Science.gov

Sample records for plasma cell induced

  1. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  2. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  3. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients.

    PubMed

    Rousselot, P; Labaume, S; Marolleau, J P; Larghero, J; Noguera, M H; Brouet, J C; Fermand, J P

    1999-03-01

    Recent data have renewed the interest for arsenic-containing compounds as anticancer agents. In particular, arsenic trioxide (As2O3) has been demonstrated to be an effective drug in the treatment of acute promyelocytic leukemia by inducing programmed cell death in leukemic cells both in vitro and in vivo. This prompted us to study the in vitro effects of As2O3 and of another arsenical derivative, the organic compound melarsoprol, on human myeloma cells and on the plasma cell differentiation of normal B cells. At pharmacological concentrations (10(-8) to 10(-6) mol/L), As2O3 and melarsoprol caused a dose- and time-dependent inhibition of survival and growth in myeloma cell lines that was, in some, similar to that of acute promyelocytic leukemia cells. Both arsenical compounds induced plasma cell apoptosis, as assessed by 4',6-diamidino-2-phenylindole staining, detection of phosphatidylserine at the cell surface using annexin V, and by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. As2O3 and melarsoprol also inhibited viability and growth and induced apoptosis in plasma-cell enriched preparations from the bone marrow or blood of myeloma patients. In nonseparated bone marrow samples, both arsenical compounds triggered death in myeloma cells while sparing most myeloid cells, as demonstrated by double staining with annexin V and CD38 or CD15 antibodies. In primary myeloma cells as in cell lines, interleukin 6 did not prevent arsenic-induced cell death or growth inhibition, and no synergistic effect was observed with IFN-alpha. In contrast to As2O3, melarsoprol only slightly reduced the plasma cell differentiation of normal B cells induced by pokeweed mitogen. Both pokeweed mitogen-induced normal plasma cells and malignant plasma cells showed a normal nuclear distribution of PML protein, which was disrupted by As2O3 but not by melarsoprol, suggesting that the two arsenical derivatives acted by different mechanisms. These results point to the

  4. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  5. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  6. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    NASA Astrophysics Data System (ADS)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  7. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  8. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  9. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    SciTech Connect

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  10. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  11. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  12. Cold Atmospheric Plasma Induces a Predominantly Necrotic Cell Death via the Microenvironment

    PubMed Central

    Cousty, Sarah; Cambus, Jean-Pierre; Valentin, Alexis

    2015-01-01

    Introduction Cold plasma is a partially ionized gas generated by an electric field at atmospheric pressure that was initially used in medicine for decontamination and sterilization of inert surfaces. There is currently growing interest in using cold plasma for more direct medical applications, mainly due to the possibility of tuning it to obtain selective biological effects in absence of toxicity for surrounding normal tissues,. While the therapeutic potential of cold plasma in chronic wound, blood coagulation, and cancer treatment is beginning to be documented, information on plasma/cell interaction is so far limited and controversial. Methods and Results Using normal primary human fibroblast cultures isolated from oral tissue, we sought to decipher the effects on cell behavior of a proprietary cold plasma device generating guided ionization waves carried by helium. In this model, cold plasma treatment induces a predominantly necrotic cell death. Interestingly, death is not triggered by a direct interaction of the cold plasma with cells, but rather via a transient modification in the microenvironment. We show that modification of the microenvironment redox status suppresses treatment toxicity and protects cells from death. Moreover, necrosis is not accidental and seems to be an active response to an environmental cue, as its execution can be inhibited to rescue cells. Conclusion These observations will need to be taken into account when studying in vitro plasma/cell interaction and may have implications for the design and future evaluation of the efficacy and safety of this new treatment strategy. PMID:26275141

  13. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage.

    PubMed

    Kvam, Erik; Davis, Brian; Mondello, Frank; Garner, Allen L

    2012-04-01

    Plasma, a unique state of matter with properties similar to those of ionized gas, is an effective biological disinfectant. However, the mechanism through which nonthermal or "cold" plasma inactivates microbes on surfaces is poorly understood, due in part to challenges associated with processing and analyzing live cells on surfaces rather than in aqueous solution. Here, we employ membrane adsorption techniques to visualize the cellular effects of plasma on representative clinical isolates of drug-resistant microbes. Through direct fluorescent imaging, we demonstrate that plasma rapidly inactivates planktonic cultures, with >5 log(10) kill in 30 s by damaging the cell surface in a time-dependent manner, resulting in a loss of membrane integrity, leakage of intracellular components (nucleic acid, protein, ATP), and ultimately focal dissolution of the cell surface with longer exposure time. This occurred with similar kinetic rates among methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. We observed no correlative evidence that plasma induced widespread genomic damage or oxidative protein modification prior to the onset of membrane damage. Consistent with the notion that plasma is superficial, plasma-mediated sterilization was dramatically reduced when microbial cells were enveloped in aqueous buffer prior to treatment. These results support the use of nonthermal plasmas for disinfecting multidrug-resistant microbes in environmental settings and substantiate ongoing clinical applications for plasma devices.

  14. Nonthermal Atmospheric Plasma Rapidly Disinfects Multidrug-Resistant Microbes by Inducing Cell Surface Damage

    PubMed Central

    Davis, Brian; Mondello, Frank; Garner, Allen L.

    2012-01-01

    Plasma, a unique state of matter with properties similar to those of ionized gas, is an effective biological disinfectant. However, the mechanism through which nonthermal or “cold” plasma inactivates microbes on surfaces is poorly understood, due in part to challenges associated with processing and analyzing live cells on surfaces rather than in aqueous solution. Here, we employ membrane adsorption techniques to visualize the cellular effects of plasma on representative clinical isolates of drug-resistant microbes. Through direct fluorescent imaging, we demonstrate that plasma rapidly inactivates planktonic cultures, with >5 log10 kill in 30 s by damaging the cell surface in a time-dependent manner, resulting in a loss of membrane integrity, leakage of intracellular components (nucleic acid, protein, ATP), and ultimately focal dissolution of the cell surface with longer exposure time. This occurred with similar kinetic rates among methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. We observed no correlative evidence that plasma induced widespread genomic damage or oxidative protein modification prior to the onset of membrane damage. Consistent with the notion that plasma is superficial, plasma-mediated sterilization was dramatically reduced when microbial cells were enveloped in aqueous buffer prior to treatment. These results support the use of nonthermal plasmas for disinfecting multidrug-resistant microbes in environmental settings and substantiate ongoing clinical applications for plasma devices. PMID:22232292

  15. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    PubMed Central

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  16. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  17. Iron stimulates plasma-activated medium-induced A549 cell injury

    PubMed Central

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD+ and ATP, and elevations in intracellular Ca2+. The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  18. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  19. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    PubMed Central

    2012-01-01

    Background The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. Methods We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. Results TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. Conclusions Our data suggest possible future intra

  20. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  1. Spatially-Selective Membrane Permeabilization Induced by Cell-Solution Electrode Atmospheric Pressure Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro

    2015-09-01

    Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.

  2. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

    PubMed

    Weber, Nina C; Riedemann, Isabelle; Smit, Kirsten F; Zitta, Karina; van de Vondervoort, Djai; Zuurbier, Coert J; Hollmann, Markus W; Preckel, Benedikt; Albrecht, Martin

    2015-03-01

    Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.

  3. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  4. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    Packard, B.S.; Saxton, M.J.; Bissell, M.J.; Klein, M.P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters (percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)) connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters. 35 references, 3 figures, 1 table.

  5. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  6. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  7. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  8. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility.

    PubMed

    Tournaviti, Stella; Hannemann, Sebastian; Terjung, Stefan; Kitzing, Thomas M; Stegmayer, Carolin; Ritzerfeld, Julia; Walther, Paul; Grosse, Robert; Nickel, Walter; Fackler, Oliver T

    2007-11-01

    SH4 domains provide bipartite membrane-targeting signals for oncogenic Src family kinases. Here we report the induction of non-apoptotic plasma membrane (PM) blebbing as a novel and conserved activity of SH4 domains derived from the prototypic Src kinases Src, Fyn, Yes and Lck as well as the HASPB protein of Leishmania parasites. SH4-domain-induced blebbing is highly dynamic, with bleb formation and collapse displaying distinct kinetics. These reorganizations of the PM are controlled by Rho but not Rac or Cdc42 GTPase signalling pathways. SH4-induced membrane blebbing requires the membrane association of the SH4 domain, is regulated by the activities of Rock kinase and myosin II ATPase, and depends on the integrity of F-actin as well as microtubules. Endogenous Src kinase activity is crucial for PM blebbing in SH4-domain-expressing cells, active Src and Rock kinases are enriched in SH4-domain-induced PM blebs, and PM blebbing correlates with enhanced cell invasion in 3D matrices. These results establish a novel link between SH4 domains, Src activity and Rho signalling, and implicate SH4-domain-mediated PM dynamization as a mechanism that influences invasiveness of cells transformed by SH4-domain-containing oncoproteins. PMID:17959630

  9. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  10. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells.

    PubMed

    Bekeschus, S; Kolata, J; Winterbourn, C; Kramer, A; Turner, R; Weltmann, K D; Bröker, B; Masur, K

    2014-05-01

    Plasma medicine is an interdisciplinary field and recent clinical studies showed benefits of topical plasma application to chronic wounds. Whereas most investigations have focused on plasma-skin cell interaction, immune cells are omnipresent in most tissues as well. They not only elicit specific immune responses but also regulate inflammation, which is central in healing and regeneration. Plasma generates short-lived radicals and species in the gas phase. Mechanisms of plasma-cell interactions are not fully understood but it is hypothesized that reactive oxygen and nitrogen species (RONS) mediate effects of plasma on cells. In this study human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability. Plasma generates hydrogen peroxide (H2O2) and the responses were similar in cells treated with concentration-matched H2O2. Both treatments gave an equivalent reduction in viability and this was completely abrogated if catalase was added prior to plasma exposure. Further, five oxidation probes were utilized and fluorescence increase was observed in plasma-treated cells. Dye-dependent addition of catalase diminished most but not all of the probe fluorescence, assigning H2O2 a dominant but not exclusive role in cellular oxidation by plasma. Investigations for other species revealed generation of nitrite and formation of 3-nitrotyrosine but not 3-chlorotyrosine after plasma treatment indicating presence of RNS which may contribute to cellular redox changes observed. Together, these results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells. PMID:24528134

  11. Modeling fundamental plasma transport and particle-induced emission in a simplified Test Cell

    NASA Astrophysics Data System (ADS)

    Giuliano, Paul Nicholas

    This work involves the modeling of fundamental plasma physics processes occurring within environments that are similar to that of the discharge and plume regions of electric propulsion devices such as Hall effect thrusters. The research is conducted as a collaborative effort with the Plasma & Space Propulsion Laboratory at the University of California, Los Angeles (UCLA), as part of the University of Michigan/AFRL Center for Excellence in Electric Propulsion (MACEEP). Transport physics, such as particle-particle collisions and particle-induced electron emission, are simulated within the UCLA experimental facility and its representative electric propulsion environment. Simulation methods employed include the direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) techniques for the kinetic simulation of charged, rarefied species on high-performance computing architectures. Momentum- (MEX) and charge-exchange (CEX) collision cross-section models for Xe and Xe+, both total and differential, are successfully validated at collision energies of ˜1.5 keV within the novel facility. Heavy-species collisional transport models are validated and the importance of scattering anisotropy in this collision-dominated environment is shown. The theory of particle-induced electron emission (PIE) is then investigated in the context of the relevant energies and environments of the UCLA facility and electric propulsion devices and diagnostics. Reduced, semi-empirical models for total yield and emitted electron energy distribution functions that are easily implemented in a DSMC-PIC code are developed for the simulation of secondary-electron emission due to low-energy ions and high-energy atoms, even in the case of incomplete target-material information. These models are important for the characterization of electric propulsion devices due to the problematic nature of low-temperature plasma diagnostic techniques in which the emission of electrons is physically indistinguishable

  12. Modeling particle-induced electron emission in a simplified plasma Test Cell

    SciTech Connect

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-21

    Particle-induced electron emission (PIE) is modeled in a simplified, well-characterized plasma Test Cell operated at UCLA. In order for PIE to be a useful model in this environment, its governing equations are first reduced to lower-order models which can be implemented in a direct simulation Monte Carlo and Particle-in-Cell framework. These reduced-order models are described in full and presented as semi-empirical models. The models are implemented to analyze the interaction of low- and high-energy ({approx}1-2 keV) xenon ions and atoms with the stainless steel electrodes of the Test Cell in order to gain insight into the emission and transport of secondary electrons. Furthermore, there is a lack of data for xenon-stainless steel atom- and ion-surface interactions for similar environments. Using experimental data as a reference, both total yields and emitted electron energy distribution functions can be deduced by observing sensitivities of current collection results to these numerical models and their parameters.

  13. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  14. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network.

    PubMed

    Adachi, Tetsuo; Tanaka, Hiromasa; Nonomura, Saho; Hara, Hirokazu; Kondo, Shin-ichi; Hori, Masaru

    2015-02-01

    Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Nonthermal atmospheric pressure plasma can be applied to living cells and tissues and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only directly, but also by indirect treatment with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the inhibitory effects of PAM on A549 cell survival and elucidate the signaling mechanisms responsible for cell death. PAM maintained its ability to suppress cell viability for at least 1 week when stored at -80°C. The severity of PAM-triggered cell injury depended on the kind of culture medium used to prepare the PAM, especially that with or without pyruvate. Hydrogen peroxide (H2O2) and/or its derived or cooperating reactive oxygen species reduced the mitochondrial membrane potential, downregulated the expression of the antiapoptotic protein Bcl2, activated poly(ADP-ribose) polymerase-1, and released apoptosis-inducing factor from mitochondria with endoplasmic reticulum stress. However, the activation of caspase 3/7 and attenuation of cell viability by the addition of caspase inhibitor were not observed. The accumulation of adenine 5'-diphosphoribose as a product of the above reactions activated transient receptor potential melastatin 2, which elevated intracellular Ca(2+) levels and subsequently led to cell death. These results demonstrated that H2O2 and/or other reactive species in PAM disturbed the mitochondrial-nuclear network in cancer cells through a caspase-independent apoptotic pathway. Moreover, damage to the plasma membrane by H2O2-cooperating charged species not only induced apoptosis, but also increased its permeability to extracellular reactive species. These phenomena were also detected in PAM-treated HepG2 and MCF-7 cells. PMID:25433364

  15. Plasma Cell Disorders

    MedlinePlus

    ... microorganisms to which the body is exposed. In plasma cell disorders, one clone of plasma cells multiplies uncontrollably. As a result, this clone ... a light chain and heavy chain). These abnormal plasma cells and the ... produce are limited to one type, and levels of other types of antibodies ...

  16. Plasma protein induced clustering of red blood cells in micro capillaries

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Brust, Mathias; Aouane, Othmane; Flormann, Daniel; Thiebaud, Marine; Verdier, Claude; Coupier, Gwennou; Podgorski, Thomas; Misbah, Chaouqi; Selmi, Hassib

    2013-11-01

    The plasma molecule fibrinogen induces aggregation of RBCs to clusters, the so called rouleaux. Higher shear rates in bulk flow can break them up which results in the pronounced shear thinning of blood. This led to the assumption that rouleaux formation does not take place in the microcapillaries of the vascular network where high shear rates are present. However, the question is of high medical relevance. Cardio vascular disorders are still the main cause of death in the western world and cardiac patients have often higher fibrinogen level. We performed AFM based single cell force spectroscopy to determine the work of separation. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the adhesion strength and we found that cluster formation is strongly enhanced by fibrinogen at physiological concentrations, even at shear rate as high as 1000 1/s. Numerical simulations based on a boundary integral method confirm our findings and the clustering transition takes place both in the experiments and in the simulations at the same interaction energies. In vivo measurements with intravital fluorescence microscopy in a dorsal skin fold chamber in a mouse reveal that RBCs indeed form clusters in the micrcapillary flow. This work was supported by the German Science Foundation research imitative SFB1027.

  17. Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines.

    PubMed Central

    Landmann, R M; Müller, F B; Perini, C; Wesp, M; Erne, P; Bühler, F R

    1984-01-01

    Lymphocyte subpopulations were measured before and after physical and psychological stress in 15 healthy subjects and correlated with plasma catecholamine and cortisol levels. During psychological stress monocytes (P less than 0.05), NK (P less than 0.01), B cells (P less than 0.05) and heart rate (P less than 0.001) increased, while catecholamines remained unchanged. With physical stress granulocytes, monocytes and all lymphocyte subsets increased significantly, although B cells rose more than T cells and T (suppressor) cells more than T (helper) cells. Thus the ratio of T/B cells and of Th/Ts cells decreased (P less than 0.001 and P less than 0.01). Adrenaline and noradrenaline concentrations increased (P less than 0.001), while cortisol remained unchanged. There was a negative relationship between adrenaline and the Th/Ts cell ratio before and after stress (P less than 0.05). Lymphocyte subpopulations from a different group of 4 healthy subjects were analysed before and after isoproterenol infusion. There was a small increase in Ts and B cells only (P less than 0.1) and a decrease of the T/B cell ratio (P less than 0.05). The predominant enrichment of circulating B, Ts and NK cells during short lasting adrenergic activation, as well as the relationship of the T cell changes to plasma adrenaline, suggest an immunoregulatory effect of the sympathetic nervous system in stress. PMID:6478647

  18. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  19. Portuguese Man-of-war (Physalia physalis) venom induces calcium influx into cells by permeabilizing plasma membranes.

    PubMed

    Edwards, L; Hessinger, D A

    2000-08-01

    Portuguese Man-of-war (Physalia physalis) nematocyst venom dose-dependently stimulates calcium (45Ca(2+)) influx into L-929, GH(4)C(1), FRL, and embryonic chick heart cells. Venom-induced calcium influx is not blocked by ouabain, vanadate, nor organic calcium channel blockers, but is blocked by transition metal cations, such as lanthanum and zinc. Venom-induced calcium influx is accompanied in a dose-dependent manner by the release of intracellular lactate dehydrogenase, indicating a loss in plasma membrane integrity and cytolysis. Concentrations of zinc that block 45Ca(2+) influx also block lactate dehydrogenase release. Lanthanum, which also blocks 45Ca(2+) uptake, does not neutralize the cytolytic activity of the venom, but rather inhibits the venom's cytolytic action at the level of the target cell plasma membrane. Our findings indicate that Man-of-war venom causes an influx of calcium into several different cells types, not just those of the cardiovascular system, and this influx likely occurs by permeabilizing the plasma membranes of cells. PMID:10708794

  20. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper. PMID:26233368

  1. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    SciTech Connect

    Ahmed, Shahid; Mammosser, John D.

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  2. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    NASA Astrophysics Data System (ADS)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  3. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  4. Plasma absorption and ultrastructural changes of rat testicular cells induced by lindane.

    PubMed

    Suwalsky, M; Villena, F; Marcus, D; Ronco, A M

    2000-09-01

    This paper describes, for the first time, how topical application in rats of a commercial preparation of lindane widely used in public health, at similar doses and routes of administration as in humans, leads to rapid absorption and accumulation of lindane in the testes. An early peak of absorption was detected in plasma 6 h after topical treatment of male Wistar rats with a commercial preparation of 1% lindane (Plomurol). Higher plasma levels were observed after repetitive doses of 60 mg/kg b.w., the amount recommended for the treatment of scabies and pediculosis in humans in several countries. A residue level of 7.4 +/- 0.67 microg/g was found in testicular tissue 6 h after a single daily topical application for 4 consecutive days. The ultrastructural study of testicular interstitial cells exposed to dermal application of lindane (Plomurol) revealed widespread damage of a great number of Leydig cells, some of which were completely disintegrated. PMID:11204556

  5. Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways.

    PubMed

    Weiss, Martin; Gümbel, Denis; Hanschmann, Eva-Maria; Mandelkow, Robert; Gelbrich, Nadine; Zimmermann, Uwe; Walther, Reinhard; Ekkernkamp, Axel; Sckell, Axel; Kramer, Axel; Burchardt, Martin; Lillig, Christopher H; Stope, Matthias B

    2015-01-01

    One of the promising possibilities of the clinical application of cold plasma, so-called cold atmospheric plasma (CAP), is its application on malignant cells and cancer tissue using its anti-neoplastic effects, primarily through the delivery of reactive oxygen and nitrogen species (ROS, RNS). In this study, we investigated the impact of CAP on cellular proliferation and consecutive molecular response mechanisms in established prostate cancer (PC) cell lines. PC cells showed a significantly reduced cell growth following CAP treatment as a result of both an immediate increase of intracellular peroxide levels and through the induction of apoptosis indicated by annexin V assay, TUNEL assay, and the evaluation of changes in nuclear morphology. Notably, co-administration of N-acetylcysteine (NAC) completely neutralized CAP effects by NAC uptake and rapid conversion to glutathione (GSH). Vitamin C could not counteract the CAP induced effects on cell growth. In summary, relatively short treatments with CAP of 10 seconds were sufficient to induce a significant inhibition of cancer proliferation, as observed for the first time in urogenital cancer. Therefore, it is important to understand the mode of CAP related cell death and clarify and optimize CAP as cancer therapy. Increased levels of peroxides can alter redox-regulated signaling pathways and can lead to growth arrest and apoptosis. We assume that the general intracellular redox homeostasis, especially the levels of cellular GSH and peroxidases such as peroxiredoxins affect the outcome of the CAP treatment. PMID:26132846

  6. Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways.

    PubMed

    Weiss, Martin; Gümbel, Denis; Hanschmann, Eva-Maria; Mandelkow, Robert; Gelbrich, Nadine; Zimmermann, Uwe; Walther, Reinhard; Ekkernkamp, Axel; Sckell, Axel; Kramer, Axel; Burchardt, Martin; Lillig, Christopher H; Stope, Matthias B

    2015-01-01

    One of the promising possibilities of the clinical application of cold plasma, so-called cold atmospheric plasma (CAP), is its application on malignant cells and cancer tissue using its anti-neoplastic effects, primarily through the delivery of reactive oxygen and nitrogen species (ROS, RNS). In this study, we investigated the impact of CAP on cellular proliferation and consecutive molecular response mechanisms in established prostate cancer (PC) cell lines. PC cells showed a significantly reduced cell growth following CAP treatment as a result of both an immediate increase of intracellular peroxide levels and through the induction of apoptosis indicated by annexin V assay, TUNEL assay, and the evaluation of changes in nuclear morphology. Notably, co-administration of N-acetylcysteine (NAC) completely neutralized CAP effects by NAC uptake and rapid conversion to glutathione (GSH). Vitamin C could not counteract the CAP induced effects on cell growth. In summary, relatively short treatments with CAP of 10 seconds were sufficient to induce a significant inhibition of cancer proliferation, as observed for the first time in urogenital cancer. Therefore, it is important to understand the mode of CAP related cell death and clarify and optimize CAP as cancer therapy. Increased levels of peroxides can alter redox-regulated signaling pathways and can lead to growth arrest and apoptosis. We assume that the general intracellular redox homeostasis, especially the levels of cellular GSH and peroxidases such as peroxiredoxins affect the outcome of the CAP treatment.

  7. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients.

    PubMed

    Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana

    2016-01-01

    This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (P<0.05) attenuated by both the 50 and 100 ppm treatments of T. cacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia. PMID:26955771

  8. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts

    PubMed Central

    Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.

    2014-01-01

    STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced

  9. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells.

    PubMed

    Ruwan Kumara, Madduma Hewage Susara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Park, Jeong Eon; Shilnikova, Kristina; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeonsoo; Kim, Seong Bong; Yoo, Suk Jae; Hyun, Jin Won

    2016-10-01

    Colorectal cancer is a common type of tumor among both men and women worldwide. Conventional remedies such as chemotherapies pose the risk of side‑effects, and in many cases cancer cells develop chemoresistance to these treatments. Non‑thermal gas plasma (NTGP) was recently identified as a potential tool for cancer treatment. In this study, we investigated the potential use of NTGP to control SNUC5 human colon carcinoma cells. We hypothesized that NTGP would generate reactive oxygen species (ROS) in these cells, resulting in induction of endoplasmic reticulum (ER) stress. ROS generation, expression of ER stress‑related proteins and mitochondrial calcium levels were analyzed. Our results confirmed that plasma‑generated ROS induce apoptosis in SNUC5 cells. Furthermore, we found that plasma exposure resulted in mitochondrial calcium accumulation and expression of unfolded protein response (UPR) proteins such as glucose‑related protein 78 (GRP78), protein kinase R (PKR)‑like ER kinase (PERK), and inositol‑requiring enzyme 1 (IRE1). Elevated expression of spliced X‑box binding protein 1 (XBP1) and CCAAT/enhancer‑binding protein homologous protein (CHOP) further confirmed that ROS generated by NTGP induces apoptosis through the ER stress signaling pathway. PMID:27573888

  10. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells.

    PubMed

    Ruwan Kumara, Madduma Hewage Susara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Park, Jeong Eon; Shilnikova, Kristina; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeonsoo; Kim, Seong Bong; Yoo, Suk Jae; Hyun, Jin Won

    2016-10-01

    Colorectal cancer is a common type of tumor among both men and women worldwide. Conventional remedies such as chemotherapies pose the risk of side‑effects, and in many cases cancer cells develop chemoresistance to these treatments. Non‑thermal gas plasma (NTGP) was recently identified as a potential tool for cancer treatment. In this study, we investigated the potential use of NTGP to control SNUC5 human colon carcinoma cells. We hypothesized that NTGP would generate reactive oxygen species (ROS) in these cells, resulting in induction of endoplasmic reticulum (ER) stress. ROS generation, expression of ER stress‑related proteins and mitochondrial calcium levels were analyzed. Our results confirmed that plasma‑generated ROS induce apoptosis in SNUC5 cells. Furthermore, we found that plasma exposure resulted in mitochondrial calcium accumulation and expression of unfolded protein response (UPR) proteins such as glucose‑related protein 78 (GRP78), protein kinase R (PKR)‑like ER kinase (PERK), and inositol‑requiring enzyme 1 (IRE1). Elevated expression of spliced X‑box binding protein 1 (XBP1) and CCAAT/enhancer‑binding protein homologous protein (CHOP) further confirmed that ROS generated by NTGP induces apoptosis through the ER stress signaling pathway.

  11. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  12. Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems.

    PubMed

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2(-)), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  13. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection

    PubMed Central

    Bohannon, Caitlin; Powers, Ryan; Satyabhama, Lakshmipriyadarshini; Cui, Ang; Tipton, Christopher; Michaeli, Miri; Skountzou, Ioanna; Mittler, Robert S.; Kleinstein, Steven H.; Mehr, Ramit; Lee, Frances Eun-Yun; Sanz, Ignacio; Jacob, Joshy

    2016-01-01

    Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells—with T-cell help—undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific, induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells, which develop in germinal centres and then home to the bone marrow, IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly, their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However, these IgM plasma cells are probably not antigen-selected, as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally, antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge. PMID:27270306

  14. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  15. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma

    PubMed Central

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals. PMID:26919318

  16. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    PubMed

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  17. Particles induce apical plasma membrane enlargement in epithelial lung cell line depending on particle surface area dose

    PubMed Central

    Brandenberger, Christina; Rothen-Rutishauser, Barbara; Blank, Fabian; Gehr, Peter; Mühlfeld, Christian

    2009-01-01

    Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM. PMID:19284624

  18. Osteopathic manipulative therapy induces early plasma cytokine release and mobilization of a population of blood dendritic cells.

    PubMed

    Walkowski, Stevan; Singh, Manindra; Puertas, Juan; Pate, Michelle; Goodrum, Kenneth; Benencia, Fabian

    2014-01-01

    It has been claimed that osteopathic manipulative treatment (OMT) is able to enhance the immune response of individuals. In particular, it has been reported that OMT has the capability to increase antibody titers, enhance the efficacy of vaccination, and upregulate the numbers of circulating leukocytes. Recently, it has been shown in human patients suffering chronic low back pain, that OMT is able to modify the levels of cytokines such as IL-6 and TNF-α in blood upon repeated treatment. Further, experimental animal models show that lymphatic pump techniques can induce a transient increase of cytokines in the lymphatic circulation. Taking into account all these data, we decided to investigate in healthy individuals the capacity of OMT to induce a rapid modification of the levels of cytokines and leukocytes in circulation. Human volunteers were subjected to a mixture of lymphatic and thoracic OMT, and shortly after the levels of several cytokines were evaluated by protein array technology and ELISA multiplex analysis, while the profile and activation status of circulating leukocytes was extensively evaluated by multicolor flow cytometry. In addition, the levels of nitric oxide and C-reactive protein (CRP) in plasma were determined. In this study, our results show that OMT was not able to induce a rapid modification in the levels of plasma nitrites or CRP or in the proportion or activation status of central memory, effector memory or naïve CD4 and CD8 T cells. A significant decrease in the proportion of a subpopulation of blood dendritic cells was detected in OMT patients. Significant differences were also detected in the levels of immune molecules such as IL-8, MCP-1, MIP-1α and most notably, G-CSF. Thus, OMT is able to induce a rapid change in the immunological profile of particular circulating cytokines and leukocytes.

  19. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  20. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    PubMed

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-01

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  1. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients.

    PubMed

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm).

  2. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients

    PubMed Central

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm). PMID:26989513

  3. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis.

    PubMed

    Liu, X F; Yu, J Q; Dalan, R; Liu, A Q; Luo, K Q

    2014-05-01

    People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients

  4. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients.

    PubMed

    Neumann, Laura; Mueller, Mattea; Moos, Verena; Heller, Frank; Meyer, Thomas F; Loddenkemper, Christoph; Bojarski, Christian; Fehlings, Michael; Doerner, Thomas; Allers, Kristina; Aebischer, Toni; Ignatius, Ralf; Schneider, Thomas

    2016-09-01

    The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)-dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori-infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS(+) cell population in H. pylori-infected patients and confirmed intracellular NO production. Because we did not detect iNOS(+) PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS(+) PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA(+) PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS(+) PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection. PMID:27456483

  5. Mucosal Inducible NO Synthase–Producing IgA+ Plasma Cells in Helicobacter pylori–Infected Patients

    PubMed Central

    Mueller, Mattea; Moos, Verena; Heller, Frank; Meyer, Thomas F.; Loddenkemper, Christoph; Bojarski, Christian; Fehlings, Michael; Doerner, Thomas; Allers, Kristina; Aebischer, Toni; Ignatius, Ralf; Schneider, Thomas

    2016-01-01

    The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)–dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori–infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS+ cell population in H. pylori–infected patients and confirmed intracellular NO production. Because we did not detect iNOS+ PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS+ PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA+ PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS+ PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection. PMID:27456483

  6. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability.

    PubMed

    Li, Kai; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2016-06-01

    Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.

  7. Plasma cell gingivitis

    PubMed Central

    Joshi, Chandershekhar; Shukla, Pradeep

    2015-01-01

    The aim of the article is to present a report on the clinical presentation of plasma cell gingivitis with the use of herbal toothpowder. Plasma cell gingivitis [PCG] is a rare benign condition of the gingiva characterized by sharply demarcated erythematous and edematous gingivitis often extending to the mucogingival junction. As the name suggests it is diffuse and massive infiltration of plasma cells into the sub-epithelial gingival tissue. It is a hypersensitivity reaction to some antigen, often flavouring agents or spices found in chewing gums, toothpastes and lorenzes. A 27-yr old male with a chief complaint of painful, bleeding swollen mass in his lower front teeth region with prolong use of herbal toothpowder. The gingiva bled readily on probing. Patient was advised to refrain from the use of herbal toothpowder and along with periodontal treatment, no further reoccurrence was found. as more and more herbal products are gaining popularity, clinicians should be aware of effects of these products. Early diagnosis is essential as plasma cell gingivitis has similar pathologic changes seen clinically as in leukemia, HIV infection, discoid lupus erythematosis, atrophic lichen planus, desquamative gingivitis, or cicatrical pemphigoid which must be differentiated through hematologic and serologic testing. PMID:26015677

  8. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    PubMed Central

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  9. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma.

    PubMed

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs' antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2(-) and NO3(-) can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2(-), but not NO3(-), acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2(-) in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2(-) and NO3(-) in solution.

  10. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma.

    PubMed

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs' antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2(-) and NO3(-) can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2(-), but not NO3(-), acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2(-) in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2(-) and NO3(-) in solution. PMID:27364563

  11. Ca2+-dependent cessation of cytoplasmic streaming induced by hypertonic treatment in Vallisneria mesophyll cells: possible role of cell wall-plasma membrane adhesion.

    PubMed

    Hayashi, Teruyuki; Takagi, Shingo

    2003-10-01

    In mesophyll cells of the aquatic angiosperm Vallisneria gigantea Graebner, a rapid and transient inhibition of cytoplasmic streaming was induced by hypertonic treatment with sorbitol. Higher concentrations of sorbitol induced the response more rapidly and in more cells. The response to hypertonic treatment was strictly dependent on the presence of extracellular Ca2+ and was sensitive to Ca2+-channel blockers, including the stretch-activated Ca2+-channel blocker Gd3+. Deplasmolyzed cells never responded to a second hypertonic treatment administered immediately after plasmolysis and subsequent deplasmolysis. Responsiveness was gradually recovered during 24 h of incubation; however, cycloheximide, cordycepin, and trypsin completely suppressed the recovery. Although an Arg-Gly-Asp (RGD) hexapeptide markedly disturbed the pattern of cytoplasmic streaming, it exhibited no specific effects on the response to hypertonic treatment or on the recovery of responsiveness. Taken together, our results demonstrate that leaf mesophyll cells in a multicellular plant can respond to mechanical stimuli and that a Ca2+ influx through stretch-activated Ca2+ channels plays an indispensable role in the response. Furthermore, the possible involvement of RGD-insensitive but trypsin-sensitive protein factor(s), whose function is impaired by detachment of the plasma membrane from the cell wall, is suggested. PMID:14581627

  12. Plasma rotation induced by RF

    SciTech Connect

    Chan, V. S.; Chiu, S. C.; Lin-Liu, Y. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698; Omelchenko, Y. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698

    1999-09-20

    Plasma rotation has many beneficial effects on tokamak operation including stabilization of MHD and microturbulence to improve the beta limit and confinement. Contrary to present-day tokamaks, neutral beams may not be effective in driving rotation in fusion reactors; hence the investigation of radiofrequency (RF) induced plasma rotation is of great interest and potential importance. This paper reviews the experimental results of RF induced rotation and possible physical mechanisms, suggested by theories, to explain the observations. This subject is only in the infancy of its research and many challenging issues remained to be understood and resolved. (c) 1999 American Institute of Physics.

  13. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  14. Plasma membrane depolarization and Na,K-ATPase impairment induced by mitochondrial toxins augment leukemia cell apoptosis via a novel mitochondrial amplification mechanism.

    PubMed

    Yin, Wu; Li, Xiang; Feng, Su; Cheng, Wei; Tang, Bo; Shi, Yi-Lin; Hua, Zi-Chun

    2009-07-15

    Na,K-ATPase is a ubiquitous transmembrane protein that regulates and maintains the intracellular Na(+) and K(+) gradient necessary for cell homeostasis. Recently, the importance of this pump in external stimuli-induced leukemia cell apoptosis has been increasingly appreciated, however, the exact role of Na,K-ATPase in mitochondrial apoptotic pathway still remains little understood. In this study, we found mitochondrial toxin rotenone caused a rapid mitochondrial membrane potential (MMP) collapse in Jurkat cells followed by plasma membrane depolarization (PMP). Similar results were also obtained in human U937 cells and non-cancerous mouse primary T cells. Rotenone-induced PMP depolarization occurred before apoptosis and well correlated with Na,K-ATPase impairment. To understand the mechanisms, Jurkat cells with mtDNA depletion and catalase overexpression were used. The results demonstrated that both PMP depolarization and Na,K-ATPase impairment induced by rotenone were regulated by mitochondrial H(2)O(2) and Bcl-2. Finally, Na,K-ATPase suppression by ouabain greatly accelerated and enhanced mitochondrial toxins-induced cells apoptosis in Jurkat, U937 and primary T cells. In sum, by using leukemia cells and mouse primary T cells, we confirmed that mitochondria-to-Na,K-ATPase and PMP depolarization might represent a novel mechanism for mitochondria to amplify death signals in the initiation stage of cells apoptosis induced by mitochondrial toxins.

  15. Plasma Derived From Human Umbilical Cord Blood Modulates Mitogen-Induced Proliferation of Mononuclear Cells Isolated From the Peripheral Blood of ALS Patients.

    PubMed

    Eve, David J; Ehrhart, Jared; Zesiewicz, Theresa; Jahan, Israt; Kuzmin-Nichols, Nicole; Sanberg, Cyndy Davis; Gooch, Clifton; Sanberg, Paul R; Garbuzova-Davis, Svitlana

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration of motor neurons in the spinal cord and brain. This disease clinically manifests as gradual muscular weakness and atrophy leading to paralysis and death by respiratory failure. While multiple interdependent factors may contribute to the pathogenesis of ALS, increasing evidence shows the possible presence of autoimmune mechanisms that promote disease progression. The potential use of plasma derived from human umbilical cord blood (hUCB) as a therapeutic tool is currently in its infancy. The hUCB plasma is rich in cytokines and growth factors that are required for growth and survival of cells during hematopoiesis. In this study, we investigated the effects of hUCB plasma on the mitogen-induced proliferation of mononuclear cells (MNCs) isolated from the peripheral blood of ALS patients and apoptotic activity by detection of caspase 3/7 expression of the isolated MNCs in vitro. Three distinct responses to phytohemagglutinin (PHA)-induced proliferation of MNCs were observed, which were independent of age, disease duration, and the ALS rating scale: Group I responded normally to PHA, Group II showed no response to PHA, while Group III showed a hyperactive response to PHA. hUCB plasma attenuated the hyperactive response (Group III) and potentiated the normal response in Group I ALS patients, but did not alter that of the nonresponders to PHA (Group II). The elevated activity of caspase 3/7 observed in the MNCs from ALS patients was significantly reduced by hUCB plasma treatment. Thus, study results showing different cell responses to mitogen suggest alteration in lymphocyte functionality in ALS patients that may be a sign of immune deficiency in the nonresponders and autoimmunity alterations in the hyperactive responders. The ability of hUCB plasma to modulate the mitogen cell response and reduce caspase activity suggests that the use of hUCB plasma alone, or with

  16. Effect of active species on animal cells in culture media induced by DBD Plasma irradiation using air

    NASA Astrophysics Data System (ADS)

    Ohtsubo, Tetsuya; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Little has been reported on action mechanism of active species produced by plasmas affecting living cells. In this study, active species in culture medium generated by torch type DBD and variations of animal cells are attempted to be clarified. Animal cells are irradiated by DBD plasma through various media such as DMEM, PBS and distilled water. Irradiation period is 1 to 15 min. The distance between the lower tip of plasma touch and the surface of the medium is 10 mm. Concentrations of NO2 -, O2 in liquid are measured. After the irradiation, the cells were cultivated in culture medium and their modifications are observed by microscope and some chemical reagents. Concentration of NO2 - and H2 O2 in all media increased with discharge period. Increase rate of NO2 -concentration is much higher than that of hydrogen peroxide. After plasma irradiation for 15 min, concentrations of NO2 were 80 mg/L in DMEM, 30 mg/L in PBS and 15 mg/L in distilled water. Also, the concentration of H2 O2 became 3mg/L in DMEM, 6.5 mg/L in PBS and 6.5mg/L in distilled water. The significant inactivation of cells was observed in the PBS. Above results indicate that, in this experiment, H2 O2 or OH radicals would affect animal cells in culture media.

  17. Endothelial Cell Sensitization by Death Receptor Fractions of an Anti-Dengue Nonstructural Protein 1 Antibody Induced Plasma Leakage, Coagulopathy, and Mortality in Mice.

    PubMed

    Sun, Der-Shan; Chang, Ying-Chen; Lien, Te-Sheng; King, Chwan-Chuen; Shih, Yung-Luen; Huang, Hsuan-Shun; Wang, Teng-Yi; Li, Chen-Ru; Lee, Chin-Cheng; Hsu, Ping-Ning; Chang, Hsin-Hou

    2015-09-15

    The mechanisms leading to the life-threatening dengue hemorrhagic fever (DHF) remain elusive. DHF preferentially occurs during secondary dengue infections, suggesting that aberrant immune responses are involved in its development. We previously demonstrated that the autoantibodies elicited by dengue virus (DENV) nonstructural protein 1 (NS1; anti-NS1 Igs) induce plasma leakage and mortality in mice with warfarinized anticoagulant suppression. However, the involved pathogenic Ig fractions of anti-NS1 Igs remain unclear. In this study, the autoreactive Igs in patients with DHF and in NS1-immunized rabbits crossreacted with TNF-related apoptosis-inducing ligand receptor 1 (death receptor [DR]4). Challenges with the DENV in a subcytotoxic dose sensitized endothelial cells to apoptosis. Treatments with the autoantibodies induced proapoptotic activities and suppressed the surface expression of endothelial anticoagulant thrombomodulin. Combined treatments comprising the DENV and DR4 affinity-purified fractions of anti-NS1 IgGs (anti-NS1-DR4 Ig), but not preimmune control IgGs, in subcytotoxic doses led to apoptosis in endothelial cells. Treatments with the anti-NS1-DR4 Ig led to plasma leakage, coagulopathy, and morality in mice with warfarinized anticoagulant suppression. These results suggest that DR4-induced endothelial cell sensitization through NS1-elicited autoantibodies exacerbates anticoagulant suppression, vascular injury, and plasma leakage. Detecting and blocking anti-DR Igs in patients may be novel strategies for managing severe DENV infection. PMID:26259584

  18. Endothelial Cell Sensitization by Death Receptor Fractions of an Anti-Dengue Nonstructural Protein 1 Antibody Induced Plasma Leakage, Coagulopathy, and Mortality in Mice.

    PubMed

    Sun, Der-Shan; Chang, Ying-Chen; Lien, Te-Sheng; King, Chwan-Chuen; Shih, Yung-Luen; Huang, Hsuan-Shun; Wang, Teng-Yi; Li, Chen-Ru; Lee, Chin-Cheng; Hsu, Ping-Ning; Chang, Hsin-Hou

    2015-09-15

    The mechanisms leading to the life-threatening dengue hemorrhagic fever (DHF) remain elusive. DHF preferentially occurs during secondary dengue infections, suggesting that aberrant immune responses are involved in its development. We previously demonstrated that the autoantibodies elicited by dengue virus (DENV) nonstructural protein 1 (NS1; anti-NS1 Igs) induce plasma leakage and mortality in mice with warfarinized anticoagulant suppression. However, the involved pathogenic Ig fractions of anti-NS1 Igs remain unclear. In this study, the autoreactive Igs in patients with DHF and in NS1-immunized rabbits crossreacted with TNF-related apoptosis-inducing ligand receptor 1 (death receptor [DR]4). Challenges with the DENV in a subcytotoxic dose sensitized endothelial cells to apoptosis. Treatments with the autoantibodies induced proapoptotic activities and suppressed the surface expression of endothelial anticoagulant thrombomodulin. Combined treatments comprising the DENV and DR4 affinity-purified fractions of anti-NS1 IgGs (anti-NS1-DR4 Ig), but not preimmune control IgGs, in subcytotoxic doses led to apoptosis in endothelial cells. Treatments with the anti-NS1-DR4 Ig led to plasma leakage, coagulopathy, and morality in mice with warfarinized anticoagulant suppression. These results suggest that DR4-induced endothelial cell sensitization through NS1-elicited autoantibodies exacerbates anticoagulant suppression, vascular injury, and plasma leakage. Detecting and blocking anti-DR Igs in patients may be novel strategies for managing severe DENV infection.

  19. Control of adhesion of human induced pluripotent stem cells to plasma-patterned polydimethylsiloxane coated with vitronectin and γ-globulin.

    PubMed

    Yamada, Ryotaro; Hattori, Koji; Tachikawa, Saoko; Tagaya, Motohiro; Sasaki, Toru; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi

    2014-09-01

    Human induced pluripotent stem cells (hiPSCs) are a promising source of cells for medical applications. Recently, the development of polydimethylsiloxane (PDMS) microdevices to control the microenvironment of hiPSCs has been extensively studied. PDMS surfaces are often treated with low-pressure air plasma to facilitate protein adsorption and cell adhesion. However, undefined molecules present in the serum and extracellular matrix used to culture cells complicate the study of cell adhesion. Here, we studied the effects of vitronectin and γ-globulin on hiPSC adhesion to plasma-treated and untreated PDMS surfaces under defined culture conditions. We chose these proteins because they have opposite properties: vitronectin mediates hiPSC attachment to hydrophilic siliceous surfaces, whereas γ-globulin is adsorbed by hydrophobic surfaces and does not mediate cell adhesion. Immunostaining showed that, when applied separately, vitronectin and γ-globulin were adsorbed by both plasma-treated and untreated PDMS surfaces. In contrast, when PDMS surfaces were exposed to a mixture of the two proteins, vitronectin was preferentially adsorbed onto plasma-treated surfaces, whereas γ-globulin was adsorbed onto untreated surfaces. Human iPSCs adhered to the vitronectin-rich plasma-treated surfaces but not to the γ-globulin-rich untreated surfaces. On the basis of these results, we used perforated masks to prepare plasma-patterned PDMS substrates, which were then used to pattern hiPSCs. The patterned hiPSCs expressed undifferentiated-cell markers and did not escape from the patterned area for at least 7 days. The patterned PDMS could be stored for up to 6 days before hiPSCs were plated. We believe that our results will be useful for the development of hiPSC microdevices. PMID:24656306

  20. Statin-induced expression change of INSIG1 in lymphoblastoid cell lines correlates with plasma triglyceride statin response in a sex-specific manner

    PubMed Central

    Theusch, Elizabeth; Kim, Kyungpil; Stevens, Kristen; Smith, Joshua D.; Chen, Yii-Der I.; Rotter, Jerome I.; Nickerson, Deborah A.; Medina, Marisa W.

    2016-01-01

    Statins are widely prescribed to lower plasma LDL cholesterol levels. They also modestly reduce plasma triglycerides (TG), an independent cardiovascular disease risk factor, in most people. The mechanism and inter-individual variability of TG statin response is poorly understood. We measured statin-induced gene expression changes in lymphoblastoid cell lines derived from 150 participants of a simvastatin clinical trial and identified 23 genes (FDR=15%) with expression changes correlated to plasma TG response. The correlation of insulin-induced gene 1 (INSIG1) expression changes with TG response (rho=0.32, q=0.11) was driven by men (interaction p=0.0055). rs73161338 was associated with INSIG1 expression changes (p=5.4×10−5) and TG response in two statin clinical trials (p=0.0048), predominantly in men. A combined model including INSIG1 expression level and splicing changes accounted for 29.5% of plasma TG statin response variance in men (p=5.6×10−6). Our results suggest that INSIG1 variation may contribute to statin-induced changes in plasma TG in a sex-specific manner. PMID:26927283

  1. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-12-01

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.

  2. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  3. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  4. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-10-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  5. Plasma cytokine concentration and the cytokine producing ability of whole blood cell cultures from healthy females with pharmacologically induced hyperprolactinemia.

    PubMed

    Rovenský, J; Lackovic, V; Veselková, Z; Horváthová, M; Koska, J; Blazícková, S; Vigas, M

    1999-01-01

    We investigated the in vitro effect of domperidone-induced hyperprolactinemia on plasma cytokine concentration and blood leukocyte cytokine production in healthy female volunteers. No changes were found in the plasma concentration of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, IL-10, IL-6 and IL-13 during hyperprolactinemia when compared with control values. Using unseparated blood leukocytes, we found that the spontaneous production of IL-6 (4-8 h) and transforming growth factor (TGF)-beta 1 (2-4 h) was significantly decreased and that the in vitro stimulated production of IFN-gamma (2-8 h) and TNF (4 h) was significantly increased compared with control. Our data concerning the increased IFN-gamma and TNF producing capacity of unseparated leukocytes during pharmacologically induced hyperprolactinemia strongly support the possibility that the lymphocyte production of these cytokines can be rapidly amplified by prolactin via a priming mechanism. PMID:10568223

  6. Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways

    PubMed Central

    Ma, Yonghao; Ha, Chang Seung; Hwang, Seok Won; Lee, Hae June; Kim, Gyoo Cheon; Lee, Kyo-Won; Song, Kiwon

    2014-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells. PMID:24759730

  7. Acute Hypertonicity Alters Aquaporin-2 Trafficking and Induces a MAPK-dependent Accumulation at the Plasma Membrane of Renal Epithelial Cells*

    PubMed Central

    Hasler, Udo; Nunes, Paula; Bouley, Richard; Lu, Hua A. J.; Matsuzaki, Toshiyuki; Brown, Dennis

    2008-01-01

    The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser256-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity. PMID:18664568

  8. IKKβ and NFκB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1

    PubMed Central

    Sommermann, Thomas; O’Neill, Kathleen; Plas, David R.; Cahir-McFarland, Ellen

    2011-01-01

    All cancer cells require increased nutrient uptake to support proliferation. Here we investigated the signals that govern glucose uptake in B-cell lymphomas and determined that the protein kinase IKKβ induced GLUT1 membrane trafficking in both viral and spontaneous B-cell lymphomas. IKKβ induced AKT activity, while IKKβ-driven NFκB transcription was required for GLUT1 surface localization downstream of AKT. Activated NFκB promoted AKT-mediated phosphorylation of the GLUT1 regulator, AKT Substrate 160kD (AS160), but was not required for AKT phosphorylation of the mammalian target of rapamycin (mTOR) regulator Tuberous Sclerosis 2 (TSC2). In Epstein Barr virus (EBV) transformed B-cells, NFκB inhibition repressed glucose uptake and induced caspase-independent cell death associated with autophagy. After NFκB inhibition, an alternate carbon source ameliorated both autophagy and cell death, whereas autophagy inhibitors specifically accelerated cell death. Taken together, the results suggest that NFκB signaling establishes a metabolic program supporting proliferation and apoptosis resistance by driving glucose import. PMID:21987722

  9. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  10. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  11. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  12. Lipopeptide Biosurfactant Pseudofactin II Induced Apoptosis of Melanoma A 375 Cells by Specific Interaction with the Plasma Membrane

    PubMed Central

    Janek, Tomasz; Krasowska, Anna; Radwańska, Agata; Łukaszewicz, Marcin

    2013-01-01

    In the case of melanoma, advances in therapies are slow, which raises the need to evaluate new therapeutic strategies and natural products with potential cancer cell inhibiting effect. Pseudofactin II (PFII), a novel cyclic lipopeptide biosurfactant has been isolated from the Arctic strain of Pseudomonas fluorescens BD5. The aim of this study was to investigate the effect of PFII on A375 melanoma cells compared with the effect of PFII on Normal Human Dermis Fibroblast (NHDF) cells and elucidate the underlying mechanism of PFII cytotoxic activity. Melanoma A375 cells and NHDF cells were exposed to PFII or staurosporine and apoptotic death was assessed by monitoring caspase 3-like activity and DNA fragmentation. From time-dependent monitoring of lactate dehydrogenase (LDH) release, Ca2+ influx, and a correlation between Critical Micelle Concentration (CMC) we concluded that cell death is the consequence of plasma membrane permeabilisation by micelles. This finding suggests that pro-apoptotic mechanism of PFII is different from previously described cyclic lipopeptides. The mechanism of PFII specificity towards malignant cells remains to be discovered. The results of this study show that PFII could be a new promising anti-melanoma agent. PMID:23483962

  13. Seminal plasma induces the expression of IL-1α in normal and neoplastic cervical cells via EP2/EGFR/PI3K/AKT pathway

    PubMed Central

    2014-01-01

    Background Cervical cancer is a chronic inflammatory disease of multifactorial etiology usually presenting in sexually active women. Exposure of neoplastic cervical epithelial cells to seminal plasma (SP) has been shown to promote the growth of cancer cells in vitro and tumors in vivo by inducing the expression of inflammatory mediators including pro-inflammatory cytokines. IL-1α is a pleotropic pro-inflammatory cytokine induced in several human cancers and has been associated with virulent tumor phenotype and poorer prognosis. Here we investigated the expression of IL-1α in cervical cancer, the role of SP in the regulation of IL-1α in neoplastic cervical epithelial cells and the molecular mechanism underlying this regulation. Methods and results Real-time quantitative RT-PCR confirmed the elevated expression of IL-1α mRNA in cervical squamous cell carcinoma and adenocarcinoma tissue explants, compared with normal cervix. Using immunohistochemistry, IL-1α was localized to the neoplastically transformed squamous, columnar and glandular epithelium in all cases of squamous cell carcinoma and adenocarcinomas explants studied. We found that SP induced the expression of IL-α in both normal and neoplastic cervical tissue explants. Employing HeLa (adenocarcinoma) cell line as a model system we identified PGE2 and EGF as possible ligands responsible for SP-mediated induction of IL-1α in these neoplastic cells. In addition, we showed that SP activates EP2/EGFR/PI3kinase-Akt signaling to induce IL-1α mRNA and protein expression. Furthermore, we demonstrate that in normal cervical tissue explants the induction of IL-1α by SP is via the activation of EP2/EGFR/PI3 kinase-Akt signaling. Conclusion SP-mediated induction of IL-1α in normal and neoplastic cervical epithelial cells suggests that SP may promote cervical inflammation as well as progression of cervical cancer in sexually active women. PMID:25237386

  14. A particle-in-cell plus Monte Carlo study of plasma-induced damage of normal incidence collector optics used in extreme ultraviolet lithography

    SciTech Connect

    Wieggers, R. C.; Goedheer, W. J.; Akdim, M. R.; Bijkerk, F.; Zegeling, P. A.

    2008-01-01

    We present a kinetic simulation of the plasma formed by photoionization in the intense flux of an extreme ultraviolet lithography (EUVL) light source. The model is based on the particle-in-cell plus Monte Carlo approach. The photoelectric effect and ionization by electron collisions are included. The time evolution of the low density argon plasma is simulated during and after the EUV pulse and the ion-induced sputtering of the coating material of a normal incidence collector mirror is computed. The relation between the time and position at which the ions are created and their final energy is studied, revealing how the evolution and the properties of the sheath influence the amount of sputtered material. The influence of the gas pressure and the source intensity is studied, evaluating the behavior of Ar{sup +} and Ar{sup 2+} ions. A way to reduce the damage to the collector mirror is presented.

  15. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  16. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    SciTech Connect

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B. . E-mail: pravin_sehgal@nymc.edu

    2006-03-15

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and {alpha}-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1{alpha} and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis.

  17. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  18. Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line

    PubMed Central

    2013-01-01

    Background Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates multiple cellular processes such as cell proliferation, evasion from apoptosis, migration, glucose metabolism, protein synthesis and proper differentiation in immune cells. Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus associated with several human malignancies, expresses a variety of latent and lytic proteins able to activate PI3K/AKT pathway, promoting the growth of infected cells and a successful viral infection. Results We found that KSHV latent infection of THP-1 cells, a human monocytic cell line derived from an acute monocytic leukemia patient, resulted in an increase of AKT phoshorylation, not susceptible to bortezomib-induced dephosphorylation, compared to the mock-infected THP-1. Accordingly, THP-1-infected cells displayed increased resistance to the bortezomib cytotoxic effect in comparison to the uninfected cells, which was counteracted by pre-treatment with AKT-specific inhibitors. Finally, AKT hyperactivation by KSHV infection correlated with plasma membrane exposure of glucose transporter GLUT1, particularly evident during bortezomib treatment. GLUT1 membrane trafficking is a characteristic of malignant cells and underlies a change of glucose metabolism that ensures the survival to highly proliferating cells and render these cells highly dependent on glycolysis. GLUT1 membrane trafficking in KSHV-infected THP-1 cells indeed led to increased sensitivity to cell death induced by the glycolysis inhibitor 2-Deoxy-D-glucose (2DG), further potentiated by its combination with bortezomib. Conclusions KSHV confers to the THP-1 infected cells an oncogenic potential by altering the phosphorylation, expression and localization of key molecules that control cell survival and metabolism such as AKT and GLUT1. Such modifications in one hand lead to resistance to cell death induced by some chemotherapeutic drugs such as bortezomib

  19. Activation of the Ca2+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane

    PubMed Central

    Jouret, François; Wu, Jingshing; Hull, Michael; Rajendran, Vanathy; Mayr, Bernhard; Schöfl, Christof; Geibel, John; Caplan, Michael J.

    2013-01-01

    Summary The Ca2+-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays essential roles in divalent ion homeostasis and cell differentiation. Because extracellular Ca2+ is essential for the development of stable epithelial tight junctions (TJs), we hypothesized that the CaSR participates in regulating TJ assembly. We first assessed the expression of the CaSR in Madin-Darby canine kidney (MDCK) cells at steady state and following manipulations that modulate TJ assembly. Next, we examined the effects of CaSR agonists and antagonists on TJ assembly. Immunofluorescence studies indicate that endogenous CaSR is located at the basolateral pole of MDCK cells. Stable transfection of human CaSR in MDCK cells further reveals that this protein co-distributes with β-catenin on the basolateral membrane. Switching MDCK cells from low-Ca2+ medium to medium containing a normal Ca2+ concentration significantly increases CaSR expression at both the mRNA and protein levels. Exposure of MDCK cells maintained in low-Ca2+ conditions to the CaSR agonists neomycin, Gd3+ or R-568 causes the transient relocation of the tight junction components ZO-1 and occludin to sites of cell–cell contact, while inducing no significant changes in the expression of mRNAs encoding junction-associated proteins. Stimulation of CaSR also increases the interaction between ZO-1 and the F-actin-binding protein I-afadin. This effect does not involve activation of the AMP-activated protein kinase. By contrast, CaSR inhibition by NPS-2143 significantly decreases interaction of ZO-1 with I-afadin and reduces deposition of ZO-1 at the cell surface following a Ca2+ switch from 5 µM to 200 µM [Ca2+]e. Pre-exposure of MDCK cells to the cell-permeant Ca2+ chelator BAPTA-AM, similarly prevents TJ assembly caused by CaSR activation. Finally, stable transfection of MDCK cells with a cDNA encoding a human disease-associated gain-of-function mutant form of the CaSR increases the

  20. Niacin improves ischemia-induced neovascularization in diabetic mice by enhancement of endothelial progenitor cell functions independent of changes in plasma lipids.

    PubMed

    Huang, Po-Hsun; Lin, Chih-Pei; Wang, Chao-Hung; Chiang, Chia-Hung; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Lin, Feng-Yen; Leu, Hsin-Bang; Wu, Tao-Cheng; Chen, Jaw-Wen; Lin, Shing-Jong

    2012-09-01

    Niacin was shown to inhibit acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Here, we investigated whether niacin can increase blood flow recovery after tissue ischemia by enhancing endothelial progenitor cell (EPC) functions in diabetic mice. Starting at 4 weeks after the onset of diabetes, vehicle or niacin (40 mg/kg/day) was administered daily by gavage to streptozotocin (STZ)-induced diabetic mice and diabetic endothelial nitric oxide synthase (eNOS)-deficient mice. Unilateral hindlimb ischemia surgery was conducted after 2 weeks of vehicle or niacin treatment. Compared to the control group, the niacin group had significantly increased ischemic/non-ischemic limb blood perfusion ratio and higher capillary density. These effects were markedly reduced in STZ-induced diabetic eNOS-deficient mice. Flow cytometry analysis showed impaired EPC-like cell (Sca-1(+)/Flk-1(+)) mobilization after ischemia surgery in diabetic mice but augmented mobilization in the mice treated with niacin. Diabetes was induced by administering STZ to FVB mice that received eGFP mouse bone marrow cells to evaluate effects of niacin on bone marrow-derived EPC homing and differentiation to endothelial cells. Differentiation of bone marrow-derived EPCs to endothelial cells in the ischemic tissue around vessels in diabetic mice that received niacin treatment, was significantly increased than that in control group. By in vitro studies, incubation with niacin in high-glucose medium reduced H(2)O(2) production, cell apoptosis, and improved high glucose-suppressed EPC functions by nitric oxide-related mechanisms. Our findings demonstrate that niacin increases blood flow recovery after tissue ischemia in diabetic mice through enhancing EPC mobilization and functions via nitric oxide-related pathways.

  1. Seminal plasma induces prostaglandin-endoperoxide synthase (PTGS) 2 expression in immortalized human vaginal cells: involvement of semen prostaglandin E2 in PTGS2 upregulation.

    PubMed

    Joseph, Theresa; Zalenskaya, Irina A; Sawyer, Lyn C; Chandra, Neelima; Doncel, Gustavo F

    2013-01-01

    Inflammation of the cervicovaginal mucosa is considered a risk factor for HIV infection in heterosexual transmission. In this context, seminal plasma (SP) may play an important role that is not limited to being the main carrier for the virions. It is known that SP induces an inflammatory reaction in the cervix called postcoital leukocytic reaction, which has been associated with promotion of fertility. The mechanisms by which SP triggers this reaction, however, have not been clearly established. Previously we reported the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), in human vaginal cells in response to toll-like receptor (TLR) ligands and other proinflammatory stimuli. In this study, we demonstrate that SP induces transcriptional and translational increase of COX-2 expression in human vaginal cells and cervicovaginal tissue explants. Furthermore, SP potentiates vaginal PTGS2 expression induced by other proinflammatory stimulants, such as TLR ligands and a vaginal mucosal irritant (nonoxynol-9) in a synergistic manner. SP-induced PTGS2 expression is mediated by intracellular signaling pathways involving MAPKs and NF-κB. Using fractionation and functional analysis, seminal prostaglandin (PG)-E(2) was identified as a one of the major factors in PTGS2 induction. Given the critical role of this PG-producing enzyme in mucosal inflammatory processes, the finding that SP induces and potentiates the expression of PTGS2 in cervicovaginal cells and tissues has mechanistic implications for the role of SP in fertility-associated mucosal leukocytic reaction and its potential HIV infection-enhancing effect. PMID:23153564

  2. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  3. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  4. Photoreflectance and DLTS evaluation of plasma-induced damage in GaAs and InP prior to solar cell fabrication

    NASA Technical Reports Server (NTRS)

    He, L.; Anderson, W. A.

    1991-01-01

    The effect is considered of plasma etching on both GaAs and InP followed by damage removal using rapid thermal annealing (RTA). Effects of these processes were studied by photoreflectance spectroscopy (PR) and deep level transient spectroscopy (DLTS). These techniques are useful in evaluation of wafers prior to and effects of plasma processing during solar cell fabrication.

  5. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy--comparison with human epileptic samples.

    PubMed

    Roncon, Paolo; Soukupovà, Marie; Binaschi, Anna; Falcicchia, Chiara; Zucchini, Silvia; Ferracin, Manuela; Langley, Sarah R; Petretto, Enrico; Johnson, Michael R; Marucci, Gianluca; Michelucci, Roberto; Rubboli, Guido; Simonato, Michele

    2015-01-01

    The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR-181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis. PMID:26382856

  6. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy--comparison with human epileptic samples.

    PubMed

    Roncon, Paolo; Soukupovà, Marie; Binaschi, Anna; Falcicchia, Chiara; Zucchini, Silvia; Ferracin, Manuela; Langley, Sarah R; Petretto, Enrico; Johnson, Michael R; Marucci, Gianluca; Michelucci, Roberto; Rubboli, Guido; Simonato, Michele

    2015-09-18

    The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR-181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis.

  7. Proteomic changes in chicken plasma induced by Salmonella typhimurium lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that cause inflammation and sickness through genetic and proteomic activation. The objective of our study was to identify the proteomic changes in plasma associated with inflammation induced by LPS treatment. Five-week-old ...

  8. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    PubMed Central

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  9. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells.

    PubMed

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity.

  10. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    PubMed

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. PMID:27136710

  11. Cavitations induced by plasmas, plasmas induced by cavitations, and plasmas produced in cavitations

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2015-11-01

    Cavitation bubbles are not static bubbles but have dynamics of expansion, shrinkage, and collapse. Since the collapse of a cavitation bubble is roughly an adiabatic process, the inside of the bubble at the collapse has a high temperature and a high pressure, resulting in the production of a plasma. This talk will be focused on cavitation-related plasma phenomena and the role of the cavitation bubble in the synthesis of nanoparticles. A method for inducing a cavitation bubble is laser ablation in liquid. After the disappearance of laser-produced plasma with optical emission, we have observed the formation of a cavitation bubble. We have found that the inside of the cavitation bubble is the reaction field for the synthesis of nanoparticles. The atomic and molecular species ejected from the ablation target toward the liquid are transported into the cavitation bubble, and they condense into nanoparticles inside it. It is important to note that nanoparticles are stored inside the cavitation bubble until its collapse. We have shown that the size and the structure of nanoparticles are controlled by controlling the dynamics of the cavitation bubbles. Another method for inducing cavitation bubbles is to use ultrasonic power. We have found a simple method for the efficient production of standing cavitation bubbles. The method is just inserting a punching metal plate into water irradiated by ultrasonic wave. The depth of water and the position of the punching plate should be tuned precisely. We have proposed the mechanism of the efficient production of cavitation bubbles by this method. Currently, we try to have electric discharges in cavitation bubbles with the intention of realizing nonequilibrium sonochemistry. In particular, the electric discharge in a laser-induced cavitation bubble shows interesting distortion of the bubble shape, which suggests the electrostatic characteristics of the cavitation bubble.

  12. Plasma extraction by centrifugo-pneumatically induced gating of flow

    NASA Astrophysics Data System (ADS)

    Burger, Robert; Reis, Nuno; Garcia da Fonseca, João; Ducrée, Jens

    2013-03-01

    We present a novel valving mechanism to implement plasma extraction from whole blood on a centrifugal microfluidic ‘lab-on-a-disc’ platform. The new scheme is based on pressure-induced deflection of a liquid membrane which gates the centrifugally driven flow through a microfluidic structure. Compared to conventional concepts such as capillary burst valves, siphons or sacrificial materials, the valving structure presented here is represented by a compact, small-footprint design which obviates the need for (local) surface functionalization or hybrid materials integration, thus significantly reducing the complexity (and hence cost) of manufacture. As a pilot study of this new centrifugal flow control element, we demonstrate here the efficient separation of metered plasma from whole blood. While the flow is stopped, blood is separated into plasma and its cellular constituents by centrifugally induced sedimentation. After completion, the flow resumes by elevating the spinning frequency, providing up to 80% of the original plasma content to an overflow chamber within a short, 2 min interval. The amount of residual cells in the plasma amounts to less than 20 cells μl-1.

  13. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system.

    PubMed

    Ishaq, Musarat; Evans, Margaret D M; Ostrikov, Kostya Ken

    2014-12-01

    Atmospheric pressure gas plasma (AGP) generates reactive oxygen species (ROS) that induce apoptosis in cultured cancer cells. The majority of cancer cells develop a ROS-scavenging anti-oxidant system regulated by Nrf2, which confers resistance to ROS-mediated cancer cell death. Generation of ROS is involved in the AGP-induced cancer cell death of several colorectal cancer cells (Caco2, HCT116 and SW480) by activation of ASK1-mediated apoptosis signaling pathway without affecting control cells (human colonic sub-epithelial myofibroblasts; CO18, human fetal lung fibroblast; MRC5 and fetal human colon; FHC). However, the identity of an oxidase participating in AGP-induced cancer cell death is unknown. Here, we report that AGP up-regulates the expression of Nox2 (NADPH oxidase) to produce ROS. RNA interference designed to target Nox2 effectively inhibits the AGP-induced ROS production and cancer cell death. In some cases both colorectal cancer HT29 and control cells showed resistance to AGP treatment. Compared to AGP-sensitive Caco2 cells, HT29 cells show a higher basal level of the anti-oxidant system transcriptional regulator Nrf2 and its target protein sulfiredoxin (Srx) which are involved in cellular redox homeostasis. Silencing of both Nrf2 and Srx sensitized HT29 cells, leads to ROS overproduction and decreased cell viability. This indicates that in HT29 cells, Nrf2/Srx axis is a protective factor against AGP-induced oxidative stress. The inhibition of Nrf2/Srx signaling should be considered as a central target in drug-resistant colorectal cancer treatments.

  14. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru; Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Kano, Hiroyuki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  15. The effect of jet and DBD plasma on NCI-78 blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Kaushik, Neha; Choi, Eun Ha

    2013-06-01

    In this study we describe the effects of a nonthermal jet and dielectric barrier discharge (DBD) plasma on the T98G brain cancer cell line. The results of this study reveal that the jet and DBD plasma inhibits NCI-78 blood cancer cells growth efficiently with the loss of metabolic viability of cells. The main goal of this study is to induce cell death in NCI-78 blood cancer cells by the toxic effect of jet and DBD plasma.

  16. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells.

    PubMed

    Kim, Sun Ja; Chung, T H

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma-cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ(0) cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2(-)) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells.

  17. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma.

    PubMed

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Hori, Masaru; Kikkawa, Fumitaka

    2014-01-01

    Ovarian clear cell carcinoma (CCC) is a histological type of epithelial ovarian cancer that is less responsive to chemotherapy and associated with a poorer prognosis than serous and endometrioid carcinoma. Non-thermal atmospheric pressure plasma which produces reactive species has recently led to an explosion of research in plasma medicine. Plasma treatment can be applied to cancer treatment to induce apoptosis and tumor growth arrest. Furthermore, recent studies have shown that a medium exposed to plasma also has an anti-proliferative effect against cancer in the absence of direct exposure to plasma. In this study, we confirmed whether this indirect plasma has an anti-tumor effect against CCC, and investigated whether this efficacy is selective for cancer cells. Non-thermal atmospheric pressure plasma induced apoptosis in CCC cells, while human peritoneal mesothelial cells remained viable. Non-thermal atmospheric pressure plasma exhibits selective cytotoxicity against CCC cells which are resistant to chemotherapy.

  18. Formation of bioorganic compounds in aqueous solution induced by plasma.

    PubMed

    Harada, K; Takasaki, M; Naraoka, H; Nomoto, S

    1984-01-01

    When plasma jet of Ar-arc plasma was blown into an aqueous solution containing organic compounds, oxidation reactions were induced in the solution. The plasma-induced reaction was a powerful oxidation which could convert a methyl to a carboxyl group and cleave a carbon-carbon bond without using any oxidizing reagent. This reaction could be regarded as a model for the solar plasma-induced reaction in the primitive hydrosphere.

  19. Wettability Effect of PECVD-SiOx Films on Poly(lactic acid) Induced by Oxygen Plasma on Protein Adsorption and Cell Attachment

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Lee, J. S.; Jin, S. B.; Song, D. H.; Yu, L. D.; Han, J. G.; Chaiwong, C.

    2013-04-01

    Surface wettability is an important property of biomaterials. Silicon oxide films have a wide range of applications due to a range of the properties such as the mechanical strength and surface wettability. This paper reports effect of the surface wettability of silicon oxide (SiOx) films on protein adsorption and cell attachment and proliferation. SiOx films were deposited onto poly(lactic acid) (PLA) substrate using plasma enhanced chemical vapor deposition (PECVD). Octamethylcyclotetrasiloxane (OMCTS:Si4O4C8H24) was used as a precursor with O2 as a carrier gas. After deposition, the films were treated with O2-plasma to adapt wettability. It was found that O2-plasma enhanced the wettability of the films without changing the film thickness, while made the surface morphology slightly smoother. The polar component increased after O2-plasma treatment as observed in the contact angle measurements. The surface energy of the films was calculated by means of the Owens-Wendt method to resolve the contributions of polar and dispersive components. The chemical structure was characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The films were dense with a high Si-network structure. The reduced carbon content (-CHn, Si-CH3) and increased hydrogen content (-OH) of the O2-plasma treated SiOx films led to the polar components enhancing the SiOx wettability. Adsorption of bovine serum albumin (BSA) on the films was investigated by using x-ray photoelectron spectroscopy (XPS). More BSA was adsorbed onto the O2-plasma treated SiOx films. Attachment and proliferation of MC3T3-E1 mouse pre-osteoblasts and L929 mouse fibroblasts cells on the SiOx films were evaluated via MTT assay. The cells were attached more to the untreated SiOx films but proliferated more on the surface of the O2-plasma treated SiOx films depending on the cell types.

  20. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    NASA Astrophysics Data System (ADS)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  1. Anions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  2. Structural alterations induced by photodynamic action of hematoporphyrin derivative (HpD) in plasma membrane of glioblastoma (U-87MG) cells: time dependent fluorescence spectroscopic study.

    PubMed

    Joshi, K; Joshi, P G; Joshi, N B

    1995-08-01

    Photodynamic action of hematoporphyrin derivative (HpD) on the plasma membrane of human glioblastoma U-87MG cells was investigated using lipid and protein specific fluorescent probes trimethylammonium-1,6-diphenyl 1,3,5-hexatriene (TMA-DPH) and N-(1-pyrene)-maleimide (PM) respectively. Steady state anisotropy, decay time and time dependent anisotropy of these probes in U-87MG cells were measured. Light irradiation caused an increase in the steady state anisotropy of TMA-DPH in cells treated with HpD; however, no change in decay time was observed. Time dependent anisotropy measurements were performed and the data were analyzed using wobbling in cone model. A decrease in the rotational relaxation time (phi) as well as the cone angle (theta(c)) and an increase in the order parameter (S) of TMA-DPH were observed on photosensitization of cells. A decrease in the order parameter (S) of TMA-DPH were observed on photosensitization of cells. A decrease in the steady rate anisotropy and the rotational relaxation time (phi) of PM and enhancement in the lipid peroxidation were also observed. Our results show that the photodynamic action of HpD increases the order in the lipid bilayer and the mobility of the proteins in the plasma membrane of cells. PMID:8655188

  3. Drugs Approved for Multiple Myeloma and Other Plasma Cell Neoplasms

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Multiple Myeloma and Other Plasma Cell ... plasma cell neoplasms that are not listed here. Drugs Approved for Multiple Myeloma and Other Plasma Cell ...

  4. Plasma stencilling methods for cell patterning.

    PubMed

    Frimat, Jean-Philippe; Menne, Heike; Michels, Antje; Kittel, Silke; Kettler, Raffael; Borgmann, Sabine; Franzke, Joachim; West, Jonathan

    2009-10-01

    In this paper we describe plasma stencilling techniques for patterning 10 mammalian cell lines on hydrophobic and cell repellent poly(dimethylsiloxane) (PDMS), methylated glass and bacterial grade polystyrene surfaces. An air plasma produced with a Tesla generator operating at atmospheric pressure was used with microengineered stencils for patterned surface oxidation, selectively transforming the surface to a hydrophilic state to enable cell adhesion and growth. Plasma stencilling obviates the need for directly patterning cell adhesion molecules. Instead, during cell culture, adhesion proteins from the media assemble in a bioactive form on the hydrophilic regions. Critically, the removal of protein patterning prior to cell culture provides the option to also use PDMS-PDMS plasma bonding to incorporate cell patterns within microfluidic systems. Linear patterns were generated using PDMS microchannel stencils, and polyimide stencils with through holes were used for the production of cellular arrays. For the production of smaller cellular arrays, a novel microcapillary-based dielectric barrier discharge system was developed. A numerical method to characterise the cell patterns is also introduced and was used to demonstrate that plasma stencilling is highly effective, with complete patterns confined during long term cell culture (>10 days). In summary, plasma stencilling is simple, rapid, inexpensive, reproducible and a potentially universal cell line patterning capability.

  5. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells

    PubMed Central

    Kim, Sun Ja; Chung, T. H.

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma–cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ0 cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2−) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells. PMID:26838306

  6. Plasma interactions with biased concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Stillwell, R. P.; Stevens, N. J.

    1986-12-01

    Concentrator solar arrays are being proposed for future space missions as replacements for less efficient (power/mass) planar arrays. While planar solar arrays have been used in space and their characteristics evaluated, concentrator cell interactions have not. This study investigates the possible interactions between a biased concentrator cell and a plasma environment. This study involved experimental and preliminary analytical work. It has been found that the electric fields associated with the biased cell are confined to the light collector region of the cell configuration, and that the cell arcs in dense plasma environments, at negative voltages of less than -200 volts, in a way similar to the arcing experienced by planar cells.

  7. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  8. Soliton-induced electric currents in plasma

    NASA Astrophysics Data System (ADS)

    Trukhachev, F. M.; Tomov, A. V.

    2016-09-01

    This is a theoretical study of the nonequilibrium motion of charged particles in an electric field of solitons. We show that the self-consistent electric field of ion-acoustic and electron-acoustic solitons is characterized by one-way transfer of charged particles at a distance of several Debye radii. The dependence of relevant local currents on the amplitude of solitons is determined. We consider the practically important case of a moving cascade consisting of many solitons and show that the induced currents have a significant constant component. The kinetic energy acquired by charged particles in the soliton field is calculated. The temporal resolution required for the recording of soliton-induced currents is estimated. The calculations presented here can be used to interpret the results of experiments conducted to study solitons in the space plasma.

  9. B cells naturally induced during dengue virus infection release soluble CD27, the plasma level of which is associated with severe forms of pediatric dengue.

    PubMed

    Castañeda, Diana M; Salgado, Doris M; Narváez, Carlos F

    2016-10-01

    The CD27 and CD38 antigens are highly expressed on the plasmablast surface, and a massive plasmablast response has been described for dengue virus infection. Soluble CD27 and CD38 forms (sCD27 and sCD38, respectively) increase after immune activation. Here, we show increased sCD27 release in cultures of purified polyclonally stimulated B cells. T and B cells isolated from children with dengue spontaneously produced higher levels of sCD27 but not sCD38, compared with healthy children (P=0.03), and sCD27 levels positively correlated with plasmablast frequency in the cultures (rho=0.58, P=0.01). Children with dengue had higher plasma levels of sCD27 and sCD38 than healthy children, which decreased during convalescence. Plasma sCD27 was higher in severe than with mild dengue, but the opposite was observed for sCD38. These findings support a potential new role for B cells in dengue pathogenesis, and sCD27 and sCD38 are novel biomarkers associated with clinical outcome during dengue virus infection.

  10. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  11. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  12. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  13. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Kwon, Seyeoul; Bahn, Jae Hoon; Lee, Keunho; Jun, Seung Ik; Rack, Philip D.; Baek, Seung Joon

    2010-06-01

    The effect that the gas content and plasma power of atmospheric, nonthermal plasma has on the invasion activity in colorectal cancer cells has been studied. Helium and helium plus oxygen plasmas were induced through a nozzle and operated with an ac power of less than 10 kV which exhibited a length of 2.5 cm and a diameter of 3-4 mm in ambient air. Treatment of cancer cells with the plasma jet resulted in a decrease in cell migration/invasion with higher plasma intensity and the addition of oxygen to the He flow gas.

  14. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes. PMID:27067049

  15. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes.

  16. Selective blockade of CaMKII-alpha inhibits NMDA-induced caspase-3-dependent cell death but does not arrest PARP-1 activation or loss of plasma membrane selectivity in rat retinal neurons.

    PubMed

    Goebel, Dennis J

    2009-02-23

    Calcium/calmodulin-dependent protein kinase II-alpha (CaMKII-alpha) has been implicated in a number of receptor mediated events in neurons. Pharmacological blockade of CaMKII-alpha has been shown to prevent phosphorylation of NMDA-R2A and R2B receptor subunits, suggesting that this enzyme may be linked to receptor trafficking of glutamate receptors and serve as a regulatory protein for neuronal cell death. In the retina, inhibition of CaMKII-alpha has been reported to be neuroprotective against NMDA-induced cell death by preventing the activation of the caspase-3 dependent pathway. However, the effects of CaMKII-alpha blockade on the caspase-3 independent, PARP-1 dependent and the non-programmed cell death pathways have not previously been investigated. In the present study, blockade of CaMKII-alpha with the highly specific antagonist myristoylated autocamtide-2-related inhibitory peptide (AIP) was used in a rat in vivo model of retinal toxicity to compare the effects of on NMDA-induced caspase-3-dependent, PARP-1 dependent and the non-programmed (necrosis) cell death pathways. Results confirmed that AIP fully attenuates caspase-3 activation for at least 8 h following NMDA insult and also significantly improves retinal ganglion cell survival. However, this blockade had little effect on reducing the loss of plasma membrane selectivity (LPMS, e.g. necrosis) in cells located in the ganglion cell and inner nuclear layers and did not alter NMDA-induced PARP-1 hyperactivation, or prevent TUNEL labeling following a moderate NMDA-insult. These findings support a specific role for CaMKII-alpha in mediating the caspase-3 dependent cell death pathway and provide evidence that it is not directly linked to the signaling of either the PARP-1 dependent or the non-programmed cell death pathways.

  17. Importance of plasma membrane dynamics in chemical-induced carcinogenesis.

    PubMed

    Tekpli, Xavier; Holme, Jørn A; Sergent, Odile; Lagadic-Gossmann, Dominique

    2011-09-01

    In the last decade, a lot of patents have been filled regarding molecular biology and functions of cellular membranes. The membrane bilayer model has evolved from a static, passive, homogeneous barrier to a highly dynamic, asymmetric, heterogeneous structure composed of distinct domains. Changes in membrane fluidity and composition of microdomains have been proven to be involved in the regulation of many important physiological signaling pathways. Recently, several xenobiotics, including various drugs and environmental pollutants, have been reported to change plasma membrane characteristics, thereby altering cell physiology. Interestingly, it has been suggested that a cross talk between chemical-induced cellular membrane effects and DNA damages may be important for the final mutation outcome of genotoxic chemicals. Thus, effects on plasma membrane remodeling may give additional mechanistic explanations to how certain chemicals exert their carcinogenic effect. With respect to such effects, recent patents suggest to focus on plasma membrane and its components like caveolin-1 for cancer screening and chemotherapy. Here, we review the effects of environmental toxicants on cellular plasma membrane structure and function, and further describe possible implication for health and disease.

  18. The Effect of Tuning Cold Plasma Composition on Glioblastoma Cell Viability

    PubMed Central

    Cheng, Xiaoqian; Sherman, Jonathan; Murphy, William; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-01-01

    Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that the cold plasma induced cell death. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. In this paper, we seek to determine a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of the plasma, including treatment time, voltage, flow-rate and plasma-gas composition. In order to determine the threshold of plasma treatment on U87, normal human astrocytes (E6/E7) were used as the comparison cell line. Our data showed that the 30 sec plasma treatment caused 3-fold cell death in the U87 cells compared to the E6/E7 cells. All the other compositions of cold plasma were performed based on this result: plasma treatment time was maintained at 30 s per well while other plasma characteristics such as voltage, flow rate of source gas, and composition of source gas were changed one at a time to vary the intensity of the reactive species composition in the plasma jet, which may finally have various effect on cells reflected by cell viability. We defined a term “plasma dosage” to summarize the relationship of all the characteristics and cell viability. PMID:24878760

  19. Kidney disease associated with plasma cell dyscrasias

    PubMed Central

    Goes, Nelson B.; Spitzer, Thomas R.; Raje, Noopur S.; Humphreys, Benjamin D.; Anderson, Kenneth C.; Richardson, Paul G.

    2010-01-01

    Plasma cell dyscrasias are frequently encountered malignancies often associated with kidney disease through the production of monoclonal immunoglobulin (Ig). Paraproteins can cause a remarkably diverse set of pathologic patterns in the kidney and recent progress has been made in explaining the molecular mechanisms of paraprotein-mediated kidney injury. Other recent advances in the field include the introduction of an assay for free light chains and the use of novel antiplasma cell agents that can reverse renal failure in some cases. The role of stem cell transplantation, plasma exchange, and kidney transplantation in the management of patients with paraprotein-related kidney disease continues to evolve. PMID:20462963

  20. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  1. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    SciTech Connect

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  2. Targeting the cancer cell cycle by cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  3. Treatment of prostate cancer cell lines and primary cells using low temperature plasma

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah; Hirst, Adam; Frame, Fiona F.; Maitland, Norman J.

    2014-10-01

    The mechanisms of cell death after plasma treatment of both benign and cancerous prostate epithelial cells are investigated. Prostate cancer tissue was obtained with patient consent from targeted needle core biopsies following radical prostatectomy. Primary cells were cultured from cancer tissue and plated onto a chamber slide at a density of 10,000 cells per well in 200 microliter of stem cell media (SCM). The treated sample was previously identified as Gleason grade 7 cancer through tissue histo-pathology. A dielectric barrier discharge (DBD) jet configuration, with helium as a carrier gas, and 0.3% O2 admixture was used for treating the cells. Reactive oxygen and nitrogen species (RONS) produced by the plasma are believed to be the main mediators of the plasma-cell interaction and response. We found the concentration of reactive oxygen species (ROS) induced inside the cells increased with plasma exposure. Exposure to the plasma for >3 minutes showed high levels of DNA damage compared to untreated and hydrogen peroxide controls. Cell viability and cellular recovery are also investigated and will be presented. All findings were common to both cell lines, suggesting the potential of LTP therapy for both benign and malignant disease.

  4. Evaluation of the effects of a plasma activated medium on cancer cells

    NASA Astrophysics Data System (ADS)

    Mohades, S.; Laroussi, M.; Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-01

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  5. Evaluation of the effects of a plasma activated medium on cancer cells

    SciTech Connect

    Mohades, S.; Laroussi, M. Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  6. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  7. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  8. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  9. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  10. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  11. Cytology of plasma cell rich effusion in cases of plasma cell neoplasm

    PubMed Central

    Gochhait, Debasis; Dey, Pranab; Verma, Neelam

    2016-01-01

    Background: Multiple myeloma or plasmacytoma resulting in malignant effusion is rarely described in literature. Aims: In this paper, we have studied the seven rare cases of plasma cell infiltration in effusion fluid. Materials and Methods: We studied six cases of pleural fluid and one case of ascetic fluid. Detailed cytological features, clinical history, bone marrow examinations, serum electrophoresis, and immunofixation data were analyzed. Result: There were two cases of plasmacytoma, four cases of multiple myeloma, and one case of plasmablastic lymphoma. On cytology, all the cases showed excess plasma cells along with mesothelial cells and lymphocytes on effusion cytology smear. Conclusion: Plasma cell rich effusion in cases of plasma cell tumor is rare. However, on cytology these cases do not pose much problem if relevant history is known.

  12. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  13. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    SciTech Connect

    Yang, H.; Gan, L.; Yang, X. E-mail: yangxl@mail.hust.edu.cn; Lu, R.; Xian, Y.; Lu, X. E-mail: yangxl@mail.hust.edu.cn

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  14. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  15. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    SciTech Connect

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  16. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  17. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    SciTech Connect

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj.; Leskovac, A.; Filipović, J.; Joksić, G.

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  18. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Lazović, S.; Maletić, D.; Leskovac, A.; Filipović, J.; Puač, N.; Malović, G.; Joksić, G.; Petrović, Z. Lj.

    2014-09-01

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  19. Impact of plasma induced liquid chemistry and charge on bacteria loaded aerosol droplets

    NASA Astrophysics Data System (ADS)

    Rutherford, David; McDowell, David; Mariotti, Davide; Mahony, Charles; Diver, Declan; Potts, Hugh; Bennet, Euan; Maguire, Paul

    2014-10-01

    The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique opportunity to study the local chemical and electrical effects on cell structure and viability. Individual bacteria, each encapsulated in an aerosol droplet, were successfully transmitted through a non-thermal equilibrium RF coaxial plasma, using a custom-design concentric double gas shroud interface and via adjustment of transit times and plasma parameters, we can control cell viability. Plasma electrical characteristics (ne ~ 1013 cm-3), droplet velocity profiles and aspects of plasma-induced droplet chemistry were determined in order to establish the nature of the bacteria in droplet environment. Plasma-exposed viable E coli cells were subsequently cultured and the growth rate curves (lag and exponential phase gradient) used to explore the effect of radical chemistry and electron bombardment on cell stress. The extent and nature of membrane disruption in viable and non-viable cells were investigated through genomic and protein/membrane lipid content estimation. We will also compare our results with simulations of the effect of bacterial presence on plasma induced droplet charging and evaporation. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  20. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  1. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  2. Plasma sheets in induced magnetospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Woch, Joahim; Zhang, Tielong; Wei, Yong; Fedorov, Andrei; Barabash, Stas; Lundin, Rickard

    2013-04-01

    Mars and Venus have no a global intrinsic field and solar wind interacts directly with their conductive ionospheric shells producing the induced magnetospheres with magnetic tails. Plasma sheet is the region in the tail where the magnetic field tensions transfer the momentum back to the ionospheric plasmas which escape the planets. It is one of the main loss channels for the planetary ions. Mars Express and Venus Express have provided a wealth of the data on properties of the induced magnetic tails and plasma sheets. We will discuss their main characteristics including mechanisms of ion energization and their control by solar wind and the interplanetary magnetic field variations.

  3. Plasma Cell Gingivitis: An Occasional Case Report.

    PubMed

    Mishra, M B; Sharma, Swati; Sharma, Alok

    2015-01-01

    Plasma cell gingivitis, an infrequently observed oral condition, has been clinically characterized by diffuse gingival enlargement, erythema and sometimes desquamation. These lesions are usually asymptomatic, but invariably the patient will complain of a burning sensation in the gingiva and bleeding from the mouth. The diagnosis requires hematological screening in addition to clinical and histopathological examinations. This case report outlines one such case of plasma cell gingivitis in a 15-year-old female caused by use of an herbal, homemade toothpowder. The case presented here highlights the adverse effects and irrational use of herbal agents in dentifrices. At the same time, it emphasizes the need for comprehensive history taking, careful clinical examination and appropriate diagnostic tests in order to arrive at a definitive diagnosis and treatment plan for gingival conditions that are refractory to conventional therapy and to exclude certain malignancies and oral manifestations of systemic diseases.

  4. Lipid signalling dynamics at the β-cell plasma membrane.

    PubMed

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  5. Simulation of electromagnetically and magnetically induced transparency in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Wurtele, J. S.; Shvets, G.

    2003-07-01

    Electromagnetically induced transparency (EIT), a phenomenon well known in atomic systems, has a natural analogy in a classical magnetized plasma. The magnetized plasma has a resonance for right-hand polarized electromagnetic waves at the electron cyclotron frequency Ω0, so that a probe wave with frequency ω1=Ω0 cannot propagate through the plasma. The plasma can be made transparent to such a probe by the presence of a pump wave. The pump may be an electromagnetic wave or magnetostatic wiggler. Simulations and theory show that the physical reason for the transparency is that the beating of the probe wave with the pump wave sets up a plasma oscillation, and the upper sideband of the pump wave cancels the resonant plasma current due to the probe. The theory of plasma EIT derived here extends that found in the earlier work to include the effects of the lower sideband of the pump and renormalization of the plasma frequency and an analysis of the transient response. A detailed comparison of theory to one-dimensional particle-in-cell simulations is presented and estimates for the performance ion accelerator using the EIT interaction are given. The dispersion relation and estimates for the phase velocity and amplitude of the plasma wave are in good agreement with particle-in-cell simulations.

  6. Micromachining of polydimethylsiloxane induced by laser plasma EUV light

    NASA Astrophysics Data System (ADS)

    Torii, S.; Makimura, T.; Okazaki, K.; Nakamura, D.; Takahashi, A.; Okada, T.; Niino, H.; Murakami, K.

    2011-06-01

    Polydimethylsiloxane (PDMS) is fundamental materials in the field of biotechnology. Because of its biocompatibility, microfabricated PDMS sheets are applied to micro-reactors and microchips for cell culture. Conventionally, the microstructures were fabricated by means of cast or imprint using molds, however it is difficult to fabricate the structures at high aspect ratios such as through-holes/vertical channels. The fabrication of the high-aspect structures would enable us to stack sheets to realize 3D fluidic circuits. In order to achieve the micromachining, direct photo-ablation by short wavelength light is promising. In the previous works, we investigated ablation of transparent materials such as silica glass and poly(methyl methacrylate) induced by irradiation with laser plasma EUV light. We achieved smooth and fine nanomachining. In this work, we applied our technique to PDMS micromachining. We condensed the EUV light onto PDMS surfaces at high power density up to 108 W/cm2 using a Au coated ellipsoidal mirror. We found that PDMS sheet was ablated at a rate up to 440 nm/shot. It should be emphasized that through hole with a diameter of 1 μm was fabricated in a PDMS sheet with a thickness of 4 μm. Thus we demonstrated the micromachining of PDMS sheets using laser plasma EUV light.

  7. Interaction between clonal plasma cells and the immune system in plasma cell dyscrasias.

    PubMed

    Perez-Andres, M; Almeida, J; Martin-Ayuso, M; Moro, M J; Garcia-Marcos, M A; Moreno, I; Dominguez, M; Galende, J; Heras, N; Gonzalez, M I; San Miguel, J F; Orfao, A

    2004-01-01

    The term "monoclonal gammopathy" (MG) includes a group of clonal plasma cell disorders, which show heterogeneous clinical behavior. While multiple myeloma (MM) and plasma cell leukemia (PCL) are incurable malignant diseases, most patients with MG of undetermined significance (MGUS) show an indolent/benign clinical course. Evidence has accumulated which supports the role of the bone marrow microenvironment in MG. Accordingly, the survival, drug-resistance and proliferation of MM cells have been shown to be largely dependent on a supportive microenvironment. Among the different environment-associated parameters, those related to the status/activity of the immune system are particularly relevant. This review focuses on the different ways clonal plasma cells (PC) interact with the immune system in different models of MG, to characterize crucial events in the development and progression of MG. These advances may support the design of novel therapeutic approaches in patients with MG. PMID:15471221

  8. Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis.

    PubMed

    Kim, Chan-Kyu; In, Jung-Hwan; Lee, Seok-Hee; Jeong, Sungho

    2014-07-01

    Quantitative prediction of elemental concentration or concentration ratio of solid samples can be achieved by laser induced breakdown spectroscopy if a calibration curve that is little influenced by plasma conditions could be obtained. This work demonstrates that such a calibration curve is available for copper indium gallium diselenide (CuIn(1-x)Ga(x)Se₂) thin film solar cells for properly selected spectral lines. The possible changes of calibration curves based on the selected spectral lines are discussed in consideration of self-absorption in optically thick plasma and the dependency of spectral line properties on plasma temperature.

  9. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability

    PubMed Central

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V.; Mayeux, Philip R.; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis. PMID:26956613

  10. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability.

    PubMed

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V; Mayeux, Philip R; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis.

  11. Plasma transport induced by kinetic Alfven wave turbulence

    SciTech Connect

    Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.

    2012-10-15

    At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

  12. Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe

    2015-06-01

    Atmospheric-pressure microwave induced N2 plasma is diagnosed by optical emission spectroscopy with respect to the plasma gas temperature. The spectroscopic measurement of plasma gas temperature is discussed with respect to the spectral line broadening of Ar I and the various emission rotational-vibrational band systems of N2(B-A), N2(C-B) and \\text{N}2+(\\text{B-X}). It is found that the Boltzmann plot of the selective spectral lines from \\text{N}2+(\\text{B-X}) at 391.4 nm is preferable to others with an accuracy better than 5% for an atmospheric-pressure plasma of high gas temperature. On the basis of the thermal balance equation, the dependences of the plasma gas temperature on the absorbed power, the gas flow rate, and the gas composition are investigated experimentally with photographs recording the plasma morphology.

  13. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium

    PubMed Central

    UTSUMI, FUMI; KAJIYAMA, HIROAKI; NAKAMURA, KAE; TANAKA, HIROMASA; MIZUNO, MASAAKI; TOYOKUNI, SHINNYA; HORI, MASARU; KIKKAWA, FUMITAKA

    2016-01-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma-activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related PMID:27035127

  14. Development of plasma cleaning and plasma enhanced close space sublimation hardware for improving CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew

    A scalable photovoltaic manufacturing process that employs a heated pocket deposition technique has been developed at Colorado State University. It allows for the economical manufacturing of single-junction thin-film CdTe solar cells with efficiencies over 13%. New techniques that further increase cell efficiency and reduce production expenses are required to make solar energy more affordable. To address this need a hollow-cathode plasma source was added to the load-lock region of the CSU single-vacuum in-line CdTe-cell fabrication system. This plasma source is used to clean the transparent-conductive-oxide layer of the cell prior to the deposition of the CdS and CdTe layers. Plasma cleaning enables a reduction in CdS thickness by approximately 20 nm, while maintaining an improved cell voltage. Cell current was improved and cell efficiency was increased by 1.5%. Maps generated by scanning white-light interferometry, electroluminescence, and light-beam-induced current all show uniformity improvement with plasma cleaning treatment. To further increase cell efficiency a hollow-cathode plasma-enhanced close space sublimation (PECSS) source was utilized to modify the CdS window layer material as it was being deposited. This was done by integrating PECSS into the CSU inline CdS/CdTe-cell fabricating system and by sublimating the CdS semiconductor material through a plasma discharge. To date oxygenated CdS (CdS:O) cells have been grown by sublimating CdS through a PECSS source operated on oxygen. Data are presented showing that PECSS CdS:O films have increased the band gap of the window layer therefore reducing absorption loss, increasing cell current, and improving efficiency by 1.2%.

  15. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H.; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option. PMID:26042423

  16. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells.

    PubMed

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified "cellular movement, connective tissue development and function, tissue development" and "cell-to-cell signaling and interaction, cell death and survival, cellular development" as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.

  17. Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression.

    PubMed

    Schmidlin, Heike; Diehl, Sean A; Nagasawa, Maho; Scheeren, Ferenc A; Schotte, Remko; Uittenbogaart, Christel H; Spits, Hergen; Blom, Bianca

    2008-09-01

    The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19(+) B cells inhibited, similar to the known inhibitor BCL-6, the expression of plasma cell-associated surface markers and transcription factors as well as immunoglobulin production, ie, in vitro plasma cell differentiation. The arrest in B-cell differentiation enforced by Spi-B was independent of the transactivation domain, but dependent on the Ets-domain. By chromatin immunoprecipitation and assays using an inducible Spi-B construct BLIMP1 and XBP-1 were identified as direct target genes of Spi-B mediated repression. We propose a novel role for Spi-B in maintenance of germinal center and memory B cells by direct repression of major plasma cell factors and thereby plasma cell differentiation.

  18. Plasma perturbation induced by laser photodetachment.

    PubMed

    Nishiura, M; Sasao, M; Wada, M; Bacal, M

    2001-03-01

    The plasma dynamics arising from laser photodetachment is discussed herein theoretically and experimentally. The hybrid fluid-kinetic model, where the positive ions and electrons are treated by the fluid theory and the negative ions are treated within the ballistic approximation, is extended and applied to the analysis of densities perturbed by laser photodetachment. The agreement between the theory and measured data confirms the validity of the considered plasma dynamics model. This model, including the positive ion perturbation, shows a good agreement with the time evolution and the spatial distribution of perturbed electron densities which are measured by a Langmuir probe inside and outside the laser beam. From the overshoot in the time evolution of perturbed electron current in the center of the laser beam, the positive ion temperature was found to be in the range 0.1-0.25 eV, while the electron temperature changes from 0.3 to 3.2 eV.

  19. High-contrast plasma-electrode Pockels cell.

    PubMed

    Kruschwitz, B E; Kelly, J H; Shoup Iii, M J; Waxer, L J; Cost, E C; Green, E T; Hoyt, Z M; Taniguchi, J; Walker, T W

    2007-03-10

    A plasma-electrode Pockels cell (PEPC) has been developed for use on the OMEGA extended performance (EP) laser system that can be used in a high-contrast optical switch, as required for isolation of the system from retroreflected pulses. Contrast ratios reliably exceeded 500:1 locally everywhere in the clear aperture. The key to achieving this improvement was the use of circular windows simply supported on compliant O rings, which is shown to produce very low stress-induced birefringence despite vacuum loading. Reliable operation was achieved operating at a relatively high operating pressure, low operating pressures being found to be strongly correlated to occurrences of local loss of plasma density. PMID:17318253

  20. High-contrast plasma-electrode Pockels cell

    SciTech Connect

    Kruschwitz, B. E.; Kelly, J. H.; Shoup, M. J. III; Waxer, L. J.; Cost, E. C.; Green, E. T.; Hoyt, Z. M.; Taniguchi, J.; Walker, T. W

    2007-03-10

    A plasma-electrode Pockels cell (PEPC) has been developed for use on the OMEGA extended performance (EP)laser system that can be used in a high-contrast optical switch, as required for isolation of the system from retroreflected pulses. Contrast ratios reliably exceeded 500:1 locally everywhere in the clear aperture. The key to achieving this improvement was the use of circular windows simply supported on compliant O rings, which is shown to produce very low stress-induced birefringence despite vacuum loading. Reliable operation was achieved operating at a relatively high operating pressure, low operating pressures being found to be strongly correlated to occurrences of local loss of plasma density.

  1. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  2. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage.

    PubMed

    Schoenhals, Matthieu; Jourdan, Michel; Seckinger, Anja; Pantesco, Véronique; Hose, Dirk; Kassambara, Alboukadel; Moreaux, Jérôme; Klein, Bernard

    2016-07-17

    A role of the transcription factor Krüppel-like factor 4 (KLF4) in the generation of mature plasma cells (PC) is unknown. Indeed, KLF4 is critical in controlling the differentiation of various cell linages, particularly monocytes and epithelial cells. KLF4 is expressed at low levels in pro-B cells and its expression increases as they mature into pre-B cells, resting naïve B cells and memory B cells. We show here that KLF4 is expressed in human bone marrow plasma cells and its function was studied using an in vitro model of differentiation of memory B cells into long lived plasma cells. KLF4 is rapidly lost when memory B cells differentiate into highly cell cycling plasmablasts, poorly cycling early plasma cells and then quiescent long-lived plasma cells. A forced expression of KLF4 in plasmablasts enhances the yield of their differentiation into early plasma cell and long lived plasma cells, by inhibiting apoptosis and upregulating previously unknown plasma cell pathways.

  3. Plasma membrane reorganization induced by chemical transformation in cultura

    SciTech Connect

    Packard, B.S.

    1984-04-01

    Induction of increased rigidity in the plasma membrane paralleling properties associated with a transformed state was suggested by two experiments. Fluorescence recovery after photobleaching (FRAP) indicated the induction of an environment in the plasma membrane where the synthetic fluorescent phospholipid collarein was immobile on the FRAP timescale. The other technique revealed the binding of epidermal growth factor (EGF) to a cryptic class of receptors which become accessible upon chemical transformation. These two lines of evidence are consistent with a reorganization of the plasma membrane induced by tumor promoters. 110 references, 38 figures, 4 tables.

  4. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  5. Extreme ultraviolet-induced photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemyslaw; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Szczurek, Miroslaw

    2014-05-01

    In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser-plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.

  6. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  7. Differential gene expression in pulmonary artery endothelial cells exposed to sickle cell plasma.

    PubMed

    Klings, Elizabeth S; Safaya, Surinder; Adewoye, Adeboye H; Odhiambo, Adam; Frampton, Garrett; Lenburg, Marc; Gerry, Norman; Sebastiani, Paola; Steinberg, Martin H; Farber, Harrison W

    2005-05-11

    Clinical variability in sickle cell disease (SCD) suggests a role for extra-erythrocytic factors in the pathogenesis of vasoocclusion. We hypothesized that endothelial cell (EC) dysfunction, one possible modifier of disease variability, results from induction of phenotypic changes by circulating factors. Accordingly, we analyzed gene expression in cultured human pulmonary artery ECs (HPAEC) exposed to plasma from 1) sickle acute chest syndrome (ACS) patients, 2) SCD patients at steady state, 3) normal volunteers, and 4) serum-free media, using whole genome microarrays (U133A-B GeneChip, Affymetrix). Data were analyzed by Bayesian analysis of differential gene expression (BADGE). Differential expression was defined by the probability of >1.5 fold change in signal intensity greater than 0.999 and a predicted score of 70-100, measured by cross-validation. Compared with normal plasma, plasma from SCD patients (steady state) resulted in differential expression of 50 genes in HPAEC. Of these genes, molecules involved in cholesterol biosynthesis and lipid transport, the cellular stress response, and extracellular matrix proteins were most prominent. Another 58 genes were differentially expressed in HPAEC exposed to plasma from ACS patients. The pattern of altered gene expression suggests that plasma from SCD patients induces an EC phenotype which is anti-apoptotic and favors cholesterol biosynthesis. An altered EC phenotype elicited by SCD plasma may contribute to the pathogenesis of sickle vasoocclusion.

  8. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  9. Induction of angiogenesis by normal and malignant plasma cells.

    PubMed

    Hose, Dirk; Moreaux, Jérôme; Meissner, Tobias; Seckinger, Anja; Goldschmidt, Hartmut; Benner, Axel; Mahtouk, Karène; Hillengass, Jens; Rème, Thierry; De Vos, John; Hundemer, Michael; Condomines, Maud; Bertsch, Uta; Rossi, Jean-François; Jauch, Anna; Klein, Bernard; Möhler, Thomas

    2009-07-01

    Abundant bone marrow angiogenesis is present in almost all myeloma patients requiring therapy and correlated to treatment response and survival. We assessed the expression of 402 angiogenesis-associated genes by Affymetrix DNA microarrays in 466 samples, including CD138-purified myeloma cells (MMCs) from 300 previously untreated patients, in vivo microcirculation by dynamic contrast-enhanced magnetic resonance imaging, and in vitro angiogenesis (AngioKit-assay). Normal bone marrow plasma cells (BMPCs) express a median of 39 proangiogenic (eg, VEGFA, ADM, IGF-1) and 28 antiangiogenic genes (eg, TIMP1, TIMP2). Supernatants of BMPCs unlike those of memory B cells induce angiogenesis in vitro. MMCs do not show a significantly higher median number of expressed proangiogenic (45) or antiangiogenic (31) genes, but 97% of MMC samples aberrantly express at least one of the angiogenic factors HGF, IL-15, ANG, APRIL, CTGF, or TGFA. Supernatants of MMCs and human myeloma cell lines induce significantly higher in vitro angiogenesis compared with BMPCs. In conclusion, BMPCs express a surplus of proangiogenic over antiangiogenic genes transmitting to the ability to induce in vitro angiogenesis. Aberrant expression of proangiogenic and down-regulation of antiangiogenic genes by MMCs further increases the angiogenic stimulus, together leading to bone marrow angiogenesis at various degrees in all myeloma patients.

  10. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  11. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  12. Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir

    2014-10-01

    The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.

  13. Plasmocytoma, multiple myeloma and plasma cell neoplasms in orofacial region.

    PubMed

    Zajko, J; Czako, L; Galis, B

    2016-01-01

    A neoplastic proliferation of B cell lymphocyte is called plasma cell neoplasms, results from malignant plasma cells transformation in bone marrow. The authors present a clinical study and overview of this pathology in maxillofacial region for six years (Tab. 2, Ref. 14). PMID:27546545

  14. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage.

  15. [Plasma cell dyscrasias and renal damage].

    PubMed

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  16. The interleukin-6 receptor alpha-chain (CD126) is expressed by neoplastic but not normal plasma cells.

    PubMed

    Rawstron, A C; Fenton, J A; Ashcroft, J; English, A; Jones, R A; Richards, S J; Pratt, G; Owen, R; Davies, F E; Child, J A; Jack, A S; Morgan, G

    2000-12-01

    Interleukin-6 (IL-6) is reported to be central to the pathogenesis of myeloma, inducing proliferation and inhibiting apoptosis in neoplastic plasma cells. Therefore, abrogating IL-6 signaling is of therapeutic interest, particularly with the development of humanized anti-IL-6 receptor (IL-6R) antibodies. The use of such antibodies clinically requires an understanding of IL-6R expression on neoplastic cells, particularly in the cycling fraction. IL-6R expression levels were determined on plasma cells from patients with myeloma (n = 93) and with monoclonal gammopathy of undetermined significance (MGUS) or plasmacytoma (n = 66) and compared with the levels found on normal plasma cells (n = 11). In addition, 4-color flow cytometry was used to assess the differential expression by stage of differentiation and cell cycle status of the neoplastic plasma cells. IL-6R alpha chain (CD126) was not detectable in normal plasma cells, but was expressed in approximately 90% of patients with myeloma. In all groups, the expression levels showed a normal distribution. In patients with MGUS or plasmacytoma, neoplastic plasma cells expressed significantly higher levels of CD126 compared with phenotypically normal plasma cells from the same marrow. VLA-5(-) "immature" plasma cells showed the highest levels of CD126 expression, but "mature" VLA-5(+) myeloma plasma cells also overexpressed CD126 when compared with normal subjects. This study demonstrates that CD126 expression is restricted to neoplastic plasma cells, with little or no detectable expression by normal cells. Stromal cells in the bone marrow microenvironment do not induce the overexpression because neoplastic cells express higher levels of CD126 than normal plasma cells from the same bone marrow in individuals with MGUS. (Blood. 2000;96:3880-3886)

  17. Investigation of plasma etch induced damage in compound semiconductor devices

    SciTech Connect

    Shul, R.J.; Lovejoy, M.L.; Hetherington, D.L.; Rieger, D.J.; Vawter, G.A.; Klem, J.F.; Melloch, M.R.

    1993-11-01

    We have investigated the electrical performance of mesa-isolated GaAs pn-junction diodes to determine the plasma-induced damage effects from reactive ion and reactive ion beam etching. A variety of plasma chemistries (SiCl{sub 4}, BCl{sub 3}, BCl{sub 3}/Cl{sub 2}, and Cl{sub 2}) and ion energies ranging from 100 to 400 eV were studied. We have observed that many of the RIE BCl{sub 3}/Cl{sub 2} plasmas and RIBE Cl{sub 2} plasmas yield diodes with low reverse-bias currents that are comparable to the electrical characteristics of wet-chemical-etched devices. The reverse-bias leakage currents are independent of surface morphology and sidewall profiles.

  18. Terahertz generation in multiple laser-induced air plasmas

    SciTech Connect

    Chen, M.-K.; Kim, Jae Hun; Yang, C.-E.; Yin, Stuart Shizhuo; Hui Rongqing; Ruffin, Paul

    2008-12-08

    An investigation of the terahertz wave generation in multiple laser-induced air plasmas is presented. First, it is demonstrated that the intensity of the terahertz wave increases as the number of air plasmas increases. Second, the physical mechanism of this enhancement effect of the terahertz generation is studied by quantitatively measuring the intensity of the generated terahertz wave as a function of phase difference between adjacent air plasmas. It is found out that the superposition is the main mechanism to cause this enhancement. Thus, the results obtained in this paper not only provide a technique to generate stronger terahertz wave but also enable a better understanding of the mechanism of the terahertz generation in air plasma.

  19. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  20. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  1. An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment

    SciTech Connect

    Ma Ruonan; Zhang Qian; Feng Hongqing; Liang Yongdong; Li Fangting; Zhu Weidong; Zhang Jue; Fang Jing; Becker, Kurt H.

    2012-03-19

    With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

  2. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas-liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas-liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  3. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas–liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas–liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  4. Mechanisms of interaction of non-thermal plasma with living cells

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Sameer Ulhas

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces various highly active molecules and atoms without heat. As a result, its effects on living cells and tissues could be selective and tunable. This makes non-thermal plasma very attractive for medical applications. However, despite several interesting demonstrations of non-thermal plasma in blood coagulation and tissue sterilization, the biological and physical mechanisms of its interaction with living cells are still poorly understood impeding further development of non-thermal plasma as a clinical tool. Although several possible mechanisms of interaction have been suggested, no systematic experimental work has been performed to verify these hypotheses. Using cells in culture, it is shown in this work that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects ranging from increasing cell proliferation to inducing apoptosis which are consistent with the effects of oxidative stress. DNA damage is chosen as a marker to assess the effects of oxidative stress in a quantitative manner. It is demonstrated here that plasma induced DNA damage as well as other effects ranging from cell proliferation to apoptosis are indeed due to production of intracellular reactive oxygen species (ROS). We found that DNA damage is initiated primarily by plasma generated active neutral species which cannot be attributed to ozone alone. Moreover, it is found that extracellular media and its components play a critical role in the transfer of the non-thermal plasma initiated oxidative stress into cells. Specifically, it is found that the peroxidation efficiency of amino acids is the sole predictor of the ability of the medium to transfer the oxidative stress induced by non-thermal plasma. Phosphorylation of H2AX, a DNA damage marker, following plasma treatment is found to be ATR dependent and ATM

  5. Hubble-induced mass from MSSM plasma

    SciTech Connect

    Kawasaki, Masahiro; Takesako, Tomohiro; Takahashi, Fuminobu E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2013-04-01

    We evaluate the effective mass of a scalar field φ coupled to thermal plasma through Planck-suppressed interactions. We find it useful to rescale the coupled fields so that all the φ-dependences are absorbed into the yukawa and gauge couplings, which allows us to read off the leading order contributions to the effective mass m-tilde {sub φ} from the 2-loop free energy calculated with the rescaled couplings. We give an analytical expression for m-tilde {sub φ} at a sufficiently high temperature in the case where φ is coupled to the MSSM chiral superfields through non-minimal Kähler potential. We find that | m-tilde {sub φ}{sup 2}| is about 10{sup −3}H{sup 2} ∼ 10{sup −2}H{sup 2} at the leading order in terms of the couplings for typical parameter sets, where H is the Hubble expansion rate in the radiation-dominated era.

  6. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    NASA Astrophysics Data System (ADS)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  7. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    NASA Astrophysics Data System (ADS)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  8. Towards Stratified Medicine in Plasma Cell Myeloma

    PubMed Central

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J.; Alexander, H. Denis

    2016-01-01

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient’s age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder. PMID:27775669

  9. Graphene Oxide Modulates B Cell Surface Phenotype and Impairs Immunoglobulin Secretion in Plasma Cell.

    PubMed

    Xu, Shaohai; Xu, Shengmin; Chen, Shaopeng; Fan, Huadong; Luo, Xun; Yang, Xiaoyao; Wang, Jun; Yuan, Hang; Xu, An; Wu, Lijun

    2016-04-01

    Since discovery, graphene oxide (GO) has been used in all aspects of human life and revealed promising applications in biomedicine. Nevertheless, the potential risks of GO were always being revealed. Although GO was found to induce immune cell death and innate immune response, little is known regarding its toxicity to the specific adaptive immune system that is crucial for protecting against exotic invasion. The B-cell mediated adaptive immune system, which composed of highly specialized cells (B and plasma cell) and specific immune response (antibody response) is the focus in our present study. Using diverse standard immunological techniques, we found that GO modulated B cell surface phenotype, both costimulatory molecules (CD80, CD86 and especially CD40) and antigen presenting molecules (both classical and nonclassical) under the condition without causing cell death. Meanwhile, the terminal differentiated immunoglobulin (Ig) secreting plasma cell was affected by GO, which displayed a less secretion of Ig and more severe ER stress caused by the retention of the secreted form of Ig in cell compartment. The combined data reveal that GO has a particular adverse effect to B cell and the humoral immunity, directly demonstrating the potential risk of GO to the specific adaptive immunity. PMID:27451788

  10. Plasma treatment of biomaterials to direct the differentiation of embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Hanley, Erik

    In this work, we explore how embryonic stem (ES) cell differentiation patterns are affected by surface interactions with plasma-processed materials. We hypothesize that mouse embryonic stem-cell exposure to certain plasma-polymerized tetraglyme surfaces will direct their differentiation into endothelial cells. R1 mouse embryonic stem (ES) cells were plated on surfaces onto which tetraglyme was deposited by plasma polymerization. In addition, tissue-treated polystyrene and control glass cover slips were also examined. Some samples were fixed three days after plating and immunofluorescence stained with platelet endothelial-cell adhesion molecule, while the others were fixed seven days after plating and immunofluorescence stained with von Willebrand Factor. Positive results seen by ES cell derivatives precociously expressing the vWF and PECAM genetic markers on the plasma-polymerized tetraglyme treated surfaces suggest that the plasma-polymerized surfaces direct differentiation of ES cells into endothelial cells. Research goals of this dissertation include: characterization of the material properties of the plasma-polymerized tetraglyme surfaces that induce directed differentiation of ES cells into endothelial cells, optimization of the plasma-polymerization process to maximize the number of endothelial cells derived from R1 ES cells, and biological experimentation to characterize properties of the mechanism of directed differentiation. A potential application of this work is in the design and construction of an artificial blood vessel. Current small-scale arterial substitutes have proved inadequate because of thrombogenicity and infection. Moreover, the lower blood flow velocities of smaller vessels pose a different set of design criteria and introduce new problems not encountered in large arterial substitutes. By utilizing a tissue engineering approach that incorporates embryonic stem cell-derived endothelial cells, the longevity of the prosthesis can be ensured.

  11. Laser-Induced Shocks in Strongly Coupled Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Tierney, T.; Benage, J.; Evans, S.; Glocer, A.; Kyrala, G.; Montoya, R.; Munson, C.; Roberts, J.; Skidmore, B.; Taylor, A.; Wood, B.; Workman, J.; Wysocki, F.

    2001-10-01

    Inverse bremsstrahlung is a dominant absorption mechanism at high densities and low temperatures, such as in strongly coupled plasmas. We electrically produce a 0.1 g/cm^3, 1 eV SCP target which is struck by a 2-3 J, 0.8 ns frequency-doubled Nd:Yag laser pulse. Under these conditions, the laser pulse couples into the plasma where the electron plasma frequency equals the laser frequency. For a wavelength of 532 nm, this happens at a critical density of ne = 4x10^21 cm-3. The rapid deposition of energy heats and compresses the plasma to shock conditions. The surface temperature of the plasma is measured using four filtered PMTs with the assumption of blackbody emission with constant emissivity. Pre-shocked and shocked density measurements are simultaneously made using a laser-produced Ti K-shell (4.75 keV) x-ray shadowgraph. We present the experiment design and results of a laser-induced shock in a strongly coupled plasma.

  12. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  13. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  14. High time resolution laser induced fluorescence in pulsed argon plasma

    SciTech Connect

    Biloiu, Ioana A.; Sun Xuan; Scime, Earl E.

    2006-10-15

    A submillisecond time resolution laser induced fluorescence (LIF) method for obtaining the temporal evolution of the ion velocity distribution function in pulsed argon plasma is presented. A basic LIF system that employs a continuous laser wave pumping and lock-in aided detection of the subsequent fluorescence radiation is modified by addition of a high frequency acousto-optic modulator to provide measurements of the ion flow velocity and ion temperature in a helicon generated pulsed argon plasma with temporal resolutions as high as 30 {mu}s.

  15. Laser-Induced Underwater Plasma And Its Spectroscopic Applications

    SciTech Connect

    Lazic, Violeta

    2008-09-23

    Applications of Laser Induced Breakdown Spectroscopy (LIBS) for analysis of immersed solid and soft materials, and for liquid impurities are described. A method for improving the LIBS signal underwater and for obtaining quantitative analyses in presence of strong shot-to-shot variations of the plasma properties is proposed. Dynamic of the gas bubble formed by the laser pulse is also discussed, together with its importance in Double-Pulse (DP) laser excitation. Results of the studies relative to an application of multi-pulse sequence and its effects on the plasma and gas bubble formation are also presented.

  16. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry. PMID:23893032

  17. Immunophenotyping in multiple myeloma and related plasma cell disorders

    PubMed Central

    Kumar, Shaji; Kimlinger, Teresa; Morice, William

    2010-01-01

    SUMMARY Plasma cell disorders form a spectrum ranging from the asymptomatic presence of small monoclonal populations of plasma cells to conditions like plasma cell leukemia and multiple myeloma, in which the bone marrow can be replaced by the accumulation of neoplastic plasma cells. Immunophenotyping has become an invaluable tool in the management of hematological malignancies and is increasingly finding a role in the diagnosis and monitoring of plasma cell disorders. Multiparameter flow cytometry has evolved considerably during the past decade with an increasing ability to screen large numbers of events and to detect multiple antigens at the same time. This, along with a better understanding of the phenotypic heterogeneity of the clonal plasma cells in different disorders, has made immunophenotyping an indispensible tool in the diagnosis, prognostic classification and management of plasma cell disorders. This book chapter addresses the approaches taken to evaluate monoclonal plasma cell disorders, and the different markers and techniques that are important for the study of these diseases. PMID:21112041

  18. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    PubMed

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  19. The effects of non-thermal plasmas on selected mammalian cells

    NASA Astrophysics Data System (ADS)

    Leduc, Mathieu

    built a simple transfection device consisting of a straight glass capillary tube and a plastic support. Using three different gases and five different capillary diameters, we were able to relate the transfection efficiency to the dynamic pressure of the gas exiting the capillary tube. Finally, even though transfection of cells seem to depend more on the mechanical forces exerted by the gas flow than on the effects of the plasma, other applications of non-thermal plasma in the field of medicine are in development. However, published studies have focused on only the positive effects of non-thermal plasmas, neglecting the potentially induced adverse effects. Therefore, we studied if damage could be caused in cells following an indirect (APGD-t) or a direct (parallel electrodes DBD) plasma treatment. We found that a low power direct plasma treatment caused oxidative stress in HeLa cells. Both plasma sources were shown to produce DNA double-strand breaks but no lipid peroxidation. Also, the sequencing of plasma-treated naked plasmid DNA introduced in electrocompetent bacteria showed no evidence of mutations.

  20. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    NASA Astrophysics Data System (ADS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  1. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  2. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  3. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  4. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  5. Study of plasma heating induced by fast electrons

    NASA Astrophysics Data System (ADS)

    Morace, A.; Magunov, A.; Batani, D.; Redaelli, R.; Fourment, C.; Santos, J. J.; Malka, G.; Boscheron, A.; Casner, A.; Nazarov, W.; Vinci, T.; Okano, Y.; Inubushi, Y.; Nishimura, H.; Flacco, A.; Spindloe, C.; Tolley, M.

    2009-12-01

    We studied the induced plasma heating in three different kinds of targets: mass limited, foam targets, and large mass targets. The experiment was performed at Alisé Laser Facility of CEA/CESTA. The laser system emitted a ˜1 ps pulse with ˜10 J energy at a wavelength of ˜1 μm. Mass limited targets had three layers with thicknesses of 10 μm C8H8, 1 μm C8H7Cl, and 10 μm C8H8 with size of 100×100 μm2. Detailed spectroscopic analysis of x rays emitted from the Cl tracer showed that it was possible to heat up the plasma from mass limited targets to a temperature of ˜250 eV with density of ˜1021 cm-3. The plasma heating is only produced by fast electron transport in the target, being the 10 μm C8H8 overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the prepulse. These results demonstrate that with mass limited targets, it is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  6. Flow induced dust acoustic shock waves in a complex plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, Surabhi; Bandyopadhyay, Pintu; Sen, Abhijit

    2015-11-01

    We report on experimental observations of particle flow induced large amplitude shock waves in a dusty plasma. These dust acoustic shocks (DAS) are observed for strongly supersonic flows and have been studied in a U-shaped Dusty Plasma Experimental (DPEx) device for charged kaolin dust in a background of Argon plasma. The strong flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of the dust density near the potential hill is used to trigger the onset of high velocity dust acoustic shocks. The dynamics of the shocks are captured by fast video pictures of the structures that are illuminated by a laser sheet beam. The physical characteristics of the shock are delineated from a parametric scan of their dynamical properties over a range of plasma parameters and flow speeds. Details of these observations and a physical explanation based on model calculations will be presented.

  7. Investigations of LHCD induced plasma rotation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Chouli, B.; Fenzi, C.; Garbet, X.; Bourdelle, C.; Sarazin, Y.; Rice, J.; Aniel, T.; Artaud, J.-F.; Baiocchi, B.; Basiuk, V.; Cottier, P.; Decker, J.; Imbeaux, F.; Irishkin, M.; Mazon, D.; Schneider, M.; the Tore Supra Team

    2015-12-01

    Theoretical investigations are performed in order to explain the plasma rotation increments induced by lower hybrid current drive (LHCD) in Tore Supra and the results are compared to the experimental observations. The intrinsic toroidal rotation is governed by several mechanisms in concert. The impact of the LHCD on each involved mechanism is analyzed. The neoclassical toroidal rotation is always in the counter-current direction. The toroidal diamagnetic velocity is of the order of the experimental toroidal velocity. At high plasma current the rotation evolution in the lower hybrid (LH) phase is controlled by the neoclassical friction force due to the trapped ions in banana trajectories through the toroidal diamagnetic velocity. This force results in the counter-current increment as observed in the experimental measurement of toroidal rotation. At low plasma current the rotation is dominated by momentum turbulent transport when the LH waves are applied. The Reynolds stress grows strongly compared to the high plasma current case and acts as a co-current force through its residual stress contribution. Momentum transport simulations are also performed with CRONOS (Artaud et al 2010) in order to assess the rotation increments induced by LHCD.

  8. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  9. Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection.

    PubMed

    Nygaard, Tyler K; Pallister, Kyler B; DuMont, Ashley L; DeWald, Mark; Watkins, Robert L; Pallister, Erik Q; Malone, Cheryl; Griffith, Shannon; Horswill, Alexander R; Torres, Victor J; Voyich, Jovanka M

    2012-01-01

    This investigation examines the influence of alpha-toxin (Hla) during USA300 infection of human leukocytes. Survival of an USA300 isogenic deletion mutant of hla (USA300Δhla) in human blood was comparable to the parental wild-type strain and polymorphonuclear leukocyte (PMN) plasma membrane permeability caused by USA300 did not require Hla. Flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) following infection by USA300, USA300Δhla, and USA300Δhla transformed with a plasmid over-expressing Hla (USA300Δhla Comp) demonstrated this toxin plays a significant role inducing plasma membrane permeability of CD14(+), CD3(+), and CD19(+) PBMCs. Rapid plasma membrane permeability independent of Hla was observed for PMNs, CD14(+) and CD19(+) PBMCs following intoxication with USA300 supernatant while the majority of CD3(+) PBMC plasma membrane permeability induced by USA300 required Hla. Addition of recombinant Hla to USA300Δhla supernatant rescued CD3(+) and CD19(+) PBMC plasma membrane permeability generated by USA300 supernatant. An observed delay in plasma membrane permeability caused by Hla in conjunction with Annexin V binding and ApoBrdU Tunel assays examining PBMCs intoxicated with recombinant Hla or infected with USA300, USA300Δhla, USA300Δhla Comp, and USA300ΔsaeR/S suggest Hla induces programmed cell death of monocytes, B cells, and T cells that results in plasma membrane permeability. Together these findings underscore the importance of Hla during S. aureus infection of human tissue and specifically demonstrate Hla activity during USA300 infection triggers programmed cell death of human monocytes, T cells and B cells that leads to plasma membrane permeability.

  10. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  11. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  12. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  13. Differential effects of lenalidomide during plasma cell differentiation

    PubMed Central

    Jourdan, Michel; Cren, Maïlys; Schafer, Peter; Robert, Nicolas; Duperray, Christophe; Vincent, Laure; Ceballos, Patrice; Cartron, Guillaume; Rossi, Jean-François; Moreaux, Jérôme; Chopra, Rajesh; Klein, Bernard

    2016-01-01

    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide. PMID:27057635

  14. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  15. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    NASA Astrophysics Data System (ADS)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  16. Phase imaging microscopy for the diagnostics of plasma-cell interaction

    NASA Astrophysics Data System (ADS)

    Ohene, Yolanda; Marinov, Ilya; de Laulanié, Lucie; Dupuy, Corinne; Wattelier, Benoit; Starikovskaia, Svetlana

    2015-06-01

    Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H2O2. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death.

  17. Development of plasma apparatus for plasma irradiation to living cell model

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Kato, Ryo; Tanoue, Hideto; Takikawa, Hirofumi; Tero, Ryugo

    2012-10-01

    Atmospheric pressure plasma has been studied for the industrial applications of biotechnology and medical care. For the development of these fields, understanding the influence of atmospheric pressure plasma on living cell and the mechanism of cell death is necessary. We focus on a basic structure of cell membrane, called lipid bilayer. Lipid bilayer is composed of lipid molecules with an amphipathic property and can be formed on hydrophilic substrates. In this paper, we report the development of the plasma apparatus for the treatment of lipid bilayer. The plasma apparatus uses a typical dielectric barrier discharge (DBD) system and employs parallel plate electrodes with a gap distance of 1 mm [1]. Each electrode is covered with a quartz plate and the substrate temperature is kept constant by cooling medium. The lower quartz electrode has a dimple, in which the substrate coated with a lipid bilayer and buffer fluid are mounted. [4pt] [1] Y. Sugioka, et al, IEEE Trans. Plasma Sci., in press

  18. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.

    PubMed

    Piper, P W; Ortiz-Calderon, C; Holyoak, C; Coote, P; Cole, M

    1997-03-01

    Saccharomyces cerevisiae has a single integral plasma membrane heat shock protein (Hsp). This Hsp30 is induced by several stresses, including heat shock, ethanol exposure, severe osmostress, weak organic acid exposure and glucose limitation. Plasma membrane H(+)-ATPase activities of heat shocked and weak acid-adapted, hsp30 mutant and wild-type cells, revealed that Hsp30 induction leads to a downregulation of the stress-stimulation of this H(+)-ATPase. Plasma membrane H(+)-ATPase activity consumes a substantial fraction of the ATP generated by the cell, a usage that will be increased by the H(+)-ATPase stimulation occurring with several Hsp30-inducing stresses. Hsp30 might therefore provide an energy conservation role, limiting excessive ATP consumption by plasma membrane H(+)-ATPase during prolonged stress exposure or glucose limitation. Consistent with the role of Hsp30 being energy conservation, Hsp30 null cultures give lower final biomass yields. They also have lower ATP levels, consistent with higher H(+)-ATPase activity, at the glucose exhaustion stage of batch fermentations (diauxic lag), when Hsp30 is normally induced. Loss of Hsp30 does not affect several stress tolerances but it extends the time needed for cells to adapt to growth under several stressful conditions where the maintenance of homeostasis will demand an unusually high usage of energy, hsp30 is the first yeast gene identified as both weak organic acid-inducible and assisting the adaptation to growth in the presence of these acids.

  19. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    PubMed

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway. PMID:27470414

  20. Functional granulocyte/macrophage colony stimulating factor receptor is constitutively expressed on neoplastic plasma cells and mediates tumour cell longevity.

    PubMed

    Villunger, A; Egle, A; Kos, M; Egle, D; Tinhofer, I; Henn, T; Uberall, F; Maly, K; Greil, R

    1998-09-01

    It has been shown that granulocyte/macrophage colony stimulating factor (GM-CSF) is able to support myeloma cell propagation in cooperation with interleukin (IL)-6, the major growth factor for malignant plasma cells, although the biological mechanisms involved remain unknown. Therefore we investigated (i) the expression levels of the GM-CSF receptor (GM-CSFR) constituents in three malignant plasma cell lines and in native malignant plasma cells, (ii) the ability of the receptor to mediate common signalling pathways regulating proliferation and cell survival in malignant plasma cell lines, and (iii) the effects of GM-CSF on tumour cell biology. The GM-CSFRalpha subunit was detected in the malignant plasma cell lines RPMI-8226, MC/CAR, IM-9 as well as 6/6 native myeloma cell samples derived from the bone marrow of patients with overt disease. Furthermore, GM-CSFR expression was also detected in the CD19+ fraction from 2/3 bone marrow samples and 5/8 peripheral blood samples derived from patients with malignant plasma cell disorders, but not in the CD19+ fraction of peripheral blood from healthy donors. The expressed cytokine receptor alpha-subunit was able to constitute a functional signalling complex with the ubiquitously expressed GM-CSFRbeta subunit, as demonstrated by the fact that GM-CSF induced the p21-ras/mitogen-activated protein kinase (MAPK) signalling cascade in malignant plasma cell lines. Since this signalling cascade plays an essential role in the mediation of both proliferation and cell survival, we investigated the impact of GM-CSF on these two events. Application of GM-CSF led to an increase of DNA-synthesis in MC/CAR, IM-9 and RPMI-8226 cells. Furthermore, it increased longevity of these malignant plasma cell lines by reducing the rates of spontaneous apoptosis. We conclude that (i) the functional GM-CSFR is commonly expressed on malignant plasma cells and that (ii) GM-CSF promotes the clonal expansion of myeloma cells by inhibiting spontaneous

  1. Antibacterial plasma at safe levels for skin cells

    NASA Astrophysics Data System (ADS)

    Boekema, B. K. H. L.; Hofmann, S.; van Ham, B. J. T.; Bruggeman, P. J.; Middelkoop, E.

    2013-10-01

    Plasmas produce various reactive species, which are known to be very effective in killing bacteria. Plasma conditions, at which efficient bacterial inactivation is observed, are often not compatible with leaving human cells unharmed. The purpose of this study was to determine plasma settings for inactivation of Pseudomonas aeruginosa, without damaging skin cells in vitro under the same treatment conditions. An RF argon plasma jet excited with either continuous or time modulated (20 kHz, 20% duty cycle) voltages was used. To compare these two operation modes, only the input voltage was adjusted in order to obtain the same average power (1.7 W) for both modes. All other settings, i.e. gas flow, distance plasma tip to liquid surface, were kept constant. Bacteria or skin cells in physiological salt solution were exposed to direct non-contact plasma treatments. Short plasma treatments of up to 2 min resulted in a high reduction of bacterial numbers and did not affect dermal fibroblasts or keratinocytes. Bacterial inactivation has been previously ascribed to peroxynitrite, nitrite and H2O2 while eukaryotic cell viability is proposed to be reduced in the long term by the presence of H2O2 and is less affected by reactive nitrogen species. The remote RF plasma jet treatment was highly effective for bacterial inactivation while skin cell viability was preserved.

  2. Silicon tetrachloride plasma induced grafting for starch-based composites

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui C.

    Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma

  3. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  4. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution

    PubMed Central

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-01-01

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca2+ influx through ruthenium red- and SKF 96365-sensitive Ca2+-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine. PMID:27169489

  5. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Collet, G.; Robert, E.; Lenoir, A.; Vandamme, M.; Darny, T.; Dozias, S.; Kieda, C.; Pouvesle, J. M.

    2014-02-01

    The lack of oxygen is a major reason for the resistance of tumor cells to treatments such as radiotherapies. A large number of recent publications on non-thermal plasma applications in medicine report cell behavior modifications and modulation of soluble factors. This in vivo study tested whether such modifications can lead to vascular changes in response to plasma application. Two in situ optical-based methods were used simultaneously, in real time, to assess the effect of non-thermal plasma on tissue vasculature. Tissue oxygen partial pressure (pO2) was measured using a time-resolved luminescence-based optical probe, and the microvascular erythrocyte flow was determined by laser Doppler flowmetry. When plasma treatment was applied on mouse skin, a rapid pO2 increase (up to 4 times) was subcutaneously measured and correlated with blood flow improvement. Such short duration, i.e. 5 min, plasma-induced effects were shown to be locally restricted to the treated area and lasted over 120 min. Further investigations should elucidate the molecular mechanisms of these processes. However, improvement of oxygenation and perfusion open new opportunities for tumor treatments in combination with radiotherapy, and for tumor blood vessel normalization based strategies.

  6. Plasma cell gingivitis with severe alveolar bone loss.

    PubMed

    Kumar, Vivek; Tripathi, Amitandra Kumar; Saimbi, Charanjit Singh; Sinha, Jolly

    2015-01-16

    Plasma cell gingivitis is a rare benign condition of the gingiva characterised by sharply demarcated erythaematous and oedematous gingiva often extending up to the muco gingival junction. It is considered a hypersensitive reaction. It presents clinically as a diffuse, erythaematous and papillary lesion of the gingiva, which frequently bleeds, with minimal trauma. This paper presents a case of a 42-year-old man who was diagnosed with plasma cell gingivitis, based on the presence of plasma cells in histological sections, and severe alveolar bone loss at the affected site, which was managed by surgical intervention.

  7. Disseminated plasma cell myeloma presenting as massive pleural effusion

    PubMed Central

    Babu, Kanahasubramanian Anand; Sundararajan, Lakshmikanthan; Prabu, Pandurangan; Parameswaran, Ashok

    2015-01-01

    Plasma cell myeloma (PCM) is a hematologic malignancy of plasma cell origin and usually associated with the presence of lytic bone lesions. Pleural effusions are rarely associated with PCM and most often signify a concurrent disease process. Malignant myelomatous pleural effusions are even more unusual and carry a poor prognosis. We report a unique case of unsuspected PCM with thoracic involvement in the form of massive left side pleural effusion. Pleural fluid cytology revealed numerous atypical plasma cells. Subsequently on further workup, urine Bence Jones protein was positive. Bone marrow aspiration and biopsy and computed tomography of the chest and abdomen revealed features consistent with multiple myeloma. PMID:26664659

  8. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  9. Laser-induced-plasma-assisted ablation for glass microfabrication

    NASA Astrophysics Data System (ADS)

    Hong, Minghui; Sugioka, Koji; Wu, Ding J.; Wong, L. L.; Lu, Yongfeng; Midorikawa, Katsumi; Chong, Tow Chong

    2001-10-01

    Glass is a hard transparent material with many applications in Photonics and advanced display industries. It is a high challenge to achieve crack-free glass microfabrication due to its special material characteristics. Laser-induced-plasma- assisted ablation is applied in this study to get the high quality glass microfabrication. In this processing, the laser beam goes through the glass substrate first and then irradiates on a solid target behind. For laser fluence above ablation threshold for the target, the generated plasma flies forward at a high speed. At a small target-to-substrate distance, there are strong interactions among laser light, target plasma and glass materials at the rear side of the substrate. Light absorption characteristic at the glass substrate is modified since the plasma may soften and dope into the glass in the interaction area. To have a better understanding of this processing, signal diagnostics are carried out to study the dynamic interaction. It is found that glass microfabrication is closely related to laser fluence, target-to-substrate distance, laser spot size and laser beam scanning speed. With proper control of the processing parameters, glass surface marking patterning and cutting can be achieved. With different materials as the targets, color marking of glass substrate can be obtained.

  10. Laser-induced breakdown plasma-based sensors

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.

    2010-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is dependent on the interaction between the initiating Laser sequence, the sampled material and the intermediate plasma states. Pulse shaping and timing have been empirically demonstrated to have significant impact on the signal available for active/passive detection and identification. The transient nature of empirical LIBS work makes data collection for optimization an expensive process. Guidance from effective computer simulation represents an alternative. This computational method for CBRNE sensing applications models the Laser, material and plasma interaction for the purpose of performance prediction and enhancement. This paper emphasizes the aspects of light, plasma, and material interaction relevant to portable sensor development for LIBS. The modeling structure emphasizes energy balances and empirical fit descriptions with limited detailed-balance and finite element approaches where required. Dusty plasma from partially decomposed material sample interaction with pulse dynamics is considered. This heuristic is used to reduce run times and computer loads. Computer simulations and some data for validation are presented. A new University of Memphis HPC/super-computer (~15 TFLOPS) is used to enhance simulation. Results coordinated with related effort at Arkansas State University. Implications for ongoing empirical work are presented with special attention paid to the application of compressive sensing for signal processing, feature extraction, and classification.

  11. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  12. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production

    PubMed Central

    Dorner, Marcus; Brandt, Simone; Tinguely, Marianne; Zucol, Franziska; Bourquin, Jean-Pierre; Zauner, Ludwig; Berger, Christoph; Bernasconi, Michele; Speck, Roberto F; Nadal, David

    2009-01-01

    Toll-like receptors (TLRs) are key receptors of the innate immune system and show cell subset-specific expression. We investigated the messenger RNA (mRNA) expression of TLR genes in human haematopoietic stem cells (HSC), in naïve B cells, in memory B cells, in plasma cells from palatine tonsils and in plasma cells from peripheral blood. HSC and plasma cells showed unrestricted expression of TLR1–TLR9, in contrast to B cells which lacked TLR3, TLR4 and TLR8 but expressed mRNA of all other TLRs. We demonstrated, for the first time, that TLR triggering of terminally differentiated plasma cells augments immunoglobulin production. Thus, boosting the immediate antibody response by plasma cells upon pathogen recognition may point to a novel role of TLRs. PMID:19950420

  13. Stimulated emission and lasing in laser-induced plasma plume

    NASA Astrophysics Data System (ADS)

    Nagli, Lev; Gaft, Michael; Gornushkin, Igor; Glaus, Reto

    2016-11-01

    The lasing effect is demonstrated in laser plasmas induced on various metal targets and pumped by a laser tuned in resonance with a strong optical transition of a metal. The intense, polarized and low-divergent radiation is emitted from a longitudinally pumped plasma plume in forward and backward directions with respect to the pump beam. Lasing occurs only within duration of the pumping pulse. The effect is found for elements of 13th and 14th groups and for Ca, Ti, Zr, Fe and Ni. The Einstein coefficients for spontaneous emission of all lasing transitions are higher than 107 s-1. For some elements like Al and In, a three-level lasing scheme is realized. For others, like Tl, both three- and four-level lasing schemes are realized. It is found that the longitudinal pump geometry is more efficient than the transversal one.

  14. Slurry sample introduction with microwave induced plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Sturgeon, Ralph E.

    1993-04-01

    The successful direct introduction of aqueous slurry samples into a highly efficient TE 101 microwave plasma has been demonstrated. Slurry samples from a spray chamber are fed directly into the cavity with no desolvation apparatus. A V-groove, clog-free Babington-type nebulizer was evaluated for use with high solids content solutions. Slurry concentrations up to 10% m/v were used for the microwave induced plasma work with calibration by the standard additions method. Results are presented for the analysis of two NRCC Standard Reference Materials, i.e. TORT-1 (Lobster Hepatopancreas) and PACS-21 (Marine Sediment). Agreement between analytical results and certified values for the test elements Cd, Cu, Fe and Zn (in the range of 28-850 μg/g) was good. No memory effects were evident and the nebulizer system had a rapid clean-out time.

  15. Plasma-induced degradation of diphenylamine in aqueous solution.

    PubMed

    Gai, Ke

    2007-07-19

    The liquid-phase degradation induced by a gaseous plasma was investigated. The plasma was generated between an electrolytic solution and an anode tip by means of contact glow discharge electrolysis (CGDE). Aqueous diphenylamine was smoothly oxidized and eventually degradad to inorganic carbon. Results indicated that the degradation rate can be considerably raised by prolonging the discharge time and the optimum pH value was 6.0 for diphenylamine degradation. Fe2+ shows an evident accelerated effect on the diphenylamine elimination, meanwhile the presence of H2O2 benefited the degradation but the presence of n-butanol inhibited the degradation, demonstrating that the hydroxyl radicals were the most responsible oxidants in the diphenylamine degradation. The major intermediate products resulted from the degradation were identified by an HPLC analysis and a degradation path way was proposed. PMID:17296262

  16. Chirality-induced negative refraction in magnetized plasma

    SciTech Connect

    Guo, B.

    2013-09-15

    Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing the external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.

  17. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity. PMID:23851147

  18. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    SciTech Connect

    Zhang, Qian; Ma, Ruonan; Tian, Ying; Liang, Yongdong; Feng, Hongqing; Zhang, Jue; Fang, Jing

    2013-05-20

    Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  19. Identification of plasma APE1/Ref-1 in lipopolysaccharide-induced endotoxemic rats: implication of serological biomarker for an endotoxemia.

    PubMed

    Park, Myoung Soo; Lee, Yu Ran; Choi, Sunga; Joo, Hee Kyoung; Cho, Eun Jung; Kim, Cuk Seong; Park, Jin Bong; Jo, Eun-Kyeong; Jeon, Byeong Hwa

    2013-06-14

    Apurinic/apyrimidinic endonuclease1/Redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and in transcriptional regulation of gene expression. We investigated whether APE1/Ref-1 increased in plasma of endotoxemic rats. Lipopolysaccharide (LPS) was used to induce endotoxemia in rats. Administration of LPS (10 mg/kg, i.p.) significantly induced plasma nitrite production and tumor necrosis factor-α (TNF-α). A 37 kDa immunoreactive band was detected in cell-free plasma of LPS-treated rats using anti-APE1/Ref-1, which reached a maximum at 12 h after the LPS injection. The 37 kDa immunoreactive band was identified as rat APE1/Ref-1 by liquid chromatography/tandem mass spectrometry. Interestingly, treatment with recombinant human APE1/Ref-1 protein (2-5 μg/ml for 18 h) inhibited TNF-α-induced vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells. Taken together, the level of plasma APE1/Ref-1 increased in LPS-induced endotoxemic rats, suggesting that plasma APE1/Ref-1 might serve as a serological biomarker for endotoxemia.

  20. Study of plasma heating induced by fast electrons

    SciTech Connect

    Morace, A.; Batani, D.; Redaelli, R.; Magunov, A.; Fourment, C.; Santos, J. J.; Malka, G.; Boscheron, A.; Nazarov, W.; Vinci, T.; Okano, Y.; Inubushi, Y.; Nishimura, H.; Flacco, A.; Spindloe, C.; Tolley, M.

    2009-12-15

    We studied the induced plasma heating in three different kinds of targets: mass limited, foam targets, and large mass targets. The experiment was performed at Alise Laser Facility of CEA/CESTA. The laser system emitted a approx1 ps pulse with approx10 J energy at a wavelength of approx1 {mu}m. Mass limited targets had three layers with thicknesses of 10 {mu}m C{sub 8}H{sub 8}, 1 {mu}m C{sub 8}H{sub 7}Cl, and 10 {mu}m C{sub 8}H{sub 8} with size of 100x100 {mu}m{sup 2}. Detailed spectroscopic analysis of x rays emitted from the Cl tracer showed that it was possible to heat up the plasma from mass limited targets to a temperature of approx250 eV with density of approx10{sup 21} cm{sup -3}. The plasma heating is only produced by fast electron transport in the target, being the 10 {mu}m C{sub 8}H{sub 8} overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the prepulse. These results demonstrate that with mass limited targets, it is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  1. General Information about Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  2. Epidemiology of the plasma-cell disorders.

    PubMed

    Kyle, Robert A; Rajkumar, S Vincent

    2007-12-01

    This review of the plasma-cell disorders begins with the definition of monoclonal gammopathy of undetermined significance (MGUS). The prevalence of MGUS in white and black populations is described. MGUS is a common finding in the medical practice of all physicians, and thus it is important to both the patient and the physician to determine whether the monoclonal protein remains stable or progresses to multiple myeloma (MM), Waldenström's macroglobulinemia (WM), primary systemic amyloidosis (AL), or a related disorder. The long-term (almost 40 years) follow-up data of 241 patients in the Mayo Clinic population is provided. In a large study of 1384 patients with MGUS from southeastern Minnesota, the risk of progression to MM, WM, AL, or other disorders was approximately 1% per year. Risk factors for progression are provided. The incidence of MM in Olmsted County, Minnesota, remained stable for the 56-year span 1945-2001. The apparent increase in incidence and mortality rates among patients with MM in many studies is due to improved case ascertainment, especially among the elderly. The incidence and mortality rates of MM in the United States and other countries are presented. The major emphasis is on the cause of MM, which is unclear. Exposure to radiation from atomic bombs, therapeutic and diagnostic radiation, and in workers in the nuclear industry field are addressed. Many studies involving agricultural occupations, exposure to benzene, petroleum products, and engine exhaust and other industrial exposures are discussed. Tobacco use, obesity, diet, and alcohol ingestion are all possible causes of MM. Clusters of MM have been noted. Multiple cases of MM have been found in first-degree relatives.

  3. Dusty plasma cavities: Probe-induced and natural.

    PubMed

    Harris, B J; Matthews, L S; Hyde, T W

    2015-06-01

    A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented. Voids created in three-dimensional crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified Gaseous Electronics Conference rf cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a dc plasma is modified and applied to explain experimental data in rf plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation upon increasing the probe potential above the plasma floating potential is justified by a combination of ion drag and sheath edge modification. The cavities produced by these methods appear similar, but each is shown to be facilitated by fundamentally different processes.

  4. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.

  5. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. PMID:26652403

  6. Primary Plasma Cell Leukemia: Identity Card 2016.

    PubMed

    Musto, Pellegrino; Simeon, Vittorio; Todoerti, Katia; Neri, Antonino

    2016-04-01

    Primary plasma cell leukemia (PPCL) is an aggressive and rare variant of multiple myeloma (MM), characterized by peculiar adverse clinical and biological features. Though the poor outcome of PPCL has been slightly improved by novel treatments during the last 10 years, due to the limited number of available studies in this uncommon disease, optimal therapy remains a classic unmet clinical need. Anyway, in the real-life practice, induction with a bortezomib-based three-drug combination, including dexamethasone and, possibly, lenalidomide, or, alternatively, thalidomide, cyclophosphamide, or doxorubicin, is a reasonable first-line option. This approach may be particularly advisable for patients with adverse cytogenetics, hyperleucocytosis, and rapidly progressive disease, in whom a fast response is required, or for those with suboptimal renal function, where, however, lenalidomide should be used with caution until renal activity is restored. In younger subjects, leukemia/lymphoma-like more intensive regimens, including hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone or continue-infusion cisplatin, doxorubicin, cyclophosphamide, and etoposide, may be also combined with bortezomib +/- thalidomide. Treatment must be started immediately after a diagnosis of PPCL is made to avoid the risk of irreversible disease complications and, in such a context, the prevention of tumor lysis syndrome is mandatory. In patients eligible for autologous stem cell transplantation (AuSCT), other alkylating agents, in particular melphalan, should be initially avoided in order to allow adequate collections of CD34+ peripheral blood stem cells (PBSC). A combination of lenalidomide and dexamethasone may be a valuable alternative option to manage older or unfit patients or those with slower disease evolution or with signs of neuropathy, contraindicating the use of bortezomib. Patients not suitable for transplant procedures should continue the treatment, if a

  7. Primary Plasma Cell Leukemia: Identity Card 2016.

    PubMed

    Musto, Pellegrino; Simeon, Vittorio; Todoerti, Katia; Neri, Antonino

    2016-04-01

    Primary plasma cell leukemia (PPCL) is an aggressive and rare variant of multiple myeloma (MM), characterized by peculiar adverse clinical and biological features. Though the poor outcome of PPCL has been slightly improved by novel treatments during the last 10 years, due to the limited number of available studies in this uncommon disease, optimal therapy remains a classic unmet clinical need. Anyway, in the real-life practice, induction with a bortezomib-based three-drug combination, including dexamethasone and, possibly, lenalidomide, or, alternatively, thalidomide, cyclophosphamide, or doxorubicin, is a reasonable first-line option. This approach may be particularly advisable for patients with adverse cytogenetics, hyperleucocytosis, and rapidly progressive disease, in whom a fast response is required, or for those with suboptimal renal function, where, however, lenalidomide should be used with caution until renal activity is restored. In younger subjects, leukemia/lymphoma-like more intensive regimens, including hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone or continue-infusion cisplatin, doxorubicin, cyclophosphamide, and etoposide, may be also combined with bortezomib +/- thalidomide. Treatment must be started immediately after a diagnosis of PPCL is made to avoid the risk of irreversible disease complications and, in such a context, the prevention of tumor lysis syndrome is mandatory. In patients eligible for autologous stem cell transplantation (AuSCT), other alkylating agents, in particular melphalan, should be initially avoided in order to allow adequate collections of CD34+ peripheral blood stem cells (PBSC). A combination of lenalidomide and dexamethasone may be a valuable alternative option to manage older or unfit patients or those with slower disease evolution or with signs of neuropathy, contraindicating the use of bortezomib. Patients not suitable for transplant procedures should continue the treatment, if a

  8. ELECTRON MICROSCOPY OF PLASMA-CELL TUMORS OF THE MOUSE

    PubMed Central

    Parsons, D. F.; Darden, E. B.; Lindsley, D. L.; Pratt, Guthrie T.

    1961-01-01

    An electron microscope study was made of a series of transplanted MPC-1 plasma-cell tumors carried by BALB/c mice. Large numbers of particles similar in morphology to virus particles were present inside the endoplasmic reticulum of tumor plasma cells. Very few particles were seen outside the cells or in ultracentrifuged preparations of the plasma or ascites fluid. In very early tumors particles were occasionally seen free in the cytoplasm adjacent to finely granular material. In general, the distribution of these particles inside endoplasmic reticulum is similar in early and late tumors. A few transplanted X5563 tumors of C3H mice were also examined. Large numbers of particles were found in the region of the Golgi apparatus in late X5663 tumors. A newly described cytoplasmic structure of plasma cells, here called a "granular body," appears to be associated with the formation of the particles. Particles present in MPC-1 tumors are exclusively of a doughnut form, whereas some of those in the inclusions of the late X5563 tumors show a dense center. Normal plasma cells, produced by inoculation of a modified Freund adjuvant into BALB/c mice. have been compared morphologically with tumor plasma cells of both tumor lines. PMID:13733008

  9. Wake-induced bending of two-dimensional plasma crystals

    SciTech Connect

    Röcker, T. B. Ivlev, A. V. Zhdanov, S. K.; Morfill, G. E.; Couëdel, L.

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  10. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  11. Microarray-based understanding of normal and malignant plasma cells

    PubMed Central

    De Vos, John; Hose, Dirk; Rème, Thierry; Tarte, Karin; Moreaux, Jérôme; Mahtouk, Karéne; Jourdan, Michel; Goldschmidt, Hartmut; Rossi, Jean-François; Cremer, Friedrich W.; Klein, Bernard

    2006-01-01

    Plasma cells develop from B-lymphocytes following stimulation by antigen and express a genetic program aimed at the synthesis of immunoglobulins. This program includes the induction of genes coding for transcription factors such as PRDM1 and XBP1, cell-surface molecules such as CD138/syndecan-1 and for the unfolded protein response (UPR). We review how the microarray technology has recently contributed to the understanding of the biology of this rare but essential cell population and its transformation into pre-malignant and malignant plasma cells. PMID:16623766

  12. Suppression of plasma-induced damage on GaN etched by a Cl2 plasma at high temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Zecheng; Pan, Jialin; Kako, Takashi; Ishikawa, Kenji; Takeda, Keigo; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2015-06-01

    Plasma-induced damage (PID) during plasma-etching processes was suppressed by the application of Cl2 plasma etching at an optimal temperature of 400 °C, based on results of evaluations of photoluminescence (PL), stoichiometric composition, and surface roughness. The effects of ions, photons, and radicals on damage formation were separated from the effects of plasma using the pallet for plasma evaluation (PAPE) method. The PID was induced primarily by energetic ion bombardments at temperatures lower than 400 °C and decreased with increasing temperature. Irradiations by photons and radicals were enhanced to form the PID and to develop surface roughness at temperatures higher than 400 °C. Consequently, Cl2 plasma etching at 400 °C resulted optimally in low damage and a stoichiometric and smooth GaN surface.

  13. Vertical-probe-induced asymmetric dust oscillation in complex plasma.

    PubMed

    Harris, B J; Matthews, L S; Hyde, T W

    2013-05-01

    A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge. PMID:23767645

  14. Control of the Proliferation of Mammalian Cells by the Non-Thermal Atmospheric Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Ha, Chang Seung; Ma, Yonghao; Lee, Jungyeol; Song, Kiwon

    2012-10-01

    Recent development of the atmospheric pressure plasmas (APPs) reported dramatic achievement on the applications to sterilization, wound healing, blood coagulation, and so on. These effects are coming from the abundant electrons, various ions, radicals, and neutral atoms which cause specific interactions with cells. However, the application of APPs to human cells has been mainly focused on cell death, but not so much on cell proliferation. In this study, the effects of a non-thermal dielectric barrier discharge (DBD) were investigated for three different human cell lines. It was observed that the exposure of APP to human adipose-derived stem cells (ASC) and the primary lung fibroblast IMR-90 cells induced increased cell proliferation in a specific condition. On the other hand, the same exposure of APP to HeLa cells dramatically decreased their viability. These observations suggest that different types of human cells differentially respond to the exposure of APP.

  15. Molecular characterization of a cold-induced plasma membrane protein gene from wheat.

    PubMed

    Koike, Michiya; Sutoh, Keita; Kawakami, Akira; Torada, Atsushi; Oono, Kiyoharu; Imai, Ryozo

    2005-12-01

    As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.

  16. Plasma-ion-induced Sputtering And Heating Of Titan'S Atmosphere

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.

    2006-09-01

    Plasma-ion-induced sputtering and heating of Titan's atmosphere O.J. Tucker (1), R.E. Johnson (1), M. Michael (1), V.I. Shematovich (1,2) J.H. Luhmann (3), S.A. Ledvina (3) (1) University of Virginia, Charlottesville, VA 22904, USA (2) Institute of Astronomy RAS, Moscow 109017, Russia, (3) University of California, Berkeley, CA 94720, USA Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere. Atmospheres equivalent in size similar to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that can be employed in interpreting Cassini data at Titan. It is shown that the globally averaged flux of magnetospheric and pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated and compared to available Cassini data. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., “ The magnetospheric plasma-driven evolution of satellite atmospheres” Astrophys. J. 609, L99-L102 (2004). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann,"Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003). 1

  17. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Miletić, M.; Mojsilović, S.; Okić Đorđević, I.; Maletić, D.; Puač, N.; Lazović, S.; Malović, G.; Milenković, P.; Petrović, Z. Lj; Bugarski, D.

    2013-08-01

    Here we investigate the influences of non-thermal atmospheric plasma on human mesenchymal stem cells isolated from periodontal ligament (hPDL-MSCs). A specially redesigned plasma needle was used as the source of low-temperature plasma and its effects on different hPDL-MSC functions were investigated. Cell cultures were obtained from extracted normal impacted third molars and characterized for their phenotype and multi-potential differentiation. The hPDL-MSCs possessed all the typical MSC properties, including clonogenic ability, high proliferation rate, specific phenotype and multilineage differentiation. The data regarding the interaction of plasma with hPDL-MSCs demonstrated that plasma treatment inhibited the migration of hPDL-MSCs and induced some detachment, while not affecting their viability. Additionally, plasma significantly attenuated hPDL-MSCs' proliferation, but promoted their osteogenic differentiation. The results of this study indicated that a non-thermal plasma offers specific activity with non-destructive properties that can be advantageous for future dental applications.

  18. Plasma-induced Escape and Alterations of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  19. Mechanism of plasma-induced damage to low-k SiOCH films during plasma ashing of organic resists

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Miyawaki, Yudai; Takashima, Seigo; Fukasawa, Masanaga; Oshima, Keiji; Nagahata, Kazunori; Tatsumi, Tetsuya; Hori, Masaru

    2011-02-01

    Plasma-induced damage to porous SiOCH (p-SiOCH) films during organic resist film ashing using dual-frequency capacitively coupled O2 plasmas was investigated using the pallet for plasma evaluation method developed by our group. The damage was characterized by ellipsometry and Fourier-transform infrared spectroscopy. Individual and synergetic damage associated with vacuum ultraviolet (VUV) and UV radiation, radicals, and ions in the O2 plasma were clarified. It was found that the damage was caused not only by radicals but also by synergetic reactions of radicals with VUV and UV radiation emitted by the plasmas. It is noteworthy that the damage induced by plasma exposure without ion bombardment was larger than the damage with ion bombardment. These results differed from those obtained using an H2/N2 plasma for resist ashing. Finally, the mechanism of damage to p-SiOCH caused by O2 and H2/N2 plasma ashing of organic resist films is discussed. These results are very important in understanding the mechanism of plasma-induced damage to p-SiOCH films.

  20. Mechanism of plasma-induced damage to low-k SiOCH films during plasma ashing of organic resists

    SciTech Connect

    Takeda, Keigo; Miyawaki, Yudai; Takashima, Seigo; Fukasawa, Masanaga; Oshima, Keiji; Nagahata, Kazunori; Tatsumi, Tetsuya; Hori, Masaru

    2011-02-01

    Plasma-induced damage to porous SiOCH (p-SiOCH) films during organic resist film ashing using dual-frequency capacitively coupled O{sub 2} plasmas was investigated using the pallet for plasma evaluation method developed by our group. The damage was characterized by ellipsometry and Fourier-transform infrared spectroscopy. Individual and synergetic damage associated with vacuum ultraviolet (VUV) and UV radiation, radicals, and ions in the O{sub 2} plasma were clarified. It was found that the damage was caused not only by radicals but also by synergetic reactions of radicals with VUV and UV radiation emitted by the plasmas. It is noteworthy that the damage induced by plasma exposure without ion bombardment was larger than the damage with ion bombardment. These results differed from those obtained using an H{sub 2}/N{sub 2} plasma for resist ashing. Finally, the mechanism of damage to p-SiOCH caused by O{sub 2} and H{sub 2}/N{sub 2} plasma ashing of organic resist films is discussed. These results are very important in understanding the mechanism of plasma-induced damage to p-SiOCH films.

  1. On the toroidal plasma rotations induced by lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoyin; Qin, Hong; Liu, Jian; Fisch, Nathaniel J.

    2013-02-01

    A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-difference method. Numerical results agree well with the experimental observations in terms of flow profile and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves.

  2. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  3. On the Toroidal Plasma Rotations Induced by Lower Hybrid Waves

    SciTech Connect

    Guan, Xiaoyin; Qin, Hong; Liu, Jian; Fisch, Nathaniel J.

    2012-11-14

    A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric fi eld initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a fi nite- difference method. Numerical results agree well with the experimental observations in terms of flow pro file and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. __________________________________________________

  4. Plasma-ion-induced sputtering and heating of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Michael, M.; Tucker, O. J.; Shematovich, V. I.; Luhmann, J. H.; Ledvina, S. A.

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmosphere mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the fact that data from the Cassini spacecraft can be used to determine the present erosion rate of Titan's atmosphere by the plasma trapped in Saturn's magnetosphere provides an exciting end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that can, in principal, be employed in interpreting Cassini data at Titan. It is shown that the globally averaged flux of magnetospheric and pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated and compared to available Cassini data. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasma- driven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175

  5. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  6. Plasma-ion Induced Sputtering and Heating of Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.

    2007-05-01

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmospheric mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the use of Cassini data to determine the present erosion rate of Titan's atmosphere provides an important end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that are used to interpret Cassini data at Titan. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasmadriven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann, "Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003).

  7. The Induced Plasma Environment of Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Clemens, Adam; Burgess, David

    2014-05-01

    Spacecraft thruster firings for attitude control can strongly perturb the local plasma environment. At 1 AU such attitude manoeuvres are usually infrequent and scientific data taking is reduced or turned off during such periods. However, Solar Probe Plus (SPP), which will eventually reach only 8.5 solar radii from the Sun's surface, will require frequent attitude changes for thermal control. Additionally it will be in an environment with much higher UV radiation and with very different plasma parameters from conditions typical for spacecraft at 1 AU. Data taking will be at a premium due to the relatively short time spent closest to the Sun. For these reasons it is interesting to examine the influence of thruster firings on the local plasma environment appropriate to the Solar Probe Plus mission We have developed a model of the neutral gas plume for a generic monopropellant thruster. Using ionization rates appropriate to the range of solar distances for SPP, and the orbital velocity of SPP, we have performed 3D hybrid simulations of the interaction of the thruster exhaust with the local solar wind. We will present results for different scenarios of solar distance and solar wind parameters. Newly ionized particles can couple to the solar wind via mass loading, ion cyclotron instabilities and transient effects. We will discuss the types of interaction seen in the simulations and compare with similar phenomena seen in cometary environments. The induced environment at the spacecraft location will be described, as localized perturbations of plasma density, etc., may invalidate observations of the in situ solar wind.

  8. Laser Induced Fluorescence Diagnostic for the ASTRAL Plasma Source.

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Kamar, Ola; Munoz, Jorge

    2006-10-01

    A Laser Induced Fluorescence (LIF) diagnostic is presented in this poster. The ion temperature measurements are made in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source using a diode laser based LIF diagnostic. ASTRAL produces Ar plasmas with the following parameters: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. Operating pressure varies from 0.1 to 100 mTorr and any gas can be used for the discharge. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A number of diagnostics are presently installed on the plasma device (Langmuir Probe, Spectrometer, LIF system). The LIF diagnostic makes use of a diode laser with the following characteristics: 1.5 MHz bandwidth, Littrow external cavity, mode-hop free tuning range up to 16 GHz, total power output of about 15 mW. The wavelength is measured by a precision wavemeter and frequent monitoring prevents wavelength drift. For Ar plasma, a new LIF scheme has been developed. The laser tuned at 686.354 nm, is used to pump the 3d^4F5/2 Ar II metastable level to the 4p^4D5/2 state. The fluorescence radiation between the 4p^4D5/2 and the 4s^4P3/2 terms (442.6 nm) is monitored by a PMT.

  9. Infrared laser induced plasma diagnostics of silver target

    SciTech Connect

    Ahmat, L. Nadeem, Ali; Ahmed, I.

    2014-09-15

    In the present work, the optical emission spectra of silver (Ag) plasma have been recorded and analyzed using the laser induced breakdown spectroscopy technique. The emission line intensities and plasma parameters were investigated as a function of lens to sample distance, laser irradiance, and distance from the target surface. The electron number density (n{sub e}) and electron temperature (T{sub e}) were determined using the Stark broadened line profile and Boltzmann plot method, respectively. A gradual increase in the spectral line intensities and the plasma parameters, n{sub e} from 2.89 × 10{sup 17} to 3.92 × 10{sup 17 }cm{sup −3} and T{sub e} from 4662 to 8967 K, was observed as the laser irradiance was increased 2.29 × 10{sup 10}–1.06 × 10{sup 11} W cm{sup −2}. The spatial variations in n{sub e} and T{sub e} were investigated from 0 to 5.25 mm from the target surface, yielding the electron number density from 4.78 × 10{sup 17} to 1.72 × 10{sup 17 }cm{sup −3} and electron temperature as 9869–3789 K. In addition, the emission intensities and the plasma parameters of silver were investigated by varying the ambient pressure from 0.36 to 1000 mbars.

  10. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  11. Low Temperature Plasma Kills SCaBER Cancer Cells

    NASA Astrophysics Data System (ADS)

    Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir

    2013-09-01

    Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.

  12. Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells.

    PubMed

    Zeng, Ye; Liu, Xiao-Heng; Tarbell, John; Fu, Bingmei

    2015-11-15

    Sphingosine 1-phosphate (S1P) protects glycocalyx against shedding, playing important roles in endothelial functions. We previously found that glycocalyx on endothelial cells (ECs) was shed after plasma protein depletion. In the present study, we investigated the role of S1P on the recovery of glycocalyx, and tested whether it is mediated by phosphoinositide 3-kinase (PI3K) pathway. After depletion of plasma protein, ECs were treated with S1P for another 6h. And then, the major components of glycocalyx including syndecan-1 with attached heparan sulfate (HS) and chondroitin sulfate (CS) on endothelial cells were detected using confocal fluorescence microscopy. Role of PI3K in the S1P-induced synthesis of glycocalyx was confirmed by using the PI3K inhibitor (LY294002). Syndecan-1 with attached HS and CS were degraded with duration of plasma protein depletion. S1P induced recovery of syndecan-1 with attached HS and CS. The PI3K inhibitor LY294002 abolished the effect of S1P on recovery of glycocalyx. Thus, S1P induced synthesis of glycocalyx on endothelial cells and it is mediated by PI3K pathway.

  13. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors.

    PubMed

    Franco, Rodrigo; Panayiotidis, Mihalis I; de la Paz, Lenin D Ochoa

    2008-07-01

    Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters. PMID:18300263

  14. Influence of plasma treatment time on plasma induced vapor phase grafting modification of PBO fiber surface

    NASA Astrophysics Data System (ADS)

    Song, B.; Meng, L. H.; Huang, Y. D.

    2012-05-01

    The surface of poly-p-phenylene benzobisthiazole (PBO) fibers was treated through oxygen plasma induced vapor phase grafting (PIVPG) method under various oxygen plasma pre-treatment time conditions. The surface chemical composition, surface morphologies and surface free energy of pristine and treated PBO fibers were studied using X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and Cahn DCAA system. The mechanics property of these fibers was evaluated by tensile strength and interfacial shear strength (IFSS). It was found that the surface characteristics of treated PBO fibers occurred significant change compare with the pristine PBO fibers. After treatment, the polar functional groups were introduced on the fiber surface. Carbon concentration decreased; oxygen concentration and elemental ratio of oxygen to carbon increased. Acrylic acid can react with the activated PBO fibers surface, which led to the fiber surface roughness increased. The surface free energy increased from 41.4 mN/m to 62.8 mN/m when PBO fibers were plasma pre-treated for 10 min, while the IFSS of PBO fibers with epoxy resin increased from 36.6 MPa to 55.8 MPa. Therefore, PIVPG can be used to enhance the interfacial bond between PBO fibers and epoxy resin.

  15. Methylglyoxal induces mitochondrial dysfunction and cell death in liver.

    PubMed

    Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2014-09-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  16. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  17. Correlative Light and Electron Microscopy Reveals the HAS3-Induced Dorsal Plasma Membrane Ruffles

    PubMed Central

    Rilla, Kirsi; Koistinen, Arto

    2015-01-01

    Hyaluronan is a linear sugar polymer synthesized by three isoforms of hyaluronan synthases (HAS1, 2, and 3) that forms a hydrated scaffold around cells and is an essential component of the extracellular matrix. The morphological changes of cells induced by active hyaluronan synthesis are well recognized but not studied in detail with high resolution before. We have previously found that overexpression of HAS3 induces growth of long plasma membrane protrusions that act as platforms for hyaluronan synthesis. The study of these thin and fragile protrusions is challenging, and they are difficult to preserve by fixation unless they are adherent to the substrate. Thus their structure and regulation are still partly unclear despite careful imaging with different microscopic methods in several cell types. In this study, correlative light and electron microscopy (CLEM) was utilized to correlate the GFP-HAS3 signal and the surface ultrastructure of cells in order to study in detail the morphological changes induced by HAS3 overexpression. Surprisingly, this method revealed that GFP-HAS3 not only localizes to ruffles but in fact induces dorsal ruffle formation. Dorsal ruffles regulate diverse cellular functions, such as motility, regulation of glucose metabolism, spreading, adhesion, and matrix degradation, the same functions driven by active hyaluronan synthesis. PMID:26448759

  18. Secondary electron induced asymmetry in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Chabert, P.; Booth, J. P.

    2013-04-01

    Using a simple analytical model, together with a 1D particle-in-cell simulation, we show that it is possible to generate an asymmetric plasma response in a sinusoidally excited, geometrically symmetric, capacitively coupled plasma (CCP). The asymmetric response is produced using rf electrodes of differing materials, and hence different secondary electron emission coefficients. This asymmetry in the emission coefficients can produce a significant, measurable dc bias voltage (Vbias/Vrf ˜ 0-0.2), together with an asymmetry in the plasma density profiles and ion flux to each electrode. The dc bias formation can be understood from a particle-flux balance applied to each electrode, and results from two main effects: (1) the larger effective ion flux at each electrode due to the emission of secondary electrons and (2) ion-flux multiplication within the sheath due to ionization from these emitted secondary electrons. By making use of an empirical fit to the simulation data, the possibility of non-invasively estimating secondary electron emission coefficients in CCP systems is discussed.

  19. Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Kun; Mo, Jin-Jun; Yu, Zhi-Yang; Shi, Wei; Li, Hai-Ming; Bian, Bo-Rui

    2016-05-01

    A reconfigurable metamaterial analog electromagnetically-induced-transparency-like (EIT-like) effect is theoretically and numerically demonstrated in this paper. The unit cell is composed of a stimulated circular loop element and an unstimulated arc slot element, which are both constructed by semiconductor. The interaction between the two elements of the unit cell leads to a transparency window, resembling a special quantum optical phenomenon as electromagnetic (EM) induced transparency. The proposed designs can realize a continuously tunable EIT-like effect in a broad frequency range from 2.2 GHz to 3.6 GHz by changing the arc slot angle, while the number of EIT-like transmission windows can be configured by increasing the number of arc slots. This scheme which is constructed by solid state plasma (SSP) metamaterial provides an alternative way to realize the tunable plasmonic sensing and make new kinds of reconfigurable devices.

  20. Measurement of apoptosis and proliferation of bone marrow plasma cells in patients with plasma cell proliferative disorders.

    PubMed

    Witzig, T E; Timm, M; Larson, D; Therneau, T; Greipp, P R

    1999-01-01

    The proliferative rate of malignant plasma cells, as measured by the plasma cell labelling index (PCLI), is an important prognostic factor in multiple myeloma (MM); however, the PCLI alone is probably Inadequate to describe tumour growth because it ignores the idea that myeloma cells may have a reduced rate of apoptosis. The aims of this study were to develop a flow cytometric method to measure the apoptosis index of fresh marrow plasma cells and develop a plasma cell growth index (PCGI) that related both proliferation and apoptosis to disease activity. Marrow aspirates were obtained from 91 patients with plasma cell disorders and the plasma cells in apoptosis were identified by either 7-amino actinomycin-D (7-AAD) or annexin V-FITC three-colour flow cytometry. The median plasma cell apoptotic index (PCAI) for patients with monoclonal gammopathy of undetermined significance (MGUS), smouldering or indolent myeloma (SMM/IMM), and new multiple myeloma (MM) was 5.2, 3.4 and 2.4, respectively (P=0.03, MGUS v MM). The median PCLI for these same patient groups was 0.0, 0.2 and 0.6, respectively (P<0.001, MGUS v MM). The paired PCLI and PCAI for each sample were used to derive the PCGI=2 + [PCLI-(O.1)(PCAI)]. The median PCGI for patients with inactive disease (MGUS, SMM/IMM or amyloidosis) was 1.8 compared to 2.4 for those with active disease (new or relapsed MM) (P<0.001). These results suggest that a decrease in the PCAI may be a factor in the progression from MGUS to SMM to overt MM. PMID:10027725

  1. Human red blood cells' physiological water exchange with the plasma.

    PubMed

    Kargol, M; Kargol, A; Przestalski, M; Siedlecki, J; Karpińska, M; Rogowski, M

    2005-01-01

    In the present paper, fundamental issues related to the mechanisms of human red blood cells' physiological water exchange with the plasma (for the stationary conditions) have been discussed. It has been demonstrated, on the basis of mechanistic transport equations for membrane transport that red blood cells are capable of exchanging considerable amounts of water with the plasma. Water absorption is osmosis-driven, and its removal occurs according to the hydromechanics principle, i.e. is driven by the turgor pressure of red blood cells. This newly-acquired knowledge of these issues may appear highly useful for clinical diagnosis of blood diseases and blood circulation failures. PMID:16358974

  2. Plasma cell granuloma of the lung (inflammatory pseudotumor).

    PubMed

    Fassina, A S; Rugge, M; Scapinello, A; Viale, G; Dell'Orto, P; Ninfo, V

    1986-10-31

    A case of plasma cell granuloma (PCG) of the lung in a 54-year old man is reported. PCG is a rare benign lesion that usually presents as a solitary nodule in the lung (coin lesion) at routine X-ray examination. Microscopically it consists of a granulomatous tissue where the major components are mature plasma cells. The immunohistochemical demonstration of polyclonality of plasma cells, excluding the diagnosis of plasmacytoma, confirms the inflammatory pseudotumoral nature of this lesion, although the etiology remains obscure. The presence of lymphocytes, histiocytes, macrophages, blood vessels with prominent endothelial cells and peripheral sclero-hyalinized connective tissue may pose problems in the differential diagnosis with sclerosing hemangioma, pseudolymphoma, nodular amyloidosis, pulmonary hyalinizing granuloma, chronic abscess and neoplasms of true histiocytic origin. The term inflammatory pseudotumor is preferable in describing this type of lesion. PMID:3798575

  3. Dry plasma processing for industrial crystalline silicon solar cell production

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Rentsch, J.; Preu, R.

    2010-10-01

    This paper gives an overview on the standard crystalline silicon solar cell manufacturing processes typically applied in industry. Main focus has been put on plasma processes which can replace existing, mainly wet chemical processes within the standard process flow. Finally, additional plasma processes are presented which are suited for higher-efficient solar cells, i.e. for the “passivated emitter and rear cell” concept (PERC) or the “heterojunction with intrinsic thin layer” approach (HIT). Plasma processes for the deposition of thin dielectric or semiconducting layers for surface passivation, emitter deposition or anti-reflective coating purposes are presented. Plasma etching processes for the removal of phosphorus silicate glass or parasitic emitters, for wafer cleaning and masked and mask-free surface texturisation are discussed.

  4. Laser-induced plasma generation and evolution in a transient spray.

    PubMed

    Kawahara, Nobuyuki; Tsuboi, Kazuya; Tomita, Eiji

    2014-01-13

    The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets.

  5. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  6. Does ATP cross the cell plasma membrane.

    PubMed Central

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes. PMID:7051582

  7. Plasma cell-free DNA in patients needing mechanical ventilation

    PubMed Central

    2011-01-01

    Introduction Concentrations of plasma cell-free DNA are increased in various diseases and have shown some prognostic value in many patient groups, including critically ill patients. Pathophysiological processes behind the need for mechanical ventilation and the treatment itself could raise plasma levels of cell-free DNA. We evaluated levels of plasma cell-free DNA and their prognostic value in patients needing mechanical ventilation. Methods We studied prospectively 580 mechanically ventilated critically ill patients. Blood samples were taken at study admission (Day 0) and on Day 2. Plasma cell-free DNA concentrations were measured by real-time quantitative PCR assay for the β-globin gene and are expressed as genome equivalents (GE)/ml. Results Median (interquartile range, IQR) plasma cell-free DNA concentration was 11,853 GE/ml (5,304 to 24,620 GE/mL) at study admission, and 11,610 GE/mL (6,411 to 21,558 GE/mL) on Day 2. Concentrations at admission were significantly higher in 90-day non-survivors than survivors, 16,936 GE/mL (7,262 to 46,866 GE/mL) versus 10,026 GE/mL (4,870 to 19,820 GE/mL), P < 0.001. In a multivariate logistic regression analysis plasma cell-free DNA concentration over 16,000 GE/ml remained an independent predictor of 90-day mortality (adjusted odds ratio 2.16, 95% confidence interval CI 1.37 to 3.40). Positive likelihood ratio of plasma cell-free DNA at admission for the prediction of 90-day mortality was 1.72 (95% CI 1.40 to 2.11). Conclusions Plasma levels of cell-free DNA were significantly higher in non-survivors than survivors. Plasma DNA level at baseline was an independent predictor of 90-day mortality. However, its clinical benefit as a prognostic marker seems to be limited. PMID:21838858

  8. Laser-induced incandescence applied to dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovačević, E.; Berndt, J.

    2016-07-01

    This paper reports on the laser heating of nanoparticles (diameters ≤slant 1 μm) confined in a reactive plasma by short (150 ps) and intense (˜ 63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the emission spectrum of the heated nanoparticles. The nanoparticles are not ideal black bodies, which is taken into account by calculating their emissivity using a light-scattering theory relevant to our conditions (Mie theory). Three sets of refractive index data from the literature serve as model input. The obtained radii range between 100 and 165 nm, depending on the choice of refractive index data set. By fitting the temperature decay of the particles to a heat exchange model, the product of their mass density and specific heat is determined as (1.3+/- 0.5) J K-1 cm-3, which is considerably smaller than the value for bulk graphite at the temperature our particles attain (3000 K): 4.8 J K-1 cm-3. The particle sizes obtained in situ with LII are compared with ex situ scanning electron microscopy analysis of collected particles. Quantitative assessment of the LII measurements is hampered by transport of particles in the plasma volume and the fact that LII probes locally, whereas the samples with collected particles have a more global character.

  9. Elemental analysis of urinary calculi by laser induced plasma spectroscopy.

    PubMed

    Fang, Xiao; Ahmad, S Rafi; Mayo, Mike; Iqbal, Syed

    2005-12-01

    Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.

  10. GEC Student Award for Excellence Finalist: Interaction of Non-Thermal Dielectric Barrier Discharge Plasma with DNA inside Cells

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Sameer; Kelly, Crystal; Fridman, Gregory; Clifford-Azizkhan, Jane; Fridman, Alexander; Friedman, Gary

    2008-10-01

    Direct non-thermal plasma is now being widely considered for various medical applications, viz; cancer treatment, coagulation, wound healing. However, the understanding of the interaction between non-thermal plasma and cells is lacking. Here we study the possibility that effects of the plasma treatment can penetrate though cellular membranes without destroying them. One of the most important of such effects to investigate would be DNA double strand breaks (DSB's) since these are some of the important events in a cell's life cycle. We measured DNA DSB's in mammalian cells using immunofluorescence and western blots. Hydrogen peroxide treatment was used as a positive control since it is known to induce massive DNA double strand breaks. The results indicate that short (5 seconds) direct plasma treatment at low power (0.2 W/cm^2) does produce DNA DSB's in mammalian cells. This means that somehow plasma penetrates inside the cells. Several questions arise about what is the mechanism of penetration and do the cells repair the DNA DSB's. We show that the cells do repair the DNA DSB's produced by short exposure of low power plasma. Although the detailed mechanisms are being investigated we confirmed that reactive oxygen species mediate interaction between plasma and DNA.

  11. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  12. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  13. Localized plasma irradiation through a micronozzle for individual cell treatment

    NASA Astrophysics Data System (ADS)

    Shimane, Ryutaro; Kumagai, Shinya; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru; Sasaki, Minoru

    2014-11-01

    A micronozzle device was fabricated for the localized plasma treatment of a cell. The device was attached to the tips of two ϕ1.5 mm capillary tubes injecting and evacuating the discharging plasma gas. At the bottom of the channel where the discharging gas flows, nozzle holes (ϕ2-30 µm) were prepared. Controlling the injecting and evacuating gas flows made the pressure in the channel negative or positive relative to the atmosphere. The cells were trapped or released through the nozzle holes. When the cells were trapped, the nozzle hole also defined the area of plasma treatment. An atmospheric-pressure microplasma was generated (He: 0.3 L/min, power: 30 W) for localized treatment. The test specimen was a plant cell, lily pollen (length: 100-140 µm). No burning of the pollen was observed during the 10 min plasma treatment. Only part of the surface reacted with the plasma irradiation. The depth of removal was about 1.5 µm.

  14. Inter- and intracellular signaling induced by magnetomechanical actuation of plasma membrane channels

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Rozhkova, Elena A.; Novosad, Valentyn; Bader, Samuel D.

    2012-02-01

    Magnetic particles allow for non-invasive control over their spatial orientation and motion which makes them ideally suitable for studying real-time processes in living cells. Lithographically defined ferromagnetic disks with spin-vortex ground state have the advantage of zero net magnetization in remanence. This eliminates long-range magnetic forces which otherwise lead to the interaction between particles and their agglomeration. Moreover, magnetically soft permalloy particles have high magnetization of saturation thus requiring very low external field for inducing high magnetomotive force, compared to superparamagnetic particles. Our group has previously demonstrated that micron-sized permalloy disks can be used for destruction of cancer cells (D.-H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, V. Novosad, Nat. Mater. 9, 165-171 (2010). In this work, we investigate the effects of magnetomechanical stimulation of human brain cancer cells with these particles. It will be shown that the actuation of ion channels in cell plasma membrane induces, on the one hand side, intracellular signaling triggering cell apoptosis and, on the other hand, it stimulates the energy transfer between the cells which carries the information about apoptotic signal.

  15. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    PubMed

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  16. Probing cell migration in confined environments by plasma lithography.

    PubMed

    Junkin, Michael; Wong, Pak Kin

    2011-03-01

    Cellular processes are regulated by various mechanical and physical factors in their local microenvironment such as geometric confinements, cell-substrate interactions, and cell-cell contact. Systematic elucidation of these regulatory mechanisms is crucial for fundamental understanding of cell biology and for rational design of biomedical devices and regenerative medicine. Here, we report a generally applicable plasma lithography technique, which performs selective surface functionalization on large substrate areas, for achieving long-term, stable confinements with length scales from 100 nm to 1 cm toward the investigation of cell-microenvironment interactions. In particular, we applied plasma lithography for cellular confinement of neuroblastomas, myoblasts, endothelial cells, and mammary gland epithelial cells, and examined the motion of mouse embryonic fibroblasts in directionality-confined environments for studying the effect of confinements on migratory behavior. In conjunction with live cell imaging, the distance traveled, velocity, and angular motion of individual cells and collective cell migration behaviors were measured in confined environments with dimensions comparable to a cell. A critical length scale that a cell could conceivably occupy and migrate to was also identified by investigating the behaviors of cells using confined environments with subcellular length scales.

  17. Collision Tumor With Renal Cell Carcinoma and Plasmacytoma: Further Evidence of a Renal Cell and Plasma Cell Neoplasm Relationship?

    PubMed Central

    Berquist, Sean W.; Hassan, Abd-elrahman Said; Miakicheva, Olga; Dufour, Catherine; Hamilton, Zachary; Shabaik, Ahmed; Derweesh, Ithaar H.

    2016-01-01

    Renal solitary extramedullary plasmacytomas belong to a group of plasma cell neoplasms, which generally have been associated with renal cell carcinoma. We present a case report of a patient with collision tumor histology of extramedullary plasmacytoma and clear cell renal cell carcinoma, the first in the known literature. Standard work-up for a plasma cell neoplasm was conducted and the mass was resected. The patient remains disease-free at 28 months post-surgery. The report calls into question pre-surgical renal mass biopsy protocol and suggests a relationship between renal cell carcinoma and plasma cell neoplasms. PMID:27175345

  18. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed Central

    Yu, Q. C.; McNeil, P. L.

    1992-01-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 11 Figure 6 Figure 8 PMID:1466399

  19. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinnunen, Matti; Khokhlova, Maria D.; Lyubin, Evgeny V.; Priezzhev, Alexander V.; Meglinski, Igor; Fedyanin, Andrey A.

    2016-03-01

    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed.

  20. Plasma-cell gingivitis. Report of a case.

    PubMed

    Lubow, R M; Cooley, R L; Hartman, K S; McDaniel, R K

    1984-04-01

    A well-documented case of plasma-cell gingivitis is presented. When viewed in a total perspective, the clinical examination, history of usage of a popular mint , laboratory data and histologic examination provide support for this diagnosis. This patient did not exhibit any evidence of glossitis or cheilitis as is often reported in the literature; however, a positive history to psoriasis was noted. The occurrence of plasma-cell gingivitis in a patient with documented psoriasis provides some interesting speculation regarding the etiologic picture of this condition. PMID:6585542

  1. Generation of High-Density Electrons Based on Plasma Grating Induced Bragg Diffraction in Air

    SciTech Connect

    Shi Liping; Li Wenxue; Wang Yongdong; Lu Xin; Ding Liang'en; Zeng Heping

    2011-08-26

    Efficient nonlinear Bragg diffraction was observed as an intense infrared femtosecond pulse was focused on a plasma grating induced by interference between two ultraviolet femtosecond laser pulses in air. The preformed electrons inside the plasma grating were accelerated by subsequent intense infrared laser pulses, inducing further collisional ionization and significantly enhancing the local electron density.

  2. Plasma Treatment of Single-Cell Niobium SRF Cavities

    SciTech Connect

    J. Upadhyay, M. Nikolić, S. Popović, L. Vušković, H.L. Phillips, A-M. Valente-Feliciano

    2011-03-01

    Superconducting radio frequency cavities of bulk Niobium are integral components of particle accelerators based on superconducting technology. Wet chemical processing is the commonly used procedure for impurities and surface defects removal and surface roughness improvement , both required to improve the RF performance of the cavity. We are studying plasma etching as an alternate technique to process these cavities. The uniformity of the plasma sheath at the inner wall of the cavity is one prerequisite for its uniform etching. We are developing electro-optic diagnostic techniques to assess the plasma uniformity. Multiple electro-optical probes are placed at different locations of the single cell cavity to diagnose the electrical and optical properties of the plasma. The electrical parameters are required to understand the kinetic nature of the plasma and the optical emission spectroscopy provides the spatial distribution of radicals in the plasma. The spatial variation of the plasma parameters inside the cavity and their effect on the etching of niobium samples placed at different locations in the cavity will be presented.

  3. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides

    PubMed Central

    Packialakshmi, Balamurugan; Liyanage, Rohana; Lay, Jackson O.; Makkar, Sarbjeet K.; Rath, Narayan C.

    2016-01-01

    Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation. PMID:27053921

  4. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Mingjun; Yang, Jinmei; Shu, Jing; Fu, Changhong; Liu, Shengnan; Xu, Ge; Zhang, Dechun

    2014-11-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway.

  5. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells

    PubMed Central

    2014-01-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway. PMID:25411570

  6. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells.

    PubMed

    Zhang, Mingjun; Yang, Jinmei; Shu, Jing; Fu, Changhong; Liu, Shengnan; Xu, Ge; Zhang, Dechun

    2014-01-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway. PMID:25411570

  7. Optical methods for measuring plasma membrane osmotic water permeability in cell layers

    NASA Astrophysics Data System (ADS)

    Farinas, Javier Anibal

    Optical methods were developed to measure water permeability in cell layers and used to characterize water channel transfected cells and measure individual plasma membrane water permeabilities of epithelial cells. The general approach was to measure the rate of change of cell volume in response to osmotic gradients. Changes in solute concentration resulting from cell volume changes were used to generate optical signals. Because of the high data acquisition rates obtainable with optical instruments, very high water permeabilities found in cells containing water channels can be measured. Total internal reflection microfluorimetry was used to measure water permeability in cells grown on transparent, solid supports. The fluorescence measured from cells containing a cytosolic fluorophore was inversely proportional to cell volume. The method was applied to transfected cells which expressed water channels and to investigate a cell model of the vasopressin-regulated shuttling of AQP2. Interferometry was used to measure cell volume and water permeability in adherent or non-adherent epithelial cell layers. Volume changes were shown to alter the optical path length of light passing through a cell layer. An interferometer was used to convert the small changes in optical path length to measurable changes in intensity. Cell membrane osmotic water permeability was determined from the time course of interference signal in response to osmotic gradients. Individual plasma membrane water permeabilities of epithelial cells were measured. To overcome the difficulties associated with interferometry, a spatial filtering microscopy method was developed based on changes in transmitted light intensity in a phase contrast microscope occurring after volume changes induced by osmotic gradients. A theory based on the refractive index changes observed in cells by interferometry was developed to explain the dependence of transmitted light intensity on cell volume. The method was applied to

  8. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium.

    PubMed

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-04-12

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment.

  9. Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells

    PubMed Central

    Patel, Minal; Yang, Shuying

    2010-01-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells. PMID:20336395

  10. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    SciTech Connect

    Borsi, Enrica; Perrone, Giulia; Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  11. Induced Compton Scattering by Relativistic Electrons in Magnetized Astrophysical Plasmas.

    NASA Astrophysics Data System (ADS)

    Sincell, Mark William

    1994-01-01

    The effects of stimulated scattering on high brightness temperature radiation are studied in two important contexts. In the first case, we assume that the radiation is confined to a collimated beam traversing a relativistically streaming magnetized plasma. When the plasma is cold in the bulk frame, stimulated scattering is only significant if the angle between the photon motion and the plasma velocity is less than gamma^{-1} , where gamma is the bulk Lorentz factor. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam. In the second case, we present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kTB/m ec^2)tau_{T }_sp{~}> 0.1. Numerical simulations

  12. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating.

    PubMed

    Tan, Fei; O'Neill, Feidhlim; Naciri, Mariam; Dowling, Denis; Al-Rubeai, Mohamed

    2012-04-01

    Atmospheric pressure plasma has recently emerged as a technique with a promising future in the medical field. In this work we used the technique as a post-deposition modification process as a means to activate hydroxyapatite (HA) coatings. Contact angle goniometry, optical profilometry, scanning electron microscopy morphology imaging and X-ray photoelectron spectroscopy analysis demonstrate that surface wettability is improved after treatment, without inducing any concomitant damage to the coating. The protein adsorption pattern has been found to be preferable for MSC, and this may result in greater cell attachment and adhesion to plasma-activated HA than to untreated samples. Cell cycle distribution analysis using flow cytometry reveals a faster transition from G(1) to S phase, thus leading to a faster cell proliferation rate on plasma-activated HA. This indicates that the improvement in surface wettability independently enhances cell attachment and cell proliferation, which is possibly mediated by FAK phosphorylation. Pathway-specific polymerase chain reaction arrays revealed that wettability has a substantial influence on gene expression during osteogenic differentiation of human MSC. Plasma-activated HA tends to enhance this process by systemically deregulating multiple genes. In addition, the majority of these deregulated genes had been appropriately translated, as confirmed by ELISA protein quantification. Lastly, alizarin red staining showed that plasma-activated HA is capable of improving mineralization for up to 3 weeks of in vitro culture. It was concluded from this study that atmospheric pressure plasma is a potent tool for modifying the biological function of a material without causing thermal damage, such that adhesion molecules and drugs might be deposited on the original coating to improve performance.

  13. T cell-dependent survival of CD20+ and CD20- plasma cells in human secondary lymphoid tissue.

    PubMed

    Withers, David R; Fiorini, Claudia; Fischer, Randy T; Ettinger, Rachel; Lipsky, Peter E; Grammer, Amrie C

    2007-06-01

    The signals mediating human plasma cell survival in vivo, particularly within secondary lymphoid tissue, are unclear. Human tonsils grafted into immunodeficient mice were therefore used to delineate the mechanisms promoting the survival of plasma cells. Tonsillar plasma cells were maintained within the grafts and the majority were nonproliferating, indicating a long-lived phenotype. A significant depletion of graft plasma cells was observed after anti-CD20 treatment, consistent with the expression of CD20 by most of the cells. Moreover, anti-CD52 treatment caused the complete loss of all graft lymphocytes, including plasma cells. Unexpectedly, anti-CD3, but not anti-CD154, treatment caused the complete loss of plasma cells, indicating an essential role for T cells, but not CD40-CD154 interactions in plasma cell survival. The in vitro coculture of purified tonsillar plasma cells and T cells revealed a T-cell survival signal requiring cell contact. Furthermore, immunofluorescence studies detected a close association between human plasma cells and T cells in vivo. These data reveal that human tonsil contains long-lived plasma cells, the majority of which express CD20 and can be deleted with anti-CD20 therapy. In addition, an important role for contact-dependent interactions with T cells in human plasma cell survival within secondary lymphoid tissue was identified.

  14. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  15. High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.

    2012-05-01

    The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.

  16. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer.

    PubMed

    Schuster, Matthias; Seebauer, Christian; Rutkowski, Rico; Hauschild, Anna; Podmelle, Fred; Metelmann, Camilla; Metelmann, Bibiana; von Woedtke, Thomas; Hasse, Sybille; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert

    2016-09-01

    The aim of the study was to learn, whether clinical application of cold atmospheric pressure plasma (CAP) is able to cause (i) visible tumor surface effects and (ii) apoptotic cell kill in squamous cell carcinoma and (iii) whether CAP-induced visible tumor surface response occurs as often as CAP-induced apoptotic cell kill. Twelve patients with advanced head and neck cancer and infected ulcerations received locally CAP followed by palliative treatment. Four of them revealed tumor surface response appearing 2 weeks after intervention. The tumor surface response expressed as a flat area with vascular stimulation (type 1) or a contraction of tumor ulceration rims forming recesses covered with scabs, in each case surrounded by tumor tissue in visible progress (type 2). In parallel, 9 patients with the same kind of cancer received CAP before radical tumor resection. Tissue specimens were analyzed for apoptotic cells. Apoptotic cells were detectable and occurred more frequently in tissue areas previously treated with CAP than in untreated areas. Bringing together both findings and placing side by side the frequency of clinical tumor surface response and the frequency of analytically proven apoptotic cell kill, detection of apoptotic cells is as common as clinical tumor surface response. There was no patient showing signs of an enhanced or stimulated tumor growth under influence of CAP. CAP was made applicable by a plasma jet, kINPen(®) MED (neoplas tools GmbH, Greifswald, Germany). PMID:27499516

  17. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  18. Irvalec Inserts into the Plasma Membrane Causing Rapid Loss of Integrity and Necrotic Cell Death in Tumor Cells

    PubMed Central

    Molina-Guijarro, José M.; Macías, Álvaro; García, Carolina; Muñoz, Eva; García-Fernández, Luis F.; David, Miren; Núñez, Lucía; Martínez-Leal, Juan F.; Moneo, Victoria; Cuevas, Carmen; Lillo, M. Pilar; Villalobos Jorge, Carlos; Valenzuela, Carmen; Galmarini, Carlos M.

    2011-01-01

    Irvalec is a marine-derived antitumor agent currently undergoing phase II clinical trials. In vitro, Irvalec induces a rapid loss of membrane integrity in tumor cells, accompanied of a significant Ca2+ influx, perturbations of membrane conductivity, severe swelling and the formation of giant membranous vesicles. All these effects are not observed in Irvalec-resistant cells, or are significantly delayed by pretreating the cells with Zn2+. Using fluorescent derivatives of Irvalec it was demonstrated that the compound rapidly interacts with the plasma membrane of tumor cells promoting lipid bilayer restructuration. Also, FRET experiments demonstrated that Irvalec molecules localize in the cell membrane close enough to each other as to suggest that the compound could self-organize, forming supramolecular structures that likely trigger cell death by necrosis through the disruption of membrane integrity. PMID:21556352

  19. Potassium plasma cell facilitates thermionic energy conversion process

    NASA Technical Reports Server (NTRS)

    Richards, H. K.

    1967-01-01

    Thermionic energy converter converts nuclear generated heat directly into high frequency and direct current output. It consists of a potassium plasma cell, a tantalum emitter, and a silver plated copper collector. This conversion process eliminates the steam interface usually required between the atomic heat source and the electrical conversion system.

  20. Bystander responses in low dose irradiated cells treated with plasma from gamma irradiated blood

    NASA Astrophysics Data System (ADS)

    Acheva, A.; Georgieva, R.; Rupova, I.; Boteva, R.; Lyng, F.

    2008-02-01

    There are two specific low-dose radiation-induced responses that have been the focus of radiobiologists' interest in recent years. These are the bystander effect in non-irradiated cells and the adaptive response to a challenge dose after prior low dose irradiation. In the present study we have investigated if plasma from irradiated blood can act as a 'challenge dose' on low dose irradiated reporter epithelial cells (HaCaT cell line). The main aim was to evaluate the overall effect of low dose irradiation (0.05 Gy) of reporter cells and the influence of bystander factors in plasma from 0.5 Gy gamma irradiated blood on these cells. The effects were estimated by clonogenic survival of the reporter cells. We also investigated the involvement of reactive oxygen species (ROS) as potential factors involved in the bystander signaling. Calcium fluxes and mitochondrial membrane potential (MMP) depolarization were also examined as a marker for initiation of apoptosis in the reporter cells. The results show that there are large individual differences in the production of bystander effects and adaptive responses between different donors. These may be due to the specific composition of the donor plasma. The observed effects generally could be divided into two groups: adaptive responses and additive effects. ROS appeared to be involved in the responses of the low dose pretreated reporter cells. In all cases there was a significant decrease in MMP which may be an early event in the apoptotic process. Calcium signaling also appeared to be involved in triggering apoptosis in the low dose pretreated reporter cells. The heterogeneity of the bystander responses makes them difficult to be modulated for medical uses. Specific plasma characteristics that cause these large differences in the responses would need to be identified to make them useful for radiotherapy.

  1. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Astrophysics Data System (ADS)

    Scattergood, T. W.; McKay, C. P.; Borucki, W. J.; Giver, L. P.; van Ghyseghem, H.; Parris, J. E.; Miller, S. L.

    1989-10-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  2. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  3. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Bakaeva, A.; Pardoen, T.; Favache, A.; Zhurkin, E. E.

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities - signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  4. High-Density Plasma-Induced Etch Damage of GaN

    SciTech Connect

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-04-29

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias andlor high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN.

  5. Fluorescence-Based Assessment of Plasma-Induced Hydrophilicity in Microfluidic Devices via Nile Red Adsorption and Depletion

    PubMed Central

    2015-01-01

    We present a simple method, called fluorescence-based assessment of plasma-induced hydrophilicity (FAPH), that enables spatial mapping of the local hydrophilicity of surfaces normally inaccessible by traditional contact angle measurement techniques. The method leverages the change in fluorescence of a dye, Nile Red, which is adsorbed on an oxygen plasma-treated surface, and its correlation with the contact angle of water. Using FAPH, we explored the effect of microchannel geometries on the penetration distance of oxygen plasma into a microchannel and found that entrance effects prevent uniform treatment. We showed that these variations have a significant impact on cell culture, and thus the design of cell-based microfluidic assays must consider this phenomenon to obtain repeatable and homogeneous results. PMID:25032783

  6. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  7. Tomography of homogenized laser-induced plasma by Radon transform technique

    NASA Astrophysics Data System (ADS)

    Eschlböck-Fuchs, S.; Demidov, A.; Gornushkin, I. B.; Schmid, T.; Rössler, R.; Huber, N.; Panne, U.; Pedarnig, J. D.

    2016-09-01

    Tomography of a laser-induced plasma in air is performed by inverse Radon transform of angle-resolved plasma images. Plasmas were induced by single laser pulses (SP), double pulses (DP) in collinear geometry, and by a combination of single laser pulses with pulsed arc discharges (SP-AD). Images of plasmas on metallurgical steel slags were taken at delay times suitable for calibration-free laser-induced breakdown spectroscopy (CF-LIBS). Delays ranged from few microseconds for SP and DP up to tens of microseconds for SP-AD excitation. The white-light and the spectrally resolved emissivity ε(x,y,z) was reconstructed for the three plasma excitation schemes. The electron number density Ne(x,y,z) and plasma temperature Te(x,y,z) were determined from Mg and Mn emission lines in reconstructed spectra employing the Saha-Boltzmann plot method. The SP plasma revealed strongly inhomogeneous emissivity and plasma temperature. Re-excitation of plasma by a second laser pulse (DP) and by an arc discharge (SP-AD) homogenized the plasma and reduced the spatial variation of ε and Te. The homogenization of a plasma is a promising approach to increase the accuracy of calibration-free LIBS analysis of complex materials.

  8. Plasma Texturing of Silicon Solar Cells

    SciTech Connect

    Narayanan, Mohan; Roy, Madhu; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texture promotes enhanced light absorption in Si solar cells. The quality of lower cost multicrystalline-silicon (mc-Si) has increased to the point that its cell performance is close to that of single c-Si cells, with the major difference resulting from the inability to texture mc-Si affordably. This has reduced the cost-per-watt advantage of mc-Si. Surface texturing aimed at enhanced absorption in Si has been historically obtained by creating multimicrometer-sized pyramids using anisotropic wet etchants on single-crystalline silicon that take advantage of its single crystalline orientation. Since the surface feature sizes are several times the length of the incident solar wavelengths involved, the optical analysis of the reflected and absorbed light can be understood using geometrical optics. Geometrical textures reduce reflection and improve absorption by double-bounce and oblique light coupling into the semiconductor. However, geometrical texturing suffers from several disadvantages that limit its effectiveness. Some of these are listed below: (a) Wet-chemical anisotropic etching used to form random pyramids on <100> crystal orientation is not effective in the texturing of low-cost multicrystalline wafers, (b) Anti-reflection films deposited on random features to reduce reflection have a resonant structure limiting their effectiveness to a narrow range of angles and wavelengths. Various forms of surface texturing have been applied to mc-Si in research, including laser-structuring, mechanical grinding, porous-Si etching, and photolithographically defined etching. However, these may be too costly to ever be used in large-scale production. A Japanese firm has reported the development of an RIE process using Cl{sub 2} gas, which textures multiple wafers per batch, making it attractive for mass-production [1]. Using this process, they have produced a 17.1% efficient 225-cm{sup 2} mc-Si cell, which is the highest efficiency mc-Si cell of its size ever reported

  9. Free energy in plasmas under wave-induced diffusion

    SciTech Connect

    Fisch, N.J. . Plasma Physics Lab.); Rax, J.M. )

    1993-05-01

    When waves propagate through a bounded plasma, the wave may be amplified or damped at the expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma diffusion in velocity and configuration space. In the absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain structures are mixed and fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the consideration of specific examples, certain strategies for maximizing energy extraction are identified.

  10. Turbulence and bias-induced flows in simple magnetized toroidal plasmas

    SciTech Connect

    Li, B.; Rogers, B. N.; Ricci, P.; Gentle, K. W.; Bhattacharjee, A.

    2011-05-15

    Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three-dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows.These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures,and thereby lower the radial plasma transport on the low field side.

  11. Effects of electrode geometry on transient plasma induced ignition

    NASA Astrophysics Data System (ADS)

    Shukla, B.; Gururajan, V.; Eisazadeh-Far, K.; Windom, B.; Singleton, D.; Gundersen, M. A.; Egolfopoulos, F. N.

    2013-05-01

    Achieving effective ignition of reacting mixtures using nanosecond pulsed discharge non-equilibrium transient plasma (TP), requires that the effects of several experimental parameters be quantified and understood. Among them are the electrode geometry, the discharge location especially in non-premixed systems, and the relative ignition performance by spark and TP under the same experimental conditions. In the present investigation, such issues were addressed experimentally using a cylindrical constant volume combustion chamber and a counterflow flame configuration coupled with optical shadowgraph that enables observation of how and where the ignition process starts. Results were obtained under atmospheric pressure and showed that the electrode geometry has a notable influence on ignition, with the needle-to-semicircle exhibiting the best ignition performance. Furthermore, it was determined that under non-premixed conditions discharging TP in the reactants mixing layer was most effective in achieving ignition. It was also determined that in the cases considered, the TP induced ignition initiates from the needle head where the electric field and electron densities are the highest. In the case of a spark, however, ignition was found to initiate always from the hot region between the two electrodes. Comparison of spark and TP discharges in only air (i.e. without fuel) and ignition phenomena induced by them also suggest that in the case of TP ignition is at least partly non-thermal and instead driven by the production of active species. Finally, it was determined that single pulsed TP discharges are sufficient to ignite both premixed and non-premixed flames of a variety of fuels ranging from hydrogen to heavy fuels including F-76 diesel and IFO380 bunker fuel even at room temperature.

  12. Splenic Long-Lived Plasma Cells Promote the Development of Follicular Helper T Cells during Autoimmune Responses.

    PubMed

    Jang, Eunkyeong; Cho, Wang Sik; Oh, Yeon-Kyung; Cho, Mi-La; Kim, Jung Mogg; Paik, Doo-Jin; Youn, Jeehee

    2016-02-01

    Long-lived plasma cells (LLPCs) develop under the help of follicular helper T (Tfh) cells and reside mainly in the bone marrow. However, these cells are unusually abundant in the spleen of several autoimmune models including K/BxNsf mice, yet their pathogenic impact remains unknown. To investigate a previously unappreciated role of splenic LLPCs, we sorted splenic plasma cells (PCs) from K/BxNsf and K/BxN mice, corresponding to LLPCs and conventional short-lived PCs, respectively, and compared their phenotypes and ability to prime and induce the differentiation of naive CD4(+) T cells into effector cells in vitro and in vivo. We found that K/BxNsf PCs had lower levels of the Ag presentation machinery and costimulators than K/BxN PCs, and also a lower CD4(+) T cell priming capacity. Autoantigen-pulsed K/BxNsf PCs selectively polarized cognate CD4(+) T cells toward the expression of molecules necessary for Tfh development and function. As a result, the K/BxNsf PC-primed CD4(+) T cells were more effective in stimulating B cells to produce autoantigen-specific IgGs than K/BxN PCs or even dendritic cells. Adoptive transfer of K/BxNsf PCs, but not K/BxN PCs, to K/BxN mice increased numbers of Tfh cells in draining lymph nodes. These results propose that abnormal accumulation of LLPCs in the spleen of autoimmune models drives the differentiation of autoantigen-primed CD4(+) T cells to Tfh cells. This positive feedback loop between splenic LLPCs and Tfh cells may contribute to the persistence of humoral autoimmunity. PMID:26729802

  13. Enhanced laser-induced plasma channels in air

    NASA Astrophysics Data System (ADS)

    Yanlei, Zuo; Xiaofeng, Wei; Kainan, Zhou; Xiaoming, Zeng; Jingqin, Su; Zhihong, Jiao; Na, Xie; Zhaohui, Wu

    2016-03-01

    Plasma is a significant medium in high-energy density physics since it can hardly be damaged. For some applications such as plasma based backward Raman amplification (BRA), uniform high-density and large-scale plasma channels are required. In the previous experiment, the plasma transverse diameter and density are 50-200 μm and 1-2 × 1019 cm-3, here we enhance them to 0.8 mm and 8 × 1019 cm-3, respectively. Moreover, the gradient plasma is investigated in our experiment. A proper plasma gradient can be obtained with suitable pulse energy and delay. The experimental results are useful for plasma physics and nonlinear optics. Project supported by the Development Foundation of the Chinese Academy of Engineering Physics (Grant Nos. 2012A0401019 and 2013A0401019).

  14. Bcl-2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts

    PubMed Central

    1996-01-01

    Plasma cells represent the final stage of B lymphocyte differentiation. Most plasma cells in secondary lymphoid tissues live for a few days, whereas those in the lamina propria of mucosa and in bone marrow live for several weeks. To investigate the regulation of human plasma cell survival, plasma cells were isolated from tonsils according to high CD38 and low CD20 expression. Tonsillar plasma cells express CD9, CD19, CD24, CD37, CD40, CD74, and HLA-DR, but not CD10, HLA-DQ, CD28, CD56, and Fas/CD95. Although plasma cells express intracytoplasmic Bcl-2, they undergo swift apoptosis in vitro and do not respond to CD40 triggering. Bone marrow fibroblasts and rheumatoid synoviocytes, however, prevented plasma cells from undergoing apoptosis in a contact- dependent fashion. These data indicate that fibroblasts may form a microenvironment favorable for plasma cell survival under normal and pathological conditions. PMID:8551226

  15. Oxide nanoparticles synthesis via laser-induced plasma in liquid

    NASA Astrophysics Data System (ADS)

    Goto, Taku; Weihs, Hansel; Honda, Mitsuhiro; Kulinich, Sergei; Shimizu, Yoshiki; Ito, Tsuyohito

    2014-10-01

    Laser ablation in fluids has recently attracted a lot of attention as one of synthetic techniques to prepare new attractive nanomaterials, with the ability to control both product chemistry and morphology in many systems. In this study, we generated laser-induced plasma in H2O - ethanol mixtures, while ablating metal targets to produce oxide nanoparticles and to study the effect of the medium on their properties. The ablated targets used in this study were Zn or Sn plates. A nanosecond Nd:YAG laser with the wavelength of 532 nm (10 Hz, 20--30 mJ/pulse) was applied to irradiate the targets. The liquid media were maintained at 0.1 to 30 MPa to study the effect of pressure. We found that the H2O/ethanol ratio (at atmospheric pressure) can control the properties of the produced ZnO nanoparticles, such as defects and oxidation degree. The properties were examined by photoluminescence (PL) spectroscopy, X-ray diffraction, electron microscopies, and so on. More details will be presented at the symposium.

  16. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  17. Effects of plasma etching solar cell front surfaces

    SciTech Connect

    Taylor, W.E.; Bunyan, S.M.; Olson, C.E.

    1980-01-01

    A front surface plasma etch with Freon 14+8% O/sub 2/ or sulfur hexafluoride (SF/sub 6/) was found to improve terrestrial solar cell output. SEM studies of these samples revealed surface pitting on Freon 14 etched samples. About 50% of the improvement from Freon etched samples can be attributed to the light capturing effects of surface pits. Output increases from SF/sub 6/ plasma etched cells were found to be comparable with Freon etched cells after subtraction of the light trapping effects. The excess output improvement might be attributed to reduced junction depth or removal of near surface lattice damage. Investigations attempting to identify the cause are described. 1 ref.

  18. Stabilization of laser-induced plasma in bulk water using large focusing angle

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2016-08-01

    Laser focusing geometry effects on plasma emissions in bulk water were investigated with five focusing angles ranging from 11.9° to 35.4°. Fast imaging and space-resolved spectroscopy techniques were used to observe the plasma emission distributions and fluctuations. We demonstrated that by increasing the focusing angle, discrete and irregular plasma formed in multiple sites could be turned into continuous and stable plasma with single core fixed at the laser focal point. This indicates the key role of laser focusing angle in the stabilization of plasma positions, which is crucial to the improvement of laser-induced breakdown spectroscopy repeatability in bulk water.

  19. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  20. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    SciTech Connect

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik

    2011-03-30

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO{sub 2} laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  1. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    PubMed

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  2. Plasma cell morphology in multiple myeloma and related disorders.

    PubMed

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  3. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells

    PubMed Central

    GUERRERO-PRESTON, RAFAEL; OGAWA, TAKENORI; UEMURA, MAMORU; SHUMULINSKY, GARY; VALLE, BLANCA L.; PIRINI, FRANCESCA; RAVI, RAJANI; SIDRANSKY, DAVID; KEIDAR, MICHAEL; TRINK, BARRY

    2014-01-01

    The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min−1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines. PMID:25050490

  4. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells.

    PubMed

    Guerrero-Preston, Rafael; Ogawa, Takenori; Uemura, Mamoru; Shumulinsky, Gary; Valle, Blanca L; Pirini, Francesca; Ravi, Rajani; Sidransky, David; Keidar, Michael; Trink, Barry

    2014-10-01

    The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min-1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines.

  5. [Study of enhancement effect of laser-induced crater on plasma radiation].

    PubMed

    Chen, Jin-Zhong; Zhang, Xiao-Ping; Guo, Qing-Lin; Su, Hong-Xin; Li, Guang

    2009-02-01

    Single pulses exported from high-energy neodymium glass laser were used to act on the same position of soil sample surface repeatedly, and the plasma emission spectra generated from sequential laser pulse action were collected by spectral recording system. The experimental results show that the laser-induced soil plasma radiation was enhanced continuously under the confinement effect of the crater walls, and the line intensities and signal-to-background ratios both had different improvements along with increasing the number of acting pulses. The photographs of the plasma image and crater appearance were taken to study the plasma shape, laser-induced crater appearance, and the mass of the ablated sample. The internal mechanism behind that laser-induced crater enhanced plasma radiation was researched. Under the sequential laser pulse action, the forming plasma as a result enlarges gradually first, leading to distortion at the trail of plasma plume, and then, its volume diminishes slowly. And also, the color of the plasma changes from buff to white gradually, which implies that the temperature increases constantly. The laser-induced crater had a regular shape, that is, the diameter increased from its bottom to top gradually, thus forming a taper. The mass of the laser-ablated substance descends along with increasing the amount of action pulse. Atomization degree of vaporized substance was improved in virtue of the crater confinement effect, Fresnel absorption produced from the crater walls reflection, and the inverse bremsstrahlung, and the plasma radiation intensity was enhanced as a result.

  6. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection.

    PubMed

    Grangeon, Romain; Jiang, Jun; Wan, Juan; Agbeci, Maxime; Zheng, Huanquan; Laliberté, Jean-François

    2013-01-01

    To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs). However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV) induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked toward the plasma membrane and were associated with plasmodesmata (PD). We demonstrated also that 6K2 moved cell-to-cell into adjoining cells when plants were infected with TuMV. 6K2 was then fused to photo-activable GFP (6K2:PAGFP) to visualize how 6K2 moved intercellularly during TuMV infection. After activation, 6K2:PAGFP-tagged vesicles moved to the cell periphery and across the cell wall into adjacent cells. These vesicles were shown to contain the viral RNA-dependent RNA polymerase and viral RNA. Symplasmic movement of TuMV may thus be achieved in the form of a membrane-associated viral RNA complex induced by 6K2. PMID:24409170

  7. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  8. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation

    PubMed Central

    Chang, Xing; Li, Bin; Rao, Anjana

    2015-01-01

    Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3′ untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3′ UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production—both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes. PMID:25825742

  9. Strategies to target long-lived plasma cells for treating hemophilia A inhibitors.

    PubMed

    Liu, Chao Lien; Lyle, Meghan J; Shin, Simon C; Miao, Carol H

    2016-03-01

    Long-lived plasma cells (LLPCs) can persistently produce anti-factor VIII (FVIII) antibodies which disrupt therapeutic effect of FVIII in hemophilia A patients with inhibitors. The migration of plasma cells to BM where they become LLPCs is largely controlled by an interaction between the chemokine ligand CXCL12 and its receptor CXCR4. AMD3100 combined with G-CSF inhibit their interactions, thus facilitating the mobilization of CD34(+) cells and blocking the homing of LLPCs. These reagents were combined with anti-CD20 to reduce B-cells and the specific IL-2/IL-2mAb (JES6-1) complexes to induce Treg expansion for targeting anti-FVIII immune responses. Groups of mice primed with FVIII plasmid and protein respectively were treated with the combined regimen for six weeks, and a significant reduction of anti-FVIII inhibitor titers was observed, associated with the dramatic decrease of circulating and bone marrow CXCR4(+) plasma cells. The combination regimens are highly promising in modulating pre-existing anti-FVIII antibodies in FVIII primed subjects.

  10. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  11. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells.

    PubMed

    Beebe, Stephen J; Fox, Paula M; Rec, Laura J; Willis, E Lauren K; Schoenbach, Karl H

    2003-08-01

    Electroporation by using pulsed electric fields with long durations compared with the charging time of the plasma membrane can induce cell fusion or introduce xenomolecules into cells. Nanosecond pulse power technology generates pulses with high-intensity electric fields, but with such short durations that the charging time of the plasma membrane is not reached, but intracellular membranes are affected. To determine more specifically their effects on cell structure and function, human cells were exposed to high intensity (up to 300 kV/cm) nanosecond (10-300 ns) pulsed electric fields (nsPEF) and were analyzed at the cellular and molecular levels. As the pulse duration decreased, plasma membrane electroporation decreased and appearances of apoptosis markers were delayed. NsPEF induced apoptosis within tens of minutes, depending on the pulse duration. Annexin-V binding, caspase activation, decreased forward light scatter, and cytochrome c release into the cytoplasm were coincident. Apoptosis was caspase- and mitochondria-dependent but independent of plasma membrane electroporation and thermal changes. The results suggest that with decreasing pulse durations, nsPEF modulate cell signaling from the plasma membrane to intracellular structures and functions. NsPEF technology provides a unique, high-power, energy-independent tool to recruit plasma membrane and/or intracellular signaling mechanisms that can delete aberrant cells by apoptosis.

  12. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis.

    PubMed

    Seike, Soshi; Miyamoto, Kazuaki; Kobayashi, Keiko; Takehara, Masaya; Nagahama, Masahiro

    2016-01-01

    Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis.

  13. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis

    PubMed Central

    Seike, Soshi; Miyamoto, Kazuaki; Kobayashi, Keiko; Takehara, Masaya; Nagahama, Masahiro

    2016-01-01

    Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis. PMID:26807591

  14. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis.

    PubMed

    Seike, Soshi; Miyamoto, Kazuaki; Kobayashi, Keiko; Takehara, Masaya; Nagahama, Masahiro

    2016-01-01

    Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis. PMID:26807591

  15. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  16. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells

    PubMed Central

    Jaiswal, Jyoti K.; Lauritzen, Stine P.; Scheffer, Luana; Sakaguchi, Masakiyo; Bunkenborg, Jakob; Simon, Sanford M.; Kallunki, Tuula; Jäättelä, Marja; Nylandsted, Jesper

    2014-01-01

    Cell migration and invasion require increased plasma membrane dynamics and ability to navigate through dense stroma, thereby exposing plasma membrane to tremendous physical stress. Yet, it is largely unknown how metastatic cancer cells acquire an ability to cope with such stress. Here we show that S100A11, a calcium-binding protein up-regulated in a variety of metastatic cancers, is essential for efficient plasma membrane repair and survival of highly motile cancer cells. Plasma membrane injury-induced entry of calcium into the cell triggers recruitment of S100A11 and Annexin A2 to the site of injury. We show that S100A11 in a complex with Annexin A2 helps reseal the plasma membrane by facilitating polymerization of cortical F-actin and excision of the damaged part of the plasma membrane. These data reveal plasma membrane repair in general and S100A11 and Annexin A2 in particular, as new targets for the therapy of metastatic cancers. PMID:24806074

  17. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  18. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  19. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  20. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Haleem, N. A.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-01

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, ϕ = 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10-100 kHz), at a definite pressure of ˜0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N2 revealed the increase of electron density at distinct tube regions by one order to attain 1013/cm3. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N2 gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred

  1. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions

  2. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage

    SciTech Connect

    Sorensen, Karina Dalsgaard; Kunder, Sandra; Quintanilla-Martinez, Leticia; Sorensen, Jonna; Schmidt, Joerg; Pedersen, Finn Skou . E-mail: fsp@mb.au.dk

    2007-05-25

    This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength.

  3. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  4. Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma

    SciTech Connect

    Tani, Atsushi; Fukui, Satoshi; Ono, Yusuke; Kitano, Katsuhisa; Ikawa, Satoshi

    2012-06-18

    To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

  5. Density and temperature scaling of disorder-induced heating in ultracold plasmas

    SciTech Connect

    Bergeson, S. D.; Denning, A.; Lyon, M.; Robicheaux, F.

    2011-02-15

    We report measurements and simulations of disorder-induced heating in ultracold neutral plasmas. Fluorescence from plasma ions is excited using a detuned probe laser beam while the plasma relaxes from its initially disordered nonequilibrium state. This method probes the wings of the ion velocity distribution. The simulations yield information on time-evolving plasma parameters that are difficult to measure directly and make it possible to connect the fluorescence signal to the rms velocity distribution. The disorder-induced heating signal can be used to estimate the electron and ion temperatures {approx}100 ns after the plasma is created. This is particularly interesting for plasmas in which the electron and ion temperatures are not known.

  6. Secondary-electrons-induced cathode plasma in a relativistic magnetron

    SciTech Connect

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E.

    2012-11-19

    Results of time- and space-resolved spectroscopic studies of cathode plasma during a S-band relativistic magnetron operation and a magnetically insulated diode having an identical interelectrode gap are presented. It was shown that in the case of the magnetron operation, one obtains an earlier, more uniform plasma formation due to energetic electrons' interaction with the cathode surface and ionization of desorbed surface monolayers. No differences were detected in the cathode's plasma temperature between the magnetron and the magnetically insulated diode operation, and no anomalous fast cathode plasma expansion was observed in the magnetron at rf power up to 350 MW.

  7. Spectroscopic characterization and imaging of laser- and unipolar arc-induced plasmas

    SciTech Connect

    Aussems, Damien U. B.; Nishijima, Daisuke; Brandt, Christian; Doerner, Russell P.; Cardozo, Niek J. Lopes

    2014-08-14

    Tungsten plasmas induced by unipolar arcs were investigated using optical emission spectroscopy and imaging, and compared with laser-induced tungsten plasmas. The unipolar arcs were initiated in the linear-plasma simulator PISCES-A at UCSD under fusion relevant conditions. The electron temperature and density of the unipolar arc plasmas were in the range 0.5–0.7 eV and 0.7–2.0 × 10{sup 20 }m{sup −3}, respectively, and increased with increasing negative bias voltage, but did not correlate with the surface temperature. In comparison, the electron temperature and density of the laser-induced plasmas were in the range 0.6–1.4 eV and 7 × 10{sup 19}–1 × 10{sup 22 }m{sup −3}, respectively.

  8. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization

    PubMed Central

    Bemark, Mats; Hazanov, Helena; Strömberg, Anneli; Komban, Rathan; Holmqvist, Joel; Köster, Sofia; Mattsson, Johan; Sikora, Per; Mehr, Ramit; Lycke, Nils Y.

    2016-01-01

    Understanding how memory B cells are induced and relate to long-lived plasma cells is important for vaccine development. Immunity to oral vaccines has been considered short-lived because of a poor ability to develop IgA B-cell memory. Here we demonstrate that long-lived mucosal IgA memory is readily achieved by oral but not systemic immunization in mouse models with NP hapten conjugated with cholera toxin and transfer of B1-8high/GFP+ NP-specific B cells. Unexpectedly, memory B cells are poorly related to long-lived plasma cells and less affinity-matured. They are α4β7-integrin+CD73+PD-L2+CD80+ and at systemic sites mostly IgM+, while 80% are IgA+ in Peyer's patches. On reactivation, most memory B cells in Peyer's patches are GL7−, but expand in germinal centres and acquire higher affinity and more mutations, demonstrating strong clonal selection. CCR9 expression is found only in Peyer's patches and appears critical for gut homing. Thus, gut mucosal memory possesses unique features not seen after systemic immunization. PMID:27596266

  9. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization.

    PubMed

    Bemark, Mats; Hazanov, Helena; Strömberg, Anneli; Komban, Rathan; Holmqvist, Joel; Köster, Sofia; Mattsson, Johan; Sikora, Per; Mehr, Ramit; Lycke, Nils Y

    2016-01-01

    Understanding how memory B cells are induced and relate to long-lived plasma cells is important for vaccine development. Immunity to oral vaccines has been considered short-lived because of a poor ability to develop IgA B-cell memory. Here we demonstrate that long-lived mucosal IgA memory is readily achieved by oral but not systemic immunization in mouse models with NP hapten conjugated with cholera toxin and transfer of B1-8(high)/GFP(+) NP-specific B cells. Unexpectedly, memory B cells are poorly related to long-lived plasma cells and less affinity-matured. They are α4β7-integrin(+)CD73(+)PD-L2(+)CD80(+) and at systemic sites mostly IgM(+), while 80% are IgA(+) in Peyer's patches. On reactivation, most memory B cells in Peyer's patches are GL7(-), but expand in germinal centres and acquire higher affinity and more mutations, demonstrating strong clonal selection. CCR9 expression is found only in Peyer's patches and appears critical for gut homing. Thus, gut mucosal memory possesses unique features not seen after systemic immunization. PMID:27596266

  10. Fuel cells: Hydrogen induced insulation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  11. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  12. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  13. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  14. Fibronectin induces MMP2 expression in human prostate cancer cells.

    PubMed

    Moroz, Andrei; Delella, Flávia K; Lacorte, Lívia M; Deffune, Elenice; Felisbino, Sérgio L

    2013-01-25

    High-grade prostate cancers express high levels of matrix metalloproteinases (MMPs), major enzymes involved in tumor invasion and metastasis. However, the tumor cell lines commonly employed for prostate cancer research express only small amounts of MMPs when cultivated as monolayer cultures, in common culture media. The present study was conducted to ascertain whether culture conditions that include fibronectin can alter MMP2 and MMP9 expression by the human prostatic epithelial cell lines RWPE-1, LNCaP and PC-3. These cells were individually seeded at 2×10(4) cells/cm(2), cultivated until they reached 80% confluence, and then exposed for 4h to fibronectin, after which the conditioned medium was analyzed by gelatin zymography. Untreated cells were given common medium. Only RWPE-1 cells express detectable amounts of MMP9 when cultivated in common medium, whereas the addition of fibronectin induced high expression levels of pro and active forms of MMP2 in all tested cell lines. Our findings demonstrate that normal and tumor prostate cell lines express MMP2 activity when in contact with extracellular matrix components or blood plasma proteins such as fibronectin. Future studies of transcriptomes and proteomes in prostate cancer research using these cell lines should not neglect these important conclusions.

  15. Sclerostin is overexpressed by plasma cells from multiple myeloma patients.

    PubMed

    Brunetti, Giacomina; Oranger, Angela; Mori, Giorgio; Specchia, Giorgina; Rinaldi, Erminia; Curci, Paola; Zallone, Alberta; Rizzi, Rita; Grano, Maria; Colucci, Silvia

    2011-11-01

    Sclerostin, an osteocyte-expressed negative regulator of bone formation, is one of the inhibitors of Wnt signaling that is a critical pathway in the correct process of osteoblast differentiation. It has been demonstrated that Wnt signaling through the secretion of Wnt inhibitors, such as DKK1, sFRP-2, and sFRP-3, plays a key role in the decreased osteoblast activity associated with multiple myeloma (MM) bone disease. We provide evidence that sclerostin is expressed by myeloma cells that are human myeloma cell lines and plasma cells (CD138(+) cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. Moreover, we show that there are no differences in sclerostin serum levels between MM patients and controls. Thus, our data indicate that MM cells, as a sclerostin source in the BM, could create a microenvironment with high sclerostin concentration that could contribute toward inhibiting osteoblast differentiation.

  16. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    SciTech Connect

    Villa-Aleman, E.

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  17. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction

    PubMed Central

    Leo, M. Dennis; Bulley, Simon; Bannister, John P.; Kuruvilla, Korah P.; Narayanan, Damodaran

    2015-01-01

    Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated K+ (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction. PMID:26179602

  18. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  19. Evaluation of materials proposed for the construction of the plasma electrode Pockels cell (PEPC) on beamlet

    SciTech Connect

    Roberts, D.; Robb, C.; DeYoreo, J.; Atherton, J.

    1992-11-01

    The proposed upgrade of the NOVA laser system at Lawrence Livermore National Laboratory employs a multipass architecture that requires an optical switch to emit the laser light at the appropriate fluence. This Pockels cell-based optical switch does not use traditional ring or thin-film electrodes because of the large aperture and high fluence of the laser system. Rather, it uses a plasma electrode Pockels cell with a KD*P crystal as the electro-optical medium. A discharge plasma is formed on each side of the electro-optic crystal and high voltage is applied across the crystal through the plasma electrode to initiate optical switching. In October 1991 we began evaluating materials suggested for the large aperture plasma electrode optical switch. Previous experiments suggested that switching performance could be significantly affected by the deterioration of cell materials. The final prototype switch tested used polyethylene for the switch body, Mykroy for the mid-plane and a silicone vulcanite to encapsulate the KD*P crystal. The encapsulant easily compensated for the effect of assembling the optical switch and we measured no strain-induced birefringence in the crystal after encapsulation. Oxygen was eventually added to the plasma to react with the sputtered carbon from the cathode and produce a gaseous effluent. As an added benefit, the production of ozone absorbed most of the ultra violet radiation affecting the encapsulant. All the materials tested decomposed and produced volatiles, although we have seen no change in the damage threshold of exposed optical surfaces tested to date. The following is an evaluation of the recommended materials for major cell components using published manufacturers data, experimental results from our Material Evaluation Apparatus, and outgassing performance and sputtering data produced at the Laboratory`s Vacuum Process Lab.

  20. Drosophila grim induces apoptosis in mammalian cells.

    PubMed Central

    Clavería, C; Albar, J P; Serrano, A; Buesa, J M; Barbero, J L; Martínez-A, C; Torres, M

    1998-01-01

    Genetic studies have shown that grim is a central genetic switch of programmed cell death in Drosophila; however, homologous genes have not been described in other species, nor has its mechanism of action been defined. We show here that grim expression induces apoptosis in mouse fibroblasts. Cell death induced by grim in mammalian cells involves membrane blebbing, cytoplasmic loss and nuclear DNA fragmentation. Grim-induced apoptosis is blocked by both natural and synthetic caspase inhibitors. We found that grim itself shows caspase-dependent proteolytic processing of its C-terminus in vitro. Grim-induced death is antagonized by bcl-2 in a dose-dependent manner, and neither Fas signalling nor p53 are required for grim pro-apoptotic activity. Grim protein localizes both in the cytosol and in the mitochondria of mouse fibroblasts, the latter location becoming predominant as apoptosis progresses. These results show that Drosophila grim induces death in mammalian cells by specifically acting on mitochondrial apoptotic pathways executed by endogenous caspases. These findings advance our knowledge of the mechanism by which grim induces apoptosis and show the conservation through evolution of this crucial programmed cell death pathway. PMID:9857177

  1. Induced Pluripotent Stem Cells from Nonhuman Primates.

    PubMed

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  2. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    NASA Astrophysics Data System (ADS)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  3. Blimp-1 controls plasma cell function through regulation of immunoglobulin secretion and the unfolded protein response

    PubMed Central

    Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L

    2015-01-01

    Plasma cell differentiation requires silencing of B cell transcription, while establishing antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for plasma cell generation, however their function in mature plasma cells has remained elusive. We have found that while IRF4 was essential for plasma cell survival, Blimp-1 was dispensable. Blimp-1-deficient plasma cells retained their transcriptional identity, but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap of Blimp-1 and XBP-1 function was restricted to the UPR, with Blimp-1 uniquely regulating mTOR activity and plasma cell size. Thus, Blimp-1 is required for the unique physiological capacity of plasma cells that enables the secretion of protective antibody. PMID:26779600

  4. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-kun; Li, Hai-ming; Bian, Bo-rui; Xue, Feng; Ding, Guo-wen; Yu, Shao-jie; Liu, Si-yuan

    2016-06-01

    Interference induced electromagnetic induced transparency (EIT)-like effect has demonstrated the ability to realize narrow transmission resonances within the single-resonator stop band. Due to the limited plasma density in actual devices, only few reports discuss the plasma metamaterials and truncated photonic crystals which support electromagnetically induced transparency. However, solid state plasma realized by some semiconductors have the advantages of higher order plasma density and the characteristics of the reconfiguration and tunability. Here, we conduct a numerical study of the perfect microwave tunneling in heterostructures composed of solid state plasma metamaterials and truncated photonic crystal. There is particular emphasis on the tunability of tunneling frequency by changing plasma frequency in solid state plasma, as well as the electric energy density distributions in heterostructures. It was found that, compared to conventional metal photonic crystal, the reflectance of tunneling mode can be reduced from -25.8 dB to -41.7 dB with an optimized Q-factor. Further study on electric energy density distribution confirms that EM wave in-plane localization originated from the EIT-like solid state plasma, which gives rise to the three-dimensional enhancement of sub-wavelength EM wave localization, is stronger than EM wave confinement along the propagation direction. Owing to the tunability of plasma, the tunneling frequency channel can be adjusted or reconfigured in a certain range without adjusting the geometry of the heterostructure. It suggests the fabrication for highly sensitive dielectric sensing, optical switches, and so on.

  5. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Femoral head separation (FHS) is an idiopathic bone problem that causes lameness and production losses in commercial poultry. In a model of prednisolone induced susceptibility to FHS, the changes in plasma proteins and peptides were analyzed to find possible biomarkers. Plasma from control and FHS-s...

  6. Nanodomain stabilization dynamics in plasma membranes of biological cells

    NASA Astrophysics Data System (ADS)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  7. Nonviral methods for inducing pluripotency to cells.

    PubMed

    O'Doherty, Ryan; Greiser, Udo; Wang, Wenxin

    2013-01-01

    The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs. PMID:23841088

  8. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  9. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  10. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Fat, Stem Cells, and Platelet-Rich Plasma.

    PubMed

    James, Isaac B; Coleman, Sydney R; Rubin, J Peter

    2016-07-01

    The ideal filler for aesthetic surgery is inexpensive and easy to obtain, natural in appearance and texture, immunologically compatible, and long lasting without risk of infection. By most metrics, autologous fat grafts meet these criteria perfectly. Although facial fat grafting is now a commonly accepted surgical procedure, there has been a wave of activity applying stem cells and platelet-rich plasma (PRP) therapies to aesthetic practice. This article addresses technical considerations in the use of autologous fat transfer for facial rejuvenation, and also explores the current evidence for these stem cell and PRP therapies in aesthetic practice.

  12. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    NASA Astrophysics Data System (ADS)

    Miura, Taichi; Ando, Ayumi; Hirano, Kazumi; Ogura, Chika; Kanazawa, Tatsuya; Ikeguchi, Masamichi; Seki, Atsushi; Nishihara, Shoko; Hamaguchi, Satoshi

    2014-11-01

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H2O2), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells.

  13. Histamine-induced airway mucosal exudation of bulk plasma and plasma-derived mediators is not inhibited by intravenous bronchodilators.

    PubMed

    Svensson, C; Alkner, U; Pipkorn, U; Persson, C G

    1994-01-01

    Experimental data suggest the possibility that common bronchodilators, such as the xanthines and beta 2-adrenoceptor agonists, may produce microvascular anti-permeability effects in the subepithelial microcirculation of the airways. In this study, we have examined the effect of bronchodilators given intravenously on exudation of different-sized plasma proteins (albumin and fibrinogen) and the generation of plasma-derived peptides (bradykinins) in human nasal airways challenged with histamine. In a double-blind, crossover, placebo-controlled and randomised trial, 12 normal volunteers were given i.v.infusions of terbutaline sulphate, theophylline and enprofylline to produce therapeutic drug levels. The effect of topical nasal provocation with histamine was closely followed by frequently nasal lavage with saline. The lavage fluid levels of albumin, fibrinogen and bradykinins increased significantly after each histamine provocation. The ratio of albumin-to-fibrinogen in plasma and the lavage fluid was 24 and 56, respectively, indicating that topical histamine provocation induced a largely non-sieved flux of macromolecules across the endothelial-epithelial barriers. The systemically administered drugs did not affect the nasal symptoms (sneezing, secretion and blockage), nor did they significantly reduce the levels of plasma proteins and plasma-derived mediators in the nasal lavage fluids. The present data suggest that systemic xanthines and beta 2-adrenoceptor agonists, at clinically employed plasma levels, may not affect the microvascular (and epithelial) exudative permeability and the bradykinin forming capacity of human airways. PMID:8005188

  14. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  15. Space plasma physics: phenomena induced by charged particle beams.

    PubMed

    Beghin, C; Lebreton, J P; Maehlum, B N; Troim, J; Ingsoy, P; Mimacrchau, J L

    1984-07-13

    The effects of electron beam emissions from Spacelab were recorded with onboard diagnostic instruments. The variation of the Spacelab-shuttle potential with respect to the ambient plasma near the scientific air lock was investigated. Data on the waves and instabilities triggered by the electron beams are discussed. Within the electron gyrofrequency and electron plasma frequency range, strong signals were detected by both electric and magnetic antennas during the beam emissions. The frequencies of the emitted waves were compared to the characteristic plasma frequencies to enable mode identification.

  16. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    PubMed

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  17. Optical emission spectroscopy for simultaneous measurement of plasma electron density and temperature in a low-pressure microwave induced plasma

    SciTech Connect

    Konjevic, N.; Jovicevic, S.; Ivkovic, M.

    2009-10-15

    The simple optical emission spectroscopy technique for diagnostics of low pressure microwave induced plasma (MIP) in hydrogen or in MIP seeded with hydrogen is described and tested. This technique uses the Boltzmann plot of relative line intensities along Balmer spectral series in conjunction with the criterion for partial local thermodynamic equilibrium for low electron density (N{sub e}) plasma diagnostics. The proposed technique is tested in a low pressure MIP discharge for simultaneous determination of electron density N{sub e} (10{sup 17}-10{sup 18} m{sup -3}) and temperature T{sub e}.

  18. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  19. Propagation velocity of laser-induced plasma inside and outside a transparent droplet.

    PubMed

    Hsieh, W F; Zheng, J B; Wood, C F; Chu, B T; Chang, R K

    1987-08-01

    The supersonic propagation velocity of the emission front of plasma produced by laser-induced breakdown of a micrometer-sized transparent droplet flowing in a gas was measured with a streak camera at three intensity levels. At low input intensity, the plasma velocities in the gas away from and toward the shadow face were determined. At medium input intensity, the plasma velocities in the gas outside the shadow face and within the liquid (traveling toward the illuminated face) were measured. At high input intensity, the plasma velocities in the gas outside the shadow face, within the liquid, and in the gas outside the illuminated face were deduced.

  20. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  1. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  2. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  3. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  4. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  5. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  6. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2.

    PubMed

    Winkelmann, Rebecca; Sandrock, Lena; Porstner, Martina; Roth, Edith; Mathews, Martina; Hobeika, Elias; Reth, Michael; Kahn, Mark L; Schuh, Wolfgang; Jäck, Hans-Martin

    2011-01-11

    Krüppel-like factor 2 (KLF2) controls T lymphocyte egress from lymphoid organs by regulating sphingosin-1 phosphate receptor 1 (S1Pr1). Here we show that this is not the case for B cells. Instead, KLF2 controls homeostasis of B cells in peripheral lymphatic organs and homing of plasma cells to the bone marrow, presumably by controlling the expression of β(7)-integrin. In mice with a B cell-specific deletion of KLF2, S1Pr1 expression on B cells was only slightly affected. Accordingly, all splenic B cell subsets including B1 cells were present, but their numbers were increased with a clear bias for marginal zone (MZ) B cells. In contrast, fewer peyers patches harboring fewer B cells were found, and fewer B1 cells in the peritoneal cavity as well as recirculating B cells in the bone marrow were detected. Upon thymus-dependent immunization, IgG titers were diminished, and antigen-specific plasma cells were absent in the bone marrow, although numbers of antigen-specific splenic plasmablasts were normal. KLF2 plays also a role in determining the identity of follicular B cells, as KLF2-deficient follicular B cells showed calcium responses similar to those of MZ B cells and failed to down-regulate MZ B cell signature genes, such as CD21 and CXCR7. PMID:21187409

  7. Oxidation Degradation of Aqueous Carbofuran Induced by Low Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Pu, Lumei; Gao, Jinzhang; Hu, Yusen; Liang, Huiguang; Xiao, Wen; Wang, Xingmin

    2008-06-01

    The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution.

  8. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  9. Short pulse, high power microwave radiation source with a laser-induced sheet plasma mirror

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru

    2009-05-01

    We have demonstrated the short pulse, high power microwave radiation source using an ultraviolet laser-induced sheet plasma mirror in a gas-filled x-band rectangular waveguide from the conventional microwave sources and components. A laser-induced sheet plasma with an overdense plasma acts as a plasma mirror. The long pulse propagating in the gas-filled waveguide was sliced by the sheet plasma mirror at two different points along the waveguide. We observed about twice the power of the pulse by adding the two sliced microwave pulses produced by this scheme. A maximum peak power of 200 kW with a pulse duration of 10 ns (full width at half maximum) from the long microwave pulse source with a pulse duration of 0.8 mus was observed.

  10. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  11. Umbelliprenin Induces Apoptosis in CLL Cell Lines.

    PubMed

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V-FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate.

  12. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  13. Modeling RF-induced Plasma-Surface Interactions with VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.

  14. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  15. Numerical simulation of plasma-induced electrolysis utilizing dc glow discharge

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Shirai, Naoki; Uchida, Satoshi; Shirafuji, Tatsuru

    2014-10-01

    In this work, we carried out one-dimensional numerical simulation of plasma-induced electrolysis, which consists of atmospheric pressure dc glow discharge and electrolyte solution connected in series. Grounded metal electrode is placed at the bottom of NaCl solution with 1 mm depth while powered electrode is placed at 1 mm above the solution surface. The gap is filled with helium. Continuity equations of charged species both in gas and in liquid were simultaneously calculated with Poisson's equation. Current continuity is considered at plasma-liquid interface. That is, hydrated electrons equivalent to electron flux from plasma, or H2O+ ions equivalent to positive ion flux from plasma are supplied in the liquid at plasma-liquid interface. The calculated gas-phase discharge structure is essentially the same as that between two metal electrodes. In front of the metal electrode in liquid, the electric double layer (EDL) with thickness of approximately 10 nm was formed to maintain the electrode reaction. However, the EDL was not formed at the liquid surface in contact with dc glow discharge, because charges are forcibly supplied from plasma to liquid. In other words, plasma-induced electrolysis is controlled at plasma-liquid interface by plasma. This work was partly supported by KAKENHI (Nos. 21110003 and 21110007).

  16. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  17. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  18. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

    PubMed Central

    Parenti, Anthony; Halbisen, Michael A.; Wang, Kai; Latham, Keith; Ralston, Amy

    2016-01-01

    Summary The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming. PMID:26947975

  19. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  20. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    PubMed Central

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  1. Induced Pluripotent Stem Cells for Regenerative Medicine

    PubMed Central

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine. PMID:24905879

  2. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  3. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells.

    PubMed

    Vieceli Dalla Sega, Francesco; Zambonin, Laura; Fiorentini, Diana; Rizzo, Benedetta; Caliceti, Cristiana; Landi, Laura; Hrelia, Silvana; Prata, Cecilia

    2014-04-01

    In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.

  4. Effect of the plasma-induced magnetic field on a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Ahedo, Eduardo

    2016-08-01

    A two-fluid, two-dimensional model of the plasma expansion in a divergent magnetic nozzle is used to investigate the effect of the plasma-induced magnetic field on the acceleration and divergence of the plasma jet self-consistently. The induced field is diamagnetic and opposes the applied one, increasing the divergence of the magnetic nozzle and weakening its strength. This has a direct impact on the propulsive performance of the device, the demagnetization and detachment of the plasma, and can lead to the appearance of zero-field points and separatrix surfaces downstream. In contrast, the azimuthal induced field, albeit non-zero, is small in all cases of practical interest.

  5. Induced pluripotent stem cells and neurodegenerative diseases.

    PubMed

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  6. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis

    SciTech Connect

    Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N.

    1995-11-01

    Programmed cell death or apoptosis is characterized by typical morphological alterations. By transmission electron microscopy, apoptotic cells are identified by condensation of the chromatin in tight apposition to the nuclear envelope, alteration of the nuclear envelope and fragmentation of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display and early desintegration of cytoplasmic membrane and swelling of mitochondria. In this study we assessed by flow cytometry the sequential alterations of forward angle light scatter, 90{degrees} light scatter, and fluorescence associated with fluorescein diacetate, rhodamine 123, and propidium iodide in two human B cell lines undergoing apoptosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by sodium azide. At the same time intervals, cells were examined by transmission electron microscopy and by UV microscopy after staining with Hoechst 33342. We report that sequential changes in light scatters and fluorescein diacetate are similar in cells undergoing apoptosis or necrosis, whereas apoptosis is characterized by a slightly delayed decrease of mitochondrial activity as assessed by rhodamine 123 staining. Surprisingly, a part of cells undergoing apoptosis displayed an early uptake of propidium iodide followed by a condensation and then a fragmentation of their nuclei. It is concluded that uptake of propidium iodide is a very early marker of cell death which does not discriminate between necrosis and apoptosis. Along with biochemical criteria, nuclear morphology revealed by staining with Hoechst 33342 would seem to be of the most simple and most discriminative assay of apoptosis. 33 refs., 5 figs., 1 tab.

  7. An antigenic study of human plasma cells in normal tissue and in myeloma: identification of a novel plasma cell associated antigen.

    PubMed Central

    Nathan, P D; Walker, L; Hardie, D; Richardson, P; Khan, M; Johnson, G D; Ling, N R

    1986-01-01

    A mouse monoclonal antibody named BU11 which detects an antigen strongly expressed on human plasma cells is described. The antibody stains plasma cells in tonsil sections, fresh and cultured plasmacytoid cells from the bone marrow of patients with multiple myeloma and cells of the plasmacytoid cell line RPMI 8226 used as the immunogen. In vitro studies of pokeweed mitogen (PWM) stimulated peripheral blood B cells and Epstein-Barr virus (EBV) stimulated tonsil B cells show that the antigen is present mainly on cells coexpressing the OKT10 antigen and containing cytoplasmic immunoglobulin (cIg). The BU11 antigen is expressed weakly on some normal B cells and is not present on T cells, monocytes or granulocytes. The antigen is of molecular weight 58kD under reducing conditions and is biochemically distinct from previously described plasma cell antigens. Images Fig. 4 PMID:3024883

  8. Plasma and red blood cell fatty acids in peroxisomal disorders.

    PubMed

    Moser, A B; Jones, D S; Raymond, G V; Moser, H W

    1999-02-01

    The demonstration of abnormal levels of fatty acids or plasmalogens in plasma or red blood cells is key to the diagnosis of peroxisomal disorders. We report the levels of 62 fatty acids and plasmalogens in patients with X-linked adrenoleukodystrophy (X-ALD), Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD), both at baseline and after dietary interventions. "Lorenzo's Oil" therapy in X-ALD normalizes the levels of saturated very long chain fatty acids in plasma, but leads to reduced levels of omega 6 and other omega 3 fatty acids, and requires monitoring and appropriate dietary supplements. Patients with ZS, NALD and IRD have reduced levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) which can be normalized by the oral administration of microencapsulated DHA and AA.

  9. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  10. Regulation of germinal center responses, memory B cells and plasma cell formation-an update.

    PubMed

    Corcoran, Lynn M; Tarlinton, David M

    2016-04-01

    Progress in understanding humoral immunity has been accelerated by the powerful experimental approaches of genetics, genomics and imaging. Excellent reviews of these advances appeared in 2015 in celebration of the 50th anniversary of the discovery of B cell and T cell lineages in the chicken. Here we provide a contemporary model of B cell differentiation, highlighting recent publications illuminating germinal center (GC), memory B cell and antibody-secreting plasma cell biology. The important contributions of CD4T cells to antibody responses have been thoroughly reviewed elsewhere.

  11. Plasma instability in fast spherical discharge induced by a preionization

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-07

    As it was shown earlier, fast discharge (dI/dt ∼ 10{sup 12 }A/s and I{sub max} ≈ 40 kA) in a spherical cavity (Al{sub 2}O{sub 3}, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  12. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas

    PubMed Central

    Rosani, Umberto; Tarricone, Elena; Venier, Paola; Brun, Paola; Deligianni, Velika; Zuin, Matteo; Martines, Emilio

    2015-01-01

    Background Atmospheric pressure cold plasma (APCP) might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS) that kill microorganisms without substantially affecting human cells. Objectives In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min) to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC) was able to inhibit or prevent damage and cell death. Results Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h) post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds). Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h. Conclusions These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant. PMID:26203910

  13. Production of organic compounds in plasmas: a comparison among electric sparks, laser-induced plasmas, and UV light.

    PubMed

    Scattergood, T W; McKay, C P; Borucki, W J; Giver, L P; Van Ghyseghem, H; Parris, J E; Miller, S L

    1989-01-01

    The chemistry in planetary atmospheres that is induced by processes associated with high-temperature plasmas is of broad interest because such processes may explain many of the chemical species observed. There are at least two important phenomena that are known to generate plasmas (and shocks) in planetary atmospheres: lightning and meteor impacts. For both phenomena, rapid heating of atmospheric gases leads to formation of a high-temperature plasma which emits radiation and produces shock waves that propagate through the surrounding atmosphere. These processes initiate chemical reactions that can transform simple gases into more complex compounds. In order to study the production of organic compounds in plasmas (shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP), an ultraviolet radiation. The yields of HCN and several simple hydrocarbons were measured by gas chromatography and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the agreement for C2H6 and the other hydrocarbons was poor, indicating that a more comprehensive theory is needed. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light but not to the shock waves emitted by the sparks. Hence, the results of these experiments demonstrate that the thermodynamic equilibrium theory does not adequately model lightning and meteor impacts and that photolysis must be included. Finally, the similarity in yields between the spark and the LIP experiments suggest that LIP provide valid and clean simulations of lightning and meteor impacts and that photolysis must be included. Finally, the similarity in yields between the spark and the LIP experiments suggests that LIP provide valid

  14. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  15. 2D electrostatic PIC algorithm for laser induced studying plasma in vacuum

    NASA Astrophysics Data System (ADS)

    Álvarez, C. A.; Riascos, H.; Gonzalez, C.

    2016-02-01

    Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.

  16. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells.

    PubMed

    Caron, Gersende; Hussein, Mourad; Kulis, Marta; Delaloy, Céline; Chatonnet, Fabrice; Pignarre, Amandine; Avner, Stéphane; Lemarié, Maud; Mahé, Elise A; Verdaguer-Dot, Núria; Queirós, Ana C; Tarte, Karin; Martín-Subero, José I; Salbert, Gilles; Fest, Thierry

    2015-11-01

    Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-?1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxy)methylation, and cell fate determination.

  17. [Research on Temporal and Spatial Evolution of Reheating Double-Pulse Laser-Induced Plasma].

    PubMed

    Wang, Jing-ge; Fu, Hong-bo; Ni, Zhi-bo; He, Wen-gan; Chen, Xing-long; Dong, Feng-zhong

    2016-03-01

    In order to investigate the emission enhancement mechanisms of reheating Double Pulse Laser-Induced Breakdown Spectroscopy (DP-LIBS), single pulse LIBS (SP-LIBS) and reheating DP-LIBS were carried out on an alloy steel sample respectively. The plasma emission was collected by an Echelle spectrometer with high resolution, while the plasma structure was monitored via fast-photography. The temporal and spatial evolutio ns of the plasma generated by SP-LIBS and reheating DP-LIBS were being studied. It is found that the plasma temperature in reheating DP-LIBS was higher than that of SP-LIBS, and there was a turning point for the decay rate of plasma temperature in reheating DP-LIBS when the delay time was equal to the interpulse time of DP-LIBS. Moreover, the inte nsity of the plasma image was increased by reheating DP-LIBS, and the height and width of the central region of the plasma were increased about 23.5% and 15.1% respectively. The results of spatial distribution showed that the intensity of Fe II and N I lines in the plasma were obviously enhanced by reheating DP-LIBS when the distance from the sample surface was larger than 0.6 mm. While the intensity enhancement for Fe I lines were little, even in some positio ns the intensity of Fe I lines decreased. The plasma temperature of double-pulse configuration was about 2 000 K higher than that of SP-LIBS, and a larger hot region in the plasma was generated. It is evidenced that the emission enhancement mechanisms in reheating DP-LIBS is that the second laser pulse re-excited the plasma induced by the first laser pulse, and the higher plasma temperature resulted from the re-exciting process. PMID:27400530

  18. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells.

    PubMed

    Liu, Yisong; Teng, Xiaohua; Yang, Xiaoxu; Song, Qing; Lu, Rong; Xiong, Jixian; Liu, Bo; Zeng, Nianju; Zeng, Yu; Long, Jia; Cao, Rui; Lin, Yong; He, Quanze; Chen, Ping; Lu, Ming; Liang, Songping

    2010-01-01

    Olfactory ensheathing cells (OECs) are a special type of glial cells that have characteristics of both astrocytes and Schwann cells. Evidence suggests that the regenerative capacity of OECs is induced by soluble, secreted factors that influence their microenvironment. These factors may regulate OECs self-renewal and/or induce their capacity to augment spinal cord regeneration. Profiling of plasma membrane and extracellular matrix through a high-throughput expression proteomics approach was undertaken to identify plasma membrane and extracellular matrix proteins of OECs under serum-free conditions. 1D-shotgun proteomics followed with gene ontology (GO) analysis was used to screen proteins from primary culture rat OECs. Four hundred and seventy nonredundant plasma membrane proteins and 168 extracellular matrix proteins were identified, the majority of which were never before reported to be produced by OECs. Furthermore, plasma membrane and extracellular proteins were classified based on their protein-protein interaction predicted by STRING quantitatively integrates interaction data. The proteomic profiling of the OECs plasma membrane proteins and their connection with the secretome in serum-free culture conditions provides new insights into the nature of their in vivo microenvironmental niche. Proteomic analysis for the discovery of clinical biomarkers of OECs mechanism warrants further study.

  19. Surface modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces.

    PubMed

    de Queiroz, Jana Dara Freires; Leal, Angélica Maria de Sousa; Terada, Maysa; Agnez-Lima, Lucymara Fassarela; Costa, Isolda; Pinto, Nadja Cristhina de Souza; de Medeiros, Silvia Regina Batistuzzo

    2014-04-01

    Titanium is one of the most used materials in implants and changes in its surface can modify the cellular functional response to better implant fixation. An argon plasma treatment generates a surface with improved mechanical proprieties without modifying its chemical composition. Oxidative stress induced by biomaterials is considered one of the major causes of implant failure and studies in this field are fundamental to evaluate the biocompatibility of a new material. Therefore, in this work, induction of oxidative stress by titanium surfaces subjected to plasma treatment (PTTS) was evaluated. The viability of CHO-k1 cells was higher on PTTS discs. Cells grown on titanium surfaces are subjected to intracellular oxidative stress. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular survival. These were associated with improved cellular antioxidant response in Plasma Treated Titanium Surface (PTTS). Furthermore, a decrease in protein and DNA oxidative damage was observed on cells grown on the roughed surface when compared to the smooth one. In conclusion, our data suggest that the treatment of titanium with argon plasma may improve its biocompatible, thus improving its performance as implants or as a scaffold in tissue engineering.

  20. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  1. Plasma lipoproteins as mediators of the oxidative stress induced by UV light in human skin: a review of biochemical and biophysical studies on mechanisms of apolipoprotein alteration, lipid peroxidation, and associated skin cell responses.

    PubMed

    Filipe, Paulo; Morlière, Patrice; Silva, João N; Mazière, Jean-Claude; Patterson, Larry K; Freitas, João P; Santus, R

    2013-01-01

    There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL) and low-density lipoprotein (LDL) as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces (•)Trp and (•)O2 (-) radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO(•)) by α -tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α -tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α -tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α -tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  2. Plasma Lipoproteins as Mediators of the Oxidative Stress Induced by UV Light in Human Skin: A Review of Biochemical and Biophysical Studies on Mechanisms of Apolipoprotein Alteration, Lipid Peroxidation, and Associated Skin Cell Responses

    PubMed Central

    Filipe, Paulo; Morlière, Patrice; Silva, João N.; Mazière, Jean-Claude; Patterson, Larry K.; Freitas, João P.; Santus, R.

    2013-01-01

    There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL) and low-density lipoprotein (LDL) as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces •Trp and •O2− radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO•) by α-tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α-tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α-tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α-tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed. PMID:23738035

  3. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  4. Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells

    NASA Astrophysics Data System (ADS)

    Beier, Hope T.; Tolstykh, Gleb P.; Musick, Joshua D.; Thomas, Robert J.; Ibey, Bennett L.

    2014-12-01

    Objective. Short infrared (IR) laser pulses have been used to stimulate action potentials in neurons both in vivo and in vitro. However, the mechanism(s) underlying this phenomenon has remained elusive. In vitro studies have found that pulsed IR exposure generates a nearly instant change in capacitance in the plasma membrane, characterized by inward rectification, a common feature in pore-forming exposures, such as electrical pulses and acoustic shock waves. Based on this similarity, we hypothesize that the mechanism of IR stimulation is the formation of short-lived nanopores in the plasma membrane. These transient, small-diameter pores allow the influx of extracellular ions that lead to action potential generation, possibly through activation of secondary messenger pathways or depolarization of the cell membrane resulting in activation of voltage-gated ion channels. Approach. A variety of fluorescent markers are used to observe the cell response to IR stimulation to monitor for effects indicative of nanoporation in other modalities. Main results. We observe rapid, transient rises in intracellular Ca2+, influx of YO-PRO-1 and propidium iodide into the cell signifying membrane permeabilization, cellular blebbing and swelling, and activation of the intracellular phosphoinositides lipid signaling pathway. Significance. This conclusion better explains the experimental observations and limitations of IR-induced neurological stimulation and represents a distinct theoretical shift in the understanding of the mechanism of IR-induced stimulation.

  5. EUV induced low temperature SF6-based plasma

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.

    2016-03-01

    In this work spectral investigations of low temperature F-rich photoionized plasmas were performed. The photoionized plasmas were created by irradiation of SF6 gas with intense EUV (extreme ultraviolet) radiation pulses. Two laser plasma EUV sources of different parameters used in the experiments were based on 0.8 J /4ns and 10 J/ 10 ns Nd:YAG lasers respectively. Both sources operated at 10 Hz repetition rate. The EUV radiation was focused using a dedicated reflective collector onto the gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of the SF6 gas resulted in dissociative ionization of the molecules, leading to creation of SFn+ ions and fluorine atoms. Further photo- or electron impact ionization and excitation processes allow for formation of photoionized plasmas emitting radiation in the wide spectral range. Emission spectra were measured in the EUV and optical ranges. The EUV spectra contained multiple spectral lines, originating from F II, F III and S II ions. The UV/VIS spectra were composed of spectral lines corresponding to radiative transitions in F II, F I and S II species. A computer simulation of the F II spectrum was performed using a collisional-radiative PrismSPECT code. Parameters of the photoionized plasmas were estimated by fitting the spectrum obtained from the simulations to the experimental one. Apart from that, the electron temperature was estimated employing Boltzmann plots based on the UV/VIS spectrum.

  6. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    NASA Astrophysics Data System (ADS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-02-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.

  7. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation.

    PubMed

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-02-20

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.

  8. Experimental study of the spectral characteristics of laser-induced air plasma

    SciTech Connect

    Lin Zhaoxiang; Wu Jinquan; Sun Fenglou; Gong Shunsheng

    2010-05-01

    The characteristics of laser-induced air, N2, and O2 plasma spectra are investigated spectroscopically. The study concentrates mainly on the temporal behavior of laser-induced plasma after breakdown. We used delayed spectra and spectra evolution for this study. Except for the general one-beam laser-induced breakdown experiment, a second laser beam was added to further probe the behavior of plasma during its decay. We report the experimental results of spectra composition, spectra time evolution, and spectra affected by a second laser beam. We determined that all the laser-induced air plasma spectra are from a continuous spectrum and some line spectra superposed on the continuous spectrum. The stronger short wavelength continuous spectrum is caused by bremsstrahlung radiation of electrons in the plasma, and the weaker long wavelength continuous spectrum is caused by electron and ion recombination. Line spectra originate from excited molecules, atoms, and their first-order ions, but no line spectra form higher-order ions. The results show that the temporal behavior of some spectra is a decay-rise-redecay pattern. With the two laser beam experiment we found that all the spectra intensities are enhanced by the second laser beam, but the response of various spectra to the delay of the second laser beam is quite different, in particular, the intensity increments of some spectra increase with the delay of the second laser beam. Some microscopic processes of laser-induced plasma obtained from the experimental results are discussed. These results are useful for a better understanding of some laser-induced air plasma related applications, such as laser-guided lightning and laser-induced breakdown spectroscopy.

  9. Tissue augmentation by white blood cell-containing platelet-rich plasma.

    PubMed

    Kawazoe, Takeshi; Kim, Hak Hee

    2012-01-01

    Platelet-rich plasma (PRP) is a matrix of fibrin and platelets that releases cytokines that are important in wound healing. PRP is produced from the patient's blood and therefore has less risk of allergic reaction and infection. We have obtained PRP with an enhanced white blood cell component (W-PRP) by optimizing the centrifugal separation of PRP from plasma. Here we show that injection of W-PRP into the auricle of nude mice gave greater tissue augmentation compared to PRP. Further augmentation occurred when bFGF was added to W-PRP, and there was a significant increase in the number of α-smooth muscle actin-positive cells in mice treated with W-PRP+bFGF. Our results suggest that W-PRP may have value in cosmetic surgery aimed at rejuvenation of wrinkled and sagging skin. W-PRP injection constitutes a new concept in cell transplantation, in which cells required for tissue regeneration are induced by cytokines released from the transplanted cells. PMID:22793069