Sample records for plasma based techniques

  1. Scalable graphene production: perspectives and challenges of plasma applications

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  2. Scalable graphene production: perspectives and challenges of plasma applications.

    PubMed

    Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth

    2016-05-19

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  3. COAL SULFUR MEASUREMENTS

    EPA Science Inventory

    The report describes a new technique for sulfur forms analysis based on low-temperature oxygen plasma ashing. The technique involves analyzing the low-temperature plasma ash by modified ASTM techniques after selectively removing the organic material. The procedure has been tested...

  4. Plasma spectroscopy analysis technique based on optimization algorithms and spectral synthesis for arc-welding quality assurance.

    PubMed

    Mirapeix, J; Cobo, A; González, D A; López-Higuera, J M

    2007-02-19

    A new plasma spectroscopy analysis technique based on the generation of synthetic spectra by means of optimization processes is presented in this paper. The technique has been developed for its application in arc-welding quality assurance. The new approach has been checked through several experimental tests, yielding results in reasonably good agreement with the ones offered by the traditional spectroscopic analysis technique.

  5. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  6. Severe Hemolysis in a Patient With Erythrocytosis During Coupled Plasma Filtration Adsorption Therapy Was Prevented by Changing From Membrane-Based Technique to a Centrifuge-Based One.

    PubMed

    Fan, Rong; Wu, Buyun; Kong, Ling; Gong, Dehua

    2016-01-01

    Coupled plasma filtration adsorption (CPFA) usually adopts membrane to separate plasma from blood. Here, we reported a case with erythrocytosis experienced severe hemolysis and membrane rupture during CPFA, which was avoided by changing from membrane-based technique to a centrifuge-based one. A 66-year-old man was to receive CPFA for severe hyperbilirubinemia (total bilirubin 922 μmol/L, direct bilirubin 638 μmol/L) caused by obstruction of biliary tract. He had erythrocytosis (hemoglobin 230 g/L, hematocrit 0.634) for years because of untreated tetralogy of Fallot. Severe hemolysis and membrane rupture occurred immediately after blood entering into the plasma separator even at a low flow rate (50 mL/min) and persisted after changing a new separator. Finally, centrifugal plasma separation technique was used for CPFA in this patient, and no hemolysis occurred. After 3 sessions of CPFA, total bilirubin level decreased to 199 μmol/L with an average decline by 35% per session. Thereafter, the patient received endoscopic biliary stent implantation, and total bilirubin level returned to nearly normal. Therefore, centrifugal-based plasma separation can also be used in CPFA and may be superior to a membrane-based one in patients with hyperviscosity.

  7. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  8. Novel biomaterials: plasma-enabled nanostructures and functions

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya

    2016-07-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.

  9. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  10. Erosion measurement techniques for plasma-driven railgun barrels

    NASA Astrophysics Data System (ADS)

    Jamison, K. A.; Niiler, Andrus

    1987-04-01

    Plasma-driven railguns are now in operation at several locations throughout the world. All share common problems in barrel erosion arising from the fact that the bore surface must contain a high temperature plasma armature which transmits the acceleration force to a projectile. The plasma temperature at the core of the armature is estimated to be 30 000 K or higher. Such conditions are erosive to most materials even when the exposure time is 100 μs or less. We have adapted two accelerator based techniques to aid in the study of this erosion. The first technique involves the collection and analysis of material ablated and left behind by the plasma. This analysis is based on the unfolding of the Rutherford backscattered (RBS) spectra of 1 MeV deuterons incident on residue collected from a railgun bore. The second technique is an erosion measurement involving thin layer activation (TLA) of surfaces. In this process, the copper rail surface is activated by 2.4 MeV protons creating a relatively thin (3 m) layer sparsely seeded with a long lived zinc isotope. Monitoring the decay of the activated sample before and after a firing can detect surface wear of about 0. 1 m. Results from the RBS and TLA experiments on the BRL plasma driven railgun are described.

  11. Bayesian Techniques for Plasma Theory to Bridge the Gap Between Space and Lab Plasmas

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik

    2017-10-01

    We will show how Bayesian techniques provide a general data analysis methodology that is better suited to investigate phenomena that require a nonlinear theory for an explanation. We will provide short examples of how Bayesian techniques have been successfully used in the radiation belts to provide precise nonlinear spectral estimates of whistler mode chorus and how these techniques have been verified in laboratory plasmas. We will demonstrate how Bayesian techniques allow for the direct competition of different physical theories with data acting as the necessary arbitrator. This work is supported by the Naval Research Laboratory base program and by the National Aeronautics and Space Administration under Grant No. NNH15AZ90I.

  12. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  13. Applications of digital processing for noise removal from plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-11-11

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.

  14. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  15. Analysis on laser plasma emission for characterization of colloids by video-based computer program

    NASA Astrophysics Data System (ADS)

    Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni

    2016-02-01

    Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.

  16. Diagnostic techniques in thermal plasma processing, part 2, volume 2

    NASA Astrophysics Data System (ADS)

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light.

  17. Plasma skin resurfacing: personal experience and long-term results.

    PubMed

    Bentkover, Stuart H

    2012-05-01

    This article presents a comprehensive clinical approach to plasma resurfacing for skin regeneration. Plasma technology, preoperative protocols, resurfacing technique, postoperative care, clinical outcomes, evidence-based results, and appropriate candidates for this procedure are discussed. Specific penetration depth and specific laser energy measurements are provided. Nitrogen plasma skin regeneration is a skin-resurfacing technique that offers excellent improvement of mild to moderate skin wrinkles and overall skin rejuvenation. It also provides excellent improvement in uniformity of skin color and texture in patients with hyperpigmentation with Fitzpatrick skin types 1 through 4. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Removal of floating dust in glow discharge using plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2010-07-05

    Dust can be an inconvenient source of impurities in plasma processing reactors and in many cases it can cause damage to the plasma-treated surfaces. A technique for dust expulsion out of the trapping region in plasma is presented here, based on the wind force exerted on dust particles by a pulsed plasma jet. Its applicability is demonstrated by removing floating dust in the sheath of parallel-plate capacitive radio-frequency plasma.

  19. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  20. Addressing Theory and Performance Enhancements for the Independent Sustain and Address AC Plasma Display

    NASA Astrophysics Data System (ADS)

    Warren, Kevin Wilson

    The Independent Sustain and Address (ISA) AC plasma panel is a flat, flicker-free, gas discharge type of display device. This display technology promises to reduce both the cost of manufacturing and operation of AC plasma displays. The ISA technology uses a vastly different mechanism to change the state of the display pixels than the standard AC plasma technology. This addressing mechanism is an exploitation of some of the natural characteristics associated with the plasma that can form during strong gas discharges. This thesis presents detailed data from experiments that were designed to evaluate and test the effectiveness of this mechanism. Through these experiments, the theory that the addressing methodology is based upon is developed and evaluated. These experiments show that the address margin windows for this technology are very large, minimally two to three times larger than the address margins for the standard XY AC plasma addressing techniques. New capabilities are also described, such as global brightness control for the ISA technology and a technique for increasing the addressing rate. These advances were designed into working prototypes and transferred to industry where there are currently commercial products available based upon these advances. A technique for implementing gray scale using some of these advances is also proposed.

  1. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based on the time-resolved absolute intensity of a Nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N2 (C 3piu) state. Measured electron density waveforms are in fair agreement with electron densities obtained using the Stark broadening technique. In addition, time dependent population densities of Ar I metastable and resonant levels were obtained by employing a kinetic model developed based on analysis of population density rates of excited Ar I p levels. Both the experimental results and numerical models for both types of gas discharges indicate that multispecies chemistry of gases plays an important role in understanding the dynamics and characterizing the properties of these discharges.

  2. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  3. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less

  4. Suppression of tritium retention in remote areas of ITER by nonperturbative reactive gas injection.

    PubMed

    Tabarés, F L; Ferreira, J A; Ramos, A; van Rooij, G; Westerhout, J; Al, R; Rapp, J; Drenik, A; Mozetic, M

    2010-10-22

    A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4  nm/min deposition can be suppressed by addition of 1  Pa·m³ s⁻¹ ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.

  5. Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Abramenko, D. B.; Spiridonov, M. V.; Krainov, P. V.; Krivtsun, V. M.; Astakhov, D. I.; Medvedev, V. V.; van Kampen, M.; Smeets, D.; Koshelev, K. N.

    2018-04-01

    Experimental studies of stopping of ion fluxes from laser-produced plasma by a low-pressure gas atmosphere are presented. A modification of the time-of-flight spectroscopy technique is proposed for the stopping cross-sectional measurements in the ion energy range of 0.1-10 keV. The application of the proposed technique is demonstrated for Sn ion stopping by H2 gas. This combination of elements is of particular importance for the development of plasma-based sources of extreme ultraviolet radiation for lithographic applications.

  6. Shuttle wave experiments. [space plasma investigations: design and instrumentation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1976-01-01

    Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.

  7. [Study of the effect of heat source separation distance on plasma physical properties in laser-pulsed GMAW hybrid welding based on spectral diagnosis technique].

    PubMed

    Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang

    2014-05-01

    In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.

  8. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Bell, R. E.; Bitter, M.

    2014-11-15

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy andmore » tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  9. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE PAGES

    Pablant, N. A.; Bell, R. E.; Bitter, M.; ...

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  10. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  11. Spectroscopic analysis technique for arc-welding process control

    NASA Astrophysics Data System (ADS)

    Mirapeix, Jesús; Cobo, Adolfo; Conde, Olga; Quintela, María Ángeles; López-Higuera, José-Miguel

    2005-09-01

    The spectroscopic analysis of the light emitted by thermal plasmas has found many applications, from chemical analysis to monitoring and control of industrial processes. Particularly, it has been demonstrated that the analysis of the thermal plasma generated during arc or laser welding can supply information about the process and, thus, about the quality of the weld. In some critical applications (e.g. the aerospace sector), an early, real-time detection of defects in the weld seam (oxidation, porosity, lack of penetration, ...) is highly desirable as it can reduce expensive non-destructive testing (NDT). Among others techniques, full spectroscopic analysis of the plasma emission is known to offer rich information about the process itself, but it is also very demanding in terms of real-time implementations. In this paper, we proposed a technique for the analysis of the plasma emission spectrum that is able to detect, in real-time, changes in the process parameters that could lead to the formation of defects in the weld seam. It is based on the estimation of the electronic temperature of the plasma through the analysis of the emission peaks from multiple atomic species. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, we employ the LPO (Linear Phase Operator) sub-pixel algorithm to accurately estimate the central wavelength of the peaks (allowing an automatic identification of each atomic species) and cubic-spline interpolation of the noisy data to obtain the intensity and width of the peaks. Experimental tests on TIG-welding using fiber-optic capture of light and a low-cost CCD-based spectrometer, show that some typical defects can be easily detected and identified with this technique, whose typical processing time for multiple peak analysis is less than 20msec. running in a conventional PC.

  12. Effects of O 2 plasma and UV-O 3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH 4 sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humayun, Md Tanim; Sainato, Michela; Divan, Ralu

    We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less

  13. Effects of O 2 plasma and UV-O 3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH 4 sensors

    DOE PAGES

    Humayun, Md Tanim; Sainato, Michela; Divan, Ralu; ...

    2017-07-28

    We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less

  14. Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.; Zhou, R.; Yang, X. Q., E-mail: yyxxqq-mail@163.com

    Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition thatmore » the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10{sup 5 }V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.« less

  15. Formation of low resistance ohmic contacts in GaN-based high electron mobility transistors with BCl3 surface plasma treatment

    NASA Astrophysics Data System (ADS)

    Fujishima, Tatsuya; Joglekar, Sameer; Piedra, Daniel; Lee, Hyung-Seok; Zhang, Yuhao; Uedono, Akira; Palacios, Tomás

    2013-08-01

    A BCl3 surface plasma treatment technique to reduce the resistance and to increase the uniformity of ohmic contacts in AlGaN/GaN high electron mobility transistors with a GaN cap layer has been established. This BCl3 plasma treatment was performed by an inductively coupled plasma reactive ion etching system under conditions that prevented any recess etching. The average contact resistances without plasma treatment, with SiCl4, and with BCl3 plasma treatment were 0.34, 0.41, and 0.17 Ω mm, respectively. Also, the standard deviation of the ohmic contact resistance with BCl3 plasma treatment was decreased. This decrease in the standard deviation of contact resistance can be explained by analyzing the surface condition of GaN with x-ray photoelectron spectroscopy and positron annihilation spectroscopy. We found that the proposed BCl3 plasma treatment technique can not only remove surface oxide but also introduce surface donor states that contribute to lower the ohmic contact resistance.

  16. Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team

    2018-05-01

    In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.

  17. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.

  18. Artificial plasma experiments. Chemical release observations associated with the CRRES program

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.

    1994-01-01

    This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques.

  19. Temperature of the plasmasphere from Van Allen Probes HOPE

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Goldstein, J.; Corley, G. D.; Farner, W.; Kistler, L. M.; Larsen, B. A.; Mouikis, C. G.; Ramnarace, C.; Skoug, R. M.; Turner, N. E.

    2017-01-01

    We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional E→×B→ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements—generally between 0.2 and 2 eV (2000-20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes.

  20. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  1. Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow.

    PubMed

    Cheng, Ji-Yen; Hsiung, Lo-Chang

    2004-12-01

    Electrowetting (EW)-based techniques have been widely used in manipulating discrete liquid. However, few articles discussed the controlling of continuous fluid flow by using EW-based techniques. In this paper, an EW-based valve combined with plasma-modified Teflon surface, which serves as a microfluidic guidance, in controlling continuous fluid flow has been demonstrated. The plasma-modified Teflon surface is firstly demonstrated for confining continuous fluid flow. The EW-based microfluidic device possesses the functions of a valve and a microchannel without complex moving parts and grooved microchannels. The quantitative characteristics of the EW-based valve are also studied. Propylene carbonate (PC) is firstly demonstrated as the working liquid in the EW-based device because of its applications in parallel oligonucleotide synthesis. It is found that lower valve actuation voltage reduces the deterioration of the valve and improves the valve stability.

  2. Energy distributions and radiation transport in uranium plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.

  3. Measurement of erosion in helicon plasma thrusters using the VASIMR® VX-CR device

    NASA Astrophysics Data System (ADS)

    Del Valle Gamboa, Juan Ignacio; Castro-Nieto, Jose; Squire, Jared; Carter, Mark; Chang-Diaz, Franklin

    2015-09-01

    The helicon plasma source is one of the principal stages of the high-power VASIMR® electric propulsion system. The VASIMR® VX-CR experiment focuses solely on this stage, exploring the erosion and long-term operation effects of the VASIMR helicon source. We report on the design and operational parameters of the VX-CR experiment, and the development of modeling tools and characterization techniques allowing the study of erosion phenomena in helicon plasma sources in general, and stand-alone helicon plasma thrusters (HPTs) in particular. A thorough understanding of the erosion phenomena within HPTs will enable better predictions of their behavior as well as more accurate estimations of their expected lifetime. We present a simplified model of the plasma-wall interactions within HPTs based on current models of the plasma density distributions in helicon discharges. Results from this modeling tool are used to predict the erosion within the plasma-facing components of the VX-CR device. Experimental techniques to measure actual erosion, including the use of coordinate-measuring machines and microscopy, will be discussed.

  4. Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of He-like ions X-ray emission

    DOE PAGES

    Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; ...

    2016-12-08

    Here, in this paper, we detail the diagnostic technique used to infer the spatially resolved electron temperatures and densities in experiments dedicated to investigate the generation of magnetically collimated plasma jets. It is shown that the relative intensities of the resonance transitions in emitting He-like ions can be used to measure the temperature in such recombining plasmas. The intensities of these transitions are sensitive to the plasma density in the range of 10 16–10 20 cm -3 and to plasma temperature ranges from 10 to 100 eV for ions with a nuclear charge Z n ~10. We show how detailedmore » calculations of the emissivity of F VIII ions allow to determine the parameters of the plasma jets that were created using ELFIE ns laser facility (Ecole Polytechnique, France). Lastly, the diagnostic and analysis technique detailed here can be applied in a broader context than the one of this study, i.e., to diagnose any recombining plasma containing He-like fluorine ions.« less

  5. Plasma Radiofrequency Discharges as Cleaning Technique for the Removal of C-W Coatings

    NASA Astrophysics Data System (ADS)

    Cremona, A.; Vassallo, E.; Caniello, R.; Ghezzi, F.; Grosso, G.; Laguardia, L.

    2013-06-01

    Erosion of materials by chemical and physical sputtering is one of the most concern of plasma wall interaction in tokamaks. In divertor ITER-like tokamaks, where carbon and tungsten are planned to be used, hydrogenated C-W mixed compounds are expected to form by erosion, transport and re-deposition processes. The selection of these materials as divertor components involves lifetime and safety issues due to tritium retention in carbon co-deposits. In this paper a cleaning technique based on RF (13.56 MHz) capacitively coupled H2/Ar plasmas has been used to remove C-W mixed materials from test specimens. The dependence of the removal rate on the H2/Ar ratio and on the plasma pressure has been investigated by X-ray photoelectron spectroscopy, atomic force microscopy, profilometry as regards the solid phase and by Langmuir probe and optical emission spectroscopy as regards the plasma phase. The best result has been obtained with a H2/Ar ratio of 10/90 at a pressure of 1 Pa. An explanation based on a synergistic effect between physical sputtering due to energetic ions and chemical etching due to radicals, together with the pressure dependence of the ion energy distribution function, is given.

  6. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    PubMed Central

    Yano, Kazuyoshi; Iwasaki, Akira

    2016-01-01

    A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection. PMID:28029144

  7. Plasma assisted surface treatments of biomaterials.

    PubMed

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Study on the Transient Behavior of Pulse Modulated Dual-Frequency Capacitive Discharges based on Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young

    2016-09-01

    Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.

  9. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    NASA Astrophysics Data System (ADS)

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  10. Mechanisms of carbon dimer formation in colliding laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Oliver, John; Diwakar, Prasoon K.

    2017-07-01

    It has been demonstrated that the hot stagnation region formed during the collision of laser-produced carbon plasmas is rich with carbon dimers which have been shown to be synthesized into large carbon macromolecules such as carbon fullerene onions and nanotubes. In this study, we developed and integrated experimental and multidimensional modeling techniques to access the temporal and spatial resolution of colliding plasma characteristics that elucidated the mechanism for early carbon dimer formation. Plume evolution imaging, monochromatic imaging, and optical emission spectroscopy of graphite-produced, carbon plasmas were performed. Experimental results were compared with the results of the 3D comprehensive modeling using our HEIGHTS simulation package. The results are explained based on a fundamental analysis of plasma evolution, colliding layer formation, stagnation, and expansion. The precise mechanisms of the plasma collision, plume propagation, and particle formation are discussed based on the experimental and modeling results.

  11. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Kim, Yong-Sam; Oh, Na Ree; Ji, Eun Sun; Kim, Kwang Hoe; Lee, Yeon Jung; Kim, Sung Ho; Yoo, Jong Shin

    2013-11-07

    A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins.

  12. Waste-to-Energy Plant Environmental Assessment, Dyess Air Force Base, Texas

    DTIC Science & Technology

    2011-09-01

    pyrolysis can be defined as “ gasification minus oxygen.” Pyrolysis is the technique of heating organic matter ( biomass ) between 480 and 1,470 °F in the...provider using one of four alternative technologies: 1) gasification ; 2) pyrolysis; 3) plasma gasification /pyrolysis and 4) incineration. Under this...the solicitation to build a WTE plant based on one of the following alternative technologies: I) gasification ; 2) pyrolysis; 3) plasma gasification

  13. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, H., E-mail: tomita@nagoya-u.jp; Yamashita, F.; Nakayama, Y.

    2014-11-15

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NESmore » system.« less

  14. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTARa)

    NASA Astrophysics Data System (ADS)

    Tomita, H.; Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Cheon, M. S.; Isobe, M.; Ogawa, K.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T.

    2014-11-01

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  15. Plasma ignition and tuning in different cells of a 1.3 GHz nine-cell superconducting radio frequency cavity: Proof of principle

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Moss, Andrew; Goudket, Philippe; Pattalwar, Shrikant; Herbert, Joe; Valizadeh, Reza; McIntosh, Peter

    2018-06-01

    Field emission is one of the critical issues in the superconducting radio frequency (SRF) cavities and can degrade their accelerating gradient during operation. The contamination present at top surface of the SRF cavity is one of the foremost reasons for field emission. Plasma based surface processing can be a viable option to eliminate such surface contaminants and enhance performance of the SRF cavity especially for in-situ applications. These days, 1.3 GHz nine-cell SRF cavity has become baseline standard for many particle accelerators, it is of interest to develop plasma cleaning technique for such SRF cavities. In the development of the plasma processing technique for SRF cavities, the most challenging task is to ignite and tune the plasma in different cells of the SRF cavity. At Daresbury laboratory, UK, we have successfully achieved plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity. The plasma ignition in different cells of the cavity was accomplished at room temperature towards room temperature plasma cleaning of the SRF cavity surface. Here, we report the successful demonstration of the plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity.

  16. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.

    PubMed

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  17. Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan

    2018-01-01

    A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.

  18. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  19. A novel fast and flexible technique of radical kinetic behaviour investigation based on pallet for plasma evaluation structure and numerical analysis

    NASA Astrophysics Data System (ADS)

    Malinowski, Arkadiusz; Takeuchi, Takuya; Chen, Shang; Suzuki, Toshiya; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Lukasiak, Lidia; Jakubowski, Andrzej

    2013-07-01

    This paper describes a new, fast, and case-independent technique for sticking coefficient (SC) estimation based on pallet for plasma evaluation (PAPE) structure and numerical analysis. Our approach does not require complicated structure, apparatus, or time-consuming measurements but offers high reliability of data and high flexibility. Thermal analysis is also possible. This technique has been successfully applied to estimation of very low value of SC of hydrogen radicals on chemically amplified ArF 193 nm photoresist (the main goal of this study). Upper bound of our technique has been determined by investigation of SC of fluorine radical on polysilicon (in elevated temperature). Sources of estimation error and ways of its reduction have been also discussed. Results of this study give an insight into the process kinetics, and not only they are helpful in better process understanding but additionally they may serve as parameters in a phenomenological model development for predictive modelling of etching for ultimate CMOS topography simulation.

  20. Space plasma contractor research, 1988

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1989-01-01

    Results of experiments conducted on hollow cathode-based plasma contractors are reported. Specific tests in which attempts were made to vary plasma conditions in the simulated ionospheric plasma are described. Experimental results showing the effects of contractor flowrate and ion collecting surface size on contactor performance and contactor plasma plume geometry are presented. In addition to this work, one-dimensional solutions to spherical and cylindircal space-charge limited double-sheath problems are developed. A technique is proposed that can be used to apply these solutions to the problem of current flow through elongated double-sheaths that separate two cold plasmas. Two conference papers which describe the essential features of the plasma contacting process and present data that should facilitate calibration of comprehensive numerical models of the plasma contacting process are also included.

  1. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    PubMed Central

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  2. On the Isothermality of Solar Plasmas

    NASA Technical Reports Server (NTRS)

    Landi, E.; Klimchuk, J. A.

    2010-01-01

    Recent measurements have shown that the quiet unstructured solar corona observed at the solar limb is close to isothermal, at a temperature that does not appear to change over wide areas or with time. Some in dividual active loop structures have also been found to be nearly iso thermal both along their axis and across their cross-section. Even a complex active region observed at the solar limb has been found to be composed of three distinct isothermal plasmas. If confirmed, these r esults would pose formidable challenges to the current theoretical understanding of the thermal structure and heating of the solar corona. For example, no current theoretical model can explain the excess dens ities and lifetimes of many observed loops if the loops are in fact i sothermal. All of these measurements are based on the so-called emiss ion measure (EM) diagnostic technique that is applied to a set of opt ically thin lines under the assumption of isothermal plasma. It provi des simultaneous measurement of both the temperature and EM. However, no study has ever been carried out to quantify the uncertainties in the technique and to rigorously assess its ability to discriminate bet ween isothermal and multithermal plasmas. Such a study is the topic o f the present work. We define a formal measure of the uncertainty in the EM diagnostic technique that can easily be applied to real data. We here apply it to synthetic data based on a variety of assumed plas ma thermal distributions, and develop a method to quantitatively asse ss the degree of multithermality of a plasma.

  3. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches.

    PubMed

    Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2010-05-01

    To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel-based and a LC MS/MS-based proteomics method. Two-day-old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two-phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel-based proteomics, four and eight protein spots were identified as up- and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up- and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low-abundance proteins could be identified by the LC MS/MS-based method. Three homologues of plasma membrane H(+)-ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H(+)-ATPase protein.

  4. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOEpatents

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  5. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.

  6. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  7. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  8. Scalable graphene production from ethanol decomposition by microwave argon plasma torch

    NASA Astrophysics Data System (ADS)

    Melero, C.; Rincón, R.; Muñoz, J.; Zhang, G.; Sun, S.; Perez, A.; Royuela, O.; González-Gago, C.; Calzada, M. D.

    2018-01-01

    A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.

  9. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.

  10. A real-time spectroscopic sensor for monitoring laser welding processes.

    PubMed

    Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario

    2009-01-01

    In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market.

  11. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    NASA Astrophysics Data System (ADS)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  12. Electrostatic Debye layer formed at a plasma-liquid interface

    NASA Astrophysics Data System (ADS)

    Rumbach, Paul; Clarke, Jean Pierre; Go, David B.

    2017-05-01

    We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.

  13. Hot and dense plasma probing by soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Krůs, M.; Kozlová, M.; Nejdl, J.; Rus, B.

    2018-01-01

    Soft X-ray lasers, due to their short wavelength, its brightness, and good spatial coherence, are excellent sources for the diagnostics of dense plasmas (up to 1025 cm-3) which are relevant to e.g. inertial fusion. Several techniques and experimental results, which are obtained at the quasi-steady state scheme being collisionally pumped 21.2 nm neon-like zinc laser installed at PALS Research Center, are presented here; among them the plasma density measurement by a double Lloyd mirror interferometer, deflectometer based on Talbot effect measuring plasma density gradients itself, with a following ray tracing postprocessing. Moreover, the high spatial resolution (nm scale) plasma images can be obtained when soft X-ray lasers are used.

  14. Atmospheric-pressure guided streamers for liposomal membrane disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterizationmore » including gas temperature calculation.« less

  15. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  16. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambino, Nadia, E-mail: gambinon@ethz.ch; Brandstätter, Markus; Rollinger, Bob

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device hasmore » been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.« less

  17. Multi-dimensional optical and laser-based diagnostics of low-temperature ionized plasma discharges

    DOE PAGES

    Barnat, Edward V.

    2011-09-15

    In this paper, a review of work centered on the utilization of multi-dimensional optical diagnostics to study phenomena arising in radiofrequency plasma discharges is given. The diagnostics range from passive techniques such as optical emission to more active techniques utilizing nanosecond lasers capable of both high temporal and spatial resolution. In this review, emphasis is placed on observations that would have been more difficult, if not impossible, to make without the use of such diagnostic techniques. Examples include the sheath structure around an electrode consisting of two different metals, double layers that arise in magnetized hydrogen discharges, or a largemore » region of depleted argon 1s 4 levels around a biased probe in an rf discharge.« less

  18. Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  19. Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.

    PubMed

    McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  20. Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Lau, Matthew

    2011-01-01

    The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.

  1. Collaborative Research: Tomographic imaging of laser-plasma structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downer, Michael

    The interaction of intense short laser pulses with ionized gases, or plasmas, underlies many applications such as acceleration of elementary particles, production of energy by laser fusion, generation of x-ray and far-infrared “terahertz” pulses for medical and materials probing, remote sensing of explosives and pollutants, and generation of guide stars. Such laser-plasma interactions create tiny electron density structures (analogous to the wake behind a boat) inside the plasma in the shape of waves, bubbles and filaments that move at the speed of light, and evolve as they propagate. Prior to recent work by the PI of this proposal, detailed knowledgemore » of such structures came exclusively from intensive computer simulations. Now “snapshots” of these elusive, light-velocity structures can be taken in the laboratory using dynamic variant of holography, the technique used to produce ID cards and DVDs, and dynamic variant of tomography, the technique used in medicine to image internal bodily organs. These fast visualization techniques are important for understanding, improving and scaling the above-mentioned applications of laser-plasma interactions. In this project, we accomplished three things: 1) We took holographic pictures of a laser-driven plasma-wave in the act of accelerating electrons to high energy, and used computer simulations to understand the pictures. 2) Using results from this experiment to optimize the performance of the accelerator, and the brightness of x-rays that it emits. These x-rays will be useful for medical and materials science applications. 3) We made technical improvements to the holographic technique that enables us to see finer details in the recorded pictures. Four refereed journal papers were published, and two students earned PhDs and moved on to scientific careers in US National Laboratories based on their work under this project.« less

  2. Monitoring non-thermal plasma processes for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  3. Plasma Processing of Lunar Regolith Simulant for Diverse Applications

    NASA Technical Reports Server (NTRS)

    Schofield, Elizabeth C.; Sen, Subhayu; O'Dell, J. Scott

    2008-01-01

    Versatile manufacturing technologies for extracting resources from the moon are needed to support future space missions. Of particular interest is the production of gases and metals from lunar resources for life support, propulsion, and in-space fabrication. Deposits made from lunar regolith could yield highly emissive coatings and near-net shaped parts for replacement or repair of critical components. Equally important is development of high fidelity lunar simulants for ground based validation of potential lunar surface operations. Described herein is an innovative plasma processing technique for insitu production of gases, metals, coatings, and deposits from lunar regolith, and synthesis of high fidelity lunar simulant from NASA issued lunar simulant JSC-1. Initial plasma reduction trials of JSC-1 lunar simulant have indicated production of metallic iron and magnesium. Evolution of carbon monoxide has been detected subsequent to reduction of the simulant using the plasma process. Plasma processing of the simulant has also resulted in glassy phases resembling the volcanic glass and agglutinates found in lunar regolith. Complete and partial glassy phase deposits have been obtained by varying the plasma process variables. Experimental techniques, product characterization, and process gas analysis will be discussed.

  4. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  5. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  6. Measurement of Human Blood and Plasma Volumes

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Szalkay, H. G. H.

    1987-01-01

    Report reviews techniques for measuring blood-plasma volume in humans. Common technique of using radioactive iodine isotope to label plasma albumin involves unwarranted risks from low-level radiation. Report emphasizes techniques using Evans-blue-dye (T-1824) labeling of albumin, hematocrit or hemoglobin/hematocrit measurements, or blood densitometry. In Evans-blue-dye technique, plasma volume determined from decrease in dye concentration occurring after small amount of dye solution injected into circulatory system. Subjection of Evans blue dye to test for carcinogenicity gave negative results.

  7. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  8. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  9. Photons and Ground-Based

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Moore, Thomas E.

    2017-01-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.

  10. Introduction: Photons and Ground-Based

    NASA Technical Reports Server (NTRS)

    Spann, James; Moore, Thomas

    2017-01-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.

  11. [Use of adsorption methods for plasma component apheresis].

    PubMed

    Bang, B; Heegaard, N H

    1991-11-25

    Plasma-apheresis is a nonspecific and wasteful intervention requiring the use of potentially infectious and expensive replacement fluids. Selective removal of the unwanted plasma component circumvents most of the problems. For selective binding and removal of plasma components adsorption methods based on the principles of affinity chromatography have been useful. The ideal adsorption column still does not exist, but the number of clinical applications is increasing. The results vary, but the treatment has been used with success in hypercholesterolemia, and in patients with hemophilia with antifactor antibodies and patients with antibodies directed towards HLA-antigens awaiting renal transplantation. In conclusion selective plasma component-apheresis is an improvement in some diseases as compared to conventional plasma-apheresis. The technique is still being improved but large clinical trials examining the effects of plasma-component-apheresis have not yet been published.

  12. Consolidation of Surface Coatings by Friction Stir Techniques

    DTIC Science & Technology

    2010-09-01

    alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments

  13. Low-Energy Positron-Matter Interactions Using Trap-Based Beams

    DTIC Science & Technology

    2002-06-24

    qualitatively by the recent exploitation of nonneutral plasma physics techniques to produce antimatter plasmas and beams in new regimes of parameter space...a quantitative antimatter - matter chemistry, important not only in obtaining a fundamental understanding of nature, but also in using antimatter in...ANNIHILATION MEASUREMENTS The fate of all antimatter in our world is annihilation with ordinary matter. Thus understanding the details of these annihilation

  14. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  15. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  16. Layer-controllable graphene by plasma thinning and post-annealing

    NASA Astrophysics Data System (ADS)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  17. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE PAGES

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...

    2017-12-27

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  18. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  19. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.

    2017-12-01

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  20. Computer-Controlled System for Plasma Ion Energy Auto-Analyzer

    NASA Astrophysics Data System (ADS)

    Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua

    2003-02-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.

  1. Electron density measurements from the shot noise collected on the STEREO/WAVES antennas

    NASA Astrophysics Data System (ADS)

    Zouganelis, Ioannis; Bale, Stuart; Bougeret, J.-L.; Maksimovic, Milan

    One of the most reliable techniques for in situ measuring the electron density and temperature in space plasmas is the quasi-thermal noise spectroscopy. When a passive electric antenna is immersed in a stable plasma, the thermal motion of the ambient particles produces electrostatic fluctuations, which can be adequately measured with a sensitive wave receiver connected to a wire dipole antenna. Unfortunately, on STEREO, the S/WAVES design does not let us use this high accuracy technique because the antennas have a large surface area and the resulting shot noise spectrum in the solar wind dominates the power at lower frequencies. We can use, instead, the electron shot noise to infer the plasma density. For this, we use well calibrated Wind particle data to deduce the base capacitance of the S/WAVES instrument in a special configuration when the STEREO-B spacecraft was just downstream of Wind. The electron plasma density deduced is then compared to the S/PLASTIC ion density and its accuracy is estimated of up to 10

  2. Nanowelding and patterning of silver nanowires via mask-free atmospheric cold plasma-jet scanning

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Li, Han-Yu; Ye, Dong; Yu, Yao; Liu, Lin; Wu, Yue

    2017-06-01

    Silver nanowire (AgNW) thin film is a promising candidate to replace traditional indium tin oxide in optoelectronics applications. To date however, the widespread application of AgNW thin film is limited by the weak point contacts between individual AgNWs and the lack of facile patterning techniques. Here, we demonstrate a novel and facile method to not only nanoweld AgNW junctions but also pattern AgNW thin films via mask-free cold plasma-jet scanning in ambient conditions. After the plasma-jet nanowelding treatment, the morphology of AgNWs change substantially and the junctions are welded together. The nanowelded AgNWs-based thin film shows enhanced electrical and mechanical properties. On the other hand, after the plasma-jet patterning treatment, the AgNWs are etched and transformed into separated large particles. Different kinds of patterns are produced via this patterning technique. At last, a simple light emitting diode circuit is fabricated to demonstrate the suitability of the nanowelded and patterned AgNW electrodes for flexible electronic devices.

  3. The motional stark effect with laser-induced fluorescence diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  4. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties.

    PubMed

    Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue

    2015-12-11

    Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.

  5. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue

    2015-12-01

    Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.

  6. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  7. Measurement of plasma densities by dual frequency multichannel boxcar THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Meier, St. M.; Tsankov, Ts V.; Luggenhölscher, D.; Czarnetzki, U.

    2017-06-01

    In this paper we show the development and the application of the terahertz time domain spectroscopy (THz TDS) diagnostic technique for the determination of plasma densities in low-pressure discharges. A commercially available system was modified to reach a better signal-to-noise ratio. For that the THz emitter and the detection method were changed and a fast lock-in amplifier was used to reach 38 MHz lock-in frequency. These modifications in a combination with the novel method of dual frequency multichannel boxcar embedded as a feature in the lock-in amplifier allowed us to make also time-resolved measurements. The temporal resolution can potentially go down to 100 ps and is limited only by the spectral range that needs to be recovered for the measurement of low electron densities. Further, the cause of artefacts found in all THz TDS based systems, but not understood until now, is identified and explained. As an application the electron densities in inductively coupled plasmas sustained in a magnetic multi-cusp chamber are determined. Results from steady-state discharges in noble gases (He, Ne, Ar, Kr, Xe) and time-resolved measurements in pulsed discharges in Ar and Ne are presented. The technique is benchmarked against microwave interferometry with good agreement in the applicability range of both techniques. The THz TDS performs reliably also in much denser plasmas where standard microwave interferometry fails. The lower limit for the technique is at a line-integrated electron density of 1012 cm-2, corresponding to about 1011 cm-3 for typical plasma dimensions.

  8. Particle-In-Cell Analysis of an Electric Antenna for the BepiColombo/MMO spacecraft

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu

    The BepiColombo/MMO spacecraft is planned to provide a first electric field measurement in Mercury's magnetosphere by mounting two types of the electric antennas: WPT and MEFISTO. The sophisticated calibration of such measurements should be performed based on precise knowledge of the antenna characteristics in space plasma. However, it is difficult to know prac-tical antenna characteristics considering the plasma kinetics and spacecraft-plasma interactions by means of theoretical approaches. Furthermore, some modern antenna designing techniques such as a "hockey puck" principle is applied to MEFISTO, which introduces much complexity in its overall configuration. Thus a strong demand arises regarding the establishment of a nu-merical method that can solve the complex configuration and plasma dynamics for evaluating the electric properties of the modern instrument. For the self-consistent antenna analysis, we have developed a particle simulation code named EMSES based on the particle-in-cell technique including a treatment antenna conductive sur-faces. In this paper, we mainly focus on electrostatic (ES) features and photoelectron distri-bution in the vicinity of MEFISTO. Our simulation model includes (1) a photoelectron guard electrode, (2) a bias current provided from the spacecraft body to the sensing element, (3) a floating potential treatment for the spacecraft body, and (4) photoelectron emission from sunlit surfaces of the conductive bodies. Of these, the photoelectron guard electrode is a key technol-ogy for producing an optimal condition of plasma environment around MEFISTO. Specifically, we introduced a pre-amplifier housing called puck located between the conductive boom and the sensor wire. The photoelectron guard is then simulated by forcibly fixing the potential difference between the puck surface and the spacecraft body. For the modeling, we use the Capacity Matrix technique in order to assure the conservation condition of total charge owned by the entire spacecraft body. We report some numerical analyses on the influence of the guard electrode on the surrounding plasma environment by using the developed model.

  9. Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Kumar, Manoj; Haldar, Subhasis; Deswal, S. S.; Gupta, Mridula; Gupta, R. S.

    2017-09-01

    A charge plasma technique based dopingless (DL) accumulation mode (AM) junctionless (JL) cylindrical surrounding gate (CSG) MOSFET has been proposed and extensively investigated. Proposed device has no physical junction at source to channel and channel to drain interface. The complete silicon pillar has been considered as undoped. The high free electron density or induced N+ region is designed by keeping the work function of source/drain metal contacts lower than the work function of undoped silicon. Thus, its fabrication complexity is drastically reduced by curbing the requirement of high temperature doping techniques. The electrical/analog characteristics for the proposed device has been extensively investigated using the numerical simulation and are compared with conventional junctionless cylindrical surrounding gate (JL-CSG) MOSFET with identical dimensions. For the numerical simulation purpose ATLAS-3D device simulator is used. The results show that the proposed device is more short channel immune to conventional JL-CSG MOSFET and suitable for faster switching applications due to higher I ON/ I OFF ratio.

  10. Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.

  11. Generation and remote delivery of plasma activated species

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Rutherford, David; Mariotti, Davide; Macias-Montero, Manuel; Perez-Martin, Fatima; Diver, Declan

    2016-09-01

    Plasma interactions with microdroplets offer new opportunities to deliver active chemical agents and nanoparticles to remote substrates downstream with many potential applications from cancer theranostics and wound healing in biomedicine, gentle food decontamination and seed germination in plasma agriculture to catalyst production and photonic structures fabrication, among others. We demonstrate plasma-liquid based pristine nanomaterials synthesis in flight and subsequent delivery up to 120mm from the atmospheric pressure plasma source. Monosized and non-aggregating metal nanoparticles are formed in the rf plasma in less than 100us, representing an increase in precursor reduction rate that is many (>4) orders of magnitude faster than that observed with standard colloidal chemistry or via high energy radiolytic techniques. Also the collection and purification limitations of the latter are avoided. Plasma activated liquid including OH radicals and H2O2 are transported over 120mm and have demonstrated high efficacy bacterial decontamination. These results will be compared with charge species and radical transport from the rf plasma without microdroplets. Reaction models based on high solvated surface electron concentrations will be presented. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  12. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  13. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  14. Development of an on-column enrichment technique based on C18-functionalized magnetic silica nanoparticles for the determination of lidocaine in rat plasma by high performance liquid chromatography.

    PubMed

    Chu, Bin; Lou, Dujuan; Yu, Panfeng; Hu, Shaonan; Shen, Shun

    2011-10-14

    In this study, a novel on-column enrichment technique filled with C(18)-functionalized magnetic silica nanoparticles was successfully developed for the determination of lidocaine in rat plasma by high performance liquid chromatography (HPLC). The synthesized Fe(3)O(4)@SiO(2)-C(18) nanoparticles were locally packed into the capillary by the application of magnets. Lidocaine in the sample solutions pumped into the capillary tube could be easily adsorbed by Fe(3)O(4)@SiO(2)-C(18) through hydrophobic interaction by the interior C(18) groups, and eluted by acetonitrile solution. Different extraction conditions were investigated. Method validations including linear range, quantification limit, detection limit, precision, accuracy and recovery were also studied. The results showed that the proposed method based on on-column enrichment by Fe(3)O(4)@SiO(2)-C(18) was a novel, little solvent and efficient approach for the determination of lidocaine in the complex plasma samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases

    PubMed Central

    Pineda, Shafique; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2014-01-01

    Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches. PMID:28788112

  16. Development of Tokamak Transport Solvers for Stiff Confinement Systems

    NASA Astrophysics Data System (ADS)

    St. John, H. E.; Lao, L. L.; Murakami, M.; Park, J. M.

    2006-10-01

    Leading transport models such as GLF23 [1] and MM95 [2] describe turbulent plasma energy, momentum and particle flows. In order to accommodate existing transport codes and associated solution methods effective diffusivities have to be derived from these turbulent flow models. This can cause significant problems in predicting unique solutions. We have developed a parallel transport code solver, GCNMP, that can accommodate both flow based and diffusivity based confinement models by solving the discretized nonlinear equations using modern Newton, trust region, steepest descent and homotopy methods. We present our latest development efforts, including multiple dynamic grids, application of two-level parallel schemes, and operator splitting techniques that allow us to combine flow based and diffusivity based models in tokamk simulations. 6pt [1] R.E. Waltz, et al., Phys. Plasmas 4, 7 (1997). [2] G. Bateman, et al., Phys. Plasmas 5, 1793 (1998).

  17. A review on creatinine measurement techniques.

    PubMed

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  19. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  20. Atomic-scale etching of hexagonal boron nitride for device integration based on two-dimensional materials.

    PubMed

    Park, Hamin; Shin, Gwang Hyuk; Lee, Khang June; Choi, Sung-Yool

    2018-05-29

    Hexagonal boron nitride (h-BN) is considered an ideal template for electronics based on two-dimensional (2D) materials, owing to its unique properties as a dielectric film. Most studies involving h-BN and its application to electronics have focused on its synthesis using techniques such as chemical vapor deposition, the electrical analysis of its surface state, and the evaluation of its performance. Meanwhile, processing techniques including etching methods have not been widely studied despite their necessity for device fabrication processes. In this study, we propose the atomic-scale etching of h-BN for integration into devices based on 2D materials, using Ar plasma at room temperature. A controllable etching rate, less than 1 nm min-1, was achieved and the low reactivity of the Ar plasma enabled the atomic-scale etching of h-BN down to a monolayer in this top-down approach. Based on the h-BN etching technique for achieving electrical contact with the underlying molybdenum disulfide (MoS2) layer of an h-BN/MoS2 heterostructure, a top-gate MoS2 field-effect transistor (FET) with h-BN gate dielectric was fabricated and characterized by high electrical performance based on the on/off current ratio and carrier mobility.

  1. Characterization of X-ray emission from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  2. Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj, E-mail: niraj.ceeri@gmail.com; Narayan Pal, Udit; Prajesh, Rahul

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance inmore » a drift space region maintaining sheet structure without assistance of any external magnetic field.« less

  3. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    PubMed

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  4. Therapeutic drug monitoring of nevirapine in saliva in Uganda using high performance liquid chromatography and a low cost thin-layer chromatography technique.

    PubMed

    Lamorde, Mohammed; Fillekes, Quirine; Sigaloff, Kim; Kityo, Cissy; Buzibye, Allan; Kayiwa, Joshua; Merry, Concepta; Nakatudde-Katumba, Lillian; Burger, David; de Wit, Tobias F Rinke

    2014-09-01

    In resource limited settings access to laboratory monitoring of HIV treatment is limited and therapeutic drug monitoring is generally unavailable. This study aimed to evaluate nevirapine concentrations in saliva using low-cost thin-layer chromatography (TLC) and nevirapine concentrations in plasma and saliva using high performance liquid chromatography (HPLC) methods; and to correlate nevirapine plasma concentrations to HIV treatment outcomes in Ugandan patients. Paired plasma and stimulated saliva samples were obtained from Ugandan, HIV-infected adults on nevirapine-based ART. Nevirapine concentrations were measured using a validated HPLC method and a novel TLC method. Plasma nevirapine concentrations <3.0 mg/L using HPLC were considered subtherapeutic. Negative/positive predictive values of different thresholds for subtherapeutic nevirapine concentrations in saliva were determined. Virologic testing and, if applicable, HIV drug resistance testing was performed. Median (interquartile range, IQR) age of 297 patients was 39.1 (32.8-45.2) years. Three hundred saliva and 287 plasma samples were available for analysis. Attempts failed to determine nevirapine saliva concentrations by TLC. Using HPLC, median (IQR) nevirapine concentrations in saliva and plasma were 3.40 (2.59-4.47) mg/L and 6.17 (4.79-7.96) mg/L, respectively. The mean (coefficient of variation,%) nevirapine saliva/plasma ratio was 0.58 (62%). A cut-off value of 1.60 mg/L nevirapine in saliva was associated with a negative/positive predictive value of 0.99/0.72 and a sensitivity/specificity of 87%/98% for predicting subtherapeutic nevirapine plasma concentrations, respectively. Only 5% (15/287) of patients had subtherapeutic nevirapine plasma concentrations, of which 3 patients had viral load results > 400 copies/mL. Patients with nevirapine concentrations in plasma <3.0 mg/L had an Odds Ratio of 3.29 (95% CI: 1.00 - 10.74) for virological failure (viral load >400 copies/mL). The low-cost TLC technique for monitoring nevirapine in saliva was unsuccessful but monitoring nevirapine saliva and plasma concentrations using HPLC was shown to be feasible in the research/specialist context in Uganda. Further optimization and validation is required for the low-cost TLC technique.

  5. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma.

    PubMed

    Kalra, Hina; Adda, Christopher G; Liem, Michael; Ang, Ching-Seng; Mechler, Adam; Simpson, Richard J; Hulett, Mark D; Mathivanan, Suresh

    2013-11-01

    Exosomes are nanovesicles released by a variety of cells and are detected in body fluids including blood. Recent studies have highlighted the critical application of exosomes as personalized targeted drug delivery vehicles and as reservoirs of disease biomarkers. While these research applications have created significant interest and can be translated into practice, the stability of exosomes needs to be assessed and exosome isolation protocols from blood plasma need to be optimized. To optimize methods to isolate exosomes from blood plasma, we performed a comparative evaluation of three exosome isolation techniques (differential centrifugation coupled with ultracentrifugation, epithelial cell adhesion molecule immunoaffinity pull-down, and OptiPrep(TM) density gradient separation) using normal human plasma. Based on MS, Western blotting and microscopy results, we found that the OptiPrep(TM) density gradient method was superior in isolating pure exosomal populations, devoid of highly abundant plasma proteins. In addition, we assessed the stability of exosomes in plasma over 90 days under various storage conditions. Western blotting analysis using the exosomal marker, TSG101, revealed that exosomes are stable for 90 days. Interestingly, in the context of cellular uptake, the isolated exosomes were able to fuse with target cells revealing that they were indeed biologically active. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  7. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques.

    PubMed

    Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E

    2001-01-01

    Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.

  8. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  9. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doleans, Marc

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  10. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE PAGES

    Doleans, Marc

    2016-12-27

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  11. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  12. New signal processing technique for density profile reconstruction using reflectometry.

    PubMed

    Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C

    2011-08-01

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  13. Monte Carlo Simulation of Nonlinear Radiation Induced Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, B. S.

    1972-01-01

    A Monte Carlo simulation model for radiation induced plasmas with nonlinear properties due to recombination was, employing a piecewise linearized predict-correct iterative technique. Several important variance reduction techniques were developed and incorporated into the model, including an antithetic variates technique. This approach is especially efficient for plasma systems with inhomogeneous media, multidimensions, and irregular boundaries. The Monte Carlo code developed has been applied to the determination of the electron energy distribution function and related parameters for a noble gas plasma created by alpha-particle irradiation. The characteristics of the radiation induced plasma involved are given.

  14. The surface modification of clay particles by RF plasma technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  15. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)a)

    NASA Astrophysics Data System (ADS)

    Smith, Roger J.

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local Bpol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local Te, ne, and B∥ along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher neB∥ product and higher ne and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  16. Preparation and surface characterization of plasma-treated and biomolecular-micropatterned polymer substrates

    NASA Astrophysics Data System (ADS)

    Langowski, Bryan Alfred

    A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation in vivo and ex vivo. As the physical and chemical cues presented by micropatterned substrates control resulting cellular behavior, characterization of these cues via surface-sensitive analytical techniques is essential in developing cell scaffolds that mimic complex in vivo physicochemical environments. The initial focus of this thesis is the chemical and physical characterization of plasma-treated, microcontact-printed (muCP) polymeric substrates used to direct nerve cell behavior. Unmodified and oxygen plasma-treated poly(methyl methacrylate) (PMMA) substrates were analyzed by surface sensitive techniques to monitor plasma-induced chemical and physical modifications. Additionally, protein-micropattern homogeneity and size were microscopically evaluated. Lastly, poly(dimethylsiloxane) (PDMS) stamps and contaminated PMMA substrates were characterized by spectroscopic and microscopic methods to identify a contamination source during microcontact printing. The final focus of this thesis is the development of microscale plasma-initiated patterning (muPIP) as a versatile, reproducible micropatterning method. Using muPIP, polymeric substrates were micropatterned with several biologically relevant inks. Polymeric substrates were characterized following muPIP by surface-sensitive techniques to identify the technique's underlying physical and chemical bases. In addition, neural stem cell response to muPIP-generated laminin micropatterns was microscopically and biologically evaluated. Finally, enhanced versatility of muPIP in generating microscale poly-L-lysine gradients was demonstrated.

  17. Error field detection in DIII-D by magnetic steering of locked modes

    DOE PAGES

    Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...

    2014-02-20

    Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less

  18. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  19. New developments in surface technology and prototyping

    NASA Astrophysics Data System (ADS)

    Himmer, Thomas; Beyer, Eckhard

    2003-03-01

    Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.

  20. Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Qasaimeh, Mohammad A.; Wu, Yichao C.; Bose, Suman; Menachery, Anoop; Talluri, Srikanth; Gonzalez, Gabriel; Fulciniti, Mariateresa; Karp, Jeffrey M.; Prabhala, Rao H.; Karnik, Rohit

    2017-04-01

    The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40-70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2-5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20-24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45-184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration.

  1. An experiment on the dynamics of ion implantation and sputtering of surfaces

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  2. An experiment on the dynamics of ion implantation and sputtering of surfaces.

    PubMed

    Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  3. A study of GaN-based LED structure etching using inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng

    2011-02-01

    GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).

  4. Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer.

    PubMed

    Majani, Ruby; Zelzer, Mischa; Gadegaard, Nikolaj; Rose, Felicity R; Alexander, Morgan R

    2010-09-01

    The use of cell sheets for tissue engineering applications has considerable advantages over single cell seeding techniques. So far, only thermoresponsive surfaces have been used to manufacture cell sheets without chemically disrupting the cell-surface interactions. Here, we present a new and facile technique to prepare sheets of epithelial cells using plasma polymerised acrylic acid films. The cell sheets are harvested by gentle agitation of the media without the need of any additional external stimulus. We demonstrate that the plasma polymer deposition conditions affect the viability and metabolic activity of the cells in the sheet and relate these effects to the different surface properties of the plasma polymerised acrylic acid films. Based on surface analysis data, a first attempt is made to explain the mechanism behind the cell sheet formation. The advantage of the epithelial cell sheets generated here over single cell suspensions to seed a PLGA scaffold is presented. The scaffold itself, prepared using a mould fabricated via photolithography, exhibits a unique architecture that mimics closely the dimensions of the native tissue (mouse intestine). Copyright 2010 Elsevier Ltd. All rights reserved.

  5. β-actin as a loading control for plasma-based Western blot analysis of major depressive disorder patients.

    PubMed

    Zhang, Rufang; Yang, Deyu; Zhou, Chanjuan; Cheng, Ke; Liu, Zhao; Chen, Liang; Fang, Liang; Xie, Peng

    2012-08-15

    Western blot analysis is a commonly used technique for determining specific protein levels in clinical samples. For normalization of protein levels in Western blot, a suitable loading control is required. On account of its relatively high and constant expression, β-actin has been widely employed in Western blot of cell cultures and tissue extracts. However, β-actin's presence in human plasma and this protein's putative role as a plasma-based loading control for Western blot analysis remain unknown. In this study, an enzyme-linked immunosorbent assay was used to determine the concentration of β-actin in human plasma, which is 6.29±0.54 ng/ml. In addition, the linearity of β-actin immunostaining and loaded protein amount was evaluated by Western blot, and a fine linearity (R²=0.974±0.012) was observed. Furthermore, the expression of plasma β-actin in major depressive disorder subjects and healthy controls was compared. The data revealed no statistically significant difference between these two groups. Moreover, the total coefficient of variation for β-actin expression in the two groups was 9.2±1.2%. These findings demonstrate that β-actin is present in human plasma and may possibly be used as a suitable loading control for plasma-based Western blot analysis in major depressive disorder. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Electron density inversed by plasma lines induced by suprathermal electron in the ionospheric modification experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen

    2018-05-01

    Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment.

  7. Laser-induced photo emission detection: data acquisition based on light intensity counting

    NASA Astrophysics Data System (ADS)

    Yulianto, N.; Yudasari, N.; Putri, K. Y.

    2017-04-01

    Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.

  8. Supporting the potential of quantitative ultrasonic techniques for the evaluation of platelet concentration

    NASA Astrophysics Data System (ADS)

    Villamarín, J. A.; Jiménez, Y. M.; Molano, L. Tatiana; Gutierrez, W. Edgar; Londoño, L. Fernando; Gutierrez, D. A.

    2017-11-01

    This article describes the results obtained by making use of a non-destructive, non-invasive ultrasonic system for the acoustic characterization of bovine plasma rich in platelets using digital signal processing techniques. This study includes computational methods based on acoustic spectrometry estimation and experimental measurements of the speed of sound in blood plasma from different samples analyzed, using an ultrasonic field with resonance frequency of 5 MHz. The results showed that the measurements on ultrasonic signals can contribute to the hematological predictions based on the linear regression model applied to the relationship between experimental ultrasonic parameters calculated and platelet concentration, indicating a growth rate of 1 m/s for each 0.90 x103 platelet per mm3. On the other hand, the attenuation coefficient presented changes of 20% in the platelet concentration using a resolution of 0.057 dB/cm MHz.

  9. The segmented non-uniform dielectric module design for uniformity control of plasma profile in a capacitively coupled plasma chamber

    NASA Astrophysics Data System (ADS)

    Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng

    2014-12-01

    Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.

  10. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    DOE PAGES

    Yamada, Masaaki

    2016-01-01

    This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less

  11. Fluorophore-based sensor for oxygen radicals in processing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu; Sabat, Grzegorz

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye thatmore » is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.« less

  12. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  13. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Masaaki

    2016-03-25

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less

  14. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    PubMed

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  15. On the application of cw external cavity quantum cascade infrared lasers for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Lopatik, D.; Lang, N.; Macherius, U.; Zimmermann, H.; Röpcke, J.

    2012-11-01

    Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm-1 (4.42-7.66 µm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 1011-1014 molecules cm-3. In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature Tg has been calculated in dependence on the discharge power. Tg increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10-5. The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10-19 and 10-22 cm molecule-1.

  16. Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal

    2012-10-01

    Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.

  17. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  18. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  19. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  20. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    NASA Astrophysics Data System (ADS)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  1. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    PubMed

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  2. Tomographic reconstruction of tokamak plasma light emission using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Nguyen van Yen, Romain; Fedorczak, Nicolas; Brochard, Frederic; Bonhomme, Gerard; Farge, Marie; Monier-Garbet, Pascale

    2012-10-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we proposed in Nguyen van yen et al., Nucl. Fus., 52 (2012) 013005, an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  3. Tomographic reconstruction of tokamak plasma light emission from single image using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Nguyen van yen, R.; Fedorczak, N.; Brochard, F.; Bonhomme, G.; Schneider, K.; Farge, M.; Monier-Garbet, P.

    2012-01-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we propose an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  4. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    NASA Astrophysics Data System (ADS)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved the existence of the silica-based coatings on all treated cellulosic substrates after intense ultrasound washes. The results obtained in this work allow us to conclude that silica-based coatings used in conjunction with plasma processes have high potential to obtain green flame retardant cellulosic materials with potential applications in the development of upholstered furniture, clothing and military applications.

  5. THE PHYSIOLOGICAL SIGNIFICANCE OF THE CORTIOOSTEROIDS IN PAROTID FLUID.

    DTIC Science & Technology

    A highly sensitive and highly specific technique was devised, utilizing four chromatographic procedures, for the measurement of parotid fluid...cortisol and cortisone on 5 ml of parotid fluid, and plasma cortisol on 1 ml of plasma. In addition techniques are described for measuring plasma...derivative technique is high purified immediately before its use, blank values are too high for the low values found in parotid saliva. Blank values

  6. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang

    2014-09-14

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in timemore » and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.« less

  7. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  8. High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets

    PubMed Central

    Rivera, Manuel; Rahaman, Mostafizur; Zhou, Andrew F.; Mohammed Alzuraiqi, Waleed; Feng, Peter

    2017-01-01

    High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors. PMID:29257098

  9. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  10. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    NASA Astrophysics Data System (ADS)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  11. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  12. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  13. Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu

    2018-05-01

    A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.

  14. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE PAGES

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-04-20

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  15. Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Ong, J. G. D.; Guo, Y.; Bazaka, K.; Levchenko, I.; Xu, S.

    2017-10-01

    Highly controllable electronic properties (carrier mobility and conductivity) were obtained in the sophisticatedly devised, structure-controlled, boron-doped microcrystalline silicon structure. Variation of plasma parameters enabled fabrication of films with the structure ranging from a highly crystalline (89.8%) to semi-amorphous (45.4%) phase. Application of the innovative process based on custom-designed, optimized, remote inductively coupled plasma implied all advantages of the plasma-driven technique and simultaneously avoided plasma-intrinsic disadvantages associated with ion bombardment and overheating. The high degree of SiH4, H2 and B2H6 precursor dissociation ensured very high boron incorporation into the structure, thus causing intense carrier scattering. Moreover, the microcrystalline-to-amorphous phase transition triggered by the heavy incorporation of the boron dopant with increasing B2H6 flow was revealed, thus demonstrating a very high level of the structural control intrinsic to the process. Control over the electronic properties through variation of impurity incorporation enabled tailoring the carrier concentrations over two orders of magnitude (1018-1020 cm-3). These results could contribute to boosting the properties of solar cells by paving the way to a cheap and efficient industry-oriented technique, guaranteeing a new application niche for this new generation of nanomaterials.

  16. Properties of thermal air plasma with admixing of copper and carbon

    NASA Astrophysics Data System (ADS)

    Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph

    2014-11-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.

  17. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  18. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    PubMed

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  19. Coblation technology for surgical wound debridement: principle, experimental data, and technical data.

    PubMed

    Trial, Chloé; Brancati, Antonio; Marnet, Olivier; Téot, Luc

    2012-12-01

    Debridement is required to prepare the wound bed, essentially in removing undesired tissues observed both in acute wound after burns or trauma and in chronic wounds such as pressure ulcers, leg ulcers, and diabetic foot ulcers. Surgical debridement has been described as one of the most effective methods but can be contraindicated in the elderly, arteriopathic context, or patients under effective anticoagulation. Recently described debridement technologies are based on application of important mechanical severing forces over the wound surface using high-power hydrojets. High water flux acts as a vector for separating necrotic and sloughy tissues from the wound bed and aspirates them out of the wound immediately. Electrical powered techniques and lasers were also scarcely described. The Coblation debridement technology presented here is based on the local induction of a focused plasma field chemically deleting undesired tissues. This technique is a modification of conventional electrosurgical devices, developed in 1928 where tissue excision and coagulation of tissues were observed. Principles of plasma-mediated debridement are based on a bipolar radiofrequency energizing the molecules, thus creating a plasma field. This glow discharge plasma produces chemically active radical species from dissociation of water, breaking molecular bonds, and causing tissue dissolution. The thermal effects are a by-product, which can be modulated by modifying the electrode construction, limiting the local temperature to less than 50°C in order not to induce wound bed renecrosis. The authors describe here the principle, the first technical adaptation for wound debridement, and the potential clinical interest of the Coblation technology.

  20. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  1. Instabilities and turbulence in highly ionized plasmas in a magnetic field

    NASA Technical Reports Server (NTRS)

    Jennings, W. C.

    1972-01-01

    Physical mechanisms were considered which are responsible for plasma turbulence and the establishment of necessary conditions for energy exchange and transfer in the frequency spectrum. In addition, work was performed to better understand the drift instability in the highly inhomogeneous Rensselaer arc, and methods to suppress this instability using feedback stabilization techniques. Correlation techniques were refined to study plasma turbulence, the diffusion wave technique for monitoring cross-field diffusion was extended to include regimes of high turbulence levels, and a technique for coupling stabilizing RF power to the Rensselaer arc was developed.

  2. A review on plasma-etch-process induced damage of HgCdTe

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun

    2018-05-01

    Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.

  3. Determination of plasma volume in anaesthetized piglets using the carbon monoxide (CO) method.

    PubMed

    Heltne, J K; Farstad, M; Lund, T; Koller, M E; Matre, K; Rynning, S E; Husby, P

    2002-07-01

    Based on measurements of the circulating red blood cell volume (V(RBC)) in seven anaesthetized piglets using carbon monoxide (CO) as a label, plasma volume (PV) was calculated for each animal. The increase in carboxyhaemoglobin (COHb) concentration following administration of a known amount of CO into a closed circuit re-breathing system was determined by diode-array spectrophotometry. Simultaneously measured haematocrit (HCT) and haemoglobin (Hb) values were used for PV calculation. The PV values were compared with simultaneously measured PVs determined using the Evans blue technique. Mean values (SD) for PV were 1708.6 (287.3)ml and 1738.7 (412.4)ml with the CO method and the Evans blue technique, respectively. Comparison of PVs determined with the two techniques demonstrated good correlation (r = 0.995). The mean difference between PV measurements was -29.9 ml and the limits of agreement (mean difference +/-2SD) were -289.1 ml and 229.3 ml. In conclusion, the CO method can be applied easily under general anaesthesia and controlled ventilation with a simple administration system. The agreement between the compared methods was satisfactory. Plasma volume determined with the CO method is safe, accurate and has no signs of major side effects.

  4. Localization of sialic acid in kidney glomeruli: regionalization in the podocyte plasma membrane and loss in experimental nephrosis.

    PubMed

    Charest, P M; Roth, J

    1985-12-01

    Sialic acid residues were localized by electron microscopy in renal glomeruli of normal and puromycin-treated rats with a cytochemical technique that utilized the Limax flavus lectin. In Lowicryl K4M thin sections from normal rats, sialic acid residues were found along the plasma membrane of the various glomerular cell types and in the glomerular basement membrane as well as the mesangial matrix. In NaDodSO4/PAGE, sialic acid residues of normal glomeruli were mainly confined to a 140-kDa protein previously identified as podocalyxin. The distribution of sialic acid residues in the podocyte plasma membrane was found to be remarkably regionalized. Based on the differential labeling intensity, three plasma membrane domains could be defined: the foot process base, the foot process region above the slit diaphragm, and the body of podocytes. Cytochemical and biochemical analysis of glomeruli from puromycin-treated rats showed a loss of sialic acid residues from glomerular sialoglycoconjugates indicating a perturbated glycosylation.

  5. Plasma-edge studies using carbon resistance probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, W.R.

    1984-01-01

    Characterization of erosion and hydrogen-recycling processes occurring at the edge of magnetically confined plasmas requires knowledge of the energy and flux of hydrogen isotopes incident on the materials. A new plasma-edge probe technique, the carbon resistance probe, has been developed to obtain this information. This technique uti

  6. Laser continuum source atomic absorption spectroscopy: Measuring the ground state with nanosecond resolution in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Merten, Jonathan; Johnson, Bruce

    2018-01-01

    A new dual-beam atomic absorption technique is applied to laser-induced plasmas. The technique uses an optical parametric oscillator pseudocontinuum, producing emission that is both wider than the absorption line profile, but narrow enough to allow the use of an echelle spectrograph without order sorting. The dual-beam-in space implementation makes the technique immune to nonspecific attenuation of the probe beam and the structure of the pseudocontinuum. The potential for plasma diagnostics is demonstrated with spatially and temporally resolved measurements of magnesium metastable and lithium ground state optical depths in a laser-induced plasma under reduced pressure conditions. The lithium measurements further demonstrate the technique's potential for isotope ratio measurements.

  7. Study on discrimination of oral cancer from normal using blood plasma based on fluorescence steady and excited state at excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Rekha, Pachaiappan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Many research works based on fluorescence spectroscopy have proven its potential in the diagnosis of various diseases using the spectral signatures of the native key fluorophores such as tryptophan, tyrosine, collagen, NADH, FAD and porphyrin. These fluorophores distribution, concentration and their conformation may be changed depending upon the pathological and metabolic conditions of cells and tissues. In this study, we have made an attempt to characterize the blood plasma of normal subject and oral cancer patients by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed by employing the multivariate statistical method - linear discriminant analyses (LDA) using leaves one out cross validation method. The results illustrate the potential of fluorescence spectroscopy technique in the diagnosis of oral cancer using blood plasma.

  8. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  9. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  10. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  11. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  12. Lab- and space-based researchers discuss plasma experiments

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Yamada, M.

    Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.

  13. Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator

    NASA Astrophysics Data System (ADS)

    Garkusha, I. E.; Chebotarev, V. V.; Herashchenko, S. S.; Makhlaj, V. A.; Kulik, N. V.; Ladygina, M. S.; Marchenko, A. K.; Petrov, Yu. V.; Staltsov, V. V.; Shevchuk, P. V.; Solyakov, D. G.; Yelisyeyev, D. V.

    2017-11-01

    In this report a concept of a new generation QSPA with external B-field up to 2 T has been discussed. A novel test-bed facility, which was recently constructed in Kharkov IPP NSC KIPT, has been described. It allows for a new level of plasma stream parameters and its wide variation in new QSPA-M device, as well as possible combination of steady-state and pulsed plasma loads to the materials during the exposures. First plasma is recently obtained. Careful optimization of the operational regimes of the plasma accelerator’s functional components and plasma dynamics in the magnetic system of QSPA-M device has started approaching step by step the necessary level of plasma parameters and their effective variation. The relevant results on plasma stream characterization are presented. Energy density distributions in plasma stream have been measured with calorimetry. Spectroscopy and probe technique have also been applied for plasma parameters measurements. The obtained results demonstrate the ability of QSPA-M to reproduce the ELM impacts in fusion reactor, both in terms of heat load and particle flux to the surface.

  14. The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites

    NASA Astrophysics Data System (ADS)

    Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li

    2011-02-01

    The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.

  15. Dust remobilization in fusion plasmas under steady state conditions

    NASA Astrophysics Data System (ADS)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  16. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  17. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE PAGES

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.; ...

    2017-07-31

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  18. Understanding Turbulence using Active and Passive Multipoint Measurements in Laboratory Magnetospheres

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Abler, M. C.; Qian, T. M.; Saperstein, A.; Yan, J. R.

    2017-10-01

    In a laboratory magnetosphere, plasma is confined by a strong dipole magnet, and interchange and entropy mode turbulence can be studied and controlled in near steady-state conditions. Turbulence is dominated by long wavelength modes exhibiting chaotic dynamics, intermitency, and an inverse spectral cascade. Here, we summarize recent results: (i) high-resolution measurement of the frequency-wavenumber power spectrum using Capon's ``maximum likelihood method'', and (ii) direct measurement of the nonlinear coupling of interchange/entropy modes in a turbulent plasma through driven current injection at multiple locations and frequencies. These observations well-characterize plasma turbulence over a broad band of wavelengths and frequencies. Finally, we also discuss the application of these techniques to space-based experiments and observations aimed to reveal the nature of heliospheric and magnetospheric plasma turbulence. Supported by NSF-DOE Partnership in Plasma Science Grant DE-FG02-00ER54585.

  19. Drop coating deposition Raman spectroscopy of blood plasma for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Li, Pengpeng; Chen, Changshui; Deng, Xiaoyuan; Mao, Hua; Jin, Shaoqin

    2015-03-01

    We have recently applied the technique of drop coating deposition Raman (DCDR) spectroscopy for colorectal cancer (CRC) detection using blood plasma. The aim of this study was to develop a more convenient and stable method based on blood plasma for noninvasive CRC detection. Significant differences are observed in DCDR spectra between healthy (n=105) and cancer (n=75) plasma from 15 CRC patients and 21 volunteers, particularly in the spectra that are related to proteins, nucleic acids, and β-carotene. The multivariate analysis principal components analysis and the linear discriminate analysis, together with leave-one-out, cross validation were used on DCDR spectra and yielded a sensitivity of 100% (75/75) and specificity of 98.1% (103/105) for detection of CRC. This study demonstrates that DCDR spectroscopy of blood plasma associated with multivariate statistical algorithms has the potential for the noninvasive detection of CRC.

  20. A new mathematical approach for shock-wave solution in a dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G.C.; Dwivedi, C.B.; Talukdar, M.

    1997-12-01

    The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less

  1. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  2. Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry

    NASA Astrophysics Data System (ADS)

    Boella, E.; Coppa, G.; D'Angola, A.; Peiretti Paradisi, B.

    2018-03-01

    In the paper, gridless particle techniques are presented in order to solve problems involving electrostatic, collisionless plasmas. The method makes use of computational particles having the shape of spherical shells or of rings, and can be used to study cases in which the plasma has spherical or axial symmetry, respectively. As a computational grid is absent, the technique is particularly suitable when the plasma occupies a rapidly changing space region.

  3. Establishing ¹H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study.

    PubMed

    Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei

    2010-09-01

    Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.

  4. Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin

    2016-10-01

    It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.

  5. Peptidomic analysis of endogenous plasma peptides from patients with pancreatic neuroendocrine tumours.

    PubMed

    Kay, Richard G; Challis, Benjamin G; Casey, Ruth T; Roberts, Geoffrey P; Meek, Claire L; Reimann, Frank; Gribble, Fiona M

    2018-06-01

    Diagnosis of pancreatic neuroendocrine tumours requires the study of patient plasma with multiple immunoassays, using multiple aliquots of plasma. The application of mass spectrometry based techniques could reduce the cost and amount of plasma required for diagnosis. Plasma samples from two patients with pancreatic neuroendocrine tumours were extracted using an established acetonitrile based plasma peptide enrichment strategy. The circulating peptidome was characterised using nano and high flow rate LC/MS analyses. To assess the diagnostic potential of the analytical approach, a large sample batch (68 plasmas) from control subjects, and aliquots from subjects harbouring two different types of pancreatic neuroendocrine tumour (insulinoma and glucagonoma) were analysed using a 10-minute LC/MS peptide screen. The untargeted plasma peptidomics approach identified peptides derived from the glucagon prohormone, chromogranin A, chromogranin B and other peptide hormones and proteins related to control of peptide secretion. The glucagon prohormone derived peptides that were detected were compared against putative peptides that were identified using multiple antibody pairs against glucagon peptides. Comparison of the plasma samples for relative levels of selected peptides showed clear separation between the glucagonoma and the insulinoma and control samples. The combination of the organic solvent extraction methodology with high flow rate analysis could potentially be used to aid diagnosis and monitor treatment of patients with functioning pancreatic neuroendocrine tumours. However, significant validation will be required before this approach can be clinically applied. This article is protected by copyright. All rights reserved.

  6. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited).

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  7. The SRS railgun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.

    1989-01-01

    A Segmented Rail Surface (SRS) structure is described that eliminates restrike arcs by progressively disconnecting segments of the rail surface after the plasma armature has passed. This technique has been demonstrated using the Los Alamos MIDI-2 railgun. Restrike was eliminated in a plasma armature acceleration experiment using metal-foil fuses as opening switches. A plasma velocity increase from 11 to 16 km/s was demonstrated using the SRS technique to eliminate the viscous drag losses associated with the restrike plasma. This technique appears to be a practical option for a laboratory launcher at present and for future multi-shot launchers if appropriate switchesmore » can be developed.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, Vincent M.; Kornblit, Avinoam

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussionmore » of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices.« less

  9. Observations of two-dimensional magnetic field evolution in a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Shpitalnik, R.; Weingarten, A.; Gomberoff, K.; Krasik, Ya.; Maron, Y.

    1998-03-01

    The time dependent magnetic field distribution was studied in a coaxial 100-ns positive-polarity Plasma Opening Switch (POS) by observing the Zeeman effect in ionic line emission. Measurements local in three dimensions are obtained by doping the plasma using laser evaporation techniques. Fast magnetic field penetration with a relatively sharp magnetic field front (⩽1 cm) is observed at the early stages of the pulse (t≲25). Later in the pulse, the magnetic field is observed at the load-side edge of the plasma, leaving "islands" of low magnetic field at the plasma center that last for about 10 ns. The two-dimensional (2-D) structure of the magnetic field in the r,z plane is compared to the results of an analytical model based on electron-magneto-hydrodynamics, that utilizes the measured 2-D plasma density distribution and assumes fast magnetic field penetration along both POS electrodes. The model results provide quantitative explanation for the magnetic field evolution observed.

  10. A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure

    NASA Astrophysics Data System (ADS)

    He, -Hau, Jr.; Singamaneni, Srikanth; Ho, Chih H.; Lin, Yen-Hsi; McConney, Michael E.; Tsukruk, Vladimir V.

    2009-02-01

    The combination of design and subsequent fabrication of organic/inorganic nanostructures creates an effective way to combine the favorable traits of both to achieve a desired device performance. We demonstrate a miniature electrical read-out, and a sensitive temperature sensor/switch, based on a ZnO nanobelt/plasma-polymerized benzonitrile bimorph structure. A new read-out technique based on the change in the electric current flowing through the bimorph and the contact pad has been employed, replacing the conventional cumbersome piezoresistive method or tedious optical alignment. The thermal sensor demonstrated here has great prospects for thermal switching and triggered detection owing to the relative ease in the fabrication of arrays and the direct electrical read-out.

  11. Autologous plasma and its supporting role in fat graft survival: A relevant vector to counteract resorption in lipofilling.

    PubMed

    Stillaert, Filip; Depypere, Bernard; Doornaert, Maarten; Creytens, David; De Clercq, Heidi; Cornelissen, Ria; Monstrey, Stan; Blondeel, Phillip

    2016-07-01

    Fat grafting has become a widespread technique for different reconstructive and esthetic purposes. However, the disadvantage of fat grafting is the unpredictable resorption rate that often necessitates repetitive procedures, which in turn may have an impact on the morbidity. During the immediate, post-graft, ischemic period, cells survive due to the process of plasmatic imbibition. This biological phenomenon precedes the ingrowth of neo-capillaries that eventually nourish the graft and help establish a long-term homeostatic equilibrium. Both partners, the graft and the recipient bed, contribute to the revascularization process. Hypothetically, enrichment of the recipient site with autologous plasma could have a beneficial role to enhance fat graft survival. We investigated whether plasma supported the viability of the lipoaspirate (LA) material. Plasma was isolated from blood samples collected from eight patients during the elective lipofilling procedures. An in vitro study assessed the viability of LA cells using plasma as a culture medium compared to the traditional culture media. In vitro analysis confirmed sustained viability of LA cells compared to the standard media and control media during 7 consecutive days. The behavior of the fat grafts in plasma showed similarities with those incubated in the traditional culture media. In future, these findings could be translated to a clinical setting. Plasma is the only autologous substrate available in large quantities in the human body. The addition of the supporting agents, such as plasma, could contribute to a better graft survival with more stable clinical outcomes in the long term. The rationale behind the technique is based on the phenomenon of plasmatic imbibition and the reasoning that the extracellular matrix plays a pivotal role in cellular survival. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Llama heavy-chain antibody fragments efficiently remove toxic shock syndrome toxin 1 from plasma in vitro but not in experimental porcine septic shock.

    PubMed

    Brummelhuis, Walter J; Joles, Jaap A; Stam, Jord C; Adams, Hendrik; Goldschmeding, Roel; Detmers, Frank J; El Khattabi, Mohamed; Maassen, Bram T; Verrips, C Theo; Braam, Branko

    2010-08-01

    Staphylococcus aureus produces the superantigen toxic shock syndrome toxin 1 (TSST-1). When the bacterium invades the human circulation, this toxin can induce life-threatening gram-positive sepsis. Current sepsis treatment does not remove bacterial toxins. Variable domains of llama heavy-chain antibodies (VHH) against toxic shock syndrome toxin 1 ([alpha]-TSST-1 VHH) were previously found to be effective in vitro. We hypothesized that removing TSST-1 with [alpha]-TSST-1 VHH hemofiltration filters would ameliorate experimental sepsis in pigs. After assessing in vitro whether timely removing TSST-1 interrupted TSST-1-induced mononuclear cell TNF-[alpha] production, VHH-coated filters were applied in a porcine sepsis model. Clinical course, survival, plasma interferon [gamma], and TSST-1 levels were similar with and without VHH-coated filters as were TSST-1 concentrations before and after the VHH filter. Plasma TSST-1 levels were much lower than anticipated from the distribution of the amount of infused TSST-1, suggesting compartmentalization to space or adhesion to surface not accessible to hemofiltration or pheresis techniques. Removing TSST-1 from plasma was feasible in vitro. However, the [alpha]-TSST-1 VHH adsorption filter-based technique was ineffective in vivo, indicating that improvement of VHH-based hemofiltration is required. Sequestration likely prevented the adequate removal of TSST-1. The latter warrants further investigation of TSST-1 distribution and clearance in vivo.

  13. Production of photoionized plasmas in the laboratory with x-ray line radiation

    NASA Astrophysics Data System (ADS)

    White, S.; Irwin, R.; Warwick, J. R.; Gribakin, G. F.; Sarri, G.; Keenan, F. P.; Riley, D.; Rose, S. J.; Hill, E. G.; Ferland, G. J.; Han, B.; Wang, F.; Zhao, G.

    2018-06-01

    In this paper we report the experimental implementation of a theoretically proposed technique for creating a photoionized plasma in the laboratory using x-ray line radiation. Using a Sn laser plasma to irradiate an Ar gas target, the photoionization parameter, ξ =4 π F /Ne , reached values of order 50 ergcm s-1 , where F is the radiation flux in ergc m-2s-1 . The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the x-ray drive. However, the technique is extendable to higher-energy laser systems to create plasmas with parameters relevant to benchmarking codes used to model astrophysical objects.

  14. Effects of Deposition Parameters on Thin Film Properties of Silicon-Based Electronic Materials Deposited by Remote Plasma-Enhanced Chemical-Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Theil, Jeremy Alfred

    The motivation of this thesis is to discuss the major issues of remote plasma enhanced chemical vapor deposition (remote PECVD) that affect the properties Si-based thin films. In order to define the issues required for process optimization, the behavior of remote PECVD process must be understood. The remote PECVD process is defined as having four segments: (1) plasma generation, (2) excited species extraction, (3) excited species/downstream gas mixing, and (4) surface reaction. The double Langmuir probe technique is employed to examine plasma parameters under 13.56 MHz and 2.54 GHz excitation. Optical emission spectroscopy is used to determine changes in the excited states of radiating species in the plasma afterglow. Mass spectrometry is used to determine the excitation and consumption of process gases within the reactor during film growth. Various analytical techniques such as infrared absorption spectroscopy, (ir), high resolution transmission electron microscopy, (HRTEM), and reflected high energy electron diffraction, (RHEED), are used to ascertain film properties. The results of the Langmuir probe show that plasma coupling is frequency dependent and that the capacitive coupling mode is characterized by orders of magnitude higher electron densities in the reactor than inductive coupling. These differences can be manifested in the degree to which a hydrogenated amorphous silicon, a-Si:H, component co-deposition reaction affects film stoichiometry. Mass spectrometry shows that there is an additional excitation source in the downstream glow. In addition the growth of microcrystalline silicon, muc-Si, is correlated with the decrease in the production of disilane and heavier Si-containing species. Chloronium, H_2 Cl^{+}, a super acid ion is identified for the first time in a CVD reactor. It forms from plasma fragmentation of SiH_2 Cl_2, and H_2 . Addition of impurity gases was shown not to affect the electron temperature of the plasma. By products of deposition reactions can affect film properties by post -deposition reactions with the film. In the case of SiO _2 film growth, residual H _2O is shown to create OH groups within the film by reacting with distorted Si-O-Si bonding groups.

  15. Recent developments of x-ray lithography in Canada

    NASA Astrophysics Data System (ADS)

    Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues

    1991-08-01

    An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.

  16. Tungsten dust remobilization under steady-state and transient plasma conditions

    DOE PAGES

    Ratynskaia, S.; Tolias, P.; De Angeli, M.; ...

    2016-11-22

    Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. In conclusion, the experiments are interpreted with contact mechanics theory and heatmore » conduction models.« less

  17. Advanced Ignition in Supersonic Airflow by Tunable Plasma System

    NASA Astrophysics Data System (ADS)

    Firsov, A. A.; Dolgov, E. V.; Leonov, S. B.; Yarantsev, D. A.

    2017-10-01

    The plasma-based technique was studied for ignition and flameholding in a supersonic airflow in different laboratories for a long time. It was shown that flameholding of gaseous and liquid hydrocarbon fuel is feasible by means of surface DC discharge without employing mechanical flameholders in a supersonic combustion chamber. However, a high power consumption may limit application of this method in a real apparatus. This experimental and computational work explores a distributed plasma system, which allows reducing the total energy consumption and extending the life cycle of the electrode system. Due to the circuit flexibility, this approach may be potentially enriched with feedbacks for design of a close loop control system.

  18. Physical vs. photolithographic patterning of plasma polymers: an investigation by ToF-SSIMS and multivariate analysis

    PubMed Central

    Mishra, Gautam; Easton, Christopher D.; McArthur, Sally L.

    2009-01-01

    Physical and photolithographic techniques are commonly used to create chemical patterns for a range of technologies including cell culture studies, bioarrays and other biomedical applications. In this paper, we describe the fabrication of chemical micropatterns from commonly used plasma polymers. Atomic force microcopy (AFM) imaging, Time-of-Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) imaging and multivariate analysis have been employed to visualize the chemical boundaries created by these patterning techniques and assess the spatial and chemical resolution of the patterns. ToF-SSIMS analysis demonstrated that well defined chemical and spatial boundaries were obtained from photolithographic patterning, while the resolution of physical patterning via a transmission electron microscopy (TEM) grid varied depending on the properties of the plasma system including the substrate material. In general, physical masking allowed diffusion of the plasma species below the mask and bleeding of the surface chemistries. Multivariate analysis techniques including Principal Component Analysis (PCA) and Region of Interest (ROI) assessment were used to investigate the ToF-SSIMS images of a range of different plasma polymer patterns. In the most challenging case, where two strongly reacting polymers, allylamine and acrylic acid were deposited, PCA confirmed the fabrication of micropatterns with defined spatial resolution. ROI analysis allowed for the identification of an interface between the two plasma polymers for patterns fabricated using the photolithographic technique which has been previously overlooked. This study clearly demonstrated the versatility of photolithographic patterning for the production of multichemistry plasma polymer arrays and highlighted the need for complimentary characterization and analytical techniques during the fabrication plasma polymer micropatterns. PMID:19950941

  19. A technique for plasma velocity-space cross-correlation

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean; Skiff, Fred

    2018-05-01

    An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.

  20. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  1. Highly efficient and stable ultraviolet photocathode based on nanodiamond particles

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Valentini, A.; Cicala, G.

    2016-02-01

    Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.

  2. Leak testing and repair of fusion devices

    NASA Astrophysics Data System (ADS)

    Kozman, T. A.

    1983-06-01

    The leak testing, reporting and vacuum leak repair techniques of the MPTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques are developed for testing and repairing leaks on the 42 MPTF-B magnets. The leak hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown). Additionally, during MPTF-B operation there are warm water plasma shields and piping that require leak checking.

  3. Co-amplification at lower denaturation-temperature PCR combined with unlabled-probe high-resolution melting to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma cases.

    PubMed

    Wu, Jiong; Zhou, Yan; Zhang, Chun-Yan; Song, Bin-Bin; Wang, Bei-Li; Pan, Bai-Shen; Lou, Wen-Hui; Guo, Wei

    2014-01-01

    The aim of our study was to establish COLD-PCR combined with an unlabeled-probe HRM approach for detecting KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma (PA) cases as a novel and effective diagnostic technique. We tested the sensitivity and specificity of this approach with dilutions of known mutated cell lines. We screened 36 plasma-circulating DNA samples, 24 from the disease control group and 25 of a healthy group, to be subsequently sequenced to confirm mutations. Simultaneously, we tested the specimens using conventional PCR followed by HRM and then used target-DNA cloning and sequencing for verification. The ROC and respective AUC were calculated for KRAS mutations and/or serum CA 19-9. It was found that the sensitivity of Sanger reached 0.5% with COLD- PCR, whereas that obtained after conventional PCR did 20%; that of COLD-PCR based on unlabeled-probe HRM, 0.1%. KRAS mutations were identified in 26 of 36 PA cases (72.2%), while none were detected in the disease control and/or healthy group. KRAS mutations were identified both in 26 PA tissues and plasma samples. The AUC of COLD-PCR based unlabeled probe HRM turned out to be 0.861, which when combined with CA 19-9 increased to 0.934. It was concluded that COLD-PCR with unlabeled-probe HRM can be a sensitive and accurate screening technique to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA for diagnosing and treating PA.

  4. In situ electrostatic characterisation of ion beams in the region of ion acceleration

    NASA Astrophysics Data System (ADS)

    Bennet, Alexander; Charles, Christine; Boswell, Rod

    2018-02-01

    In situ and ex situ techniques have been used to measure directional ion beams created by a sharp axial potential drop in low pressure expanding plasmas. Although Retarding Field Energy Analysers (RFEAs) are the most convenient technique to measure the ion velocities and plasma potentials along with the plasma density, they are bulky and are contained in a grounded shield that may perturb the electric potential profile of the expanding plasma. In principle, ex situ techniques produce a more reliable measurement and Laser Induced Fluorescence spectroscopy (LIF) has previously been used to characterise the spatial velocity profile of ion beams in the same region of acceleration for a range of pressures. Here, satisfactory agreement between the ion velocity profiles measured by LIF and RFEA techniques has allowed the RFEA method to be confidently used to probe the ion beam characteristics in the regions of high gradients in plasma density and DC electric fields which have previously proven difficult.

  5. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  6. Experimental investigation of differential confinement effects in a rotating helicon plasma

    NASA Astrophysics Data System (ADS)

    Gueroult, Renaud; Evans, Eugene; Zweben, Stewart J.; Fisch, Nathaniel J.; Levinton, Fred

    2014-10-01

    Although plasmas have long been considered for isotope separation, challenges presented by nuclear waste remediation and nuclear spent fuel reprocessing have recently sparked a renewed interest for high-throughput plasma based mass separation techniques. Different filter concepts relying on rotating plasmas have been proposed to address these needs. However, one of the challenges common to these concepts is the need to control the plasma rotation profile, which is generally assumed to be provided by means of dedicated electrodes. An experimental effort aiming to evaluate the practicality of these plasma filter concepts has recently been started at PPPL. For this purpose, a linear helicon plasma source is used in combination with concentric ring electrodes. Preliminary biasing experiments results indicate floating potential profiles locally suitable for mass discrimination for different gas mixtures (Ar/Ne, Ar/N2, Ar/Kr). Radially resolved spectroscopic measurements and neutral gas composition analysis at two different axial positions are being planned to assess the mass separation effect. Work supported by US DOE under Contract No. DE-AC02-09CH11466.

  7. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less

  8. Application of inorganic element ratios to chemometrics for determination of the geographic origin of welsh onions.

    PubMed

    Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi

    2004-09-22

    The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly.

  9. Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Bing; Wang, Qi; Li, Chengzhi; Zhang, Yinming; Lin, Hancheng; Wang, Zhenyuan

    2017-02-01

    Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48 h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ± 1.92 h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.

  10. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    PubMed

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  11. Functional and proteomic comparison of different techniques to produce equine anti-tetanus immunoglobulin F(ab')2 fragments.

    PubMed

    Zhang, Xue-Jun; Li, Hai-Ling; Deng, Da-Yi; Ji, Chong; Yao, Xiao-Dong; Liu, Jia-Xin

    2018-05-29

    Tetanus is still a major cause of human deaths in several developing countries. In particular, the neonatal form remains a significant public health problem. According to the World Health Organization, administration of tetanus toxoid is recommended for neonatal tetanus patients. Furthermore, tetanus antitoxin or anti-tetanus immunoglobulin (Ig) are used for mild case or intensive care. This paper discusses a novel purification technique for improving equine anti-tetanus Ig production. First, equine plasma dealt with two steps salting out with ammonium sulfate; second, ultrafiltration concentration liquid purified by one successive protein G based affinity chromatography steps; finally, the purified F(ab')2 fragments was characterized using biochemical and proteomic methods and shown to be pure and homogeneous. Compared with the original technique product, specific activity increased by 80% (about 90,000 IU/g) and recovery of F(ab')2 is approximately equal 75%. Furthermore, Proteomic profiling of total technique process is demonstrated by nano-HPLC-MS and bioinformatics analysis. New technique to produce equine anti-tetanus immunoglobulin F(ab')2 fragments from crude plasma in high quality and yield. And it also could be used for industrial amplification. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lo, Li; Shen, Chuan-Chou; Lu, Chia-Jung; Chen, Yi-Chi; Chang, Ching-Chih; Wei, Kuo-Yen; Qu, Dingchuang; Gagan, Michael K.

    2014-02-01

    We have developed a rapid and precise procedure for measuring multiple elements in foraminifera and corals by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS) with both cold- [800 W radio frequency (RF) power] and hot- (1200 W RF power) plasma techniques. Our quality control program includes careful subsampling protocols, contamination-free workbench spaces, and refined plastic-ware cleaning process. Element/Ca ratios are calculated directly from ion beam intensities of 24Mg, 27Al, 43Ca, 55Mn, 57Fe, 86Sr, and 138Ba, using a standard bracketing method. A routine measurement time is 3-5 min per dissolved sample. The matrix effects of nitric acid, and Ca and Sr levels, are carefully quantified and overcome. There is no significant difference between data determined by cold- and hot-plasma methods, but the techniques have different advantages. The cold-plasma technique offers a more stable plasma condition and better reproducibility for ppm-level elements. Long-term 2-sigma relative standard deviations (2-RSD) for repeat measurements of an in-house coral standard are 0.32% for Mg/Ca and 0.43% for Sr/Ca by cold-plasma ICP-SF-MS, and 0.69% for Mg/Ca and 0.51% for Sr/Ca by hot-plasma ICP-SF-MS. The higher sensitivity and enhanced measurement precision of the hot-plasma procedure yields 2-RSD precision for μmol/mol trace elements of 0.60% (Mg/Ca), 9.9% (Al/Ca), 0.68% (Mn/Ca), 2.7% (Fe/Ca), 0.50% (Sr/Ca), and 0.84% (Ba/Ca) for an in-house foraminiferal standard. Our refined ICP-SF-MS technique, which has the advantages of small sample size (2-4 μg carbonate consumed) and fast sample throughput (5-8 samples/hour), should open the way to the production of high precision and high resolution geochemical records for natural carbonate materials.

  13. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  14. Possibilities and limitations of 2DE-based analyses for identifying low-abundant tumor markers in human serum and plasma.

    PubMed

    Strohkamp, Sarah; Gemoll, Timo; Habermann, Jens K

    2016-10-01

    Hallmarks of malignancy can be monitored by protein signatures in serum or plasma. The current challenge in cancer research is the identification of clinically reliable protein biomarkers for diagnostic and prognostic purposes. A widely used and powerful technique to screen tumor markers is two-dimensional gel electrophoresis (2DE). This review provides an overview of 2DE functionality with its advantages and drawbacks as well as a current literature overview of gel-based cancer biomarker discovery in serum/plasma. In this context, 11 of the 12 studies reviewed here identified at least one of eight classical serum or high-abundant proteins (HAPs). Expression levels of those proteins are regulated by a vast variety of different physiological, metabolic and immunological stimuli leading to a questionable application as cancer-specific markers. Misinterpretation of HAPs as tumor markers might be caused by either the experimental setup or the technical and analytical potential in gel-based serum or plasma proteomics to detect low-abundant proteins, or a combination thereof. Additionally, based on currently available technology we propose an optimized experimental workflow to allow detecting cancer-specific protein markers of low abundance in future 2DE studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The MHD simulation of interplanetary space and heliosphere by using the boundary conditions of time-varying magnetic field and IPS-based plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Kojima, M.; Fujiki, K.

    2008-12-01

    We present our new boundary treatment to introduce the temporal variation of the observation-based magnetic field and plasma parameters on the inner boundary sphere (at 30 to 50 Rs) to the MHD simulation of the interplanetary space and the simulation results. The boundary treatment to induce the time-variation of the magnetic field including the radial component is essentially same as shown in our previous AGU meetings and newly modified so that the model can also include the variation of the plasma variables detected by IPS (interplanetary scintillation) observation, a ground-based remote sensing technique for the solar wind plasma. We used the WSO (Wilcox Solar Observatory at Stanford University) for the solar magnetic field input. By using the time-varying boundary condition, smooth variations of heliospheric MHD variables during the several Carrington solar rotation period are obtained. The simulation movie will show how the changes in the inner heliosphere observable by the ground-based instrument propagate outward and affects the outer heliosphere. The simulated MHD variables are compared with the Ulysses in-situ measurement data including ones made during its travel from the Earth to Jupiter for validation, and we obtain better agreements than with the simulation with fixed boundary conditions.

  16. PANDORA, a new facility for interdisciplinary in-plasma physics

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  17. Transport properties of plasmas in microwave electrothermal thrusters. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.

    1990-01-01

    The microwave electrothermal thruster is a potential propulsion system for spacecraft applications such as platform station keeping. It is a thruster which allows no contact between the electrodes and the propellant. For this thruster, the electromagnetic energy is transferred to the electrons in the plasma region of the propellant using the TM011 and TM012 modes of a microwave cavity system. The collisional processes by the electrons with the propellant causes transfer of the energy. Work was done to study these processes using several diagnostic techniques - calorimetry, photography, and spectroscopy. Experimental results of these techniques for nitrogen and helium gasesmore » are included. These diagnostic techniques are important in understanding plasma phenomena and designing practical plasma rocket thrusters. In addition, a broad theoretical background is included to provide a fundamental description of the plasma phenomena.« less

  18. Magnetic nanomotor fabrication by plasma coating method and its biological application

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Yurdabak Karaca, Gozde; Uygun, Emre; Uygun Oksuz, Aysegul

    2017-10-01

    Nano/micro scale motors are exciting research area due to a wide range of application area especially offer considerable promise for the diagnosis and treatment of the diseases. In this scope, the preparation and characterization of Gold (Au)/ Nickel (Ni) nanomotors transport and their applications based on the detection of miRNA-21 will be examined. In addition, magnetic segment Ni which was coated by RF magnetron sputter technique on to the electrochemical synthesized Au nanowire can also be used to focus on the controlled movement and target. We propose a sensitive stable plasma coated magnetic nanomotor-based approach for miRNA-21 detection for simple and cancer diagnosis.

  19. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    NASA Astrophysics Data System (ADS)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  20. Single exposure three-dimensional imaging of dusty plasma clusters.

    PubMed

    Hartmann, Peter; Donkó, István; Donkó, Zoltán

    2013-02-01

    We have worked out the details of a single camera, single exposure method to perform three-dimensional imaging of a finite particle cluster. The procedure is based on the plenoptic imaging principle and utilizes a commercial Lytro light field still camera. We demonstrate the capabilities of our technique on a single layer particle cluster in a dusty plasma, where the camera is aligned and inclined at a small angle to the particle layer. The reconstruction of the third coordinate (depth) is found to be accurate and even shadowing particles can be identified.

  1. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    PubMed

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1991-01-01

    The utilization of a cold or nonequilibrium plasma in chlorination processing is discussed. Titanium dioxide (TiO2) was successfully chlorinated at temperatures between 700 and 900 C without the aid of carbon. In addition to these initial experiments, a technique was developed for determining the temperature of a specimen in a plasma. Development of that technique has required evaluating the emissivity of TiO2, ZrO2, and FeOTiO2 and analyzing the specimen temperature in a plasma as a function of both power absorbed by the plasma and the pressure of the plasma. The mass spectrometer was also calibrated with TiCl4 and CCl4 vapor.

  4. Damage-free polymer surface modification employing inward-type plasma

    NASA Astrophysics Data System (ADS)

    Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo

    2017-08-01

    Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.

  5. A coherent detection technique via optically biased field for broadband terahertz radiation.

    PubMed

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  6. Plasmas for medicine

    NASA Astrophysics Data System (ADS)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.

  7. Standardized protocols for quality control of MRM-based plasma proteomic workflows.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Smith, Derek S; Borchers, Christoph H

    2013-01-04

    Mass spectrometry (MS)-based proteomics is rapidly emerging as a viable technology for the identification and quantitation of biological samples, such as human plasma--the most complex yet commonly employed biofluid in clinical analyses. The transition from a qualitative to quantitative science is required if proteomics is going to successfully make the transition to a clinically useful technique. MS, however, has been criticized for a lack of reproducibility and interlaboratory transferability. Currently, the MS and plasma proteomics communities lack standardized protocols and reagents to ensure that high-quality quantitative data can be accurately and precisely reproduced by laboratories across the world using different MS technologies. Toward addressing this issue, we have developed standard protocols for multiple reaction monitoring (MRM)-based assays with customized isotopically labeled internal standards for quality control of the sample preparation workflow and the MS platform in quantitative plasma proteomic analyses. The development of reference standards and their application to a single MS platform is discussed herein, along with the results from intralaboratory tests. The tests highlighted the importance of the reference standards in assessing the efficiency and reproducibility of the entire bottom-up proteomic workflow and revealed errors related to the sample preparation and performance quality and deficits of the MS and LC systems. Such evaluations are necessary if MRM-based quantitative plasma proteomics is to be used in verifying and validating putative disease biomarkers across different research laboratories and eventually in clinical laboratories.

  8. Foundations of low-temperature plasma enhanced materials synthesis and etching

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb S.; Hamaguchi, Satoshi

    2018-02-01

    Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.

  9. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.

  10. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  11. Calculations of the Electron Energy Distribution Function in a Uranium Plasma by Analytic and Monte Carlo Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bathke, C. G.

    1976-01-01

    Electron energy distribution functions were calculated in a U235 plasma at 1 atmosphere for various plasma temperatures and neutron fluxes. The distributions are assumed to be a summation of a high energy tail and a Maxwellian distribution. The sources of energetic electrons considered are the fission-fragment induced ionization of uranium and the electron induced ionization of uranium. The calculation of the high energy tail is reduced to an electron slowing down calculation, from the most energetic source to the energy where the electron is assumed to be incorporated into the Maxwellian distribution. The pertinent collisional processes are electron-electron scattering and electron induced ionization and excitation of uranium. Two distinct methods were employed in the calculation of the distributions. One method is based upon the assumption of continuous slowing and yields a distribution inversely proportional to the stopping power. An iteration scheme is utilized to include the secondary electron avalanche. In the other method, a governing equation is derived without assuming continuous electron slowing. This equation is solved by a Monte Carlo technique.

  12. The SRS (Segmented Rail Surface) railgun: A new approach to restrike control. [Segmented rail surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker J.V.

    1988-01-01

    A Segmented Rail Surface (SRS) structure is described that eliminates restrike arcs by progressively disconnecting segments of the rail surface after the plasma armature has passed. This technique has been demonstrated using the Los Alamos MIDI-2 railgun. Restrike was eliminated in a plasma armature acceleration experiment using metal-foil fuses as opening switches. A plasma velocity increase from 11 to 16 km/s was demonstrated using the SRS technique to eliminate the viscous drag losses associated with the restrike plasma. This technique appears to be a practical option for a laboratory launcher at present and for future multi-shot launchers if appropriate switchesmore » can be developed. 5 refs., 8 figs.« less

  13. ELM control with RMP: plasma response models and the role of edge peeling response

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina

    2016-11-01

    Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.

  14. Direct determination of trace phthalate esters in alcoholic spirits by spray-inlet microwave plasma torch ionization tandem mass spectrometry.

    PubMed

    Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping

    2018-03-01

    A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Angular filter refractometry analysis using simulated annealing.

    PubMed

    Angland, P; Haberberger, D; Ivancic, S T; Froula, D H

    2017-10-01

    Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ 2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.

  16. Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells.

    PubMed

    Chtcheglova, Lilia A; Hinterdorfer, Peter

    2018-01-01

    Elucidation the nano-organization of membrane proteins at/within the plasma membrane is probably the most demanding and still challenging task in cell biology since requires experimental approaches with nanoscale resolution. During last decade, atomic force microscopy (AFM)-based simultaneous topography and recognition imaging (TREC) has become a powerful tool to quickly obtain local receptor nano-maps on complex heterogeneous biosurfaces such as cells and membranes. Here we emphasize the TREC technique and explain how to unravel the nano-landscape of mammalian cells. We describe the procedures for all steps of the experiment including tip functionalization with ligand molecules, sample preparation, and localization of key molecules on the cell surface. We also discuss the current limitations and future perspectives of this technique. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Real time closed loop control of an Ar and Ar/O2 plasma in an ICP

    NASA Astrophysics Data System (ADS)

    Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.

    2006-10-01

    Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.

  18. Partially ionized hydrogen plasma in strong magnetic fields.

    PubMed

    Potekhin, A Y; Chabrier, G; Shibanov, Y A

    1999-08-01

    We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.

  19. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  20. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    PubMed

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  1. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    NASA Astrophysics Data System (ADS)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  2. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, Giuseppe; University Mediterranea of Reggio Calabria, Reggio Calabria; Mascali, David

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chambermore » radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.« less

  3. Optical Plasma Control During ARC Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.

    2001-01-01

    To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.

  4. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Shen, Lu; Wen, Chih-yung

    2017-06-01

    This paper presents an experimental investigation of the application of dielectric barrier discharge (DBD) plasma actuators on a slender delta wing to control the leading edge vortices (LEVs). The experiments are conducted in a wind tunnel with a Reynolds number of 50 000 based on the chord length. The smoke flow visualization reveals that the DBD plasma actuators at the leading edges significantly modify the vortical flow structure over the delta wing. It is noted that symmetric control at both semi-spans and asymmetric control at a single semi-span leads to opposite effects on the local LEVs. Particle image velocimetry (PIV) indicates that the shear layer is deformed by the actuators. Therefore, both the strength and the shape of the LEV cores are deeply affected. The six-component force measurement shows that the DBD plasma actuators have a limited effect on lift and drag while inducing relatively large moments. This suggests that the DBD plasma actuator is a promising technique for delta wing maneuvering.

  5. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples.

    PubMed

    Brett, Sabine I; Lucien, Fabrice; Guo, Charles; Williams, Karla C; Kim, Yohan; Durfee, Paul N; Brinker, C J; Chin, Joseph I; Yang, Jun; Leong, Hon S

    2017-05-01

    The ability to isolate extracellular vesicles (EVs) such as exosomes or microparticles is an important method that is currently not standardized. While commercially available kits offer purification of EVs from biofluids, such purified EV samples will also contain non-EV entities such as soluble protein and nucleic acids that could confound subsequent experimentation. Ideally, only EVs would be isolated and no soluble protein would be present in the final EV preparation. We compared commercially available EV isolation kits with immunoaffinity purification techniques and evaluated our final EV preparations using atomic force microscopy (AFM) and nanoscale flow cytometry (NFC). AFM is the only modality capable of detecting distinguishing soluble protein from EVs which is important for downstream proteomics approaches. NFC is the only technique capable of quantitating the proportion of target EVs to non-target EVs in the final EV preparation. To determine enrichment of prostate derived EVs relative to non-target MPs, anti-PSMA (Prostate Specific Membrane Antigen) antibodies were used in NFC. Antibody-based immunoaffinity purification generated the highest quality of prostate derived EV preparations due to the lack of protein and RNA present in the samples. All kits produced poor purity EV preparations that failed to deplete the sample of plasma protein. While attractive due to their ease of use, EV purification kits do not provide substantial improvements in isolation of EVs from biofluids such as plasma. Immunoaffinity approaches are more efficient and economical and will also eliminate a significant portion of plasma proteins which is necessary for downstream approaches. © 2017 Wiley Periodicals, Inc.

  6. Laboratory demonstration model: Active cleaning technique device. [for removal of contaminants from an optical surface

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1974-01-01

    The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.

  7. Modification of modulated plasma plumes for the quasi-phase-matching of high-order harmonics in different spectral ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495; Boltaev, G. S.

    We demonstrate the technique allowing the fine tuning of the distance between the laser-produced plasma plumes on the surfaces of different materials, as well as the variation of the sizes of these plumes. The modification of plasma formations is based on the tilting of the multi-slit mask placed between the heating laser beam and target surface, as well as the positioning of this mask in the telescope placed on the path of heating radiation. The modulated plasma plumes with the sizes of single plume ranging between 0.1 and 1 mm were produced on the manganese and silver targets. Modification of themore » geometrical parameters of plasma plumes proved to be useful for the fine tuning of the quasi-phase-matched high-order harmonics generated in such structures during propagation of the ultrashort laser pulses. We show the enhancement of some groups of harmonics along the plateau range and the tuning of maximally enhanced harmonic by variable modulation of the plasma.« less

  8. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE PAGES

    Angland, P.; Haberberger, D.; Ivancic, S. T.; ...

    2017-10-30

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  9. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angland, P.; Haberberger, D.; Ivancic, S. T.

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  10. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  11. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  12. A theoretical and experimental investigation of cylindrical electrostatic probes at arbitrary incidence in flowing plasma

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Jones, W. L., Jr.

    1974-01-01

    The theory for calculating the current collected by a negatively biased cylindrical electrostatic probe at an arbitrary angle of attack in a weakley ionized flowing plasma is presented. The theory was constructed by considering both random and directed motion simultaneous with dynamic coupling of the flow properties and of the electric field of the probe. This direct approach yielded a theory that is more general than static plasma theories modified to account for flow. Theoretical calculations are compared with experimental electrostatic probe data obtained in the free stream of an arc-heated hypersonic wind tunnel. The theoretical calculations are based on flow conditions and plasma electron densities measured by an independent microwave interferometer technique. In addition, the theory is compared with laboratory and satellite data previously published by other investigators. In each case the comparison gives good agreement.

  13. Identification of a localized core mode in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Green, Daniel A.; Chakraborty Thakur, Saikat; Tynan, George R.; Light, Adam D.

    2017-10-01

    We present imaging measurements of a newly observed mode in the core of the Controlled Shear Decorrelation Experiment - Upgrade (CSDX-U). CSDX-U is a well-characterized linear machine producing dense plasmas relevant to the tokamak edge (Te 3 eV, ne 1013 /cc). Typical fluctuations are dominated by electron drift waves, with evidence for Kelvin-Helmholtz vortices appearing near the plasma edge. A new mode has been observed using high-speed imaging that appears at high magnetic field strengths and is confined to the inner third of the plasma column. A cross-spectral phase technique allows direct visualization of dominant spatial structures as a function of frequency. Experimental dispersion curve estimates are constructed from imaging data alone, and allow direct comparison of theoretical dispersion relations to the observed mode. We present preliminary identification of the mode based on its dispersion curve, and compare the results with electrostatic probe measurements.

  14. Determination of structure tilting in magnetized plasmas—Time delay estimation in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guszejnov, Dávid; Bencze, Attila; Zoletnik, Sándor

    2013-06-15

    Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion plasmas. The present work is an extension of the earlier works of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] and Tal et al.[Phys. Plasmas 18, 122304 (2011)]. From the prospective of the comparison of theory and experiment, it seems to be important to estimate the statistical properties of the TDE based on solid mathematical groundings. This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma edge and also gives an explicit method formore » determination of the tilt angle of structures. As a demonstration, this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy measurement performed at the TEXTOR tokamak.« less

  15. Deuteron Beam Source Based on Mather Type Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.

    2013-04-01

    A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.

  16. [Optimization on trehalose loading technique as protective conditioning for lyophilization of human platelets].

    PubMed

    Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang

    2005-08-01

    This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.

  17. Overview Experimental Diagnostics for Rarefied Flows - Selected Topics

    DTIC Science & Technology

    2011-01-01

    flows occurring e.g. in electrical thrusters or plasma wind tunnels. Classical intrusive techniques like Pitot, heat flux, and enthalpy probe as well as...and applied at the IRS, especially designed for the characterisation of flows produced by electrical thrusters and within the plasma wind tunnels for...occurring e.g. in electrical thrusters or plasma wind tunnels. Classical intrusive techniques like Pitot, heat flux, and enthalpy probe as well as mass

  18. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    NASA Astrophysics Data System (ADS)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  19. Imaging Magnetospheric Perturbations of the Ionosphere/Plasmasphere System from the Ground and Space

    NASA Astrophysics Data System (ADS)

    Foster, J. C.

    2004-05-01

    The thermal plasmas of the inner magnetosphere and ionosphere move across the magnetic field under the influence of electric fields. Irrespective of their source, these electric fields extend along magnetic field lines coupling the motion of thermal plasmas in the various altitude regimes. Modern remote-sensing techniques based both on the ground and in space are providing a new view of the large and meso-scale characteristics and dynamics of the plasmas of the extended ionosphere and their importance in understanding processes and effects observed throughout the coupled spheres of Earth's upper atmosphere. During strong geomagnetic storms, disturbance electric fields uplift and redistribute the thermal plasma of the low-latitude ionosphere and inner magnetosphere, producing a pronounced poleward shift of the equatorial anomalies (EA) and enhancements of plasma concentration (total electric content, TEC) in the post-noon plasmasphere. Strong SAPS (subauroral polarization stream) electric fields erode the plasmasphere boundary layer in the region of the dusk-sector bulge, producing plasmaspheric drainage plumes which carry the high-altitude material towards the dayside magnetopause. The near-Earth footprint of these flux tubes constitutes the mid-latitude streams of storm-enhanced density (SED) which produce considerable space weather effects across the North American continent. We use ground-based GPS propagation data to produce two-dimensional maps and movies of the evolution of these TEC features as they progress from equatorial regions to the polar caps. DMSP satellite overflights provide in-situ density and plasma flow/electric field observations, while the array of incoherent scatter radars probe the altitude distribution and characteristics of these dynamic thermal plasma features. IMAGE EUV and FUV observations reveal the space-based view of spatial extent and temporal evolution of these phenomena.

  20. Characterization of hydrotreated Mayan and Wilmington vacuum tower bottoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, C.D.; Green, J.B.; Bhan, O.K.

    1989-04-01

    Mayan and Wilmington vacuum tower bottoms were hydrotreated at various severity levels in a batch autoclave with and without catalyst. Each of the feeds and the hydrotreated products was separated into acid-base (ABN) fraction using a unique non-aqueous ion exchange technique. The feeds, hydrotreated whole products, and the ABN fractions were characterized by determining their elemental and metal content. Selected samples were analyzed by size exclusion chromatography/inductively coupled plasma technique to determine molecular size distribution of various species.

  1. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    NASA Astrophysics Data System (ADS)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  2. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    DOE PAGES

    Wingen, Andreas; Wilcox, Robert S.; Cianciosa, Mark R.; ...

    2016-10-13

    Here, a technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fieldsmore » $$\\left(\\delta B/B\\sim {{10}^{-3}}\\right)$$ are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s –1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s –1) and peaked rotation profiles (40 krad s –1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to $${{30}^{\\circ}}$$ are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.« less

  3. Color instabilities in the quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Mrówczyński, Stanisław; Schenke, Björn; Strickland, Michael

    2017-04-01

    When the quark-gluon plasma (QGP) - a system of deconfined quarks and gluons - is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. We begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh-Schwinger formalism, classical and quantum kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, are analyzed in detail. Particular attention is paid to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a dispersion equation without explicitly solving it, and stability criteria are also discussed. We then review various numerical approaches - purely classical or quantum - to simulate the temporal evolution of an unstable quark-gluon plasma. The dynamical role of instabilities in the processes of plasma equilibration is analyzed.

  4. Spectral Kinetic Simulation of the Ideal Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Gong, Junbo; Wilczek, Sebastian; Szeremley, Daniel; Oberrath, Jens; Eremin, Denis; Dobrygin, Wladislaw; Schilling, Christian; Friedrichs, Michael; Brinkmann, Ralf Peter

    2015-09-01

    The term Active Plasma Resonance Spectroscopy (APRS) denotes a class of diagnostic techniques which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe: An RF signal in the GHz range is coupled into the plasma via an electric probe; the spectral response of the plasma is recorded, and a mathematical model is used to determine plasma parameters such as the electron density ne or the electron temperature Te. One particular realization of the method is the Multipole Resonance Probe (MRP). The ideal MRP is a geometrically simplified version of that probe; it consists of two dielectrically shielded, hemispherical electrodes to which the RF signal is applied. A particle-based numerical algorithm is described which enables a kinetic simulation of the interaction of the probe with the plasma. Similar to the well-known particle-in-cell (PIC), it contains of two modules, a particle pusher and a field solver. The Poisson solver determines, with the help of a truncated expansion into spherical harmonics, the new electric field at each particle position directly without invoking a numerical grid. The effort of the scheme scales linearly with the ensemble size N.

  5. Color instabilities in the quark–gluon plasma

    DOE PAGES

    Mrówczyński, Stanisław; Schenke, Björn; Strickland, Michael

    2017-04-09

    When the quark–gluon plasma (QGP) – a system of deconfined quarks and gluons – is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. Here, we begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh–Schwinger formalism, classical and quantum kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, aremore » analyzed in detail. We pay particular attention to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a dispersion equation without explicitly solving it, and stability criteria are also discussed. We then review various numerical approaches – purely classical or quantum – to simulate the temporal evolution of an unstable quark–gluon plasma. The dynamical role of instabilities in the processes of plasma equilibration is analyzed.« less

  6. [Plasma exchange in nephrology: Indications and technique].

    PubMed

    Ridel, Christophe; Kissling, Sébastien; Mesnard, Laurent; Hertig, Alexandre; Rondeau, Éric

    2017-02-01

    Plasma exchange is a non-selective apheresis technique that can be performed by filtration or centrifugation allowing rapid purification of high molecular weight pathogens. An immunosuppressive treatment is generally associated to reduce the rebound effect of the purified substance. Substitution solutes such as human albumin and macromolecules are needed to compensate for plasma extraction. Compensation by viro-attenuated plasma is reserved solely for the treatment of thrombotic microangiopathies or when there is a risk of bleeding, because this product is very allergenic and expensive. The treatment goal for a plasma exchange session should be between one and one and one-half times the patient's plasma volume estimated at 40 mL/kg body weight. The anticoagulation is best ensured by the citrate. Complications of plasma exchange are quite rare according to the French hemapheresis registry. The level of evidence of efficacy of plasma exchange in nephrology varies from one pathology to another. Main indications of plasma exchange in nephrology are Goodpasture syndrome, antineutrophil cytoplasmic antibody vasculitis when plasma creatinine is greater than 500 μmol/L, and thrombotic microangiopathies. During renal transplantation, plasma exchange may be proposed in the context of human leukocyte antigen (HLA) desensitization protocols or ABO-incompatible graft. After renal transplantation, plasma exchange is indicated as part of the treatment of acute humoral rejection or recurrent focal segmental glomerulosclerosis on the graft. Plasma exchanges are also proposed in the management of cryoglobulinemia or polyarteritis nodosa. Hemodialysis with membranes of very high permeability tends to replace plasma exchange for myeloma nephropathy. The benefit from plasma exchange has not been formally demonstrated for the treatment of severe lupus or antiphospholipid antibody syndrome. There is no indication of plasma exchange in the treatment of scleroderma or nephrogenic systemic fibrosis. More selective apheresis techniques such as immunoadsorption are currently proposed to replace plasma exchange. Copyright © 2016. Published by Elsevier SAS.

  7. The plasma free amino acid dose-response technique: A proposed methodology for determining lysine relative bioavailability of rumen-protected lysine supplements.

    PubMed

    Whitehouse, N L; Schwab, C G; Brito, A F

    2017-12-01

    Estimates of Lys bioavailability of rumen-protected Lys (RP-Lys) supplements are often obtained using in vitro or 2-step in situ techniques, with little to no data determining efficacy and bioavailability in vivo. The objective of this study was to further evaluate and refine the use of the plasma free AA dose-response technique as a method for determining Lys relative bioavailability of RP-Lys supplements. Thirteen dose-response Latin square studies using 87 lactating, ruminally cannulated multiparous Holstein cows (days in milk from 55 to 315 and milk yield from 12 to 62 kg/d at the start of the studies) were conducted to measure the relative bioavailability of RP-Lys supplements. Intestinal (1 study) and abomasal (12 studies) infusions of Lys ranged from 0 to 84 g/d, and experimental periods ranged from 4 to 21 d. Basal diets were formulated to be adequate in metabolizable Met, but varied in predicted metabolizable Lys (5.04 to 6.81% of metabolizable protein). One to 4 daily blood samples were taken from the coccygeal vessels for 1 to 3 consecutive days in each period. Plasma Lys concentration in cows assigned to the control treatment (0 g/d Lys) ranged from 1.83 to 5.21% of total plasma AA, whereas that from cows duodenally or abomasally infused with Lys ranged from 2.53 to 7.51% of total plasma AA. Results from studies involving more than 2 amounts of infused Lys confirmed linearity of response. The following variables were regressed against the plasma Lys dose-response slopes generated from the Lys infusion treatments to examine their effects on the magnitude of the slopes: plasma Lys concentration of the control diet, plasma Lys concentration at the greatest amount of infused Lys, net energy of lactation and metabolizable protein balances, metabolizable protein supply, days in milk, milk yield, milk concentrations of fat, true protein, and lactose, milk true protein yield, and dry matter intake. The variable having the greatest effect on the magnitude of the dose-response slope was the plasma Lys concentration at the greatest amount infused. The relative bioavailability of evaluated RP-Lys supplements using the plasma free AA dose-response technique ranged from 5 to 87%. It was concluded that plasma free Lys increases in a linear fashion to increasing amounts of absorbed Lys and that the dose-response technique is an appropriate technique for evaluating RP-Lys supplements. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. ELM mitigation techniques

    NASA Astrophysics Data System (ADS)

    Evans, T. E.

    2013-07-01

    Large edge-localized mode (ELM) control techniques must be developed to help ensure the success of burning and ignited fusion plasma devices such as tokamaks and stellarators. In full performance ITER tokamak discharges, with QDT = 10, the energy released by a single ELM could reach ˜30 MJ which is expected to result in an energy density of 10-15 MJ/m2on the divertor targets. This will exceed the estimated divertor ablation limit by a factor of 20-30. A worldwide research program is underway to develop various types of ELM control techniques in preparation for ITER H-mode plasma operations. An overview of the ELM control techniques currently being developed is discussed along with the requirements for applying these techniques to plasmas in ITER. Particular emphasis is given to the primary approaches, pellet pacing and resonant magnetic perturbation fields, currently being considered for ITER.

  9. The requirements for low-temperature plasma ionization support miniaturization of the ion source.

    PubMed

    Kiontke, Andreas; Holzer, Frank; Belder, Detlev; Birkemeyer, Claudia

    2018-06-01

    Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.

  10. Spin-dependent excitation of plasma modes in non-neutral ion plasmas

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian C.; Britton, Joe W.; Bollinger, John J.

    2011-10-01

    We report on a new technique for exciting and sensitively detecting plasma modes in small, cold non-neutral ion plasmas. The technique uses an optical dipole force generated from laser beams to excite plasma modes. By making the force spin- dependent (i.e. depend on the internal state of the atomic ion) very small mode excitations (<100 nm) can be detected through spin-motion entanglement. Even when the optical dipole force is homogeneous throughout the plasma, short wavelength modes on the order of the interparticle spacing can in principle be excited and detected through the spin dependence of the force. We use this technique to study the drumhead modes of single plane triangular arrays of a few hundred Be+ ions. Spin-dependent mode excitation is interesting in this system because it provides a means of engineering an Ising interaction on a 2-D triangular lattice. For the case of an anti-ferromagnetic interaction, this system exhibits spin frustration on a scale that is at present computationally intractable. Work supported by the DARPA OLE program and NIST.

  11. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  12. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    NASA Astrophysics Data System (ADS)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was influenced considerably, the area-integrated pressure was only slightly affected. Normalized RMS levels indicate that base pressure fluctuations were significantly reduced with the addition of the splitter plates. Power-spectral-density estimates revealed a spectral broadening of fluctuating energy for the 1/2 cylinder configuration and a bimodal distribution for the 1/3 and 1/4 cylinder configurations. It was concluded that the recirculation region is not the most sensitive location to apply flow control; rather, the shear layer may be a more influential site for implementing flow control methodologies. For active flow control, pulsed plasma-driven fluidic actuators were investigated. Initially, the performance of two plasma actuator designs was characterized to determine their potential as supersonic flow control devices. For the first actuator considered, the pulsed plasma jet, electro-thermal heating from an electric discharge heats and pressurizes gas in a small cavity which is exhausted through a circular orifice forming a synthetic jet. Depending on the electrical energy addition, peak jet velocities ranged between 130 to nearly 500 m/s when exhausted to quiescent, ambient conditions. The second plasma actuator investigated is the localized arc filament plasma actuator (LAFPA), which created fluidic perturbations through the rapid, local thermal heating, generated from an electric arc discharge between two electrodes within a shallow open cavity. Electrical and emission properties of the LAFPA were first documented as a function of pressure in a quiescent, no-flow environment. Rotational and vibrational temperatures from N2 spectra were obtained for select plasma conditions and ambient pressures. Results further validate that the assumption of optically thin conditions for these electric arc plasmas is not necessary valid, even at low ambient pressure. Breakdown voltage, sustained plasma voltage, power, and energy per pulse were demonstrated to decrease with decreasing pressure. Implementing an array of eight electric arcs circumferentially around the base near the corner expansion, the LAFPA actuators were shown to produce significant disturbances to the separating shear layer of the base flow and cause modest influences on the base pressure when actuated over a range of high frequencies (O(kHz)), forcing modes, duty cycles, and electrical currents. To tailor the plasma actuator toward the specific flow control application of the separated base flow, several actuator geometries and energy additions were evaluated. Displaying the ability to produce disturbances in the shear layer, an open cavity actuator design outperformed the other geometries consisting of a confined cavity with an exhaust orifice. Increases in duty cycle (between 2% and 6%) and in plasma current (1/4 to 4 amps) were shown to produce large velocity disturbances causing a decrease in average base pressure. At 4 amps and a maximum duty cycle of 6%, the largest measured change in area-weighted base pressure, near -1.5%, was observed for the axisymmetric forcing mode. Positive changes in base pressure were experienced (as much as 1% increase from the no-control) for the vertical and horizontal flapping modes.

  14. The effects of pre-ionization using a shunt resistor on reproducibility of the x-ray emission in a dense plasma focus device

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.

    2017-08-01

    In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.

  15. A unique control system simulator for the evaluation of pulsed plasma thrusters

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1973-01-01

    Because of the low thrust characteristics of solid-propellant pulsed plasma thrusters and their operational requirement to operate in a vacuum environment, unique and sensitive test techniques are required. A technique evolved for testing and evaluating pulsed plasma thrusters in an open- or closed-loop system mode employs a unique air bearing platform as a single-axis simulator on which the thruster is mounted. The simulator described was developed to evaluate pulsed plasma thrusters in the low micropound range; however, the simulator can be extended to cover the operational range of currently developed millipound thrusters.

  16. Detection of the Equatorial Ionospheric Irregularities Using the POD GPS Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Astafyeva, E.; Cherniak, I.

    2015-12-01

    By making use of GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites we present results of the equatorial irregularities/plasma bubbles detection. For a given research we use data from a multi-satellite constellation consisting of the three Swarm satellites and the TerraSAR-X satellite. The major advantage of such LEO constellation is rather similar orbit altitude of ~500 km. The GPS-based indices, characterizing the occurrence and the strength of the ionospheric irregularities, were derived from the LEO GPS observations of a zenith-looking onboard GPS antenna. To study GPS fluctuation activity at the topside equatorial ionosphere we used TEC-based indices ROT (rate of TEC change) and ROTI (rate of TEC Index), proposed by Pi et al. (1997). We demonstrate a successful implementation of this technique for several case studies of the equatorial plasma bubbles occurrence in the post-midnight and morning LT hours during the year 2014. The ionospheric irregularities detected with GPS technique in Swarm/TerrasSAR-X data are consistent with the in situ plasma density variations registered by the three Swarm satellites (PLP measurements), as well as by three DMSP satellites at ~840 km orbital height, which indicate a large altitudinal extent of the observed phenomenon. Also we analyzed the global/seasonal distribution of the ionospheric irregularities at the topside equatorial region caused the phase fluctuations in GPS measurements onboard LEO satellite. We demonstrate that ROT/ROTI technique can be applied to LEO GPS data for geomagnetically quiet and disturbed conditions, as well as detection of the storm-induced equatorial irregularities in the morning local time.

  17. X-Ray Spectroscopies of Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver

    This dissertation provides a perspective on the role of x-ray spectroscopy and diffraction diagnostics in experimental studies of warm dense matter (WDM). The primary focus of the work I discuss is the development of techniques to measure the structure and state variables of laboratory-generated WDM with a view towards both phenomenlogy and placing contraints on theoretical models. I present techniques adapted to two experimental venues for WDM studies: large-scale laser plasma facilities and x-ray free electron lasers. My focus is on the latter, in the context of which I have studied a dose enhancement technique that exploits nonlocal heat transport in nanostructured targets and considered several aspects of optimizing x-ray diffraction measurements. This work came into play in beam runs at the Linac Coherent Light Source (LCLS) in which my group performed x-ray diffraction studies of several materials heated to eV-scale temperatures. The results from these experiments include confirmation of the persistence of long-range crystalline order upon heating of metal oxides to tens of eV temperarures on the 40 fs timescale. One material, MgO, additionally manifested a surprising anomalous early onset in delocalization of valence charge density, contradicting predictions of all models based on either ground state electronic structure or (high-energy density) plasma physics. This particular result outlines a future path for studies of ordered insulators heated to temperatures on the order of the band gap. Such experiments will offer strong tests of electronic strucure theory, implementing a scientific approach that sees measurement of real-space charge density via x-ray diffraction (XRD) as a particularly effectve means to constrain density functional theory (DFT)-based modeling of the solid state/plasma transitional regime.

  18. Diagnosing pure-electron plasmas with internal particle flux probes.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M

    2007-01-01

    Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.

  19. Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth

    NASA Astrophysics Data System (ADS)

    Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki

    2001-10-01

    Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.

  20. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas.

    PubMed

    Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  1. Cryogenic Cathode Cooling Techniques for Improved SABRE Extraction Ion Diode Li Beam Generation

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Johnston, R. R.; Cuneo, M. E.; Menge, P. R.; Fowler, W. E.; Armijo, J.; Nielsen, D. S.; Petmecky, D.

    1997-11-01

    We are developing techniques for cryogenic cooling of the SABRE extraction ion diode cathode that, combined with source cleaning, should improve the purity and brightness of Li beams for ICF light ion fusion. By liquid helium (LHe) cathode cooling, we have been able to maintain A-K gap base pressures in the range of 5 - 7x10-8 Torr for about 45 minutes. These base pressures extend the monolayer formation time for the worst beam contaminants (H2 and water vapor) to 10 - 100 sec or longer, which should allow the accelerator to be fired without significant Li source recontamination. This technique is compatible with He glow discharge cleaning, laser cleaning, and in situ Li deposition. We are also developing techniques for Ti-gettering of H2 and for cryogenic cooling of cathode electrodes to delay cathode plasma expansion.

  2. Design and characterization of a nano-Newton resolution thrust stand

    NASA Astrophysics Data System (ADS)

    Soni, J.; Roy, S.

    2013-09-01

    The paper describes the design, calibration, and characterization of a thrust stand capable of nano-Newton resolution. A low uncertainty calibration method is proposed and demonstrated. A passive eddy current based damper, which is non-contact and vacuum compatible, is employed. Signal analysis techniques are used to perform noise characterization, and potential sources are identified. Calibrated system noise floor suggests thrust measurement resolution of the order of 10 nN is feasible under laboratory conditions. Force measurement from this balance for a standard macroscale dielectric barrier discharge (DBD) plasma actuator is benchmarked with a commercial precision balance of 9.8 μN resolution and is found to be in good agreement. Published results of a microscale DBD plasma actuator force measurement and low pressure characterization of conventional plasma actuators are presented for completeness.

  3. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    NASA Astrophysics Data System (ADS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  4. On-Chip Titration of an Anticoagulant Argatroban and Determination of the Clotting Time within Whole Blood or Plasma Using a Plug-Based Microfluidic System

    PubMed Central

    Song, Helen; Li, Hung-Wing; Munson, Matthew S.; Van Ha, Thuong G.; Ismagilov, Rustem F.

    2006-01-01

    This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0–1.5 μg/mL) into plugs and measurement of the resulting APTTs at room temperature (23 °C) and physiological temperature (37 °C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor’s blood samples (both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 °C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other. PMID:16841902

  5. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea

    2018-01-01

    The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  6. Plasma cleaning and analysis of archeological artefacts from Sipán

    NASA Astrophysics Data System (ADS)

    Saettone, E. A. O.; da Matta, J. A. S.; Alva, W.; Chubaci, J. F. O.; Fantini, M. C. A.; Galvão, R. M. O.; Kiyohara, P.; Tabacniks, M. H.

    2003-04-01

    A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipán. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.

  7. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; hide

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  8. Dressed soliton in quantum dusty pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.

    Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].

  9. Control of plasma process by use of harmonic frequency components of voltage and current

    DOEpatents

    Miller, Paul A.; Kamon, Mattan

    1994-01-01

    The present invention provides for a technique for taking advantage of the intrinsic electrical non-linearity of processing plasmas to add additional control variables that affect process performance. The technique provides for the adjustment of the electrical coupling circuitry, as well as the electrical excitation level, in response to measurements of the reactor voltage and current and to use that capability to modify the plasma characteristics to obtain the desired performance.

  10. Development of plasma assisted thermal vapor deposition technique for high-quality thin film.

    PubMed

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  11. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique

    PubMed Central

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik

    2016-01-01

    This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique. PMID:28787838

  12. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique.

    PubMed

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik

    2016-01-11

    This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight ( M w ), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  13. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  14. Recent progress of tungsten R&D for fusion application in Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Lee, H. T.; Ohno, N.; Kajita, S.; Kimura, A.; Kasada, R.; Nagasaka, T.; Hatano, Y.; Hasegawa, A.; Kurishita, H.; Oya, Y.

    2011-12-01

    The status of ongoing research projects of tungsten R&D in Japan is summarized in this paper. For tungsten material development, a new improved fabrication technique, the so-called superplasticity-based microstructural modification, is described. This technique successfully improved fracture strength and ductility at room temperature. Recent results on vacuum plasma spray W coating and W brazing on ferritic steels and vanadium alloys are explained. Feasibility of these techniques for the manufacture of the blanket is successfully demonstrated. The latest findings on the effect of neutron damage in tungsten on T retention and on the change in mechanical and electrical properties are described. Retention characteristics for neutron-damaged W were different compared to those for ion-damaged W. Upon neutron irradiation, tungsten alloys containing transmutation elements of W (Re and Os) show changes in properties that are different compared with those shown by pure W. The effects of mixed plasma exposure (D/He/C) are described. Both D/He and D/C mixed ion irradiations significantly affect ion-driven permeation in W. He bubble dynamics play a key role in nano-structure formation on the W surface.

  15. Fast algorithm for spectral processing with application to on-line welding quality assurance

    NASA Astrophysics Data System (ADS)

    Mirapeix, J.; Cobo, A.; Jaúregui, C.; López-Higuera, J. M.

    2006-10-01

    A new technique is presented in this paper for the analysis of welding process emission spectra to accurately estimate in real-time the plasma electronic temperature. The estimation of the electronic temperature of the plasma, through the analysis of the emission lines from multiple atomic species, may be used to monitor possible perturbations during the welding process. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, sub-pixel algorithms are used to more accurately estimate the central wavelength of the peaks. Three different sub-pixel algorithms will be analysed and compared, and it will be shown that the LPO (linear phase operator) sub-pixel algorithm is a better solution within the proposed system. Experimental tests during TIG-welding using a fibre optic to capture the arc light, together with a low cost CCD-based spectrometer, show that some typical defects associated with perturbations in the electron temperature can be easily detected and identified with this technique. A typical processing time for multiple peak analysis is less than 20 ms running on a conventional PC.

  16. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A., E-mail: vlad@llnl.gov; Kaita, R.; Stratton, B.

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.« less

  17. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  18. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE PAGES

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less

  19. Comparison of Plasma Exosomes by Differential Ultracentrifugation and Solvent Precipitation Methods.

    PubMed

    Peng, Qiao; Zhang, Jing; Zhou, Gang

    2018-06-01

    Emerging evidence has identified that exosomes play a pivotal role in intercellular signal transmission. However, the standardized purification techniques to isolate high quality exosomes are still deficient at present. This study was to evaluate reproducibility and efficiency of differential ultracentrifugation and solvent precipitation-based kits by isolating plasma-derived exosomes from oral lichen planus patients. Morphology, exosomal biomarkers, particle size distribution, proteomic components, and protein yield of isolated exosomes were evaluated by transmission electron microscope, western blot, laser diffraction instrument, Coomassie staining, and BCA protein assay kit, respectively. TEM displayed representative cup-shaped morphology of exosomes and western blot identified exosomal biomarkers CD9 and CD63. The size distribution showed that particles by differential ultracentrifugation were mainly from 26.15 nm to 166.5 nm, while some of the particles obtained by solvent precipitation kits were larger than 1,000 nm. In addition, exosomes isolated by solvent precipitation kits showed a significantly higher amount of protein yield due to plasma albumin contamination. Both differential ultracentrifugation and precipitation based kits could successfully isolate plasma exosomes, and exosomes by differential ultracentrifugation were purer and more appropriate for further proteomic analysis.

  20. Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu

    2017-02-01

    Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

  1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences

    NASA Astrophysics Data System (ADS)

    Xu, Gu-feng; Wang, Hong-mei

    2001-08-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  2. Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.

    In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less

  3. Simultaneous Measurements of Substorm-Related Electron Energization in the Ionosphere and the Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Sivadas, N.; Semeter, J.; Nishimura, Y.; Kero, A.

    2017-10-01

    On 26 March 2008, simultaneous measurements of a large substorm were made using the Poker Flat Incoherent Scatter Radar, Time History of Events and Macroscale Interactions during Substorm (THEMIS) spacecraft, and all sky cameras. After the onset, electron precipitation reached energies ≳100 keV leading to intense D region ionization. Identifying the source of energetic precipitation has been a challenge because of lack of quantitative and magnetically conjugate measurements of loss cone electrons. In this study, we use the maximum entropy inversion technique to invert altitude profiles of ionization measured by the radar to estimate the loss cone energy spectra of primary electrons. By comparing them with magnetically conjugate measurements from THEMIS-D spacecraft in the nightside plasma sheet, we constrain the source location and acceleration mechanism of precipitating electrons of different energy ranges. Our analysis suggests that the observed electrons ≳100 keV are a result of pitch angle scattering of electrons originating from or tailward of the inner plasma sheet at 9RE, possibly through interaction with electromagnetic ion cyclotron waves. The electrons of energy 10-100 keV are produced by pitch angle scattering due to a potential drop of ≲10 kV in the auroral acceleration region (AAR) as well as wave-particle interactions in and tailward of the AAR. This work demonstrates the utility of magnetically conjugate ground- and space-based measurements in constraining the source of energetic electron precipitation. Unlike in situ spacecraft measurements, ground-based incoherent scatter radars combined with an appropriate inversion technique can be used to provide remote and continuous-time estimates of loss cone electrons in the plasma sheet.

  4. Non-thermal plasma technologies: new tools for bio-decontamination.

    PubMed

    Moreau, M; Orange, N; Feuilloley, M G J

    2008-01-01

    Bacterial control and decontamination are crucial to industrial safety assessments. However, most recently developed materials are not compatible with standard heat sterilization treatments. Advanced oxidation processes, and particularly non-thermal plasmas, are emerging and promising technologies for sanitation because they are both efficient and cheap. The applications of non-thermal plasma to bacterial control remain poorly known for several reasons: this technique was not developed for biological applications and most of the literature is in the fields of physics and chemistry. Moreover, the diversity of the devices and complexity of the plasmas made any general evaluation of the potential of the technique difficult. Finally, no experimental equipment for non-thermal plasma sterilization is commercially available and reference articles for microbiologists are rare. The present review aims to give an overview of the principles of action and applications of plasma technologies in biodecontamination.

  5. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study.

    PubMed

    Ameling, Sabine; Kacprowski, Tim; Chilukoti, Ravi Kumar; Malsch, Carolin; Liebscher, Volkmar; Suhre, Karsten; Pietzner, Maik; Friedrich, Nele; Homuth, Georg; Hammer, Elke; Völker, Uwe

    2015-10-14

    Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania (SHIP). Quantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control. Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest. After regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35 plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively. Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs displayed sex-specific differences after adjustment for blood cell parameters. These findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence, these parameters should be considered as covariates in association studies based on plasma miRNA levels. The established experimental and computational workflow can now be used in future screening studies to determine associations of plasma miRNAs with defined disease phenotypes.

  6. Thermal imaging of plasma with a phased array antenna in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Kishore, E-mail: mishra@triam.kyushu-u.ac.jp; Nagata, K.; Akimoto, R.

    2014-11-15

    A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversionmore » region and its position is successfully reconstructed using phase array technique which is done in post processing.« less

  7. Final Technical Report: "New Tools for Physics with Low-energy Antimatter"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surko, Clifford M.

    2013-10-02

    The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap frommore » the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.« less

  8. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  9. The most intense electric currents in turbulent high speed solar wind

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  10. A new biosensor for noninvasive determination of fetal RHD status in maternal blood of RhD negative pregnant women.

    PubMed

    Dündar Yenilmez, Ebru; Kökbaş, Umut; Kartlaşmış, Kezban; Kayrın, Levent; Tuli, Abdullah

    2018-01-01

    Prenatal detection of the fetal RHD status can be useful in the management of RhD incompatibility to identify fetuses at risk of hemolytic disease. Hemolytic disease causes morbidity and mortality of the fetus in the neonatal period. The routine use of antenatal and postnatal anti-D prophylaxis has reduced the incidence of hemolytic disease of the fetus and newborn. This study describe the detection of fetal RhD antigens in blood of RhD negative pregnant women using a nanopolymer coated electrochemical biosensor for medical diagnosis. Cell free fetal DNA in maternal plasma was also used to genotyping fetal RHD status using multiplex real-time PCR. Twenty-six RhD negative pregnant women in different gestational ages were included in the study. RhD positive fetal antibodies detected with a developed biosensor in maternal blood of RhD negative mothers. The electrochemical measurements were performed on a PalmSens potentiostat, and corundum ceramic based screen printed gold electrode combined with the reference Ag/AgCl electrode, and the auxiliary Au/Pd (98/2%) electrode. Fetal RHD genotyping performed using fluorescence-based multiplex real-time PCR exons 5 and 7 of the RHD gene. The fetal RHD status of 26 RhD negative cases were detected 21 as RhD positive and 5 as RhD negative with electrochemical biosensor. Fetal RHD status confirmed with extracted fetal DNA in maternal plasma using multiplex real-time PCR RHD genotyping and by serological test after delivery. The new method for fetal RhD detection in early pregnancy is useful and can be carry out rapidly in clinical diagnosis. Using automated biosensors are reproducible, quick and results can be generated within a few minutes compared to noninvasive fetal RHD genotyping from maternal plasma with real-time PCR-based techniques. We suggest the biosensor techniques could become an alternative part of fetal RHD genotyping from maternal plasma as a prenatal screening in the management of RhD incompatibility.

  11. Flow Cytometry in Diagnosis of Myelomatous Pleural Effusion: A Case Report.

    PubMed

    Arora, Parul; Gupta, Sanjeev Kumar; Mallik, Nabhajit; Mittal, Reena; Sharma, Om Dutt; Kumar, Lalit

    2016-06-01

    Plasma cell myeloma is a multifocal plasma cell neoplasm associated with increased monoclonal protein in serum and/or urine. Pleural effusions in patients with myeloma are uncommon (6 %). However, effusions due to direct infiltration of the pleura by plasma cells (myelomatous pleural effusion) are extremely rare (<1 %) and usually seen with IgA myeloma. The diagnosis of such cases requires pleural fluid cytology, electrophoresis or pleural biopsy. We present a case of myelomatous pleural effusion diagnosed using flow cytometry immunophenotyping in addition to the pleural fluid cytology. A 45 year old female was diagnosed as plasma cell myeloma (IgG kappa) in 2007. She received multiple lines of therapy during the course of her treatment including thalidomide, dexamethasone, lenalidomide, bortezomib, and doxorubicin based regimens. However, the patient had progressive extramedullary disease and developed pleural effusion in 2014. Cytological examination of the pleural fluid showed degenerative changes. Few preserved areas showed mononuclear cells including morphologically abnormal plasma cells. Immunophenotyping of these cells by flow cytometry revealed a pattern indicating neoplastic plasma cells. There was expression of CD38, CD138, and CD56, with absence of CD19, CD10 and CD45. This confirmed the diagnosis of myelomatous pleural effusion. Subsequently, the patient was offered a dexamethasone, cyclophosphamide, etoposide and cisplatin based regimen but, she declined further treatment and succumbed to her disease 3 months later. Myelomatous pleural effusion is a rare complication of plasma cell myeloma. Flow cytometry can be used as an adjunctive technique in its diagnosis particularly in cases with equivocal cytology and electrophoresis findings.

  12. High Speed Photographic Analysis Of Railgun Plasmas

    NASA Astrophysics Data System (ADS)

    Macintyre, I. B.

    1985-02-01

    Various experiments are underway at the Materials Research Laboratories, Australian Department of Defence, to develop a theory for the behaviour and propulsion action of plasmas in rail guns. Optical recording and imaging devices, with their low vulnerability to the effects of magnetic and electric fields present in the vicinity of electromagnetic launchers, have proven useful as diagnostic tools. This paper describes photoinstrumentation systems developed to provide visual qualitative assessment of the behaviour of plasma travelling along the bore of railgun launchers. In addition, a quantitative system is incorporated providing continuous data (on a microsecond time scale) of (a) Length of plasma during flight along the launcher bore. (b) Velocity of plasma. (c) Distribution of plasma with respect to time after creation. (d) Plasma intensity profile as it travels along the launcher bore. The evolution of the techniques used is discussed. Two systems were employed. The first utilized a modified high speed streak camera to record the light emitted from the plasma, through specially prepared fibre optic cables. The fibre faces external to the bore were then imaged onto moving film. The technique involved the insertion of fibres through the launcher body to enable the plasma to be viewed at discrete positions as it travelled along the launcher bore. Camera configuration, fibre optic preparation and experimental results are outlined. The second system utilized high speed streak and framing photography in conjunction with accurate sensitometric control procedures on the recording film. The two cameras recorded the plasma travelling along the bore of a specially designed transparent launcher. The streak camera, fitted with a precise slit size, recorded a streak image of the upper brightness range of the plasma as it travelled along the launcher's bore. The framing camera recorded an overall view of the launcher and the plasma path, to the maximum possible, governed by the film's ability to reproduce the plasma's brightness range. The instrumentation configuration, calibration, and film measurement using microdensitometer scanning techniques to evaluate inbore plasma behaviour, are also presented.

  13. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma.

    PubMed

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.

  14. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.

  15. Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wang, T.-L.; Michta, D.; Lindberg, R. R.; Charman, A. E.; Martins, S. F.; Wurtele, J. S.

    2009-12-01

    Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov et al., Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations.

  16. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakudo, N.; Ikenaga, N.; Ikeda, F.

    2011-01-07

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will bemore » simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.« less

  17. Development of full wave code for modeling RF fields in hot non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.

  18. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less

  19. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  20. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  1. Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions

    NASA Astrophysics Data System (ADS)

    Saeed, R.; Shah, Asif

    2010-03-01

    The nonlinear propagation of ion acoustic waves in electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries-Burger equation has been derived by reductive perturbation technique, and its shock like solution is determined analytically through tangent hyperbolic method. The effect of various plasma parameters on strength and structure of shock wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that strength and steepness of the shock wave enervate with an increase in the ion temperature, relativistic streaming factor, positron concentrations, electron temperature and they accrue with an increase in coefficient of kinematic viscosity. The convective, dispersive, and dissipative properties of the plasma are also discussed. It is determined that the electron temperature has remarkable influence on the propagation and structure of nonlinear wave in such relativistic plasmas. The numerical analysis has been done based on the typical numerical data from a pulsar magnetosphere.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrówczyński, Stanisław; Schenke, Björn; Strickland, Michael

    When the quark–gluon plasma (QGP) – a system of deconfined quarks and gluons – is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. Here, we begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh–Schwinger formalism, classical and quantum kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, aremore » analyzed in detail. We pay particular attention to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a dispersion equation without explicitly solving it, and stability criteria are also discussed. We then review various numerical approaches – purely classical or quantum – to simulate the temporal evolution of an unstable quark–gluon plasma. The dynamical role of instabilities in the processes of plasma equilibration is analyzed.« less

  3. Temperature profile determination in an absorbing plasma.

    NASA Technical Reports Server (NTRS)

    Usher, J. L.; Campbell, H. D.

    1972-01-01

    A new method has been developed to determine the temperature profile of an optically-non-thin plasma. The technique is essentially an extension of the brightness-emissivity method to the case of a cylindrically-symmetric plasma.

  4. Novel 3D Tissue Engineered Bone Model, Biomimetic Nanomaterials, and Cold Atmospheric Plasma Technique for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Mian

    This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.

  5. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  6. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  7. Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profijt, H. B.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2013-01-15

    Two substrate-biasing techniques, i.e., substrate-tuned biasing and RF biasing, have been implemented in a remote plasma configuration, enabling control of the ion energy during plasma-assisted atomic layer deposition (ALD). With both techniques, substrate bias voltages up to -200 V have been reached, which allowed for ion energies up to 272 eV. Besides the bias voltage, the ion energy and the ion flux, also the electron temperature, the electron density, and the optical emission of the plasma have been measured. The effects of substrate biasing during plasma-assisted ALD have been investigated for Al{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, and TiO{sub 2}more » thin films. The growth per cycle, the mass density, and the crystallinity have been investigated, and it was found that these process and material properties can be tailored using substrate biasing. Additionally, the residual stress in substrates coated with Al{sub 2}O{sub 3} films varied with the substrate bias voltage. The results reported in this article demonstrate that substrate biasing is a promising technique to tailor the material properties of thin films synthesized by plasma-assisted ALD.« less

  8. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    PubMed

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  9. Proposal and verification numerical simulation for a microwave forward scattering technique at upper hybrid resonance for the measurement of electron gyroscale density fluctuations in the electron cyclotron frequency range in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kawamori, E.; Igami, H.

    2017-11-01

    A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.

  10. Plasma-enhanced mixing and flameholding in supersonic flow

    PubMed Central

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  11. Importance of differential charging for controlling both natural and induced vehicle potentials on ATS-5 and ATS-6

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Olsen, R. C.

    1980-01-01

    Three techniques of discharging satellites used on the P78-2 satellite were the ejection of a beam of electrons from an electron gun; the emission of electrons from a heated, biased filament; and the ejection of a plasma containing energetic positive xenon ions and low energy electrons. When the P78-2 satellite ground to plasma potential difference reached several hundred volts, each of the three techniques was able to completely discharge the satellite. The comparative effctiveness of the techniques were clearly shown. Two days later, the satellite charged to -8 keV upon entering eclipse. The electron gun, emitting 1 mA of electrons with 150 eV energy, reduced the difference in potential between satellite ground and the ambient plasma to -1 kV, but could not completely discharge the satellite. The plasma source completely discharged the satellite.

  12. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  13. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGES

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; ...

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  14. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  15. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  16. Development and use of culture systems to modulate specific cell responses

    NASA Astrophysics Data System (ADS)

    Martin, Yves

    Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.

  17. Optimal Control Techniques for ResistiveWall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell Dobbs Pearson

    Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to the vacuum vessel for RWM feedback. RWM feedback based on VALEN outperformed a classical control algorithm using external coils to suppress the normalized plasma response to a rotating n=1 perturbation applied by internal coils over a range of frequencies. This study describes the design, development and testing of the GPU based control hardware and algorithm along with its performance during experiment and simulation.

  18. Growth and properties of amorphous silicon films grown using pulsed-flow reactive plasma beam epitaxy

    NASA Technical Reports Server (NTRS)

    Dalal, Vikram L.; Knox, Ralph; Kandalaft, Nabeeh; Baldwin, Greg

    1991-01-01

    The growth and properties of a-Si:H films grown using a novel deposition technique, reactive plasma beam epitaxy, are discussed. In this technique, a remote H plasma produced in a microwave-ECR reactor is used to grow a-Si:H films at low pressures. The H ions react with SiH4 introduced near the substrate to produce the film. The flow of SiH4 is pulsed on or off, thereby achieving in-situ annealing of the film during growth by H ions and radicals. The films produced by this technique appear to have good electronic quality, and are more stable than the standard glow discharge films.

  19. Plasma contactor research - 1991

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.

    1992-01-01

    A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.

  20. Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing

    NASA Astrophysics Data System (ADS)

    van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe

    2016-09-01

    Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.

  1. Plasma channel undulator excited by high-order laser modes

    DOE PAGES

    Wang, J. W.; Schroeder, C. B.; Li, R.; ...

    2017-12-04

    The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here in this paper, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of amore » mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-Top FEL.« less

  2. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  3. Plasma channel undulator excited by high-order laser modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. W.; Schroeder, C. B.; Li, R.

    The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here in this paper, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of amore » mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-Top FEL.« less

  4. Plasma Source Development for LAPD

    NASA Astrophysics Data System (ADS)

    Pribyl, P.; Gekelman, W.; Drandell, M.; Grunspen, S.; Nakamoto, M.; McBarron, A.

    2003-10-01

    The Large Plasma Device (LAPD) relies on an indirectly heated Barium Oxide (BaO) cathode to generate an extremely repeatable low-noise plasma. However there are two defects of this system: one is that the cathode is subject to oxygen poisoning in the event of accidental air leaks, requiring a lengthy recoating and regeneration process. Second, the indirect radiative heating is only about 50 % efficient, leading to a series of reliability issues. Alternate plasma sources are being investigated, including two types of directly heated BaO cathode and several configurations of inductively coupled RF plasmas. Direct heating for a cathode can be achieved either by embedding heaters within the nickel substrate, or by using inductive heating techniques to drive currents within the nickel itself. In both cases, the BaO coating still serves to emit the electrons and thus generate the plasma arc. An improved system would generate the plasma without the use of a "cathode" e.g. by inductively coupling energy directly into the plasma discharge. This technique is being investigated from the point of view of whether a) the bulk of the plasma column can be made sufficiently low-noise to be of experimental value and b) sufficiently dense plasmas can be formed.

  5. Mechanistic study of plasma damage to porous low-k: Process development and dielectric recovery

    NASA Astrophysics Data System (ADS)

    Shi, Hualiang

    Low-k dielectrics with porosity are being introduced to reduce the RC delay of Cu/low-k interconnect. However, during the O2 plasma ashing process, the porous low-k dielectrics tend to degrade due to methyl depletion, moisture uptake, and densification, increasing the dielectric constant and leakage current. This dissertation presents a study of the mechanisms of plasma damage and dielectric recovery. The kinetics of plasma interaction with low-k dielectrics was investigated both experimentally and theoretically. By using a gap structure, the roles of ion, photon, and radical in producing damage on low-k dielectrics were differentiated. Oxidative plasma induced damage was proportional to the oxygen radical density, enhanced by VUV photon, and increased with substrate temperature. Ion bombardment induced surface densification, blocking radical diffusion. Two analytical models were derived to quantify the plasma damage. Based on the radical diffusion, reaction, and recombination inside porous low-k dielectrics, a plasma altered layer model was derived to interpret the chemical effect in the low ion energy region. It predicted that oxidative plasma induced damage can be reduced by decreasing pore radius, substrate temperature, and oxygen radical density and increasing carbon concentration and surface recombination rate inside low-k dielectrics. The model validity was verified by experiments and Monte-Carlo simulations. This model was also extended to the patterned low-k structure. Based on the ion collision cascade process, a sputtering yield model was introduced to interpret the physical effect in the high ion energy region. The model validity was verified by checking the ion angular and energy dependences of sputtering yield using O2/He/Ar plasma, low-k dielectrics with different k values, and a Faraday cage. Low-k dielectrics and plasma process were optimized to reduce plasma damage, including increasing carbon concentration in low-k dielectrics, switching plasma generator from ICP to RIE, increasing hard mask thickness, replacing O2 by CO2 plasma, increasing CO addition in CO/O 2 plasma, and increasing N2 addition in CO2/N 2 plasma. By combining analytical techniques with the Kramers-Kronig dispersion relation and quantum chemistry calculation, the origin of dielectric loss was ascribed to the physisorbed water molecules. Post-ash CH4 plasma treatment, vapor silylation process, and UV radiation were developed to repair plasma damage.

  6. Rapid method for the measurement of circulating thyroid hormones in low volumes of teleost fish plasma by LC-ESI/MS/MS

    PubMed Central

    Noyes, Pamela D.; Lema, Sean C.; Roberts, Simon C.; Cooper, Ellen M.

    2014-01-01

    Thyroid hormones are critical regulators of normal development and physiological functioning in all vertebrates. Radioimmunoassay (RIA) approaches have been the method of choice for measuring circulating levels of thyroid hormones in vertebrates. While sensitive, RIA-based approaches only allow for a single analyte measurement per assay, can lack concordance across platforms and laboratories, and can be prone to analytical interferences especially when used with fish plasma. Ongoing advances in liquid chromatography tandem mass spectrometry (LC/MS/MS) have led to substantial decreases in detection limits for thyroid hormones and other biomolecules in complex matrices, including human plasma. Despite these advances, current analytical approaches do not allow for the measurement of native thyroid hormone in teleost fish plasma by mass spectrometry and continue to rely on immunoassay. In this study, we developed a new method that allows for the rapid extraction and simultaneous measurement of total T4 (TT4) and total T3 (TT3) in low volumes (50 μL) of fish plasma by LC/MS/MS. Methods were optimized initially in plasma from rainbow trout (Oncorhynchus mykiss) and applied to plasma from other teleost fishes, including fathead minnows (Pimephales promelas), mummichogs (Fundulus heteroclitus), sockeye salmon (Oncorhynchus nerka), and coho salmon (Oncorhynchus kisutch). Validation of method performance with T4- and T3-spiked rainbow trout plasma at 2 and 4 ng/mL produced mean recoveries ranging from 82 to 95 % and 97 to 105 %, respectively. Recovery of 13C12-T4 internal standard in plasma extractions was: 99±1.8 % in rainbow trout, 85±11 % in fathead minnow, 73±5.0 % in mummichog, 73±1.7 % in sockeye salmon, and 80±8.4 % in coho salmon. While absolute levels of thyroid hormones measured in identical plasma samples by LC/MS/MS and RIA varied depending on the assay used, T4/T3 ratios were generally consistent across both techniques. Less variability was measured among samples subjected to LC/MS/MS suggesting a more precise estimate of thyroid hormone homeostasis in the species targeted. Overall, a sensitive and reproducible method was established that takes advantage of LC/MS/MS techniques to rapidly measure TT4 and TT3 with negligible interferences in low volumes of plasma across a variety of teleost fishes. PMID:24343452

  7. Recent progress in plasma-assisted synthesis and modification of 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Zhao Jun; Murdock, Adrian T.; Seo, Dong Han; Bendavid, Avi

    2018-07-01

    Plasma represents an important technique for both the synthesis and modification of two-dimensional (2D) materials, owing to the unique plasma-material interactions which can enable effective energy transfer at the nanoscale. Non-equilibrium and non-thermal plasma techniques have been widely applied on various 2D materials, including graphene, silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), and transition metal dichalcogenides such as MoS2 and WS2. Here, we review the recent progress in plasma-assisted synthesis and modification (e.g. functionalisation, doping and etching) of 2D materials and discuss the potential applications of this unique branch of 2D materials. Challenges and future research opportunities in the relevant research field are also discussed. The primary aim of this Review is to provide a better understanding of the plasma-assisted processes and to promote the utilization of 2D materials for advanced electronic, optoelectronic, sensing and energy storage applications.

  8. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis

    PubMed Central

    Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Imaoka, Yuka; Itagaki, Yoshitsuna; Suzuki, Yuki

    2018-01-01

    Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. PMID:29723197

  9. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  10. Rapid and sensitive method for determination of withaferin-A in human plasma by HPLC.

    PubMed

    Patial, Pankaj; Gota, Vikram

    2011-02-01

    To develop and validate a rapid and sensitive high-performance liquid chromatographic method for determination of withaferin-A in human plasma. Withaferin-A, the active molecule of a traditional Indian herb, has demonstrated several biological activities in preclinical models. A validated bioassay is not available for its pharmacokinetic evaluation. The chromatographic system used a reverse-phase C18 column with UV-visible detection at 225 nm. The mobile phase consisted of water and acetonitrile applied in a gradient flow. Withaferin-A was extracted by simple protein-precipitation technique. The calibration curve was linear in the concentration range of 0.05-1.6 µg/ml. The method has the desired sensitivity to detect the plasma concentration range of withaferin-A that is likely to show biological activity based on in vitro data. This is the first HPLC method ever described for the estimation of withaferin-A in human plasma which could be applied for pharmacokinetic studies.

  11. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    NASA Astrophysics Data System (ADS)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  12. Compact microwave imaging system to measure spatial distribution of plasma density

    NASA Astrophysics Data System (ADS)

    Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.

    2004-10-01

    We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.

  13. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  14. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.

    2013-10-15

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less

  15. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas.

    PubMed

    Washeleski, Robert L; Meyer, Edmond J; King, Lyon B

    2013-10-01

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

  16. Near-infrared diode laser hydrogen fluoride monitor for dielectric etch

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Pirkle, David R.; Jeffries, Jay B.; McMillin, Brian; Hanson, Ronald K.

    2004-11-01

    A hydrogen fluoride (HF) monitor, using a tunable diode laser, is designed and used to detect the etch endpoints for dielectric film etching in a commercial plasma reactor. The reactor plasma contains HF, a reaction product of feedstock gas CF4 and the hydrogen-containing films (photoresist, SiOCH) on the substrate. A near-infrared diode laser is used to scan the P(3) transition in the first overtone of HF near 1.31 μm to monitor changes in the level of HF concentration in the plasma. Using 200 ms averaging and a signal modulation technique, we estimate a minimum detectable HF absorbance of 6×10-5 in the etch plasma, corresponding to an HF partial pressure of 0.03 mTorr. The sensor could indicate, in situ, the SiOCH over tetraethoxysilane oxide (TEOS) trench endpoint, which was not readily discerned by optical emission. These measurements demonstrate the feasibility of a real-time diode laser-based sensor for etch endpoint monitoring and a potential for process control.

  17. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Ongena, J.; Wright, J. C.; Wukitch, S. J.; Lerche, E.; Mantsinen, M. J.; van Eester, D.; Craciunescu, T.; Kiptily, V. G.; Lin, Y.; Nocente, M.; Nabais, F.; Nave, M. F. F.; Baranov, Y.; Bielecki, J.; Bilato, R.; Bobkov, V.; Crombé, K.; Czarnecka, A.; Faustin, J. M.; Felton, R.; Fitzgerald, M.; Gallart, D.; Giacomelli, L.; Golfinopoulos, T.; Hubbard, A. E.; Jacquet, Ph.; Johnson, T.; Lennholm, M.; Loarer, T.; Porkolab, M.; Sharapov, S. E.; Valcarcel, D.; van Schoor, M.; Weisen, H.; Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; Labombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Sundén, E. Andersson; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baião, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Orte, L. Barrera; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy, É.; Ayed, N. Ben; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P. S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M. A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D. J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P. D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; de Bock, M.; de Castro, A.; de La Cal, E.; de La Luna, E.; Masi, G. De; de Pablos, J. L.; de Temmerman, G.; de Tommasi, G.; de Vries, P.; Deakin, K.; Deane, J.; Agostini, F. Degli; Dejarnac, R.; Delabie, E.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Maio, F. Di; Siena, A. Di; Troia, C. Di; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph.; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Ďuran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th.; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galvão, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Gonçalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Cook, S. P. Hallworth; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D. V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J. L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T. A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, T.; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T. C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzęciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Książek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, L.; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch.; Lipschultz, B.; Litaudon, X.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M. A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; MacDonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph.; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín de Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, S.; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph.; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Diaz, F. Parra; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pearson, I. J.; Pehkonen, S.-P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Puglia, P. P. Pereira; von Thun, C. Perez; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Dos Reis, A. Pires; Piron, L.; Pironti, A.; Pisano; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th.; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S. J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, M.; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C. C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski, Ł.; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C.-A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Jun, D. Tskhakaya; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G. J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; van de Mortel, M.; van Eester, D.; van Renterghem, W.; van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; de Sa, W. W. Pires; Wakeling, B.; Waldon, C. W. F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, L.; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.

    2017-10-01

    We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed `three-ion' scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen-deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.

  18. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  19. Development and experimental study of oil-free capacitor module for plasma focus device

    NASA Astrophysics Data System (ADS)

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μ F , 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  20. Development and experimental study of oil-free capacitor module for plasma focus device.

    PubMed

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μF, 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  1. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  2. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  3. Influence of ns-laser wavelength in laser-induced breakdown spectroscopy for discrimination of painting techniques

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Syvilay, Delphine; Wilkie-Chancellier, Nicolas; Texier, Annick; Martinez, Loic; Serfaty, Stéphane; Martos-Levif, Dominique; Detalle, Vincent

    2017-08-01

    The influence of ns-laser wavelength to discriminate ancient painting techniques such as are fresco, casein, animal glue, egg yolk and oil was investigated in this work. This study was carried out with a single shot laser on samples covered by a layer made of a mixture of the cinnabar pigment and different binders. Three wavelengths based on Nd: YAG laser were investigated (1064, 532 and 266 nm). The plasma is controlled at the same electron temperature after an adjustment of pulse energy for these three wavelengths on a fresco sample without organic binder. This approach allows to eliminate the effects of laser pulse energy and the material laser absorption. Afterwards, the emission spectra were compared to separate different techniques. The organic binding media has been separated based on the relative emission intensity of the present CN or C2 rovibrational emissions. In order to test the capability of separating or identifying, the chemometric approach (PCA) was applied to the different matrix. The different solutions in term of wavelength range to optimise the identification was investigated. We focused on the evaluation for the laser wavelength to insure a better separation. The different capacity was interpreted by differentiating the binders by the altered interaction mechanisms between the laser photon and the binders. Also, the electron temperature in the plasma was estimated, which provided the evidences to our findings.

  4. Endurance test of a 30-CM-diameter engineering model ion thruster. Task 12: Investigation of thin-film erosion monitors for ion thrusters

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1983-01-01

    An investigation of short term measurement techniques for predicting the wearout of ion thrusters resulting from sputter erosion damage is described. The previously established laminar thin film techniques to provide high precision erosion rate data. However, the erosion rates obtained using this technique are generally substantially higher than those obtained during long term endurance tests (by virtue of the as deposited nature of the thin films), so that the results must be interpreted in a relative sense. Absolute measurements can be performed using a new masked substrate arrangement which was developed during this study. This new technique provides a means for estimating the lifetimes of critical discharge chamber components based on direct measurements of sputter erosion depths obtained during short duration (10 hour) tests. The method enables the effects on lifetime of thruster design and operating parameters to be inferred without the investment of the time and capital required to conduct long term (1000 hour) endurance tests. Results obtained using the direct measurement technique are shown to agree with sputter erosion depths calculated for the plasma conditions of the test and also with lifetest results. The direct measurement approach is shown to be applicable to both mercury and argon discharge plasma environments and should be useful in estimating the lifetimes of inert gas and extended performance mercury ion thrusters presently under development.

  5. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  6. Emerging Ceramic-based Materials for Dentistry

    PubMed Central

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  7. Study of supersonic plasma technology jets

    NASA Astrophysics Data System (ADS)

    Selezneva, Svetlana; Gravelle, Denis; Boulos, Maher; van de Sanden, Richard; Schram, Dc

    2001-10-01

    Recently some new techniques using remote thermal plasma for thin film deposition and plasma chemistry processes were developed. These techniques include PECVD of diamonds, diamond-like and polymer films; a-C:H and a-Si:H films. The latter are of especial interest because of their applications for solar cell production industry. In remote plasma deposition, thermal plasma is formed by means of one of traditional plasma sources. The chamber pressure is reduced with the help of continuous pumping. In that way the flow is accelerated up to the supersonic speed. The plasma expansion is controlled using a specific torch nozzle design. To optimize the deposition process detailed knowledge about the gas dynamic structure of the jet and chemical kinetics mechanisms is required. In the paper, we show how the flow pattern and the character of the deviations from local thermodynamic equilibrium differs in plasmas generated by different plasma sources, such as induction plasma torch, traditional direct current arc and cascaded arc. We study the effects of the chamber pressure, nozzle design and carrier gas on the resulting plasma properties. The analysis is performed by means of numerical modeling using commercially available FLUENT program with incorporated user-defined subroutines for two-temperature model. The results of continuum mechanics approach are compared with that of the kinetic Monte Carlo method and with the experimental data.

  8. Electron Beam Instrumentation Techniques Using Coherent Radiation

    NASA Astrophysics Data System (ADS)

    Wang, D. X.

    1997-05-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, advanced accelerators such as laser or plasma wakefield accelerators, and Compton backscattering X-ray sources. A short bunch length is needed to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, or accurate timing. Meanwhile, much progress has been made on photoinjectors and different magnetic and RF bunching schemes to produce very short bunches. Measurement of those short bunches becomes essential to develop, characterize, and operate such demanding machines. Conventionally, bunch duration of short electron bunches is measured by transverse RF deflecting cavities or streak camera. With such devices it becomes very challenging to measure bunch length down to a few hundred femtoseconds. Many frequency domain techniques have been recently developed, based on a relation between bunch profile and coherent radiation spectrum. These techniques provide excellent performance for short bunches. In this paper, coherent radiation and its applications to bunch length measurement will be discussed. A strategy for bunch length control at Jefferson Lab will be presented, which includes a noninvasive coherent synchrotron radiation (CSR) monitor, a zero-phasing technique used to calibrate the CSR detector, and phase transfer measurement used to correct RF phase drifts.

  9. A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry.

    PubMed

    Kaykhaii, Massoud; Yahyavi, Hossain; Hashemi, Mohammad; Khoshroo, Mohammad Reza

    2016-07-01

    Determination of malondialdehyde (MDA) in human blood plasma is important because of its role as a biomarker of lipid peroxidation in biological and medical sciences. In this work, a miniaturized graphene-based pipette tip solid-phase extraction technique was developed for very efficient extraction of MDA as its dithiobarbituric acid (TBA) adduct from human plasma. Two milligrams of graphene as sorbent were placed into a pipette tip and MDA-TBA compound was extracted and preconcentrated by it, after 4 repeated aspirating/dispensing cycles, then the column was eluted with 80 μL of dimethyl sulfoxide by 4 repeated aspirating/dispensing cycles and elusion was measured spectrofluorimetrically. Various effective parameters such as type and volume of eluent solvent, temperature, sample volume, number of cycles of extraction and desorption, derivatization reaction time, and pH of the sample solution were investigated and optimized. Under optimum conditions, a linear calibration curve was obtained in the range of 0.5-90 μg L(-1) (r (2) = 0.991) with a detection limit of 0.3 μg L(-1). The relative standard deviations for 8 replicate measurements of 10 and 40 μg L(-1) of MDA were found to be 4.51 and 3.78 % respectively. The developed protocol was successfully applied to the determination of MDA in a human blood plasma sample. Graphical Abstract A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry.

  10. a Case Study of Plasma Blob Associated with Plasma Bubble in Low Latitude Region in the Brazilian Sector Using All-Sky Images and DMSP Satellite

    NASA Astrophysics Data System (ADS)

    Tardelli, F. C.; Abalde, J. R.; Pimenta, A. A.; Kavutarapu, V.; Tardelli, A.

    2016-12-01

    Using optical techniques and satellite data a plasma blob case was observed on February 23, 2007, in São José dos Campos (SJC) (23.21°S, 45.86°O; dip. Lat. 17.6°S) in the Brazilian sector. This is the first observation of plasma blob in SJC region using data from optical techniques and satellite measurements. The plasma blob is the enhancements in plasma density by a factor of 2 or more above background plasma. Simultaneous all-sky images were used to map the spatial extent of plasma blob. DMSP satellite data were used to confirm the enhancements in plasma density in the ionosphere, which provides important parameters of the ionospheric behavior during the event. During the night of present study, the plasma blob was associated with a plasma bubble and the average zonal drift velocities are 61±6 m-s and 74±8 m-s, respectively. The average North/South and East/West extension of the blob were 591 km and 328 km, respectively. Furthermore, the average longitudinal drift velocity was 85±13 m-s. In this work plasma density is found to be enhanced by a factor of 2 compared to the background plasma. We report for the first time plasma blob in SJC at low latitude region associated with plasma bubble and present important features of their behavior.

  11. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    PubMed

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  12. Plasmon resonances, anomalous transparency, and reflectionless absorption in overdense plasmas

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.; Sternberg, N.

    2018-03-01

    The structure of the surface and standing wave resonances and their coupling in the configuration of the overdense plasma slab with a single diffraction grating are studied, using impedance matching techniques. Analytical criteria and exact expressions are obtained for plasma and diffraction grating parameters which define resonance conditions for absolute transparency in the ideal plasma and reflectionless absorption in a plasma with dissipation.

  13. Review of Plasma Techniques Used to Trap Antihydrogen

    NASA Astrophysics Data System (ADS)

    Fajans, Joel

    2011-10-01

    Recently, the ALPHA collaboration at CERN trapped antihydrogen atoms. To date, over three hundred antiatoms have been confined, some for as long as 1000s. This was the first time that antiatoms had ever been trapped. The ultimate goal of the ALPHA collaboration is to test CPT invariance by comparing the spectra of hydrogen and antihydrogen, and to measure the gravitational attraction between matter and antimatter. Such studies might resolve the baryogenesis problem: why is there very little antimatter in the Universe? The ALPHA experiment brought together techniques from many different fields of physics, but the crucial breakthroughs were in plasma physics. The essential problem is this: How does one combine two Malmberg-Penning trapped plasmas, one made from antiprotons, and the other positrons, which have opposite electrostatic potentials of nearly one volt, in such a manner that the antiprotons traverse the positrons with kinetic energies of less than 40 μeV, this latter being the depth of the superimposed neutral antihydrogen trap? The plasma techniques ALPHA developed to accomplish this include: Minimizing the effects of the neutral trap multipole fields on the positron and antiproton plasma confinement. Compressing antiprotons down to less than 0.5mm. Using autoresonance to inject antiprotons into the positrons with very little excess energy. Evaporative cooling of the electrons and antiprotons to record low temperatures. Development of charge, radial profile, temperature, and antiproton loss location diagnostics. Careful and lengthy manipulations to finesse the plasmas into the best states for optimal antihydrogen production and trapping. The plasma techniques necessary to trap antihydrogen will be reviewed in this talk. This work was supported by DOE and NSF, and is reported on behalf of the ALPHA collaboration.

  14. Plasma exchange in the intensive care unit: Technical aspects and complications.

    PubMed

    Lemaire, Aurélie; Parquet, Nathalie; Galicier, Lionel; Boutboul, David; Bertinchamp, Rémi; Malphettes, Marion; Dumas, Guillaume; Mariotte, Eric; Peraldi, Marie-Noëlle; Souppart, Virginie; Schlemmer, Benoit; Azoulay, Elie; Canet, Emmanuel

    2017-12-01

    Data on plasma exchange therapy in the intensive care unit (ICU) setting are scarce. We aimed to describe the technical aspects and the adverse events associated with the procedure in critically ill patients. All adult patients treated by plasma exchange in the medical ICU of the Saint-Louis university hospital between January 1, 2013 and March 31, 2015 were prospectively included. We report on 260 plasma exchange procedures performed in 50 patients. The centrifugation technique was used for 159 (61%) procedures and the filtration technique for the other 101 (39%) procedures. Both techniques had similar efficacy to treat hyperviscosity syndrome (n = 18). Seventy (26.9%) of the 260 plasma exchange procedures were reported with at least one adverse reaction. Centrifugation and filtration techniques had similar rates of adverse reactions (23.9 vs. 31.7%, P = .19). Hypotension was the most reported (n = 21, 8%) and correlates with a low hematocrit before therapy. Most complications were related to allergic reactions to the replacement fluids. Coagulation disorders depended on the type of replacement fluid. The post-exchange fibrinogen level was decreased by 54% [48;66] with albumin 5%, and 4% [-5;17] with plasma frozen within 24 h. Twenty-three (22.8%) of the 101 filtration procedures experienced filter clotting. Filter clotting was associated with a higher volume exchange prescribed when compared to procedures without filter clotting (4600 [4000;5000] ml vs. 3900 [3600;4800] ml, P < .01). Plasma exchange is a relatively safe and generally well-tolerated procedure in the ICU setting. Most adverse events are unpredictable and related to minor allergic reactions. © 2017 Wiley Periodicals, Inc.

  15. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  16. Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique

    NASA Astrophysics Data System (ADS)

    Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng

    2018-05-01

    The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.

  17. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.

    PubMed

    Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander

    2018-05-10

    Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.

  18. Modification of glass fibers to improve reinforcement: a plasma polymerization technique.

    PubMed

    Cökeliler, Dilek; Erkut, Selim; Zemek, Josef; Biederman, Hynek; Mutlu, Mehmet

    2007-03-01

    This study evaluates the effect of plasma treated E-glass fiber to improve the mechanical properties of acrylic resin denture base material, polymethylmethacrlyate (PMMA). Plasma surface treatment of fibers is used as reinforcement in composite materials to modify the chemical and physical properties of their surfaces with tailored fiber-matrix bonding strength. Three different types of monomer 2-hydroxyethyl methacrylate (HEMA), triethyleneglycoldimethylether (TEGDME) and ethylenediamine (EDA) were used in the plasma polymerization modification of glass fibers. A radiofrequency generator was used to sustain plasma in a glass vacuum chamber. Glass fibers were modified at the same glow-discharge power of 25 W and exposure time of 30 min for each monomer. Fibers were incorporated into the acrylic with 1% (w/w) loading except control group. Specimens were prepared using a standard mold of 3 cmx0.5 cmx0.8 cm in dimension with eight specimens in each group. Samples were subjected to a flexural strength test set up at a crosshead speed of 5mm/min. Scanning electron microscopy (SEM) was used to examine the microstructure and X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface. Data were analyzed by means of ANOVA and Duncan's tests. Test results revealed that fiber reinforcement had a significant effect on the flexural strength of the specimens (p<0.05). Among the fiber reinforced groups, plasma treatment with EDA monomer resulted in the most significant increase in flexural strength values (p<0.05). XPS results have shown an increasing number of nitrogenous compounds in EDA treated fibers. The chemical structure of the surface, especially with the increase in nitrogenous compounds could give an idea for the amine film deposition and SEM figures showed an increase in surface roughness. The results showed that plasma treatment with EDA monomer was an effective alternative method of increasing the flexural strength of PMMA based denture base polymers through fiber reinforcement.

  19. On improved understanding of plasma-chemical processes in complex low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger

    2018-05-01

    Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  20. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  1. Experimental investigations into cryosorption pumping of plasma exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perinic, D.; Mack, A.

    1988-09-01

    Within the framework of the European Fusion Technology Programme the Karlsruhe Nuclear Research Centre has been awarded a contract for the development of cryosorption panels for compound cryopumps of the NEt plasma exhaust pumping system. This task includes the development of a bonding technique for porous sorbent materials with metal substrates and a test programme for development and optimization of cryopanels. A variety of material combinations for sorbent, bonding and substrate were evaluated and listed in a test matrix. Bonding tests involving soldering, cementing and plasma spraying techniques have been carried out.

  2. Mixing of thawed coagulation samples prior to testing: Is any technique better than another?

    PubMed

    Lima-Oliveira, Gabriel; Adcock, Dorothy M; Salvagno, Gian Luca; Favaloro, Emmanuel J; Lippi, Giuseppe

    2016-12-01

    Thus study was aimed to investigate whether the mixing technique could influence the results of routine and specialized clotting tests on post-thawed specimens. The sample population consisted of 13 healthy volunteers. Venous blood was collected by evacuated system into three 3.5mL tubes containing 0.109mmol/L buffered sodium citrate. The three blood tubes of each subject were pooled immediately after collection inside a Falcon 15mL tube, then mixed by 6 gentle end-over-end inversions, and centrifuged at 1500g for 15min. Plasma-pool of each subject was then divided in 4 identical aliquots. All aliquots were thawed after 2-day freezing -70°C. Immediately afterwards, the plasma of the four paired aliquots were treated using four different techniques: (a) reference procedure, entailing 6 gentle end-over-end inversions; (b) placing the sample on a blood tube rocker (i.e., rotor mixing) for 5min to induce agitation and mixing; (c) use of a vortex mixer for 20s to induce agitation and mixing; and (d) no mixing. The significance of differences against the reference technique for mixing thawed plasma specimens (i.e., 6 gentle end-over-end inversions) were assessed with paired Student's t-test. The statistical significance was set at p<0.05. As compared to the reference 6-time gentle inversion technique, statistically significant differences were only observed for fibrinogen, and factor VIII in plasma mixed on tube rocker. Some trends were observed in the remaining other cases, but the bias did not achieve statistical significance. We hence suggest that each laboratory should standardize the procedures for mixing of thawed plasma according to a single technique. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Method for the production of atomic ion species from plasma ion sources

    DOEpatents

    Spence, David; Lykke, Keith

    1998-01-01

    A technique to enhance the yield of atomic ion species (H.sup.+, D.sup.+, O.sup.+, N.sup.+, etc.) from plasma ion sources. The technique involves the addition of catalyzing agents to the ion discharge. Effective catalysts include H.sub.2 O, D.sub.2 O, O.sub.2, and SF.sub.6, among others, with the most effective being water (H.sub.2 O) and deuterated water (D.sub.2 O). This technique has been developed at Argonne National Laboratory, where microwave generated plasmas have produced ion beams comprised of close to 100% purity protons (H.sup.+) and close to 100% purity deuterons (D.sup.+). The technique also increases the total yield of protons and deuterons by converting unwanted ion species, namely, H.sub.2.sup.+,H.sub.3.sup.+ and D.sub.2.sup.+, D.sub.3.sup.+, into the desired ion species, H.sup.+ and D.sup.+, respectively.

  4. Method for the production of atomic ion species from plasma ion sources

    DOEpatents

    Spence, D.; Lykke, K.

    1998-08-04

    A technique to enhance the yield of atomic ion species (H{sup +}, D{sup +}, O{sup +}, N{sup +}, etc.) from plasma ion sources. The technique involves the addition of catalyzing agents to the ion discharge. Effective catalysts include H{sub 2}O, D{sub 2}O, O{sub 2}, and SF{sub 6}, among others, with the most effective being water (H{sub 2}O) and deuterated water (D{sub 2}O). This technique has been developed at Argonne National Laboratory, where microwave generated plasmas have produced ion beams comprised of close to 100% purity protons (H{sup +}) and close to 100% purity deuterons (D{sup +}). The technique also increases the total yield of protons and deuterons by converting unwanted ion species, namely, H{sub 2}{sup +}, H{sub 3}{sup +} and D{sub 2}{sup +}, D{sub 3}{sup +}, into the desired ion species, H{sup +} and D{sup +}, respectively. 4 figs.

  5. Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques

    DOE PAGES

    Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; ...

    2016-12-02

    Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma- assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as amore » function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.« less

  6. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms.

    PubMed

    Judée, F; Simon, S; Bailly, C; Dufour, T

    2018-04-15

    Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting "plasma-activated liquid" can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, I.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on agronomic results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. LC-MS/MS quantification of next-generation biotherapeutics: a case study for an IgE binding Nanobody in cynomolgus monkey plasma.

    PubMed

    Sandra, Koen; Mortier, Kjell; Jorge, Lucie; Perez, Luis C; Sandra, Pat; Priem, Sofie; Poelmans, Sofie; Bouche, Marie-Paule

    2014-05-01

    Nanobodies(®) are therapeutic proteins derived from the smallest functional fragments of heavy chain-only antibodies. The development and validation of an LC-MS/MS-based method for the quantification of an IgE binding Nanobody in cynomolgus monkey plasma is presented. Nanobody quantification was performed making use of a proteotypic tryptic peptide chromatographically enriched prior to LC-MS/MS analysis. The validated LLOQ at 36 ng/ml was measured with an intra- and inter-assay precision and accuracy <20%. The required sensitivity could be obtained based on the selectivity of 2D LC combined with MS/MS. No analyte specific tools for affinity purification were used. Plasma samples originating from a PK/PD study were analyzed and compared with the results obtained with a traditional ligand-binding assay. Excellent correlations between the two techniques were obtained, and similar PK parameters were estimated. A 2D LC-MS/MS method was successfully developed and validated for the quantification of a next generation biotherapeutic.

  8. Dual-Wavelength Interferometry and Light Emission Study for Experimental Support of Dual-Wire Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John

    2017-10-01

    In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.

  9. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant.

    PubMed

    Boboc, A; Bieg, B; Felton, R; Dalley, S; Kravtsov, Yu

    2015-09-01

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  10. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboc, A., E-mail: Alexandru.Boboc@ccfe.ac.uk; Felton, R.; Dalley, S.

    2015-09-15

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance ofmore » the polarimetry as a diagnostic tool in the view of future fusion experiments.« less

  11. Studies and testing of antireflective (AR) coatings for soda-lime glass

    NASA Technical Reports Server (NTRS)

    Pastirik, E. M.; Sparks, T. G.; Coleman, M. G.

    1978-01-01

    Processes for producing antireflection films on glass are concentrated in three areas: acid etching of glass, plasma etching of glass, and acid development of sodium silicate films on glass. The best transmission was achieved through the acid etching technique, while the most durable films were produced from development of sodium silicate films. Control of the acid etching technique is presently inadequate for production implementation. While films having excellent antireflective properties were fabricated by plasma etching techniques, all were water soluble.

  12. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    NASA Astrophysics Data System (ADS)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  13. [Applicability of laser-based geological techniques in bone research: analysis of calcium oxide distribution in thin-cut animal bones].

    PubMed

    Andrássy, László; Maros, Gyula; Kovács, István János; Horváth, Ágnes; Gulyás, Katalin; Bertalan, Éva; Besnyi, Anikó; Füri, Judit; Fancsik, Tamás; Szekanecz, Zoltán; Bhattoa, Harjit Pal

    2014-11-09

    The structural similarities between the inorganic component of bone tissue and geological formations make it possible that mathematic models may be used to determine weight percentage composition of different mineral element oxides constituting the inorganic component of bone tissue. The determined weight percentage composition can be verified with the determination of element oxide concentration values by laser induced plasma spectroscopy and inductively coupled plasma optical emission spectrometry. It can be concluded from calculated weight percentage composition of the inorganic component of bone tissue and laboratory analyses that the properties of bone tissue are determined primarily by hydroxylapatite. The inorganic bone structure can be studied well by determining the calcium oxide concentration distribution using the laser induced plasma spectroscopy technique. In the present study, thin polished bone slides prepared from male bovine tibia were examined with laser induced plasma spectroscopy in a regular network and combined sampling system to derive the calculated calcium oxide concentration distribution. The superficial calcium oxide concentration distribution, as supported by "frequency distribution" curves, can be categorized into a number of groups. This, as such, helps in clearly demarcating the cortical and trabecular bone structures. Following analyses of bovine tibial bone, the authors found a positive association between the attenuation value, as determined by quantitative computer tomography and the "ρ" density, as used in geology. Furthermore, the calculated "ρ" density and the measured average calcium oxide concentration values showed inverse correlation.

  14. Sensor for Monitoring Nanodevice-Fabrication Plasmas

    NASA Technical Reports Server (NTRS)

    Bolshakov, Alexander

    2004-01-01

    The term plasma process diagnostics (PPD) refers to a spectroscopic technique and sensing hardware that have been proposed for monitoring plasma processes used to fabricate electronic devices that feature sizes as small as several nanometers. Nanometer dimensions are characteristic of the quantum level of miniaturization, where single impurity atoms or molecules can drastically change the local properties of the nanostructures. Such changes may be purposely used in nanoscale design but may also be extremely damaging or cause improper operation of the fabricated devices. Determination of temperature and densities of reactants near the developing features is important, since the structural synthesis is affected by characteristics of the local microenvironment. Consequently, sensors capable of nonintrusive monitoring with high sensitivity and high resolution are essential for real-time atomistic control of reaction kinetics and minimizing trace contamination in plasma processes used to fabricate electronic nanodevices. Such process-monitoring sensors are required to be compact, multiparametric, and immune to the harsh environments of processing plasmas. PPD is intended to satisfy these requirements. The specific technique used to implement plasma diagnostics with a PPD sensor would be an advanced version of continuous-wave cavity-ringdown spectroscopy (CW-CRDS) capable of profiling spectral line broadenings in order to derive both Doppler and Stark components. CRDS is based on measurements of the rate of absorption of laser light in an optical resonator. The ultimate sensitivity results from a very long absorption path length within the cavity and immunity to variations in incident laser intensity. The proposed version of this technique would involve the use of multiplexing tunable laser diodes and an actively modulated high-reflectivity optical resonator, thus offering a synergistic combination of simplicity, compactness, high sensitivity, and high resolution. The multiplexing capabilities of diode lasers could be utilized to make the PPD sensor a single, simple, compact, and inexpensive tool for the acquisition of multiparametric data. A PPD sensor would be capable of continuous measurement of such physical parameters as gas temperature, gas velocity, electron number density, and absolute densities of reacting chemical species. A laser beam can be easily adjusted to analyze the immediate vicinity of the growing nanostructures (or features etched down) in real time. The absorption enhancement in an optical cavity would afford the sensitivity needed for measurement of the temperature and densities of species at concentrations significantly lower than measurable by other nonintrusive techniques. It is anticipated that fully developed PPD sensors would enable simultaneous measurement of local temperature and determination of plasma species responsible for the synthesis and functionalization of nanodevices. These sensors would also enable tracking the pathways and origins of damaging contaminants, thereby providing feedback for adjustment of processes to optimize them and reduce contamination. The PPD sensors should also be useful for optimization of conventional microelectronics manufacturing plasma processes. Going beyond plasma processes for fabrication of electronic devices, PPD sensors could be used for monitoring of atoms, molecules, ions, radicals, clusters, and particles in a variety of other settings, including outer space. Because of their high sensitivity, such sensors could also prove useful for detecting traces of illegal drugs and explosives.

  15. Dynamic diagnostics of the error fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2007-07-01

    The error field diagnostics based on magnetic measurements outside the plasma is discussed. The analysed methods rely on measuring the plasma dynamic response to the finite-amplitude external magnetic perturbations, which are the error fields and the pre-programmed probing pulses. Such pulses can be created by the coils designed for static error field correction and for stabilization of the resistive wall modes, the technique developed and applied in several tokamaks, including DIII-D and JET. Here analysis is based on the theory predictions for the resonant field amplification (RFA). To achieve the desired level of the error field correction in tokamaks, the diagnostics must be sensitive to signals of several Gauss. Therefore, part of the measurements should be performed near the plasma stability boundary, where the RFA effect is stronger. While the proximity to the marginal stability is important, the absolute values of plasma parameters are not. This means that the necessary measurements can be done in the diagnostic discharges with parameters below the nominal operating regimes, with the stability boundary intentionally lowered. The estimates for ITER are presented. The discussed diagnostics can be tested in dedicated experiments in existing tokamaks. The diagnostics can be considered as an extension of the 'active MHD spectroscopy' used recently in the DIII-D tokamak and the EXTRAP T2R reversed field pinch.

  16. Dynamics of EGFR Mutation Load in Plasma for Prediction of Treatment Response and Disease Progression in Patients With EGFR-Mutant Lung Adenocarcinoma.

    PubMed

    Taus, Álvaro; Camacho, Laura; Rocha, Pedro; Hardy-Werbin, Max; Pijuan, Lara; Piquer, Gabriel; López, Eva; Dalmases, Alba; Longarón, Raquel; Clavé, Sergi; Salido, Marta; Albanell, Joan; Bellosillo, Beatriz; Arriola, Edurne

    2018-03-23

    The assessment of epidermal growth factor receptor (EGFR) mutations is crucial for the management of patients with lung adenocarcinoma. Circulating tumor DNA (ctDNA)-based assessment offers advantages over tumor as a minimally invasive method able to capture tumor heterogeneity. Consecutive patients diagnosed with EGFR-mutant lung adenocarcinoma in tumor biopsy were included in this study. Plasma samples were obtained at different time points during the course of the disease. EGFR mutations in plasma were quantified using BEAMing (beads, emulsions, amplification, and magnetics) or digital PCR and were correlated with mutations in tumor and with radiologic response and progression. Two hundred twenty-one plasma samples from 33 patients were analyzed. EGFR mutations in plasma were detected in 83% of all patients and 100% of those with extrathoracic metastases. The dynamics of the EGFR mutation load predicted response in 93% and progression in 89% of cases well in advance of radiologic evaluation. Progression-free survival for patients in whom ctDNA was not detected in plasma during treatment was significantly longer than for those in whom ctDNA remained detectable (295 vs. 55 days; hazard ratio, 17.1; P < .001). The detection of EGFR mutations in ctDNA showed good correlation with that in tumor biopsy and predicted tumor response and progression in most patients. The liquid biopsy for ctDNA-based assessment of EGFR mutations is a reliable technique for diagnosis and follow-up in patients with EGFR-mutant lung adenocarcinoma in routine clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A new tritium monitor design based on plasma source ion implantation technique

    NASA Astrophysics Data System (ADS)

    Nassar, Rafat Mohammad

    Tritium is an important isotope of hydrogen. The availability of tritium in our environment is manifest through both natural and artificial sources. Consequently, the requirement for tritium handling and usage will continue to increase in the future. An important future contributor is nuclear fusion power plants and facilities. Essential safety regulations and procedures require effective monitoring and measurements of tritium concentrations in workplaces. The unique characteristics of tritium impose an important role on the criteria for its detection and measurement. As tritium decays by the emission of soft beta particles, maximum 18 keV, it cannot be readily detected by commonly used detectors. Specially built monitors are required. Additional complications occur due to the presence of other radioactive isotopes or ambient radiation fields and because of the high diffusivity of tritium. When it is in oxidized form it is 25000 times more hazardous biologically than when in elemental form. Therefore, contamination of the monitor is expected and compound specific monitors are important. A summary is given of the various well known methods of detecting tritium-in-air. This covers the direct as well as the indirect measuring techniques, although each has been continually improved and further developed, nevertheless, each has its own limitations. Ionization chambers cannot discriminate against airborne P emitters. Proportional counters have a narrow operating range, 3-4 decades, and have poor performance in relatively high humid environments and require a dry counting gas. Liquid scintillation counters are sensitive, but inspection of the sample is slow and they produce chemical liquid waste. A new way to improve the sensitivity of detecting tritium with plastic scintillators has been developed. The technique is based on a non-line-of-sight implantation of tritium ions into a 20 mum plastic scintillator using a plasma source ion implantation (PSII) technique, This type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.

  18. Plasma-enhanced mixing and flameholding in supersonic flow.

    PubMed

    Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B

    2015-08-13

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Development of water-phase derivatization followed by solid-phase microextraction and gas chromatography/mass spectrometry for fast determination of valproic acid in human plasma.

    PubMed

    Deng, Chunhui; Li, Ning; Ji, Jie; Yang, Bei; Duan, Gengli; Zhang, Xiangmin

    2006-01-01

    In this study, a simple, rapid, and sensitive method was developed and validated for the quantification of valproic acid (VPA), an antiepileptic drug, in human plasma, which was based on water-phase derivatization followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS). In the proposed method, VPA in plasma was rapidly derivatized with a mixture of isobutyl chloroformate, ethanol and pyridine under mild conditions (room temperature, aqueous medium), and the VPA ethyl ester formed was headspace-extracted and simultaneously concentrated using the SPME technique. Finally, the analyte extracted on SPME fiber was analyzed by GC/MS. The experimental parameters and method validations were studied. The optimal conditions were obtained: PDMS fiber, stirring rate of 1100 rpm, sample temperature of 80 degrees C, extraction time of 20 min, NaCl concentration of 30%. The proposed method had a limit of quantification (0.3 microg/mL), good recovery (89-97%) and precision (RSD value less than 10%). Because the proposed method combined a rapid water-phase derivatization with a fast, simple and solvent-free sample extraction and concentration technique of SPME, the sample preparation time was less than 25 min. This much shortens the whole analysis time of VPA in plasma. The validated method has been successfully used to analyze VPA in human plasma samples for application in pharmacokinetic studies. All these results show that water-phase derivatization followed by HS-SPME and GC/MS is an alternative and powerful method for fast determination of VPA in biological fluids. Copyright 2006 John Wiley & Sons, Ltd.

  20. On the Runge-Lenz-Pauli vector operator as an aid to the calculation of atomic processes in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2015-09-01

    On the basis of the original definition and analysis of the vector operator by Pauli (1926 Z. Phys. 36 336-63), and further developments by Flamand (1966 J. Math. Phys. 7 1924-31), and by Becker and Bleuler (1976 Z. Naturforsch. 31a 517-23), we consider the action of the operator on both spherical polar and parabolic basis state wave functions, both with and without direct use of Pauli’s identity (Valent 2003 Am. J. Phys. 71 171-75). Comparison of the results, with the aid of two earlier papers (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641-64, Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077-96), yields a convenient ladder technique in the form of a recurrence relation for calculating the transformation coefficients between the two sets of basis states, without explicit use of generalized hypergeometric functions. This result is therefore very useful for application to Stark effect and impact broadening calculations applied to high-n radio recombination lines from tenuous space plasmas. We also demonstrate the versatility of the Runge-Lenz-Pauli vector operator as a means of obtaining recurrence relations between expectation values of successive powers of quantum mechanical operators, by using it to provide, as an example, a derivation of the Kramers-Pasternack relation. It is suggested that this operator, whose potential use in Stark- and Zeeman-effect calculations for magnetically confined fusion edge plasmas (Rosato, Marandet and Stamm 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105702) and tenuous space plasmas ( H II regions) has not been fully explored and exploited, may yet be found to yield a number of valuable results for applications to plasma diagnostic techniques based upon rate calculations of atomic processes.

  1. Disruption avoidance by means of electron cyclotron waves

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams

    2011-12-01

    Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.

  2. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  3. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  4. Dual-comb spectroscopy of laser-induced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy

    Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less

  5. Contrast Enhancement of the LOASIS CPA Laser and Effects on Electron Beam Performance of LWFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Csaba; Gonsalves, Anthony J.; Panasenko, Dmitriy

    2009-01-22

    A nonlinear optical pulse cleaning technique based on cross-polarized wave (XPW) generation filtering [1] has been implemented to improve laser pulse contrast, and consequently to control pre-ionization in laser-plasma accelerator experiments. Three orders of magnitude improvement in pre-pulse contrast has been achieved, resulting in 4-fold increase in electron charge and improved stability of both the electron beam energy and THz radiation generated as a secondary process in the gas-jet-based LWFA experiments.

  6. An efficient fast response and high-gain solar-blind flexible ultraviolet photodetector employing hybrid geometry

    NASA Astrophysics Data System (ADS)

    Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.

    2014-05-01

    We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.

  7. Optical characterization of composite layers prepared by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Radeva, E.; Hikov, T.; Mitev, D.; Stroescu, H.; Nicolescu, M.; Gartner, M.; Presker, R.; Pramatarova, L.

    2016-02-01

    Thin composite layers from polymer/nanoparticles (Ag-nanoparticles and detonation nanodiamonds) were prepared by plasma polymerization process on the base of hexamethyldisiloxane. The variation of the layer composition was achieved by changing the type of nanoparticles. The optical measurement techniques used were UV-VIS-NIR ellipsometry (SE), Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopy. The values of the refractive index determined are in the range 1.30 to 1.42. All samples are transparent with transmission between 85-95% and very smooth. The change in Raman and FTIR spectra of the composites verify the expected bonding between polymer and diamond nanoparticles due to the penetration of the fillers in the polymer matrix. The comparison of the spectra of the corresponding NH3 plasma treated composites revealed that the composite surface becomes more hydrophilic. The obtained results indicate that preparation of layers with desired compositions is possible at a precise control of the detonation nanodiamond materials.

  8. A novel permeabilization protocol to obtain intracellular 3D immunolabeling for electron tomography.

    PubMed

    Jiménez, Nuria; Post, Jan A

    2014-01-01

    Electron tomography (ET) is a very important high-resolution tool for 3D imaging in cell biology. By combining the technique with immunolabeling, ET can provide essential insights into both cellular architecture and dynamics. We recently developed a protocol to achieve 3D immunolabeling of intracellular antigens without the need for uncontrolled permeabilization steps that cause random, extensive cell membrane disruption. Here we describe this novel method based on well-controlled permeabilization by targeted laser cell perforation. Mechanical permeabilization of the plasma membrane can be applied at specific sites without affecting other parts of the plasma membrane and intracellular membranes. Despite the relatively small opening created in the plasma membrane, the method allows specific 3D immunolocalization of cytoplasmic antigens in cultured cells by a pre-embedment protocol. The approach is unique and leads to a superior ultrastructural preservation for transmission electron microscopy and electron tomography.

  9. First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Meier, Steffen M.; Hecimovic, Ante; Tsankov, Tsanko V.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2018-03-01

    In this paper, the novel technique of THz time domain spectroscopy has been applied to obtain time-resolved measurements of the plasma density in the active zone of a HiPIMS discharge with a titanium target. The obtained peak values are in the range of 1012-1013 cm-3 for discharge current densities of 1-4 A cm-2 at 0.5 and 2 Pa argon pressure. The measured densities show good correlation with the discharge current and voltage and the intensity of various atomic and ionic lines. The well known phases of the discharge have been identified and related to the variation of the electron density. The measurement results show that the plasma density remains nearly constant during the runaway/self-sputtering phase. Based on that, it is conjectured that singly charged titanium ions are the dominant ion species during this phase.

  10. Single-cell-precision microplasma-induced cancer cell apoptosis.

    PubMed

    Tan, Xiao; Zhao, Shasha; Lei, Qian; Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure.

  11. Solar Corona Simulation Model With Positivity-preserving Property

    NASA Astrophysics Data System (ADS)

    Feng, X. S.

    2015-12-01

    Positivity-preserving is one of crucial problems in solar corona simulation. In such numerical simulation of low plasma β region, keeping density and pressure is a first of all matter to obtain physical sound solution. In the present paper, we utilize the maximum-principle-preserving flux limiting technique to develop a class of second order positivity-preserving Godunov finite volume HLL methods for the solar wind plasma MHD equations. Based on the underlying first order building block of positivity preserving Lax-Friedrichs, our schemes, under the constrained transport (CT) and generalized Lagrange multiplier (GLM) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical results in four Carrington rotation during the declining, rising, minimum and maximum solar activity phases are provided to demonstrate the performance of modeling small plasma beta with positivity-preserving property of the proposed method.

  12. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  13. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  14. Development of a GPU-Accelerated 3-D Full-Wave Code for Electromagnetic Wave Propagation in a Cold Plasma

    NASA Astrophysics Data System (ADS)

    Woodbury, D.; Kubota, S.; Johnson, I.

    2014-10-01

    Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.

  15. Characteristics of epoxy resin/SiO2 nanocomposite insulation: effects of plasma surface treatment on the nanoparticles.

    PubMed

    Yan, Wei; Phung, B T; Han, Zhao Jun; Ostrikov, Kostya

    2013-05-01

    The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

  16. Instantaneous polarization statistic property of EM waves incident on time-varying reentry plasma

    NASA Astrophysics Data System (ADS)

    Bai, Bowen; Liu, Yanming; Li, Xiaoping; Yao, Bo; Shi, Lei

    2018-06-01

    An analytical method is proposed in this paper to study the effect of time-varying reentry plasma sheath on the instantaneous polarization statistic property of electromagnetic (EM) waves. Based on the disturbance property of the hypersonic fluid, the spatial-temporal model of the time-varying reentry plasma sheath is established. An analytical technique referred to as transmission line analogy is developed to calculate the instantaneous transmission coefficient of EM wave propagation in time-varying plasma. Then, the instantaneous polarization statistic theory of EM wave propagation in the time-varying plasma sheath is developed. Taking the S-band telemetry right hand circularly polarized wave as an example, effects of incident angle and plasma parameters, including the electron density and the collision frequency on the EM wave's polarization statistic property are studied systematically. Statistical results indicate that the lower the collision frequency and the larger the electron density and incident angle is, the worse the deterioration of the polarization property is. Meanwhile, in conditions of critical parameters of certain electron density, collision frequency, and incident angle, the transmitted waves have both the right and left hand polarization mode, and the polarization mode will reverse. The calculation results could provide useful information for adaptive polarization receiving of the spacecraft's reentry communication.

  17. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    PubMed

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  18. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.

  19. Cluster Models of Metal-Seeded Energetic Materials

    DTIC Science & Technology

    1997-01-31

    cannot be formed by this plasma chemistry because the metals are less reactive. Plasma chemistry reactions for these metals lead to addition to... plasma chemistry method, but they are produced readily from composite sample (metal film on carbon rod) vaporization. Another technique we have used with

  20. ECRH Studies on Tokamak Plasmas.

    DTIC Science & Technology

    1980-10-10

    r.I*cru.Dtrtibution uUnliited 300 Unicorn Pork Drive Woburn, Massachusetts 04801 ECRH STUDIES ON TOKAMAK PLASMAS JAYCOR Project No. 6183 Final Report...up techniques now in use or being suggested, include growing the plasma from a small minor radius or applying a negative voltage spike immediately

  1. Development of hybrid computer plasma models for different pressure regimes

    NASA Astrophysics Data System (ADS)

    Hromadka, Jakub; Ibehej, Tomas; Hrach, Rudolf

    2016-09-01

    With increased performance of contemporary computers during last decades numerical simulations became a very powerful tool applicable also in plasma physics research. Plasma is generally an ensemble of mutually interacting particles that is out of the thermodynamic equilibrium and for this reason fluid computer plasma models give results with only limited accuracy. On the other hand, much more precise particle models are often limited only on 2D problems because of their huge demands on the computer resources. Our contribution is devoted to hybrid modelling techniques that combine advantages of both modelling techniques mentioned above, particularly to their so-called iterative version. The study is focused on mutual relations between fluid and particle models that are demonstrated on the calculations of sheath structures of low temperature argon plasma near a cylindrical Langmuir probe for medium and higher pressures. Results of a simple iterative hybrid plasma computer model are also given. The authors acknowledge the support of the Grant Agency of Charles University in Prague (project 220215).

  2. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model

    NASA Astrophysics Data System (ADS)

    Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji

    2018-04-01

    In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.

  4. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  5. Polarimetric Thomson scattering for high Te fusion plasmas

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.

    2017-11-01

    Polarimetric Thomson scattering (TS) is a technique for the analysis of TS spectra in which the electron temperature Te is determined from the depolarization of the scattered radiation, a relativistic effect noticeable only in very hot (Te >= 10 keV) fusion plasmas. It has been proposed as a complementary technique to supplement the conventional spectral analysis in the ITER CPTS (Core Plasma Thomson Scattering) system for measurements in high Te, low ne plasma conditions. In this paper we review the characteristics of the depolarized TS radiation with special emphasis to the conditions of the ITER CPTS system and we describe a possible implementation of this diagnostic method suitable to significantly improve the performances of the conventional TS spectral analysis in the high Te range.

  6. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Kousal, J.; Shelemin, A.; Kylián, O.; Slavínská, D.; Biederman, H.

    2017-01-01

    Bio-decontamination of surfaces by means of atmospheric pressure plasma is nowadays extensively studied as it represents promising alternative to commonly used sterilization/decontamination techniques. The non-equilibrium atmospheric pressure plasmas were already reported to be highly effective in removal of a wide range of biological residual from surfaces. Nevertheless the kinetics of removal of biological contamination from surfaces is still not well understood as the majority of performed studies were based on ex-situ evaluation of etching rates, which did not allow investigating details of plasma action on biomolecules. This study therefore presents a real-time, in-situ ellipsometric characterization of removal of bovine serum albumin (BSA) from surfaces by low-temperature atmospheric plasma jet operated in argon. Non-linear and at shorter distances between treated samples and nozzle of the plasma jet also non-monotonic dependence of the removal rate on the treatment duration was observed. According to additional measurements focused on the determination of chemical changes of treated BSA as well as temperature measurements, the observed behavior is most likely connected with two opposing effects: the formation of a thin layer on the top of BSA deposit enriched in inorganic compounds, whose presence causes a gradual decrease of removal efficiency, and slight heating of BSA that facilitates its degradation and volatilization induced by chemically active radicals produced by the plasma.

  7. Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Janzen, Christoph; Fleige, Rüdiger; Noll, Reinhard; Schwenke, Heinrich; Lahmann, Wilhelm; Knoth, Joachim; Beaven, Peter; Jantzen, Eckard; Oest, Andreas; Koke, Peter

    2005-08-01

    The miniaturization of analytical techniques is a general trend in speciation analytics. We have developed a new analytical technique combining high pressure liquid chromatography (HPLC) with laser-induced breakdown spectroscopy (LIBS). This enables a molecule-specific separation followed by an element-specific analysis of smallest amounts of complex samples. The liquid flow coming from a HPLC pump is transformed into a continuous stream of small droplets (diameter 50-100 μm, volume 65-500 pl) using a piezoelectric pulsed nozzle. After the detection of single droplets with a droplet detector, a Q-switched Nd:YAG Laser is triggered to emit a synchronized laser pulse that irradiates a single droplet. The droplets are evaporated and transformed to the plasma state. The spectrum emitted from the plasma is collected by a spherical mirror and directed through the entrance slit of a Paschen-Runge spectrometer equipped with channel photomultipliers. The spectrometer detects 31 elements simultaneously covering a spectral range from 120 to 589 nm. Purging the measurement chamber with argon enables the detection of vacuum-UV lines. Since the sample is transferred to the plasma state without dilution, very low flow rates in the sub-μl/min range can be realised.

  8. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  9. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  10. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  11. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical bio-sensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  12. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  13. Mirror Langmuir probe: a technique for real-time measurement of magnetized plasma conditions using a single Langmuir electrode.

    PubMed

    LaBombard, B; Lyons, L

    2007-07-01

    A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.

  14. Concerted spatial-frequency and polarization-phase filtering of laser images of polycrystalline networks of blood plasma smears

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu A.

    2012-11-01

    The complex technique of concerted polarization-phase and spatial-frequency filtering of blood plasma laser images is suggested. The possibility of obtaining the coordinate distributions of phases of linearly and circularly birefringent protein networks of blood plasma separately is presented. The statistical (moments of the first to fourth orders) and scale self-similar (logarithmic dependences of power spectra) structure of phase maps of different types of birefringence of blood plasma of two groups of patients-healthy people (donors) and those suffering from rectal cancer-is investigated. The diagnostically sensitive parameters of a pathological change of the birefringence of blood plasma polycrystalline networks are determined. The effectiveness of this technique for detecting change in birefringence in the smears of other biological fluids in diagnosing the appearance of cholelithiasis (bile), operative differentiation of the acute and gangrenous appendicitis (exudate), and differentiation of inflammatory diseases of joints (synovial fluid) is shown.

  15. Electron Energy Distribution function in a weakly magnetized expanding helicon plasma discharge

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Helicon wave heating is well known to produce high-density plasma source for application in plasma thrusters, plasma processing and many more. Our previous study (B Ellingboe et al. APS Gaseous Electronics Conference 2015, abstract #KW2.005) has shown observation of helicon wave in a weakly magnetized inductively coupled plasma source excited by m =0 antenna at 13.56 MHz. In this paper, we investigated the Electron Energy Distribution Function (EEDF) in the same setup by using an RF compensated Langmuir probe. The ac signal superimposition technique (second harmonic technique) is used to determine EEDF. The EEDF is measured for 5-100 mTorr gas pressure, 100 W - 1.5 kW rf power and at different locations in the source chamber, boundary and diffusion chamber. This paper will discuss the change in the shape of EEDF for various heating mode transitions.

  16. An inexpensive technique for the time resolved laser induced plasma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Rizwan, E-mail: rizwan.ahmed@ncp.edu.pk; Ahmed, Nasar; Iqbal, J.

    We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved informationmore » about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.« less

  17. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  18. Dynamics of blood plasma by spectropolarimetry and biochemical techniques

    NASA Astrophysics Data System (ADS)

    Voloshynska, Katerina; Ilashchuka, Tetjana; Prydij, Olexander; Gruia, Maria

    2014-08-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the dynamics of metabolic syndrome and choosing the best personal treatment. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues.

  19. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  20. Therapeutic plasma exchange: a technical and operational review.

    PubMed

    Kaplan, Andre A

    2013-02-01

    Therapeutic plasma exchange (TPE) is an extracorporeal blood purification technique designed for the removal of large molecular weight substances. Examples of these substances include pathogenic autoantibodies, immune complexes, cryoglobulins, myeloma light chains, endotoxin and cholesterol containing lipoproteins. The basic premise of the treatment is that removal of these substances will allow for the reversal of the pathologic processes related to their presence. This review will cover the techniques for performing TPE, the kinetics of the removal of large molecules from the plasma and the benefits and risks of the different types of replacement fluids. Copyright © 2013 Wiley Periodicals, Inc.

  1. Assessment of glomerular filtration rate measurement with plasma sampling: a technical review.

    PubMed

    Murray, Anthony W; Barnfield, Mark C; Waller, Michael L; Telford, Tania; Peters, A Michael

    2013-06-01

    This article reviews available radionuclide-based techniques for glomerular filtration rate (GFR) measurement, focusing on clinical indications for GFR measurement, ideal GFR radiopharmaceutical tracer properties, and the 2 most common tracers in clinical use. Methods for full, 1-compartment, and single-sample renal clearance characterization are discussed. GFR normalization and the role of GFR measurement in chemotherapy dosing are also considered.

  2. Validated determination of losartan and valsartan in human plasma by stir bar sorptive extraction based on acrylate monolithic polymer, liquid chromatographic analysis and experimental design methodology.

    PubMed

    Babarahimi, Vida; Talebpour, Zahra; Haghighi, Farideh; Adib, Nuoshin; Vahidi, Hamed

    2018-05-10

    In our previous work, a new monolithic coating based on vinylpyrrolidone-ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The formulation of the prepared vinylpyrrolidone-ethylene glycol dimethacrylate monolithic polymer was optimized and the satisfactory quality of prepared coated stir bar was demonstrated. In this work, the prepared stir bar was utilized in combination with ultrasound-assisted liquid desorption, followed by high-performance liquid chromatography with ultraviolet detection for the simultaneous determination of losartan (LOS) and valsartan (VAS) in human plasma samples. In a comparison study, the extraction efficiency of the prepared stir bar was accompanied much higher extraction efficiency than the two commercial stir bars (polydimethylsiloxand and polyacrylate) for both target compounds. In order to improve the desorption efficiency of LOS and VAS, the best values for effective parameters on desorption step were selected systematically. Also, the effective parameters on extraction step were optimized using a Box-Behnken design. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for LOS (24-1000 ng mL -1 ) and VAS (91-1000 ng mL -1 ), with correlation coefficients of 0.9998 and 0.9971 and detection limits of 7 and 27 ng mL -1 , respectively. The intra- and inter-day recovery ranged from 98 to 117%, and the relative standard deviations were less than 8%. Finally, the proposed technique was successfully applied to the analysis of LOS and VAS at their therapeutic levels in volunteer patient plasma sample. The obtained results were confirmed using liquid chromatography-mass spectrometry. The proposed technique was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of LOS and VLS in biological fluids. The obtained results were demonstrated that the lower selectivity of UV in comparison with MS detection was rectified by appropriate sample preparation through proposed extraction method to eliminate as many interfering compounds as possible. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. New 3D-printed sorbent for extraction of steroids from human plasma preceding LC-MS analysis.

    PubMed

    Konieczna, Lucyna; Belka, Mariusz; Okońska, Magdalena; Pyszka, Magdalena; Bączek, Tomasz

    2018-04-13

    In recent years, there has been an increasing worldwide interest in the use of alternative sample preparation methods that are proceeded by separation techniques. Fused deposition modeling (FDM) is a 3D printing technique that is based the consecutive layering of softened/melted thermoplastic materials. In this study, a group of natural steroids and sexual hormones - namely, aldosterone, cortisol, β-estradiol, testosterone, dihydrotestosterone, and synthetic methyltestosterone and betamethasone - were separated and determined using an optimized high-performance liquid chromatography coupled to mass spectrometry (LC-MS) method in positive ionization mode. 3D-printed sorbents were selected as the pre-concentration technique because they are generally low cost, fast, and simple to make and automate. Furthermore, the use of 3D-printed sorbents helps to minimize potential errors due to their repeatability and reproducibility, and their ability to eliminate carry over by using one printed sorbent for a single extraction of steroids from biological matrices. The extraction procedure was optimized and the parameters influencing 3D-printed Layfomm 60 ® based sorbent and LC-MS were studied, including the type of extraction solvent used, sorption and desorption times, temperature, and the salting-out effect. To demonstrate this method's applicability for biological sample analysis, the SPME-LC-MS method was validated for its ability to simultaneously quantify endogenous steroids. This evaluation confirmed good linearity and an R 2 that was between 0.9970 and 0.9990. The recovery rates for human plasma samples were 86.34-93.6% for the studied steroids with intra- and inter-day RSDs of 1.44-7.42% and 1.44-9.46%, respectively. To our knowledge, this study is the first time that 3D-printed sorbents have been used to extract trace amounts of endogenous low-molecular-weight compounds, such as steroids, from biological samples, such as plasma. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Development of MRM-based assays for the absolute quantitation of plasma proteins.

    PubMed

    Kuzyk, Michael A; Parker, Carol E; Domanski, Dominik; Borchers, Christoph H

    2013-01-01

    Multiple reaction monitoring (MRM), sometimes called selected reaction monitoring (SRM), is a directed tandem mass spectrometric technique performed on to triple quadrupole mass spectrometers. MRM assays can be used to sensitively and specifically quantify proteins based on peptides that are specific to the target protein. Stable-isotope-labeled standard peptide analogues (SIS peptides) of target peptides are added to enzymatic digests of samples, and quantified along with the native peptides during MRM analysis. Monitoring of the intact peptide and a collision-induced fragment of this peptide (an ion pair) can be used to provide information on the absolute peptide concentration of the peptide in the sample and, by inference, the concentration of the intact protein. This technique provides high specificity by selecting for biophysical parameters that are unique to the target peptides: (1) the molecular weight of the peptide, (2) the generation of a specific fragment from the peptide, and (3) the HPLC retention time during LC/MRM-MS analysis. MRM is a highly sensitive technique that has been shown to be capable of detecting attomole levels of target peptides in complex samples such as tryptic digests of human plasma. This chapter provides a detailed description of how to develop and use an MRM protein assay. It includes sections on the critical "first step" of selecting the target peptides, as well as optimization of MRM acquisition parameters for maximum sensitivity of the ion pairs that will be used in the final method, and characterization of the final MRM assay.

  5. Conductive Polymer Synthesis with Single-Crystallinity via a Novel Plasma Polymerization Technique for Gas Sensor Applications.

    PubMed

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Kim, Do Yeob; Lee, Hyung-Kun; Tae, Heung-Sik

    2016-09-30

    This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ) technique. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) results show that the plasma-polymerized pyrrole (pPPy) nanoparticles have a fast deposition rate of 0.93 µm·min -1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.

  6. Measurement of Two-Plasmon-Decay Dependence on Plasma Density Scale Length

    NASA Astrophysics Data System (ADS)

    Haberberger, D.

    2013-10-01

    An accurate understanding of the plasma scale-length (Lq) conditions near quarter-critical density is important in quantifying the hot electrons generated by the two-plasmon-decay (TPD) instability in long-scale-length plasmas. A novel target platform was developed to vary the density scale length and an innovative diagnostic was implemented to measure the density profiles above 1021 cm-3 where TPD is expected to have the largest growth. A series of experiments was performed using the four UV (351-nm) beams on OMEGA EP that varied the Lq by changing the radius of curvature of the target while maintaining a constant Iq/Tq. The fraction of laser energy converted to hot electrons (fhot) was observed to increase rapidly from 0.005% to 1% by increasing the plasma scale length from 130 μm to 300 μm, corresponding to target diameters of 0.4 mm to 8 mm. A new diagnostic was developed based on refractometry using angular spectral filters to overcome the large phase accumulation in standard interferometric techniques. The angular filter refractometer measures the refraction angles of a 10-ps, 263-nm probe laser after propagating through the plasma. An angular spectral filter is used in the Fourier plane of the probe beam, where the refractive angles of the rays are mapped to space. The edges of the filter are present in the image plane and represent contours of constant refraction angle. These contours are used to infer the phase of the probe beam, which are used to calculate the plasma density profile. In long-scale-length plasmas, the diagnostic currently measures plasma densities from ~1019 cm-3 to ~2 × 1021 cm-3. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. In collaboration with D. H. Edgell, S. X. Hu, S. Ivancic, R. Boni, C. Dorrer, and D. H. Froula (Laboratory for Laser Energetics, U. of Rochester).

  7. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessi, G. T. von; Hole, M. J.; Svensson, J.

    2012-01-15

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlledmore » Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.« less

  8. Flightweight Carbon Nanotube Magnet Technology

    NASA Technical Reports Server (NTRS)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  9. Plasma impact on structural, morphological and optical properties of copper acetylacetonate thin films

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.

    2018-06-01

    The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munsat, Tobin

    Overview of University of Colorado Efforts: The University of Colorado group has focused on two primary fronts during the grant period: development of a variety of multi-point diagnostic and/or imaging analysis techniques, and momentum-transport related experiments on a variety of devices (NSTX at PPPL, CSDX at UCSD, LAPD at UCLA, DIII-D at GA). Experimental work has taken advantage of several diagnostic instruments, including fast-framing cameras for imaging of electron density fluctuations (either directly or using injected gas puffs), ECEI for imaging of electron temperature fluctuations, and multi-tipped Langmuir and magnetic probes for corroborating measurements of Reynolds and Maxwell stresses. Modemore » Characterization in CSDX: We have performed a series of experiments at the CSDX linear device at UCSD, in collaboration with Center PI G. Tynan's group. The experiments included a detailed study of velocity estimation techniques, including direct comparisons between Langmuir probes and image-based velocimetry from fast-framing camera data. We used the camera data in a second set of studies to identify the spatial and spectral structure of coherent modes, which illuminates wave behavior to a level of detail previously unavailable, and enables direct comparison of dispersion curves to theoretical estimates. In another CSDX study, similar techniques were used to demonstrate a controlled transition from nonlinearly coupled discrete eigenmodes to fully developed broadband turbulence. The axial magnetic field was varied from 40-240 mT, which drove the transition. At low magnetic fields, the plasma is dominated by drift waves. As the magnetic field is increased, a strong potential gradient at the edge introduces an ExB shear-driven instability. At the transition, another mode with signatures of a rotation-induced Rayleigh–Taylor instability appears at the central plasma region. Concurrently, large axial velocities were found in the plasma core. For larger magnetic fields, all of the instabilities co-exist, leading to rich plasma dynamics and fully developed broadband turbulence. Edge-Turbulence and Flow Experiments in NSTX: A series of Gas Puff Imaging (GPI) observations on NSTX revealed a quasi-periodic oscillation in the plasma edge preceding the L-H transition in a limited set of neutral beam heated plasmas. These ~3 kHz flow oscillations exhibit both long wavelength and long correlation lengths, suggesting they are zonal-flow-like. The flow oscillations are strongly correlated with modulations of the level of edge turbulence, thus the system appears to undergo a predator--prey-type limit-cycle preceding the L-H transition. However, a clear trigger for the L-H transition was not observed. Reynolds stress profiles were obtained directly from image velocimetry for L-mode periods ELM-Precursor Studies in NSTX: A separate study based on NSTX-GPI data captured the two-dimensional evolution of edge-localized mode (ELM) precursors. Precursor events were observed preceding ELMs and ELM-induced H–L back-transitions in radio-frequency heated H-mode plasmas, and the growth of the precursor mode through the ELM filamentation was imaged in the plane perpendicular to the local B-field. Strong edge intensity modulations appeared to propagate in the electron diamagnetic direction while steadily drifting radially outwards. Intensity fluctuations were observed at frequencies around 20 kHz and wavenumbers of 0.05-0.2 cm -1. Upon growing to a trigger point, precursor fluctuations were seen to form filamentary structures and move into the scrape-off layer (SOL) explosively with radial velocities peaking at 8 km/s. Once in the SOL, filaments reverse their propagation direction and travel in the ion diamagnetic direction. Edge intensity fluctuations were strongly correlated with magnetic signals from Mirnov coils, and toroidally distributed coils estimated toroidal mode numbers of n=5-10. Quantitatively similar precursors have been observed in ohmic H-mode plasmas as well, though significantly fewer events are seen in the ohmic cases and none were observed in the near-threshold NBI H-modes studied. Development of Velocimetry and Image Analysis Techniques: Along with the experiments listed above, the Colorado group has continued to explore various velocimetry techniques and their range of validity. We have developed a “linear optical flow” code, which calculates smooth velocity maps while accurately assessing local regions of high curl. This is critical for separating spatial scales of velocity behavior, and thus transport. This code has recently come on-line, and we are currently using it to revisit a number of older datasets. Additionally, we have worked on developing pattern-recognition techniques for imaging diagnostics, based on established digital image compression algorithms. This has the potential to open the analysis of turbulent plasma behavior beyond the well-trodden Fourier and wavelet approaches. Finally, we have extended several of these image-analysis routines to multiple other diagnostic sets, including GPI datasets in NSTX and ECEI imaging on DIII-D. In one study, correlation maps were used to measure the full 2-D mode structure of drift-wave level structures using ECEI for the first time. This enabled direct comparison to gyrokinetic simulations using the GEM code, from which is was determined that TEM modes were being measured in DIII-D.« less

  11. Development of a Low-cost, FPGA-based, Delay Line Particle Detector for Satellite and Sounding Rocket Applications

    NASA Astrophysics Data System (ADS)

    Harrington, M.; Kujawski, J. T.; Adrian, M. L.; Weatherwax, A. T.

    2013-12-01

    Electrons are, by definition, a fundamental, chemical and electromagnetic constituent of any plasma. This is especially true within the partially ionized plasmas of Earth's ionosphere where electrons are a critical component of a vast array of plasma processes. Siena College is working on a novel method of processing information from electron spectrometer anodes using delay line techniques and inexpensive COTS electronics to track the movement of high-energy particles. Electron spectrometers use a variety of techniques to determine where an amplified electron cloud falls onto a collecting surface. One traditional method divides the collecting surface into sectors and uses a single detector for each sector. However, as the angular and spatial resolution increases, so does the number of detectors, increasing power consumption, cost, size, and weight of the system. An alternative approach is to connect each sector with a delay line built within the PCB material which is shielded from cross talk by a flooded ground plane. Only one pair of detectors (e.g., one at each end of the chain) are needed with the delay line technique which is different from traditional delay line detectors which use either Application Specific Integrated Circuits (ASICs) or very fast clocks. In this paper, we report on the implementation and testing of a delay line detector using a low-cost Xilinx FPGA and a thirty-two sector delay system. This Delay Line Detector has potential satellite and rocket flight applications due to its low cost, small size and power efficiency

  12. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials.

    PubMed

    Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu

    2017-03-17

    A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS 2 and other vW materials. Using this technique we etch MoS 2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe 2 . In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.

  13. Overview of experimental preparation for the ITER-Like Wall at JET

    NASA Astrophysics Data System (ADS)

    Jet Efda Contributors Brezinsek, S.; Fundamenski, W.; Eich, T.; Coad, J. P.; Giroud, C.; Huber, A.; Jachmich, S.; Joffrin, E.; Krieger, K.; McCormick, K.; Lehnen, M.; Loarer, T.; de La Luna, E.; Maddison, G.; Matthews, G. F.; Mertens, Ph.; Nunes, I.; Philipps, V.; Riccardo, V.; Rubel, M.; Stamp, M. F.; Tsalas, M.

    2011-08-01

    Experiments in JET with carbon-based plasma-facing components have been carried out in preparation of the ITER-Like Wall with beryllium main chamber and full tungsten divertor. The preparatory work was twofold: (i) development of techniques, which ensure safe operation with the new wall and (ii) provision of reference plasmas, which allow a comparison of operation with carbon and metallic wall. (i) Compatibility with the W divertor with respect to energy loads could be achieved in N2 seeded plasmas at high densities and low temperatures, finally approaching partial detachment, with only moderate confinement reduction of 10%. Strike-point sweeping increases the operational space further by re-distributing the load over several components. (ii) Be and C migration to the divertor has been documented with spectroscopy and QMBs under different plasma conditions providing a database which will allow a comparison of the material transport to remote areas with metallic walls. Fuel retention rates of 1.0-2.0 × 1021 D s-1 were obtained as references in accompanied gas balance studies.

  14. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  15. Distinctive features of kinetics of plasma at high specific energy deposition

    NASA Astrophysics Data System (ADS)

    Lepikhin, Nikita; Popov, Nikolay; Starikovskaia, Svetlana

    2016-09-01

    A nanosecond capillary discharge in pure nitrogen at moderate pressures is used as an experimental tool for plasma kinetics studies at conditions of high specific deposited energy up to 1 eV/molecule. Experimental observations based on electrical (back current shunts, capacitive probe) and spectroscopic measurements (quenching rates; translational, rotational and vibrational temperature measurements) demonstrate that high specific deposited energy, at electric fields of 200-300 Td, can significantly change gas kinetics in the discharge and in the afterglow. The numerical calculations in 1D axially symmetric geometry using experimental data as input parameters show that changes in the plasma kinetics are caused by extremely high excitation degree: up to 10% of molecular nitrogen is electronically excited at present conditions. Distinctive features of kinetics of plasma at high specific energy deposition as well as details of the experimental technique and numerical calculations will be present. The work was partially supported by French National Agency, ANR (PLASMAFLAME Project, 2011 BS09 025 01), AOARD AFOSR, FA2386-13-1-4064 grant (Program Officer Prof. Chiping Li), LabEx Plas@Par and Linked International Laboratory LIA KaPPA (France-Russia).

  16. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research.

  17. A generic standard additions based method to determine endogenous analyte concentrations by immunoassays to overcome complex biological matrix interference.

    PubMed

    Pang, Susan; Cowen, Simon

    2017-12-13

    We describe a novel generic method to derive the unknown endogenous concentrations of analyte within complex biological matrices (e.g. serum or plasma) based upon the relationship between the immunoassay signal response of a biological test sample spiked with known analyte concentrations and the log transformed estimated total concentration. If the estimated total analyte concentration is correct, a portion of the sigmoid on a log-log plot is very close to linear, allowing the unknown endogenous concentration to be estimated using a numerical method. This approach obviates conventional relative quantification using an internal standard curve and need for calibrant diluent, and takes into account the individual matrix interference on the immunoassay by spiking the test sample itself. This technique is based on standard additions for chemical analytes. Unknown endogenous analyte concentrations within even 2-fold diluted human plasma may be determined reliably using as few as four reaction wells.

  18. Systematic ionospheric electron density tilts (SITs) at mid-latitudes and their associated HF bearing errors

    NASA Astrophysics Data System (ADS)

    Tedd, B. L.; Strangeways, H. J.; Jones, T. B.

    1985-11-01

    Systematic ionospheric tilts (SITs) at midlatitudes and the diurnal variation of bearing error for different transmission paths are examined. An explanation of diurnal variations of bearing error based on the dependence of ionospheric tilt on solar zenith angle and plasma transport processes is presented. The effect of vertical ion drift and the momentum transfer of neutral winds is investigated. During the daytime the transmissions are low and photochemical processes control SITs; however, at night transmissions are at higher heights and spatial and temporal variations of plasma transport processes influence SITs. A HF ray tracing technique which uses a three-dimensional ionospheric model based on predictions to simulate SIT-induced bearing errors is described; poor correlation with experimental data is observed and the causes for this are studied. A second model based on measured vertical-sounder data is proposed. Model two is applicable for predicting bearing error for a range of transmission paths and correlates well with experimental data.

  19. Molecular Diagnostics of Fusion and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Fantz, U.

    2005-05-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.

  20. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.

    PubMed

    Ghodasara, P; Sadowski, P; Satake, N; Kopp, S; Mills, P C

    2017-12-01

    Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Advances in Heavy Ion Beam Probe Technology and Operation on MST

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.

    2003-10-01

    A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.

  2. Recent advances in plasma modeling for space applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin

    2017-02-01

    This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.

  3. Preparation of synaptic plasma membrane and postsynaptic density proteins using a discontinuous sucrose gradient.

    PubMed

    Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J

    2014-09-03

    Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.

  4. Plasma enhanced ultrastable self-powered visible-blind deep ultraviolet photodetector based on atomically thin boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Feng, Peter Xianping; Rivera, Manuel; Velazquez, Rafael; Aldalbahi, Ali

    We extend our work on the use of digitally controlled plasma deposition technique to synthesize high quality boron nitride nanosheets (BNNSs). The nanoscale morphologies and layered growth characteristics of the BNNSs were characterized using scanning electron microscope, transmission electron microscopy, and atomic force microscopy. The experimental data indicated each sample consists of multiple atomically thin, highly transparent BNNSs that overlap one another with certain orientations. Purity and structural properties were characterized by Raman scattering, XRD, FTIR and XPS. Based on these characterizations, 2D BNNSs based self-powered, visible blind deep UV detectors were designed, fabricated, and tested. The bias, temperature, and humidity effects on the photocurrent strength were investigated. A significant increase of signal-to-noise ratio after plasma treatment was observed. The fabricated photodetectors presented exceptional properties: a very stable baseline and a high sensitivity to weak intensities of radiation in both UVC and UVB range while remaining visible-blind, a high signal-to-noise ratio, and excellent repeatability even when the operating temperature was up to 400 0C. The shift in cutoff wavelength was also observed. This work is supported by the Army Research Office/DoD Grant (62826-RT-REP) and the ISPP#0058 at King Saud University.

  5. TRANSP-based Trajectory Optimization of the Current Profile Evolution to Facilitate Robust Non-inductive Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Wehner, William; Schuster, Eugenio; Poli, Francesca

    2016-10-01

    Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.

  6. Imaging plasmas at the Earth and other planets

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.

    2006-05-01

    The field of space physics, both at Earth and at other planets, was for decades a science based on local observations. By stitching together measurements of plasmas and fields from multiple locations either simultaneously or for similar conditions over time, and by comparing those measurements against models of the physical systems, great progress was made in understanding the physics of Earth and planetary magnetospheres, ionospheres, and their interactions with the solar wind. However, the pictures of the magnetospheres were typically statistical, and the large-scale global models were poorly constrained by observation. This situation changed dramatically with global auroral imaging, which provided snapshots and movies of the effects of field aligned currents and particle precipitation over the entire auroral oval during quiet and disturbed times. And with the advent of global energetic neutral atom (ENA) and extreme ultraviolet (EUV) imaging, global constraints have similarly been added to ring current and plasmaspheric models, respectively. Such global constraints on global models are very useful for validating the physics represented in those models, physics of energy and momentum transport, electric and magnetic field distribution, and magnetosphere-ionosphere coupling. These techniques are also proving valuable at other planets. For example with Hubble Space Telescope imaging of Jupiter and Saturn auroras, and ENA imaging at Jupiter and Saturn, we are gaining new insights into the magnetic fields, gas-plasma interactions, magnetospheric dynamics, and magnetosphere-ionosphere coupling at the giant planets. These techniques, especially ENA and EUV imaging, rely on very recent and evolving technological capabilities. And because ENA and EUV techniques apply to optically thin media, interpretation of their measurements require sophisticated inversion procedures, which are still under development. We will discuss the directions new developments in imaging are taking, what technologies and mission scenarios might best take advantage of them, and how our understanding of the Earth's and other planets' plasma environments may benefit from such advancements.

  7. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?

    PubMed

    Torres, Mariana Andrade; Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell'Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant'Anna; Sepúlveda, Néstor; de Andrade, André Furugen Cesar

    2016-01-01

    Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility.

  8. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?

    PubMed Central

    Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell’Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant’Anna; Sepúlveda, Néstor

    2016-01-01

    Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility. PMID:27529819

  9. Preparation and Immunoaffinity Depletion of Fresh Frozen Tissue Homogenates for Mass Spectrometry-Based Proteomics in the Context of Drug Target/Biomarker Discovery.

    PubMed

    Prieto, DaRue A; Chan, King C; Johann, Donald J; Ye, Xiaoying; Whitely, Gordon; Blonder, Josip

    2017-01-01

    The discovery of novel drug targets and biomarkers via mass spectrometry (MS)-based proteomic analysis of clinical specimens has proven to be challenging. The wide dynamic range of protein concentration in clinical specimens and the high background/noise originating from highly abundant proteins in tissue homogenates and serum/plasma encompass two major analytical obstacles. Immunoaffinity depletion of highly abundant blood-derived proteins from serum/plasma is a well-established approach adopted by numerous researchers; however, the utilization of this technique for immunodepletion of tissue homogenates obtained from fresh frozen clinical specimens is lacking. We first developed immunoaffinity depletion of highly abundant blood-derived proteins from tissue homogenates, using renal cell carcinoma as a model disease, and followed this study by applying it to different tissue types. Tissue homogenate immunoaffinity depletion of highly abundant proteins may be equally important as is the recognized need for depletion of serum/plasma, enabling more sensitive MS-based discovery of novel drug targets, and/or clinical biomarkers from complex clinical samples. Provided is a detailed protocol designed to guide the researcher through the preparation and immunoaffinity depletion of fresh frozen tissue homogenates for two-dimensional liquid chromatography, tandem mass spectrometry (2D-LC-MS/MS)-based molecular profiling of tissue specimens in the context of drug target and/or biomarker discovery.

  10. Functional form for plasma velocity in a rapidly rotating tokamak discharge

    DOE PAGES

    Burrell, Keith H.; Chrystal, C. olin

    2014-07-25

    A recently developed technique using charge exchange spectroscopy determines the ion poloidal rotation in tokamak plasmas from the poloidal variation in the toroidal angular rotation speed. The basis for this technique is the functional form for the plasma velocity calculated from the equilibrium equations. The initial development of this technique utilized the functional form determined for conditions where the ion toroidal rotation speed is much smaller than the ion thermal speed. There are cases, however, where the toroidal rotation can be comparable to the ion thermal speed, especially for high atomic number impurities. Furthermore, the present paper extends the previousmore » analysis to this high rotation speed case and demonstrates how to extract the poloidal rotation speed from measurements of the toroidal angular rotation speed at two points on a flux surface.« less

  11. Investigations of microwave plasmas - Applications in electrothermal thruster systems

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.

    1989-01-01

    Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.

  12. Investigations of microwave plasmas - Applications in electrothermal thruster systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.; Hawley, M.C.

    1989-01-01

    Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered. 10 refs.

  13. Restrike Particle Beam Experiments on a Dense Plasma Focus. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    1985-06-01

    Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.

  14. A plasma microlens for ultrashort high power lasers

    NASA Astrophysics Data System (ADS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  15. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Sittler, E.; Cooper, J.; Hartle, R.; Simpson, D.; Johnson, R.; Thomsen, M.; Arridge, C.

    2011-01-01

    We present the present status of an investigation of the rotation rate of Saturn's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. for SOI and similar to that used by Thomsen et al.. This technique allows one to nearly cover the full energy range of the Cassini Plasma Spectrometer (CAPS) IMS from 1 V . E/Q < 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll maneuvers. We make comparisons with the bi-Maxwellian fitting technique developed by Wilson et al. and the similar velocity moment technique by Thomsen et al. . We concentrate our analysis when ion composition data is available, which is used to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The chosen periods have high enough telemetry rates (4 kbps or higher) so that coincidence ion data, similar to that used by Sittler et al. for SOI is available. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. In the future we will then make comparisons with magnetic field observations, Saturn ionosphere conductivities as presently known and the field aligned currents necessary for the planet to enforce corotation of the rotating plasma.

  16. Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2017-01-01

    The concept of ‘active plasma resonance spectroscopy’ (APRS) has attracted greater interest in recent years as an established plasma diagnostic technique. The APRS describes a class of related methods utilizing the intrinsic ability of plasma to resonate at or near the electron plasma frequency {ω\\text{pe}} . The Curling probe (CP) as a novel realization of the APRS idea, is a miniaturized spiral slot embedded flatly in the chamber wall. Consequently, a plasma diagnostic technique with minimum disturbance and without metal contamination can be developed. To measure the plasma parameters the CP is fed with a weak frequency-swept signal from the exterior of the plasma chamber by a network analyzer which also records the response of the plasma versus the frequency. The resonance behavior is strongly dependent on the electron density and the gas pressure. The CP has also the advantage of resonating at a frequency greater than {ω\\text{pe}} which is dependent on the spiral’s length. The double resonance characteristic gives the CP the ability to be applied in varying plasma regimes. Assuming that the spiralization does not have a considerable effect on the resonances, a ‘straightened’ infinite length CP has recently been investigated (Arshadi and Brinkmann 2016 Plasma Sources Sci. Technol. 25 045014) to obtain the surface wave resonances. This work generalizes the approach and models the CP by a rectangular slot-type resonator located between plasma and quartz. Cold plasma theory and Maxwell’s equations are utilized to compute the electromagnetic fields propagating into the plasma by the diffraction of an incident plane wave at the slot. A mathematical model is employed and both kinds of resonances are derived. The analytical study of this paper shows good agreement with the numerical results of the probe inventors.

  17. Comparison of ionospheric plasma drifts obtained by different techniques

    NASA Astrophysics Data System (ADS)

    Kouba, Daniel; Arikan, Feza; Arikan, Orhan; Toker, Cenk; Mosna, Zbysek; Gok, Gokhan; Rejfek, Lubos; Ari, Gizem

    2016-07-01

    Ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde DPS-4D. The paper is focused on F-region vertical drift data. Vertical component of the drift velocity vector can be estimated by several methods. Digisonde DPS-4D allows sounding in drift mode with direct output represented by drift velocity vector. The Digisonde located in Pruhonice provides direct drift measurement routinely once per 15 minutes. However, also other different techniques can be found in the literature, for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. This comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisonde. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  18. In-situ real time measurements of net erosion rates of copper during hydrogen plasma exposure

    NASA Astrophysics Data System (ADS)

    Kesler, Leigh; Wright, Graham; Peterson, Ethan; Whyte, Dennis

    2013-10-01

    In order to properly understand the dynamics of net erosion/deposition in fusion reactors, such as tokamaks, a diagnostic measuring the real time rates of net erosion/deposition during plasma exposure is necessary. The DIONISOS experiment produces real time measurements of net erosion/deposition by using Rutherford backscattering spectroscopy (RBS) ion beam analysis simultaneously with plasma exposure from a helicon plasma source. This in-situ method improves on ex-situ weight loss measurements by allowing measurement of possible synergistic effects of high ion implantation rates and net erosion rate and by giving a real time response to changes in plasma parameters. Previous work has validated this new technique for measuring copper (Cu) erosion from helium (He) plasma ion bombardment. This technique is now extended to measure copper erosion due to deuterium and hydrogen plasma ion exposure. Targets used were a 1.5 μm Cu layer on an aluminum substrate. Cu layer thickness is tracked in real time using 1.2 MeV proton RBS. Measured erosion rates will be compared to results from literature and He erosion rates. Supported by US DoE award DE-SC00-02060.

  19. Photon-assisted Beam Probes for Low Temperature Plasmas and Installation of Neutral Beam Probe in Helimak

    NASA Astrophysics Data System (ADS)

    Garcia de Gorordo, Alvaro; Hallock, Gary A.; Kandadai, Nirmala

    2008-11-01

    The Heavy Ion Beam Probe (HIBP) diagnostic has successfully measured the electric potential in a number of major plasma devices in the fusion community. In contrast to a Langmuir probe, the HIBP measures the exact electric potential rather than the floating potential. It is also has the advantage of being a very nonperturbing diagnostic. We propose a new photon-assisted beam probe technique that would extend the HIBP type of diagnostics into the low temperature plasma regime. We expect this method to probe plasmas colder than 10 eV. The novelty of the proposed diagnostic is a VUV laser that ionizes the probing particle. Excimer lasers produce the pulsed VUV radiation needed. The lasers on the market don't have a short enough wavelength too ionize any ion directly and so we calculate the population density of excited states in a NLTE plasma. These new photo-ionization techniques can take an instantaneous one-dimensional potential measurement of a plasma and are ideal for nonmagnitized plasmas where continuous time resolution is not required. Also the status of the Neutral Beam Probe installation on the Helimak experiment will be presented.

  20. Utilizing Laser-Induced Breakdown Spectroscopy Method to recognize chemical composition of low-carbon steel in NH3(NO)4 material

    NASA Astrophysics Data System (ADS)

    Saud Oraibi, Nissan

    2018-05-01

    A standoff laser Induced Break down Spectroscopy (L.I.B.S) technique has been used to characterization the organic material such as NH3(NO)4, a Q-switched Nd:YAG laser (1064 nm wavelength, 9 ns pulse width and 1 Hz repetition rate, 300 mJ is focused to the targets to generate plasma. HR 4000 CG-UV-NIR spectrum analyzer was used to collect the generated plasma emissions, specific signature of each targets material can be obtained by analysis the plasma emission spectrum Peak ratio analysis technique is used for the identification of energetic materials.

Top