid inactivation was achieved in the middle region of N2/O2 gas mixture ratio, such as 30-80% O2 gas addition, in the present N2/O2 gas mixture SWPs.

  1. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  2. Plasma-based accelerator with magnetic compression.

    PubMed

    Schmit, P F; Fisch, N J

    2012-12-21

    Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest [~O(10 kG)], axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression are compared to other proposed techniques to overcome dephasing.

  3. Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea.

    PubMed

    Gilch, Stefan; Vogel, Manja; Lorenz, Matthias W; Meyer, Ortwin; Schmidt, Ingo

    2009-01-01

    The ammonia monooxygenase (AMO) of Nitrosomonas europaea is a metalloenzyme that catalyses the oxidation of ammonia to hydroxylamine. We have identified histidine 191 of AmoA as the binding site for the oxidized mechanism-based inactivator acetylene. Binding of acetylene changed the molecular mass of His-191 from 155.15 to 197.2 Da (+42.05), providing evidence that acetylene was oxidized to ketene (CH2CO; 42.04 Da) which binds specifically to His-191. It must be assumed that His-191 is part of the acetylene-activating site in AMO or at least directly neighbours this site.

  4. Effect of two virus inactivation methods: electron beam irradiation and binary ethylenimine treatment on determination of reproductive hormones in equine plasma.

    PubMed

    Kyvsgaard, N C; Høier, R; Brück, I; Nansen, P

    1997-01-01

    Ionizing irradiation and binary ethylenimine treatment have previously been shown to be effective for in-vitro inactivation of virus in biological material. In the present study the 2 methods were tested for possible effects on measurable concentrations of reproductive hormones in equine plasma (luteinizing hormone (LH), folliclestimulating hormone (FSH), progesterone (P4), and oestradiol-17 beta (E2)). The inactivation methods were electron beam irradiation with a dose from 11 to 44 kGy or treatment with binary ethylenimine (BEI) in concentrations of 1 and 5 mmol/L. Generally, there was a close correlation (r > 0.8, < 0.001) between pre- and post-treatment hormone levels. Thus, the different phases of the oestrous cycle could be distinguished on the basis of measured hormone concentrations of treated samples. However, both treatments significantly changed hormone concentrations of the plasma samples. For LH, FSH, and E2 the effect of irradiation and BEI treatment was depressive and dose-dependent. For P4 the effect of irradiation was also depressive and dose-dependent. However, the highest dose of BEI resulted in an increase of measured P4 concentration, which may be attributed to changes in the plasma matrix due to the treatment. Although the treatments affected measured hormone concentrations, the close correlation between pre-treatment and post-treatment measurements means that the diagnostic value will remain unchanged.

  5. Light based technologies for microbial inactivation of liquids, bead surfaces and powdered infant formula.

    PubMed

    Arroyo, Cristina; Dorozko, Anna; Gaston, Edurne; O'Sullivan, Michael; Whyte, Paul; Lyng, James G

    2017-10-01

    This study evaluates the potential of continuous wave Ultraviolet C light (UV-C) and broad-spectrum intense pulsed light (in this study referred to as High Intensity Light Pulses, HILP) for the inactivation of pathogens of public concern in powdered infant formula (PIF) producers. To achieve this goal a sequential set of experiments were performed, firstly in clear liquid media, secondly on the surface of spherical beads under agitation and, finally in PIF. L. innocua was the most sensitive microorganism to both technologies under all conditions studied with reductions exceeding 4 log10 cycles in PIF. In the clear liquid medium, the maximum tolerance to light was observed for C. sakazakii against UV-C light and for B. subtilis spores against HILP, with a fluence of approximately 17 mJ/cm(2) required for a 1 log10 cycle inactivation (D value) of each species. In PIF it was possible to inactivate >99% of the vegetative cell populations by HILP with a fluence of 199 mJ/cm(2) and of B. subtilis spores by doubling the fluence. By contrast, for UV-C treatments a fluence of 2853 mJ/cm(2) was needed for 99.9% reduction of C. sakazakii, which was the most light-resistant microorganism to UV-C. Results here obtained clearly show the potential for light-based interventions to improve PIF microbiological safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties.

    PubMed

    Yong, Hae In; Lee, Haelim; Park, Sanghoo; Park, Jooyoung; Choe, Wonho; Jung, Samooel; Jo, Cheorun

    2017-01-01

    The aims of the present study were to examine the use of a flexible thin-layer plasma system in inactivating bacteria and mold on beef jerky in a commercial package and to evaluate the physicochemical changes of the jerky. After plasma treatment for 10min, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Aspergillus flavus populations on the beef jerky were reduced by approximately 2 to 3Log CFU/g. No significant changes in metmyoglobin content, shear force, and myofibrillar fragmentation index were found in the plasma-treated beef jerky. On the other hand, the peroxide content and L(⁎) value were decreased whereas the a(⁎) and ΔE value were increased in the plasma-treated sample. Sensory evaluation indicated negative effects of plasma treatment on flavor, off-odor, and overall acceptability of the beef jerky. In conclusion, the flexible thin-layer plasma system could be employed as a means for decontamination of beef jerky, with slight changes to the physicochemical quality of the product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mechanism-based post-translational modification and inactivation in terpene synthases

    DOE PAGES

    Kersten, Roland D.; Diedrich, Jolene K.; Yates, III, John R.; ...

    2015-09-17

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Furthermore, the level of cation-mediatedmore » inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.« less

  8. Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases

    PubMed Central

    2015-01-01

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis. PMID:26378620

  9. Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4.

    PubMed

    Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C

    2011-01-01

    Seventeen Cree antidiabetic medicinal plants were studied to determine their potential to inhibit cytochrome P450 3A4 (CYP3A4) through mechanism-based inactivation (MBI). The ethanolic extracts of the medicinal plants were studied for their inhibition of CYP3A4 using the substrates testosterone and dibenzylfluorescein (DBF) in high pressure liquid chromatography (HPLC) and microtiter fluorometric assays, respectively. Using testosterone as a substrate, extracts of Alnus incana, Sarracenia purpurea, and Lycopodium clavatum were identified as potent CYP3A4 MBIs, while those from Abies balsamea, Picea mariana, Pinus banksiana, Rhododendron tomentosum, Kalmia angustifolia, and Picea glauca were identified as less potent inactivators. Not unexpectedly, the other substrate, DBF, showed a different profile of inhibition. Only A. balsamea was identified as a CYP3A4 MBI using DBF. Abies balsamea displayed both NADPH- and time-dependence of CYP3A4 inhibition using both substrates. Overall, several of the medicinal plants may markedly deplete CYP3A4 through MBI and, consequently, decrease the metabolism of CYP3A4 substrates including numerous medications used by diabetics.

  10. Tape-Drive Based Plasma Mirror

    SciTech Connect

    Sokollik, T.; Leemans, W. P.; Shiraishi, S.; Osterhoff, J.; Evans, E.; Gonsalves, A. J.; Nakamura, K.; van Tilborg, J.; Lin, C.; Toth, C.

    2010-11-04

    We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots.

  11. Microwave-Induced Inactivation of DNA-Based Hybrid Catalyst in Asymmetric Catalysis

    PubMed Central

    Zhao, Hua; Shen, Kai

    2015-01-01

    DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. < 5 °C) for 2–3 days. Aiming to improve the reaction’s turnover rate, we evaluated microwave irradiation with simultaneous cooling as potential energy source since this method has been widely used to accelerate various chemical and enzymatic reactions. However, our data indicated that microwave irradiation induced an inactivation of DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA–metal ligand binding properties and thus poor DNA catalytic performance. PMID:26712696

  12. In-package cold plasma inactivation of pathogenic and spoilage bacteria commonly found on raw chicken carcasses

    USDA-ARS?s Scientific Manuscript database

    Aims: The goal of this study was to test the efficacy of in-package DBD-CP treatment to inactivate poultry-associated spoilage (Pseudomonas fluorescens) and pathogenic (Salmonella enterica Typhimurium, Campylobacter jejuni) bacteria. Methods and Results: Liquid cultures of the bacterial isolates we...

  13. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  14. Mechanism-based inactivation of cytochrome P450 2B6 by methadone through destruction of prosthetic heme.

    PubMed

    Amunugama, Hemali T; Zhang, Haoming; Hollenberg, Paul F

    2012-09-01

    Methadone is a μ-opioid receptor agonist widely used in the treatment of narcotic addiction and chronic pain conditions. Methadone is metabolized predominantly in the liver by cytochromes P450 to its pharmacologically inactive primary metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. Initial in vitro data suggested that CYP3A4 is the major isoform responsible for the in vivo clearance of methadone in humans. However, recent clinical data have indicated that CYP2B6 is actually the major isoform responsible for methadone metabolism and clearance in vivo. In this study, methadone was shown to act as a mechanism-based inactivator of CYP2B6. Methadone inactivates CYP2B6 in a time-, concentration-, and NADPH-dependent manner with a K(I) = 10.0 μM and k(inact) = 0.027 min⁻¹. The loss of CYP2B6 activity in the presence of methadone and NADPH occurred with concomitant loss of the reduced CO spectrum of the P450. Moreover, there was good correlation between the loss of CYP2B6 activity and the loss of the CO-binding spectrum. High-performance liquid chromatography analysis of the native heme of the inactivated CYP2B6 demonstrated that approximately 75% loss of heme was accompanied by comparable inactivation of CYP2B6. Liquid chromatography-mass spectrometry analysis did not reveal the formation of a protein adduct during the inactivation. The evidence strongly suggests that destruction of prosthetic heme is the underlying mechanism leading to the inactivation of CYP2B6 by methadone.

  15. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All

  16. Determination of the functional size of oxytocin receptors in plasma membranes from mammary gland and uterine myometrium of the rat by radiation inactivation

    SciTech Connect

    Soloff, M.S.; Beauregard, G.; Potier, M.

    1988-05-01

    Gel filtration of detergent-solubilized oxytocin (OT) receptors in plasma membrane fractions from both regressed mammary gland and labor myometrium of the rat, showed that specific (/sup 3/H)OT binding was associated with a heterogeneously sized population of macromolecules. As radiation inactivation is the only method available to measure the apparent molecular weights of membrane proteins in situ, we used this approach to define the functional sizes of OT receptors. The results indicate that both mammary and myometrial receptors are uniform in size and of similar molecular mass. Mammary and myometrial receptors were estimated to be 57.5 +/- 3.8 (SD) and 58.8 +/- 1.6 kilodaltons, respectively. Knowledge of the functional size of OT receptors will be useful in studies involving the purification and characterization of the receptor and associated membrane components.

  17. Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation

    NASA Astrophysics Data System (ADS)

    Baier, Daniel; Reineke, Kai; Doehner, Isabel; Mathys, Alexander; Knorr, Dietrich

    2011-03-01

    The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550-556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside

  18. Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins

    SciTech Connect

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-05-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.

  19. Enantioselective, mechanism-based inactivation of guinea pig hepatic cytochrome P450 by N-(alpha-methylbenzyl)-1-aminobenzotriazole.

    PubMed

    Sinal, C J; Hirst, M; Webb, C D; Bend, J R

    1998-07-01

    N-Aralkylated derivatives of 1-aminobenzotriazole are well-established, mechanism-based inhibitors of cytochrome P450 (CYP or P450). In this study, the kinetics of inactivation of CYP2B-dependent 7-pentoxyresorufin O-depentylation (PROD) and CYP1A-dependent 7-ethoxyresorufin O-deethylation (EROD) activities by enantiomers of N-(alpha-methylbenzyl)-1-aminobenzotriazole (alphaMB) were compared. The racemic mixture (+/-)-alphaMB, as well as the enantiomers (-)-alphaMB and (+)-alphaMB, produced a time-, concentration-, and NADPH-dependent loss of PROD and EROD activity in hepatic microsomes from phenobarbital-treated guinea pigs. The rates of PROD inactivation by (-)-alphaMB were significantly faster than for (+)-alphaMB. Consistent with this, the derived maximal kinact was also significantly greater for (-)-alphaMB than for (+)-alphaMB (0.49 vs. 0.35 min-1). In contrast, the concentrations required for the half-maximal rate of inactivation (Ki) were equivalent for (-)-alphaMB and (+)-alphaMB, whereas the degree of competitive inhibition of PROD activity was greater for (+)-alphaMB. No significant differences were found among (-)-alphaMB, (+)-alphaMB, and (+/-)-alphaMB with respect to mechanism-based inactivation (kinact = 0.18, 0.16, and 0.17 min-1, respectively) or competitive inhibition of EROD activity. No differences were found for the maximal extent of PROD or EROD inhibition or the loss of spectral P450 after an extended 30-min incubation with the inhibitors. We conclude that mechanism-based inactivation of guinea pig CYP2B, but not CYP1A, isozymes by alphaMB occurs in a stereoselective manner, most likely as a result of a difference in the balance between metabolic activation and deactivation for the alphaMB enantiomers.

  20. Inactivation of the Carney complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase: a study using genetically encoded FRET-based reporters.

    PubMed

    Cazabat, Laure; Ragazzon, Bruno; Varin, Audrey; Potier-Cartereau, Marie; Vandier, Christophe; Vezzosi, Delphine; Risk-Rabin, Marthe; Guellich, Aziz; Schittl, Julia; Lechêne, Patrick; Richter, Wito; Nikolaev, Viacheslav O; Zhang, Jin; Bertherat, Jérôme; Vandecasteele, Grégoire

    2014-03-01

    Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.

  1. Mechanism-based inactivation of lacrimal-gland peroxidase by phenylhydrazine: a suicidal substrate to probe the active site.

    PubMed Central

    Mazumdar, A; Adak, S; Chatterjee, R; Banerjee, R K

    1997-01-01

    Humans are exposed to various hydrazine derivatives for therapeutic control of several diseases, and mammalian peroxidases are implicated in the oxidative metabolism of many drugs. The results presented here indicate that lacrimal-gland peroxidase is irreversibly inactivated in a mechanism-based way by phenylhydrazine, which acts as a suicidal substrate in the presence of H2O2. The pseudo-first-order kinetic constants for inactivation at pH 5.5 are Ki=18 microM, kinact=0.25 min-1 and tau50=2.75 min, with a second-order rate constant of 0.75x10(4) M-1.min-1. Approx. 27 mol of phenylhydrazine and 54 mol of H2O2 are required per mol of enzyme for complete inactivation. The pH-dependent inactivation kinetics indicate the involvement of an ionizable group on the enzyme with a pKa value of 5.4, protonation of which favours inactivation. SCN-, the plausible physiological electron donor of the enzyme, protects it from inactivation. Binding studies by optical difference spectroscopy indicate that phenylhydrazine interacts with the enzyme with a KD value of 60 microM, and its binding is prevented by the presence of SCN-. The enzyme is also protected by 5, 5-dimethyl-1-pyrroline N-oxide, a free-radical trap, suggesting the involvement of a radical species in the inactivation. ESR studies indicate the formation of a spin-trapped phenyl radical (aN=15.9G and abetaH=24.8G) generated on incubation of phenylhydrazine with the enzyme and H2O2. A 75% loss of the Soret spectrum is observed when the enzyme is completely inactivated. However, in the presence of the spin trap, spectral loss is prevented and the enzyme compound II is readily reduced to the native state by phenylhydrazine. The phenylhydrazine-inactivated enzyme reacts with H2O2 or CN- to form compound II or the cyanide complex with a characteristic spectrum, indicating that haem iron is protected from attack by the radical species. The inactivated enzyme binds SCN- with a KD value similar to that of the native enzyme (15

  2. Recent Progress on Plasma-Based Accelerators

    NASA Astrophysics Data System (ADS)

    Esarey, Eric

    2007-04-01

    The physics, research status, and challenges of plasma-based accelerators will be discussed. In 2004, three groups reported the production of high quality electron bunches from laser plasma accelerators in the 100 MeV range with narrow divergence and narrow energy spread [S.P.D. Mangles et al.; C.G.R. Geddes et al.; and J. Faure et al.; Nature, Sep 2004]. These results were obtained using multi-ten TW lasers interacting with few-mm diameter gas jet targets. High quality electron bunches were generated by exciting plasma wakefields to sufficient amplitudes so as to self-trap electrons from the background plasma and accelerate these electrons over distances near the dephasing length. Recent results include production of high quality electron beams at the 1 GeV level, obtained by extending the plasma channel length to a few cm by using a capillary discharge [W.P. Leemans et al., Nature Physics, Oct 2006], as well as controlled injection of electrons using colliding laser pulses to produce stable beams at the 100 MeV level [J. Faure, Nature, Dec 2006]. Also presented will be recent results on plasma wakefield accelerators using the 42 GeV electron beam at SLAC, in which the wakefield driven by the front of the bunch led to energy doubling of electrons in the back of the bunch [I. Bloomfield et al., Nature, 2007].

  3. HCO3−/Cl− Exchange Inactivation and Reactivation during Mouse Oocyte Meiosis Correlates with MEK/MAPK-Regulated Ae2 Plasma Membrane Localization

    PubMed Central

    Zhou, Chenxi; Tiberi, Mario; Liang, Binhui; Alper, Seth L.; Baltz, Jay M.

    2009-01-01

    Background Germinal Vesicle (GV) stage mouse oocytes in first meiotic prophase exhibit highly active HCO3−/Cl− exchange—a class of transport nearly ubiquitously involved in regulation of intracellular pH and cell volume. During meiosis, however, oocyte HCO3−/Cl− exchange becomes inactivated during first metaphase (MI), remains inactive in second metaphase (MII), and is reactivated only after egg activation. Previous work using pharmacological manipulations had indicated that activity of the MEK/MAPK signaling pathway was negatively correlated with HCO3−/Cl− exchange activity during meiosis. However, the mechanism by which the exchanger is inactivated during meiotic progression had not been determined, nor had the role of MEK/MAPK been directly established. Methodology/Principal Findings Expression of a constitutively active form of MEK (MAP kinase kinase), which prevented the normal downregulation of MAPK after egg activation, also prevented reactivation of HCO3−/Cl− exchange. Conversely, suppression of endogenous MAPK activity with dominant negative MEK activated the normally quiescent HCO3−/Cl− exchange in mature MII eggs. A GFP-tagged form of the HCO3−/Cl− exchanger isoform Ae2 (Slc4a2) was strongly expressed at the GV oocyte plasma membrane, but membrane localization decreased markedly during meiotic progression. A similar pattern for endogenous Ae2 was confirmed by immunocytochemistry. The loss of membrane-localized Ae2 appeared selective, since membrane localization of a GFP-tagged human dopamine D1 receptor did not change during meiotic maturation. Conclusions Direct manipulation of MAPK activity indicated that GFP-tagged Ae2 localization depended upon MAPK activity. Inactivation of HCO3−/Cl− exchange during the meiotic cell cycle may therefore reflect the loss of Ae2 from the oocyte plasma membrane, downstream of MEK/MAPK signaling. This identifies a novel role for MEK/MAPK-mediated cytostatic factor (CSF) activity during

  4. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria.

    PubMed

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Raju, Konduru Mohana

    2013-06-05

    In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    SciTech Connect

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji

    2015-10-15

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  6. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji

    2015-10-01

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  7. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation.

    PubMed

    Gravot, Antoine; Larbat, Romain; Hehn, Alain; Lièvre, Karine; Gontier, Eric; Goergen, Jean Louis; Bourgaud, Frédéric

    2004-02-01

    Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.

  8. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach.

    PubMed

    Traba, Christian; Liang, Jun F

    2015-01-01

    The direct application of low power argon plasma for the decontamination of pre-formed Staphylococcus aureus biofilms on various surfaces was examined. Distinct chemical/physical properties of reactive species found in argon plasmas generated at different wattages all demonstrated very potent but very different anti-biofilm mechanisms of action. An in-depth analysis of the results showed that: (1) the different reactive species produced in each plasma demonstrated specific antibacterial and/or anti-biofilm activity; and (2) the commonly associated etching effect could be manipulated and even controlled, depending on the experimental conditions. Under optimal experimental parameters, bacterial cells in S. aureus biofilms were killed (> 99.9%) by plasmas within 10 min of exposure and no bacteria nor biofilm regrowth from argon discharge gas treated biofilms was observed for 150 h. The decontamination ability of plasmas for the treatment of biofilm related contaminations on various materials was confirmed and an entirely novel layer-by-layer decontamination approach was designed and examined.

  9. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach

    PubMed Central

    Traba, Christian; Liang, Jun F.

    2014-01-01

    The direct application of low power argon plasma for the decontamination of pre-formed Staphylococcus aureus biofilms on various surfaces was examined. Distinct chemical/physical properties of reactive species found in argon plasmas generated at different wattages all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of results showed that: (1) the different reactive species produced in each plasma demonstrated specific antibacterial and/or anti-biofilm activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions. Under optimal experimental parameters, bacterial cells in S. aureus biofilms were killed (>99.9%) by plasmas within 10 min of exposure and no bacteria nor biofilm re-growth from argon discharge gas treated biofilms was observed for 150 h. The decontamination ability of plasmas for the treatment of biofilm related contaminations on various materials was confirmed and an entirely novel layer-by-layer decontamination approach was designed and examined. PMID:25569189

  10. Inactivation of hepatitis B virus in plasma by hospital in-use chemical disinfectants assessed by a modified HepG2 cell culture.

    PubMed

    Payan, C; Cottin, J; Lemarie, C; Ramont, C

    2001-04-01

    Because of the difficulties of the chimpanzee model and the genetic differences using the duck model, we developed a cell culture method to measure human hepatitis B virus (HBV) inactivation in vitro. Pooled HBV-infected human plasma that had been exposed to a disinfectant was left in contact for three days with a cell culture of the human hepatoma cell line, HepG2, with 4% polyethyleneglycol and 3 mM sodium butyrate. The mean log10 of the viral titre of unexposed plasma was 4.87 infectious units per mL. Our results showed that 1% glutaraldehyde, sodium hypochlorite at 4700 ppm free chlorine and an iodophor-detergent disinfectant containing 3.6% povidone-iodine reduced viral titres by factors exceeding 10(3)-10(4). However, sodium hypochlorite at 1000 ppm free chlorine had minimal activity and povidone-iodine at 9, 5 and 3.6% had no measurable activity (less than 10-fold reduction). This is the first study using a cell culture model to assess disinfectant activity against HBV. It demonstrates more rapidly than the chimpanzee model that glutaraldehyde and sodium hypochlorite, using standard concentrations and exposure times compatible with clinical practice, were highly active against HBV. However, unexpectedly for an enveloped virus, we found no antiviral activity for iodine in the absence of detergent. Copyright 2001 The Hospital Infection Society.

  11. Tape-Drive Based Plasma Mirror

    SciTech Connect

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22

    We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser interaction with solid matter, such as ion acceleration [5,6] and high harmonic generation on surfaces [7]. Therefore, the laser pulse is weekly focused onto a substrate. The main pulse generates a plasma and is reflected at the critical surface, whereas the low intensity pre-pulse (mainly the Amplified Spontaneous Emission pedestal) will be transmitted through the substrate before the mirror has been triggered. Several publications [3,4] demonstrate a conservation of the spatial beam quality and a reflectivity of about 70 %. The drawback of this technique is the limited repetition rate since for every shot a fresh surface has to be provided. In the past years several novel approaches for high repetition rate plasma mirrors have been developed [2, 8

  12. A novel microfluidic mixer-based approach for determining inactivation kinetics of Escherichia coli O157:H7 in chlorine solutions.

    PubMed

    Zhang, Boce; Luo, Yaguang; Zhou, Bin; Wang, Qin; Millner, Patricia D

    2015-08-01

    Determination of the minimum free chlorine concentration needed to prevent pathogen survival/cross-contamination during produce washing is essential for the development of science-based food safety regulations and practices. Although the trend of chlorine concentration-contact time on pathogen inactivation is generally understood, specific information on chlorine and the kinetics of pathogen inactivation at less than 1.00 s is urgently needed by the produce processing industry. However, conventional approaches to obtain this critical data have been unable to adequately measure very rapid responses. This paper reports our development, fabrication, and test of a novel microfluidic device, and its application to obtain the necessary data on pathogen inactivation by free chlorine in produce wash solution in times as short as 0.10 s. A novel microfluidic mixer with the capability to accurately determine the reaction time and control the chlorine concentration was designed with three inlets for bacterial, chlorine and dechlorinating solutions, and one outlet for effluent collection. The master mold was fabricated on a silicon wafer with microchannels via photopolymerization. Polydimethylsiloxane replicas with patterned microchannels were prototyped via soft lithography. The replicas were further assembled into the micromixer on glass via O2 plasma treatment, and the inlets were connected to a syringe pump for solution delivery. To determine the kinetics of free chlorine on pathogen inactivation, chlorine solutions of varying concentrations were first pumped into the micromixer, together with the addition of bacterial suspension of Escherichia coli O157:H7 through a separate inlet. This was followed by injection of dechlorinating solution to stop the chlorine-pathogen reaction. The effluent was collected and the surviving bacteria cells were enumerated using a modified 'Most Probable Number' method. Free chlorine concentration was determined using a standard colorimetric

  13. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains

    PubMed Central

    Westdijk, Janny; Koedam, Patrick; Barro, Mario; Steil, Benjamin P.; Collin, Nicolas; Vedvick, Thomas S.; Bakker, Wilfried A.M.; van der Ley, Peter; Kersten, Gideon

    2013-01-01

    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titers (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotype 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7- 20- 27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants. PMID:23313617

  14. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces:In vitro study

    PubMed Central

    Annunziata, Marco; Donnarumma, Giovanna; Caputo, Pina; Nastri, Livia; Guida, Luigi

    2016-01-01

    Background Surface treatment by argon plasma is widely used as the last step of the manufacturing process of titanium implant fixtures before their sterilization by gamma rays. The possibility of using such a technology in the daily clinical practice is particularly fascinating. The aim of the present study was to assess the effects of the argon plasma treatment on different titanium implant surfaces previously exposed In vitro to bacterial contamination. Material and Methods Sterile c.p. titanium implant discs with turned (T, Sa: 0.8 µm ), sandblasted/acid-etched (SAE, Sa: 1.3 µm) and titanium plasma sprayed (TPS, Sa: 3.0µm) surface were used in this study. A strain of Aggregatibacter actinomycetemcomitans ATCC3718 was grown at 37°C under anaerobic conditions for 24 h and then transferred on six discs for each of the three surface types. After 24 hours, a half of the contaminated discs (control group) were directly used to evaluate the colony forming units (CFUs). The other half of the contaminated discs (test group) were treated in an argon plasma chamber for 12 minutes at room temperature prior to be analyzed for CFU counting. All assays were performed using triplicate samples of each material in 3 different experiments. Results When the CFU counting was carried out on control discs, a total of 1.50x106±1.4x105, 1.55x106±7.07x104 and 3.15x106±2.12x105 CFU was respectively assessed for T, SAE and TPS discs, without statistically significant differences among the three surfaces. On the contrary, any trace of bacterial contamination was assessed for titanium discs treated in the argon plasma chamber prior to be analyzed, irrespectively to the implant surface tested. Conclusions Within the limit of this study, reported data suggested that the argon plasma technology could be efficiently used to decontaminate/sterilize previously infected titanium implant surfaces. Key words:Argon plasma, titanium implant surface, Aggregatibacter actinomycetemcomitans. PMID

  15. Stress-induced Hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants.

    PubMed

    Bajszár, George; Dekonenko, Alexander

    2010-03-01

    Our research on the mechanisms of action of chlorine-based oxidants on Cryptosporidium parvum oocysts in water revealed a dual-phase effect: (i) response to oxidative stress, which was demonstrated by induced expression of the Hsp70 heat shock gene, and (ii) oocyst inactivation as a result of long-term exposure to oxidants. The relative biocidal effects of sodium hypochlorite (bleach) and electrolytically generated mixed oxidant solution (MOS) on C. parvum oocysts were compared at identical free chlorine concentrations. Oocyst inactivation was determined by quantitative reverse transcription-PCR (qRT-PCR) amplification of the heat-induced Hsp70 mRNA and compared with tissue culture infectivity. According to both assays, within the range between 25 and 250 mg/liter free chlorine and with 4 h contact time, MOS exhibits a higher efficacy in oocyst inactivation than hypochlorite. Other RNA-based viability assays, aimed at monitoring the levels of beta-tubulin mRNA and 18S rRNA, showed relatively slow decay rates of these molecules following disinfection by chlorine-based oxidants, rendering these molecular diagnostic viability markers inappropriate for disinfection efficacy assessment.

  16. Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization.

    PubMed

    Luksiene, Zivile; Buchovec, Irina; Paskeviciute, Egle

    2010-12-02

    This study was focused on the possibility to inactivate thermosensitive Listeria monocytogenes ATC(L3)C 7644 and thermoresistant 56 Ly strain by Na-Chlorophyllin (Na-Chl)-based photosensitization in vitro and on the surface of packaging. Comparative analysis of antimicrobial efficiency of photosensitization with conventional surface cleaning was performed. Data indicate that both Listeria strains, after incubation with Na-Chl and following illumination (λ=400nm, 20mWcm(-2)), were inactivated by 7 log in vitro. This treatment cleaned both Listeria strains from packaging surfaces. Comparative analysis indicates that washing with water diminishes pathogens by less than 1 log, 200ppm Na-hypochlorite by 1.7 log, Na-Chl-based photosensitization by 4.5 log. Listeria biofilms were totally removed from the surface by photosensitization at higher photosensitizer concentrations and longer incubation times. In conclusion, both strains of L. monocytogenes can be effectively inactivated by photosensitization in vitro and on the surface of packaging. Listeria biofilms are susceptible to this treatment as well. Comparison of different surface decontamination treatments reveals that photosensitization is much more effective against both Listeria strains than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization is an effective antimicrobial tool which may serve in the future for the development of human and environmentally friendly surface decontamination techniques.

  17. Stress-Induced Hsp70 Gene Expression and Inactivation of Cryptosporidium parvum Oocysts by Chlorine-Based Oxidants▿

    PubMed Central

    Bajszár, George; Dekonenko, Alexander

    2010-01-01

    Our research on the mechanisms of action of chlorine-based oxidants on Cryptosporidium parvum oocysts in water revealed a dual-phase effect: (i) response to oxidative stress, which was demonstrated by induced expression of the Hsp70 heat shock gene, and (ii) oocyst inactivation as a result of long-term exposure to oxidants. The relative biocidal effects of sodium hypochlorite (bleach) and electrolytically generated mixed oxidant solution (MOS) on C. parvum oocysts were compared at identical free chlorine concentrations. Oocyst inactivation was determined by quantitative reverse transcription-PCR (qRT-PCR) amplification of the heat-induced Hsp70 mRNA and compared with tissue culture infectivity. According to both assays, within the range between 25 and 250 mg/liter free chlorine and with 4 h contact time, MOS exhibits a higher efficacy in oocyst inactivation than hypochlorite. Other RNA-based viability assays, aimed at monitoring the levels of β-tubulin mRNA and 18S rRNA, showed relatively slow decay rates of these molecules following disinfection by chlorine-based oxidants, rendering these molecular diagnostic viability markers inappropriate for disinfection efficacy assessment. PMID:20118357

  18. Determinants of plasma acid-base balance.

    PubMed

    Kellum, John A

    2005-04-01

    An advanced understanding of acid-base physiology is central to the practice of critical care medicine. Intensivists spend much of their time managing problems that are related to fluids, electrolytes, and blood pH. Recent advances in the understanding of acid-base physiology occurred as the result of the application of basic physical-chemical principles of aqueous solutions to blood plasma. This analysis revealed three independent variables that regulate pH in blood plasma: carbon dioxide, relative electrolyte concentrations, and total weak acid concentrations. All changes in blood pH, in health and in disease, occur through changes in these three variables. This article reviews the physical-chemical approach to acid-base balance and considers clinical implications for these findings.

  19. A single-center prospective study on the safety of plasma exchange procedures using a double-viral-inactivated and prion-reduced solvent/detergent fresh-frozen plasma as the replacement fluid in the treatment of thrombotic microangiopathy.

    PubMed

    Vendramin, Chiara; McGuckin, Siobhan; Alwan, Ferras; Westwood, John-Paul; Thomas, Mari; Scully, Marie

    2017-01-01

    Patients presenting with acute episodes of thrombotic microangiopathies (TMAs) require urgent access to plasma exchange (PEX). OctaplasLG, a solvent/detergent fresh-frozen plasma product that has undergone viral inactivation and prion reduction step, has been used in our institution since 2013, replacing Octaplas. We prospectively reviewed 981 PEX procedures where OctaplasLG was the replacement fluid in 90 patients admitted acutely with a TMA presentation within our institution from January 1, 2013, to December 31, 2015. We recorded citrate toxicities, plasma reactions, viral transfer, complications related to central venous catheter, and venous thrombotic events (VTEs). Citrate toxicities were 5.4%, plasma reactions were 2%, and all were classified as Grade 1 or 2. VTE had an incidence of 12.2%, although 50% of the episodes occurred in early remission when patients were not receiving PEX. No line insertions complications were recorded. Line-associated infections were 2.2%. Hepatitis B and C serology and human immunodeficiency virus (HIV) were checked on admission. There were four patients who may have had passive transient transfer of hepatitis B antibodies from pooled plasma. No hepatitis C or HIV viral transfer was documented after treatment and no seroconversion was detected after treatment. Our data have demonstrated that the incidence of complications during PEX is low and using OctaplasLG is comparable to the low incidence of reactions. No cases of anaphylaxis, transfusion-related acute lung injury, or fatal plasma reactions were seen. There was no evidence of viral transmission or seroconversion after treatment. © 2016 AABB.

  20. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels.

    PubMed

    Wang, Xiao; Hardcastle, Kiah; Weinberg, Seth H; Smith, Gregory D

    2016-03-01

    We present a population density and moment-based description of the stochastic dynamics of domain [Formula: see text]-mediated inactivation of L-type [Formula: see text] channels. Our approach accounts for the effect of heterogeneity of local [Formula: see text] signals on whole cell [Formula: see text] currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985-995, 1990), we do not assume that [Formula: see text] domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type [Formula: see text] channel introduced by Greenstein and Winslow (Biophys J 83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell [Formula: see text] current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of [Formula: see text] inactivation that may occur via slow heterogeneous domain [[Formula: see text

  1. Cold plasma: overview of plasma technologies and applications

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is a novel nonthermal food processing technology. It is based on energetic, reactive gases which inactivate contaminating microbes on meats, poultry and fruits and vegetables. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization pro...

  2. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  3. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  4. Plasma Stabilization Based on Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sotnikova, Margarita

    The nonlinear model predictive control algorithms for plasma current and shape stabilization are proposed. Such algorithms are quite suitable for the situations when the plant to be controlled has essentially nonlinear dynamics. Besides that, predictive model based control algorithms allow to take into account a lot of requirements and constraints involved both on the controlled and manipulated variables. The significant drawback of the algorithms is that they require a lot of time to compute control input at each sampling instant. In this paper the model predictive control algorithms are demonstrated by the example of plasma vertical stabilization for ITER-FEAT tokamak. The tuning of parameters of algorithms is performed in order to decrease computational load.

  5. An assay for X inactivation based on differential methylations at the fragile X locus, FMR1

    SciTech Connect

    Carrel, L.; Willard, H.F. |

    1996-07-12

    We describe an assay analyzing methylation at the fragile X mental retardation gene, FMR1, to examine patterns of random or non-random X chromosome inactivation. Digestion of genomic DNA with the methylation-sensitive enzyme HpaII cleaves two restriction sites near the CGG repeat of the FMR1 gene if they are unmethylated on the active X chromosome, but fails to digest these sites on the inactive chromosome. Subsequent PCR using primers that flank the sites and the variable CGG repeat within the FMR1 gene amplifies alleles only on undigested, methylated inactive X chromosomes. Amplification of the hypervariable CGG repeat distinguishes alleles in heterozygous samples, while the relative ratio of alleles within a HpaII-digested sample reflects the randomness or non-randomness of inactivation. To demonstrate that methylation of the HpaII sites within the amplified FMR1 fragment correlates strictly with the activity state of the X chromosome, we have tested the validity of this assay by comparing DNA from normal males and females, as well as DNA from mouse/human somatic cell hybrids carrying either active or inactive human X chromosomes. The data demonstrate that this assay provides a reliable means of assessing the inactivation status of X chromosomes in individuals with X-linked disorders or X chromosome abnormalities. 21 refs., 2 figs., 1 tab.

  6. The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Park, Ji Hoon; Jeon, Su Nam; Park, Bong Sang; Choi, Eun Ha; Attri, Pankaj

    2016-03-01

    In the present work, we have generated reactive species (RS) through microsecond-pulsed plasma (MPP) in the cell culture media using a Marx generator with point-point electrodes of approximately 0.06 J discharge energy/pulse. RS generated in culture media through MPP have a selective action between growth of the H460 lung cancer cells and L132 normal lung cells. We observed that MPP-activated media (MPP-AM) induced apoptosis on H460 lung cancer cells through an oxidative DNA damage cascade. Additionally, we studied the apoptosis-related mRNA expression, DNA oxidation and polymerase-1 (PARP-1) cleaved analysis from treated cancer cells. The result proves that radicals generated through MPP play a pivotal role in the activation of media that induces the selective killing effect.

  7. Trapping and dark current in plasma-based accelerators

    SciTech Connect

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-06-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

  8. Evaluation and Clinical Validation of an Alcohol-Based Transport Medium for Preservation and Inactivation of Respiratory Viruses▿

    PubMed Central

    Luinstra, Kathy; Petrich, Astrid; Castriciano, Santina; Ackerman, Mona; Chong, Sylvia; Carruthers, Susan; Ammons, Brenna; Mahony, James B.; Smieja, Marek

    2011-01-01

    The clinical and public health importance of influenza and other respiratory viruses has accelerated the development of highly sensitive molecular diagnostics, but data are limited regarding preanalytical stages of diagnostic testing. We evaluated CyMol, an alcohol-based transport medium, for its ability to maintain specimen integrity for up to 21 days of storage at various temperatures; for its ability to inactivate virus; and for its compatibility with antigen- or nucleic acid-based diagnostics for respiratory viruses in clinical samples. In mock-infected samples, both universal transport medium (UTM-RT) and CyMol maintained equivalent viral quantities for at least 14 days at room temperature or colder, whereas a dry swab collection maintained viral quantities only if refrigerated or frozen. CyMol inactivated influenza virus within 5 min of sample immersion. UTM-RT- and CyMol-collected nasal swab specimens from 73 symptomatic students attending a campus health clinic were positive for a respiratory virus in 56.2% of subjects by multiplex PCR testing, including influenza A and B viruses, rhinovirus/enteroviruses, coronaviruses, respiratory syncytial virus, parainfluenza viruses, metapneumovirus, and adenovirus. Detection by PCR was equivalent in UTM-RT- and CyMol-collected specimens and in self- and staff-collected swabs. Direct fluorescent antibody (DFA) testing was substantially less sensitive (23.3%) than multiplex PCR, and DFA testing from UTM-RT-collected swabs was more sensitive than that from CyMol-collected swabs. These data indicate that an alcohol-based transport medium such as CyMol preserves respiratory virus integrity, rapidly inactivates viruses, and is compatible with PCR-based respiratory diagnostics. PMID:21508158

  9. Evaluation and clinical validation of an alcohol-based transport medium for preservation and inactivation of respiratory viruses.

    PubMed

    Luinstra, Kathy; Petrich, Astrid; Castriciano, Santina; Ackerman, Mona; Chong, Sylvia; Carruthers, Susan; Ammons, Brenna; Mahony, James B; Smieja, Marek

    2011-06-01

    The clinical and public health importance of influenza and other respiratory viruses has accelerated the development of highly sensitive molecular diagnostics, but data are limited regarding preanalytical stages of diagnostic testing. We evaluated CyMol, an alcohol-based transport medium, for its ability to maintain specimen integrity for up to 21 days of storage at various temperatures; for its ability to inactivate virus; and for its compatibility with antigen- or nucleic acid-based diagnostics for respiratory viruses in clinical samples. In mock-infected samples, both universal transport medium (UTM-RT) and CyMol maintained equivalent viral quantities for at least 14 days at room temperature or colder, whereas a dry swab collection maintained viral quantities only if refrigerated or frozen. CyMol inactivated influenza virus within 5 min of sample immersion. UTM-RT- and CyMol-collected nasal swab specimens from 73 symptomatic students attending a campus health clinic were positive for a respiratory virus in 56.2% of subjects by multiplex PCR testing, including influenza A and B viruses, rhinovirus/enteroviruses, coronaviruses, respiratory syncytial virus, parainfluenza viruses, metapneumovirus, and adenovirus. Detection by PCR was equivalent in UTM-RT- and CyMol-collected specimens and in self- and staff-collected swabs. Direct fluorescent antibody (DFA) testing was substantially less sensitive (23.3%) than multiplex PCR, and DFA testing from UTM-RT-collected swabs was more sensitive than that from CyMol-collected swabs. These data indicate that an alcohol-based transport medium such as CyMol preserves respiratory virus integrity, rapidly inactivates viruses, and is compatible with PCR-based respiratory diagnostics.

  10. Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

    NASA Astrophysics Data System (ADS)

    Moisan, Michel; Boudam, Karim; Carignan, Denis; Kéroack, Danielle; Levif, Pierre; Barbeau, Jean; Séguin, Jacynthe; Kutasi, Kinga; Elmoualij, Benaïssa; Thellin, Olivier; Zorzi, Willy

    2013-07-01

    Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent

  11. Inactivation of Escherichia coli O157:H7 and Aerobic Microorganisms in Romaine Lettuce Packaged in a Commercial Polyethylene Terephthalate Container Using Atmospheric Cold Plasma.

    PubMed

    Min, Sea C; Roh, Si Hyeon; Boyd, Glenn; Sites, Joseph E; Uknalis, Joseph; Fan, Xuetong; Niemira, Brendan A

    2017-01-01

    The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4°C for 7 days. Effects investigated included the color, carbon dioxide (CO2) generation, weight loss, and surface morphology of the lettuce during storage. Romaine lettuce pieces, with or without inoculation with a cocktail of three strains of E. coli O157:H7 (~6 log CFU/g of lettuce), were packaged in a polyethylene terephthalate commercial clamshell container and treated at 34.8 kV at 1.1 kHz for 5 min by using a DACP treatment system equipped with a pin-type high-voltage electrode. Romaine lettuce samples were analyzed for inactivation of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds, color, CO2 generation, weight loss, and surface morphology during storage at 4°C for 7 days. The DACP treatment reduced the initial counts of E. coli O157:H7 and total aerobic microorganisms by ~1 log CFU/g, with negligible temperature change from 24.5 ± 1.4°C to 26.6 ± 1.7°C. The reductions in the numbers of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds during storage were 0.8 to 1.5, 0.7 to 1.9, and 0.9 to 1.7 log CFU/g, respectively. DACP treatment, however, did not significantly affect the color, CO2 generation, weight, and surface morphology of lettuce during storage (P > 0.05). Some mesophilic aerobic bacteria were sublethally injured by DACP treatment. The results from this study demonstrate the potential of applying DACP as a postpackaging treatment to decontaminate lettuce contained in conventional plastic packages without altering color and leaf respiration during posttreatment cold storage.

  12. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  13. Results of a quality-control study of lyophilized pooled plasmas which have been 'virally inactivated' using a solvent detergent method (modified Horowitz procedure).

    PubMed

    Trobisch, H

    1991-01-01

    The 'virus-free' lyophilized pooled plasmas supplied to our institute by the German Red Cross in Hagen did not meet the quality norms found in standard products. Indeed, with respect to all the major parameters, they deviated greatly from standard coagulative fresh frozen plasmas. In order to achieve a suitable substitution effect and approximate the properties of fresh plasma, it would be necessary to administer two to three times the amount of 'virus-free' plasma. At the same time it should be noted that by contrast to coagulative fresh plasma, the new product neither compensates for factors which activate or inhibit coagulation, nor for fibrinolytic factors. On the contrary, the ratio between these factors deviates dangerously from their physiological equilibrium. Grave therapeutic consequences can be expected therefrom. In addition, most of the tested batches already contain heparin in quantities within the therapeutic range in spite of the fact that the manufacturer neglects to mention this detail. Finally, the method of preparation pushes the pH values far into the alkaline range. This fact alone could have fatal consequences if this product was administered to severely ill patients. In general, we can only express our surprise that the Bundesgesundheitsamt (German Health Board), as the official body responsible for approving this product, has agreed to its distribution on the basis of notification that changes would be made to an existing approved product. The following facts, in our opinion, should have determined the renewal of the licence for sale: As opposed to the approved product--a plasma derived from individual donors--the 'virus-free' plasma is a pooled plasma. As opposed to the approved product--a deep-frozen plasma derived from individual donors--the 'virus-free' plasma is a pooled lyophilized plasma. As opposed to the approved product which is not subjected to any chemical processing, the 'virus-free' product is treated with tri

  14. INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    EPA Science Inventory

    Ozone inactivation rates for Cryptosporidium parvum (C. parvum) oocysts were determined with an in-vitro excystation method based on excysted sporozoite counts. Results were consistent with published animal infectivity data for the same C. parvum strain. The inactivation kinetics...

  15. INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    EPA Science Inventory

    Ozone inactivation rates for Cryptosporidium parvum (C. parvum) oocysts were determined with an in-vitro excystation method based on excysted sporozoite counts. Results were consistent with published animal infectivity data for the same C. parvum strain. The inactivation kinetics...

  16. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation.

    PubMed

    Sigler, K; Gille, G; Vacata, V; Stadler, N; Höfer, M

    1998-01-01

    In the absence of added Fe2+, the ATPase activity of isolated Schizosaccharomyces pombe plasma membranes (5-7 mumol P(i) per mg protein per min) is moderately inhibited by H2O2 in a concentration-dependent manner. Sizable inactivation occurs only at 50-80 mmol/L H2O2. The process, probably a direct oxidative action of H2O2 on the enzyme, is not induced by the indigenous membrane-bound iron (19.3 nmol/mg membrane protein), is not affected by the radical scavengers mannitol and Tris, and involves a decrease of both the K(m) of the enzyme for ATP and the V of ATP splitting. On exposing the membranes to the Fenton reagent (50 mumol/L Fe2+ + 20 mmol/L H2O2), which causes a fast production of HO. radicals, the ATPase is 50-60% inactivated and 90% of added Fe2+ is oxidized to Fe3+ within 1 min. The inactivation occurs only when Fe2+ is added before H2O2 and can thus bind to the membranes. The lack of effect of radical scavengers (mannitol, Tris) indicates that HO. radicals produced in the bulk phase play no role in inactivation. Blockage of the inactivation by the iron chelator deferrioxamine implies that the process requires the presence of Fe2+ ions bound to binding sites on the enzyme molecules. Added catalase, which competes with Fe2+ for H2O2, slows down the inactivation but in some cases increases its total extent, probably due to the formation of the superoxide radical that gives rise to delayed HO. production.

  17. Plasma-based localized defect for switchable coupling applications

    SciTech Connect

    Varault, Stefan; Gabard, Benjamin; Sokoloff, Jerome; Bolioli, Sylvain

    2011-03-28

    We report in this paper experimental measurements in order to validate the concept of switchable electromagnetic band gap filters based on plasma capillaries in the microwave regime. The plasma tube is embedded inside the structure to create a bistable (plasma on or off) punctual defect. We first investigate two kinds of discharge tubes: Ar-Hg and pure Ne, which we then use to experimentally achieve plasma-based reconfigurable applications, namely, a two-port coupler and a two-port demultiplexer.

  18. Inactivation of Penicillium digitatum Spores by a High-Density Ground-State Atomic Oxygen-Radical Source Employing an Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Hashizume, Hiroshi; Jia, Fengdong; Takeda, Keigo; Ishikawa, Kenji; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2011-11-01

    Penicillium digitatum spores were inactivated using an oxygen-radical source that supplies only neutral oxygen radicals. Vacuum ultraviolet absorption spectroscopy was used to measure the ground-state atomic oxygen [O (3Pj)] densities and they were estimated to be in the range of 1014-1015 cm-3. The inactivation rate of P. digitatum spores was correlated with the O (3Pj) density. The result indicates that O (3Pj) is the dominant species in the inactivation. The inactivation rate constant of P. digitatum spores by O (3Pj) was estimated to be on the order of 10-17 cm3 s-1 from the measured O (3Pj) densities and inactivation rates.

  19. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 5. Inactivation of Cryptosporidium Oocysts by UV Emission Generated from Pulsed Arc Discharge in Water

    NASA Astrophysics Data System (ADS)

    Kunitomo, Shinta

    Cryptosporidium contaminates most surface waters around the world. It is difficult to remove through conventional treatment processes, and is extremely resistant to the method of chemical disinfection typically used to inactivate these microorganisms. We have developed a new technology for inactivating Cryptosporidium oocysts by using a pulsed arc discharge in water, which creates shock waves, UV emissions, and radicals. The pulsed arc is generated between two cylindrical stainless steel rod electrodes, 6 mm in diameter, and 2 mm apart. We applied this method to the inactivation of oocysts in backwash water from a sand-filter unit of a drinking water plant. The results indicate that the major factor influencing inactivation is UV emissions, and that more than 99% of the oocysts in the high turbidity backwash water (80 NTU) are inactivated with an energy of 0.24 kWh/m3.

  20. A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere

    PubMed Central

    Tsabar, Michael; Haase, Julian; Harrison, Benjamin; Snider, Chloe E.; Kaminsky, Lila; Hine, Rebecca M.; Haber, James E.; Bloom, Kerry

    2016-01-01

    Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised. PMID:27128635

  1. Plasma-based studies on 4th generation light sources

    NASA Astrophysics Data System (ADS)

    Lee, R. W.; Baldis, H. A.; Cauble, R. C.; Landen, O. L.; Wark, J. S.; Ng, A.; Rose, S. J.; Lewis, C.; Riley, D.; Gauthier, J.-C.; Audebert, P.

    2001-08-01

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warm dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (Te), the density (ne), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, ne⩾1022cm-3 implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However, the possibilities end for plasmas with ne⩾1022 since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  2. Plasma-Based Studies on 4th Generation Light Sources

    SciTech Connect

    Lee, R W; Baldis, H A; Cauble, R C; Landen, O L; Wark, J S; Ng, A; Rose, S J; Lewis, C; Riley, D; Gauthier, J-C; Audebert, P

    2000-11-28

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, {ge} 10{sup 22} cm{sup -3} implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} {ge} 10{sup 22} since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  3. Clinical applications of plasma based electrosurgical systems

    NASA Astrophysics Data System (ADS)

    Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.

    2013-02-01

    Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.

  4. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants.

    PubMed Central

    Koes, R; Souer, E; van Houwelingen, A; Mur, L; Spelt, C; Quattrocchio, F; Wing, J; Oppedijk, B; Ahmed, S; Maes, T

    1995-01-01

    Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled according to a three-dimensional matrix, and screened by PCR using a transposon- and a gene-specific primer. In this way individual plants with a dTph1 insertion can be identified by analysis of about 30 PCRs. We found insertion alleles for various genes at a frequency of about 1 in 1000 plants. The plant population can be preserved by selfing all the plants, so that it can be screened for insertions in many genes over a prolonged period. Images Fig. 1 Fig. 3 Fig. 4 PMID:7667260

  5. Inactivation of human immunodeficiency virus type 1, hepatitis A virus, respiratory syncytial virus, vaccinia virus, herpes simplex virus type 1, and poliovirus type 2 by hydrogen peroxide gas plasma sterilization.

    PubMed

    Roberts, C; Antonoplos, P

    1998-04-01

    Studies were conducted to determine the capability of a hydrogen peroxide gas plasma sterilization process to inactivate several types of viruses. Six test agents were used: HIV type 1, human hepatitis A virus, respiratory syncytial virus, vaccinia, herpes simplex virus type 1, and poliovirus type 2. The test viruses were suspended in cell culture medium and dried on the bottom of sterile glass petri dishes. The inoculated dishes were processed in the hydrogen peroxide gas plasma system for half the normal sterilization cycle time. Four inoculated carriers for each virus were used in two separate half cycles. Infectivity of the test viruses and cytotoxicity to the indicator cell lines were assayed. The hydrogen peroxide gas plasma sterilization process produced inactivation of the six viral test agents under these experimental conditions. The reduction in viral titers ranged from 2.5 log10 to 5.5 log10, a 99.68% to 99.999% decrease. These results clearly demonstrate the virucidal effectiveness of the hydrogen peroxide gas plasma sterilization process against both lipid and nonlipid viruses.

  6. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    PubMed Central

    Naggar, Heba M. El; Madkour, Mohamed Sayed; Hussein, Hussein Ali

    2017-01-01

    Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses. PMID:28344402

  7. A New Treatment Strategy for Inactivating Algae in Ballast Water Based on Multi-Trial Injections of Chlorine

    PubMed Central

    Sun, Jinyang; Wang, Junsheng; Pan, Xinxiang; Yuan, Haichao

    2015-01-01

    Ships’ ballast water can carry aquatic organisms into foreign ecosystems. In our previous studies, a concept using ion exchange membrane electrolysis to treat ballast water has been proven. In addition to other substantial approaches, a new strategy for inactivating algae is proposed based on the developed ballast water treatment system. In the new strategy, the means of multi-trial injection with small doses of electrolytic products is applied for inactivating algae. To demonstrate the performance of the new strategy, contrast experiments between new strategies and routine processes were conducted. Four algae species including Chlorella vulgaris, Platymonas subcordiformis, Prorocentrum micans and Karenia mikimotoi were chosen as samples. The different experimental parameters are studied including the injection times and doses of electrolytic products. Compared with the conventional one trial injection method, mortality rate time (MRT) and available chlorine concentration can be saved up to about 84% and 40%, respectively, under the application of the new strategy. The proposed new approach has great potential in practical ballast water treatment. Furthermore, the strategy is also helpful for deep insight of mechanism of algal tolerance. PMID:26068239

  8. Low-temperature low-damage sterilization based on UV radiation through plasma immersion

    NASA Astrophysics Data System (ADS)

    Pollak, J.; Moisan, M.; Kéroack, D.; Boudam, M. K.

    2008-07-01

    This paper introduces a new type of high-frequency (HF) sustained discharge where the HF field applicator is a planar transmission line that allows us to fill with plasma a long chamber of rectangular cross-section (typically 1 m × 15 cm × 5 cm). Peculiar interesting features of this plasma source are a low gas temperature (typically below 40 °C in the 1 Torr range in argon), broadband impedance matching with no need for retuning, stability and reproducibility of the discharge (non-resonant behaviour). This type of plasma source could be useful for web processing; nonetheless, it is applied here to plasma sterilization, taking advantage of its low gas temperature to inactivate microorganisms on polymer-made medical devices to avoid damaging them. The predominant biocide species are the UV photons emitted by the discharge whereas most plasma sterilization techniques call for reactive species such as O atoms and OH molecules, which induce significant erosion damage on polymers. Polystyrene microspheres are actually observed to be erosion-free under the current plasma sterilization conditions (scanning electron micrographs have been examined). Moreover, inactivation is quite fast: 106 B. atrophaeus spores deposited on a Petri dish are inactivated in less than 1 min. Correlation of the UV radiation with the spore inactivation rate is examined by (i) considering the emitted light intensity integrated over the 112-180 nm vacuum UV (VUV) range with a photomultiplier; (ii) looking with an optical spectrometer at the emission spectrum over the 200-400 nm UV range; (iii) using absorption spectroscopy to determine the role of the VUV argon resonant lines (105 and 107 nm) on spore inactivation. It is found that the test-reference spores are mainly inactivated by VUV photons (112-180 nm) that are primarily emitted by impurities present in the argon plasma.

  9. A Quantitative High-Throughput 96-well plate Fluorescence Assay for Mechanism-Based Inactivators of Cytochromes P450 Exemplified using CYP2B6

    PubMed Central

    Kenaan, Cesar; Zhang, Haoming; Hollenberg, Paul F.

    2010-01-01

    Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the roles of specific active-site amino acid residues in the reactions catalyzed by the cytochromes P450 (CYPs or P450s) that are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators using the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin (7-EFC) O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate-reader to detect the fluorescence of the product. Compared to previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes approximately two hours to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate-readers. PMID:20885377

  10. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  11. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  12. Determination of Time Dependent Virus Inactivation Rates

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Vogler, E. T.

    2003-12-01

    A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.

  13. Inactivation technology for pitch doubling lithography

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Jun; Ohashi, Masaki; Ohsawa, Youichi; Katayama, Kazuhiro; Kawai, Yoshio

    2010-04-01

    We propose novel inactivation technologies which improve resolution. Base generators have been developed, which inactivate acid by thermal treatment or exposure. This thermal inactivation technology realizes simple litho-inactivation-litho-etch (LILE) process with good fidelity. After 1st patterning, acid is inactivated by amine released from the thermal base generator under low temperature baking of less than 150°C. Just adding one simple low temperature bake process, LILE has two advantages; i) keeping high throughput, and ii) avoidance of pattern deformation. 32nm line and space (l&s) pattern is successfully delineated. The inactivation technology has been expanded to frequency doubling patterning. Photo base generator (PBG) is used to inactivate acid generated by exposure. Acid concentration in both of low and high exposed area is precisely controlled by base generation efficiency of PBG. The dual tone resist successfully delineates 32.5nm l&s pattern using 65nm l&s mask patterns with single exposure.

  14. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats.

    PubMed

    O'Konek, Jessica J; Makidon, Paul E; Landers, Jeffrey J; Cao, Zhengyi; Malinczak, Carrie-Anne; Pannu, Jessie; Sun, Jennifer; Bitko, Vira; Ciotti, Susan; Hamouda, Tarek; Wojcinski, Zbigniew W; Lukacs, Nicholas W; Fattom, Ali; Baker, James R

    2015-01-01

    Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.

  15. Mechanism-based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in Mycobaterium tuberculosis

    SciTech Connect

    Shi, Ce; Geders, Todd W.; Park, Sae Woong; Wilson, Daniel J.; Boshoff, Helena I.; Abayomi, Orishadipe; Barry, III, Clifton E.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2011-11-16

    BioA catalyzes the second step of biotin biosynthesis, and this enzyme represents a potential target to develop new antitubercular agents. Herein we report the design, synthesis, and biochemical characterization of a mechanism-based inhibitor (1) featuring a 3,6-dihydropyrid-2-one heterocycle that covalently modifies the pyridoxal 5'-phosphate (PLP) cofactor of BioA through aromatization. The structure of the PLP adduct was confirmed by MS/MS and X-ray crystallography at 1.94 {angstrom} resolution. Inactivation of BioA by 1 was time- and concentration-dependent and protected by substrate. We used a conditional knock-down mutant of M. tuberculosis to demonstrate the antitubercular activity of 1 correlated with BioA expression, and these results provide support for the designed mechanism of action.

  16. Mechanism-Based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in Mycobaterium tuberculosis

    PubMed Central

    Shi, Ce; Geders, Todd W.; Park, Sae Woong; Wilson, Daniel J.; Boshoff, Helena I.; Orisadipe, Abayomi; Barry, Clifton E.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2011-01-01

    BioA catalyzes the second step of biotin biosynthesis and this enzyme represents a potential target to develop new antitubercular agents. Herein we report the design, synthesis, and biochemical characterization of a mechanism-based inhibitor (1) featuring a 3,6-dihydropyrid-2-one heterocycle that covalently modifies the pyridoxal 5′-phosphate (PLP) cofactor of BioA through aromatization. The structure of the PLP adduct was confirmed by MS/MS and X-ray crystallography at 1.94 Å resolution. Inactivation of BioA by 1 was time- and concentration-dependent and protected by substrate. We used a conditional knock-down mutant of M. tuberculosis to demonstrate the antitubercular activity of 1 correlated with BioA expression and these results provide support for the designed mechanism of action. PMID:21988601

  17. A fusion based plasma propulsion system

    NASA Technical Reports Server (NTRS)

    George, J. A.; Anderson, B.; Bryant, D.; Creese, C.; Djordjevic, V.; Peddicord, K. L.

    1987-01-01

    The Fusion Plasma Propulsion System scoping study was performed to investigate the possibilities of a fusion powered plasma propulsion system for space applications. Specifically, it was to be compared against existing electric propulsion concepts for a manned Mars mission. Design parameters consist of 1000 N thrust for 500 days, and the minimum mass possible. This investigation is briefly presented and conclusions drawn.

  18. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe.

    PubMed

    Jiang, Yunbin; Sokorai, Kimberly; Pyrgiotakis, Georgios; Demokritou, Philip; Li, Xihong; Mukhopadhyay, Sudarsan; Jin, Tony; Fan, Xuetong

    2017-05-16

    The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomatoes, baby spinach leaves and cantaloupes. Stem scars and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherichia coli O157:H7, Salmonella Typhimurium and Listeria innocua, were treated for 45s followed by additional 30min dwell time with hydrogen peroxide (7.8%) aerosols activated by atmospheric cold plasma. Non-inoculated samples were used to study the effects on quality and native microflora populations. Results showed that two ranges of hydrogen peroxide droplets with mean diameters of 40nm and 3.0μm were introduced into the treatment chamber. The aerosolized hydrogen peroxide treatment reduced S. Typhimurium populations by 5.0logCFU/piece, and E. coli O157:H7 and L. innocua populations from initial levels of 2.9 and 6.3logCFU/piece, respectively, to non-detectable levels (detection limit 0.6logCFU/piece) on the smooth surface of tomatoes. However, on the stem scar area of tomatoes, the reductions of E. coli O157:H7, S. Typhimurium, and L. innocua were only 1.0, 1.3, and 1.3 log, respectively. On the cantaloupe rind, the treatment reduced populations of E. coli O157:H7, S. Typhimurium and L. innocua by 4.9, 1.3, and 3.0logCFU/piece, respectively. Under the same conditions, reductions achieved on spinach leaves were 1.5, 4.2 and 4.0 log for E. coli O157:H7, S. Typhimurium and L. innocua, respectively. The treatments also significantly reduced native aerobic plate count, and yeasts and mold count of tomato fruits and spinach leaves. Furthermore, firmness and color of the samples were not significantly affected by the aerosolized hydrogen peroxide. Overall, our results showed that the efficacy of aerosolized hydrogen peroxide depended on type of inoculated bacteria, location of bacteria and type of produce items, and aerosolized hydrogen peroxide could potentially be used to

  19. Ground-based plasma contractor characterization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Aadland, Randall S.

    1987-01-01

    Presented are recent NASA Lewis Research Center (LeRC) plasma contractor experimental results, as well as a description of the plasma contractor test facility. The operation of a 24 cm diameter plasma source with hollow cathode was investigated in the lighted-mode regime of electron current collection from 0.1 to 7.0 A. These results are compared to those obtained with a 12 cm plasma source. Full two-dimensional plasma potential profiles were constructed from emissive probe traces of the contractor plume. The experimentally measured dimensions of the plume sheaths were then compared to those theoretically predicted using a model of a spherical double sheath. Results are consistent for currents up to approximately 1.0 A. For currents above 1.0 A, substantial deviations from theory occur. These deviations are due to sheath asphericity, and possibly volume ionization in the double-sheath region.

  20. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  1. Thrombin generation, ProC(®)Global, prothrombin time and activated partial thromboplastin time in thawed plasma stored for seven days and after methylene blue/light pathogen inactivation.

    PubMed

    Thiele, Thomas; Hron, Gregor; Kellner, Sarah; Wasner, Christina; Westphal, Antje; Warkentin, Theodore E; Greinacher, Andreas; Selleng, Kathleen

    2016-01-01

    Methylene blue pathogen inactivation and storage of thawed plasma both lead to changes in the activity of several clotting factors. We investigated how this translates into a global loss of thrombin generation potential and alterations in the protein C pathway. Fifty apheresis plasma samples were thawed and each divided into three subunits. One subunit was stored for 7 days at 4 °C, one was stored for 7 days at 22 °C and one was stored at 4 °C after methylene blue/light treatment. Thrombin generation parameters, ProC(®)Global-NR, prothrombin time and activated partial thromboplastin time were assessed on days 0 and 7. The velocity of thrombin generation increased significantly after methylene blue treatment (increased thrombin generation rate; time to peak decreased) and decreased after storage (decreased thrombin generation rate and peak thrombin; increased lag time and time to peak). The endogenous thrombin generation potential remained stable after methylene blue treatment and storage at 4 °C. Methylene blue treatment and 7 days of storage at 4 °C activated the protein C pathway, whereas storage at room temperature and storage after methylene blue treatment decreased the functional capacity of the protein C pathway. Prothrombin time and activated partial thromboplastin time showed only modest alterations. The global clotting capacity of thawed plasma is maintained at 4 °C for 7 days and directly after methylene blue treatment of thawed plasma. Thrombin generation and ProC(®)Global are useful tools for investigating the impact of pathogen inactivation and storage on the clotting capacity of therapeutic plasma preparations.

  2. Terahertz sources based on plasma instabilities

    NASA Astrophysics Data System (ADS)

    Kempa, K.

    2000-03-01

    Excess free energy in a non-equilibrium plasma can be efficiently transferred into growing plasma oscillations (plasma instability). These oscillating charges produce coherent electromagnetic radiation. This phenomenon, well known in gaseous plasmas, has not yet been observed in solid-state systems. Plasma oscillations of typical low dimensional semiconductor systems are in the THz range, making them attractive candidates for compact coherent sources in this frequency range. Bakshi and Kempa have established theoretically the feasibility of achieving plasma instabilities in a variety of low dimensional solid state systems [1-6]. The most promising quantum well system employs strongly inhomogeneous carrier plasmas in a non-equilibrium steady state, through appropriate injection and extraction of carriers. In this case, the plasma instability arises from an attractive interaction between inter-subband plasmon modes [7]. The collective nature of the phenomenon ensures its survival even for high temperatures. This talk gives an overview of the theoretical work and recent efforts for experimental verification [8]. *Supported by US Army Research Office. [1] P. Bakshi, J. Cen and K. Kempa J. Appl. Phys. 64, 2243 (1988). [2] K. Kempa, J. Cen, P. Bakshi, Phys. Rev. B39, 2852 (1989). [3] P. Bakshi and K. Kempa, Phys. Rev. B 40, 3433 (1989). [4] K. Kempa, P.Bakshi, and H. Xie, Phys. Rev. B 48, 9158, (1993). [5] P. Bakshi and K. Kempa, Superlattices and Microstructures, 17, 363, (1995), and earlier references therein. [6] K. Kempa, P. Bakshi and E. Gornik, Phys. Rev. B 54, 8231, (1996). [7] P. Bakshi and K. Kempa, Cond. Matter. Theories., Eds. J.W.Clark and P.V. Panat, Nova Science, vol. 12, pp 399-412, 1997. [8] P. Bakshi, K. Kempa, A. Scorupsky, C. G. Du, G. Feng, R. Zobl, G. Strasser, C. Rauch, Ch. Pacher, K. Unterrainer, and E. Gornik, Appl. Phys. Letters, 75,1685 (1999).

  3. Cold Plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli 0157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomato, baby spinach leaves and cantaloupe. Stem scar and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherich...

  4. Bacterial inactivation of the anticancer drug doxorubicin.

    PubMed

    Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D

    2012-10-26

    Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  6. New Freeform Manufacturing Chains Based on Atmospheric Plasma Jet Machining

    NASA Astrophysics Data System (ADS)

    Arnold, T.; Boehm, G.; Paetzelt, H.

    2016-01-01

    New manufacturing chains for precise fabrication of asphere and freeform optical surfaces including atmospheric Plasma Jet Machining (PJM) technology will be presented. PJM is based on deterministic plasma-assisted material removal. It has the potential for flexible and cost-efficient shape generation and correction of small and medium-sized optical freeform elements. The paper discusses the interactions between the plasma tools and optical fused silica samples in the context of the pre-machined and intermediate surface states and identifies several plasma jet machining methods for freeform generation, surface correction, and finishing as well as suitable auxiliary polishing methods. The successful application of either processing chain is demonstrated.

  7. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  8. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  9. Atmospheric pressure cold plasma as an antifungal therapy

    SciTech Connect

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-10

    A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  10. Atmospheric pressure cold plasma as an antifungal therapy

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Sun, Yi; Wu, Haiyan; Zhu, Weidong; Lopez, Jose L.; Liu, Wei; Zhang, Jue; Li, Ruoyu; Fang, Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  11. [Pathogen inactivation in labile blood products: transfusion safety and economic impact].

    PubMed

    Cazenave, Jean-Pierre

    2006-01-01

    The safety of labile blood products (red blood cell concentrates, platelet concentrates and plasma) is currently ensured by medical and biological donor selection measures. Nonetheless, in addition to the residual risk of bacterial injection of platelet concentrates and parasitic infection of red cell concentrates, there is the emerging danger associated with new viruses. Pathogen inactivation based on chemical or photochemical genomic modifications is a broad-spectrum approach. These techniques are already used to inactivate plasma, and are being developed or application to platelet and erythrocyte concentrates. Universal inactivation of all labile blood products should be possible in a few years' time, but clinical and hemovigilance studies must first show that the biological properties and therapeutic efficacy of these products are not markedly affected, and that the methods used do not lead to long-term toxicity.

  12. The impact of experimental design on assessing mechanism-based inactivation of CYP2D6 by MDMA (Ecstasy).

    PubMed

    Van, Linh M; Heydari, Amir; Yang, Jiansong; Hargreaves, Judith; Rowland-Yeo, Karen; Lennard, Martin S; Tucker, Geoffrey T; Rostami-Hodjegan, Amin

    2006-11-01

    MDMA (3-4-methylenedioxymethamphetamine, commonly known as Ecstasy) is a potent mechanism-based inhibitor (MBI) of cytochrome P450 2D6 (CYP2D6), causing quasi-irreversible inhibition of the enzyme in vitro. An evaluation of the in vivo implications of this phenomenon depends on the accuracy of the estimates of the parameters that define the inhibition in vitro, namely k(inact) (the maximal inhibition rate) and KI (the inactivation constant). These values are determined in two steps, pre-incubation of the enzyme with the inhibitor (enzyme inactivation), followed by dilution and further incubation to measure residual enzyme activity with a probe substrate. The aim of this study was to assess the impact of different dilutions and probe substrate concentrations on the estimates of k(inact) and KI using recombinantly expressed CYP2D6. Enzyme activity was measured by the conversion of dextromethorphan (DEX) to dextrorphan (DOR). Dilution factors of 1.25, 2, 5, 10, 25 and 50 (DEX at 30 microM) gave mean (+/-SE) values of k(inact) (min-1) of 0.20+/-0.06, 0.21+/-0.05, 0.31+/-0.06, 0.37+/-0.11, 0.51+/-0.10 and 0.58+/-0.08, respectively, and KI (microM) values (after correction for non-specific microsomal binding) of 2.22+/-1.90, 2.80+/-1.34, 5.78+/-2.07, 6.36+/-2.93, 3.99+/-1.57 and 4.86+/-1.37, respectively. Accordingly, high (e.g. 50 fold) and low (e.g. 1.25 fold) dilutions were associated with statistically significant differences in kinetic values (p <0.05). Varying DEX concentration (10-100 microM) was not associated with significant changes in k(inact) and KI values when a five-fold dilution was used (with the exception of a lower KI at 10 microM DEX). High dilution was also shown to reduce non-specific microsomal binding of MDMA. The changes in the two kinetic parameters were dependent on the experimental procedure and shown to be unlikely to have a material influence on the maximum inhibition of CYP2D6 expected in vivo after typical recreational doses of MDMA (50

  13. Initial experimental test of a helicon plasma based mass filter

    SciTech Connect

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.

  14. Initial experimental test of a helicon plasma based mass filter

    SciTech Connect

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.

  15. Initial experimental test of a helicon plasma based mass filter

    DOE PAGES

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less

  16. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  17. Isoniazid mediates the CYP2B6*6 genotype-dependent interaction between efavirenz and antituberculosis drug therapy through mechanism-based inactivation of CYP2A6.

    PubMed

    Court, Michael H; Almutairi, Fawziah E; Greenblatt, David J; Hazarika, Suwagmani; Sheng, Hongyan; Klein, Kathrin; Zanger, Ulrich M; Bourgea, Joanne; Patten, Christopher J; Kwara, Awewura

    2014-07-01

    Efavirenz is commonly used to treat patients coinfected with human immunodeficiency virus and tuberculosis. Previous clinical studies have observed paradoxically elevated efavirenz plasma concentrations in patients with the CYP2B6*6/*6 genotype (but not the CYP2B6*1/*1 genotype) during coadministration with the commonly used four-drug antituberculosis therapy. This study sought to elucidate the mechanism underlying this genotype-dependent drug-drug interaction. In vitro studies were conducted to determine whether one or more of the antituberculosis drugs (rifampin, isoniazid, pyrazinamide, or ethambutol) potently inhibit efavirenz 8-hydroxylation by CYP2B6 or efavirenz 7-hydroxylation by CYP2A6, the main mechanisms of efavirenz clearance. Time- and concentration-dependent kinetics of inhibition by the antituberculosis drugs were determined using genotyped human liver microsomes (HLMs) and recombinant CYP2A6, CYP2B6.1, and CYP2B6.6 enzymes. Although none of the antituberculosis drugs evaluated at up to 10 times clinical plasma concentrations were found to inhibit efavirenz 8-hydroxylation by HLMs, both rifampin (apparent inhibition constant [Ki] = 368 μM) and pyrazinamide (Ki = 637 μM) showed relatively weak inhibition of efavirenz 7-hydroxylation. Importantly, isoniazid demonstrated potent time-dependent inhibition of efavirenz 7-hydroxylation in both HLMs (inhibitor concentration required for half-maximal inactivation [KI] = 30 μM; maximal rate constant of inactivation [kinact] = 0.023 min(-1)) and recombinant CYP2A6 (KI = 15 μM; kinact = 0.024 min(-1)) and also formed a metabolite intermediate complex consistent with mechanism-based inhibition. Selective inhibition of the CYP2B6.6 allozyme could not be demonstrated for any of the antituberculosis drugs using either recombinant enzymes or CYP2B6*6 genotype HLMs. In conclusion, the results of this study identify isoniazid as the most likely perpetrator of this clinically important drug-drug interaction through

  18. Isoniazid Mediates the CYP2B6*6 Genotype-Dependent Interaction between Efavirenz and Antituberculosis Drug Therapy through Mechanism-Based Inactivation of CYP2A6

    PubMed Central

    Almutairi, Fawziah E.; Greenblatt, David J.; Hazarika, Suwagmani; Sheng, Hongyan; Klein, Kathrin; Zanger, Ulrich M.; Bourgea, Joanne; Patten, Christopher J.; Kwara, Awewura

    2014-01-01

    Efavirenz is commonly used to treat patients coinfected with human immunodeficiency virus and tuberculosis. Previous clinical studies have observed paradoxically elevated efavirenz plasma concentrations in patients with the CYP2B6*6/*6 genotype (but not the CYP2B6*1/*1 genotype) during coadministration with the commonly used four-drug antituberculosis therapy. This study sought to elucidate the mechanism underlying this genotype-dependent drug-drug interaction. In vitro studies were conducted to determine whether one or more of the antituberculosis drugs (rifampin, isoniazid, pyrazinamide, or ethambutol) potently inhibit efavirenz 8-hydroxylation by CYP2B6 or efavirenz 7-hydroxylation by CYP2A6, the main mechanisms of efavirenz clearance. Time- and concentration-dependent kinetics of inhibition by the antituberculosis drugs were determined using genotyped human liver microsomes (HLMs) and recombinant CYP2A6, CYP2B6.1, and CYP2B6.6 enzymes. Although none of the antituberculosis drugs evaluated at up to 10 times clinical plasma concentrations were found to inhibit efavirenz 8-hydroxylation by HLMs, both rifampin (apparent inhibition constant [Ki] = 368 μM) and pyrazinamide (Ki = 637 μM) showed relatively weak inhibition of efavirenz 7-hydroxylation. Importantly, isoniazid demonstrated potent time-dependent inhibition of efavirenz 7-hydroxylation in both HLMs (inhibitor concentration required for half-maximal inactivation [KI] = 30 μM; maximal rate constant of inactivation [kinact] = 0.023 min−1) and recombinant CYP2A6 (KI = 15 μM; kinact = 0.024 min−1) and also formed a metabolite intermediate complex consistent with mechanism-based inhibition. Selective inhibition of the CYP2B6.6 allozyme could not be demonstrated for any of the antituberculosis drugs using either recombinant enzymes or CYP2B6*6 genotype HLMs. In conclusion, the results of this study identify isoniazid as the most likely perpetrator of this clinically important drug-drug interaction through

  19. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  20. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  1. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  2. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  3. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  4. A fate model of pathogenic viruses in a composting toilet based on coliphage inactivation.

    PubMed

    Kazama, Shinobu; Tameike, Narue; Nakagawa, Naoko; Otaki, Masahiro

    2011-01-01

    A composting toilet using sawdust as a matrix has the potential to trap pathogens that might occasionally be contained in human feces. Therefore, care should be taken when handling the sawdust. It should also be noted that pathogenic viruses tend to have stronger tolerance than pathogenic bacteria. The fates of several species of coliphages, T4, lambda, Qbeta and MS2, in sawdust were investigated as a viral model. The fates of coliphages were significantly different among them, and they changed in response to temperature and the water content of the sawdust. As the results, T4 coliphage had the strongest tolerance and Qbeta had the weakest one in sawdust. It was estimated the days required to decrease virus to a safe level based on a risk assessment. According to the rates of Qbeta and T4, 15 days and 167 days were required respectively for a safe level of infection risk based on actually operated composting toilet condition. Thus, it was significantly different depending on the species and sawdust conditions.

  5. Comprehensive safety assessment of a human inactivated diploid enterovirus 71 vaccine based on a phase III clinical trial

    PubMed Central

    Zhang, Wei; Kong, Yujia; Jiang, Zhiwei; Li, Chanjuan; Wang, Ling; Xia, Jielai

    2016-01-01

    abstract Human enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease (HFMD). In a previous phase III trial in children, a human diploid cell-based inactivated EV71 vaccine elicited EV71 specific immune responses and protection against EV71 associated HFMD. This study aimed to assess the factors influencing the severity of adverse events observed in this previous trial. This was a randomized, double-blinded, placebo-controlled, phase III clinical trial of a human diploid vaccine carried out in 12,000 children in Guangxi Zhuang Autonomous Region, China (ClinicalTrials.gov: NCT01569581). Solicited events were recorded for 7 days and unsolicited events were reported for 28 days after each injection. Age trend analysis of adverse reaction was conducted in each treatment group. Multiple logistic regression models were built to identify factors influencing the severity of adverse reactions. Fewer solicited adverse reactions were observed in older participants within the first 7 days after vaccination (P < 0.0001), except local pain and pruritus. More severe adverse reactions were observed after the initial injection than after the booster injection. Serious cold or respiratory tract infections (RTI) were observed more often in children aged 6–36 months than in older children. Only the severity of local swelling was associated with body mass index. Children with throat discomfort before injection had a higher risk of serious cold or RTI. These results indicated that the human diploid cell-based vaccine achieved a satisfactory safety profile. PMID:26837471

  6. Color-based tracking of plasma dust particles

    SciTech Connect

    Villamayor, Michelle Marie S. Soriano, Maricor N.; Ramos, Henry J.; Kato, Shuichi; Wada, Motoi

    2014-02-15

    Color-based tracking to observe agglomeration of deposited particles inside a compact planar magnetron during plasma discharge was done by creating high dynamic range (HDR) images of photos captured by a Pentax K10D digital camera. Carbon erosion and redeposition was also monitored using the technique. The HDR images were subjected to a chromaticity-based constraint discoloration inside the plasma chamber indicating film formation or carbon redeposition. Results show that dust deposition occurs first near the evacuation pumps due to the pressure gradient and then accumulates at the positively charged walls of the chamber. This method can be applied to monitor dust formation during dusty plasma experiments without major modification of plasma devices, useful especially for large fusion reactors.

  7. Investigations of the plasma and structure based accelerators

    SciTech Connect

    Shvets, Gennady

    2012-08-30

    The objective of our research during the reported period was three-fold: (a) theoretical investigation of novel mechanisms of injection into laser wake field accelerators; (b) theoretical investigation of single-shot frequency domain diagnostics of relativistic plasma wakes, specifically in the context of spatio-temporal evolution of the plasma bubble;(c) experimental and theoretical investigation of laser-driven accelerating structure, specifically in the context of the Surface Wave Accelerator Based on SiC (SWABSIC).

  8. Classifier based on support vector machine for JET plasma configurations

    SciTech Connect

    Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.

    2008-10-15

    The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.

  9. An empirical model for the plasma environment along Titan's orbit based on Cassini plasma observations

    NASA Astrophysics Data System (ADS)

    Smith, H. Todd; Rymer, Abigail M.

    2014-07-01

    Prior to Cassini's arrival at Saturn, the nitrogen-rich dense atmosphere of Titan was considered as a significant, if not dominant, source of heavy ions in Saturn's magnetosphere. While nitrogen was detected in Saturn's magnetosphere based on Cassini observations, Enceladus instead of Titan appears to be the primary source. However, it is difficult to imagine that Titan's dense atmosphere is not a source of nitrogen. In this paper, we apply the Rymer et al.'s (2009) Titan plasma environment categorization model to the plasma environment along Titan's orbit when Titan is not present. We next categorize the Titan encounters that occurred since Rymer et al. (2009). We also produce an empirical model for applying the probabilistic occurrence of each plasma environment as a function of Saturn local time (SLT). Finally, we summarized the electron energy spectra in order to allow one to calculate more accurate electron-impact interaction rates for each plasma environment category. The combination of this full categorization versus SLT and empirical model for the electron spectrum is critical for understanding the magnetospheric plasma and will allow for more accurate modeling of the Titan plasma torus.

  10. Inhibition on human liver cytochrome P450 3A4 by constituents of fennel (Foeniculum vulgare): identification and characterization of a mechanism-based inactivator.

    PubMed

    Subehan; Zaidi, Syed F H; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2007-12-12

    Fennel, a seed of Foeniculum vulgare, is used as a culinary spice and traditional medicine. The methanolic extract of fennel showed a characteristic of mechanism-based inactivation on erythromycin N-demethylation mediated by human liver microsomal cytochrome P450 3A4 (CYP3A4). The present study was conducted to identify the fennel constituent having the inhibition. Thirteen compounds have been isolated from a methanol extract of fennel and tested for their inhibition on CYP3A4. Among them, 5-methoxypsoralen (5-MOP) showed the strongest inhibition with an IC50 value of 18.3 microM and a mixed type of inhibition. In addition, with the preincubation time of 20 min only 5-MOP showed preincubation time dependency; the IC50 value decreased from 18.3 microM with a preincubation time of 0 min to 4.6 microM with a preincubation time of 20 min. Further investigation on 5-MOP showed the characteristics of time-dependent inhibition, requirement of NADPH, lack of protecting effect of nucleophiles, and recovery of CYP3A4 activity by the competitive inhibitor. This result suggests that the inhibitory activity of CYP3A4 by 5-MOP was a mechanism-based inactivation. The kinetic parameter for mechanism-based inactivation was characterized by a KI value of 15.0 microM and a kinact value of 0.098 min(-1).

  11. Plasma production in carbon-based materials

    NASA Astrophysics Data System (ADS)

    Giuffreda, E.; Delle Side, D.; Nassisi, V.; Krása, J.

    2017-09-01

    High intensity lasers can induce in solid targets a charge separation resulting in a time-dependent induced polarization. In this work, the characterization of a plastic target subjected to a laser irradiation has been analysed. A focus was particularly devoted to the interaction of the target with the whole grounded chamber, manipulated through the change of the target-holder surface ratio. The targets are thick samples (thickness >1 mm) of polymers arranged in discs according to the metallic holder shape. A possible correlation between the target current and the main features of the produced plasma was analyzed, in order to acquire a deeper knowledge on laser-matter interactions with the laser pulse on the nanosecond scale. Collected signals were analyzed to reconstruct the time evolution of key observables as well as the charge space distribution in the chamber. The experimental setting allowing the target current observation and the measurement procedure is discussed.

  12. Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer.

    PubMed

    Winter, Sandra; Tortik, Nicole; Kubin, Andreas; Krammer, Barbara; Plaetzer, Kristjan

    2013-10-01

    Photodynamic inactivation (PDI), the light-induced and photosensitizer-mediated overproduction of reactive oxygen species in microorganisms, represents a convincing approach to treat infections with (multi-resistant) pathogens. Due to its favourable photoactive properties combined with excellent biocompatibility, curcumin derived from the roots of turmeric (Curcuma longa) has been identified as an advantageous photosensitizer for PDI. To overcome the poor water solubility and the rapid decay of the natural substance at physiological pH, we examined the applicability of polyvinylpyrrolidone curcumin (PVP-C) in an acidified aqueous solution (solubility of PVP-C up to 2.7 mM) for photoinactivation of Gram(+) and Gram(-) bacteria. Five micromolar PVP-C incubated for 5 minutes and illuminated using a blue light LED array (435 ± 10 nm, 33.8 J cm(-2)) resulted in a >6 log10 reduction of the number of viable Staphylococcus aureus. At this concentration, longer incubation periods result in a lower phototoxicity, most likely due to degeneration of curcumin. Upon an increase of the PVP-C concentration to 50 μM (incubation for 15 or 25 min) a complete eradication of Staphylococcus aureus can be achieved. As expected for a non-cationic photosensitizer, cell wall permeabilization with CaCl2 prior to addition of 50 μM PVP-C for 15 min is necessary to induce a drop in the count of the Gram(-) Escherichia coli for more than 3 log10. As both constituents of the formulation, curcumin (E number E100) and polyvinylpyrrolidone (E1201), have been approved as food additives, a PDI based on PCP-C might allow for a very sparing clinical application (e.g. for disinfection of wounds) or even for employment in aseptic production of foodstuffs.

  13. Plasmonic Enhancement of Selective Photonic Virus Inactivation.

    PubMed

    Nazari, Mina; Xi, Min; Lerch, Sarah; Alizadeh, M H; Ettinger, Chelsea; Akiyama, Hisashi; Gillespie, Christopher; Gummuluru, Suryaram; Erramilli, Shyamsunder; Reinhard, Björn M

    2017-09-20

    Femtosecond (fs) pulsed laser irradiation techniques have attracted interest as a photonic approach for the selective inactivation of virus contaminations in biological samples. Conventional pulsed laser approaches require, however, relatively long irradiation times to achieve a significant inactivation of virus. In this study, we investigate the enhancement of the photonic inactivation of Murine Leukemia Virus (MLV) via 805 nm femtosecond pulses through gold nanorods whose localized surface plasmon resonance overlaps with the excitation laser. We report a plasmonically enhanced virus inactivation, with greater than 3.7-log reduction measured by virus infectivity assays. Reliable virus inactivation was obtained for 10 s laser exposure with incident laser powers ≥0.3 W. Importantly, the fs-pulse induced inactivation was selective to the virus and did not induce any measurable damage to co-incubated antibodies. The loss in viral infection was associated with reduced viral fusion, linking the loss in infectivity with a perturbation of the viral envelope. Based on the observations that physical contact between nanorods and virus particles was not required for viral inactivation and that reactive oxygen species (ROS) did not participate in the detected viral inactivation, a model of virus inactivation based on plasmon enhanced shockwave generation is proposed.

  14. Time resolved spectroscopic studies of methylene blue and phenothiazine derivatives used for bacteria inactivation

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Cesario, Thomas C.; Rentzepis, Peter M.

    2010-09-01

    Phenothiazine dyes are known to inactivate bacteria in whole blood and plasma caused by the singlet oxygen photo generated by these dyes. Methylene blue (MB), 1,9-dimethyl-methylene blue (DMB) and toluidine blue (TB) transient singlet and triplet states spectra and their formation and decay kinetics have been measured by time resolved spectroscopy. The triplet state formation and singlet oxygen quantum yields in water are found to be approximately the same in MB and DMB. Therefore, based on our data we propose that although singlet oxygen is highly important as previously stated, the rate of inactivation is determined by the binding of the dye to the bacteria.

  15. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  16. Plasma response based RMP coil geometry optimization for an ITER plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Lina; Liu, Yueqiang; Liu, Yue; Yang, Xu

    2016-11-01

    Based on an ITER 15MA Q  =  10 inductive scenario, a systematic numerical investigation is carried out in order to understand the effect of varying the geometry of the magnetic coils, used for controlling the edge localized modes in tokamaks, on the plasma response to the resonant magnetic perturbation (RMP) fields produced by these coils. Toroidal computations show that both of the plasma response based figures of merit—one is the pitch resonant radial field component near the plasma edge and the other is the plasma displacement near the X-point of the separatrix—consistently yield the same prediction for the optimal coil geometry. With a couple of exceptions, the presently designed poloidal location of the ITER upper and lower rows of RMP coils is close to the optimum, according to the plasma response based criteria. This holds for different coil current configurations with n  =  2, 3, 4, as well as different coil phasing between the upper and lower rows. The coils poloidal width from the present design, on the other hand, is sub-optimal for the upper and lower rows. Modelling also finds that the plasma response amplitude sharply decreases by moving the middle row RMP coils of ITER from the designed radial location (just inside the inner vacuum vessel) outwards (outside the outer vacuum vessel). The decay rate is sensitively affected by the middle row coils’ poloidal coverage for low-n (n  =  1, 2) RMP fields, but not for high-n (n  =  4) fields.

  17. Inactivation of Caliciviruses

    PubMed Central

    Nims, Raymond; Plavsic, Mark

    2013-01-01

    The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses) display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus) are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses. PMID:24276023

  18. Plasma undulator based on laser excitation of wakefields in a plasma channel.

    PubMed

    Rykovanov, S G; Schroeder, C B; Esarey, E; Geddes, C G R; Leemans, W P

    2015-04-10

    An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma channel. Generation of the undulator fields is achieved by inducing centroid oscillations of the laser pulse in the channel. The period of such an undulator is proportional to the Rayleigh length of the laser pulse and can be submillimeter, while preserving high undulator strength. The electron trajectories in the undulator are examined, expressions for the undulator strength are presented, and the spontaneous radiation is calculated. Multimode and multicolor laser pulses are considered for greater tunability of the undulator period and strength.

  19. Alternative modeling methods for plasma-based Rf ion sources

    SciTech Connect

    Veitzer, Seth A. Kundrapu, Madhusudhan Stoltz, Peter H. Beckwith, Kristian R. C.

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  20. Alternative modeling methods for plasma-based Rf ion sources

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  1. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  2. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  3. Study on resistive wall mode based on plasma response model

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang

    2006-07-01

    A uniform framework, based on the frequency dependent plasma response model (PRM), is proposed to study the physics and control of the resistive wall mode (RWM). The PRM is constructed, respectively, from the Fitzpatrick-Aydemir model, from a cylindrical theory with multiple RWM, and, finally, from toroidal calculations. Based on the PRM, several important aspects of the RWM physics are studied, including the interplay between active feedback and plasma rotation to stabilize the mode, the efficiency of external versus internal active coils for the mode control and the resonant field amplification effect due to a rotationally damped RWM.

  4. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures.

    PubMed

    Sudhaus, Nadine; Pina-Pérez, Maria Consuelo; Martínez, Antonio; Klein, Günter

    2012-05-01

    The purpose of this study was to assess the effect of a commercial peracetic acid-based disinfectant against spores of Bacillus cereus, to identify the most influential factor for the final number of microorganisms after different disinfection procedures, and to evaluate the nature of the inactivation kinetics. The spores of four different strains of B. cereus (DSM 318, 4312, 4313, and 4384) were treated with five different disinfectant concentrations (0.25%, 0.5%, 1.0%, 1.5%, and 2.0% [w/v]) at three different temperatures (10°C, 15°C, and 20°C) with or without protein load. A higher temperature and PES 15/23 concentration resulted in a higher inactivation. Inactivation of B. cereus strain 4312 was around 2 log₁₀ cycles at 10°C and around 7 log₁₀ at 20°C (conc=1% [w/v] PAA; t=60 min; without protein). The protein load at higher concentrations did not significantly reduce the efficacy of the disinfectant (p>0.05). This article indicates the applicability of the Weibull model to fit the B. cereus disinfectant survival curves. A Monte Carlo simulation was used to carry out a sensitivity analysis, which revealed the most influential factors affecting the final number of microorganisms after the disinfection process.

  5. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate: adenosylcobalamin destruction and formation of a nucleotide-based radical.

    PubMed

    Lohman, Gregory J S; Gerfen, Gary J; Stubbe, Joanne

    2010-02-23

    Ribonucleotide reductase (RNR, 76 kDa) from Lactobacillus leichmannii is a class II RNR that requires adenosylcobalamin (AdoCbl) as a cofactor. It catalyzes the conversion of nucleoside triphosphates to deoxynucleotides and is 100% inactivated by 1 equiv of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate (F(2)CTP) in <2 min. Sephadex G-50 chromatography of the inactivation reaction mixture for 2 min revealed that 0.47 equiv of a sugar moiety is covalently bound to RNR and 0.25 equiv of a cobalt(III) corrin is tightly associated, likely through a covalent interaction with C(419) (Co-S) in the active site of RNR [Lohman, G. J. S., and Stubbe, J. (2010) Biochemistry 49, DOI: 10.1021/bi902132u ]. After 1 h, a similar experiment revealed 0.45 equiv of the Co-S adduct associated with the protein. Thus, at least two pathways are associated with RNR inactivation: one associated with alkylation by the sugar of F(2)CTP and the second with AdoCbl destruction. To determine the fate of [1'-(3)H]F(2)CTP in the latter pathway, the reaction mixture at 2 min was reduced with NaBH(4) (NaB(2)H(4)) and the protein separated from the small molecules using a centrifugation device. The small molecules were dephosphorylated and analyzed by HPLC to reveal 0.25 equiv of a stereoisomer of cytidine, characterized by mass spectrometry and NMR spectroscopy, indicating the trapped nucleotide had lost both of its fluorides and gained an oxygen. High-field ENDOR studies with [1'-(2)H]F(2)CTP from the reaction quenched at 30 s revealed a radical that is nucleotide-based. The relationship between this radical and the trapped cytidine analogue provides insight into the nonalkylative pathway for RNR inactivation relative to the alkylative pathway.

  6. Polyomavirus inactivation - a review.

    PubMed

    Nims, Raymond W; Plavsic, Mark

    2013-03-01

    Polyomavirus inactivation has been studied since the 1950s when it became apparent that certain polio vaccines were contaminated with SV40. Relatively high temperatures (≥70 °C) are required to effect thermal inactivation of the polyomaviruses. The chemical inactivants that are effective (β-propiolactone, ethanol, sodium hydroxide, and formaldehyde) are those that have displayed efficacy for other small, non-enveloped viruses, such as the circoviruses. Low pH inactivation can be effective, especially at pH at or below 3 and at higher temperatures. Polyomaviruses are more resistant to UV-C irradiation than are other small non-enveloped viruses such as the parvoviruses and caliciviruses. The efficacy of photodynamic inactivation of polyomaviruses is very much dye-dependent, with toluidine blue, acridine orange, and methylene blue dyes being effective photosensitizers. Ionizing radiation can be effective, depending on the conditions employed and the inactivation matrix. Inactivation of the oncogenic properties of the polyomaviruses may require higher doses of inactivant than those required to inactivate infectivity. While the polyomaviruses are considered to be highly resistant to inactivation, the degree of resistance is dependent upon the specific approach under consideration. For certain approaches, such as UV-C and gamma-irradiation, the polyomaviruses appear to be more resistant than other small non-enveloped viruses. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  7. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  8. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    PubMed

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water.

  9. Inactivation of human T-lymphotropic virus type III/lymphadenopathy-associated virus by formaldehyde-based reagents

    SciTech Connect

    Martin, L.S.; Loskoski, S.L.; McDougal, J.S.

    1987-04-01

    Neutral buffered Formalin, a fixative used in most pathology laboratories, was found to inactivate human T-lymphotropic virus type III/lymphadenopathy-associated virus. Preparations containing this virus with infectivity titers of > 10/sup 5/ were treated with 1% or greater neutral buffered Formalin; after treatment, virus was undetectable (titer, <10/sup 1/). In addition, when infected phytohemagglutinin-stimulated lymphocytes were treated with paraformaldehyde, transmission of the virus to other such lymphocytes was eliminated. 4 references, 2 tables.

  10. EUV induced low temperature SF6-based plasma

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.

    2016-03-01

    In this work spectral investigations of low temperature F-rich photoionized plasmas were performed. The photoionized plasmas were created by irradiation of SF6 gas with intense EUV (extreme ultraviolet) radiation pulses. Two laser plasma EUV sources of different parameters used in the experiments were based on 0.8 J /4ns and 10 J/ 10 ns Nd:YAG lasers respectively. Both sources operated at 10 Hz repetition rate. The EUV radiation was focused using a dedicated reflective collector onto the gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of the SF6 gas resulted in dissociative ionization of the molecules, leading to creation of SFn+ ions and fluorine atoms. Further photo- or electron impact ionization and excitation processes allow for formation of photoionized plasmas emitting radiation in the wide spectral range. Emission spectra were measured in the EUV and optical ranges. The EUV spectra contained multiple spectral lines, originating from F II, F III and S II ions. The UV/VIS spectra were composed of spectral lines corresponding to radiative transitions in F II, F I and S II species. A computer simulation of the F II spectrum was performed using a collisional-radiative PrismSPECT code. Parameters of the photoionized plasmas were estimated by fitting the spectrum obtained from the simulations to the experimental one. Apart from that, the electron temperature was estimated employing Boltzmann plots based on the UV/VIS spectrum.

  11. International workshop on plasma-based neutron sources

    SciTech Connect

    1996-12-09

    The workshop was devoted to discussion of the status and future directions of work on plasma-based neutron sources. The workshop presentations demonstrated significant progress in development of the concepts of these sources and in broadening the required data base. Two main groups of neutron source designs were presented at the workshop: tokamak-based and mirror-based. Designs of the tokamak- based devices use the extensive data base generated during decades of tokamak research. Their plasma physics performance can be predicted with a high degree of confidence. On the other hand, they are relatively large and expensive, and best suited for Volumetric Neutron Sources (VNSes) or other large scale test facilities. They also have the advantage of being on the direct path to a power- producing reactor as presently conceived, although alternatives to the tokamak are presently receiving serious consideration for a reactor. The data base for the mirror-based group of plasma sources is less developed, but they are generally more flexible and, with appropriate selection of parameters, have the potential to be developed as compact Accelerated Test Facilities (ATFs) as well as full-scale VNSes. Also discussed at the workshop were some newly proposed but potentially promising concepts, like those based on the flow-through pinch and electrostatic ion-beam sources.

  12. Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: structural bases of inactivation of the enzyme.

    PubMed

    Morozova, Elena A; Revtovich, Svetlana V; Anufrieva, Natalya V; Kulikova, Vitalia V; Nikulin, Alexey D; Demidkina, Tatyana V

    2014-11-01

    The interaction of Citrobacter freundii methionine γ-lyase (MGL) and the mutant form in which Cys115 is replaced by Ala (MGL C115A) with the nonprotein amino acid (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl]propanoic acid (alliin) was investigated. It was found that MGL catalyzes the β-elimination reaction of alliin to form 2-propenethiosulfinate (allicin), pyruvate and ammonia. The β-elimination reaction of alliin is followed by the inactivation and modification of SH groups of the wild-type and mutant enzymes. Three-dimensional structures of inactivated wild-type MGL (iMGL wild type) and a C115A mutant form (iMGL C115A) were determined at 1.85 and 1.45 Å resolution and allowed the identification of the SH groups that were oxidized by allicin. On this basis, the mechanism of the inactivation of MGL by alliin, a new suicide substrate of MGL, is proposed.

  13. The Plasma-Based Instruction in Ethiopia: Utopia or Dystopia?

    ERIC Educational Resources Information Center

    Abera, Berhanu

    2013-01-01

    This article highlights the utopian and dystopian viewpoints held on the plasma-based instruction in Ethiopian by looking into the existing literature works and by analyzing attitudes of implementing bodies and implementers towards the program. The article identified that though implementing bodies were enthusiastic in developing and expanding the…

  14. The Plasma-Based Instruction in Ethiopia: Utopia or Dystopia?

    ERIC Educational Resources Information Center

    Abera, Berhanu

    2013-01-01

    This article highlights the utopian and dystopian viewpoints held on the plasma-based instruction in Ethiopian by looking into the existing literature works and by analyzing attitudes of implementing bodies and implementers towards the program. The article identified that though implementing bodies were enthusiastic in developing and expanding the…

  15. Effects of plant-based diets on plasma lipids.

    PubMed

    Ferdowsian, Hope R; Barnard, Neal D

    2009-10-01

    Dyslipidemia is a primary risk factor for cardiovascular disease, peripheral vascular disease, and stroke. Current guidelines recommend diet as first-line therapy for patients with elevated plasma cholesterol concentrations. However, what constitutes an optimal dietary regimen remains a matter of controversy. Large prospective trials have demonstrated that populations following plant-based diets, particularly vegetarian and vegan diets, are at lower risk for ischemic heart disease mortality. The investigators therefore reviewed the published scientific research to determine the effectiveness of plant-based diets in modifying plasma lipid concentrations. Twenty-seven randomized controlled and observational trials were included. Of the 4 types of plant-based diets considered, interventions testing a combination diet (a vegetarian or vegan diet combined with nuts, soy, and/or fiber) demonstrated the greatest effects (up to 35% plasma low-density lipoprotein cholesterol reduction), followed by vegan and ovolactovegetarian diets. Interventions allowing small amounts of lean meat demonstrated less dramatic reductions in total cholesterol and low-density lipoprotein levels. In conclusion, plant-based dietary interventions are effective in lowering plasma cholesterol concentrations.

  16. Atmospheric cold plasma inactivation of Escherichia coli 0157:H7 and aerobic microorganisms in cold-stored romaine lettuce packaged in a commerical polyethylene terephthalate container

    USDA-ARS?s Scientific Manuscript database

    Leafy greens continue to be a significant vector for foodborne pathogens, including Escherichia coli O157:H7. Dielectric barrier discharge atmospheric cold plasma (ACP) treatment is a promising method for microbial decontamination of produce. An important aspect of this technology is the potential f...

  17. Ex vivo production of autologous whole inactivated HIV-1 for clinical use in therapeutic vaccines.

    PubMed

    Gil, Cristina; Climent, Núria; García, Felipe; Hurtado, Carmen; Nieto-Márquez, Sara; León, Agathe; García, M Teresa; Rovira, Cristina; Miralles, Laia; Dalmau, Judith; Pumarola, Tomás; Almela, Manel; Martinez-Picado, Javier; Lifson, Jeffrey D; Zamora, Laura; Miró, José M; Brander, Christian; Clotet, Bonaventura; Gallart, Teresa; Gatell, José M

    2011-08-05

    This study provides a detailed description and characterization of the preparation of individualized lots of autologous heat inactivated HIV-1 virions used as immunogen in a clinical trial designed to test an autologous dendritic-cell-based therapeutic HIV-1 vaccine (Clinical Trial DCV-2, NCT00402142). For each participant, ex vivo isolation and expansion of primary virus were performed by co-culturing CD4-enriched PBMCs from the HIV-1-infected patient with PBMC from HIV-seronegative unrelated healthy volunteer donors. The viral supernatants were heat-inactivated and concentrated to obtain 1 mL of autologous immunogen, which was used to load autologous dendritic cells of each patient. High sequence homology was found between the inactivated virus immunogen and the HIV-1 circulating in plasma at the time of HIV-1 isolation. Immunogens contained up to 10⁹ HIV-1 RNA copies/mL showed considerably reduced infectivity after heat inactivation (median of 5.6 log₁₀), and were free of specified adventitious agents. The production of individualized lots of immunogen based on autologous inactivated HIV-1 virus fulfilling clinical-grade good manufacturing practice proved to be feasible, consistent with predetermined specifications, and safe for use in a clinical trial designed to test autologous dendritic cell-based therapeutic HIV-1 vaccine.

  18. Silicon tetrachloride plasma induced grafting for starch-based composites

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui C.

    Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma

  19. Modern plasma fractionation.

    PubMed

    Burnouf, Thierry

    2007-04-01

    Protein products fractionated from human plasma are an essential class of therapeutics used, often as the only available option, in the prevention, management, and treatment of life-threatening conditions resulting from trauma, congenital deficiencies, immunologic disorders, or infections. Modern plasma product production technology remains largely based on the ethanol fractionation process, but much has evolved in the last few years to improve product purity, to enhance the recovery of immunoglobulin G, and to isolate new plasma proteins, such as alpha1-protease inhibitor, von Willebrand factor, and protein C. Because of the human origin of the starting material and the pooling of 10,000 to 50,000 donations required for industrial processing, the major risk associated to plasma products is the transmission of blood-borne infectious agents. A complete set of measures--and, most particularly, the use of dedicated viral inactivation and removal treatments--has been implemented throughout the production chain of fractionated plasma products over the last 20 years to ensure optimal safety, in particular, and not exclusively, against HIV, hepatitis B virus, and hepatitis C virus. In this review, we summarize the practices of the modern plasma fractionation industry from the collection of the raw plasma material to the industrial manufacture of fractionated products. We describe the quality requirements of plasma for fractionation and the various treatments applied for the inactivation and removal of blood-borne infectious agents and provide examples of methods used for the purification of the various classes of plasma protein therapies. We also highlight aspects of the good manufacturing practices and the regulatory environment that govern the whole chain of production. In a regulated and professional environment, fractionated plasma products manufactured by modern processes are certainly among the lowest-risk therapeutic biological products in use today.

  20. On Mechanism of Plasma-shock-based Flow Control

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Li, Y. H.; Liang, H.; Jia, M.; Song, H. M.

    2011-09-01

    The mechanism of plasma-shock-based flow control was studied. Due to the high reduced electric field strength and peak power in the nanosecond discharge, a large quantity of high-energy electrons are produced. The quenching of the electronically excited states of N2, the dissociation of O2 and N2, and the recombination of molecular ions with electrons cause fast heating of local air near the electrode edge and fast air pressure rise, thus inducing shock waves. The effectiveness of using nanosecond discharge plasma aerodynamic actuation to improve flow separation control capability was validated at the freestream velocity of 150 m/s. Critical stall angle, lift and drag of NACA 0015 airfoil were measured with and without the nanosecond discharge plasma aerodynamic actuation in the wind tunnel experiments.

  1. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  2. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  3. Mechanism-Based Inactivation of CYP2B1 and Its F-Helix Mutant by Two tert-Butyl Acetylenic Compounds: Covalent Modification of Prosthetic Heme Versus Apoprotein

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Noon, Kathleen R.

    2009-01-01

    The mechanism-based inactivation of cytochrome CYP2B1 [wild type (WT)] and its Thr205 to Ala mutant (T205A) by tert-butylphenylacetylene (BPA) and tert-butyl 1-methyl-2-propynyl ether (BMP) in the reconstituted system was investigated. The inactivation of WT by BPA exhibited a kinact/KI value of 1343 min−1mM−1 and a partition ratio of 1. The inactivation of WT by BMP exhibited a kinact/KI value of 33 min−1mM−1 and a partition ratio of 10. Liquid chromatography/tandem mass spectrometry analysis (LC/MS/MS) of the WT revealed 1) inactivation by BPA resulted in the formation of a protein adduct with a mass increase equivalent to the mass of BPA plus one oxygen atom, and 2) inactivation by BMP resulted in the formation of multiple heme adducts that all exhibited a mass increase equivalent to BMP plus one oxygen atom. LC/MS/MS analysis indicated the formation of glutathione (GSH) conjugates by the reaction of GSH with the ethynyl moiety of BMP or BPA with the oxygen being added to the internal or terminal carbon. For the inactivation of T205A by BPA and BMP, the kinact/KI values were suppressed by 100- and 4-fold, respectively, and the partition ratios were increased 9- and 3.5-fold, respectively. Only one major heme adduct was detected following the inactivation of the T205A by BMP. These results show that the Thr205 in the F-helix plays an important role in the efficiency of the mechanism-based inactivation of CYP2B1 by BPA and BMP. Homology modeling and substrate docking studies were presented to facilitate the interpretation of the experimental results. PMID:19700628

  4. Photocatalytic-based inactivation of E. coli by UV 282 nm XeBr Excilamp.

    PubMed

    Matafonova, Galina G; Batoev, Valeriy B; Linden, Karl G

    2013-01-01

    The impact of suspended TiO2 particles on the efficiency of UV inactivation of E. coli by XeBr excilamp (282 nm) was assessed using direct and integrating sphere spectroscopy for absorbance measurements in the calculations of UV doses. Complete disinfection (no quantifiable E. coli colonies) was observed at 30 (0.25 g/L of TiO2) and 40 mJ/cm(2) (0.1 g/L of TiO2), whereas UV alone and the treatment in the presence of 0.5 g/L of TiO2 produced tailing in the dose-response curves. The optimum concentration of TiO2 was found to be 0.25 g/L, which correlates with the highest •OH exposure (CT value) and steady state concentration of •OH. This study demonstrates the importance of proper calculation of UV dose and inclusion of •OH exposure effects when reporting results from disinfection studies using technologies with multiple modes of inactivation such as with UV/TiO2.

  5. Inactivation of invasive marine species in the process of conveying ballast water using OH based on a strong ionization discharge.

    PubMed

    Bai, Mindong; Zheng, Qilin; Tian, Yiping; Zhang, Zhitao; Chen, Cao; Cheng, Chao; Meng, Xiangying

    2016-06-01

    In this paper, invasive marine species in medium-salinity ballast water were inactivated using OH generated from a strong ionization discharge. The OH is determined by the concentration of oxygen active species combined with the effects of water jet cavitation. The results indicated that the OH concentration reached 7.62 μM, within 1 s, which is faster and higher than in conventional AOP methods. In a pilot-scale OH ballast water system with a capacity of 10 m(3)/h, algae were inactivated when CT value was 0.1 mg min/L with a contact time only 6 s. The viable and nonviable cells were determined using SYTOX Green nucleic acid stain and Flow cytometry. As a result, the OH treatment could be completed during the process of conveying the ballast water. In addition, the concentrations of relevant disinfection by-products (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, were less than that required by the World Health Organization's drinking water standards, which suggest that the discharged ballast water posed no risks to the oceanic environment. Nevertheless, for conventional ozonation and electrolysis methods, the ballast water should be treated only in the treated tanks during the ship's voyage and form higher level DBPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Lv, Guo-Hua; Wang, Xing-Quan; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed and used to treat enterococcus faecalis bacteria. The results show that the efficiency of the inactivation process by helium plasma is dependent on applied power and exposure time. After plasma treatments, the cell structure and morphology changes can be observed by scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  7. Inactivation of Bacillus atrophaeus by OH radicals

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  8. Inhibition of Bupropion Metabolism by Selegiline: Mechanism-Based Inactivation of Human CYP2B6 and Characterization of Glutathione and Peptide Adducts

    PubMed Central

    Sridar, Chitra; Kenaan, Cesar

    2012-01-01

    Selegiline, the R-enantiomer of deprenyl, is used in the treatment of Parkinson's disease. Bupropion, an antidepressant, often used to treat patients in conjunction with selegiline, is metabolized primarily by CYP2B6. The effect of selegiline on the enzymatic activity of human cytochrome CYP2B6 in a reconstituted system and its effect on the metabolism of bupropion were examined. Selegiline was found to be a mechanism-based inactivator of the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation (7-EFC) activity of CYP2B6 as well as bupropion metabolism. The inactivations were time-, concentration-, and NADPH-dependent and were characterized by KI values of 0.14 and 0.6 μM, kinact values of 0.022 and 0.029 min−1, and t1/2 values of 31.5 and 24 min, respectively. In standard inhibition assays, selegiline increased the Km of CYP2B6 for bupropion from 10 to 92 μM and decreased the kcat by ∼50%. The reduced carbon-monoxide difference spectrum revealed over a 50% loss in the cytochrome P450 spectrum in the inactivated sample, with no loss in heme, and there was ∼70% loss in enzyme activity. Trapping of the reactive metabolite using GSH led to the identification of a GSH-selegiline conjugate with a m/z 528 that could be explained by hydroxylation of selegiline followed by the addition of glutathione to the propargyl moiety after oxygenation to form the ketene intermediate. Liquid chromatography-tandem mass spectrometry analysis of the labeled protein following digestion with trypsin revealed the peptide 64DVFTVHLGPR73 as the peptide modified by the reactive metabolite of selegiline and the site of adduct formation is Asp64. PMID:22936314

  9. tert-Butylphenylacetylene Is a Potent Mechanism-Based Inactivator of Cytochrome P450 2B4: Inhibition of Cytochrome P450 Catalysis by Steric Hindrance

    PubMed Central

    Zhang, Haoming; Lin, Hsia-lien; Walker, Vyvyca J.; Hamdane, Djemel

    2009-01-01

    We have demonstrated that 4-(tert-butyl)-phenylacetylene (tBPA) is a potent mechanism-based inactivator for cytochrome P450 2B4 (P450 2B4) in the reconstituted system. It inactivates P450 2B4 in a NADPH- and time-dependent manner with a KI of 0.44 μM and kinact of 0.12 min−1. The partition ratio was approximately zero, indicating that inactivation occurs without the reactive intermediate leaving the active site. Liquid chromatography-mass spectrometry analyses revealed that tBPA forms a protein adduct with a 1:1 stoichiometry. Peptide mapping of the tBPA-modified protein provides evidence that tBPA is covalently bound to Thr302. This is consistent with results of molecular modeling that show the terminal carbon of the acetylenic group is only 3.65 Å away from Thr302. To characterize the effect of covalent modification of Thr302, tBPA-modified P450 2B4 was purified to homogeneity from the reconstituted system. The Soret band of tBPA-modified protein is red-shifted by 5 to 422 nm compared with unmodified protein. Benzphetamine binding to the modified P450 2B4 causes no spin shift, indicating that substrate binding and/or the heme environment has been altered by covalently bound tBPA. Cytochrome P450 reductase reduces the unmodified and tBPA-modified P450s at approximately the same rate. However, addition of benzphetamine stimulates the rate of reduction of unmodified P450 2B4 by ∼20-fold but only marginally stimulates reduction of the tBPA-modified protein. This large discrepancy in the stimulation of the first electron transfer by benzphetamine strongly suggests that the impairment of P450 catalysis is due to inhibition of benzphetamine binding to the tBPA-modified P450 2B4. PMID:19720728

  10. Inhibition of bupropion metabolism by selegiline: mechanism-based inactivation of human CYP2B6 and characterization of glutathione and peptide adducts.

    PubMed

    Sridar, Chitra; Kenaan, Cesar; Hollenberg, Paul F

    2012-12-01

    Selegiline, the R-enantiomer of deprenyl, is used in the treatment of Parkinson's disease. Bupropion, an antidepressant, often used to treat patients in conjunction with selegiline, is metabolized primarily by CYP2B6. The effect of selegiline on the enzymatic activity of human cytochrome CYP2B6 in a reconstituted system and its effect on the metabolism of bupropion were examined. Selegiline was found to be a mechanism-based inactivator of the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation (7-EFC) activity of CYP2B6 as well as bupropion metabolism. The inactivations were time-, concentration-, and NADPH-dependent and were characterized by K(I) values of 0.14 and 0.6 μM, k(inact) values of 0.022 and 0.029 min⁻¹, and t(½) values of 31.5 and 24 min, respectively. In standard inhibition assays, selegiline increased the K(m) of CYP2B6 for bupropion from 10 to 92 μM and decreased the k(cat) by ∼50%. The reduced carbon-monoxide difference spectrum revealed over a 50% loss in the cytochrome P450 spectrum in the inactivated sample, with no loss in heme, and there was ∼70% loss in enzyme activity. Trapping of the reactive metabolite using GSH led to the identification of a GSH-selegiline conjugate with a m/z 528 that could be explained by hydroxylation of selegiline followed by the addition of glutathione to the propargyl moiety after oxygenation to form the ketene intermediate. Liquid chromatography-tandem mass spectrometry analysis of the labeled protein following digestion with trypsin revealed the peptide ⁶⁴DVFTVHLGPR⁷³ as the peptide modified by the reactive metabolite of selegiline and the site of adduct formation is Asp64.

  11. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover.

    PubMed

    Rowland Yeo, K; Walsky, R L; Jamei, M; Rostami-Hodjegan, A; Tucker, G T

    2011-06-14

    Predicting the magnitude of time-dependent metabolic drug-drug (mDDIs) interactions involving cytochrome P-450 3A4 (CYP3A4) from in vitro data requires accurate knowledge of the inactivation parameters of the inhibitor (K(I), k(inact)) and of the turnover of the enzyme (k(deg)) in both the gut and the liver. We have predicted the magnitude of mDDIs observed in 29 in vivo studies involving six CYP3A4 probe substrates and five mechanism based inhibitors of CYP3A4 of variable potency (azithromycin, clarithromycin, diltiazem, erythromycin and verapamil). Inactivation parameters determined anew in a single laboratory under standardised conditions together with data from substrate and inhibitor files within the Simcyp Simulator (Version 9.3) were used to determine a value of the hepatic k(deg) (0.0193 or 0.0077h(-1)) most appropriate for the prediction of mDDIs involving time-dependent inhibition of CYP3A4. The higher value resulted in decreased bias (geometric mean fold error - 1.05 versus 1.30) and increased precision (root mean squared error - 1.29 versus 2.30) of predictions of mean ratios of AUC in the absence and presence of inhibitor. Depending on the k(deg) value used (0.0193 versus 0.0077h(-1)), predicted mean ratios of AUC were within 2-fold of the observed values for all (100%) and 27 (93%) of the 29 studies, respectively and within 1.5-fold for 24 (83%) and 17 (59%) of the 29 studies, respectively. Comprehensive PBPK models were applied for accurate assessment of the potential for mDDIs involving time-dependent inhibition of CYP3A4 using a hepatic k(deg) value of 0.0193h(-1) in conjunction with inactivation parameters determined by the conventional experimental approach.

  12. Method of plasma etching GA-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  13. XUV laser-plasma source based on solid Ar filament.

    PubMed

    Peth, Christian; Kalinin, Anton; Barkusky, Frank; Mann, Klaus; Toennies, J Peter; Rusin, Lev Yu

    2007-10-01

    We present a laser driven soft x-ray source based on a novel solid argon filament. The continuously flowing micron-sized filament (diameter approximately 56 microm, flow speed approximately 5 mms) was used as a laser target in order to generate a plasma source of high brightness in the "water window" (2.2-4.4 nm) spectral range. The emission properties of the source were characterized in detail with respect to crucial parameters such as positional and energy stability using an extreme ultraviolet (XUV) sensitive pinhole camera and an XUV spectrometer. The results are compared with an argon plasma based on a gas puff target operated under the same experimental conditions showing an increase of the brilliance by a factor of 84. By changing the capillary geometry from a constant diameter to a convergent shape the flow speed of the filament was significantly increased up to 250 mms, facilitating the operation at higher repetition rates.

  14. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Silberring, Jerzy

    2016-01-01

    Plasma-based ambient ionization mass spectrometry techniques are gaining growing interest due to their specific features, such as the need for little or no sample preparation, its high analysis speed, and the ambient experimental conditions. Samples can be analyzed in gas, liquid, or solid forms. These techniques allow for a wide range of applications, like warfare agent detection, chemical reaction control, mass spectrometry imaging, polymer identification, and food safety monitoring, as well as applications in biomedical science, e.g., drug and pharmaceutical analysis, medical diagnostics, biochemical analysis, etc. Until now, the main drawback of plasma-based techniques is their quantitative aspect, but a lot of efforts have been done to improve this obstacle.

  15. Laser amplifier based on Raman amplification in plasma (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vieux, Gregory; Cipiccia, Silvia; Lemos, Nuno R. C.; Ciocarlan, Cristian; Grant, Peter A.; Grant, David W.; Ersfeld, Bernhard; Hur, MinSup; Lepipas, Panagiotis; Manahan, Grace; Reboredo Gil, David; Subiel, Anna; Welsh, Gregor H.; Wiggins, S. Mark; Yoffe, Samuel R.; Farmer, John P.; Aniculaesei, Constantin; Brunetti, Enrico; Yang, Xue; Heathcote, Robert; Nersisyan, Gagik; Lewis, Ciaran L. S.; Pukhov, Alexander; Dias, João. Mendanha; Jaroszynski, Dino A.

    2017-05-01

    The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm-1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr-1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.

  16. Verification strategies for fluid-based plasma simulation models

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar

    2012-10-01

    Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.

  17. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    PubMed

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (P<0.05). These findings suggest that turbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  18. A polarization-based Thomson scattering technique for burning plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.; Mirnov, V. V.; Den Hartog, D. J.

    2014-02-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the spectrum. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the degree of polarization (P) of the scattered light; for fully polarized incident laser light, the scattered light becomes partially polarized. The resulting reduction of polarization is temperature dependent and has been proposed by other authors as a potential alternative to the traditional spectral decomposition technique. Following the previously developed Stokes vector approach, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states, scattering angles, and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures relevant to burning plasmas. We discuss the feasibility of a polarization based Thomson scattering diagnostic for ITER-like plasmas with both linearly and circularly polarized light and compare to the traditional technique.

  19. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries. © 2013 John Wiley & Sons Ltd.

  20. Material measurement method based on femtosecond laser plasma shock wave

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Li, Zhongming

    2017-03-01

    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  1. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  2. Deoxysphingoid bases as plasma markers in Diabetes mellitus

    PubMed Central

    2010-01-01

    Background Sphingoid bases are formed from the precursors L-serine and palmitoyl-CoA-a reaction which is catalyzed by the serine-palmitoyltransferase (SPT). SPT metabolizes, besides palmitoyl-CoA also other acyl-CoAs but shows also variability towards the use of other amino acid substrates. The enzyme is also able to metabolize alanine, which results in the formation of an atypical deoxy-sphingoid base (DSB). This promiscuous activity is greatly increased in the case of the sensory neuropathy HSAN1, and pathologically elevated DSB levels have been identified as the cause of this disease. Clinically, HSAN1 shows a pronounced similarity to the diabetic sensory neuropathy (DSN), which is the most common chronic complication of diabetes mellitus. Since serine and alanine metabolism is functionally linked to carbohydrate metabolism by their precursors 3-phosphoglycerate and pyruvate, we were interested to see whether the levels of certain sphingoid base metabolites are altered in patients with diabetes. Results In a case-control study we compared plasma sphingoid base levels between healthy and diabetic individuals. DSB levels were higher in the diabetic group whereas C16 and C18 sphingoid bases were not significantly different. Plasma serine, but not alanine levels were lower in the diabetic group. A subsequent lipoprotein fractionation showed that the DSBs are primarily present in the LDL and VLDL fraction. Conclusion Our results suggest that DSBs are a novel category of plasma biomarkers in diabetes which reflect functional impairments of carbohydrate metabolism. Furthermore, elevated DSB levels as we see them in diabetic patients might also contribute to the progression of the diabetic sensory neuropathy, the most frequent complication of diabetes. PMID:20712864

  3. Meiotic sex chromosome inactivation.

    PubMed

    Turner, James M A

    2007-05-01

    X chromosome inactivation is most commonly studied in the context of female mammalian development, where it performs an essential role in dosage compensation. However, another form of X-inactivation takes place in the male, during spermatogenesis, as germ cells enter meiosis. This second form of X-inactivation, called meiotic sex chromosome inactivation (MSCI) has emerged as a novel paradigm for studying the epigenetic regulation of gene expression. New studies have revealed that MSCI is a special example of a more general mechanism called meiotic silencing of unsynapsed chromatin (MSUC), which silences chromosomes that fail to pair with their homologous partners and, in doing so, may protect against aneuploidy in subsequent generations. Furthermore, failure in MSCI is emerging as an important etiological factor in meiotic sterility.

  4. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    SciTech Connect

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.; Hutchison, Janine R.; Kreuzer, Helen W.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  5. Effects of bacterial inactivation methods on downstream proteomic analysis.

    PubMed

    Lin, Andy; Merkley, Eric D; Clowers, Brian H; Hutchison, Janine R; Kreuzer, Helen W

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation-induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography-tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α=1.71×10(-2) for E. coli, α=4.97×10(-4) for Y. pestis) and irradiation (α=9.43×10(-7) for E. coli, α=1.21×10(-5) for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  6. Plasma and trap-based techniques for science with positrons

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.; Dubin, D. H. E.; Greaves, R. G.; Surko, C. M.

    2015-01-01

    In recent years, there has been a wealth of new science involving low-energy antimatter (i.e., positrons and antiprotons) at energies ranging from 102 to less than 10-3 eV . Much of this progress has been driven by the development of new plasma-based techniques to accumulate, manipulate, and deliver antiparticles for specific applications. This article focuses on the advances made in this area using positrons. However, many of the resulting techniques are relevant to antiprotons as well. An overview is presented of relevant theory of single-component plasmas in electromagnetic traps. Methods are described to produce intense sources of positrons and to efficiently slow the typically energetic particles thus produced. Techniques are described to trap positrons efficiently and to cool and compress the resulting positron gases and plasmas. Finally, the procedures developed to deliver tailored pulses and beams (e.g., in intense, short bursts, or as quasimonoenergetic continuous beams) for specific applications are reviewed. The status of development in specific application areas is also reviewed. One example is the formation of antihydrogen atoms for fundamental physics [e.g., tests of invariance under charge conjugation, parity inversion, and time reversal (the CPT theorem), and studies of the interaction of gravity with antimatter]. Other applications discussed include atomic and materials physics studies and the study of the electron-positron many-body system, including both classical electron-positron plasmas and the complementary quantum system in the form of Bose-condensed gases of positronium atoms. Areas of future promise are also discussed. The review concludes with a brief summary and a list of outstanding challenges.

  7. Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis.

    PubMed

    Kong, Jun; Wang, Feng; Brenton, James D; Adams, David J

    2010-10-01

    We have developed a self-inactivating PiggyBac transposon system for tamoxifen inducible insertional mutagenesis from a stably integrated chromosomal donor. This system, which we have named 'Slingshot', utilizes a transposon carrying elements for both gain- and loss-of-function screens in vitro. We show that the Slingshot transposon can be efficiently mobilized from a range of chromosomal loci with high inducibility and low background generating insertions that are randomly dispersed throughout the genome. Furthermore, we show that once the Slingshot transposon has been mobilized it is not remobilized producing stable clonal integrants in all daughter cells. To illustrate the efficacy of Slingshot as a screening tool we set out to identify mediators of resistance to puromycin and the chemotherapeutic drug vincristine by performing genetrap screens in mouse embryonic stem cells. From these genome-wide screens we identified multiple independent insertions in the multidrug resistance transporter genes Abcb1a/b and Abcg2 conferring resistance to drug treatment. Importantly, we also show that the Slingshot transposon system is functional in other mammalian cell lines such as human HEK293, OVCAR-3 and PE01 cells suggesting that it may be used in a range of cell culture systems. Slingshot represents a flexible and potent system for genome-wide transposon-mediated mutagenesis with many potential applications.

  8. Polycrystalline diamond based detector for Z-pinch plasma diagnosis.

    PubMed

    Liu, Linyue; Ouyang, Xiaoping; Zhao, Jizhen; Chen, Liang; Wang, Lan

    2010-08-01

    A detector setup based on polycrystalline chemical-vapor-deposition diamond film is developed with great characteristics: low dark current (lower than 60 pA within 3 V/mum), fast pulsed response time (rise time: 2-3 ns), flat spectral response (3-5 keV), easy acquisition, low cost, and relative large sensitive area. The characterizing data on Qiangguang-I accelerator show that this detector can satisfy the practical requirements in Z-pinch plasma diagnosis very well, which offers a promising prototype for the x-ray detection in Z-pinch diagnosis.

  9. Bacillus spore inactivation methods affect detection assays.

    PubMed

    Dang, J L; Heroux, K; Kearney, J; Arasteh, A; Gostomski, M; Emanuel, P A

    2001-08-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment.

  10. Bacillus Spore Inactivation Methods Affect Detection Assays

    PubMed Central

    Dang, Jessica L.; Heroux, Karen; Kearney, John; Arasteh, Ameneh; Gostomski, Mark; Emanuel, Peter A.

    2001-01-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment. PMID:11472945

  11. The Vero cell-derived, inactivated, SA14-14-2 strain-based vaccine (Ixiaro) for prevention of Japanese encephalitis.

    PubMed

    Erra, Elina O; Kantele, Anu

    2015-01-01

    With an estimated 68,000 cases each year, Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia. Vaccination against the disease is recommended for endemic populations and also for travelers at risk. Recently, a Vero cell-derived, inactivated, SA14-14-2 strain-based JE vaccine (JE-VC) became available for travelers from non-endemic regions, replacing the traditional mouse brain-derived vaccines. First licensed in 2009, JE-VC is currently available in Europe, the USA, Canada, Australia and several other countries. In 2013, the vaccine was approved by the European Medicines Agency and the US Food and Drug Administration for use in children. This review summarizes current data on the immunogenicity, safety and clinical use of JE-VC.

  12. Relativistic plasma dielectric tensor evaluation based on the exact plasma dispersion functions concept

    SciTech Connect

    Castejon, F.; Pavlov, S. S.

    2006-07-15

    The fully relativistic plasma dielectric tensor for any wave and plasma parameter is estimated on the basis of the exact plasma dispersion functions concept. The inclusion of this concept allows one to write the tensor in a closed and compact form and to reduce the tensor evaluation to the calculation of those functions. The main analytical properties of these functions are studied and two methods are given for their evaluation. The comparison between the exact dielectric tensor with the weakly relativistic approximation, widely used presently in plasma waves calculations, is given as well as the range of plasma temperature, harmonic number, and propagation angle in which the weakly relativistic approximation is valid.

  13. Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O3, H2O2, and TiO2. Kinetic modeling.

    PubMed

    Rodríguez-Chueca, Jorge; Ormad Melero, M Peña; Mosteo Abad, Rosa; Esteban Finol, Javier; Ovelleiro Narvión, José Luis

    2015-07-01

    The purpose of this work was to study the efficiency of different treatments, based on the combination of O3, H2O2, and TiO2, on fresh surface water samples fortified with wild strains of Escherichia coli. Moreover, an exhaustive assessment of the influence of the different agents involved in the treatment has been carried out by kinetic modeling of E. coli inactivation results. The treatments studied were (i) ozonation (O3), (ii) the peroxone system (O3/0.04 mM H2O2), (iii) catalytic ozonation (O3/1 g/L TiO2), and (iv) a combined treatment of O3/1 g/L TiO2/0.04 mM H2O2. It was observed that the peroxone system achieved the highest levels of inactivation of E. coli, around 6.80 log after 10 min of contact time. Catalytic ozonation also obtained high levels of inactivation in a short period of time, reaching 6.22 log in 10 min. Both treatments, the peroxone system (O3/H2O2) and catalytic ozonation (O3/TiO2), produced a higher inactivation rate of E. coli than ozonation (4.97 log after 10 min). While the combination of ozone with hydrogen peroxide or titanium dioxide thus produces an increase in the inactivation yield of E. coli regarding ozonation, the O3/TiO2/H2O2 combination did not enhance the inactivation results. The fitting of experimental values to the corresponding equations through non-linear regression techniques was carried out with Microsoft® Excel GInaFiT software. The inactivation results of E. coli did not respond to linear functions, and it was necessary to use mathematical models able to describe certain deviations in the bacterial inactivation processes. In this case, the inactivation results fit with mathematical models based on the hypothesis that the bacteria population is divided into two different subgroups with different degrees of resistance to treatments, for instance biphasic and biphasic with shoulder models. Graphical abstract ᅟ.

  14. Analytic calculation of physiological acid-base parameters in plasma.

    PubMed

    Wooten, E W

    1999-01-01

    Analytic expressions for plasma total titratable base, base excess (DeltaCB), strong-ion difference, change in strong-ion difference (DeltaSID), change in Van Slyke standard bicarbonate (DeltaVSSB), anion gap, and change in anion gap are derived as a function of pH, total buffer ion concentration, and conditional molar equilibrium constants. The behavior of these various parameters under respiratory and metabolic acid-base disturbances for constant and variable buffer ion concentrations is considered. For constant noncarbonate buffer concentrations, DeltaSID = DeltaCB = DeltaVSSB, whereas these equalities no longer hold under changes in noncarbonate buffer concentration. The equivalence is restored if the reference state is changed to include the new buffer concentrations.

  15. How is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine: hydrogen abstraction or nitrogen oxidation?

    PubMed

    Hirao, Hajime; Chuanprasit, Pratanphorn; Cheong, Ying Yi; Wang, Xiaoqing

    2013-06-03

    A precise understanding of the mechanism-based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug-drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism-based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1-dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene-type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C-H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N-H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene-type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450-catalyzed reaction.

  16. Ground-Based Simulation of Low-Earth Orbit Plasma Conditions: Plasma Generation and Characterization

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Farnell, Casey C.; Shoemaker, Paul B.; Vaughn, Jason A.; Schneider, Todd A.

    2004-01-01

    A 16-cm diameter plasma source operated on argon is described that is capable of producing a plasma environment that closely simulates the low Earth orbit (LEO) conditions experienced by satellites in the altitude range between 300 to 500 km. The plasma source uses a transverse-field magnetic filter, and has been successful in producing low electron temperature plasmas that contain streaming ion populations. Both of these characteristics are important because the plasma in LEO is relatively cold (e.g., Te approx. 0.1 eV) and the ram energy of the ions due to the motion of the satellite relative to the LEO plasma is high (e.g., 7,800 m/s which corresponds to approx. 5 eV for O+ ions). Plasma source operational conditions of flow rate and discharge power are presented that allow the electron temperature to be adjusted over a range from 0.14 to 0.4 eV. The expanding plasma flow field downstream of the source contains both low-energy, charge-exchange ions and streaming ions with energies that are adjustable over a range from 4 eV to 6 eV. At low flow rates and low facility pressures, the streaming ion component of the ion population comprises over 90% of the total plasma density. In the work described herein, a large area retarding potential analyzer was used to measure both electron and ion energy distribution functions in the low density, expanding plasma produced downstream of the plasma source. The benefits of using this type of plasma diagnostic tool in easily perturbed, low-density plasma are identified, and techniques are also discussed that can be used to perform real-time measurements of electron temperature. Finally, recommendations are made that may enable lower electron temperatures to be produced while simultaneously decreasing the plasma source flow rate below 1 to 2 sccm.

  17. Temporary inactivation of plasma amine oxidase by alkylhydrazines. A combined enzyme/model study implicates cofactor reduction/reoxidation but cofactor deoxygenation and subsequent reoxygenation in the case of hydrazine itself.

    PubMed

    Lee, Y; Jeon, H B; Huang, H; Sayre, L M

    2001-03-23

    It has been known for some time that hydrazine and its methyl and 1,1-dimethyl analogues induce inactivation of the copper-containing quinone-dependent plasma amine oxidase but that the activity recovers over time, suggesting metabolism of all three inhibitors. However, the mechanism responsible for loss and regain of activity has not been investigated. In this study a combination of enzyme studies under a controlled atmosphere along with model studies using 5-tert-butyl-2-hydroxy-1,4-benzoquinone to mimic the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor of the enzyme suggest that regain of enzyme activity represents two different O(2)-dependent processes. In the case of methylhydrazine and 1,1-dimethylhydrazine, we propose that the inactive methylhydrazone/azo form of the enzyme slowly rehydrates and eliminates MeN=NH to give the triol cofactor form, which instantly reoxidizes to the catalytically active quinone form in the presence of O(2). Metabolism of methylhydrazine represents its conversion to CH(4) and N(2), and of 1,1-dimethylhydrazine to CH(2)=O, CH(4), and N(2). In the case of hydrazine itself, however, we propose that the inactive hydrazone/azo form of the enzyme instead undergoes a slow decomposition, probably facilitated by the active-site copper, to give N(2) and a novel 5-desoxy resorcinol form of the cofactor. The latter undergoes a rapid, but noninstantaneous reoxygenation at C5 to restore the active cofactor form, also probably mediated by the active-site copper.

  18. Plasma-Based Tunable High Frequency Power Limiter

    NASA Astrophysics Data System (ADS)

    Semnani, Abbas; Macheret, Sergey; Peroulis, Dimitrios

    2016-09-01

    Power limiters are often employed to protect sensitive receivers from being damaged or saturated by high-power incoming waves. Although wideband low-power limiters based on semiconductor technology are widely available, the options for high-power frequency-selective ones are very few. In this work, we study the application of a gas discharge tube (GDT) integrated in an evanescent-mode (EVA) cavity resonator as a plasma-based power limiter. Plasmas can inherently handle higher power in comparison with semiconductor diodes. Also, using a resonant structure provides the ability of having both lower threshold power and frequency-selective limiting, which are important if only a narrowband high-power signal is targeted. Higher input RF power results in stronger discharge in the GDT and consequently higher electron density which results in larger reflection. It is also possible to tune the threshold power by pre-ionizing the GDT with a DC bias voltage. As a proof of concept, a 2-GHz EVA resonator loaded by a 90-V GDT was fabricated and measured. With reasonable amount of insertion loss, the limiting threshold power was successfully tuned from 8.3 W to 590 mW when the external DC bias was varied from 0 to 80 V. The limiter performed well up to 100 W of maximum available input power.

  19. XUV laser-plasma source based on solid Ar filament

    SciTech Connect

    Peth, Christian; Kalinin, Anton; Barkusky, Frank; Mann, Klaus; Toennies, J. Peter; Rusin, Lev Yu

    2007-10-15

    We present a laser driven soft x-ray source based on a novel solid argon filament. The continuously flowing micron-sized filament (diameter {approx}56 {mu}m, flow speed {approx}5 mm/s) was used as a laser target in order to generate a plasma source of high brightness in the ''water window'' (2.2-4.4 nm) spectral range. The emission properties of the source were characterized in detail with respect to crucial parameters such as positional and energy stability using an extreme ultraviolet (XUV) sensitive pinhole camera and an XUV spectrometer. The results are compared with an argon plasma based on a gas puff target operated under the same experimental conditions showing an increase of the brilliance by a factor of 84. By changing the capillary geometry from a constant diameter to a convergent shape the flow speed of the filament was significantly increased up to 250 mm/s, facilitating the operation at higher repetition rates.

  20. Kinetic Plasma Simulation Using a Quadrature-based Moment Method

    NASA Astrophysics Data System (ADS)

    Larson, David J.

    2008-11-01

    The recently developed quadrature-based moment method [Desjardins, Fox, and Villedieu, J. Comp. Phys. 227 (2008)] is an interesting alternative to standard Lagrangian particle simulations. The two-node quadrature formulation allows multiple flow velocities within a cell, thus correctly representing crossing particle trajectories and lower-order velocity moments without resorting to Lagrangian methods. Instead of following many particles per cell, the Eulerian transport equations are solved for selected moments of the kinetic equation. The moments are then inverted to obtain a discrete representation of the velocity distribution function. Potential advantages include reduced computational cost, elimination of statistical noise, and a simpler treatment of collisional effects. We present results obtained using the quadrature-based moment method applied to the Vlasov equation in simple one-dimensional electrostatic plasma simulations. In addition we explore the use of the moment inversion process in modeling collisional processes within the Complex Particle Kinetics framework.

  1. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus

    NASA Astrophysics Data System (ADS)

    Opretzka, J.; Benedikt, J.; Awakowicz, P.; Wunderlich, J.; von Keudell, A.

    2007-05-01

    The inactivation of bacteria by plasma discharges offers the unique benefits of short treatment times, minimal damage to the objects being sterilized and minimal use of hazardous chemicals. Plasmas produce reactive fluxes of ions, atoms and UV photons from any given precursor gas and are expected to be a viable method for such sterilization applications. The plasma based inactivation of harmful biological systems is, however, not yet widely used, because any validation is hampered by the limited knowledge about the interaction mechanisms at the interface between a plasma and a biological system. By using quantified beams of hydrogen atoms, argon ions and UV photons, the treatment of bacteria in a typical argon-hydrogen plasma is mimicked in a very controlled manner. As an example the inactivation of endospores of Bacillus atrophaeus is studied. It is shown that the impact of H atoms alone causes no inactivation of bacteria. Instead, the simultaneous impact of atoms and low energy ions causes a perforation of the endosporic shell. The same process occurs during plasma treatment and explains the efficient inactivation of bacteria.

  2. The Effect of Ritonavir on Human CYP2B6 Catalytic Activity: Heme Modification Contributes to the Mechanism-Based Inactivation of CYP2B6 and CYP3A4 by Ritonavir

    PubMed Central

    Lin, Hsia-lien; D’Agostino, Jaime; Kenaan, Cesar; Calinski, Diane

    2013-01-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a KI of 0.9 μM, a kinact of 0.05 min−1, and a partition ratio of approximately 3. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH+ at m/z 737 and a deacylated product with MH+ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (Ki = 0.33 μM) and a type II ligand (spectral dissociation constant-Ks = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH+ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate. PMID:23886699

  3. The effect of ritonavir on human CYP2B6 catalytic activity: heme modification contributes to the mechanism-based inactivation of CYP2B6 and CYP3A4 by ritonavir.

    PubMed

    Lin, Hsia-lien; D'Agostino, Jaime; Kenaan, Cesar; Calinski, Diane; Hollenberg, Paul F

    2013-10-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a K(I) of 0.9 μM, a k(inact) of 0.05 min⁻¹, and a partition ratio of approximately 3. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH⁺ at m/z 737 and a deacylated product with MH⁺ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (K(i) = 0.33 μM) and a type II ligand (spectral dissociation constant-K(s) = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH⁺ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate.

  4. Photodynamic-induced inactivation of Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Teschke, M.; Eick, Stephen G.; Pfister, W.; Meyer, Herbert; Halbhuber, Karl-Juergen

    1998-05-01

    We report on photodynamically induced inactivation of the skin bacterium Propionibacterium acnes (P. acnes) using endogenous as well as exogenous photosensitizers and red light sources. P. acnes is involved in the pathogenesis of the skin disease acne vulgaris. The skin bacterium is able to synthesize the metal-free fluorescent porphyrins protoporphyrin IX (PP) and coproporphyrin (CP) as shown by in situ spectrally-resolved detection of natural autofluorescence of human skin and bacteria colonies. These naturally occurring intracellular porphyrins act as efficient endogenous photosensitizers. Inactivation of P. acnes suspensions was achieved by irradiation with He-Ne laser light in the red spectral region (632.8 nm). We monitored the photodynamically-induced death of single bacteria using a fluorescent viability kit in combination with confocal laser scanning microscopy. In addition, the photo-induced inactivation was calculated by CFU (colony forming units) determination. We found 633 nm-induced inactivation (60 mW, 0.12 cm2 exposure area, 1 hour irradiation) of 72% in the case of non-incubated bacteria based on the destructive effect of singlet oxygen produced by red light excited endogenous porphyrins and subsequent energy transfer to molecular oxygen. In order to achieve a nearly complete inactivation within one exposure procedure, the exogenous photosensitizer Methylene Blue (Mb) was added. Far red exposure of Mb-labeled bacteria using a krypton ion laser at 647 nm and 676 nm resulted in 99% inactivation.

  5. Particle based plasma simulation for an ion engine discharge chamber

    NASA Astrophysics Data System (ADS)

    Mahalingam, Sudhakar

    Design of the next generation of ion engines can benefit from detailed computer simulations of the plasma in the discharge chamber. In this work a complete particle based approach has been taken to model the discharge chamber plasma. This is the first time that simplifying continuum assumptions on the particle motion have not been made in a discharge chamber model. Because of the long mean free paths of the particles in the discharge chamber continuum models are questionable. The PIC-MCC model developed in this work tracks following particles: neutrals, singly charged ions, doubly charged ions, secondary electrons, and primary electrons. The trajectories of these particles are determined using the Newton-Lorentz's equation of motion including the effects of magnetic and electric fields. Particle collisions are determined using an MCC statistical technique. A large number of collision processes and particle wall interactions are included in the model. The magnetic fields produced by the permanent magnets are determined using Maxwell's equations. The electric fields are determined using an approximate input electric field coupled with a dynamic determination of the electric fields caused by the charged particles. In this work inclusion of the dynamic electric field calculation is made possible by using an inflated plasma permittivity value in the Poisson solver. This allows dynamic electric field calculation with minimal computational requirements in terms of both computer memory and run time. In addition, a number of other numerical procedures such as parallel processing have been implemented to shorten the computational time. The primary results are those modeling the discharge chamber of NASA's NSTAR ion engine at its full operating power. Convergence of numerical results such as total number of particles inside the discharge chamber, average energy of the plasma particles, discharge current, beam current and beam efficiency are obtained. Steady state results for

  6. Artificial plasma membrane models based on lipidomic profiling.

    PubMed

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  8. Performance analysis of charge plasma based dual electrode tunnel FET

    NASA Astrophysics Data System (ADS)

    Anand, Sunny; Intekhab Amin, S.; Sarin, R. K.

    2016-05-01

    This paper proposes the charge plasma based dual electrode doping-less tunnel FET (DEDLTFET). The paper compares the device performance of the conventional doping-less TFET (DLTFET) and doped TFET (DGTFET). DEDLTEFT gives the superior results with high ON state current (ION ∼ 0.56 mA/μm), ION/IOFF ratio ∼ 9.12 × 1013 and an average subthreshold swing (AV-SS ∼ 48 mV/dec). The variation of different device parameters such as channel length, gate oxide material, gate oxide thickness, silicon thickness, gate work function and temperature variation are done and compared with DLTFET and DGTFET. Through the extensive analysis it is found that DEDLTFET shows the better performance than the other two devices, which gives the indication for an excellent future in low power applications.

  9. Inactivation of rabies virus.

    PubMed

    Wu, Guanghui; Selden, David; Fooks, Anthony R; Banyard, Ashley

    2017-05-01

    Rabies virus is a notifiable pathogen that must be handled in high containment facilities where national and international guidelines apply. For the effective inactivation of rabies virus, a number of reagents were tested. Virkon S (1%) solution caused more than 4log reduction of rabies virus in culture medium supplemented with 10% foetal calf serum within 1min. Isopropyl alcohol (70%) treatment resulted in >3log reduction of rabies virus within 20s when applied at a ratio of 19:1, making it a suitable agent for surface decontamination whereas 70% ethanol was ineffective. Rabies virus (from 10(2.33) to 10(3)ffu/ml) was also inactivated when cell cultures were fixed with 3% or 4% paraformaldehyde for 30min. Regardless of inactivation procedure, when taking inactivated virus preparations out of a biological containment envelope, proof of inocuity must be demonstrated to cover any possible error/deviation from procedure. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  11. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  12. Plasma-Based Synthesis of Nanostructured Materials and their Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.

    The aim of this thesis is to explore the novel cost-effective synthesis technique to develop nanostructured materials and investigate their structural and magnetic properties. Nanomaterials were synthesized by a plasma discharge between desired metal electrodes in the cavitation field of an organic solvent. Multifunctional core-shell magnetic nanoparticles of 3d transition elements (Fe, Ni) and bimetallic (FeNi) were synthesized by varying experimental conditions. The phase, crystallinity and the magnetic properties of the materials synthesized were found to be dependent on experimental reaction parameters such as different solvents, electrodes, the spacing between electrodes, applied voltage, experiment time and high-temperature annealing. Fe and Gd-based nanoparticles were developed for high-performance magnetic resonance imaging (MRI) contrast enhancement. Biocompatible hybrid composite of Fe core - C shell nanoparticles evaluated as negative MRI contrast agents display remarkably high transverse relaxivity (r2) of 70 mM-1S-1 at 7T. In addition to 3d transition magnetic materials, magnetism of multilayer graphene nanosheets with only s and p electrons was investigated to understand and explain the intrinsic origin of ferromagnetism in carbon-based material. Apart from magnetic materials, noble metal Pd nanoparticles were developed using one-step process for hydrogen storage. The role of hydrogen on the dilation of Pd lattice was investigated using the experiment and density functional theory (DFT) studies. This method demonstrates that plasma discharge method using appropriate electrodes and solvents can be used to synthesize desired nanoparticles. This potential emphasizes the importance of adopting this methodology, which offers advantages that include a rapid reaction rate and ability to form very small nanoparticles with narrow size distribution.

  13. Administration of Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and Avian Beta Defensin as Adjuvants in Inactivated Inclusion Body Hepatitis Virus and its Hexon Protein-Based Experimental Vaccine Formulations in Chickens.

    PubMed

    Dar, Arshud; Tipu, Masroor; Townsend, Hugh; Potter, Andy; Gerdts, Volker; Tikoo, Suresh

    2015-12-01

    Inclusion body hepatitis (IBH) is one of the major infectious diseases adversely affecting the poultry industry of the United States and Canada. Currently, no effective and safe vaccine is available for the control of IBH virus (IBHV) infection in chickens. However, based on the excellent safety and immunogenic profiles of experimental veterinary vaccines developed with the use of new generation adjuvants, we hypothesized that characterization of vaccine formulations containing inactivated IBHV or its capsid protein hexon as antigens, along with poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and avian beta defensin 2 (ABD2) as vaccine adjuvants, will be helpful in development of an effective and safe vaccine formulation for IBH. Our data demonstrated that experimental administration of vaccine formulations containing inactivated IBHV and a mixture of PCEP with or without ABD2 as an adjuvant induced significantly higher antibody responses compared with other vaccine formulations, while hexon protein-based vaccine formulations showed relatively lower levels of antibody responses. Thus, a vaccine formulation containing inactivated IBHV with PCEP or a mixture of PCEP and ABD2 (with a reduced dosage of PCEP) as an adjuvant may serve as a potential vaccine candidate. However, in order to overcome the risks associated with whole virus inactivated vaccines, characterization of additional viral capsid proteins, including fiber protein and penton of IBHV along with hexon protein in combination with more new generation adjuvants, will be helpful in further improvements of vaccines against IBHV infection.

  14. [Inactivation of viruses of different taxonomic groups by cuprous sulphate].

    PubMed

    Fedorov, D G; Balysheva, V I; Zhesterev, V I; Tsybanov, S Zh; Zakutskiĭ, N I; Slivko, V V

    2004-01-01

    Study results of inactivated effects exerted by cuprous sulphate on viruses of different taxonomy groups are summarized in the paper. Cuprous sulphate is a simple and reliable agent in inactivation of viruses of classical porcine fever, Aujeszky's disease and bovine infectious rhinotracheitis. Its inactivation action is based on the ability to reduce the viral genome to low-molecular fragment. Apart from inactivation of the virus material, a decreased level of protective antibody determinants is observed when cuprous sulphate is used in case of sheep catarrhal fever.

  15. Effective photosensitization-based inactivation of Gram (-) food pathogens and molds using the chlorophyllin-chitosan complex: towards photoactive edible coatings to preserve strawberries.

    PubMed

    Buchovec, Irina; Lukseviciute, Viktorija; Marsalka, Arunas; Reklaitis, Ignas; Luksiene, Zivile

    2016-04-01

    This study is focused on the novel approaches to enhance the inactivation of the Gram (-) food pathogen Salmonella enterica and harmful molds in vitro and on the surface of strawberries using the chlorophyllin-chitosan complex. Salmonella enterica (∼1 × 10(7) CFU mL(-1)) was incubated with chlorophyllin 1.5 × 10(-5) M (Chl, food additive), chitosan 0.1% (CHS, food supplement) or the chlorophyllin-chitosan complex (1.5 × 10(-5) M Chl-0.1% CHS) and illuminated with visible light (λ = 405 nm, light dose 38 J cm(-2)) in vitro. Chlorophyllin (Chl)-based photosensitization inactivated Salmonella just by 1.8 log. Chitosan (CHS) alone incubated for 2 h with Salmonella reduced viability 2.15 log, whereas photoactivated Chl-CHS diminished bacterial viability by 7 log. SEM images indicate that the Chl-CHS complex under these experimental conditions covered the entire bacterial surface. Significant cell membrane disintegration was the main lethal injury induced in Gram (-) bacteria by this treatment. Analysis of strawberry decontamination from surface-inoculated Salmonella indicated that photoactivated Chl-CHS (1.5 × 10(-5) M Chl-0.1% CHS, 30 min incubation, light dose 38 J cm(-2)) coatings diminished the pathogen population on the surface of strawberries by 2.2 log. Decontamination of strawberries from naturally distributed yeasts/molds revealed that chitosan alone reduced the population of yeasts/molds just by 0.4 log, Chl-based photosensitization just by 0.9 log, whereas photoactivated Chl-CHS coatings reduced yeasts/molds on the surface of strawberries by 1.4 log. Electron paramagnetic resonance spectroscopy confirmed that no additional photosensitization-induced free radicals have been found in the strawberry matrix. Visual quality (color, texture) of the treated strawberries was not affected either. In conclusion, photoactive Chl-CHS exhibited strong antimicrobial action against more resistant to photosensitization Gram (-) Salmonella enterica in comparison with

  16. Mechanism-based inactivation of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    SciTech Connect

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.

  17. Gold Nanoparticle-Photosensitizer Conjugate Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice

    PubMed Central

    Sherwani, Mohd. Asif; Tufail, Saba; Khan, Aijaz Ahmed; Owais, Mohammad

    2015-01-01

    Background Photodynamic therapy (PDT) has been found to be effective in inhibiting biofilm producing organisms. We investigated the photodynamic effect of gold nanoparticle (GNP) conjugated photosensitizers against Candida albicans biofilm. We also examined the photodynamic efficacy of photosensitizer (PS) conjugated GNPs (GNP-PS) to treat skin and oral C. albicans infection in BALB/c mice. Methods The biomimetically synthesized GNPs were conjugated to photosensitizers viz. methylene blue (MB) or toluidine blue O (TB). The conjugation of PSs with GNPs was characterized by spectroscopic and microscopic techniques. The efficacy of gold nanoparticle conjugates against C. albicans biofilm was demonstrated by XTT assay and microscopic studies. The therapeutic efficacy of the combination of the GNP conjugates against cutaneous C. albicans infection was examined in mouse model by enumerating residual fungal burden and histopathological studies. Results The GNP-PS conjugate based PDT was found to effectively kill both C. albicans planktonic cells and biofilm populating hyphal forms. The mixture of GNPs conjugated to two different PSs significantly depleted the hyphal C. albicans burden against superficial skin and oral C. albicans infection in mice. Conclusion The GNP-PS conjugate combination exhibits synergism in photodynamic inactivation of C. albicans. The GNP conjugate based PDT can be employed effectively in treatment of cutaneous C. albicans infections in model animals. The antibiofilm potential of PDT therapy can also be exploited in depletion of C. albicans on medical appliances such as implants and catheters etc. PMID:26148012

  18. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  19. Lab- and space-based researchers discuss plasma experiments

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Yamada, M.

    Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.

  20. Destruction of α-synuclein based amyloid fibrils by a low temperature plasma jet

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc; Munyanyi, Agatha; Greene, Lesley; Laroussi, Mounir

    2010-10-01

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the "plasma pencil," a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  1. Destruction of {alpha}-synuclein based amyloid fibrils by a low temperature plasma jet

    SciTech Connect

    Karakas, Erdinc; Laroussi, Mounir; Munyanyi, Agatha; Greene, Lesley

    2010-10-04

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the 'plasma pencil', a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  2. Summary report: working group 2 on 'Plasma Based AccelerationConcepts'

    SciTech Connect

    Esarey, E.; Leemans, Wim

    1998-09-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module.

  3. Pathogen inactivation technologies for cellular blood components: an update.

    PubMed

    Schlenke, Peter

    2014-07-01

    Nowadays patients receiving blood components are exposed to much less transfusion-transmitted infectious diseases than three decades before when among others HIV was identified as causative agent for the acquired immunodeficiency syndrome and the transmission by blood or coagulation factors became evident. Since that time the implementation of measures for risk prevention and safety precaution was socially and politically accepted. Currently emerging pathogens like arboviruses and the well-known bacterial contamination of platelet concentrates still remain major concerns of blood safety with important clinical consequences, but very rarely with fatal outcome for the blood recipient. In contrast to the well-established pathogen inactivation strategies for fresh frozen plasma using the solvent-detergent procedure or methylene blue and visible light, the bench-to-bedside translation of novel pathogen inactivation technologies for cell-containing blood components such as platelets and red blood cells are still underway. This review summarizes the pharmacological/toxicological assessment and the inactivation efficacy against viruses, bacteria, and protozoa of each of the currently available pathogen inactivation technologies and highlights the impact of the results obtained from several randomized clinical trials and hemovigilance data. Until now in some European countries pathogen inactivation technologies are in in routine use for single-donor plasma and platelets. The invention and adaption of pathogen inactivation technologies for red blood cell units and whole blood donations suggest the universal applicability of these technologies and foster a paradigm shift in the manufacturing of safe blood.

  4. Pathogen Inactivation Technologies for Cellular Blood Components: an Update

    PubMed Central

    Schlenke, Peter

    2014-01-01

    Summary Nowadays patients receiving blood components are exposed to much less transfusion-transmitted infectious diseases than three decades before when among others HIV was identified as causative agent for the acquired immunodeficiency syndrome and the transmission by blood or coagulation factors became evident. Since that time the implementation of measures for risk prevention and safety precaution was socially and politically accepted. Currently emerging pathogens like arboviruses and the well-known bacterial contamination of platelet concentrates still remain major concerns of blood safety with important clinical consequences, but very rarely with fatal outcome for the blood recipient. In contrast to the well-established pathogen inactivation strategies for fresh frozen plasma using the solvent-detergent procedure or methylene blue and visible light, the bench-to-bedside translation of novel pathogen inactivation technologies for cell-containing blood components such as platelets and red blood cells are still underway. This review summarizes the pharmacological/toxicological assessment and the inactivation efficacy against viruses, bacteria, and protozoa of each of the currently available pathogen inactivation technologies and highlights the impact of the results obtained from several randomized clinical trials and hemovigilance data. Until now in some European countries pathogen inactivation technologies are in in routine use for single-donor plasma and platelets. The invention and adaption of pathogen inactivation technologies for red blood cell units and whole blood donations suggest the universal applicability of these technologies and foster a paradigm shift in the manufacturing of safe blood. PMID:25254027

  5. Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base.

    PubMed

    He, Guiyuan; Tavella, Sara; Hanley, Karen Piper; Self, Michelle; Oliver, Guillermo; Grifone, Raphaëlle; Hanley, Neil; Ward, Christopher; Bobola, Nicoletta

    2010-08-15

    The cranial base is essential for integrated craniofacial development and growth. It develops as a cartilaginous template that is replaced by bone through the process of endochondral ossification. Here, we describe a novel and specific role for the homeoprotein Six2 in the growth and elongation of the cranial base. Six2-null newborn mice display premature fusion of the bones in the cranial base. Chondrocyte differentiation is abnormal in the Six2-null cranial base, with reduced proliferation and increased terminal differentiation. Gain-of-function experiments indicate that Six2 promotes cartilage development and growth in other body areas and appears therefore to control general regulators of chondrocyte differentiation. Our data indicate that the main factors restricting Six2 function to the cranial base are tissue-specific transcription of the gene and compensatory effects of other Six family members. The comparable expression during human embryogenesis and the high protein conservation from mouse to human implicate SIX2 loss-of-function as a potential congenital cause of anterior cranial base defects in humans.

  6. Enterovirus inactivation in soil.

    PubMed Central

    Yeager, J G; O'Brien, R T

    1979-01-01

    The inactivation of radioactively labeled poliovirus type 1 and coxsackievirus B 1 in soils saturated with surface water, groundwater, and septic tank liquor was directly proportional to temperature. Virus persistence was also related to soil type and the liquid amendment in which viruses were suspended. At 37 degrees C, no infectivity was recovered from saturated soil after 12 days; at 4 degrees C, viruses persisted for at least 180 days. No infectivity was recovered from dried soil regardless of temperature, soil type, or liquid amendment. Additional experiments showed that evaporation of soil water was largely responsible for the decreased recovery of infectivity from drying soil. Increased rates of virus inactivation at low soil moisture levels were also demonstrated. PMID:44178

  7. Characterization of a small railgun-based plasma jet source

    NASA Astrophysics Data System (ADS)

    Schneider, Maximilian; Adams, Colin; Popescu, Marius; Korsness, Joshua; Sherburne, Michael

    2016-10-01

    Experimental characterization of a small plasma jet source has been undertaken at Virginia Tech's Center for Space Science and Engineering Research (Space@VT). The plasma-armature railgun features a square bore approximately 0.5 × 0.5 cm and a rail length of 10 cm. Fed by an 100 psi- gas manifold and powered by an LC pulse-forming network capable of delivering 100 kA current on timescales of several microseconds, jet velocities in the 10-20 km/s range are predicted. A modular design, the insulators and rails are readily swappable for investigation the interaction of the plasma armature with plasma-facing components fabricated with different materials and geometry. The plasma jet is characterized by a suite of diagnostics including a multichord Mach-Zehnder interferometer, spectrometer, photodiode array, and fast photography. Diagnostics planned for the near future include plasma laser-induced fluorescence and particle energy analyzers. The railgun source described is envisioned as a future platform for basic science experiments on topics ranging from plasma-material interaction to plasma shocks.

  8. Fluorophore-based sensor for oxygen radicals in processing plasmas

    SciTech Connect

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  9. Cellular inactivation by ultrasound.

    PubMed

    Li, G C; Hahn, G M; Tolmach, L J

    1977-05-12

    The lethal effect of ultrasound (US) on mammalian cells has received relatively little attention. Understandably, potential genetic aspects of US have been of prime concern to physicians who use US as a diagnostic tool; at the average power densities involved (<1 W cm(-2)) little, if any cell killing is to be expected. There have been sporadic attempts to use higher intensities ( approximately 1 W cm(-2)) as a treatment modality in cancer therapy, but those experiments seem to have been based on inadequate cellular studies. The effects of US usually were evaluated in terms of morphological criteria rather than on quantitative determination of the loss of viability as measured by colony formation. There are few reports of the effects of US on survival of mammalian cells, and none specifically examine hyperthermic interaction. With the increased interest in hyperthermia for tumour therapy, attention has been directed towards the use of ultrasound to achieve tumour heating. In preliminary experiments in which US was used to heat the EMT6 sarcoma and KHJJ carcinoma in mice, we found a high percentage of tumour cures with short (approximately 30 min) treatments at temperatures (43-44 degrees C) where in vitro results of hyperthermia-induced cell killing would not have led to a prediction of any cures. We therefore initiated an investigation of the effects of US on survival of Chinese hamster cells to see if direct cell killing by US could explain our in vivo results, or, as in the case of radiofrequency (RF) electromagnetic heating, we would be forced to invoke host response(8). In particular, we examined the thermal and non-thermal components of cellular inactivation by US. We report here that there is a definite non-thermal cytotoxic effect of US. Its relative contribution to cell killing is a highly nonlinear function of the temperature of the cellular milieu. The survival curves show clearly that, beyond an initial threshold, small changes in temperature and/or US

  10. Hydrazine inactivates bacillus spores

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  11. Thermal Inactivation of Viruses

    DTIC Science & Technology

    1977-10-01

    Hammon. 1966. Studies on Japanese B encephalitis virus vaccines from tissue culture. VI. Development of a hamster kidney tissue culture inactivated... tissue culture passage, storage, temperature and drying on viability of SE polyoma virus. Exper. Biol. and Hed. Proc. of the Soc. for Exper. Biol...studies of heated tissue suspensions containing foot- and-mouth disease virus. Amer. J. Vet. Res. 20:510-521. Dupre’, M. V., and M. Frobisher. 1966

  12. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A new system for parallel drug screening against multiple-resistant HIV mutants based on lentiviral self-inactivating (SIN) vectors and multi-colour analyses

    PubMed Central

    2013-01-01

    Background Despite progress in the development of combined antiretroviral therapies (cART), HIV infection remains a significant challenge for human health. Current problems of cART include multi-drug-resistant virus variants, long-term toxicity and enormous treatment costs. Therefore, the identification of novel effective drugs is urgently needed. Methods We developed a straightforward screening approach for simultaneously evaluating the sensitivity of multiple HIV gag-pol mutants to antiviral drugs in one assay. Our technique is based on multi-colour lentiviral self-inactivating (SIN) LeGO vector technology. Results We demonstrated the successful use of this approach for screening compounds against up to four HIV gag-pol variants (wild-type and three mutants) simultaneously. Importantly, the technique was adapted to Biosafety Level 1 conditions by utilising ecotropic pseudotypes. This allowed upscaling to a large-scale screening protocol exploited by pharmaceutical companies in a successful proof-of-concept experiment. Conclusions The technology developed here facilitates fast screening for anti-HIV activity of individual agents from large compound libraries. Although drugs targeting gag-pol variants were used here, our approach permits screening compounds that target several different, key cellular and viral functions of the HIV life-cycle. The modular principle of the method also allows the easy exchange of various mutations in HIV sequences. In conclusion, the methodology presented here provides a valuable new approach for the identification of novel anti-HIV drugs. PMID:23286882

  14. An Inactivated Rabies Virus-Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models.

    PubMed

    Johnson, Reed F; Kurup, Drishya; Hagen, Katie R; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L; Cooper, Kurt; Jahrling, Peter B; Wang, Jonathan T; Ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J

    2016-10-15

    The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Importance of H-Abstraction in the Final Step of Nitrosoalkane Formation in the Mechanism-Based Inactivation of Cytochrome P450 by Amine-Containing Drugs

    PubMed Central

    Hirao, Hajime; Thellamurege, Nandun M.; Chuanprasit, Pratanphorn; Xu, Kai

    2013-01-01

    The metabolism of amine-containing drugs by cytochrome P450 enzymes (P450s) is prone to form a nitrosoalkane metabolic intermediate (MI), which subsequently coordinates to the heme iron of a P450, to produce a metabolic-intermediate complex (MIC). This type of P450 inhibition, referred to as mechanism-based inactivation (MBI), presents a serious concern in drug discovery processes. We applied density functional theory (DFT) to the reaction between N-methylhydroxylamine (NMH) and the compound I reactive species of P450, in an effort to elucidate the mechanism of the putative final step of the MI formation in the alkylamine metabolism. Our DFT calculations show that H-abstraction from the hydroxyl group of NMH is the most favorable pathway via which the nitrosoalkane intermediate is produced spontaneously. H-abstraction from the N–H bond was slightly less favorable. In contrast, N-oxidation and H-abstraction from the C–H bond of the methyl group had much higher energy barriers. Hence, if the conversion of NMH to nitrosoalkane is catalyzed by a P450, the reaction should proceed preferentially via H-abstraction, either from the O–H bond or from the N–H bond. Our theoretical analysis of the interaction between the MI and pentacoordinate heme moieties provided further insights into the coordination bond in the MIC. PMID:24351842

  16. Electron-ion plasma modification of Al-based alloys

    SciTech Connect

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta Krysina, Olga Teresov, Anton; Ivanova, Olga Ikonnikova, Irina

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  17. An ultracompact X-ray source based on a laser-plasma undulator.

    PubMed

    Andriyash, I A; Lehe, R; Lifschitz, A; Thaury, C; Rax, J-M; Krushelnick, K; Malka, V

    2014-08-22

    The capability of plasmas to sustain ultrahigh electric fields has attracted considerable interest over the last decades and has given rise to laser-plasma engineering. Today, plasmas are commonly used for accelerating and collimating relativistic electrons, or to manipulate intense laser pulses. Here we propose an ultracompact plasma undulator that combines plasma technology and nanoengineering. When coupled with a laser-plasma accelerator, this undulator constitutes a millimetre-sized synchrotron radiation source of X-rays. The undulator consists of an array of nanowires, which are ionized by the laser pulse exiting from the accelerator. The strong charge-separation field, arising around the wires, efficiently wiggles the laser-accelerated electrons. We demonstrate that this system can produce bright, collimated and tunable beams of photons with 10-100 keV energies. This concept opens a path towards a new generation of compact synchrotron sources based on nanostructured plasmas.

  18. Control of buffet onset by plasma-based actuators

    NASA Astrophysics Data System (ADS)

    Vishnyakov, O. I.; Polivanov, P. A.; Budovskiy, A. D.; Sidorenko, A. A.; Maslov, A. A.

    2016-10-01

    The paper is devoted to the experimental investigations of the influence of electrical discharges which produces local area of unsteady energy deposition and density variations on transonic flow, namely, buffet onset. Experiments are carried out in T-112 wind tunnel in TsAGI using model of rectangular wing with chord of 200 mm and span 599 mm. The profile of the wing is supercritical airfoil P184-15SR with max thickness 15% of chord length. Experiments were carried out in the range of Mach number 0.73÷0.78 for several angles of attack of the model. The flow around the model was studied by schlieren visualization, surface pressure distribution measurements and Pitot measurements in the wake of the wing using wake rake located downstream of the model. The experimentally data obtained show that excitation of plasma actuator based on spark discharge effectively influence on mean flow and characteristics of shock wave oscillations. It was found that control efficiency depends on frequency of discharge.

  19. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  20. Numerical simulations for plasma-based dry reforming

    NASA Astrophysics Data System (ADS)

    Snoeckx, Ramses; Aerts, Robby; Bogaerts, Annemie

    2012-10-01

    The conversion of greenhouse gases (CO2 and CH4) to more valuable chemicals is one of the challenges of the 21st century. The aim of this study is to describe the plasma chemistry occurring in a DBD for the dry reforming of CO2/CH4 mixtures, via numerical simulations. For this purpose we apply the 0D simulation code ``Global/kin,'' developed by Kushner, in order to simulate the reaction chemistry and the actual reaction conditions for a DBD, including the occurrence of streamers. For the chemistry part, we include a chemistry set consisting of 62 species taking part in 530 reactions. First we describe the reaction chemistry during one streamer, by simulating one discharge pulse and its afterglow, to obtain a better understanding of the reaction kinetics. Subsequently, we expand these results to real time scale simulations, i.e., 1 to 10 seconds, where we analyze the effects of the multiple discharges (streamers) and input energy on the conversion and the selectivity of the reaction products, as well as on the energy efficiency of the process. The model is validated based on experimental data from literature.

  1. Improved Inactivation of Nonenveloped Enteric Viruses and Their Surrogates by a Novel Alcohol-Based Hand Sanitizer ▿

    PubMed Central

    Macinga, David R.; Sattar, Syed A.; Jaykus, Lee-Ann; Arbogast, James W.

    2008-01-01

    Norovirus is the leading cause of food-related illness in the United States, and contamination of ready-to-eat items by food handlers poses a high risk for disease. This study reports the in vitro (suspension test) and in vivo (fingerpad protocol) assessments of a new ethanol-based hand sanitizer containing a synergistic blend of polyquaternium polymer and organic acid, which is active against viruses of public health importance, including norovirus. When tested in suspension, the test product reduced the infectivity of the nonenveloped viruses human rotavirus (HRV), poliovirus type 1 (PV-1), and the human norovirus (HNV) surrogates feline calicivirus (FCV) F-9 and murine norovirus type 1 (MNV-1) by greater than 3 log10 after a 30-s exposure. In contrast, a benchmark alcohol-based hand sanitizer reduced only HRV by greater than 3 log10 and none of the additional viruses by greater than 1.2 log10 after the same exposure. In fingerpad experiments, the test product produced a 2.48 log10 reduction of MNV-1 after a 30-s exposure, whereas a 75% ethanol control produced a 0.91 log10 reduction. Additionally, the test product reduced the infectivity titers of adenovirus type 5 (ADV-5) and HRV by ≥3.16 log10 and ≥4.32 log10, respectively, by the fingerpad assay within 15 s; and PV-1 was reduced by 2.98 log10 in 30 s by the same method. Based on these results, we conclude that this new ethanol-based hand sanitizer is a promising option for reducing the transmission of enteric viruses, including norovirus, by food handlers and care providers. PMID:18586970

  2. Improved inactivation of nonenveloped enteric viruses and their surrogates by a novel alcohol-based hand sanitizer.

    PubMed

    Macinga, David R; Sattar, Syed A; Jaykus, Lee-Ann; Arbogast, James W

    2008-08-01

    Norovirus is the leading cause of food-related illness in the United States, and contamination of ready-to-eat items by food handlers poses a high risk for disease. This study reports the in vitro (suspension test) and in vivo (fingerpad protocol) assessments of a new ethanol-based hand sanitizer containing a synergistic blend of polyquaternium polymer and organic acid, which is active against viruses of public health importance, including norovirus. When tested in suspension, the test product reduced the infectivity of the nonenveloped viruses human rotavirus (HRV), poliovirus type 1 (PV-1), and the human norovirus (HNV) surrogates feline calicivirus (FCV) F-9 and murine norovirus type 1 (MNV-1) by greater than 3 log(10) after a 30-s exposure. In contrast, a benchmark alcohol-based hand sanitizer reduced only HRV by greater than 3 log(10) and none of the additional viruses by greater than 1.2 log(10) after the same exposure. In fingerpad experiments, the test product produced a 2.48 log(10) reduction of MNV-1 after a 30-s exposure, whereas a 75% ethanol control produced a 0.91 log(10) reduction. Additionally, the test product reduced the infectivity titers of adenovirus type 5 (ADV-5) and HRV by > or =3.16 log(10) and > or =4.32 log(10), respectively, by the fingerpad assay within 15 s; and PV-1 was reduced by 2.98 log(10) in 30 s by the same method. Based on these results, we conclude that this new ethanol-based hand sanitizer is a promising option for reducing the transmission of enteric viruses, including norovirus, by food handlers and care providers.

  3. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  4. Plasma-filled diode based on the coaxial gun.

    PubMed

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  5. Plasma-filled diode based on the coaxial gun

    SciTech Connect

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  6. Plasma-filled diode based on the coaxial gun

    NASA Astrophysics Data System (ADS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  7. Molecular recognition-based detoxification of aluminum in human plasma.

    PubMed

    Demircelik, Ahmet H; Andac, Muge; Andac, Cenk A; Say, Ridvan; Denizli, Adil

    2009-01-01

    Molecular recognition-based Al(3+)-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-glutamic acid) (PHEMAGA-Al(3+)) beads were prepared to be used in selective removal of Al(3+) out of human plasma overdosed with Al(3+) cations. The PHEMAGA-Al(3+) beads were synthesized by suspension polymerization in the presence of a template-monomer complex (MAGA-Al(3+)). The specific surface area of PHEMAGA-Al(3+) beads was found to be 55.6 m(2)/g on the average. The MAGA content in the PHEMAGA-Al(3+) beads were found to be 640 micgomol/g polymer. The template Al(3+) cations could be reversibly detached from the matrix to form PHEMAGA-Al(3+) using a 50 mM solution of EDTA. The Al(3+)-free PHEMAGA-Al(3+) beads were then exposed to a selective separation procedure of Al(3+) out of human plasma, which was implemented in a continuous system by packing the beads into a separation column (10 cm long with an inner diameter of 0.9 cm) equipped with a water jacket to control the temperature. The Al(3+) adsorption capacity of the PHEMAGA-Al(3+) beads decreased drastically from 0.76 mg/g polymer to 0.22 mg/g polymer as the flow rate was increased from 0.3 ml/min to 1.5 ml/min. The relative selectivity coefficients of the PHEMAGA-Al(3+) beads for Al(3+)/Fe(3+), Al(3+)/Cu(2+) and Al(3+)/Zn(2+) were found to be 4.49, 8.95 and 32.44 times greater than those of the non-imprinted PHEMAGA beads, respectively. FT-IR analyses on the synthesized PHEMAGA-Al(3+) beads reveals monodentate and bidentate binding modes of Al(3+) in complex with the carboxylate groups of the glutamate residues. Density functional theory computations at the B3LYP/6-31G(d,p) basis set suggests that structured water molecules play essential role in the stability of the monodentate binding mode in 1:1 PHEMAGA-Al(3+) complexes. The PHEMAGA-Al(3+) beads were recovered and reused many times, with no significant decrease in their adsorption capacities.

  8. Inactivation of Escherichia coli phage by pulsed electric field treatment and analysis of inactivation mechanism

    NASA Astrophysics Data System (ADS)

    Tanino, Takanori; Yoshida, Tomoki; Sakai, Kazuki; Ohshima, Takayuki

    2013-03-01

    Inactivation of bacteriophage by pulsed electric field (PEF) treatment, one of the effective procedures for bacteria nonthermal inactivation, was studied. Model phage particles Escherichia coli bacteriophages M13mp18 and λ phage, were successfully inactivated by PEF treatment. The survival ratios of both bacteriophages decreased depending on the PEF treatment time when applied peak voltage was 5 or 7 kV, and the survival ratios after 12 min PEF treatment were 10-4 - 10-5. Electrophoresis analyses of biological molecules of inactivated λ phage detected no degradation of total protein and genomic DNA. These results suggested that the factor of phage inactivation by PEF treatment was not based on the degradation of protein or DNA, but on the destruction of phage particle structure. Sensitivity of E. coli phage to PEF treatment was compared with that of E. coli cell. Phage and MV1184 cell were treated with same condition PEF at 5 kV, respectively. After 12 min treatment, the survival ration of λ phage and MV1184 were 4.0 × 10-5 and 1.7 × 10-3, respectively. The survival ratio of phage was lower than that of MV1184. E. coli cell is more tolerant to inactivation with PEF treatment than coli phage.

  9. Performance of a space-based wavelet compressor for plasma count data on the MMS Fast Plasma Investigation

    NASA Astrophysics Data System (ADS)

    Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.

    2017-01-01

    Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.

  10. Effective inactivation of Saccharomyces cerevisiae in minimally processed Makgeolli using low-pressure homogenization-based pasteurization.

    PubMed

    Bak, Jin Seop

    2015-01-01

    In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.

  11. Ozone inactivation of human alpha 1-proteinase inhibitor

    SciTech Connect

    Johnson, D.A.

    1980-06-01

    Ozone decreased the trypsin, chymotrypsin, and elastase inhibitory activities of human alpha 1-proteinase inhibitor both in plasma and in solutions of the pure inhibitor. The total loss of porcine elastase inhibitory activity required 18 mol of ozone/mol of pure alpha 1-PI and approximately 850 mol of ozone/mol of alpha 1-PI in plasma. A corresponding loss of the ability to inhibit human leukocyte elastase was observed. Inactivated alpha 1-PI contains four residues of methionine sulfoxide, in addition to oxidized tryosine and tryptophan. Electrophoretic analysis demonstrated that the ozone-inactivated alpha 1-PI did not form normal complexes with serine proteinases. These findings suggest that the inhalation of ozone could inactivate alpha 1-PI on the airspace side of the lung to create a localized alpha 1-PI deficiency, which might contribute to the development of emphysema.

  12. Structural Analysis of Dusty Plasma Formations Based on Spatial Spectra

    SciTech Connect

    Khakhaev, A. D.; Luizova, L. A.; Piskunov, A. A.; Podryadchikov, S. F.; Soloviev, A. V.

    2008-09-07

    Some advantages of studying the structure of dusty plasma formations using spatial spectra are illustrated by simulated experiments and by processing actual images of dusty structures in dc glow discharge in inert and molecular gases.

  13. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  14. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  15. Structure and Function of Cytochromes P450 2B: From Mechanism-Based Inactivators to X-Ray Crystal Structures and Back

    PubMed Central

    2011-01-01

    This article reviews work from the author dating back to 1978 and focuses on the structural basis of cytochrome P450 (P450) function using available contemporary techniques. Early studies used mechanism-based inactivators that bound to the protein moiety of hepatic P450s to try to localize the active site. Subsequent studies used cDNA cloning, heterologous expression, site-directed mutagenesis, and homology modeling based on multiple bacterial P450 X-ray crystal structures to predict the active sites of CYP2B enzymes with considerable accuracy. Breakthroughs in engineering and expression of mammalian P450s enabled us to determine our first X-ray crystal structure of ligand-free rabbit CYP2B4. To date, we have solved 11 CYP2B4 and three human CYP2B6 structures, which represent four significantly different conformations. The plasticity of CYP2B4 has been confirmed by deuterium exchange mass spectrometry and is substantiated by molecular dynamics simulations. In addition to major movement of secondary structure elements, more subtle reorientation of active site side chains, especially Phe206, Phe297, and Glu301, contributes to the ability of CYP2B enzymes to bind various ligands. Isothermal titration calorimetry has proven to be a useful tool for studying the thermodynamics of ligand binding to CYP2B4 and CYP2B6, and NMR has enabled study of ligand binding orientation in solution as an adjunct to X-ray crystallography. A major challenge remains to harness the power of the various approaches to facilitate prediction of CYP2B specificity and inhibition. PMID:21502194

  16. Effect of hypochlorite-based disinfectants on inactivation of murine norovirus and attempt to eliminate or prevent infection in mice by addition to drinking water.

    PubMed

    Takimoto, Kazuhiro; Taharaguchi, Motoko; Sakai, Koji; Takagi, Hirotaka; Tohya, Yukinobu; Yamada, Yasuko K

    2013-01-01

    We evaluated the in vitro efficacy of weak acid hypochlorous solution (WAHS) against murine norovirus (MNV) by plaque assay and compared the efficacy with diluted NaOCl (Purelox) and 70% ethanol. WAHS was as effective as 70% ethanol and diluted Purelox for 0.5-min reactions. For 0.5-min reactions in the presence of mouse feces emulsion, the efficacy of WHAS and 1:600 diluted Purelox was decreased, reducing the virus titers by 2.3 and 2.6 log10, respectively, while 70% ethanol reduced the titer by more than 5 log10. However, WAHS showed more than 5 log10 reductions for the 5-min reaction even in the presence of feces emulsion. Since WAHS showed enough efficacy in inactivating MNV in vitro, we tried to eliminate MNV from MNV-infected mice by substituting WAHS for their drinking water. However, MNV was found to be positive in feces of mice drinking WAHS by an RT-nested PCR and plaque assay. To investigate whether hypochlorite-based disinfectants could prevent infection of a mouse with MNV, WAHS or 1:6,000 diluted Purelox was substituted for the drinking water of mice for 2 or 4 weeks, and then the mice were placed in a cage with an MNV-infected mouse. The supply of disinfectants was continued after cohabitation, but MNV was detected in the feces of all the mice at 1 week after cohabitation. In this study, we tried to eliminate and prevent MNV infection from mice by supplying hypochlorite-based disinfectants as an easy and low-cost method. Unfortunately, drinking disinfectants was ineffective, so it is important to keep the facility environment clean by use of effective disinfectants. Also, animals introduced into facilities should be tested as MNV free by quarantine and periodically confirmed as MNV free by microbiological monitoring.

  17. Effect of Hypochlorite-Based Disinfectants on Inactivation of Murine Norovirus and Attempt to Eliminate or Prevent Infection in Mice by Additionto Drinking Water

    PubMed Central

    Takimoto, Kazuhiro; Taharaguchi, Motoko; Sakai, Koji; Takagi, Hirotaka; Tohya, Yukinobu; Yamada, Yasuko K

    2013-01-01

    We evaluated the in vitro efficacy of weak acid hypochlorous solution (WAHS) against murine norovirus (MNV) by plaque assay and compared the efficacy with diluted NaOCl (Purelox) and 70% ethanol. WAHS was as effective as 70% ethanol and diluted Purelox for 0.5-min reactions. For 0.5-min reactions in the presence of mouse feces emulsion, the efficacy of WHAS and 1:600 diluted Purelox was decreased, reducing the virus titers by 2.3 and 2.6 log10, respectively, while 70% ethanol reduced the titer by more than 5 log10. However, WAHS showed more than 5 log10 reductions for the 5-min reaction even in the presence of feces emulsion. Since WAHS showed enough efficacy in inactivating MNV in vitro, we tried to eliminate MNV from MNV-infected mice by substituting WAHS for their drinking water. However, MNV was found to be positive in feces of mice drinking WAHS by an RT-nested PCR and plaque assay. To investigate whether hypochlorite-based disinfectants could prevent infection of a mouse with MNV, WAHS or 1:6,000 diluted Purelox was substituted for the drinking water of mice for 2 or 4 weeks, and then the mice were placed in a cage with an MNV-infected mouse. The supply of disinfectants was continued after cohabitation, but MNV was detected in the feces of all the mice at 1 week after cohabitation. In this study, we tried to eliminate and prevent MNV infection from mice by supplying hypochlorite-based disinfectants as an easy and low-cost method. Unfortunately, drinking disinfectants was ineffective, so it is important to keep the facility environment clean by use of effective disinfectants. Also, animals introduced into facilities should be tested as MNV free by quarantine and periodically confirmed as MNV free by microbiological monitoring. PMID:23903059

  18. Development of active porous medium filters based on plasma textiles

    SciTech Connect

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  19. High power, fast, microwave components based on beam generated plasmas

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  20. Ion plasma sources based on a microwave oven

    SciTech Connect

    Kuz`michev, A.I.

    1995-04-01

    A domestic microwave oven with a vacuum ionization chamber inside can be used as a composite ion plasma source. The microwave discharge in the chamber is a source of charged particles and plasma. The power fed into the discharge can be up to 500 W at a frequency of 2.45 GHz, and the pressure in the chamber can be 0.1-1000 Pa. The microwave devices for material processing and film deposition are described.

  1. Development of active porous medium filters based on plasma textiles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  2. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  3. Glucosyl epi-cyclophellitol allows mechanism-based inactivation and structural analysis of human pancreatic α-amylase.

    PubMed

    Caner, Sami; Zhang, Xiaohua; Jiang, Jianbing; Chen, Hong-Ming; Nguyen, Nham T; Overkleeft, Hermen; Brayer, Gary D; Withers, Stephen G

    2016-04-01

    As part of a search for selective, mechanism-based covalent inhibitors of human pancreatic α-amylase we describe the chemoenzymatic synthesis of the disaccharide analog α-glucosyl epi-cyclophellitol, demonstrate its stoichiometric reaction with human pancreatic α-amylase and evaluate the time dependence of its inhibition. X-ray crystallographic analysis of the covalent derivative so formed confirms its reaction at the active site with formation of a covalent bond to the catalytic nucleophile D197. The structure illuminates the interactions with the active site and confirms OH4' on the nonreducing end sugar as a good site for attachment of fluorescent tags in generating probes for localization and quantitation of amylase in vivo.

  4. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  5. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    NASA Astrophysics Data System (ADS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-02-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.

  6. Studies on the prekallikrein (kallikreinogen)—kallikrein enzyme system of human plasma

    PubMed Central

    Colman, Robert W.; Mattler, Lawrence; Sherry, Sol

    1969-01-01

    Evidence is presented in this paper that the kaolin-activated arginine esterase of plasma is related to plasma kallikrein activity. Such a relationship is based on studies that (1) establish a constant ratio of esterase activity on various synthetic substrates for the kaolin-activated arginine esterase, purified kallikrein(s), and preparations obtained during the fractionation procedure; (2) exclude other known plasma and tissue arginine esterases; (3) confirm the requirement for factor XII in the activation of the enzyme precursor; and (4) show similarities in behavior between the plasma esterase and purified kallikrein(s) toward a variety of inhibitors. Based on this probable identification, evidence is provided that the concentration of active factor XII determines the rate of activation of plasma kallikreinogen, and that the activation may be blocked by polybrene. Once activated, plasma kallikrein is rapidly inactivated by the naturally occurring plasma inhibitor, but the inhibition is incomplete. Acid or chloroform treatment of plasma rapidly inactivates the plasma inhibitor without affecting the concentration of plasma kallikreinogen. Another plasma arginine esterase with properties suggestive of permeability factor is activated by factor XII in the presence of synthetic substrates, but only at low ionic strength. The data suggest that this enzyme is closely related to plasma kallikrein and that it arises from a common precursor. PMID:4237065

  7. Proteomics applied to transfusion plasma: the beginning of the story.

    PubMed

    Ortiz, A; Richa, L; Defer, C; Dernis, D; Huart, J-J; Tokarski, C; Rolando, C

    2013-05-01

    'Safe blood' is and has always been the major concern in transfusion medicine. Plasma can undergo virus inactivation treatments based on physicochemical, photochemical or thermal methodologies for pathogen inactivation. The validation of these treatments is essentially based on clottability assays and clotting factors' titration; however, their impact on plasma proteins at the molecular level has not yet been evaluated. Proteomics appears as particularly adapted to identify, to localize and, consequently, to correlate these modifications to the biological activity change. At the crossroads of biology and analytical sciences, proteomics is the large-scale study of proteins in tissues, physiological fluids or cells at a given moment and in a precise environment. The proteomic strategy is based on a set of methodologies involving separative techniques like mono- and bidimensional gel electrophoresis and chromatography, analytical techniques, especially mass spectrometry, and bioinformatics. Even if plasma has been extensively studied since the very beginning of proteomics, its application to transfusion medicine has just begun. In the first part of this review, we present the principles of proteomics analysis. Then, we propose a state of the art of proteomics applied to plasma analysis. Finally, the use of proteomics for the evaluation of the impact of storage conditions and pathogen inactivation treatments applied to transfusion plasma and for the evaluation of therapeutic protein fractionated is discussed.

  8. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs.

    PubMed

    Atipairin, Apichart; Canyuk, Bhutorn; Ratanaphan, Adisorn

    2011-02-01

    The breast cancer susceptibility protein 1 (BRCA1) participates in the maintenance of cells genomic integrity through DNA repair, cell cycle checkpoint, protein ubiquitination, and transcriptional regulation. The N-terminus of BRCA1 contains a RING domain that preferentially forms a heterodimeric complex with BARD1. The BRCA1-BARD1 RING complex has an E3 ubiquitin ligase activity that plays an essential role in response to DNA damage. Preclinical and clinical studies have recently revealed that structural changes to the heterodimer result in alterations to the BRCA1-mediated DNA repair pathways in cancer cells, and lead to hypersensitivity to several chemotherapeutic agents. It is of interest to approach the BRCA1 RING domain as a potentially molecular target for platinum-based drugs for cancer therapy. A previous study has shown that the anticancer drug cisplatin formed intramolecular and intermolecular BRCA1 adducts in which His117 was the primary platinum-binding site, and conferred conformational changes and induced thermostability. Here, we have studied the functional consequence of the in vitro platination of the BRCA1 RING domain by a number of platinum complexes. The BRCA1 ubiquitin ligase activity was inhibited by transplatin > cisplatin > oxaliplatin > carboplatin in that order. The consequences of the binding of the platinum complexes on the reactivity of the BRCA1 were also discussed. The data raised the possibility of selectively targeting the BRCA1 DNA repair for cancer therapy.

  9. Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis.

    PubMed

    Weyman, Philip D; Beeri, Karen; Lefebvre, Stephane C; Rivera, Josefa; McCarthy, James K; Heuberger, Adam L; Peers, Graham; Allen, Andrew E; Dupont, Christopher L

    2015-05-01

    Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow on urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle.

  10. Tritium inventory control during ITER operation under carbon plasma-facing components by nitrogen-based plasma chemistry: a review

    NASA Astrophysics Data System (ADS)

    Tabarés, F. L.

    2013-06-01

    In spite of being highly suited for advanced plasma performance operation of tokamaks, as demonstrated over at least two decades of fusion plasma research, carbon is not currently considered as an integrating element of the plasma-facing components (PFCs) for the active phase of ITER. The main reason preventing its use under the very challenging scenarios foreseen in this phase, with edge-localized modes delivering several tens of MW m-2 to the divertor target every second or less, is the existing concern about reaching the tritium inventory value of 1000 g used in safety assessments in a time shorter than the projected lifetime of the divertor materials eroded by the plasma, set at 3000 shots. Although several mechanisms of tritium trapping in carbon components have been identified, co-deposition of the carbon radicals arising from chemically eroded chlorofluorocarbons in remote areas appears to play a dominant role. Several possible ways to keep control of the tritium build-up during the full operation of ITER have been put forward, mostly based on the periodic removal of the co-deposits by chemical (thermo-oxidation, plasma chemistry) or physical (laser, flash lamps) methods. In this work, we review the techniques for the inhibition and removal of tritium-rich co-deposits based on the strong chemical reactivity of some N-bearing molecules with carbon. The integration of these techniques into a possible scheme for tritium inventory control in the active phase of ITER under carbon-based PFCs with minimum down-time is discussed and the existing caveats are addressed.

  11. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  12. Model based estimates of long-term persistence of inactivated hepatitis A vaccine-induced antibodies in adults.

    PubMed

    Hens, Niel; Habteab Ghebretinsae, Aklilu; Hardt, Karin; Van Damme, Pierre; Van Herck, Koen

    2014-03-14

    In this paper, we review the results of existing statistical models of the long-term persistence of hepatitis A vaccine-induced antibodies in light of recently available immunogenicity data from 2 clinical trials (up to 17 years of follow-up). Healthy adult volunteers monitored annually for 17 years after the administration of the first vaccine dose in 2 double-blind, randomized clinical trials were included in this analysis. Vaccination in these studies was administered according to a 2-dose vaccination schedule: 0, 12 months in study A and 0, 6 months in study B (NCT00289757/NCT00291876). Antibodies were measured using an in-house ELISA during the first 11 years of follow-up; a commercially available ELISA was then used up to Year 17 of follow-up. Long-term antibody persistence from studies A and B was estimated using statistical models for longitudinal data. Data from studies A and B were modeled separately. A total of 173 participants in study A and 108 participants in study B were included in the analysis. A linear mixed model with 2 changepoints allowed all available results to be accounted for. Predictions based on this model indicated that 98% (95%CI: 94-100%) of participants in study A and 97% (95%CI: 94-100%) of participants in study B will remain seropositive 25 years after receiving the first vaccine dose. Other models using part of the data provided consistent results: ≥95% of the participants was projected to remain seropositive for ≥25 years. This analysis, using previously used and newly selected model structures, was consistent with former estimates of seropositivity rates ≥95% for at least 25 years. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Structural Analysis of Mammalian Cytochrome P450 2B4 Covalently Bound to the Mechanism-Based Inactivator tert-Butylphenylacetylene: Insight into Partial Enzymatic Activity†‡

    PubMed Central

    Gay, Sean C.; Zhang, Haoming; Wilderman, P. Ross; Roberts, Arthur G.; Liu, Tong; Li, Sheng; Lin, Hsia-lien; Zhang, Qinghai; Woods, Virgil L.; Stout, C. David; Hollenberg, Paul F.; Halpert, James R.

    2011-01-01

    A combined structural and computational analysis of rabbit cytochrome P450 2B4 covalently bound to the mechanism-based inactivator tert-butylphenylacetylene (tBPA) has yielded insight into how the enzyme retains partial activity. Since conjugation to tBPA modifies a highly conserved active site residue, the residual activity of tBPA-labeled 2B4 observed in previous studies was puzzling. Here we describe the first crystal structures of a modified mammalian P450, which show an oxygenated metabolite of tBPA conjugated to Thr 302 of helix I. These results are consistent with previous studies that identified Thr 302 as the site of conjugation. In each structure, the core of 2B4 remains unchanged, but the arrangement of plastic regions differs. This results in one structure that is compact and closed. In this conformation, tBPA points toward helix B′, making a 31° angle with the heme plane. This conformation is in agreement with previously performed in silico experiments. However, dimerization of 2B4 in the other structure, which is caused by movement of the B/C loop and helices F through G, alters the position of tBPA. In this case, tBPA lies almost parallel to the heme plane due to the presence of helix F′ of the opposite monomer entering the active site to stabilize the dimer. However, docking experiments using this open form show that tBPA is able to rotate upward to give testosterone and 7-ethoxy-4-trifluoromethylcoumarin access to the heme, which could explain the previously observed partial activity. PMID:21510666

  14. Inactivation of escherichia coli 0157:H7 and Salmonella on mung beans, alfalfa, and other seed types destined for sprout production by using an oxychloro-based sanitizer.

    PubMed

    Kumar, M; Hora, R; Kostrzynska, M; Waites, W M; Warriner, K

    2006-07-01

    The efficacy of a stabilized oxychloro-based food grade sanitizer to decontaminate seeds destined for sprout production has been evaluated. By using mung bean seeds as a model system, it was demonstrated that the sanitizer could be used to inactivate a five-strain cocktail of Escherichia coli O157:H7 or Salmonella introduced onto beans at 10(3) to 10(4) CFU/g. Salmonella was more tolerant to stabilized oxychloro than was E. coli O157:H7, with sanitizer levels of >150 and >50 ppm, respectively, being required to ensure pathogen-free sprouts. The decontamination efficacy was also found to be dependent on treatment time (>8 h optimal) and the seed-to-sanitizer ratio (>1:4 optimal). Stabilized oxychloro treatment did not exhibit phytotoxic effects, as germination and sprout yields were not significantly (P > 0.05) different as compared with untreated controls. Although human pathogens could be effectively eliminated from mung beans, the aerobic plate count of native microflora on sprouts grown from treated seed was not significantly (P > 0.05) different from the controls. The diversity of microbial populations (determined through 16S rRNA denaturing gradient gel electrophoresis analysis) associated with bean sprouts was not significantly affected by the sanitizer treatment. However, it was noted that Klebsiella and Herbasprillum (both common plant endophytes) were absent in sprouts derived from decontaminated seed but were present in control sprouts. When a further range of seed types was evaluated, it was found that alfalfa, cress, flax, and soybean could be decontaminated with the stabilized oxychloro sanitizer. However, the decontamination efficacy with other seed types was less consistent. It appears that the rate of seed germination and putative activity of sanitizer sequestering system(s), in addition to other factors, may limit the efficacy of the decontamination method.

  15. Plasma-based ambient mass spectrometry techniques: The current status and future prospective.

    PubMed

    Ding, Xuelu; Duan, Yixiang

    2015-01-01

    Plasma-based ambient mass spectrometry is emerging as a frontier technology for direct analysis of sample that employs low-energy plasma as the ionization reagent. The versatile sources of ambient mass spectrometry (MS) can be classified according to the plasma formation approaches; namely, corona discharge, glow discharge, dielectric barrier discharge, and microwave-induced discharge. These techniques allow pretreatment-free detection of samples, ranging from biological materials (e.g., flies, bacteria, plants, tissues, peptides, metabolites, and lipids) to pharmaceuticals, food-stuffs, polymers, chemical warfare reagents, and daily-use chemicals. In most cases, plasma-based ambient MS performs well as a qualitative tool and as an analyzer for semi-quantitation. Herein, we provide an overview of the key concepts, mechanisms, and applications of plasma-based ambient MS techniques, and discuss the challenges and outlook.

  16. Pathogen Inactivation Technologies: The Advent of Pathogen-Reduced Blood Components to Reduce Blood Safety Risk.

    PubMed

    Devine, Dana V; Schubert, Peter

    2016-06-01

    Pathogen inactivation technologies represent a shift in blood safety from a reactive approach to a proactive protective strategy. Commercially available technologies demonstrate effective killing of most viruses, bacteria, and parasites and are capable of inactivating passenger leukocytes in blood products. The use of pathogen inactivation causes a decrease in the parameters of products that can be readily measured in laboratory assays but that do not seem to cause any alteration in hemostatic effect of plasma or platelet transfusions. Effort needs to be made to further develop these technologies so that the negative quality impact is ameliorated without reducing the pathogen inactivation effectiveness. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Tantalum oxide-based plasma-sprayed environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Weyant, Christopher M.

    Energy efficiency in gas turbine engines is linked to the high temperature capabilities of materials used in the hot section of the engine. To facilitate a significant increase in engine efficiency, tough structural ceramics have been developed that can handle the thermo-mechanical stresses that gas turbine components experience. Unfortunately, the high-temperature, high-pressure, and high-velocity combustion gases in a gas turbine contain water vapor and/or hydrogen which have been shown to volatilize the protective silica layer on silicon-based ceramics. This degradation leads to significant surface recession in ceramic gas turbine components. In order to maintain their structural integrity, an environmental barrier coating (EBC) could be used to protect ceramics from the harsh gas turbine environment. Due to its coefficient of thermal expansion and phase stability at elevated temperatures, tantalum oxide (Ta2O5) was examined as the base material for an air plasma-sprayed EBC on Si3N 4 ceramics. As-sprayed pure Ta2O5 was comprised of both low-temperature beta-Ta2O5 and high-temperature alpha-Ta 2O5 that was quenched into the structure. Residual stress measurements via X-ray diffraction determined the as-sprayed coating to be in tension and extensive vertical macrocracks were observed in the coating. Heat treatments of the pure coating led to conversion of alpha-Ta2 O5 to beta-Ta2O5, conversion of tensile stresses to compressive, localized buckling of the coating, and significant grain growth which caused microcracking in the coating. The pure coating was found to be an inadequate EBC. Al2O3 was investigated as a solid solution alloying addition designed to enhance the stability of beta-Ta2O 5, and reduce grain growth by slowing grain boundary diffusion. La 2O3 was investigated as an alloying addition designed to form second phase particles which would reduce grain growth through pinning. Al2O3 was successful at both stabilizing beta-Ta 2O5 and reducing grain

  18. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  19. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-02-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  20. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    PubMed

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  1. Microwave Plasma Based Single-Step Method for Generation of Carbon Nanostructures

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada, Spain Microwave plasma based single-step method for generation of carbon nanostructures A. Dias 1 , E...Nowadays, carbon based two-dimensional (2D) nanostructures are one of the ongoing strategic research areas in science and technology. Graphene, an...fabrication, to obtain transferable sheets [1]. A plasma based method to synthesize substrate free, i.e., “free–standing” graphene at ambient conditions has

  2. Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF{sub 6} based plasmas

    SciTech Connect

    Perros, Alexander; Bosund, Markus; Sajavaara, Timo; Laitinen, Mikko; Sainiemi, Lauri; Huhtio, Teppo; Lipsanen, Harri

    2012-01-15

    The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 deg. C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF{sub 6} and O{sub 2} under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film's removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film removal because the film was inert to the SF{sub x}{sup +} and O{sup +} chemistries. The etch experiments showed the film to be a resilient masking material. This makes it an attractive candidate for use as an etch mask in demanding SF{sub 6} based plasma etch applications, such as through-wafer etching, or when oxide films are not suitable.

  3. Magnetic control of particle injection in plasma based accelerators.

    PubMed

    Vieira, J; Martins, S F; Pathak, V B; Fonseca, R A; Mori, W B; Silva, L O

    2011-06-03

    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.

  4. Investigation of opening switch mechanisms based on chemically reactive plasmas

    NASA Astrophysics Data System (ADS)

    Lapatovich, W. P.; Piejak, R. B.; Proud, J. M.

    1985-11-01

    An investigation of discharge-induced chemical reactions resulting in high-density product vapors containing strongly attaching gases has been conducted to evaluate the feasibility and potential of such reactions in rapid opening plasma switches. This new concept of employing such reactions to limit and/or interrupt large currents on a microsecond time scale was studied in two element (electrodeless and electroded) devices and in three element (electroded) devices. Bimolecular and unimolecular reactions were considered. The plasma reaction between AlCl sub 3 and SiO sub 2 was studied. The electrical properties of one of the reaction products (SiCl sub 4) is reported.

  5. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications

    PubMed Central

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.

    2014-01-01

    Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566

  6. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-05

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  7. Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces.

    PubMed

    Edelblute, C M; Malik, M A; Heller, L C

    2016-12-01

    The use of nonthermal plasma in the clinic has gained recent interest, as the need for alternative or supplementary strategies are necessary for preventing multi-drug resistant infections. The purpose of this study was to evaluate the antibacterial efficacy of a novel plasma reactor based on a high current version of sliding discharge and operated by nanosecond voltage pulses without an applied gas flow. This modification is advantageous for both portability and convenience. Bacterial inactivation was determined within a chamber by direct quantification of colony Jing units. Plasma exposure significantly inhibited the growth of Escherichia coli and Staphylococcus epidermidis following a 1-min application (p<0.001). S. epidermidis was more susceptible to the plasma after a 5-min exposure compared to E. coli. Temperature and pH measurements taken immediately before and after plasma exposure determined neither heat nor pH changes play a role in bacterial inactivation. Because of the notable effect on S. epidermidis, the effect of plasma exposure on several isolates and strains of the related opportunistic pathogen Staphylococcus aureus was quantified. While S. aureus isolates and strains were efficiently inactivated on an agar surface, subsequent testing on other clinically relevant surfaces demonstrated that the inactivation level, although significant, was reduced. This reduction appeared to depend on both the surface texture and the surface moisture content. These findings suggest this novel plasma source lacking an applied gas flow has potential application for surface bacterial decontamination.

  8. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping

    2017-05-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.

  9. Plasma Decontamination: A Case Study on Kill Efficacy of Geobacillus stearothermophilus Spores on Different Carrier Materials.

    PubMed

    Semmler, Egmont; Novak, Wenzel; Allinson, Wilf; Wallis, Darren; Wood, Nigel; Awakowicz, Peter; Wunderlich, Joachim

    2016-01-01

    decontaminates the outer surface of pre-sterilized syringe containers ("tubs"), before they are transferred into the aseptic area. The plasma does not penetrate into the tub. This article discusses the phase from development and test germ selection, across the identified sporicidal mechanisms, to a proposal for a validation scheme on the basis of commercially available biological indicators. A special focus is placed on an extensive investigation to establish a link between the tub surface microbial kill (polystyrene and Tyvek(and (2)) ) and biological indicator inactivation (stainless steel). Additionally, a rationale is developed on how an optical in-process monitor can be applied to establish a validatable limit on the base of the predetermined inactivation data of Geobacillus stearothermophilus endospores. © PDA, Inc. 2016.

  10. Inactivation of MS2 bacteriophage by streamer corona discharge in water.

    PubMed

    Lee, Changha; Kim, Jaeeun; Yoon, Jeyong

    2011-02-01

    Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation.

  11. Kinetic analysis of Legionella inactivation using ozone in wastewater.

    PubMed

    Li, Jun; Li, Kunquan; Zhou, Yan; Li, Xuebin; Tao, Tao

    2017-02-01

    Legionella inactivation using ozone was studied in wastewater using kinetic analysis and modeling. The experimental results indicate that the relationship between the ozone concentration, germ concentration, and chemical oxygen demand (COD) can be used to predict variations in germ and COD concentrations. The ozone reaction with COD and inactivation of Legionella occurred simultaneously, but the reaction with COD likely occurred at a higher rate than the inactivation, as COD is more easily oxidized by ozone than Legionella. Higher initial COD concentrations resulted in a lower inactivation rate and higher lnN/N0. Higher temperature led to a higher inactivation efficiency. The relationship of the initial O3 concentration and Legionella inactivation rate was not linear, and thus, the Ct value required for a 99.99% reduction was not constant. The initial O3 concentration was more important than the contact time, and a reduction of the initial O3 concentration could not be compensated by increasing the contact time. The Ct values were compared over a narrow range of initial concentrations; the Ct values could only be contrasted when the initial O3 concentrations were very similar. A higher initial O3 concentration led to a higher inflection point value for the lnN/N0 vs C0t curve. Energy consumption using a plasma corona was lower than when using boron-doped diamond electrodes.

  12. CYP3A activity based on plasma 4β-hydroxycholesterol during the early postpartum period has an effect on the plasma disposition of amlodipine.

    PubMed

    Naito, Takafumi; Kubono, Naoko; Ishida, Takuya; Deguchi, Shuhei; Sugihara, Masahisa; Itoh, Hiroaki; Kanayama, Naohiro; Kawakami, Junichi

    2015-12-01

    This study aimed to evaluate plasma 4β-hydroxycholesterol as an endogenous marker of CYP3A4/5 activity in early postpartum women and its impact on the plasma disposition of amlodipine. Twenty-seven early postpartum women treated with amlodipine for pregnancy-induced hypertension were enrolled. The plasma concentration of 4β-hydroxycholesterol and its ratio to cholesterol in postpartum and in non-perinatal women were evaluated. The predose plasma concentration of amlodipine was determined at steady state. The medians of the plasma 4β-hydroxycholesterol concentration at day 0-3 and 8-21 after delivery were 146 and 161 ng/mL, respectively. No significant difference was observed in the plasma concentration of 4β-hydroxycholesterol between the postpartum periods. The plasma concentration of 4β-hydroxycholesterol and its ratio to cholesterol in postpartum women were significantly higher than those in non-perinatal women. A large individual variability was observed in the dose-normalized plasma concentration of amlodipine in early postpartum women. A weak negative correlation was observed between the dose-normalized plasma concentration of amlodipine and the plasma concentration of 4β-hydroxycholesterol. In conclusion, early postpartum women possessed higher CYP3A activity based on plasma 4β-hydroxycholesterol and had a large pharmacokinetic variability in amlodipine. CYP3A activity during the early postpartum period had an effect on the plasma disposition of amlodipine.

  13. Los Alamos research in nozzle based coaxial plasma thrusters

    NASA Technical Reports Server (NTRS)

    Scheuer, Jay; Schoenberg, Kurt; Gerwin, Richard; Henins, Ivars; Moses, Ronald, Jr.; Wurden, Glen

    1992-01-01

    The topics are presented in viewgraph form and include the following: research approach; perspectives on efficient magnetoplasmadynamic (MPD) operation; NASA and DOE supported research in ideal magnetohydrodynamic plasma acceleration and flow, electrode phenomena, and magnetic nozzles; and future research directions and plans.

  14. Final report of ''Fundamental Surface Reaction Mechanisms in Fluorocarbon Plasma-Based Processing''

    SciTech Connect

    Gottlieb S. Oehrlein; H. Anderson; J. Cecchi; D. Graves

    2004-09-21

    This report provides a summary of results obtained in research supported by contract ''Fundamental Surface Reaction Mechanisms in Fluorocarbon Plasma-Based Processing'' (Contract No. DE-FG0200ER54608). In this program we advanced significantly the scientific knowledge base on low pressure fluorocarbon plasmas used for patterning of dielectric films and for producing fluorocarbon coatings on substrates. We characterized important neutral and ionic gas phase species that are incident at the substrate, and the processes that occur at relevant surfaces in contact with the plasma. The work was performed through collaboration of research groups at three universities where significantly different, complementary tools for plasma and surface characterization, computer simulation of plasma and surface processes exist. Exchange of diagnostic tools and experimental verification of key results at collaborating institutions, both experimentally and by computer simulations, was an important component of the approach taken in this work.

  15. Feature-based Analysis of Plasma-based Particle Acceleration Data.

    PubMed

    Rubel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

    2013-08-02

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due