Sample records for plasma coating formation

  1. Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Vardelle, M.; Goutier, S.

    2016-12-01

    The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.

  2. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  3. Three-dimensional visualization of coated vesicle formation in fibroblasts

    PubMed Central

    1980-01-01

    Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles. PMID:6987244

  4. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  5. Plasma variables and tribological properties of coatings in low pressure (0.1 - 10.0 torr) plasma systems

    NASA Technical Reports Server (NTRS)

    Avni, R.; Spalvins, T.

    1984-01-01

    A detailed treatment is presented of the dialog known as plasma surface interactions (PSI) with respect to the coating process and its tribological behavior. Adsorption, morphological changes, defect formation, sputtering, chemical etching, and secondary electron emission are all discussed as promoting and enhancing the surface chemistry, thus influencing the tribological properties of the deposited flux. Phenomenological correlations of rate of deposition, flux composition, microhardness, and wear with the plasma layer variables give an insight to the formation of chemical bonding between the deposited flux and the substrate surface.

  6. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  7. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  8. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants

    PubMed Central

    Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2011-01-01

    This paper reports preparation of a highly crystalline nano hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray and their in vitro and in vivo biological response. HA coatings were prepared on Ti using normal and supersonic plasma nozzles at different plate powers and working distances. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis show that the normal plasma nozzle lead to increased phase decomposition, high amorphous calcium phosphate (ACP) phase formation, and severe dehydroxylation of HA. In contrast, coatings prepared using supersonic nozzle retained the crystallinity and phase purity of HA due to relatively short exposure time of HA particles in the plasma. In addition, these coatings exhibited a microstructure that varied from porous and glassy structure at the coating-substrate interface to dense HA at the top surface. The microstructural analysis showed that the coating was made of multigrain HA particles of ~200 nm in size, which consisted of recrystallized HA grains in the size range of 15– 20 nm. Apart from the type of nozzle, working distance was also found to have a strong influence on the HA phase decomposition, while plate power had little influence. Depending on the plasma processing conditions, a coating thickness between 300 and 400 μm was achieved where the adhesive bond strengths were found to be between 4.8 MPa to 24 MPa. The cytotoxicity of HA coatings was examined by culturing human fetal osteoblast cells (hFOB) on coated surfaces. In vivo studies, using the cortical defect model in rat femur, evaluated the histological response of the HA coatings prepared with supersonic nozzle. After 2 weeks of implantation, osteoid formation was evident on the HA coated implant surface, which could indicate early implant- tissue integration in vivo. PMID:21552358

  9. Structure and microhardness of the plasma sprayed composite coatings after combined treatment

    NASA Astrophysics Data System (ADS)

    Ivannikov, A. Yu; Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Bagmutov, V. P.; Zakharov, I. N.; Parshev, S. N.; Denisevich, D. S.

    2018-04-01

    The principal aim of this study was to evaluate the effect of combination of electromechanical treatment (EMT) and ultrasonic treatment on structure and microhardness of air plasma sprayed composite coatings from Ni–20Cr alloy and R6M5 high speed steel (HSS). The results of the microstructural studies showed fundamental changes of the treated by the EMT plasma sprayed coating with the formation of nanostructured crystalline phases. As a consequence of the coating thus formed, the number of pores in the coating structure reduced from 10.0±1.5% to 2.0±0.5%, the surface microhardness increased from 3100±500 MPa to 7900±400 MPa. Additional ultrasonic treatment on the selected mode decreased surface waviness, which was formed on the surface of the plasma sprayed composite coatings after the EMT. The obtained results revealed the high potential of the combined treatment for post-treatment of the plasma sprayed coatings.

  10. Qualification of tungsten coatings on plasma-facing components for JET

    NASA Astrophysics Data System (ADS)

    Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.

    2009-12-01

    This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.

  11. Fatigue test results of the rotating steel blades of steam turbine K-25-0.6 GEO with ion-plasma coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Arkad'ev, D. A.; Temkin, S. G.; Senina, N. A.

    2016-12-01

    Fatigue test results of the rotating steel blades of the fourth stage of the K-25-0.6 low pressure cylinder Geo steam turbine manufactured in the Kaluga Turbine Plant (hereinafter, KTP) with the ion-plasma coating were presented. Coating formation was carried out at the National Research University (MPEI) on the Gefest vacuum pilot plant by the magnetron sputtering method. Characteristics of the obtained coating were analyzed with the use of the scientific-research equipment of the National Research University (MPEI). Fatigue tests of the rotating blades and determination of the fatigue strength of the material with the ion-plasma coating were carried out on the electrodynamic vibration machines VEDS-400A in the KTP structural laboratory. The following characteristics were obtained after tests: Ti-TiN composition, 10-11 μm thickness, 1200 HV 0.05 microhardness. Fatigue tests showed that destruction, regardless of availability or nonavailability of the coating, took place by cross-section in the root zone both on the leading and trailing edges of the blade, i.e., in the most stressed zones. It was found out that the maximum stresses during tests were revealed in the root section along the trailing edge on the blade pressure side, and the less stresses were on the leading edge. Fatigue strength of the working blades after coating formation increased by 12% minimum. Results of the fatigue tests prove the previously obtained data concerning 10-12% increase of the fatigue strength of the blade steel with the ion-plasma coating and allow claiming that the process of their formation exerts the positive influence on the fatigue characteristics of the blade materials.

  12. Plasma Spraying of Ceramics with Particular Difficulties in Processing

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.

    2015-01-01

    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

  13. Surface nanostructuring in the carbon–silicon(100) system upon microwave plasma treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya.

    2017-04-15

    The study is concerned with the physical and chemical processes and the mechanisms of the effect of plasma preparation of a surface on the systematic features of condensation and surface phase transformations during the formation of Si–C mask domains on p-Si(100) crystals by the deposition of submonolayer C coatings in the microwave plasma of low-pressure ethanol vapors. It is shown that, at short durations of the deposition of carbon onto silicon wafers with a natural-oxide coating at a temperature of 100°C, the formation of domains is observed. The lateral dimensions of the domains lie in the range from 10–15 tomore » 200 nm, and the heights of ridges produced by the plasma chemical etching of silicon through the mask domain coatings vary in the range from 40 to 80 nm.« less

  14. Formation of protective composite coatings with the use of SPTFE suspensions

    NASA Astrophysics Data System (ADS)

    Nadaraia, K. V.; Mashtalyar, D. V.; Sinebryukhov, S. L.; Gnedenkov, S. V.

    2017-09-01

    The method of protective composite coatings formation with the use of the plasma electrolytic oxidation (PEO) and subsequent treatment in isopropanol or aqueous suspension of the superdispersed polytetrafluoroethylene (SPTFE) have been developed. Morphological, electrochemical and tribological studies, as well as wetting ability of the protective coatings have been carried out. The obtained results corroborated the increase of the corrosion and wear resistance parameters for the polymer-containing coating in comparison with the base PEO-coating and uncoated material.

  15. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  16. Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings

    PubMed Central

    Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian

    2015-01-01

    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities. PMID:25893015

  17. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    NASA Astrophysics Data System (ADS)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  18. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  19. Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating

    PubMed Central

    Ma, Yibao; Jones, John E.; Ritts, Andrew C.; Yu, Qingsong

    2012-01-01

    Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms. PMID:22964248

  20. Laser surface modification of Ti and TiC coatings on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Lee, S. G.; Park, J. S.; Kim, H. G.

    2014-12-01

    In order to enhance the surface properties of magnesium alloy, a highly intense laser surface melting process following plasma spraying of Ti or TiC on AZ31 alloy were employed. When laser surface melting was applied to Ti coated magnesium alloy, the formation of fine Ti particle dispersed surface layer on the substrate occurred. The corrosion potential of the AZ31 alloy with Ti dispersed surface was significantly increased in 3.5 wt % NaCl solution. Additionally, an improved hardness was observed for the laser treated specimens as compared to the untreated AZ31 alloy. Laser melting process following plasma thermal deposition was also applied for obtaining in situ TiC coating layer on AZ31 alloy. The TiC coating layer could be successfully formed via in situ reaction between pure titanium and carbon powders. Incomplete TiC formation was observed in the plasma sprayed specimen, while completely transformed TiC layer was found after post laser melting process. It was also confirmed that the laser post treatment induced enhanced adhesion strength between the coating and the substrate.

  1. Impulse Plasma In Surface Engineering - a review

    NASA Astrophysics Data System (ADS)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  2. Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.

    2016-08-01

    Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.

  3. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

    NASA Astrophysics Data System (ADS)

    Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert

    2018-04-01

    In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

  4. Formation of Ca/P ceramic coatings by Plasma Electrolytic Oxidation (PEO) on Ti6Al4V ELI alloy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Jaimes, Y.; Naranjo, D. I.; Blanco, S.; García-Vergara, S. J.

    2017-12-01

    The formation of PEO ceramic coatings on Ti6Al4V ELI alloy was investigated using a phosphate/calcium containing electrolyte at 300 and 400V at 310K for different times. The Plasma Electrolytic Oxidation (PEO) coated specimens were then heat treated at 873 and 1073K for 2 hours. Scanning electron microscopy, Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction analysis were used to study the composition and the morphology of the ceramic coatings. The corrosion behaviour of the coatings was studied by Electrochemical Impedance Spectroscopy (EIS) in Simulated Body Fluid (SBF). The PEO-treated specimens primarily revealed a porous structure with thickness between 4 and 12μm, according to the voltage and process time used. The coatings are mainly composed of hydroxyapatite; however, as the voltage and anodizing time increase, the Ca/P ratio decreases. Generally, the corrosion resistance of the alloy was improved by the PEO-treated coatings, although the specimens treated at 1073K showed the presence of cracks that reduced the protective effect of the coatings.

  5. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    NASA Astrophysics Data System (ADS)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  6. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    PubMed Central

    Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742

  7. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. © 2012 American Chemical Society

  8. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Ando, Y; Kurokawa, K

    2012-06-01

    Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,

  9. Induction of angiogenesis and neovascularization in adjacent tissue of plasma-collagen-coated silicone implants.

    PubMed

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-09-28

    Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Plasma-treated collagen-I-coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen-coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants.

  10. Induction of Angiogenesis and Neovascularization in Adjacent Tissue of Plasma-Collagen–Coated Silicone Implants

    PubMed Central

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-01-01

    Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137

  11. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings. Copyright © 2012. Published by Elsevier Ltd.

  12. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    PubMed

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  13. In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

  14. Performance of coated columbium and tantalum alloys in plasma arc reentry simulation tests

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Merutka, J. P.

    1974-01-01

    The evaluation of coated refractory metals screened in stagnation model plasma arc tests is reported. Columbium alloys FS-85, C-129Y, and Cb-752 coated with Si-20Cr-20Fe (R512E) were tested at 1390 C. Three silicide coatings on Ta-10W were tested at 1470 C. Half-hour cycles and a 6500 N/sqm stagnation pressure were used. The best R512E coated columbium alloy was FS-85 with first local coating breakdowns occurring in 12 to 50 cycles. At coating defects, low metal recession rates (0.005 mm/min) were generally observed on coated columbium alloys while high rates (0.15 mm/min) were observed on coated Ta-10W. Coated columbium suffered large emittance losses (to below 0.7) due to surface refractory metal pentoxide formation.

  15. Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN

    NASA Astrophysics Data System (ADS)

    Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.

    2017-12-01

    Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.

  16. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  17. On the Bonding Strength of Fe-Based Self-Fluxing Alloy Coating Deposited by Different Methods on the Steel Substrate

    NASA Astrophysics Data System (ADS)

    Feldshtein, E.; Kardapolava, M.; Dyachenko, O.

    2018-05-01

    In the present paper, the bonding strength of Fe-based self-fluxing alloy coating deposited by plasma spraying, gluing and laser remelting and alloying on the steel substrate have been investigated. When flame melting, a globular structure is formed. Against the background of the solid solution carbide-boride phases are clearly distinguishable, between which the Fe-Fe2B and Fe-FeB eutectic colonies are situated. Laser remelting leads to the formation of metastable structures, reinforced with dendrites, consisting of alloyed Fe-α and Fe-γ. At the low laser beam speeds the coating is melted completely with the formation of a cast structure with the dendrites. When the laser beam speed is increased, the dendritic structure gets fragmented. Structures of coatings alloyed with B4C and remelted by the laser beam vary with the increase of the spot speed. The bonding strength of coating without subsequent remelting decreases by 4-5 times in comparison with remelted. The bonding strength of the reinforced glue coating has adhesive and adhesive-cohesive character. When the load increases in the coating, microcracks develop, which gradually spread to the center of the bonding surface. For plasma coatings after laser remelting without additional alloying, the maximum bonding strength is observed with the minimum laser beam speed. With increasing the laser beam speed it decreases almost 1.5 times. In glue coatings reinforced with B4C particulates by laser remelting, the bonding strength is lower by 1.2-1.4 times in comparison with plasma coating.

  18. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  19. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  20. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  1. Mechanoregulation of clathrin-mediated endocytosis in isolated cells and developing tissues

    NASA Astrophysics Data System (ADS)

    Kural, Comert

    Clathrin-coated assemblies bear the largest fraction of the endocytic load from the plasma membrane of eukaryotic cells. However, dynamics of clathrin-mediated endocytosis (CME) have not been established within tissues of multicellular organisms due to experimental and analytical bottlenecks in determining the lifespan of clathrin-coated structures. We found that clathrin coat growth rates obtained from fluorescence microscopy acquisitions can be utilized as reporters of CME dynamics. Growth rates can be assembled within time windows shorter than the average clathrin coat lifetime and, thereby, allow probing the changes in CME dynamics in real time. Furthermore, this novel approach is applicable to tissues as it is not prone to particle detection and tracking errors, which result in underestimation of the clathrin coat lifetimes. Exploiting these advantages, we detected spatial and temporal changes in CME dynamics within Drosophila amnioserosa tissues at different stages of embryo development. We also found that increased membrane tension impedes CME through inhibition of formation and dissolution of clathrin-coated structures. Therefore, the parameters defining clathrin coat dynamics (i.e., lifetime, formation density and growth rates) can be utilized to monitor the spatiotemporal gradients of the plasma membrane tension during cell migration and spreading.

  2. Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry

    NASA Astrophysics Data System (ADS)

    Darthout, Émilien; Quet, Aurélie; Braidy, Nadi; Gitzhofer, François

    2014-02-01

    As environmental barrier coatings are subjected to thermal stress in gas turbine engines, the introduction of a secondary phase as zircon (ZrSiO4) is likely to increase the stress resistance of Lu2Si2O7 coatings generated by induction plasma spraying using liquid precursors. In a first step, precursor chemistry effect is investigated by the synthesis of ZrO2-SiO2 nanopowders by induction plasma nanopowder synthesis technique. Tetraethyl orthosilicate (TEOS) as silicon precursor and zirconium oxynitrate and zirconium ethoxide as zirconium precursors are mixed in ethanol and produce a mixture of tetragonal zirconia and amorphous silica nanoparticles. The use of zirconium ethoxide precursor results in zirconia particles with diameter below 50 nm because of exothermic thermal decomposition of the ethoxide and its high boiling point with respect to solvent, while larger particles are formed when zirconium oxynitrate is employed. The formation temperature of zircon from zirconia and silica oxides is found at 1425 °C. Second, coatings are synthesized in Lu2O3-ZrO2-SiO2 system. After heat treatment, the doping effect of lutetium on zirconia grains totally inhibits the zircon formation. Dense coatings are obtained with the use of zirconium ethoxide because denser particles with a homogeneous diameter distribution constitute the coating.

  3. Formation of protective composite coatings with the use of solution of TFE telomers

    NASA Astrophysics Data System (ADS)

    Mashtalyar, D. V.; Gnedenkov, S. V.; Sinebryukhov, S. L.; Nadaraia, K. V.; Kiryukhin, D. P.; Kushch, P. P.; Kichigina, G. A.; Buznik, V. M.

    2017-09-01

    This paper presents the method of fabricate and the results of investigation of electrochemical properties and wettability of the composite coatings obtained on the magnesium alloy by plasma electrolytic oxidation (PEO) and the use of the solution of tetrafluoroethylene (TFE) telomers. The fluoropolymer-containing coatings decrease corrosion current density, increase contact angle in comparison with the base PEO-coating and the bare alloy.

  4. Study of positive and negative plasma catalytic oxidation of ethylene.

    PubMed

    Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S

    2017-06-01

    The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO 2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.

  5. Manufacturing of composite titanium-titanium nitride coatings by reactive very low pressure plasma spraying (R-VLPPS)

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-11-01

    Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).

  6. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  7. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  8. Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF4/O2 Plasma Chambers Using Y2O3 and YF3 Protective Coatings

    PubMed Central

    Lin, Tzu-Ken; Wang, Wei-Kai; Huang, Shih-Yung; Tasi, Chi-Tsung

    2017-01-01

    Yttrium fluoride (YF3) and yttrium oxide (Y2O3) protective coatings prepared using an atmospheric plasma spraying technique were used to investigate the relationship between surface erosion behaviors and their nanoparticle generation under high-density plasma (1012–1013 cm−3) etching. As examined by transmission electron microscopy, the Y2O3 and YF3 coatings become oxyfluorinated after exposure to the plasma, wherein the yttrium oxyfluoride film formation was observed on the surface with a thickness of 5.2 and 6.8 nm, respectively. The difference in the oxyfluorination of Y2O3 and YF3 coatings could be attributed to Y–F and Y–O bonding energies. X-ray photoelectron spectroscopy analyses revealed that a strongly fluorinated bonding (Y–F bond) was obtained on the etched surface of the YF3 coating. Scanning electron microscopy and energy dispersive X-ray diffraction analysis revealed that the nanoparticles on the 12-inch wafer are composed of etchant gases and Y2O3. These results indicate that the YF3 coating is a more erosion-resistant material, resulting in fewer contamination particles compared with the Y2O3 coating. PMID:28708079

  9. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  10. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  11. Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique

    NASA Astrophysics Data System (ADS)

    Afzal, M.; Ajmal, M.; Nusair Khan, A.; Hussain, A.; Akhter, R.

    2014-03-01

    Tungsten carbide cermet powder with 12%Co was deposited on stainless steel substrate by air plasma spraying method. Two types of coatings were produced i.e. thick (430 µm) and thin (260 µm) with varying porosity and splat morphology. The coated samples were treated with CO2 laser under the shroud of inert atmosphere. A series of experimentation was done in this regard, to optimize the laser parameters. The plasma sprayed coated surfaces were then laser treated on the same parameters. After laser melting the treated surfaces were characterized and compared with as-sprayed surfaces. It was observed that the thickness of the sprayed coatings affected the melt depth and the achieved microstructures. It was noted that phases like Co3W3C, Co3W9C4 and W were formed during the laser melting in both samples. The increase in hardness was attributed to the formation of these phases.

  12. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    PubMed

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA, Ti alloy and YSZ components.

  13. The influence of the ion plasma flow on the phase composition and microhardness of carbon coatings doped with metals

    NASA Astrophysics Data System (ADS)

    Rudenkov, A. S.; Piliptsou, D. G.; Luchnikov, P. A.; Rogachev, A. V.; Jiang, Xiaohong; Fedosenko, N. N.

    2018-01-01

    The Raman spectroscopy method established that subsequent treatment with ion ions leads to a change in the microstructure of coatings based on carbon and metals. It is established that the structure change is determined by the changes occurring at the interface and depends on the sp3 → sp2 phase transition due to the appearance of local thermal peaks at the end of tracks of nitrogen ions implanted in the coating volume. It is shown that the microhardness of metal-carbon coatings (α-C: Cu, α-C: Ti, α-C:Al) increases after ion-plasma treatment, which is determined by the formation of solid interstitial phases based on CNx and metal carbonitrides.

  14. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  15. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces

    PubMed Central

    Sardella, Eloisa; Palumbo, Fabio; Camporeale, Giuseppe; Favia, Pietro

    2016-01-01

    Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors. PMID:28773637

  16. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Coulon, J. F.; Tournerie, N.; Maillard, H.

    2013-10-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic Csbnd O and Cdbnd O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  17. Pathogen inactivation treatment of plasma and platelet concentrates and their predicted functionality in massive transfusion protocols.

    PubMed

    Arbaeen, Ahmad F; Schubert, Peter; Serrano, Katherine; Carter, Cedric J; Culibrk, Brankica; Devine, Dana V

    2017-05-01

    Trauma transfusion packages for hemorrhage control consist of red blood cells, plasma, and platelets at a set ratio. Although pathogen reduction improves the transfusion safety of platelet and plasma units, there is an associated reduction in quality. This study aimed to investigate the impact of riboflavin/ultraviolet light-treated plasma or platelets in transfusion trauma packages composed of red blood cell, plasma, and platelet units in a ratio of 1:1:1 in vitro by modeling transfusion scenarios for trauma patients and assessing function by rotational thromboelastometry. Pathogen-reduced or untreated plasma and buffy coat platelet concentrate units produced in plasma were used in different combinations with red blood cells in trauma transfusion packages. After reconstitution of these packages with hemodiluted blood, the hemostatic functionality was analyzed by rotational thromboelastometry. Hemostatic profiles of pathogen-inactivated buffy coat platelet concentrate and plasma indicated decreased activity compared with their respective controls. Reconstitution of hemodiluted blood (hematocrit = 20%) with packages that contained treated or nontreated components resulted in increased alpha and maximum clot firmness and enhanced clot-formation time. Simulating transfusion scenarios based on 30% blood replacement with a transfusion trauma package resulted in a nonsignificant difference in rotational thromboelastometry parameters between packages containing treated and nontreated blood components (p ≥ 0.05). Effects of pathogen inactivation treatment were evident when the trauma package percentage was 50% or greater and contained both pathogen inactivation-treated plasma and buffy coat platelet concentrate. Rotational thromboelastometry investigations suggest that there is relatively little impact of pathogen inactivation treatment on whole blood clot formation unless large amounts of treated components are used. © 2017 AABB.

  18. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    NASA Astrophysics Data System (ADS)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  19. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  20. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    NASA Astrophysics Data System (ADS)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  1. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Abrams, T.; Bell, R. E.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.

    2015-08-01

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li2O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  2. Calculation of intrinsic stresses in the diamond-like coatings produced by plasma ion deposition in modes of DC and pulse bias potentials

    NASA Astrophysics Data System (ADS)

    Kalinichenko, A. A.; Perepelkin, S. S.; Strel'nitskij, V. E.

    2015-04-01

    The formula derivation for calculation of intrinsic stress in diamond-like coatings deposited from the ion flux in modes of continuous and pulsed potentials in view of process of defects formation is given. The criterion of applicability of obtained formula allowing to determine critical parameters of the pulsed potential mode is suggested. Results of calculation of stresses in diamond-like coatings at deposition of low-energy ions C+ from filtered vacuum arc plasma are adduced. The influence of the bias potential, repetition frequency and pulse duration, on the value of intrinsic stress is discussed. Qualitative agreement of calculated stress and experimental data is stated. The important role of deposition temperature in control of intrinsic stress in deposited coating is noted.

  3. Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Hillman, Dave; Wilcoxon, Ross; Lower, Nate; Grossman, Dan

    2015-12-01

    Alkali silicate glass (ASG) coatings were investigated as a possible method for inhibiting tin whisker initiation and growth. The aqueous-based ASG formulations used in this study were deposited with equipment and conditions that are typical of those used to apply conventional conformal coatings. Processes for controlling ASG coating properties were developed, and a number of ASG-based coating combinations were applied to test components with pure tin surfaces. Coatings were applied both in a laboratory environment at Rockwell Collins and in a manufacturing environment at Plasma Ruggedized Solutions. Testing in elevated humidity/temperature environments and subsequent inspection of the test articles identified coating combinations that inhibited tin whisker growth as well as other material combinations that actually accelerated tin whisker growth. None of the coatings evaluated in this study, including conventional acrylic and Parylene conformal coatings, completely prevented the formation of tin whiskers. Two of the coatings were particularly effective at reducing the risks of whisker growth, albeit through different mechanisms. Parylene conformal coating almost, but not completely, eliminated whisker formation, and only a few tin whiskers were found on these surfaces during the study. A composite of ASG and alumina nanoparticles inhibited whisker formation to a lesser degree than Parylene, but did disrupt whisker growth mechanisms so as to inhibit the formation of long, and more dangerous, tin whiskers. Additional testing also demonstrated that the conformal coatings had relatively little effect on the dielectric loss of a stripline test structure operating at frequencies over 30 GHz.

  4. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  5. Effect of Powder-Feeding Modes During Plasma Spray on the Properties of Tungsten Carbide Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhong, Yi-ming; Du, Xiao-dong; Wu, Gang

    2017-05-01

    A WC-reinforced composite coating was fabricated on the surface of 45 steel samples by plasma, cladding process with WC powder added to the molten pool synchronously or in the tail of the molten pool. The microstructure, phase composition, and element distribution in the coating were analyzed. The results show that the undissolved WC particles and crystallized carbide (WC, W2C) were distributed uniformly in the sub-eutectic matrix in both cases. Fewer of the WC particles are dissolved in the matrix when they are injected into the tail of the molten pool. There are fewer needle-like tungsten carbide formations seen in the composite coating fabricated by back-feeding process than in that formed by synchronous feeding. The former results in a finer microstructure and a higher concentration gradient of elements near the interface between the WC particles and the coating matrix.

  6. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    DOE PAGES

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; ...

    2016-01-01

    In this study, the performance of Y 2O 3-stabilized ZrO 2 (YSZ), Y 2O 3, and Al 2O 3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al 2O 3 coating performed well while the YSZ and Y 2O 3 coating showed clear areas of attack.more » These results are attributed to the evolution of gaseous Mg at 820 °C leading to the formation of MgO and MgAl 2O 4.« less

  7. Effect of DC Plasma Electrolytic Oxidation on Surface Characteristics and Corrosion Resistance of Zirconium

    PubMed Central

    Sowa, Maciej

    2018-01-01

    Zr is a valve metal, the biocompatibility of which is at least on par with Ti. Recently, numerous attempts of the formation of bioactive coatings on Zr by plasma electrolytic oxidation (PEO) in solutions that were based on calcium acetate and calcium β-glycerophosphate were made. In this study, the direct current (DC) PEO of commercially pure zirconium in the solutions that contained Ca(H2PO2)2, Ca(HCOO)2, and Mg(CH3COO)2 was investigated. The treatment was conducted at 75 mA/cm2 up to 200, 300, or 400 V. Five process stages were discerned. The treatment at higher voltages resulted in the formation of oxide layers that had Ca/P or (Mg+Ca)/P ratios that were close to that of hydroxyapatite (Ca/P = 1.67), determined by SEM/EDX. The corrosion resistance studies were performed using electrochemical impedance spectroscopy (EIS) and DC polarization methods. R(Q[R(QR)]) circuit model was used to fit the EIS data. In general, the coatings that were obtained at 200 V were the most corrosion resistant, however, they lacked the porous structure, which is typical for PEO coatings, and is sought after in the biomedical applications. The treatment at 400 V resulted in the formation of the coatings that were more corrosion resistant than those that were obtained at 300 V. This was determined mainly by the prevailing plasma regime at the given process voltage. The pitting resistance of Zr was also improved by the treatment, regardless of the applied process conditions. PMID:29751530

  8. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  9. Characterisations Of Al{sub 2}O{sub 3}-13% Wt TiO{sub 2} Deposition On Mild Steel Via Plasma Spray Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.

    2011-01-17

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4%more » by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only {approx}5 x 10{sup -4} cm{sup 3}/Nm with 4% of porosity.« less

  10. Role of carbon nanotube dispersion in fracture toughening of plasma sprayed aluminum oxide-carbon nanotube nanocomposite coating

    NASA Astrophysics Data System (ADS)

    Balani, Kantesh

    Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (˜210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

  11. Self-healing effect of the protective inhibitor-containing coatings on Mg alloys

    NASA Astrophysics Data System (ADS)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.

    2017-09-01

    The method of self-healing coating formation on the surface of magnesium alloys on the base of plasma electrolytic oxidation (PEO) with subsequent impregnation of the obtained layer with inhibitor has been suggested. The protective and electrochemical properties of such coatings have been described. Localised Scanning Electrochemical Methods were used for determining the kinetics and mechanism of the self-healing process. The treatment with the solution containing inhibitor enables us to increase the protective properties of the PEO-coating in 30 times in the corrosion-active environment.

  12. High temperature surface protection. [10 gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed. Coatings covered range from simple aluminides formed by pack cementation to the more advanced physical vapor deposition overlay coatings and developmental plasma spray deposited thermal barrier coatings.

  13. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  14. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  15. In Vitro and In Vivo Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus aureus Infection

    PubMed Central

    Ballo, Myriam K. S.; Pulgarin, César; Hopf, Nancy; Berthet, Aurélie; Kiwi, John; Moreillon, Philippe; Bizzini, Alain

    2016-01-01

    In this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistant Staphylococcus aureus (MRSA) infection in vitro and in vivo. Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering. In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 104 to 108 CFU/ml. In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (107 CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured. In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 104 to 107 CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization; P < 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%; P < 0.005). Ag/Cu-coating protection diminished with 108 CFU/ml in both PBS and plasma (50 to 100% colonization). In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively; P = 0.16) and bacteremia (31% versus 68%, respectively; P < 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu catheters in vivo was due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces. PMID:27353266

  16. Effect of nitrogen-containing plasma on adherence, friction, and wear of radiofrequency-sputtered titanium carbide coatings

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440C steel surfaces that were rf sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. Both X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that the small partial pressure of nitrogen (approximately 0.5 percent) markedly improves the adherence, friction, and wear properties when compared with coatings applied to sputter-etched surfaces, oxidized surfaces, or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  17. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  18. Low Thermal Conductivity Yttrium Aluminum Garnet Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray: Part II—Planar Pore Formation and CMAS Resistance

    NASA Astrophysics Data System (ADS)

    Kumar, Rishi; Jiang, Chen; Wang, Jiwen; Cietek, Drew; Roth, Jeffery; Gell, Maurice; Jordan, Eric H.

    2018-06-01

    Low thermal conductivity in yttrium aluminum garnet (YAG)-based thermal barrier coatings (TBCs) made by solution precursor plasma spray (SPPS) can be achieved by creating planar arrays of porosity called inter-pass boundaries (IPBs) as shown in Part I. In the current work, the mechanism of IPBs formation is studied through analysis of precursor entrainment and collection of single/raster step deposition patterns. It is concluded that the IPBs are formed by trapping precursor that under/over penetrates the plasma jet. CMAS interaction tests on SPPS YAG TBCs with heavy IPBs show an improvement of 123X and 15X over APS YSZ and SPPS YAG-light IPBs TBCs, respectively. It is demonstrated that the exceptional coating performance is because of the engineered heavy IPBs which branch out from the vertical cracks and run parallel to the surface. The CMAS melt gets drawn in the IPBs due to the capillary forces, leading to a shallow infiltration depth. The IPBs have a porosity of 70%, thus act as reservoirs for CMAS. Based on the favorable results, an alternate CMAS mitigation strategy is proposed that solely relies on microstructural features instead of the conventional approach where a vigorous reaction between CMAS-TBCs is desirable to form secondary phases.

  19. Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic

    PubMed Central

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C.

    2014-01-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820

  20. Correlated fluorescence-atomic force microscopy studies of the clathrin mediated endocytosis in SKMEL cells

    NASA Astrophysics Data System (ADS)

    Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam; Smith, Steve

    2017-02-01

    Clathrin-mediated endocytosis (CME) is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. Currently, there are two models describing membrane bending during the formation of clathrin cages: the first involves the deposition of all clathrin molecules to the plasma membrane, forming a flat lattice prior to membrane bending, whereas in the second model, membrane bending happens simultaneously as the clathrin arrives to the site to form a clathrin-coated cage. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorophores (actin filaments labeled with green phalloidin and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. An extensive statistical survey of many hundreds of CME events, at various stages of progression, are observed via this method, allowing inferences about the dominant mechanisms active in CME in SKMEL cells. Results indicate a mixed model incorporating aspects of both the aforementioned mechanisms for CME.

  1. Comprehensive process maps for synthesizing high density aluminum oxide-carbon nanotube coatings by plasma spraying for improved mechanical and wear properties

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar

    Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

  2. Optimization of the Silver Nanoparticles PEALD Process on the Surface of 1-D Titania Coatings

    PubMed Central

    Radtke, Aleksandra; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Talik, Ewa; Mäkelä, Maarit; Leskelä, Markku; Piszczek, Piotr

    2017-01-01

    Plasma enhanced atomic layer deposition (PEALD) of silver nanoparticles on the surface of 1-D titania coatings, such as nanotubes (TNT) and nanoneedles (TNN), has been carried out. The formation of TNT and TNN layers enriched with dispersed silver particles of strictly defined sizes and the estimation of their bioactivity was the aim of our investigations. The structure and the morphology of produced materials were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron miscroscopy (SEM). Their bioactivity and potential usefulness in the modification of implants surface have been estimated on the basis of the fibroblasts adhesion and proliferation assays, and on the basis of the determination of their antibacterial activity. The cumulative silver release profiles have been checked with the use of inductively coupled plasma-mass spectrometry (ICPMS), in order to exclude potential cytotoxicity of silver decorated systems. Among the studied nanocomposite samples, TNT coatings, prepared at 3, 10, 12 V and enriched with silver nanoparticles produced during 25 cycles of PEALD, revealed suitable biointegration properties and may actively counteract the formation of bacterial biofilm. PMID:28737725

  3. Passivation of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.; Sancier, K. M.; Morrison, S. R.

    1973-01-01

    Five powders were received for plasma calcining during this report period. The particle size using a fluid energy mill, and obtained pigments that could be plasma calcined. Optimum results are obtained in the plasma calcining of zinc orthotitanate when finely dispersed particles are subjected to a calculated plasma temperature of 1670 C. Increasing the plasma calcining time by using multiple passes through the plasma stabilized the pigment to vacuum UV irradiation was evidenced by the resulting ESR spectra but slightly decreased the whiteness of the pigment. The observed darkening is apparently associated with the formation of Ti(+3) color centers.

  4. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs. The different thermal conduction behaviors were linked to the porosity and compositional properties of the coatings using immersion density, SEM, and synchrotron radiation characterization techniques.

  5. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel

    NASA Astrophysics Data System (ADS)

    Girisha, K. G.; Sreenivas Rao, K. V.; Anil, K. C.; Sanman, S.

    2017-04-01

    Slurry erosion is an implicit problem in many engineering industrial components such as ore carrying pipelines, slurry pumps and extruders. Even the water turbine blades are subjected to erosive wear when the water contains considerable amount of silt. In the present study, Al2O3-40%TiO2 powder particles of average particle size of 50 micrometer were deposited on EN56B martenistic stainless steel by atmospheric plasma spray technique. Ni/Cr was pre coated to work as bond coat for good adhesion between coating and the substrate material. A coating thickness of 200 micrometer was achieved. Coated and un-coated substrates were subjected to slurry erosion test as per ASTM G-119 standard. Slurry erosion test rig was used to evaluate the erosion properties at room temperature condition by varying the spindle speed. Scanning electron microphotographs were taken before and after the slurry erosion test. Microstructures reveal uniform distribution of coating materials. Eroded surface shows lip, groove, and crater formation and dense coating resulting in less porosity. Micro hardness test was evaluated and reported. EDX analysis confirms the presence of Al, Ti and O2 particles. It was observed that, Al2O3-40%TiO2 coated substrates exhibit superior erosion resistance as compared to un-coated substrates due to higher hardness and less coating porosity.

  6. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    NASA Astrophysics Data System (ADS)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of the surface, and then through multiple seemingly random electric arcs on the surface. The formation of these discharges is facilitated by the near-infinite conductivity of the air plasma column. The micro-porous micro-roughened structure developed in this step is then used as the substrate for coating deposition. In the next step, first the plasma jet is slightly modified with a quartz tube surrounding the jet-head. This modification allows for ignition and maintenance of a very weak plasma while hindering the diffusion of oxygen into the plasma and thus increasing the amount of organic deposition on the surface. This is confirmed by the chemical characterization of the surfaces developed using the modified jet. Furthermore, it is shown that this modification can significantly affect surface morphology, leading to a finer surface structure with different levels of roughness. Hydrophobic materials are then deposited on the surface in the presence of HMDSO using nitrogen plasma. Several samples are prepared with different precursor flow rates, plasma generation powers and number of deposition passes. All coatings are characterized regarding their surface morphology, chemical composition, wetting behavior and icephobic characteristics. It is shown that at low precursor flow rates, coating deposition is not enough for a full coverage of the surface. On the other hand, at high flow rates coating deposition can completely cover the surface features originated from the air plasma treatment process, thus negating the effects of an important roughness level. At the median flow rate, which was identified to be 5 g/h, the coating can fully cover the surface while maintaining the pre-existing surface features. It is also shown that by increasing the number of plasma deposition passes, surface features become slightly larger while the amount of organic deposition on the surface increases. Finally, it is shown that in high plasma generation powers, the amount of oxide deposition on the surface increases, leading to lower contact angles and higher ice adhesion strengths. In order to estimate coatings' efficiency in practical applications, coating's stability against some environmental factors is studied. At first, the effects of multiple icing/deicing cycles on surface properties is investigated. SEM studies confirm the removal of the coating material from the surface in all cases after multiple icing/deicing cycles. However, it is shown that the sample resulting from the lowest generation power combined with median flow rate and 3 passes of plasma deposition can maintain its hydrophobicity and icephobicity for up to 10 cycles of icing/deicing. This sample is then exposed to an equivalent of up to 4 years of natural ultraviolet exposure and the effects of UV on surface properties were studied. It is suggested that ultraviolet exposure may be capable of reorganizing the organic functions in the coating structure, leading to shorter siloxane chains with denser methyl functionalization, thus affecting the wetting and icing behavior of the surface. Ice adhesion strength was shown to decrease significantly after the equivalent of 3 years of natural UV exposure. The procedure introduced in this thesis is a cheap, quick, and environmentally friendly method for development of superhydrophobic/icephobic coatings on aluminum substrates. Therefore, it can be easily implemented in several industrial applications where outdoor structures are expected to be exposed to severe icing events.

  7. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    NASA Astrophysics Data System (ADS)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  8. The influence of incorporating MgO into Ni-based cermets by plasma spraying on anode microstructural and chemical stability in dry methane

    NASA Astrophysics Data System (ADS)

    Lay, E.; Metcalfe, C.; Kesler, O.

    2012-11-01

    The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.

  9. Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions.

    PubMed

    Simon, Johanna; Müller, Laura K; Kokkinopoulou, Maria; Lieberwirth, Ingo; Morsbach, Svenja; Landfester, Katharina; Mailänder, Volker

    2018-06-14

    Formation of the biomolecular corona ultimately determines the successful application of nanoparticles in vivo. Adsorption of biomolecules such as proteins is an inevitable process that takes place instantaneously upon contact with physiological fluid (e.g. blood). Therefore, strategies are needed to control this process in order to improve the properties of the nanoparticles and to allow targeted drug delivery. Here, we show that the design of the protein corona by a pre-formed protein corona with tailored properties enables targeted cellular interactions. Nanoparticles were pre-coated with immunoglobulin depleted plasma to create and design a protein corona that reduces cellular uptake by immune cells. It was proven that a pre-formed protein corona remains stable even after nanoparticles were re-introduced to plasma. This opens up the great potential to exploit protein corona formation, which will significantly influence the development of novel nanomaterials.

  10. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sowa, Maciej; Woszczak, Maja; Kazek-Kęsik, Alicja; Dercz, Grzegorz; Korotin, Danila M.; Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Cholakh, Seif O.; Basiaga, Marcin; Simka, Wojciech

    2017-06-01

    This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm-2) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H2PO2)2 solution, which was then modified by the addition of 1.15 M Ca(HCOO)2 as well as 1.15 M and 1.5 M Mg(CH3COO)2. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO- and CH3COO- ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  11. Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery

    NASA Astrophysics Data System (ADS)

    Gnedenkov, S. V.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Imshinetskiy, I. M.; Gnedenkov, A. S.; Minaev, A. N.

    2017-09-01

    In order to improve the corrosion resistance of magnesium alloys the ways of composite protective coating formation were developed by means of plasma electrolytic oxidation (PEO) as well as electrophoretic deposition methods. Electrochemical, corrosion, tribological, and morphological properties of the MAS magnesium alloy composite coatings were studied. The composite polymer-containing coating decrease the corrosion current density values by three orders of magnitude (Ic = 2.0 . 10-10 A/cm2), in comparison with the base PEO-layer. These polymer-containing layers enable one to expand the practical usage area of Mg alloys. The application of such coatings provides the increasing the bioactivity and regulate the corrosion rate of resorbable magnesium implants.

  12. Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy

    NASA Astrophysics Data System (ADS)

    Apachitei, I.; Leoni, A.; Riemslag, A. C.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2011-05-01

    Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.

  13. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  14. Caveolae as plasma membrane sensors, protectors and organizers.

    PubMed

    Parton, Robert G; del Pozo, Miguel A

    2013-02-01

    Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.

  15. Investigation of absorptance and emissivity of thermal control coatings on Mg–Li alloys and OES analysis during PEO process

    PubMed Central

    Yao, Zhongping; Xia, Qixing; Ju, Pengfei; Wang, Jiankang; Su, Peibo; Li, Dongqi; Jiang, Zhaohua

    2016-01-01

    Thermal control ceramic coatings on Mg–Li alloys have been successfully prepared in silicate electrolyte system by plasma electrolytic oxidation (PEO) method. The PEO coatings are mainly composed of crystallized Mg2SiO4 and MgO, which have typical porous structure with some bulges on the surface; OES analysis shows that the plasma temperature, which is influenced by the technique parameters, determines the formation of the coatings with different crystalline phases and morphologies, combined with “quick cooling effect” by the electrolyte; and the electron concentration is constant, which is related to the electric spark breakdown, determined by the nature of the coating and the interface of coating/electrolyte. Technique parameters influence the coating thickness, roughness and surface morphology, but do not change the coating composition in the specific PEO regime, and therefore the absorptance (αS) and emissivity (ε) of the coatings can be adjusted by the technique parameters through changing thickness and roughness in a certain degree. The coating prepared at 10 A/dm2, 50 Hz, 30 min and 14 g/L Na2SiO3 has the minimum value of αS (0.35) and the maximum value of ε (0.82), with the balance temperature of 320 K. PMID:27383569

  16. Cavin family proteins and the assembly of caveolae

    PubMed Central

    Kovtun, Oleksiy; Tillu, Vikas A.; Ariotti, Nicholas; Parton, Robert G.; Collins, Brett M.

    2015-01-01

    ABSTRACT Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein–protein and protein–lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins. PMID:25829513

  17. Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Jang, Yong-Joo; Jung, Jae Pil

    2017-10-01

    In this study, plasma electrolytic oxidation (PEO) process has been employed to fabricate alumina coatings on AA 6061 aluminum alloy from an electrolyte containing water glass (Na2SiO3) and alkali (KOH). The effect of deposition time and the alkali to water glass (KOH: Na2SiO3) composition ratio on the coating morphology and properties are studied. The different phases of the oxide layer and microstructure are investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that initially γ-Al2O3 forms in the coating, and as the processing time is increased from 5 to 60 minutes, α-Al2O3 phase becomes prominent. Further, higher the content of Na2SiO3, higher is the hardness and coating growth rate due to the formation of stable α-Al2O3 and Al-Si-O phase. It has been reported that the optimum properties of the PEO coatings can be obtained at a ratio of KOH: Na2SiO3 ≈ 15:10 followed by 10:10.

  18. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  19. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  20. Oxidation behavior of thermal barrier coating systems with Al interlayer under isothermal loading

    NASA Astrophysics Data System (ADS)

    Ali, I.; Sokołowski, P.; Grund, T.; Pawłowski, L.; Lampke, T.

    2018-06-01

    In the present study, the phenomena related to the Thermally Grown Oxides (TGO) in atmospheric plasma sprayed Thermal Barrier Coatings (TBCs) are discussed. CoNiCrAlY bond coatings were sprayed on Inconel 600 substrates. Subsequently, thin Al layers were deposited by DC-Magnetron sputtering. Finally, yttria-stabilized zirconia (YSZ) top coatings were deposited to form a three-layered TBC system. The thus produced aluminum interlayer containing thermal barrier coatings (Al-TBC) were subjected to isothermal exposure with different holding times at 1150 °C and compared with reference TBCs of the same kind, but without Al interlayers (R-TBC). The oxide film formation in the interface between bond coating (BC) and top coating (TC) was investigated by scanning electron microscope (SEM) after 100 and 300 h of high temperature isothermal exposure. The growth of this oxide film as a function of the isothermal exposure time was studied. As a result, the designed Al-TBC system exhibited better oxidation resistance in the BC/TC interface than the two-layered R-TBC system. This was lead back to the Al enrichment, which slows down the formation rate of transition metal oxides during thermal loading.

  1. In-situ grown MgO-ZnO ceramic coating with high thermal emittance on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Li, Hang; Lu, Songtao; Qin, Wei; Wu, Xiaohong

    2017-07-01

    Intense solar radiation and internal heat generation determine the equilibrium temperature of an in-orbit spacecraft. Thermal control coatings with low solar absorptance and high thermal emittance effectively maintain the thermal equilibrium within safe operating limits for exposed, miniaturized and highly integrated components. A novel ceramic coating with high thermal emittance and good adhesion was directly prepared on the Mg substrate using an economical process of controlled plasma electrolytic oxidation (PEO) in the electrolyte containing ZnSO4. XRD and XPS results showed that this coating was mainly composed of the MgO phase as well as an unusual ZnO crystalline phase. The adhesive strength between the coating and substrate determined by a pull-off test revealed an excellent adhesion. Thermal and optical properties test revealed that the coating exhibited a high infrared emittance of 0.88 (2-16 μm) and low solar absorptance of 0.35 (200-2500 nm). The result indicated that the formation of ZnO during the PEO process played an important role in the improvement of the coating emittance. The process developed provides a simple surface method for improving the thermal emittance of Mg alloy, which presents a promising application prospect in the thermal management of the spacecraft.

  2. The adhesion solidity, physico-mechanical and tribological properties of the coating of titanium nitride

    NASA Astrophysics Data System (ADS)

    Krivina, L. A.; Tarasenko, Yu P.; Fel, Ya A.

    2017-05-01

    Influence of variable technological factors (arch current, fractional pressure of gas in the camera) on structure, physic-mechanical and tribological features of an ion-plasma coating of titanium nitride has been investigated. The adhesion solidity has been put to the test and the mechanism of destruction of a covering has been also researched by a skretch-test method. The optimal mode of spraying at which the formation of the nanostructured bar coating of TiN has been defined. The covering offers an optimal combination of physic-mechanical, tribological and solidity features.

  3. Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

    PubMed Central

    Kredl, Jana; Kolb, Juergen F.; Schnabel, Uta; Polak, Martin; Weltmann, Klaus-Dieter; Fricke, Katja

    2016-01-01

    Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS) substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS) and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper. PMID:28773396

  4. Plasma-formed hyperthermal atomic beams for use in thin film fabrication

    NASA Astrophysics Data System (ADS)

    Gilson, E. P.; Cohen, S. A.; Berlinger, B.; Chan, W.

    2013-10-01

    Enhancing the surface mobility of adsorbents during thin-film growth processes is important for creating certain high-quality thin films. Under the auspices of a DARPA program to develop methods for supplying momentum to adsorbates during thin-film formation without using bulk heating, a hyperthermal atomic beam (HAB) was generated and directed at silicon surfaces with patterned coatings of pentacene, gold, and other surrogates for adsorbents relevant to various thin-film coatings. The HAB was created when the plasma from a helicon plasma source struck a tungsten neutralizer plate and was reflected as neutrals. Time averaged HAB fluxes 100 times greater than in previous PPPL HAB sources have been generated. The effect of the HAB on the patterned coatings was measured using atomic force microscopy (AFM). Results are presented on the flux and energy of the HAB for various system pressures, magnetic fields, and neutralizer biases. AFM measurements of the surface topology demonstrate that the HAB energy, species, and integrated flux are all important factors in altering surface mobility. This research is supported by the U.S. Defense Advanced Research Projects Agency.

  5. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Qiu, Y.; Kuffel, E.

    2004-08-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics.

  6. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  7. 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad

    2007-12-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.

  8. In situ coupling of chitosan onto polypropylene foils by an Atmospheric Pressure Air Glow Discharge with a liquid cathode.

    PubMed

    Nikitin, D; Choukourov, A; Titov, V; Kuzmicheva, L; Lipatova, I; Mezina, E; Aleksandriiskii, V; Shelemin, A; Khalakhan, I; Slavinska, D; Biederman, H

    2016-12-10

    Atmospheric air plasma treatment of chitosan solutions leads to degradation of chitosan molecules by OH radicals and is accompanied by a predominant cleavage of glycosidic linkages and by a decrease of the molecular weight. The degradation proceeds via first order kinetics with the rate constant of (5.73±0.22)×10(-6)s(-1) and the energetic yield of chitosan bond scission of (2.4±0.2)×10(-8)mol/J. Products of degradation together with intact chitosan molecules adsorb and form coatings on polypropylene foils immersed into the solution that is being plasma treated. The plasma treatment results in strong binding of chitosan to polypropylene due to the formation of covalent bonds between the activated polymer surface and chitosan molecules. Plasma-driven crosslinking is responsible for the accumulation of compressive stress which leads to the development of buckling instabilities in the chitosan coatings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  10. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  11. Etching and structure changes in PMMA coating under argon plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey; Bilek, Marcela

    2011-06-01

    A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 10 15 ions/cm 2 was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.

  12. Plasma deposition and surface modification techniques for wear resistance

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1982-01-01

    The ion-assisted or plasma coating technology is discussed as it applies to the deposition of hard, wear resistant refractory compound films. Of the many sputtering and ion plating modes and configurations the reactive magnetron sputtering and the reactive triode ion plating techniques are the preferred ones to deposit wear resistant coatings for tribological applications. Both of these techniques incorporate additional means to enhance the ionization efficiency and chemical reaction to precision tailor desirable tribological characteristics. Interrelationships between film formation, structure, and ribological properties are strictly controlled by the deposition parameters and the substrate condition. The enhanced ionization contributes to the excellent adherence and coherence, reduced internal stresses and improved structural growth to form dense, cohesive, equiaxed grain structure for improved wear resistance and control.

  13. Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro.

    PubMed

    Cardile, Anthony P; Sanchez, Carlos J; Samberg, Meghan E; Romano, Desiree R; Hardy, Sharanda K; Wenke, Joseph C; Murray, Clinton K; Akers, Kevin S

    2014-07-17

    Microbial biofilms have been associated with the development of chronic human infections and represent a clinical challenge given their increased antimicrobial tolerance. Staphylococcus aureus is a major human pathogen causing a diverse range of diseases, of which biofilms are often involved. Staphylococcal attachment and the formation of biofilms have been shown to be facilitated by host factors that accumulate on surfaces. To better understand how host factors enhance staphylococcal biofilm formation, we evaluated the effect of whole human plasma on biofilm formation in clinical isolates of S. aureus and the expression of seven microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) known to be involved in biofilm formation by quantitative real-time PCR. We also evaluated whether plasma augmented changes in S. aureus biofilm morphology and antimicrobial resistance. Exposure of clinical isolates of S. aureus to human plasma (10%) within media, and to a lesser extent when coated onto plates, significantly enhanced biofilm formation in all of the clinical isolates tested. Compared to biofilms grown under non-supplemented conditions, plasma-augmented biofilms displayed significant changes in both the biofilm phenotype and cell morphology as determined by confocal scanning laser microscopy (CLSM) and scanning electron microscopy (SEM), respectively. Exposure of bacteria to plasma resulted in a significant fold-increase in MSCRAMM expression in both a time and isolate-dependent manner. Additionally, plasma-augmented biofilms displayed an increased tolerance to vancomycin compared to biofilms grown in non-supplemented media. Collectively, these studies support previous findings demonstrating a role for host factors in biofilm formation and provide further insight into how plasma, a preferred growth medium for staphylococcal biofilm formation enhances as well as augments other intrinsic properties of S. aureus biofilms. Consequently, these findings indicate that incorporation of host factors may be necessary to better replicate in vivo conditions and for the best utility of a clinical biofilm assay to evaluate the process of biofilm formation and treatments.

  14. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.

    PubMed

    Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui

    2017-09-01

    Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Transparent nanocrystalline diamond coatings and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwavemore » plasma source can have a frequency of about 915 MHz.« less

  16. Low-Temperature Plasma Coating for Aluminum

    DTIC Science & Technology

    2001-03-01

    AFRL-ML-WP-TR-2001-4104 LOW-TEMPERATURE PLASMA COATING FOR ALUMINUM DR. HIROTSUGU YASUDA CENTER FOR SURFACE SCIENCE & PLASMA TECHNOLOGY...Date 00032001 Report Type N/A Dates Covered (from... to) - Title and Subtitle Low-Temperature Plasma Coating for Aluminum Contract Number...REPORT TYPE AND DATES COVERED Final, 6/29/1996 - 3/31/2001 4. TITLE AND SUBTITLE LOW-TEMPERATURE PLASMA COATING FOR ALUMINUM 5. FUNDING NUMBERS C

  17. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.H. Kim; C.T. Lee; C.B. Lee

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less

  18. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-09-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  19. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity.

    PubMed

    Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala

    2009-02-06

    Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 microm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants.

  20. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity

    PubMed Central

    Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala

    2008-01-01

    Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431

  1. Lift-off process with bi-layer photoresist patterns for conformal-coated superhydrophilic pulsed plasma chemical vapor deposition-SiOx on SiCx for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Konishi, Satoshi; Nakagami, Chise; Kobayashi, Taizo; Tonomura, Wataru; Kaizuma, Yoshihiro

    2015-04-01

    In this work, a lift-off process with bi-layer photoresist patterns was applied to the formation of hydrophobic/hydrophilic micropatterns on practical polymer substrates used in healthcare diagnostic commercial products. The bi-layer photoresist patterns with undercut structures made it possible to peel the conformal-coated silicon oxide (SiOx) films from substrates. SiOx and silicon carbide (SiCx) layers were deposited by pulsed plasma chemical vapor deposition (PPCVD) method which can form roughened surfaces to enhance hydrophilicity of SiOx and hydrophobicity of SiCx. Microfluidic applications using hydrophobic/hydrophilic patterns were also demonstrated on low-cost substrates such as poly(ethylene terephthalate) (PET) and paper films.

  2. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  3. Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.

    2015-02-01

    Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  4. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  5. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    PubMed

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.

    PubMed

    Thiruppathi, Eagappanath; Larson, Mark K; Mani, Gopinath

    2015-01-01

    CoCr alloy is commonly used in various cardiovascular medical devices for its excellent physical and mechanical properties. However, the formation of blood clots on the alloy surfaces is a serious concern. This research is focused on the surface modification of CoCr alloy using varying concentrations (1, 25, 50, 75, and 100 mM) of phosphoric acid (PA) and phosphonoacetic acid (PAA) to generate various surfaces with different wettability, chemistry, and roughness. Then, the adsorption of blood plasma proteins such as albumin and fibrinogen and the adhesion, activation, and aggregation of platelets with the various surfaces generated were investigated. Contact angle analysis showed PA and PAA coatings on CoCr provided a gradient of hydrophilic surfaces. FTIR showed PA and PAA were covalently bound to CoCr surface and formed different bonding configurations depending on the concentrations of coating solutions used. AFM showed the formation of homogeneous PA and PAA coatings on CoCr. The single and dual protein adsorption studies showed that the amount of albumin and fibrinogen adsorbed on the alloy surfaces strongly depend on the type of PA and PAA coatings prepared by different concentrations of coating solutions. All PA coated CoCr showed reduced platelet adhesion and activation when compared to control CoCr. Also, 75 and 100 mM PA-CoCr showed reduced platelet aggregation. For PAA coated CoCr, no significant difference in platelet adhesion and activation was observed between PAA coated CoCr and control CoCr. Thus, this study demonstrated that CoCr can be surface modified using PA for potentially reducing the formation of blood clots and improving the blood compatibility of the alloy.

  7. Bacterial Growth on Chitosan-Coated Polypropylene Textile

    PubMed Central

    Erben, D.; Hola, V.; Jaros, J.; Rahel, J.

    2012-01-01

    Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330

  8. Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang

    2008-10-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.

  9. Plasma spray processing of TiC-based coatings for sliding wear resistance

    NASA Astrophysics Data System (ADS)

    Mohanty, Mahesh

    Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.

  10. Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    An, Lian-Tong; Gao, Yang; Sun, Chengqi

    2011-06-01

    To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.

  11. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    NASA Astrophysics Data System (ADS)

    Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin

    2015-11-01

    A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO4 and NiWO4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol-gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by the PEO method is finally discussed.

  12. Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides.

    PubMed

    Irzh, Alexander; Genish, Isaschar; Klein, Lior; Solovyov, Leonid A; Gedanken, Aharon

    2010-04-20

    This work represents a new method to synthesis of ZnO and/or Zn nanoparticles by means of microwave plasma whose electrons are the reducing agents. Glass quadratic slides sized 2.5 x 2.5 cm were coated by ZnO and/or Zn particles whose sizes ranged from a few micrometers to approximately 20 nm. The size of the particles can be controlled by the type of the precursor and its concentration. In the current paper, the mechanism of the reactions of ZnO and/or Zn formation was proposed. Longer plasma irradiation and lower precursor concentration favor the fabrication of metallic Zn nanoparticles. The nature of the precursor's ion (acetate, nitrate, or chloride) is also of importance in determining the composition of the product. The glass slides coated by ZnO and/or Zn nanoparticles were characterized by HR-SEM, HR-TEM, AFM, XRD, ESR, contact angle and diffuse reflectance spectroscopy (DRS).

  13. Physical and technological principles of designing layer-gradient multicomponent surfaces by combining the methods of ion-diffusion saturation and magnetron- and vacuum-arc deposition

    NASA Astrophysics Data System (ADS)

    Savostikov, V. M.; Potekaev, A. I.; Tabachenko, A. N.

    2011-12-01

    Using a technological system proposed by the authors, a combined process is developed for formation of stratified-gradient surface layers and multicomponent coatings. It is implemented under the conditions of a combined serial-parallel operation of a hot-cathode gas plasma generator and a duomagnetron with two targets and two electric-arc evaporators. The extended functional potential is ensured by using advanced multi-element and multi-phase cathode targets made of borides, carbides, silicides, and sulfides of metals produced by the SHS-process followed by their immediate compaction. The variations in composition, structure, and physicomechanical properties in the cross-section of the stratified-gradient surface layers and coating is provided by a predetermined alternating replacement of the sputtered cathode targets of the plasma sources, the plasma flow intensity ratios, and variation in the particle energy incident on the substrate, which is determined by the accelerating voltage on the substrate.

  14. Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Yanke, Anne M.; DellaCorte, Christopher

    2004-01-01

    PS304 is a high temperature composite solid lubricant coating composed of Ni-Cr, Cr2O3, BaF2-CaF2 and Ag. The effect of reducing chromium content on the formation of voids in the Ni-Cr particles after heat treatment in PS304 coating was investigated. Coatings were prepared with Ni-20Cr or Ni-10Cr powder and in various combinations with the other constituents of PS304 (i.e., chromia, silver and eutectic BaF2-CaF2 powders) and deposited on metal substrates by plasma spray. Specimens were exposed to 650 C for 24 hr or 1090 C for 15 hr and then examined for changes in thickness, coating microstructure and adhesion strength. Specimens with Ni-10Cr generally had less thickness increase than specimens with Ni-20Cr, but there was great variance in the data. Reduction of chromium concentration in Ni-Cr powder tended to reduce the appearance of voids in the Ni-Cr phase after heat exposure. The presence of BaF2-CaF2 resulted in a significant increase in coating adhesion strength after heat treatment, while coatings without BaF2-CaF2 had no significant change. Chemical composition analysis suggested that the void formation was due to oxidation of chromium in the Ni-Cr constituent.

  15. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    NASA Astrophysics Data System (ADS)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  16. Research into properties of wear resistant ceramic metal plasma coatings

    NASA Astrophysics Data System (ADS)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  17. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  18. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    PubMed

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. © 2014 Wiley Periodicals, Inc.

  19. Vacuum plasma coatings for turbine blades

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.

    1985-01-01

    Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.

  20. Ablation Behavior of Plasma-Sprayed La1-xSrxTiO3+δ Coating Irradiated by High-Intensity Continuous Laser.

    PubMed

    Zhu, Jinpeng; Ma, Zhuang; Gao, Yinjun; Gao, Lihong; Pervak, Vladimir; Wang, Lijun; Wei, Chenghua; Wang, Fuchi

    2017-10-11

    Laser protection for optical components, particularly those in high-power laser systems, has been a major concern. La 1-x Sr x TiO 3+δ with its good optical and thermal properties can be potentially applied as a high-temperature optical protective coating or high-reflectivity material for optical components. However, the high-power laser ablation behavior of plasma-sprayed La 1-x Sr x TiO 3+δ (x = 0.1) coatings has rarely been investigated. Thus, in this study, laser irradiation experiments were performed to study the effect of high-intensity continuous laser on the ablation behavior of the La 1-x Sr x TiO 3+δ coating. The results show that the La 1-x Sr x TiO 3+δ coating undergoes three ablation stages during laser irradiation: coating oxidation, formation and growth of new structures (columnar and dendritic crystals), and mechanical failure. A finite-element simulation was also conducted to explore the mechanism of the ablation damage to the La 1-x Sr x TiO 3+δ coating and provided a good understanding of the ablation behavior. The apparent ablation characteristics are attributed to the different temperature gradients determined by the reflectivity and thermal diffusivity of the La 1-x Sr x TiO 3+δ coating material, which are critical factors for improving the antilaser ablation property. Now, the stainless steel substrate deposited by it can effectively work as a protective shield layer against ablation by laser irradiation.

  1. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  2. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  3. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    NASA Astrophysics Data System (ADS)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)). Electronic supplementary information (ESI) available: Full characterization results of the nanoparticles, protein corona, and fibrillation process. See DOI: 10.1039/c4nr06009a

  4. Development of carbon plasma-coated multiwell plates for high-throughput mass spectrometric analysis of highly lipophilic fermentation products.

    PubMed

    Heinig, Uwe; Scholz, Susanne; Dahm, Pia; Grabowy, Udo; Jennewein, Stefan

    2010-08-01

    Classical approaches to strain improvement and metabolic engineering rely on rapid qualitative and quantitative analyses of the metabolites of interest. As an analytical tool, mass spectrometry (MS) has proven to be efficient and nearly universally applicable for timely screening of metabolites. Furthermore, gas chromatography (GC)/MS- and liquid chromatography (LC)/MS-based metabolite screens can often be adapted to high-throughput formats. We recently engineered a Saccharomyces cerevisiae strain to produce taxa-4(5),11(12)-diene, the first pathway-committing biosynthetic intermediate for the anticancer drug Taxol, through the heterologous and homologous expression of several genes related to isoprenoid biosynthesis. To date, GC/MS- and LC/MS-based high-throughput methods have been inherently difficult to adapt to the screening of isoprenoid-producing microbial strains due to the need for extensive sample preparation of these often highly lipophilic compounds. In the current work, we examined different approaches to the high-throughput analysis of taxa-4(5),11(12)-diene biosynthesizing yeast strains in a 96-deep-well format. Carbon plasma coating of standard 96-deep-well polypropylene plates allowed us to circumvent the inherent solvent instability of commonly used deep-well plates. In addition, efficient adsorption of the target isoprenoid product by the coated plates allowed rapid and simple qualitative and quantitative analyses of the individual cultures. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration.

    PubMed

    Li, Junda; Chen, Meilin; Wei, Xiaoying; Hao, Yishan; Wang, Jinming

    2017-07-19

    Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2), OCN (osteocalcin), OPN (osteopontin)) of DPSCs ( p < 0.05). In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation ( p < 0.05). All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications.

  6. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  7. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    PubMed

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  8. Study on electrostatic and electromagnetic probes operated in ceramic and metallic depositing plasmas

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Bienholz, S.; Lapke, M.; Awakowicz, P.

    2014-04-01

    This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density ne and electron temperature Te. The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S11| parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment.

  9. Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Corke, Thomas; Matlis, Eric

    2016-11-01

    The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.

  10. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    PubMed

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces. © 2015 Wiley Periodicals, Inc.

  11. Putative terminator and/or effector functions of Arf GAPs in the trafficking of clathrin-coated vesicles.

    PubMed

    Kon, Shunsuke; Funaki, Tomo; Satake, Masanobu

    2011-05-01

    The role of ArfGAP1 as a terminator or effector in COPi-vesicle formation has been the subject of ongoing discussions. Here, the discussion on the putative terminator/effector functions has been enlarged to include Arf GAP members involved in the formation of clathrin-coated vesicles. ACAP1, whose role has been studied extensively, enhances the recycling of endocytosed proteins to the plasma membrane. Importantly, this positive role appears to be an overall reflection of both the terminator and effector activities attributed to ACAP1. Other Arf GAP subtypes have also been suggested to possess both terminator and effector activities. Interestingly, while most Arf GAP proteins regulate membrane trafficking by acting as facilitators, a few Arf GAP subtypes act as inhibitors.

  12. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  13. Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V

    PubMed Central

    Rahmati, Shahram; Basiriani, Mohammad Basir; Rafienia, Mohammad; Yaghini, Jaber; Raeisi, Keyvan

    2016-01-01

    Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO3) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility. PMID:27186538

  14. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.

  15. X-ray diffraction analysis of hydroxyapatite-coated in different plasma gas atmosphere on Ti and Ti-6Al-4V

    PubMed Central

    Kotian, Ravindra; Rao, P. Prasad; Madhyastha, Prashanthi

    2017-01-01

    Objective: The aim is to study the effect of plasma working gas on composition, crystallinity, and microstructure of hydroxyapatite (HA) coated on Ti and Ti-6Al-4V metal substrates. Materials and Methods: Ti and Ti-6Al-4V metal substrates were coated with HA by plasma spray using four plasma gas atmospheres of argon, argon/hydrogen, nitrogen, and nitrogen/hydrogen. The degree of crystallinity, the phases present, and microstructure of HA coating were characterized using X-ray diffraction and scanning electron microscopy. Results: Variation in crystallinity and the microstructure of HA coating on plasma gas atmosphere was observed. Micro-cracks due to thermal stresses and shift in the 2θ angle of HA compared to feedstock was seen. Conclusion: Plasma gas atmosphere has a significant influence on composition, crystallinity, and micro-cracks of HA-coated dental implants. PMID:29279668

  16. New NbCd2 Phase in Niobium-Cadmium Coating Films

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2018-02-01

    Solid solutions in the form of alloy coatings have been obtained for the first time in the Cd concentration range of 64.5% using ion-plasma sputtering and the codeposition of Nb and Cd ultrafine particles. This supports thermal fluctuation melting and the coalescence of fine particles. A coating of niobium and cadmium layers less than 2 nm thick at 68 at % Cd results in the formation of a new phase identified as NbCd2. The tetragonal fcc phase with lattice parameters a = 0.84357 nm and c = 0.54514 nm forms directly during film coating. XRD data for the identification of the intermetallic compound have been determined. The thermal stability of the NbCd 2 intermetallic compound is limited by 200°C. The properties of the synthesized NbCd 2 phase are typical of semiconductors.

  17. Studies on corrosion resistance and bio-activity of plasma spray deposited hydroxylapatite (HA) based TiO2 and ZrO2 dispersed composite coatings on titanium alloy (Ti-6Al-4V) and the same after post spray heat treatment

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-10-01

    In the present study, the effect of plasma spray deposited hydroxylapatite (HA) based TiO2 dispersed (HA + 50 wt.% TiO2), coating and post spray heat treatment to be referred as HA-TiO2 (heat treated at 650 °C for 2 h) and ZrO2 dispersed (HA + 10 wt.% ZrO2), to be referred as HA-ZrO2 coating (heat treated at 750 °C for 2 h) on corrosion resistance and bioactivity of Ti-6Al-4V substrate has been undertaken. There is partial decomposition of HA to tri-calcium-phosphate (Ca3(PO4)2) and formation of CaTiO3 phase in HA-TiO2 coating and CaZrO3 phase in the HA-ZrO2 coating. Corrosion study in Hank's solution shows that there is shifting of corrosion potential (Ecorr) towards active potential (-1.1 V(SCE) for as-sprayed and post spray heat treated HA-TiO2 coating, -1.1 V(SCE) for as-sprayed HA-ZrO2 coating and -1 V(SCE) for HA-ZO2 coating after post spray heat treatment), and deterioration in pitting corrosion (Epit) resistance in as-sprayed coatings and the same after heat treatment (-0.7 V(SCE) for both HA-TiO2 and HA-ZrO2 coating as compared to as received substrate (-0.3 V(SCE)). The corrosion rate was increased for both the coatings with a maximum increase in HA-ZrO2 coating. Bioactivity test shows a higher degree of apatite deposition in as-sprayed coating and the same after heat treatment as compared to as received Ti-6Al-4V though the as-sprayed one showed a superior behavior.

  18. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    NASA Astrophysics Data System (ADS)

    Guo, Q. J.; Zhao, P.; Li, L.; Zhou, Q. J.; Ni, G. H.; Meng, Y. D.

    2018-02-01

    Boron carbide (B4C) coatings are prepared by an RF inductively coupled plasma (ICP) torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM). The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  19. Initial deposition of calcium phosphate ceramic on polystyrene and polytetrafluoroethylene by rf magnetron sputtering deposition

    NASA Astrophysics Data System (ADS)

    Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.

    2003-03-01

    Calcium phosphate (CaP) coatings can be applied to improve the biological performance of polymeric medical implants. A strong interfacial bond between ceramic and polymer is required for clinical applications. Because the chemical structure of an interface plays an important role in the adhesion of a coating, we studied the formation of the interface between CaP and polystyrene (PS) and polytetrafluoroethylene (PTFE). The coating was deposited in a radio frequency (rf) magnetron sputtering deposition system. Prior to the deposition, some samples received an oxygen plasma pretreatment. We found that the two substrates show a strongly different reactivity towards CaP. On PS a phosphorus and oxygen enrichment is present at the interface. This is understood from POx complexes that are able to bind to the PS. The effects of the plasma pretreatment are overruled by the deposition process itself. On PTFE, a calcium enrichment and an absence of phosphorus is found at the interface. The former is the result of CaF2-like material being formed at the interface. The latter may be the result of phosphorus reacting with escaping fluorine to a PF3 molecule, which than escapes from the material as a gas molecule. We found that the final structure of the interface is mostly controlled by the bombardment of energetic particles escaping either from the plasma or from the sputtering target. The work described here can be used to understand and improve the adhesion of CaP coatings deposited on medical substrates.

  20. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    PubMed Central

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  1. Fabrication of Transparent Protective Diamond-Like Carbon Films on Polymer

    NASA Astrophysics Data System (ADS)

    Baek, Sang-min; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu

    2011-08-01

    Si doped hydrogenated amorphous carbon (Si-DLC) films as a candidate protection coating for polycarbonate (PC) were prepared using a pulse-biased inductively coupled plasma chemical vapor deposition (ICP-CVD) system with a gas mixture of acetylene (C2H2) and tetramethylsilane [Si(CH3)4]. The effects of Si incorporation on the structure and optical properties of the Si-DLC films were investigated. In addition, plasma pretreatments with O2, N2, and Ar gases were carried out to enhance the adhesion strength of Si-DLC films on polycarbonate. Structural characterization through Raman and X-ray photoelectron spectroscopy (XPS) analyses showed that the incorporation of Si atoms in DLC films leads to an increase in the optical band gap (Eopt) with the formation of sp3 C-Si bonds. O2 plasma pretreatment improved the strength of adhesion of the Si-DLC films to polycarbonate, while Ar and N2 plasma treatments did not. This can be explained by the formation of an activated dense interfacial layer by O2 plasma pretreatment.

  2. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  3. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  4. The effects of plasma spray parameters and atmosphere on the properties and microstructure of WC-Co coatings

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.

    Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.

  5. Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings.

    PubMed

    Yu, L-G; Khor, K A; Li, H; Cheang, P

    2003-07-01

    The crystalline phases and degree of crystallinity in plasma sprayed calcium phosphate coatings on Ti substrates are crucial factors that influence the biological interactions of the materials in vivo. In this study, plasma sprayed hydroxyapatite (HA) coatings underwent post-spray treatment by the spark plasma sintering (SPS) technique at 500 degrees C, 600 degrees C, and 700 degrees C for duration of 5 and 30 min. The activity of the HA coatings before and after SPS are evaluated in vitro in a simulated body fluid. The surface microstructure, crystallinity, and phase composition of each coating is characterized by scanning electron microscopy and X-ray diffractometry before, and after in vitro incubation. Results show that the plasma sprayed coatings treated for 5 min in SPS demonstrated increased proportion of beta-TCP phase with a preferred-orientation in the (214) plane, and the content of beta-TCP phase corresponded to SPS temperature, up to 700 degrees C. SPS treatment at 700 degrees C for 30 min enhanced the HA content in the plasma spray coating as well. The HA coatings treated in SPS for 5 min revealed rapid surface morphological changes during in vitro incubation (up to 12 days), indicating that the surface activity is enhanced by the SPS treatment. The thickest apatite layer was found in the coating treated by SPS at 700 degrees C for 5 min.

  6. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray.

    PubMed

    Adán, C; Marugán, J; van Grieken, R; Chien, K; Pershin, L; Coyle, T; Mostaghimi, J

    2015-09-01

    Titanium dioxide coatings were deposited on the surface of titanium foils by Thermal Plasma Spray (TPS) process. Three different TiO2 coatings were prepared using the commercial TiO2-P25 nanopowder and titanium isopropoxide precursor solution as feed-stocks. Structure and morphology of the TiO2-P25 powder and the plasma sprayed coatings were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, UV-visible spectroscopy and Scanning Electron Microscopy (SEM). XRD and Raman results indicate that the TiO2 coatings were composed of an anatase/rutile mixture that is conditioned by the suspension composition used to be sprayed. Coatings prepared from TiO2-P25 nanoparticles in water suspension (NW-P25) and titanium isopropoxide solution suspension (NSP-P25) are incorporated into the coatings without phase transformation and their anatase/rutile ratio percentage remains very similar to the starting TiO2-P25 powder. On the contrary, when titanium isopropoxide solution is used for spraying (SP), the amount of rutile increases in the final TiO2 coating. SEM analysis also reveals different microstructure morphology, coating thickness, density and porosity of the three TiO2 films that depend significantly on the type of feed-stock employed. Interestingly, we have observed the role of titanium isopropoxide in the formation of more porous and cohesive layers of TiO2. The NSP-P25 coating, prepared with a mix of titanium isopropoxide solution based on TiO2 nanoparticles, presents higher deposition efficiencies and higher coating thickness than the film prepared with nanoparticles suspended in water (NW-P25) or with titanium isopropoxide solutions (SP). This is due to the precursor solution is acting as the cement between TiO2 nanoparticles, improving the cohesive strength of the coating. In sum, NSP-P25 and NW-P25 coatings display a good photocatalytic potential, based on their light absorption properties and mechanical stability. Band gap of the nanoparticulated coatings displays a light absorption at wavelengths below 379 and 399 nm for NW-P25 and NSP-P25 respectively. On the contrary, the SP coating, despite to present lower band-gap value, has bad cohesive properties with surface crackings that makes it mechanically unstable. Therefore, mixtures of P25 nanoparticles with titanium isopropoxide as feed-stock materials can produce promising photocatalytic coatings.

  7. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  8. Zn2+ in-situ substitution behavior during the formation of BaTiO3 coatings from plasma-sprayed powders collected in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Xing, Zhiguo; Wang, Haidou; Xue, Zifan; Chen, Shuying; Cui, Xiufang; Jin, Guo

    2018-04-01

    The dielectric performance of BaTiO3 ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value (εr ≈ 923) was measured in BaTiO3 coatings with ZnO added at 6 wt%. The Curie temperature (Tc) was in the range of 111 °C-121 °C for all of the ZnO-modified BaTiO3 coatings. Tc shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn2+ ions were incorporated into the BaTiO3 lattice where they substituted into the Ti4+ sites, and the composite powders (BaTiO3 + 6 wt% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO3 indicated that the ZnTi'' defects caused by the dopants acted as carriers in the doped BaTiO3 coatings.

  9. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  10. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    NASA Astrophysics Data System (ADS)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  11. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  12. Plasma-Spray Metal Coating On Foam

    NASA Technical Reports Server (NTRS)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  13. Plasma tests of sprayed coatings for rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Love, W. K.

    1974-01-01

    Several plasma-sprayed coating systems were evaluated for structural stability in hydrogen plasma and in oxygen plasma mixed with hydrogen plasma. The principal test heat flux was 15 Btu per inch squared seconds. The system consisted of a number of thin 0.002 to 0.020 in. layers of metal oxides and/or metals. The principal materials included are molybdenum nichrome, alumina, and zirconia. The study identifies important factors in coating system fabrication and describes the durability of the coating systems in the test environments. Values of effective thermal conductivity for some of the systems are indicated.

  14. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model.

    PubMed

    Lu, S; Hu, W; Zhang, Z; Ji, Z; Zhang, T

    2018-05-18

    This study evaluated the manufacturing method and anti-adhesion properties of a new composite mesh in the rat model, which was made from sirolimus (SRL) grafts on a poly(L-lactic acid) (PLLA)-modified polypropylene (PP) hernia mesh. PLLA was first grafted onto argon-plasma-treated native PP mesh through catalysis of stannous chloride. SRL was grafted onto the surface of PP-PLLA meshes using catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in a CH 2 Cl 2 solvent. Sprague-Dawley female rats received either SRL-coated meshes, PP-PLLA meshes, or native PP meshes to repair abdominal wall defects. At different intervals, rats were euthanized by a lethal dose of chloral hydrate and adhesion area and tenacity were evaluated. Sections of the mesh with adjacent tissues were assessed histologically. Attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy indicated the existence of a C=O group absorption peak (1724.1 cm -1 ), and scanning electron microscope morphological analysis indicated that the surface of the PP mesh was covered with SRL. Compared to the native PP meshes and PP-PLLA meshes, SRL-coated meshes demonstrated the greatest ability to decrease the formation of adhesions (P < 0.05) and inflammation. The SRL-coated composite mesh showed minimal formation of intra-abdominal adhesions in a rat model of abdominal wall defect repair.

  15. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  16. B{sub 4}C protective coating under irradiation by QSPA-T intensive plasma fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzhinskij, O. I.; Barsuk, V. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru

    The effect of the QSPA-T pulsed plasma irradiation on the crystalline boron carbide B{sub 4}C coating was examined. The duration of the rectangular plasma pulses was 0.5 ms with an interval of 5–10 min between pulses. The maximum power density in the central part of plasma stream was 1 GW/m{sup 2}. The coating thickness varied from 20 to 40 μm on different surface areas. Modification of the surface layers and transformation of the coating at elevated temperature under plasma pulse irradiation during four successive series of impulses are described. It is shown that the boron carbide coating withstood the fullmore » cycle of tests under irradiation with 100 plasma pulses with peak power density of 1GW/m{sup 2}. Constitutive surface deterioration was not detected and the boron carbide coating kept crystal structure B{sub 4}C throughout the irradiation zone at the surface depth no less 2 μm.« less

  17. Mathematical simulation of surface heating during plasma spraying

    NASA Astrophysics Data System (ADS)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2017-02-01

    A mathematical model of temperature distribution over the flat ‘coating-substrate’ system section during plasma spraying, taking into account a plasma gun travel and coating buildup has been developed. It has been shown that the temperature value in the near-surface layer of the sprayed coating during the plasma gun passage can significantly exceed the temperature values in underlayers.

  18. The line roughness improvement with plasma coating and cure treatment for 193nm lithography and beyond

    NASA Astrophysics Data System (ADS)

    Zheng, Erhu; Huang, Yi; Zhang, Haiyang

    2017-03-01

    As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.

  19. Involvement of vesicle coat material in casein secretion and surface regeneration

    PubMed Central

    1976-01-01

    The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641

  20. Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu; Alpatov, A. V.; Komlev, V. S.; Mamonov, V. I.; Sevostyanov, M. A.; Baikin, A. S.

    2018-04-01

    The effect of pretreatment and plasma preheating of Ti-substrate on shear strength of three-dimensional capillary porous Ti-coating was studied. After sandblasting the shear strength of the plasma sprayed coating was 200 ± 2 MPa, and after additional matting it was 68 ± 4 MPa. The use of plasma preheating of the substrates for 9 seconds decreased difference between values of the shear strength to 249 ± 17 MPa and 229 ± 16 MPa, respectively. After plasma spraying the microhardness of the surface layer of the substrate was 4.34 ± 0.35 GPa, the microhardness of the boundary between the coating and the substrate was 8.08 ± 0.45 GPa, and the microhardness of the coating was 3.48 ± 0.25 GPa. High shear strength of the coating was attributed to the activation of the substrate by means of plasma preheating and hardening of the boundary between the coating and the substrate by oxides and nitrides.

  1. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  2. Effect of the voltage pulse frequency on the structure of TiO2 coatings grown by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Torres-Cerón, D. A.; Gordillo-Delgado, F.; Moya-Betancourt, S. N.

    2017-12-01

    Plasma Electrolytic Oxidation (PEO) is used to synthetize titanium dioxide (TiO2) ceramic coatings with the appropriate selection of an electrolyte. The dimension of the micro-cavities and the particle size at the surface can be controlled through the pulse frequency of the voltage that is applied between the electrodes. The change of surface morphology can increase the surface area-to-volume ratio. In this work, PEO of an ASME SB-265 titanium substrate (20×20×1mm) was made in a water solution containing 8g/L Na3PO4 and 0.4g/L NaOH. Hence, the coatings were fabricated using voltage pulses of 340V for 10 minutes with a 10% duty cycle and frequencies of 1000, 1500 and 2000Hz. According to the X-ray diffractograms of the obtained samples, the sintering process at 500°C during 1 hour generated Anatase titanium dioxide porous coatings. The grain size decreased approximately from 29nm for 1000 and 1500Hz pulse frequencies until 21nm for 2000Hz. On the other hand, from the micrographs of scanning electron microscopy was possible to see the uniform formation of the micro-cavities with the largest diameter, 900nm, for the lowest frequency value used in PEO.

  3. Statistical characterization of surface features from tungsten-coated divertor inserts in the DIII-D Metal Rings Campaign

    NASA Astrophysics Data System (ADS)

    Adams, Jacob; Unterberg, Ezekial; Chrobak, Christopher; Stahl, Brian; Abrams, Tyler

    2017-10-01

    Continuing analysis of tungsten-coated inserts from the recent DIII-D Metal Rings Campaign utilizes a statistical approach to study carbon migration and deposition on W surfaces and to characterize the pre- versus post-exposure surface morphology. A TZM base was coated with W using both CVD and PVD and allowed for comparison between the two coating methods. The W inserts were positioned in the lower DIII-D divertor in both the upper (shelf) region and lower (floor) region and subjected to multiple plasma shots, primarily in H-mode. Currently, the post-exposure W inserts are being characterized using SEM/EDX to qualify the surface morphology and to quantify the surface chemical composition. In addition, profilometry is being used to measure the surface roughness of the inserts both before and after plasma exposure. Preliminary results suggest a correlation between the pre-exposure surface roughness and the level of carbon deposited on the surface. Furthermore, ongoing in-depth analysis may reveal insights into the formation mechanism of nanoscale bumps found in the carbon-rich regions of the W surfaces that have not yet been explained. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  4. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    PubMed

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development & characterization of alumina coating by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  6. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    NASA Astrophysics Data System (ADS)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-04-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  7. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.

    PubMed

    Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria

    2012-01-01

    Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes.

  8. Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.

    2010-01-01

    Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

  9. Biocompatibility study of plasma-coated nitinol (NiTi alloy) stents.

    PubMed

    Wang, G; Shen, Y; Cao, Y; Yu, Q; Guidoin, R

    2007-12-01

    The authors aimed to assess the surface modification effects of plasma coatings on biocompatibility of nitinol intravascular stent in terms of anticoagulation, haemocytolysis rate, hydrophilicity, cytotoxicity and so on. In order to improve their surface adhesive properties to endothelial cells, NiTi alloy intravascular stents were treated and coated using a low-temperature plasma deposition technique. It was found that plasma coating changed the surface morphology of the stents to a micron-level surface roughness in the range of 1-5 microm. In comparison with the untreated control, the plasma-treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation property. Testing results on plasma-coated NiTi stents indicated that they complied with the standard of national biologic safety evaluation of medical apparatus and instrument (GB/T16886-1997, People's Republic of China) in terms of haemocytolysis rate, cytotoxicity and pyretogen.

  10. Hydrogen plasma tests of some insulating coating systems for the nuclear rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Current, A. N.; Grisaffe, S. J.; Wycoff, K. C.

    1972-01-01

    Several plasma-sprayed and slurry-coated insulating coating systems were evaluated for structural stability in a low-pressure hot hydrogen environment at a maximum heat flux of 19.6 million watts/sq meter. The heat was provided by an electric-arc plasma generator. The coating systems consisted of a number of thin layers of metal oxides and/or metals. The materials included molybdenum, nichrome, tungsten, alumina, zirconia, and chromia. The study indicates potential usefulness in this environment for some coatings, and points up the need for improved coating application techniques.

  11. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  12. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Tasooji, A.

    1985-01-01

    This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.

  13. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    NASA Astrophysics Data System (ADS)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  14. Tailored plasma sprayed MCrAlY coatings for aircraft gas turbine applications

    NASA Technical Reports Server (NTRS)

    Pennisi, F. J.; Gupta, D. K.

    1981-01-01

    Eighteen plasma sprayed coating systems, nine based on the NiCoCrAly chemistry and nine based on the CoCrAly composition, were evaluated to identify coating systems which provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAly and CoCrAly coatings respectively. NiCoCrAly type coatings were examined on a single crystal alloy and the CoCrAly based coatings were optimized on the B1900+ Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAly + Si coating exhibited a 2x oxidation life improvement at 1394 K (2050 F) over the vapor deposited NiCoCrAly material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAly coating was found to be more durable than the baseline vapor deposited CoCrAly coating on the B1900+ Hf alloy.

  15. RETRACTED: Chemical densification of plasma sprayed yttria stabilized zirconia (YSZ) coatings for high temperature wear and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard

    2012-12-01

    Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.

  16. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    NASA Technical Reports Server (NTRS)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  17. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    DOE PAGES

    Abrams, T.; Jaworski, M. A.; Chen, M.; ...

    2015-12-17

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>10 23 m -2 s -1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate ofmore » Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 10 23-10 24 m -2 s -1 and Li surface temperatures. ≤800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. Lastly, these results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.« less

  18. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less

  19. Consolidation of Surface Coatings by Friction Stir Techniques

    DTIC Science & Technology

    2010-09-01

    alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments

  20. Influence of plasma modification on hygienic properties of textile fabrics with nonporous membrane coating

    NASA Astrophysics Data System (ADS)

    Voznesensky, E. F.; Ibragimov, R. G.; Vishnevskaya, O. V.; Sisoev, V. A.; Lutfullina, G. G.; Tihonova, N. V.

    2017-11-01

    The work investigated the possibility of using plasma modification to improve the hygienic properties of textile materials with nonporous membrane coating to improve vapor-, air-permeability and water-resistant. Determined that, after plasma modification changes degree of supramolecular orderliness of the polymers nonporous membrane coating and the base fabric.

  1. Direct Coating of Nanocrystalline Diamond on Steel

    NASA Astrophysics Data System (ADS)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  2. Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yu, E. P.; Yelton, W. G.; Fuelling, S.

    2018-05-01

    A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μ m Parylene-N were driven to 1 MA in 100 ns , with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k , grew exponentially with rate γ (k ) =0.06 n s-1-(0.4 n s-1μ m2ra d-2 ) k2 in ˜1 g /c m3 , ˜7000 K aluminum.

  3. Process for the formation of wear- and scuff-resistant carbon coatings

    DOEpatents

    Malaczynski, Gerard W.; Qiu, Xiaohong; Mantese, Joseph V.; Elmoursi, Alaa A.; Hamdi, Aboud H.; Wood, Blake P.; Walter, Kevin C.; Nastasi, Michael A.

    1995-01-01

    A process for forming an adherent diamond-like carbon coating on a workpiece of suitable material such as an aluminum alloy is disclosed. The workpiece is successively immersed in different plasma atmospheres and subjected to short duration, high voltage, negative electrical potential pulses or constant negative electrical potentials or the like so as to clean the surface of oxygen atoms, implant carbon atoms into the surface of the alloy to form carbide compounds while codepositing a carbonaceous layer on the surface, bombard and remove the carbonaceous layer, and to thereafter deposit a generally amorphous hydrogen-containing carbon layer on the surface of the article.

  4. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Trevor M.; Hutchinson, Trevor M.; Awe, Thomas James

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  5. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    PubMed

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  6. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, K.N.; Wells, R.P.; Craven, G.E.

    1996-12-24

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ions because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile. 8 figs.

  7. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  8. Physical and functional connection between auxilin and dynamin during endocytosis

    PubMed Central

    Sever, Sanja; Skoch, Jesse; Newmyer, Sherri; Ramachandran, Rajesh; Ko, David; McKee, Mary; Bouley, Richard; Ausiello, Dennis; Hyman, Bradley T; Bacskai, Brian J

    2006-01-01

    During clathrin-mediated endocytosis, the GTPase dynamin promotes formation of clathrin-coated vesicles, but its mode of action is unresolved. We provide evidence that a switch in three functional states of dynamin (dimers, tetramers, rings/spirals) coordinates its GTPase cycle. Dimers exhibit negative cooperativity whereas tetramers exhibit positive cooperativity with respect to GTP. Our study identifies tetramers as the kinetically most stable GTP-bound conformation of dynamin, which is required to promote further assembly into higher order structures such as rings or spirals. In addition, using fluorescence lifetime imaging microscopy, we show that interactions between dynamin and auxilin in cells are GTP-, endocytosis- and tetramer-dependent. Furthermore, we show that the cochaperone activity of auxilin is required for constriction of clathrin-coated pits, the same early step in endocytosis known to be regulated by the lifetime of dynamin:GTP. Together, our findings support the model that the GTP-bound conformation of dynamin tetramers stimulates formation of constricted coated pits at the plasma membrane by regulating the chaperone activity of hsc70/auxilin. PMID:16946707

  9. Survey of ion plating sources

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Ion plating is a plasma deposition technique where ions of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be ion plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gaseous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  10. Characterization and in-situ formation mechanism of tungsten carbide reinforced Fe-based alloy coating by plasma cladding

    NASA Astrophysics Data System (ADS)

    Wang, Mi-qi; Zhou, Ze-hua; Wu, Lin-tao; Ding, Ying; Wang, Ze-hua

    2018-04-01

    The precursor carbonization method was first applied to prepare W-C compound powder to perform the in-situ synthesis of the WC phase in a Fe-based alloy coating. The in-situ formation mechanism during the cladding process is discussed in detail. The results reveal that fine and obtuse WC particles were successfully generated and distributed in Fe-based alloy coating via Fe/W-C compound powders. The WC particles were either surrounded by or were semi-enclosed in blocky M7C3 carbides. Moreover, net-like structures were confirmed as mixtures of M23C6 and α-Fe; these structures were transformed from M7C3. The coarse herringbone M6C carbides did not only derive from the decomposition of M7C3 but also partly originated from the chemical reaction at the α-Fe/M23C6 interface. During the cladding process, the phase evolution of the precipitated carbides was WC → M7C3 → M23C6 + M6C.

  11. The effects of phase transformation on the structure and mechanical properties of TiSiCN nanocomposite coatings deposited by PECVD method

    NASA Astrophysics Data System (ADS)

    Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid

    2018-06-01

    In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.

  12. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Illkova, Ksenia; Hlina, Michal; Chraska, Tomas; Sokolowski, Pawel; Curry, Nicholas

    2017-12-01

    Introduction of suspension and solution plasma spraying led to a breakthrough in the deposition of yttria-stabilized zirconia (YSZ) coatings and enabled preparation of new types of layers. However, their deposition with high feed rates needed, for example, for the deposition of thermal barrier coatings (TBCs) on large-scale components, is still challenging. In this study, possibility of high-throughput plasma spraying of YSZ coatings is demonstrated for the latest generation of high-enthalpy hybrid water-stabilized plasma (WSP-H) torch technology. The results show that microstructure of the coatings prepared by WSP-H may be tailored for specific applications by the choice of deposition conditions, in particular formulation of the liquid feedstock. Porous and columnar coatings with low thermal conductivity (0.5-0.6 W/mK) were prepared from commercial ethanol-based suspension. Dense vertically cracked coatings with higher thermal conductivity but also higher internal cohesion were deposited from suspension containing ethanol/water mixture and coarser YSZ particles. Spraying of solution formulated from diluted zirconium acetate and yttrium nitrate hexahydrate led also to the successful deposition of YSZ coating combining regions of porous and denser microstructure and providing both low thermal conductivity and improved cohesion of the coating. Enthalpy content, liquid-plasma interaction and coating buildup mechanisms are also discussed.

  13. Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2015-01-01

    The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.

  14. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  15. Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoping; Chen, Hong; Wang, Gui; Chen, Yongnan; Xing, Yazhe; Zhang, Chunhua; Dargusch, Matthew

    2017-04-01

    Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure.

  16. Ion-plasma protective coatings for gas-turbine engine blades

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.

    2007-10-01

    Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).

  17. Effect of plasma pretreatment on adhesion and mechanical properties of UV-curable coatings on plastics

    NASA Astrophysics Data System (ADS)

    Gururaj, T.; Subasri, R.; Raju, K. R. C. Soma; Padmanabham, G.

    2011-02-01

    An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.

  18. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques.

    PubMed

    Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E

    2001-01-01

    Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.

  19. Prostate Cancer Pathology Resource Network

    DTIC Science & Technology

    2012-07-01

    microarrays (TMAs), serum, plasma , buffy coat, prostatic fluid, and derived specimens (DNA and RNA); these specimens are linked to clinical and...research community. The specimens in the PCBN include tissues from prostatectomies, serum, plasma , buffy coat, prostatic fluid, derived specimens such...prostatectomy, seminal vesicles), body fluids (serum, plasma , buffy coat, prostatic fluid; most can be matched to tumor and benign tissue), and

  20. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  1. Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane

    NASA Astrophysics Data System (ADS)

    Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.

    2018-04-01

    Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.

  2. Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction

    NASA Astrophysics Data System (ADS)

    Marotta, James Scott

    The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

  3. Experimental study of electrostatic discharges of spacecraft solar array protective coatings under radiation

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid; Novikov, Lev

    Action of charged particles on low-conductive dielectrics causes formation of areas with a high charge density inside; their fields may give rise to development of electrostatic discharge between the charged area and the surface of the dielectric. Discharge channels are growing due to breakdown of dielectric and formation of a conducting phase. Generation of the channels is a complex stochastic process accompanied by such physical and chemical processes as ionization, gas formation, heating, and so on, which cause formation of conducting phase in a glass. That is why no quantitative theory describing formation of conductive channels has been formulated yet. The study of electrostatic discharges in dielectrics under radiation is essential both from a scientific point of view and for the solution of applied problems. In particular, interaction of a spacecraft with ambient plasma causes accumulation of electric charges on its surface producing, as a consequence, electric potential between the spacecraft surface and the plasma. For example, potentials on the surface of satellites operating on a geostationary orbit reach up to 20 kV. Elec-trostatic discharges caused by such potentials can produce not only the considerable electromag-netic interference, but also lead to the destruction of hardware components and structural ele-ments. Electrostatic charging due to electrons from the Earth’s radiation belts causes degradation of solar arrays as a result of surface and internal electrostatic discharges. In the work, surface of K-208 spacecraft solar array protective coatings irradiated by 20 and 40 keV electrons and protons has studied using by AFM methods. Traces of electrostatic dis-charges at different radiation flux densities were analyzed.

  4. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    NASA Astrophysics Data System (ADS)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  5. Influence of grinding on service properties of VT-22 powder applied in additive technologies

    NASA Astrophysics Data System (ADS)

    Zakharov, M. N.; Rybalko, O. F.; Romanova, O. V.; Gelchinskiy, B. R.; Il'inykh, S. A.; Krashaninin, V. A.

    2017-01-01

    Powder of titanium alloy (VT-22) produced by plasma-spraying was subjected to grinding to obtain powder with size less 100 microns. These powders were sprayed by plasma unit using two types of gases, namely, air and air with methane (spraying in water and sputtering of coating on steel support). Influence of grinding time on yield of powder of required fraction was studied. Morphology and phase composition of the grinded powder and plasma sprayed one were under investigation. In the result of experiments, it appears that the grinding time genuinely influences the chemical and phase compositions, but there is no effect on physical-processing properties. For powders after plasma spraying some changes of non-metal elements content were detected by chemical analysis. Using gaseous mixture of air and methane in plasma spraying unit leads to formation of a new phase in the powder according X-ray diffraction data.

  6. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    NASA Astrophysics Data System (ADS)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  7. In situ synthesis of Fe-based alloy clad coatings containing TiB2-TiN-(h-BN)

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-qun; Wang, Gang; Ren, Qing-wen; Yang, Chuan-duo; Wang, Ze-hua; Zhou, Ze-hua

    2015-06-01

    Fe-based alloy coatings containing TiB2-TiN-(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1-2.8 mm from the coating surface is about Hv0.2 551.5.

  8. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Mingo, B.; Arrabal, R.; Mohedano, M.; Llamazares, Y.; Matykina, E.; Yerokhin, A.; Pardo, A.

    2018-03-01

    The effect of three different post-treatments carried out on Plasma Electrolytic Oxidation (PEO) coated magnesium alloys are evaluated in terms of characterisation and corrosion resistance. Special interest is given to the role of a common additive (NaF) to the coating properties. The post-treatments are based on immersion sealing processes in aqueous solutions of inorganic salts (cerium and stannate based salts) and alcoholic solution of an organic acid (octodecylphosphate acid, ODP). Sealing mechanisms for each post-treatment are proposed. Cerium and stannate sealings are based on filling of the pores with the products of dissolution/precipitation reactions, while the ODP acid sealing is based on the formation of a thin layer of ODP over the coating through specific interactions between the polar part of the organic acid and the coating surface. All coatings are evaluated by salt fog test and analysed by electrochemical impedance spectroscopy. All sealings show a slight increase in the corrosion resistance of the coatings formed in the NaF-free electrolyte, but their positive influence is boosted in case of the coatings obtained in the NaF-containing electrolyte. This is related to the chemical and morphological changes at the coating surface induced by the presence of NaF in the electrolyte.

  9. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  10. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  11. Phase analysis of plasma-sprayed zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  12. Plasma proteins in the acquired denture pellicle enhance substrate surface free energy and Candida albicans phospholipase and proteinase activities.

    PubMed

    Custodio, William; Silva, Wander J; Paes Leme, Adriana F; Cury, Jaime A; Del Bel Cury, Altair A

    2015-11-01

    The objective of the present study was to determine if blood plasma proteins could change the proteome of the acquired denture pellicle by label-free quantitative proteomics. As pellicle proteome modulates the interaction between substrates and Candida cells, we investigated its effect on the surface free energy (SFE) of the coated resin and on Candida albicans phospholipase and aspartyl proteinase activities. Poly(methylmethacrylate) discs were exposed to saliva (control) or saliva enriched with blood plasma (experimental group). The pellicle proteome was analyzed by mass spectrometry coupled with liquid chromatography. SFE was determined by acid-base technique. After biofilm formation, phospholipase and proteinase activities were determined accordingly to classic plate methods. Data were analyzed by two-way anova and Tukey test (P < 0.05). α-Amylase, cystatins, mucins, and host-immune system proteins were the main proteins identified in the control group. Fibrinogen and albumin were observed only in the experimental group. Coated discs of the experimental group presented an increased SFE (P < 0.05). For both enzymes tested, the experimental group showed higher proteolytic activity (P < 0.001). Blood plasma changes the proteome of the acquired denture pellicle, increasing surface free energy and the activity of Candida albicans phospholipase and aspartyl proteinase. © 2014 Wiley Publishing Asia Pty Ltd.

  13. In-situ Preparation of Polymer-Coated Zirconia Nanoparticles by Decomposition of Zirconium-Tert-Butoxide

    DTIC Science & Technology

    2003-01-01

    coated under conditions C are slightly yellow coloured. The zirconia powders collected at position 1 is white. Table I: Plasma parameters of the...pulsed) 99 1 39 40 2,5 2,5 379 400D. 2000 1000 - 20 0 40 4 140 20 [°1 Figure 2: XRD diffractrogram of zirconia powder coated with polymer Zirconia...wave nunter [crn"] Figure 3: FTIR spectra of plasma treated zirconia powders collected at position 2 (coated) prepared under A) continuous plasma B

  14. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  15. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    PubMed Central

    Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad

    2016-01-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces. PMID:27091306

  16. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  17. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.

    2004-08-01

    High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.

  18. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  19. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  20. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    PubMed

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a low TMDSO-to-oxygen ratio had little to no singly substituted moieties, displayed a highly cross-linked structure, and showed less post-plasma reactions. However, these chemically more stable coatings are less compatible mechanically with plastic substrates, because of their high stiffness.

  1. A study on porous super austenitic stainless steel coating for improvement of bone ingrowth

    NASA Astrophysics Data System (ADS)

    Oh, Keun Taek; Park, Yong Soo

    1998-02-01

    In this study, the prostheses were provided with the bone ingrowth site by coating the super stainless steel powder on the same substrate (S32050) using plasma spraying method. Plasma current and powder feed rate varied in this study based on the optimum conditions of previous experiments. The optimum conditions for satisfying the requirements of the porous coatings were found. The characteristics of the coatings were observed according to the experimental parameters. It was found that plasma current influenced the chemical composition (the oxides, Cr component), melting and flattening degree of the sprayed particle (surface roughness, thickness of the splat, pores) and corrosion -resistance. The powder feed rate also influenced the coating thickness and efficiency. The amount of Cr was increased, but Ni, Mo, Fe were decreased with plasma current. An increase of Cr in the coating surface corresponded to an increase in the amount of the formed oxides. The coated specimen in 400A had a high corrosion-resistance owing to a dense coating. The coated specimen in 500A formed many types of oxides. In 300A current, the coating was rough with many pores, and corrosion-resistance of the coating showed a large variation according to the oxidation and compositional change. Specifically at 100 g/min powder feed rate in a 300A current, the coating was rough and porous, nevertheless, it had high corrosion resistance.

  2. Atmospheric-pressure-plasma-enhanced fabrication of nonfouling nanocoatings for 316 stainless steel biomaterial interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun

    2018-03-01

    Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.

  3. Plasma-Functionalized Polytetrafluoroethylene Nanoparticles for Improved Wear in Lubricated Contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vinay; Timmons, Richard; Erdemir, Ali

    Plasma-functionalized polytetrafluoroethylene (PTFE) nanoparticles were employed to evaluate their utility in improving the lubrication property of a group III mineral oil with a significantly low amount of zinc dialkyl dithiophosphate (ZDDP). The particles were coated with two consecutive films; the initial coating contained silica to enhance amorphous glassy tribofilm formation, followed by a methacrylate film to protect the silica coating and enhance dispersibility in the oil. The functionalized nanoparticles were evaluated for their tribological performance using a high-frequency reciprocating rig, in a cylinder-on-flat configuration. The oil formulations containing ZDDP (350 ppm phosphorus level) and the functionalized nanoparticles resulted in dramaticmore » reductions in the friction coefficient and overall wear compared to the samples containing nonfunctionalized PTFE nanoparticles, ZDDP (350 ppm P), and samples devoid of nanoparticles but containing ZDDP with a 700 ppm P treat rate. XPS and XANES spectroscopy were employed to characterize the tribological films formed on the test samples. The samples with functionalized particles and ZDDP clearly exhibited tribofilms with Si- and F-doped polyphosphates of Zn coupled with the presence of ZnS at the metal-tribofilm interface. On the other hand, oils without the functionalized nanoparticles have oxides of Fe and to a lesser extent short-chain phosphates of Zn. The overall results suggest that the synergism between plasma-coated PTFE nanoparticles and ZDDP contributed to the development of protective tribofilms even at reduced amount of phosphorus in the oil. This new method of employing nanoparticles to deliver novel antifriction and antiwear chemistries at the tribological interfaces stands out as a promising approach to further reduce P levels in oils without compromising friction and wear performance.« less

  4. Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants.

    PubMed

    Tufekci, E; Brantley, W A; Mitchell, J C; McGlumphy, E A

    1997-01-01

    The purpose of this study was to investigate the microstructure of plasma-sprayed hydroxyapatite coatings and the elemental composition near the coating-substrate interface for two commercial implants, using the scanning electron microscope. Both coating surfaces and cross-sectioned specimens were examined. The results indicated that while the surface microstructures of both implants were consistent with the plasma-spraying process, the scale of the constituents was much finer for one product. In cross-section, both coatings exhibited minimal porosity and intimate contact with the titanium alloy substrate. It was found that limited interdiffusion of titanium and calcium occurred near the interface.

  5. Adhesion and proliferation of fibroblasts on RF plasma-deposited nanostructured fluorocarbon coatings: evidence of FAK activation.

    PubMed

    Rosso, Francesco; Marino, Gerardo; Muscariello, Livio; Cafiero, Gennaro; Favia, Pietro; D'Aloia, Erica; d'Agostino, Riccardo; Barbarisi, Alfonso

    2006-06-01

    We used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones. Copyright 2006 Wiley-Liss, Inc.

  6. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  7. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Jianjun, Huang; Fan, Wang; Ying, Liu; Shishou, Jiang; Xisheng, Wang; Bing, Qi; Liang, Gao

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 μm. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  8. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  9. Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films

    PubMed Central

    Al-Jumaili, Ahmed; Bazaka, Kateryna

    2017-01-01

    Bacterial colonisation of biomedical devices demands novel antibacterial coatings. Plasma-enabled treatment is an established technique for selective modification of physicochemical characteristics of the surface and deposition of polymer thin films. We investigated the retention of inherent antibacterial activity in geranium based plasma polymer thin films. Attachment and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was significantly reduced on the surfaces of samples fabricated at 10 W radio frequency (RF) power, compared to that of control or films fabricated at higher input power. This was attributed to lower contact angle and retention of original chemical functionality in the polymer films fabricated under low input power conditions. The topography of all surfaces was uniform and smooth, with surface roughness of 0.18 and 0.69 nm for films fabricated at 10 W and 100 W, respectively. Hardness and elastic modules of films increased with input power. Independent of input power, films were optically transparent within the visible wavelength range, with the main absorption at ~290 nm and optical band gap of ~3.6 eV. These results suggest that geranium extract-derived polymers may potentially be used as antibacterial coatings for contact lenses. PMID:28902134

  10. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  11. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  12. Space Plasma Testing of High-Voltage Thin-Film Solar Arrays with Protective Coatings

    NASA Technical Reports Server (NTRS)

    Tlomak, Pawel; Hausgen, Paul E.; Merrill, John; Senft, Donna; Piszczor, Michael F., Jr.

    2007-01-01

    This paper gives an overview of the space plasma test program for thin-film photovoltaics (TFPV) technologies developed at the Air Force Research Laboratory (AFRL). The main objective of this program is to simulate the effects of space plasma characteristic of LEO and MEO environments on TFPV. Two types of TFPV, amorphous silicon (a-Si) and copper-indium-gallium-diselenide (CIGS), coated with two types of thin-film, multifunctional coatings were used for these studies. This paper reports the results of the first phase of this program, namely the results of preliminary electrostatic charging, arcing, dielectric breakdown, and collection current measurements carried out with a series of TFPV exposed to simulated space plasma at the NASA Glenn Plasma Interaction Facility. The experimental data demonstrate that multifunctional coatings developed for this program provide effective protection against the plasma environment while minimizing impact on power generation performance. This effort is part of an ongoing program led by the Space Vehicles Directorate at the AFRL devoted to the development and space qualification of TFPV and their protective coatings.

  13. Tungsten coating by ATC plasma spraying on CFC for WEST tokamak

    NASA Astrophysics Data System (ADS)

    Firdaouss, M.; Desgranges, C.; Hernandez, C.; Mateus, C.; Maier, H.; Böswirth, B.; Greuner, H.; Samaille, F.; Bucalossi, J.; Missirlian, M.

    2017-12-01

    In the field of fusion experiments using a tokamak, the plasma facing components (PFC) are the closest object to the hot plasma. Due to the plasma-wall interaction, the material composing the PFC may enter the plasma and disturb the experiments. In the past, the main material for PFC was carbon (CFC, graphite), while the future reactors like ITER will be fully metallic, in particular tungsten. The Tore Supra tokamak has been transformed in an x-point divertor fusion device within the frame of the WEST (W (tungsten) Environment in Steady-state Tokamak) project in order to have plasma conditions close to those expected in ITER. The PFC other than the divertor has been coated with W to transform Tore Supra into a fully metallic environment. Different coating techniques have been selected for different kind of PFC. This paper gives an overview on the coating process used for the antennae protection limiter, the associated validation programme and concludes on the adequacy of the W coating with the WEST experimental programme requirements and gives perspectives on the development to be pursued.

  14. Edge profiles and limiter tests in Extrap T2

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Hedin, G.; Ilyinsky, L.; Larsson, D.; Möller, A.

    New edge profile measurements, including calorimetric measurements of the parallel heat flux, were made in Extrap T2. Test limiters of pure molybdenum and the TZM molybdenum alloy have been exposed in the edge plasma. The surface damage was studied, mainly by microscopy. Tungsten coated graphite probes were also exposed, and the surfaces were studied by microscopy, ion beam analysis and XPS. In this case cracking and mixing of carbon and tungsten at the interface was observed in the most heated areas, whereas carbide formation at the surface was seen in less heated areas. In these tests pure Mo generally fared better than TZM, and thin and cleaner coatings fared better than thicker and less clean.

  15. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  16. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  17. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    NASA Astrophysics Data System (ADS)

    Obrezkov, O. I.; Vinogradov, V. P.; Krauz, V. I.; Mozgrin, D. V.; Guseva, I. A.; Andreev, E. S.; Zverev, A. A.; Starostin, A. L.

    2016-09-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time.

  18. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications.

    PubMed

    Braem, Annabel; Van Mellaert, Lieve; Mattheys, Tina; Hofmans, Dorien; De Waelheyns, Evelien; Geris, Liesbet; Anné, Jozef; Schrooten, Jan; Vleugels, Jef

    2014-01-01

    Implant-related infections are a serious complication in prosthetic surgery, substantially jeopardizing implant fixation. As porous coatings for improved osseointegration typically present an increased surface roughness, their resulting large surface area (sometimes increasing with over 700% compared to an ideal plane) renders the implant extremely susceptible to bacterial colonization and subsequent biofilm formation. Therefore, there is particular interest in orthopaedic implantology to engineer surfaces that combine both the ability to improve osseointegration and at the same time reduce the infection risk. As part of this orthopaedic coating development, the interest of in vitro studies on the interaction between implant surfaces and bacteria/biofilms is growing. In this study, the in vitro staphylococcal adhesion and biofilm formation on newly developed porous pure Ti coatings with 50% porosity and pore sizes up to 50 μm is compared to various dense and porous Ti or Ti-6Al-4V reference surfaces. Multiple linear regression analysis indicates that surface roughness and hydrophobicity are the main determinants for bacterial adherence. Accordingly, the novel coatings display a significant reduction of up to five times less bacterial surface colonization when compared to a commercial state-of-the-art vacuum plasma sprayed coating. However, the results also show that a further expansion of the porosity with over 15% and/or the pore size up to 150 μm is correlated to a significant increase in the roughness parameters resulting in an ascent of bacterial attachment. Chemically modifying the Ti surface in order to improve its hydrophilicity, while preserving the average roughness, is found to strongly decrease bacteria quantities, indicating the importance of surface functionalization to reduce the infection risk of porous coatings. Copyright © 2013 Wiley Periodicals, Inc.

  19. Studies of the air plasma spraying of zirconia powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varacalle, D.J. Jr.; Wilson, G.C.; Crawmer, D.E.

    As part of an investigation of the dynamics that occur in the air plasma spray process, an experimental and analytical study has been accomplished for the deposition of yttria-stabilized zirconia powder using argon-hydrogen and argon-helium working gases. Numerical models of the plasma dynamics and the related plasma-particle interaction are presented. The analytical studies were conducted to determine the parameter space for the empirical studies. Experiments were then conducted using a Box statistical design-of-experiment approach. A substantial range of plasma processing conditions and their effect on the resultant coating is presented. The coatings were characterized by hardness tests and optical metallographymore » (i.e., image analysis). Coating qualities are discussed with respect to hardness, porosity, surface roughness, deposition efficiency, and microstructure. Attributes of the coatings are correlated with the changes in operating parameters. An optimized coating design predicted by the SDE analysis and verified by the calculations is also presented.« less

  20. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, I.G.; MacGill, R.A.; Galvin, J.E.

    1991-05-07

    An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.

  1. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1991-01-01

    An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.

  2. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  3. Bioactive Coating Systems for Protection Against Bio-Threats: Antimicrobial Coatings for Medical Shelters

    DTIC Science & Technology

    2013-12-23

    the CnC drive, building and integration of the plasma head, installation of gas distribution system, and control systems for the machine. The machine...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 antimicrobial coatings, atmospheric pressure plasma liquid deposition...polyester fabric using Triton Systems novel atmospheric pressure plasma deposition process (Invexus™). It is envisioned that these new antimicrobial

  4. Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2004-01-01

    Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.

  5. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    PubMed

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  6. Fabrication and characterization of plasma-sprayed HA/SiO(2) coatings for biomedical application.

    PubMed

    Morks, M F

    2008-01-01

    Fused silica powder has been mixed with hydroxyapatite (HA) powder and plasma sprayed by using gas tunnel-type plasma jet. The influence of silica content (10 wt% and 20 wt%) on the microstructure and mechanical properties of HA-silica coatings was investigated. For investigating the microstructure and mechanical properties of HA-silica coatings, SUS 304 stainless steel was used as substrate material. The spraying was carried out on roughened substrate in an atmospheric chamber. Scanning electron microscope micrographs of cross-sectioned HA/SiO(2) coatings showed that the sprayed HA coatings with 10 and 20 wt% SiO(2) have dense structure with low porosity compared to the pure HA coatings. On the other hand, as the amount of silica was increased the coatings became denser, harder and exhibited high abrasive wear resistance. The presence of silica significantly improved the adhesive strength of HA/SiO(2) coatings mainly due to the increase in bonding strength of the coating at the interface.

  7. Oxidation behavior of a thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1984-01-01

    Thermal barrier coatings, consisting of a plasma sprayed calcium silicate ceramic layer and a CoCrAlY or NiCrAlY bond coat, were applied on B-1900 coupons and cycled hourly in air in a rapid-response furnace to maximum temperatures of 1030, 1100, or 1160 C. Eight specimens were tested for each of the six conditions of bond-coat composition and temperature. Specimens were removed from test at the onset of failure, which was taken to be the formation of a fine surface crack visible at 10X magnification. Specimens were weighed periodically, and plots of weight gain vs time indicate that weight is gained at a parabolic rate after an initial period where weight was gained at a much greater rate. The high initial oxidation rate is thought to arise from the initially high surface area in the porous bond coat. Specimen life (time to first crack) was found to be a strong function of temperature. However, while test lives varied greatly with time, the weight gain at the time of specimen failure was quite insensitive to temperature. This indicates that there is a critical weight gain at which the coating fails when subjected to this test.

  8. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  9. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    NASA Astrophysics Data System (ADS)

    Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.

    2014-04-01

    To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  10. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  11. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  12. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    NASA Astrophysics Data System (ADS)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  13. Projection par plasma de depots de dioxyde de titane: Contribution a l'etude de leurs microstructures et proprietes electriques

    NASA Astrophysics Data System (ADS)

    Branland, Nadege

    2002-04-01

    The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.

  14. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.

  15. NASA Astrophysics Data System (ADS)

    Mohanty, M.; Smith, R. W.

    1995-12-01

    Lightweight coatings based on titanium and titanium carbides produced by plasma spraying can be used to improve and modify the tribomechanical properties of aerospace structural materials. Although plasma-sprayed WC/Co coatings have been applied with success in many cases, such as primary wear-re-sistant materials, their high densities preclude their use in applications that mandate reduction in weight. In the present investigation, the sliding wear resistance of plasma-sprayed, metal-bonded TiC coatings on AI 7075 substrates was studied. Coatings containing 50, 70, and 90 vol% TiC in a Ti matrix produced from physically blended powders of Ti and TiC were compared. Metallographie evaluations showed that dense coatings with good bonding to AI 7075 substrates can be obtained. Coatings from commercial pu-rity (CP) Ti powders sprayed in air under atmospheric conditions, however, indicated considerable oxi-dation of the particles. Under dry sliding conditions, the coefficient of friction (COF) values of the Ti/TiC containing/Al 7075 substrate system were lower than high-velocity oxygen fuel (HVOF) sprayed 75% Cr3C2/25%NiCr coatings on steel and were comparable to coatings of WC/Co. Vacuum plasma-sprayed TiC/Ti coatings with 90 vol% TiC also exhibited better wear resistance than HVOF sprayed 75%Cr3C2/25%NiCr.

  16. Fabrication of superhydrophilic and antireflective silica coatings on poly(methyl methacrylate) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Zhi; Graduate University of Chinese Academy of Sciences; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn

    2012-06-15

    Graphical abstract: Self-cleaning and antireflection properties were successfully achieved by assembling (PDDA/S-20){sub n} coatings on PMMA substrates followed by oxygen plasma treatment. Highlights: ► Porous silica coatings were created by layer-by-layer assembly on PMMA substrates. ► Silica coatings were treated by oxygen plasma. ► Porous silica coatings were highly antireflective and superhydrophilic on PMMA substrates. -- Abstract: Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximummore » transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.« less

  17. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  18. Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Ruckle, D. L.

    1980-01-01

    As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

  19. Evolution of the plasma-sprayed microstructure in 7 wt% yttria-stabilized zirconia thermal barrier coatings during uniaxial stress relaxation and the concomitant changes in material properties

    NASA Astrophysics Data System (ADS)

    Petorak, Christopher

    The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction in the SSA associated with void systems due to sintering, specifically the closing and healing of intralamellar cracks perpendicular to the applied stress, and (3) A compaction and closure of void systems under the applied load. These anisotropic changes in microstructure result in distinguishable changes in thermo-mechanical properties, with very minute changes to the overall bulk density.

  20. Supersonic plasma outflow in a plasmochemical method of amorphous silicon thin films formation

    NASA Astrophysics Data System (ADS)

    Baranova, L. V.; Strunin, V. I.; Khudaibergenov, G. Zh

    2018-01-01

    As a result of the numerical modeling of gasdynamic functions of a nozzle of Laval there obtained its parameters which form supersonic plasma jet outflow in a process of amorphous silicon thin films deposition. According to the nozzle design parameters, there obtained amorphous silicon thin films and studied uniformity of the thickness of the synthesized coatings. It was also performed that due to a low translational temperature at the nozzle exit the relaxation losses reduce significantly, “freezing” the vibrational degrees of freedom and the degrees of freedom of the transverse motion of the particles, and increasing the energy efficiency of the film formation process. All this is caused by the fact that on the surface of a growing film only the products of primary interaction of electrons with molecules of a silicon-containing gas in the plasmatron do interact.

  1. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie V.; Petranovskaya, A. L.; Gorbyk, P. P.; Korduban, A. M.; Markovsky, P. E.; Ivasishin, O. M.

    2015-08-01

    A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)—synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.

  2. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  3. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    PubMed

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Pulsed arc plasma jet synchronized with drop-on-demand dispenser

    NASA Astrophysics Data System (ADS)

    Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.

    2017-04-01

    This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.

  5. Oxygen plasma treatment and deposition of CN{sub x} on a fluorinated polymer matrix composite for improved erosion resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.

    2007-07-15

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relativemore » to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.« less

  6. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    PubMed

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    NASA Astrophysics Data System (ADS)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  8. Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings.

    PubMed

    Oliver, James B; Kupinski, Pete; Rigatti, Amy L; Schmid, Ansgar W; Lambropoulos, John C; Papernov, Semyon; Kozlov, Alexei; Spaulding, John; Sadowski, Daniel; Chrzan, Z Roman; Hand, Robert D; Gibson, Desmond R; Brinkley, Ian; Placido, Frank

    2011-03-20

    Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.

  9. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 2: Effect of spray parameters on the performance of several hafnia-yttria and zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.

    1993-01-01

    This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.

  10. Pulsed Plasma Electron Sources

    NASA Astrophysics Data System (ADS)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E < 10^5 V/cm this plasma is not uniform and there is a time delay in its formation. Thus, there is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E <= 10^5 V/cm. In the present report, several types of plasma electron source (PES) will be considered. The first type of PES is fiber-based cathodes, with and without CsI coating. The operation of these cathodes is governed by the formation of the flashover plasma which serves as a source of electrons. The second type of PES is the ferroelectric plasma source (FPS). The operation of FPS, characterized by the formation of dense surface flashover plasma is accompanied also by the generation of fast microparticles and energetic neutrals. The latter was explained by Coulomb micro-explosions of the ferroelectric surface due to an large time-varying electric field at the front of the expanding plasma. A short review of recent achievements in the operation of a multi-FPS-assisted hollow anode to generate a large area electron beam will be presented as well. Finally, parameters of the plasma produced by a multi-capillary cathode with FPS and velvet igniters will be discussed. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, S.Efimov, J. Felsteiner V. Bernshtam, and Yu. M. Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  11. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    NASA Astrophysics Data System (ADS)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  12. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  13. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  14. Design of A Large Oxide Coated Cathode Plasma Source for Operation in High Magnetic Fields at the New LAPD

    NASA Astrophysics Data System (ADS)

    Leneman, David

    2001-10-01

    We use a Barium Oxide coated cathode to supply accelerated electrons as an energy source to from our plasma. Oxide coated cathodes have been used for decades in vacuum tubes and plasma research. Most of these have been small (1 cm dia.) or designed to operate in a low magnetic field where the J×B \\unboldmath forces on them are negligible. At the new LAPD we will have large diameter plasma sources at both ends of the machine which must operate in a 3.5 kG ambient magnetic field. We have designed and built one such source which is 72 cm in diameter. It will supply up to 20 kA of pulsed beam current and uses a 1 m by 1 m, 2.5 kA (dc), 150 kW heater. Solutions to various engineering issues will be discussed. These pertain to differential thermal expansion over 1 m distances, J×B \\unboldmath forces on the heater and cathode, heat containment and uniformity of the oxide coating and of plasma production. These issues are important to any experimenter who plans to build an oxide coated plasma source.

  15. Synthesis and characterization of in situ TiC-TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zou, Binglin; Tao, Shunyan; Huang, Wenzhi; Khan, Zuhair S.; Fan, Xizhi; Gu, Lijian; Wang, Ying; Xu, Jiaying; Cai, Xiaolong; Ma, Hongmei; Cao, Xueqiang

    2013-01-01

    TiC-TiB2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB2. Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  16. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  17. Microscopic analysis of nanostructured plasma coatings

    NASA Astrophysics Data System (ADS)

    Ageev, E. V.; Altukhov, A. Yu; Ageeva, E. V.; Khardikov, S. V.

    2018-03-01

    In the course of the study, it was found that plasma nanocomposite coating obtained from a mixture of powders of BRS, VK8 and nichrome with a portable plasma device “ALPES-02M” has high performance properties, which significantly expands the scope of its application.

  18. Hydrogen permeation properties of plasma-sprayed tungsten*1

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  19. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  20. Erosion and re-deposition of lithium and boron coatings under high-flux plasma bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler Wayne

    2015-01-01

    Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less

  1. Effects of MgO and SiO2 on Plasma-Sprayed Hydroxyapatite Coating: An in Vivo Study in Rat Distal Femoral Defects.

    PubMed

    Ke, Dongxu; Robertson, Samuel F; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2017-08-09

    Plasma-sprayed hydroxyapatite (HA)-coated titanium implants have been widely used in orthopedic applications due to their inheritance of an excellent mechanical property from titanium and great osteoconductivity from HA. However, the lack of osteoinductivity limits their further applications. In this study, 1 wt % MgO and 0.5 wt % SiO 2 were mixed with HA for making plasma-sprayed coatings on titanium implants. Plasma-sprayed HA- and MgO/SiO 2 -HA-coated titanium implants showed adhesive bond strengths of 25.73 ± 1.92 and 23.44 ± 2.89 MPa, respectively. The presence of MgO and SiO 2 significantly increased the osteogenesis, osseointegration, and bone mineralization of HA-coated titanium implants by the evaluation of their histomorphology after 6, 10, and 14 weeks of implantation in rat distal femoral defects. Implant pushout tests also showed a shear modulus of 149.83 ± 3.69 MPa for MgO/SiO 2 -HA-coated implants after 14 weeks of implantation, compared to 52.68 ± 10.41 MPa for uncoated implants and 83.92 ± 3.68 MPa for pure HA-coated implants; These are differences in the shear modulus of 96% and 56.4%, respectively. This study assesses for the first time the quality of the bone-implant interface of induction plasma-sprayed MgO and SiO 2 binary-doped HA coatings on load-bearing implants compared to bare titanium and pure HA coatings in a quantitative manner. Relating the osseointegration and interface shear modulus to the quality of implant fixation is critical to the advancement and implementation of HA-coated orthopedic implants.

  2. Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins.

    PubMed

    Chaney, L K; Jacobson, B S

    1983-08-25

    Plasma membrane (PM) can be isolated by binding to a positively charged solid support. Using this concept, we have developed a novel method of PM isolation using cationic colloidal silica. The method is designed for the comparative study of various physiological states of PM and for transbilayer protein mapping. The procedure consists of coating intact cells with a dense pellicle of silica particles and polyanion. Since cells remain intact during pellicle formation, the external face of the PM is selectively coated. The pellicle greatly enhances PM density and stabilizes it against vesiculation or lateral reorientation. Upon cell lysis, large open sheets of PM are rapidly isolated by centrifugation. PM from Dictyostelium discoideum was prepared by this method. Marker enzymes, cell surface labeling and microscopy demonstrate that the PM was isolated in high yield (70-80%) with a 10-17-fold purification and only low levels of cytoplasmic contamination. The pellicle remains intact during cell lysis and membrane isolation, shielding the external surface of the membranes up to 92% from chemical or enzymatic attack. The PM can thus be labeled selectively from inside and/or outside. Transmembrane proteins were identified in Dictyostelium PM by means of lactoperoxidase iodination and autoradiography.

  3. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  4. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  5. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    DOE PAGES

    Poole, P. L.; Krygier, A.; Cochran, G. E.; ...

    2016-08-25

    Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less

  6. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was <2% of that of the matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  7. Improvement of wear resistance of plasma-sprayed molybdenum blend coatings

    NASA Astrophysics Data System (ADS)

    Ahn, Jeehoon; Hwang, Byoungchul; Lee, Sunghak

    2005-06-01

    The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.

  8. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  9. Characterization of plasma sprayed and explosively consolidated simulated lunar soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, S.J.; Inal, O.T.; Smith, M.F.

    1997-06-01

    Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibitedmore » good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.« less

  10. Improved Small-Particle Powders for Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.

  11. A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum

    PubMed Central

    Abrami, Laurence; Fivaz, Marc; Glauser, Pierre-Etienne; Parton, Robert G.; van der Goot, F.

    1998-01-01

    In this paper, we have investigated the effects of the pore-forming toxin aerolysin, produced by Aeromonas hydrophila, on mammalian cells. Our data indicate that the protoxin binds to an 80-kD glycosyl-phosphatidylinositol (GPI)-anchored protein on BHK cells, and that the bound toxin is associated with specialized plasma membrane domains, described as detergent-insoluble microdomains, or cholesterol-glycolipid “rafts.” We show that the protoxin is then processed to its mature form by host cell proteases. We propose that the preferential association of the toxin with rafts, through binding to GPI-anchored proteins, is likely to increase the local toxin concentration and thereby promote oligomerization, a step that it is a prerequisite for channel formation. We show that channel formation does not lead to disruption of the plasma membrane but to the selective permeabilization to small ions such as potassium, which causes plasma membrane depolarization. Next we studied the consequences of channel formation on the organization and dynamics of intracellular membranes. Strikingly, we found that the toxin causes dramatic vacuolation of the ER, but does not affect other intracellular compartments. Concomitantly we find that the COPI coat is released from biosynthetic membranes and that biosynthetic transport of newly synthesized transmembrane G protein of vesicular stomatitis virus is inhibited. Our data indicate that binding of proaerolysin to GPI-anchored proteins and processing of the toxin lead to oligomerization and channel formation in the plasma membrane, which in turn causes selective disorganization of early biosynthetic membrane dynamics. PMID:9456314

  12. Staphopains Modulate Staphylococcus aureus Biofilm Integrity

    PubMed Central

    Mootz, Joe M.; Malone, Cheryl L.; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture. PMID:23798534

  13. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  14. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  15. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  16. New generation of plasma-sprayed mullite coatings on silicon carbide

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  17. RF models for plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter

    2013-09-01

    Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.

  18. Phospholipase D Is Involved in the Formation of Golgi Associated Clathrin Coated Vesicles in Human Parotid Duct Cells

    PubMed Central

    Brito de Souza, Lorena; Pinto da Silva, Luis Lamberti; Jamur, Maria Célia; Oliver, Constance

    2014-01-01

    Phospholipase D (PLD) has been implicated in many cellular functions, such as vesicle trafficking, exocytosis, differentiation, and proliferation. The aim of this study was to characterize the role of PLD in HSY cells, a human cell line originating from the intercalated duct of the parotid gland. As the function and intracellular localization of PLD varies according to cell type, initially, the intracellular localization of PLD1 and PLD2 was determined. By immunofluorescence, PLD1 and PLD2 both showed a punctate cytoplasmic distribution with extensive co-localization with TGN-46. PLD1 was also found in the nucleus, while PLD2 was associated with the plasma membrane. Treatment of cells with the primary alcohol 1-butanol inhibits the hydrolysis of phosphatidylcoline by PLD thereby suppressing phosphatidic acid (PA) production. In untreated HSY cells, there was only a slight co-localization of PLD with the clathrin coated vesicles. When HSY cells were incubated with 1-butanol the total number of clathrin coated vesicles increased, especially in the juxtanuclear region and the co-localization of PLD with the clathrin coated vesicles was augmented. Transmission electron microscopy confirmed that the number of Golgi-associated coated vesicles was greater. Treatment with 1-butanol also affected the Golgi apparatus, increasing the volume of the Golgi saccules. The decrease in PA levels after treatment with 1-butanol likewise resulted in an accumulation of enlarged lysosomes in the perinuclear region. Therefore, in HSY cells PLD appears to be involved in the formation of Golgi associated clathrin coated vesicles as well as in the structural maintenance of the Golgi apparatus. PMID:24618697

  19. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  20. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  1. Development of improved high temperature coatings for IN-792 + HF

    NASA Technical Reports Server (NTRS)

    Profant, D. D.; Naik, S. K.

    1981-01-01

    The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.

  2. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  3. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.

    1985-01-01

    This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.

  4. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vautherin, B.; Planche, M.-P.; Montavon, G.

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy ( i.e., 381.9 kJ·mol⁻¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy ( i.e., 563.6 kJ·mol⁻¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure ( i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited inmore » the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable α-Ti, Al and metastable α₂-Ti₃Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.« less

  5. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique.

    PubMed

    Nie, X; Leyland, A; Matthews, A; Jiang, J C; Meletis, E I

    2001-12-15

    Hydroxyapatite (HA) coatings can be deposited using a hybrid process of plasma electrolysis and electrophoresis, called plasma-assisted electrophoretic deposition (PEPD). HA aqueous suspensions with various pH values were prepared using a modified ultrasonic cleaning bath as an agitator/stirrer. Both DC and unbalanced AC power supplies were used to bias the titanium alloy substrate materials employed in this work. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to observe and analyze coating morphology and microstructure. It was shown that the morphology and composition of the calcium phosphate coatings were significantly influenced by solution pH values; the level of "pure" HA in the coatings' composition corresponded to both solution pH and the type of power supply employed. Loss of hydroxyl radials (i.e., dehydroxylation), which degrades the performance of the hydroxyapatite coating in terms of long-term chemical and mechanical stability, can be virtually eliminated by a combination of high pH and unbalanced AC plasma power. In addition, the underlying TiO2 coatings used to support the HA layer (preproduced by plasma electrolysis process) have a nanoscaled (10-20 nm) polycrystalline structure. TEM studies also revealed a dense, continuous amorphous titania layer (10 nm in thickness) at the interface between the Ti alloy substrate and the TiO2 layer, which may play a role in improving the corrosion resistance of the substrate. Such a nanophase TiO2 layer (if used as a coating alone) may also provide a further improvement in osteoinductive properties, compared to a conventional TiO2 coating on the Ti alloy substrate. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 612-618, 2001

  6. Effect of Helmholtz Oscillation on Auto-shroud for APS Tungsten Carbide Coating

    NASA Astrophysics Data System (ADS)

    Jin, Younggil; Choi, Sooseok; Yang, Seung Jae; Park, Chong Rae; Kim, Gon-Ho

    2013-06-01

    The atmospheric-pressure plasma spray (APS) of tungsten coating was performed using tungsten carbide (WC) powder by means of DC plasma torch equipped with a stepped anode nozzle as a potential method of W coating on graphite plasma-facing component of fusion reactors. This nozzle configuration allows Helmholtz oscillation mode dominating in APS arc fluctuation, and the variation of auto-shroud effect with Helmholtz oscillation characteristics can be investigated. Tungsten coating made from WC powder has lower porosity and higher tungsten purity than that made from pure tungsten powder. The porosity and chemical composition of coatings were investigated by mercury intrusion porosimetry and x-ray photoelectron spectroscopy, respectively. The purity of tungsten coating layer is increased with the increasing frequency of Helmholtz oscillation and the increasing arc current. The modulation of Helmholtz oscillation frequency and magnitude may enhance the decarburization of WC to deposit tungsten coating without W-C and W-O bond from WC powder.

  7. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    NASA Astrophysics Data System (ADS)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  8. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    NASA Astrophysics Data System (ADS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  9. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    NASA Astrophysics Data System (ADS)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  10. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  11. Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD

    NASA Astrophysics Data System (ADS)

    Rezanka, S.; Mauer, G.; Vaßen, R.

    2014-01-01

    The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 °C/1050 °C surface/substrate exposure temperatures.

  12. Ageing of plasma-mediated coatings with embedded silver nanoparticles on stainless steel: An XPS and ToF-SIMS investigation

    NASA Astrophysics Data System (ADS)

    Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P.

    2010-09-01

    Nanocomposite thin films (˜170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.

  13. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  14. Properties, ageing behavior and stability of bipolar films containing nano-layers of allylamine and acrylic acid plasma polymers

    NASA Astrophysics Data System (ADS)

    Aziz, Gaelle; Asadian, Mahtab; Declercq, Heidi; Morent, Rino; De Geyter, Nathalie

    2018-06-01

    In this work, a dielectric barrier discharge (DBD) has been used for the deposition of bipolar films containing alternating nano-layers of plasma polymerized allylamine (PPAam) and acrylic acid (PPAac). Various films were obtained by varying the single-layer thickness of each plasma polymer while maintaining a constant total film thickness and two kinds of films were fabricated via different depositing sequences (PPAam/Aac and PPAac/Aam). Films properties, ageing in air and stability in water over a 7 days period were investigated. Results showed that, COO- and NH3+ polar entities, generated from the interaction of PPAam and PPAac, are present in the bipolar films. Concerning the films stability, the different reaction mechanisms involved in the formation of each kind of films resulted in a higher amount of polar groups in the PPAam/Aac films; this conferred these films a higher stability than PPAac/Aam. Concerning the films ageing behavior, all prepared samples underwent some kind of ageing which was found to be dependent on the deposition sequence. Results also showed that bipolar coatings exhibited better cell-material interactions compared to PPAam and PPAac films; with a better cell viability observed on PPAam/Aac coatings after 1 and 7 days culture.

  15. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    2001-06-01

    The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.

  16. High temperature solar energy absorbing surfaces

    DOEpatents

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  17. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  18. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  19. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  20. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  1. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  2. The Effects of Substrate Material and Thermal Processing Atmosphere on the Strength of PS304: A High Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2002-01-01

    PS304, a plasma spray deposited solid lubricant coating developed for high temperature sliding contacts was deposited on nine different substrate metals, heat treated at 650C in either air or argon and subsequently tested for strength using a commercially available pull-off adhesion test. Some samples were examined metallographically to help elucidate and explain the results. As deposited coatings exhibit pull-off strengths typically between 16 and 20 MPa with failure occuring (cohesively) within the coating. Heat treatment in argon at 650 C results in a slight increase in coating (cohesive) strength of about 30 percent to 21 to 27 MPa. Heat treatment in air at 650 C results in a dramatic increase in strength to over 30 MPa, exceeding the strength of the epoxy used in the pull test. Cross section metallographic analyses show that no microstructural coating changes occur following the argon heat treatments, however, exposure to air at 650C gives rise to the formation of a second chromium-rich phase precipitate within the PS304 NiCr constituent which provides a strengthening effect and a slight (approximately 5 percent) coating thickness increase. Subsequent heat treatments do not result in any further coating changes. Based upon these studies, PS304 is a suitable coating for use on a wide variety of high temperature substrates and must be heat treated following deposition to enhance strength and ensure dimensional stability.

  3. Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.

    2017-03-01

    Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.

  4. Plasma-sprayed coatings for lubrication of a titanium alloy in air at 430 deg C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Wisander, D. H.

    1979-01-01

    Plasma sprayed coatings of pure silver and of composite materials containing silver were investigated as possible self lubricating coatings for titanium alloys in air at 430 C. Pure silver provided low friction but was prone to severe plastic deformation and excessive transfer except in coating thicknesses of 0.02 mm or less. Additions of nichrome, calcium fluoride, and glass to silver were all beneficial in reducing plastic deformation and otherwise improving the coatings. The longest coating wear life, low wear of Ti alloy pins in sliding contact with the coatings, and a steady friction coefficient of 0.19 were obtained with a four component coating of 0.17 mm thickness. The coating composition, in weight percent is 30 nichrome-30 Ag-25 CaF2-15 glass.

  5. Investigation of Mixed-Type Craters and the Role of Bifluoride Additives to Produce Zirconia-Toughened Alumina-Based PEO Coating

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Zeeshan; Shin, Seong Hun; Ahmad, Tanveer; Koo, Bon Heun

    2018-05-01

    Al2O3-ZrO2 composite ceramic coatings were prepared on Al6061 aluminum alloy by plasma electrolytic oxidation in Na3PO4-K2ZrF6-Na2SiF6-based alkaline electrolyte. Optimum processing time for the coating formation was found to be 50 min. Cross section and surface morphology of the coatings were analyzed using scanning electron microscope. From the phase and elemental composition analysis, the presence of m-ZrO2 and t-ZrO2 phases was confirmed. It was further observed that the peak intensities of t-ZrO2 and α-Al2O3 phases increased with processing time, which was attributed to the enhanced crystallinity caused by the efficient sintering conditions. Corrosion properties were investigated by potentiodynamic polarization test in 3.5 wt.% NaCl solution. The results showed high improvement in corrosion rate with minimum recorded value 0.25 mmy (mm/year) and corrosion current 0.15 × 10-6 A/cm2.

  6. Changes of composition and microstructure of joint interface of tungsten coated carbon by high heat flux

    NASA Astrophysics Data System (ADS)

    Tokunaga, K.; Matsubara, T.; Miyamoto, Y.; Takao, Y.; Yoshida, N.; Noda, N.; Kubota, Y.; Sogabe, T.; Kato, T.; Plöchl, L.

    2000-12-01

    Tungsten coatings of 0.5 and 1 mm thickness were successfully deposited by the vacuum plasma spraying (VPS) technique on carbon/carbon fiber composite (CFC), CX-2002U and isotropic fine grained graphite, IG-430U. High heat flux experiments by irradiation of electron beam with uniform profile were performed on the coated samples in order to prove the suitability and load limit of such coating materials. The cross-sectional composition and structure of the interface of VPS-W and carbon material samples were investigated. Compositional analyses showed that the Re/W multi-layer acts as diffusion barrier for carbon and suppresses tungsten carbide formation in the VPS-W layer at high temperature about 1300°C. Microstructure of the joint interface of the sample changed in the case of a peak temperature of about 2800°C. The multi-layer structure completely disappeared and compositional distribution was almost uniform in the interface of the sample after melting and resolidification. The diffusion barrier for carbon is not expected to act in this stage.

  7. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  8. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Benoved, Nir; Kesler, O.

    Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.

  9. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  10. Bioactive (Si, O, N)/(Ti, O, N)/Ti composite coating on NiTi shape memory alloy for enhanced wear and corrosion performance

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xue, Ning; Liu, Chao; Wang, Chao; He, Jin

    2015-11-01

    In this investigation, (Si, O, N)/(Ti, O, N)/Ti composite coating was synthesized on a NiTi shape memory alloy (SMA) substrate (50.8 at.% Ni) via plasma immersion ion implantation and deposition (PIIID) followed by magnetron sputtering, with the aim of promoting bioactivity and biocompatibility of NiTi SMAs. Nano featured (Si, O, N)/(Ti, O, N)/Ti coating was approximate 0.84 ± 0.05 μm in thickness, and energy dispersive X-ray (EDX) spectroscopy showed that Ni element was depleted from the surface of coated samples. X-ray diffraction (XRD) did not identify the phase composition of the (Si, O, N)/(Ti, O, N)/Ti coating, probably due to its thin thickness and poor crystalline resulting from low-temperature coating processes (<200 °C). X-ray photoelectron spectroscopy (XPS) analyses confirmed that a Ni-free surface was formed and Si element was incorporated into the composite coating via the magnetron sputtering process. Additionally, phase transformation behaviors of uncoated and coated NiTi SMA samples were characterized using differential scanning calorimetry (DSC). Wear and corrosion resistance of uncoated and coated NiTi SMA samples were evaluated using ball-on-disc tests and potentio-dynamic polarization curves, respectively. The (Si, O, N)/(Ti, O, N)/Ti coated NiTi SMA samples showed enhanced wear and corrosion resistance. Furthermore, the (Si, O, N)/(Ti, O, N)/Ti composite coating facilitated apatite formation in simulated body fluid (SBF) and rendered NiTi SMA bioactivity.

  11. Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Hwang, In-Jo; Choe, Han-Cheol

    2018-02-01

    In this study, hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation were researched using various experimental instruments. The pore size is depended on the electrolyte concentration and the particle size and number of pore increase on surface part and pore part. In the case of Zn/Si sample, pore size was larger than that of Zn samples. The maximum size of pores decreased and minimum size of pores increased up to 10Zn/Si and Zn and Si affect the formation of pore shapes. As Zn ion concentration increases, the size of the particle tends to increase, the number of particles on the surface part is reduced, whereas the size of the particles and the number of particles on pore part increased. Zn is mainly detected at pore part, and Si is mainly detected at surface part. The crystallite size of anatase increased as the Zn ion concentration, whereas, in the case of Si ion added, crystallite size of anatase decreased.

  12. Detection of molecular particles in live cells via machine learning.

    PubMed

    Jiang, Shan; Zhou, Xiaobo; Kirchhausen, Tom; Wong, Stephen T C

    2007-08-01

    Clathrin-coated pits play an important role in removing proteins and lipids from the plasma membrane and transporting them to the endosomal compartment. It is, however, still unclear whether there exist "hot spots" for the formation of Clathrin-coated pits or the pits and arrays formed randomly on the plasma membrane. To answer this question, first of all, many hundreds of individual pits need to be detected accurately and separated in live-cell microscope movies to capture and monitor how pits and vesicles were formed. Because of the noisy background and the low contrast of the live-cell movies, the existing image analysis methods, such as single threshold, edge detection, and morphological operation, cannot be used. Thus, this paper proposes a machine learning method, which is based on Haar features, to detect the particle's position. Results show that this method can successfully detect most of particles in the image. In order to get the accurate boundaries of these particles, several post-processing methods are applied and signal-to-noise ratio analysis is also performed to rule out the weak spots. Copyright 2007 International Society for Analytical Cytology.

  13. New tools for “hot-wiring” clathrin-mediated endocytosis with temporal and spatial precision

    PubMed Central

    2017-01-01

    Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is difficult because the initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. A clathrin-binding protein fragment (“hook”) is inducibly attached to an “anchor” protein at the plasma membrane, which triggers the formation of new clathrin-coated vesicles. Our design incorporates temporal and spatial control by the use of chemical and optogenetic methods for inducing hook–anchor attachment. Moreover, the cargo is defined. Because several steps in vesicle creation are bypassed, we term it “hot-wiring.” We use hot-wired endocytosis to describe the functional interactions between clathrin and AP2. Two distinct sites on the β2 subunit, one on the hinge and the other on the appendage, are necessary and sufficient for functional clathrin engagement. PMID:28954824

  14. A critical assessment of in-flight particle state during plasma spraying of YSZ and its implications on coating properties and process reliability

    NASA Astrophysics Data System (ADS)

    Srinivasan, Vasudevan

    Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.

  15. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  16. Performance of Plasma Sprayed Al2O3 Coating in Bio-Simulated Environment

    NASA Astrophysics Data System (ADS)

    Yıldız, F.; Yetim, A. F.; Alsaran, A.; Çelik, A.

    2014-01-01

    Alumina coatings deposited on the surface of stainless steel 316L by the method of plasma spraying are studied. Tests for wear and corrosion are preformed in Ringer's solution simulating a human body environment. The structure, microhardness, wear resistance and corrosion resistance of the steel are determined with and without a coating. Deposition of a coating onto the stainless steel is shown to be an effective means for protecting implants from corrosion and wear.

  17. Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

    DTIC Science & Technology

    2001-01-01

    Proc. Vol. 635 © 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu...interconnected organic and inorganic networks results in coatings with a very low permeability for gases and liquids. Hybrid materials are very suitable for... materials consist of a clear alcoholic solution that can easily be processed by classical application techniques such as dipping, spraying, or spin coating

  18. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    NASA Astrophysics Data System (ADS)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  19. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  20. A Comparative Study of Polymer and Biomolecule Surface Modifications by an Atmospheric Pressure Plasma Jet and Surface Microdischarge in Controlled Environments

    NASA Astrophysics Data System (ADS)

    Bartis, Elliot; Knoll, Andrew; Luan, Pingshan; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb; Graves, David; Lempert, Walter

    2014-10-01

    In this work, polymer- and lipopolysaccharide-coated Si substrates were exposed to a surface microdischarge (SMD) and an atmospheric pressure plasma jet (APPJ) in controlled ambients. We seek to understand how plasma-ambient interactions impact biodeactivation and surface modifications by regulating the ambient gas chemistry and the proximity of the plasma to the ambient. A key difference between the SMD and APPJ is that the APPJ needs an Ar feed gas and the SMD does not. By adding small N2/O2 admixtures to Ar, we find that the O2 admixture in the APPJ is a key factor for both deactivation and surface modification. After plasma treatments, we detected a new chemical species on a variety of surfaces that was identified as NO3. We find that NO3 forms even with no N2 in the feed gas, demonstrating that this species forms due to interactions with ambient N2. Despite a very different discharge mechanism, the SMD modifies surfaces similarly to the APPJ, including NO3 formation. The SMD generates large O3 concentrations, which do not correlate with NO3, suggesting that O3 alone is not involved in the NO3 formation mechanism. The authors gratefully acknowledge financial support by the US Department of Energy (DE-SC0005105 and DE-SC0001939) and National Science Foundation (PHY-1004256).

  1. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.

    1982-01-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  2. Bioactive calcium silicate ceramics and coatings.

    PubMed

    Liu, Xuanyong; Morra, Marco; Carpi, Angelo; Li, Baoe

    2008-10-01

    CaO-SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO-SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement under a heavy load. Plasma sprayed wollastonite, dicalcium silicate and diopside coatings have excellent bone bioactivity and high bonding strength to titanium alloys. It is possible that these plasma sprayed CaO-SiO2 based ceramic coatings will be applied in clinic after they are widely and systematically researched.

  3. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; McDonald, G.

    1982-02-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  4. Plasma deposition of antimicrobial coating on organic polymer

    NASA Astrophysics Data System (ADS)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  5. Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Mohanty, R. M.; Sharma, V. K.; Soni, P. R.

    2014-10-01

    6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.

  6. Research and development of plasma sprayed tungsten coating on graphite and copper substrates

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zhang, Fu; Tao, Shunyan; Cao, Yunzhen; Xu, Zengyu; Liu, Yong; Noda, N.

    2007-06-01

    Vacuum plasma sprayed tungsten coating on graphite and copper substrates has been prepared. VPS-W coated graphite has multilayered silicon and tungsten interface pre-deposited by physical vapor deposition (PVD) and VPS-W coated copper has graded transition interlayer. VPS-W coating was characterized, and then the high heat flux properties of the coating were examined. Experimental results indicated that both VPS-W coated graphite and VPS-W coated copper could endure 1000 cycles without visible failure under a heat flux of approximately 5 MW/m2 absorbed power density and 5 s pulse duration. A comparison between the present VPS-W coated graphite and VPS-W coated carbon fiber composite (CX-2002U) with Re interface made by Plansee Aktiengesllshaft was carried out. Results show that both Re and Si are suitable as intermediate layer for tungsten coating on carbon substrates.

  7. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  8. Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application

    PubMed Central

    Ganapathy, Perumal; Manivasagam, Geetha; Rajamanickam, Asokamani; Natarajan, Alagumurthi

    2015-01-01

    This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface methodology to obtain dense coating. The tribological behaviors of the coated and uncoated substrates were evaluated using a ball-on-plate sliding wear tester at 37°C in simulated body-fluid conditions. The microstructure of both the titanium alloy and coated specimen were examined using an optical microscope and scanning electron microscope. The hardness of the plasma-sprayed alumina–zirconia composite coatings was 2.5 times higher than that of the Ti-6Al-4V alloy, while the wear rate of Ti-6Al-4V alloy was 253 times higher than that of the composite-coated Ti-6Al-4V alloy. The superior wear resistance of the alumina–zirconia coated alloy is attributed to its enhanced hardness and intersplat bonding strength. Wear-track examination showed that the predominant wear mechanism of Ti-6Al-4V alloy was abrasive and adhesive wear, whereas, in the case of alumina–zirconia composite coated alloy, the wear was dominated by microchipping and microcracking. PMID:26491323

  9. Nano-crystalline diamond-coated titanium dental implants - a histomorphometric study in adult domestic pigs.

    PubMed

    Metzler, Philipp; von Wilmowsky, Cornelius; Stadlinger, Bernd; Zemann, Wolfgang; Schlegel, Karl Andreas; Rosiwal, Stephan; Rupprecht, Stephan

    2013-09-01

    Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months. Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos(®)) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  11. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  12. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  13. A direct comparison between gas state and atomised liquid state precursor in the deposition of functional coatings by pin corona plasma

    NASA Astrophysics Data System (ADS)

    Herbert, P. A. F.; Jaroszyńska-Wolińska, J.

    2011-07-01

    An atmospheric pressure non-thermal equilibrium pin corona plasma jet was used to deposit polymeric coatings from monomer precursor in both vapour and liquid aerosol states to allow a direct comparison of the quality and performance of the as-deposited coatings, specifically with respect to the achievement of soft plasma polymerisation (SPP) where the coating exhibits minimal fragmentation or damage to the monomer molecule while, at the same time, being highly cross-linked. A long chain perfluorocarbon molecule was introduced into the helium plasma and coatings deposited at rates of up to 50 nm/min. XPS, FTIR, contact angle and ellipsometric measurements indicated that a controlled polymerisation reaction had taken place in the case of the vapour deposited samples through the vinyl group of the monomer, with only minor fragmentation of the functional perfluoro chain. Furthermore, a high level of cross-linking was achieved and the coatings were stable to a toluene wash. In contrast, while the liquid deposition samples showed good retention of monomer molecular structure, they exhibited negligible cross-linking and were readily removed by immersion in toluene rendering them functionally useless.

  14. Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating

    PubMed Central

    Tyler, Bonnie J.; Hook, Andrew; Pelster, Andreas; Williams, Paul; Alexander, Morgan; Arlinghaus, Heinrich F.

    2017-01-01

    Catheter associated urinary tract infections are the most common health related infections worldwide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk poly(dimethylsiloxane) (PDMS) coated with a novel bacterial biofilm resistant polyacrylate [ethylene glycol dicyclopentenyl ether acrylate (EGDPEA)-co-di(ethyleneglycol) methyl ether methacrylate (DEGMA)], has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials, but delamination of the EGDPEA-co-DEGMA coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA-co-DEGMA coating has been investigated. Argon cluster three dimensional-imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA-co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states, and the results were compared to mechanical tests. From the ToF-SIMS data, the authors have been able to observe the presence of PDMS, silicates, salt particles, cracks, and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA-co-DEGMA coating was stable in the presence of water. The resulting catheter material resisted Escherichia coli and Proteus mirabilis biofilm colonization by up to 95% compared with uncoated PDMS after 10 days of continuous bacterial exposure and had the mechanical properties necessary for use as a urinary catheter. PMID:28535686

  15. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  16. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  17. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    PubMed

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  18. Plasma spraying of Wc-Co part II: Experimental study of particle deposition and coating microstructure

    NASA Astrophysics Data System (ADS)

    Joshiand, S. V.; Srivastava, M. P.

    1993-06-01

    WC-Co base wear-resistant coatings deposited by plasma spraying are widely used to enhance component longevity in a variety of wear environments. During spraying of WC-Co, ideally only the cobalt phase should melt and act as a binder for the WC particles. Although it is undesirable to fully melt WC because it can cause decarburization, complete melting of the cobalt phase and its satisfactory flattening on impacting the substrate is necessary to minimize porosity and achieve good substrate/coating adhesion. In this article, the influence of the primary plasma spray variables on the melting characteristics of WC-Co powders is investigated with respect to the microstructure of these coatings. This experimental work complements an analytical study on plasma spraying of WC-Co, and thus, observations are presented to support the predictions of the modeling effort.

  19. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  20. Tribology and Microstructure of PS212 with a Cr2O3 Seal Coat

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Benoy, Patricia A.; Korenyi-Both, Andras; Dellacorte, Christopher

    1994-01-01

    PS212 is a plasma sprayed metal bonding chrome carbide coating with solid lubricant additives which has lubricating properties at temperatures up to about 900 deg C. The coating is diamond ground to achieve an acceptable tribological surface. But, as with many plasma spray coatings, PS212 is not fully-dense. In this study, a chromium oxide base seal coating is used in an attempt to seal any porosity that is open to the surface of the PS212 coating, and to study the effect of the sealant on the tribological properties of PS212. The results indicate that the seal coating reduces friction and wear when it is applied and then diamond ground leaving a thin layer of seal coating which fills in the surface pits of the PS212 coating.

  1. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance.

    PubMed

    Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M

    2012-10-01

    In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.

  2. Development of barrier coatings for cellulosic-based materials by cold plasma methods

    NASA Astrophysics Data System (ADS)

    Denes, Agnes Reka

    Cellulose-based materials are ideal candidates for future industries that need to be based on environmentally safe technologies and renewable resources. Wood represents an important raw material and its application as construction material is well established. Cellophane is one of the most important cellulosic material and it is widely used as packaging material in the food industry. Outdoor exposure of wood causes a combination of physical and chemical degradation processes due to the combined effects of sunlight, moisture, fungi, and bacteria. Cold-plasma-induced surface modifications are an attractive way for tailoring the characteristics of lignocellulosic substrates to prevent weathering degradation. Plasma-polymerized hexamethyldisiloxane (PPHMDSO) was deposited onto wood surfaces to create water repellent characteristics. The presence of a crosslinked macromolecular structure was detected. The plasma coated samples exhibited very high water contact angle values indicating the existence of hydrophobic surfaces. Reflective and electromagnetic radiation-absorbent substances were incorporated with a high-molecular-weight polydimethylsiloxane polymer in liquid phase and deposited as thin layers on wood surfaces. The macromolecular films, containing the dispersed materials, were then converted into a three dimensional solid state network by exposure to a oxygen-plasma. It was demonstrated that both UV-absorbent and reflectant components incorporated into the plasma-generated PDMSO matrix protected the wood from weathering degradation. Reduced oxidation and less degradation was observed after simulated weathering. High water contact angle values indicated a strong hydrophobic character of the oxygen plasma-treated PDMSO-coated samples. Plasma-enhanced surface modifications and coatings were employed to create water-vapor barrier layers on cellophane substrate surfaces. HMDSO was selected as a plasma gas and oxygen was used to ablate amorphous regions. Oxygen plasma treated cellophane and oxygen plasma treated and PPHMDSO coated cellophane surfaces were comparatively analyzed and the corresponding surface wettability characteristics were evaluated. The plasma generated surface topographies controlled the morphology of the PPHMDSO layers. Higher temperature HMDSO plasma-state environments lead to insoluble, crosslinked layers. Continuous and pulsed Csb2Fsb6 plasmas were also used for surface modification and excellent surface fluorination was achieved under the pulsed plasma conditions.

  3. Research and Development on Advanced Graphite Materials. Volume 34- Oxidation-Resistance Coatings for Graphite

    DTIC Science & Technology

    1963-06-01

    RESISTANCE COATINGS "FOR GRAPHITE TECHNICAL DOCUMENTARY REPORT NO. WADD TR 61-72, Volume XXXIV ELECT" June 1963 D-I’C a AUý 0 219940 -14 0u c 94Air Force... coating on\\ Ex.: C (substrate’) + SiC1 R. SiC + graphite, + 4HCI (gas) oo flush Z000C 2 277I I I Deposition of coatings by plasma spraying also has...materials to withstand high tem- peratures has led to the investigation of the plasma torch as a means for 3 depositing protective coatings

  4. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  5. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from HA sol, where the production rate was 20 g/h, which is only 16% of the total powder produced. The effects of Sr2+ and Mg2+ doping on bone cell-CaP interaction was further studied with osteoclast cells. Mg2+ doing was found to be an effective way of controlling osteoclast differentiation.

  6. Release behavior of tanshinone IIA sustained-release pellets based on crack formation theory.

    PubMed

    Liu, Pan; Li, Jin; Liu, Jianping; Yang, Jikun; Fan, Yongqing

    2012-08-01

    The objective of this study was to investigate the drug release mechanism and in vivo performance of Tanshinone IIA sustained-release pellets, coated with blends of polyvinyl acetate (PVAc) and poly(vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) graft copolymer. A formulation screening study showed that pellets coated with PVAc-PVA-PEG at a ratio of 70:30 (w/w) succeeded in achieving a 24 h sustained release, irrespective of the coating weight (from 2% to 10%). Both the microscopic observation and mathematical model gave further insight into the underlying release mechanism, indicating that diffusion through water-filled cracks was dominant for the control of drug release. In vivo test showed that the maximum plasma concentration of sustained-release pellets was decreased from 82.13 ± 17.05 to 40.50 ± 11.72 ng mL as that of quick-release pellets. The time of maximum concentration, half time, and mean residence time were all prolonged from 3.80 ± 0.40 to 8.02 ± 0.81 h, 4.28 ± 1.21 to 8.18 ± 2.06 h, and 8.60 ± 1.59 to 17.50 ± 2.78 h, compared with uncoated preparations. A good in vitro-in vivo correlation was characterized by a high coefficient of determination (r = 0.9772). In conclusion, pellets coated with PVAc-PVA-PEG could achieve a satisfactory sustained-release behavior based on crack formation theory. Copyright © 2012 Wiley Periodicals, Inc.

  7. Method of making a coating of a microtextured surface

    DOEpatents

    Affinito, John D [Tucson, AZ; Graff, Gordon L [West Richland, WA; Martin, Peter M [Kennewick, WA; Gross, Mark E [Pasco, WA; Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Henderson, NV

    2004-11-02

    A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.

  8. Edge transport and turbulence reduction, and formation of ultra-wide pedestals with lithium coated PFCs in NSTX

    NASA Astrophysics Data System (ADS)

    Canik, John

    2010-11-01

    The coating of plasma facing components (PFCs) with lithium improves energy confinement [1] and eliminates ELMs in the National Spherical Torus Experiment (NSTX), the latter due to a relaxation of the density and pressure profiles that reduces the drive for peeling-ballooning modes [2]. Here we show that both a reduction in recycling (due to lithium pumping) and cross-field transport is needed to reproduce the measured profile changes. Furthermore we document a concomitant density fluctuation reduction measured in the steep gradient region. The experimental transport coefficients are obtained via data-constrained modeling using the SOLPS code [3], which couples a 2D fluid treatment of the edge plasma transport to a Monte Carlo neutrals calculation. First, a reduction in the PFC recycling coefficient from R˜0.98 to R˜0.90 is required to match the drop in Dα emission with lithium coatings. Furthermore, a ˜75% drop of the D and χe from 0.8 < ψN < 0.93 are needed to match the profile relaxation with lithium coatings; indeed, the region of low transport in the H-mode simply extends to the innermost domain of the simulation. Transport is similar with and without lithium coatings outside of ψN ˜ 0.93, with D/χe ˜ 0.2/1.0 m2/s. Turbulence measurements using an edge reflectometry system [4] show a decrease in broadband density fluctuations with lithium coatings, primarily at frequencies <10 kHz. These transport changes allow the realization of very wide pedestals, with a ˜100% width increase relative to the reference discharges. [4pt] [1] H. W. Kugel et al, Phys. Plas. 15 (2008) 056118. [0pt] [2] R. Maingi et al, Phys. Rev. Lett. 103 (2009) 075001. [0pt] [3] R. Schneider et al, Contr. Plas. Phys. 46 (2006) 3. [0pt] [4] S Kubota et al, Bull. Am. Phys. Soc. 53 (2008) 188.

  9. Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki

    2012-08-01

    We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.

  10. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kesler, Olivera

    2012-06-01

    Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

  11. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    NASA Astrophysics Data System (ADS)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  12. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation

    PubMed Central

    Sowa, Maciej

    2018-01-01

    Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC) plasma electrolytic oxidation (PEO). Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO2)2, Ca(HCOO)2 and Mg(CH3COO)2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR)]) and R(Q[R(Q[RW])]). The inclusion of W in the circuit helped to fit the low-frequency part of the samples PEO-ed at 400 V, hinting at the important role of diffusion in the corrosion resistance of the PEO coatings described in the research. PMID:29614014

  13. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  14. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    NASA Astrophysics Data System (ADS)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  15. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas Christopher

    2015-01-01

    Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less

  16. Fundamental study of an industrial reactive HPPMS (Cr,Al)N process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Brögelmann, T.; Kruppe, N. C.; Engels, M.; von Keudell, A.; Hecimovic, A.; Ludwig, A.; Grochla, D.; Banko, L.

    2017-07-01

    In this work, a fundamental investigation of an industrial (Cr,Al)N reactive high power pulsed magnetron sputtering (HPPMS) process is presented. The results will be used to improve the coating development for the addressed application, which is the tool coating for plastics processing industry. Substrate-oriented plasma diagnostics and deposition of the (Cr,Al)N coatings were performed for a variation of the HPPMS pulse frequency with values from f = 300 Hz to f = 2000 Hz at constant average power P = 2.5 kW and pulse length ton = 40 μs. The plasma was investigated using an oscilloscope, an intensified charge coupled device camera, phase-resolved optical emission spectroscopy, and an energy-dispersive mass spectrometer. The coating properties were determined by means of scanning electron microscopy, glow discharge optical emission spectroscopy, cantilever stress sensors, nanoindentation, and synchrotron X-ray diffraction. Regarding the plasma properties, it was found that the average energy within the plasma is nearly constant for the frequency variation. In contrast, the metal to gas ion flux ratio is changed from JM/JG = 0.51 to JM/JG = 0.10 for increasing frequency. Regarding the coating properties, a structure refinement as well as lower residual stresses, higher universal hardness, and a changing crystal orientation from (111) to (200) were observed at higher frequencies. By correlating the plasma and coating properties, it can be concluded that the change in the gas ion to metal ion flux ratio results in a competitive crystal growth of the film, which results in changing coating properties.

  17. Plasma sprayed coatings on crankshaft used steels

    NASA Astrophysics Data System (ADS)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  18. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  19. Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Chun; Tsai, Dah-Shyang; Guan, Sheng-Yong; Chou, Chen-Chia

    2015-11-01

    Urea and sodium nitrite are generally viewed as nitridation additives in the electrolyte for plasma electrolytic oxidation (PEO) of aluminum alloys. We study the influences of these two convenient chemicals in presence of sodium aluminate and find very different effects on film growth. Urea addition enhances the nitrogen content of PEO layer, diminishes the layer thickness, increases the porosity, interferes with the α-alumina formation, and promotes precipitation in the electrolyte. Hence, the electrolytic urea content ought to be maintained less than 45 g dm-3. On the other hand, sodium nitrite behaves like an oxidation additive, more than a nitridation additive. NaNO2 addition effectively introduces nitrogen in the PEO layer at low concentration, yet the nitrogen content of oxide layer decreases with increasing NaNO2 concentration. The effects of NaNO2, such as increasing layer thickness, reducing porosity, promoting α-alumina formation are attributed to oxidation enhancement, not because of nitridation.

  20. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Cook, T. S.; Kim, K. S.

    1986-01-01

    This is the second annual report of the first 3-year phase of a 2-phase, 5-year program. The objectives of the first phase are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consists of an air plasma sprayed ZrO-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene' 80 substrate. Task I was to evaluate TBC failure mechanisms. Both bond coat oxidation and bond coat creep have been identified as contributors to TBC failure. Key property determinations have also been made for the bond coat and the top coat, including tensile strength, Poisson's ratio, dynamic modulus, and coefficient of thermal expansion. Task II is to develop TBC life prediction models for the predominant failure modes. These models will be developed based on the results of thermmechanical experiments and finite element analysis. The thermomechanical experiments have been defined and testing initiated. Finite element models have also been developed to handle TBCs and are being utilized to evaluate different TBC failure regimes.

  1. B{sub 4}C-SiC reaction-sintered coatings on graphite plasma facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, P.G.; Trester, P.W.; Winter, J.

    1994-05-01

    Boron carbide plus silicon carbide (B{sub 4}C-SiC) reaction-sintered coatings for use on graphite plasma-facing components were developed. Such coatings are of interest in TEXTOR tokamak limiter-plasma interactions as a means of reducing carbon erosion, of providing a preferred release of boron for oxygen gettering, and of investigating silicon`s effect on radiative edge phenomena. Specimens evaluated had (a) either Ringsdorfwerke EK 98 graphite or Le Carbon Lorraine felt-type AEROLOR A05 CFC substrates; (b) multiphase coatings, comprised of B{sub 4}C, Sic, and graphite; (c) nominal coating compositions of 69 wt.-% B{sub 4}C + 31 wt.-% SiC; and (d) nominal coating thicknesses betweenmore » 250 and 775 {mu}m. Coated coupons were evaluated by high heat flux experiments in the JUDITH (electron beam) test facility at KFA. Simulated disruptions, with energy densities up to 10 MJm{sup {minus}2}, and normal operation simulations, with power densities up to 12 MWm{sup {minus}2}, were conducted. The coatings remained adherent; at the highest levels tested, minor changes occurred, including localized remelting, modification of the crystallographic phases, occasional microcracking, and erosion.« less

  2. Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, T. G.; Smithe, D. N.

    2015-02-01

    The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.

  3. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability

    NASA Astrophysics Data System (ADS)

    Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.

    2013-05-01

    This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.

  4. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  5. Multiphase-Multifunctional Ceramic Coatings

    DTIC Science & Technology

    2013-06-30

    were conducted at 1200-1600° C from 10-24 h. Densification of powders in the pyrochlore-fuorite system was also performed by Spark Plasma Sintering ...capability with emphasis on improving toughness and phase stability. The primary goal was clearly accomplished by developing an instrumented air plasma ...composition. Coating compositions were synthesized by atmospheric plasma spray (APS) at CINVESTAV facilities, and dense monolithic counterparts were

  6. Oxygen Plasma Effect on QCM Sensor Coated Polystyrene Film

    NASA Astrophysics Data System (ADS)

    Khusnah, N. F.; Sakti, S. P.; Santjojo, D. J. D. H.

    2018-05-01

    Hydrophobicity property of polystyrene (PS) thin film is one of the essential factors to be considered in the development of quartz crystal microbalance (QCM) biosensor using polystyrene as matrix layer. Many methods were developed to improve the immobilization rate of the biomolecule on the sensor surface without affecting the QCM essential works. Surface modification of the sensor surface aims to modify the physical and or chemical property of the surface. A straightforward method, the fast, environmentally-friendly, and low-cost solution to modify the sensor surface coated with polystyrene film is using oxygen plasma. In this experiment, the polystyrene film was spin-coated on both surface of QCM electrodes and then heated at 100 °C. The specimen is then placed for 5 min long in a chamber filled with oxygen plasma generated by 2 MHz RF-DC high-density plasma system. The relationship between DC-bias used and the changes in morphology properties of the coated film was characterized by Topography Measurement System (TMS) and Contact Angle Measurement. The electrical characteristic of QCM was also characterized using Impedance Analyzer. It was revealed that the contact angle of oxygen plasma treated film is changed and depicted the hydrophobic character. Also, there is an increasing resonance frequency of the sensor after oxygen plasma treatment indicates an etching mechanism occurs during plasma treatment.

  7. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  8. Application of a radiotelemetric system to evaluate the performance of enteric coated and plain aspirin tablets.

    PubMed

    Lui, C Y; Oberle, R; Fleisher, D; Amidon, G L

    1986-05-01

    The bioavailability of enteric coated and plain aspirin tablets was studied in four beagle dogs. Blood sampling for enteric coated tablets was planned with the aid of a radiotelemetric system. The release of aspirin from its dosage form was detected by monitoring the change in intestinal pH. Aspirin and salicylic acid levels in plasma obtained from the enteric coated dosage form exhibited familiar concentration versus time absorption profiles. Variation in the plasma concentrations of these two compounds within each dog studied (four runs each) was relatively small when time zero was adjusted to the commencement of tablet dissolution. The plasma levels obtained from plain aspirin (three runs each), however, show atypical absorption. The estimated absolute bioavailability was 0.432 +/- 0.0213 and 0.527 +/- 0.0260 for enteric coated and plain aspirin, respectively. Other pharmacokinetic parameters for these two dosage forms such as the highest observed plasma concentration (Cmax) (10.9 +/- 0.535 microgram/mL versus 13.6 +/- 1.88 micrograms/mL) and the time to reach Cmax (tmax) (26.6 +/- 1.94 min versus 31.0 +/- 7.04 min) agree well. The mean values for gastric emptying time, in vivo coating dissolution time, and in vivo disintegration/dissolution time of the tablet core for enteric coated aspirin are 48.7 +/- 7.23 min, 44.3 +/- 3.80 min, and 34.7 +/- 2.04 min, respectively.

  9. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  10. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    PubMed Central

    Lu, Zhe; Myoung, Sang-Won; Jung, Yeon-Gil; Balakrishnan, Govindasamy; Lee, Jeongseung; Paik, Ungyu

    2013-01-01

    The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. PMID:28811441

  11. Automated Plasma Spray (APS) process feasibility study

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1981-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.

  12. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1979-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  13. Liquid Plasma Synthesis of Carbon Coated Iron Oxide Particles

    NASA Astrophysics Data System (ADS)

    Uygun, Aysegul; Hershkowitz, Noah; Eren, Esin; Uygun, Emre; Celik Cogal, Gamze; Yurdabak Karaca, Gozde; Manolache, Sorin; Sundaram, Gunasekaran; Sadak, Omer; Oksuz, Lutfi

    2017-10-01

    Recently, magnetic metal or metal oxide nanoparticles encapsulated in carbon are important in biomedical applications. The relevant reason to study toxicity of the magnetic nanoparticles coated by carbon is that they have great potential to contribute to cancer treatment. In this work, the synthesis of iron oxide nano-particles coated by graphitic carbon shells using pulsed plasma in liquid method. Short duration of RF plasma discharge, low electrical energy and fast quenching of the surrounding media can let to synthesize various kinds of pure nanoparticles. Corresponding author: ayseguluygun@sdu.edu.tr, lutfioksuz@sdu.edu.tr.

  14. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  15. Preparation of dielectric coating of variable dielectric constant by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T. (Inventor)

    1979-01-01

    A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.

  16. Development and characterisation of chitosan or alginate-coated low density polyethylene films containing Satureja hortensis extract.

    PubMed

    Rahmani, Bahareh; Hosseini, Hedayat; Khani, Mohammadreza; Farhoodi, Mehdi; Honarvar, Zohreh; Feizollahi, Ehsan; Shokri, Babak; Shojaee-Aliabadi, Saeedeh

    2017-12-01

    This study aimed to develop novel bilayer films based on alginate, chitosan and low-density polyethylene (LDPE) containing different concentrations of summer savory extract (SSE). The cold atmospheric plasma system was used to increase the surface energy of LDPE. Initially, water contact angle, surface roughness and the functional group of LDPE before and after plasma treatment were investigated. Then physical, mechanical, optical, antioxidant and microstructure properties of plasma-treated and untreated bilayer films and antioxidant films incorporated with SSE were characterized. Results showed that plasma treatment increased oxygen-containing the polar group, surface roughness and decreased water contact angle of LDPE surface (from 90.47° to 48.73°) and in result enhanced adhesion between polysaccharide coating and LDPE. Tensile strength of both alginate and chitosan coated-LDPE increased from 10.096 to 14.372 and 11.513 to 13.459MPa, respectively after plasma pretreatment. However chitosan-based films had lower water solubility. Although, incorporation of SSE into chitosan and alginate coated-LDPE despite slight adverse effects on the physical and mechanical properties of films, it provided antioxidant activity. Chitosan coated-LDPE containing SSE had potential to use as antioxidant food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    NASA Astrophysics Data System (ADS)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-03-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.

  18. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    PubMed Central

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-01-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672

  19. Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Bsat, Suzan; Speirs, Andrew; Huang, Xiao

    2016-08-01

    The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.

  20. Microstructural inhomogeneity in plasma-sprayed hydroxyapatite coatings and effect of post-heat treatment

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Peng; Xiao, Gui-Yong; Li, Shi-Tong; Sun, Rui-Xue; Li, Mu-Sen

    2006-01-01

    The microstructural inhomogeneity in the plasma-sprayed hydroxyapatite (HA) coatings was characterized by using electron probe microanalyser (EPMA). A simple and artful method was developed to detect the interface characteristics. All the samples for observation were ground and polished along the direction parallel to the coating surfaces. The BSE images directly and clearly showed the inhomogeneity in the as-sprayed coatings with the amorphous regions being bright gray and crystalline regions being dark gray. X-ray diffractometer (XRD) patterns indicated that after immersion in deionized water for 20 days, bone-like apatite and α-Ca 2P 2O 7 precipitated on the polished surfaces of the as-sprayed HA coatings. The post-heat treatment could eliminate the microstructural inhomogeneity in the coatings. Only β-Ca 2P 2O 7 precipitated on the surfaces of the heat-treated HA coatings. The immersed samples were re-polished till tiny substrate was bared to investigate the effect of immersion on interface. It was shown that the immersion decreased the cohesive strength of the as-sprayed coatings. There were more and broader cracks in the splats that came into contact with the substrate and amorphous phase increased toward the coating-substrate interface. Post-heat treatment was proved to reduce the peeling off of coating during re-polishing operation. It was proposed that the distributions of amorphous phase and cracks in as-sprayed coatings are detrimental to coating properties and should be modified through improving the plasma spraying processing.

  1. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    NASA Astrophysics Data System (ADS)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  2. Formation of carbon nitride — a novel hard coating

    NASA Astrophysics Data System (ADS)

    Chubaci, J. F. D.; Ogata, K.; Fujimoto, F.; Watanabe, S.; Biersack, J. P.

    1996-08-01

    Increasing efforts have been reported on the formation of carbon nitride. Vapor deposition and simultaneous ion bombardment from accelerators or plasmas (IBAD) proved to be a successful technique for the preparation of this material. In our preparation, the properties of the films were controlled by varying the nitrogen ion energy and the flux composition ratio {C}/{N}. The deposited films with high nitrogen incorporation ( {C}/{N} = 0.6 ˜ 0.7 ) and low implantation energies (< 1.0 keV) showed high Knoop hardnesses of up to 63 GPa. XPS and FT-IR measurements indicated a high fraction of triple bonded CN. X-ray diffraction showed an amorphous structure. Computer simulations by the dynamic TRIM code are used to study the formation parameters, nitrogen ion energy and {C}/{N} ratio. This turned on to be useful in understanding the formation process of the carbon nitride films grown on silicon wafers, fused silica and tungsten carbide substrates.

  3. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    NASA Astrophysics Data System (ADS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  4. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.

  5. Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol-ene "Click Chemistry" Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane.

    PubMed

    Felgueiras, Helena P; Wang, L M; Ren, K F; Querido, M M; Jin, Q; Barbosa, M A; Ji, J; Martins, M C L

    2017-03-08

    Infection and thrombus formation are still the biggest challenges for the success of blood contact medical devices. This work aims the development of an antimicrobial and hemocompatible biomaterial coating through which selective binding of albumin (passivant protein) from the bloodstream is promoted and, thus, adsorption of other proteins responsible for bacterial adhesion and thrombus formation can be prevented. Polyurethane (PU) films were coated with hyaluronic acid, an antifouling agent, that was previously modified with thiol groups (HA-SH), using polydopamine as the binding agent. Octadecyl acrylate (C18) was used to attract albumin since it resembles the circulating free fatty acids and albumin is a fatty acid transporter. Thiol-ene "click chemistry" was explored for C18 immobilization on HA-SH through a covalent bond between the thiol groups from the HA and the alkene groups from the C18 chains. Surfaces were prepared with different C18 concentrations (0, 5, 10, and 20%) and successful immobilization was demonstrated by scanning electron microscopy (SEM), water contact angle determinations, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The ability of surfaces to bind albumin selectively was determined by quartz crystal microbalance with dissipation (QCM-D). Albumin adsorption increased in response to the hydrophobic nature of the surfaces, which augmented with C18 saturation. HA-SH coating reduced albumin adsorption to PU. C18 immobilized onto HA-SH at 5% promoted selective binding of albumin, decreased Staphylococcus aureus adhesion and prevented platelet adhesion and activation to PU in the presence of human plasma. C18/HA-SH coating was established as an innovative and promising strategy to improve the antimicrobial properties and hemocompatibility of any blood contact medical device.

  6. Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Marina S.; Rudnev, Vladimir S.; Wiedenmann, Florian; Wybornov, Svetlana; Yarovaya, Tatyana P.; Jiang, Xin

    2011-11-01

    The present paper is devoted to studies of the composition and surface structure, including those after annealing at high temperatures, and catalytic activity in the reaction of naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium obtained by means of the plasma electrolytic oxidation (PEO) method. The composition and structure of the obtained systems were investigated using the methods of X-ray phase and energy dispersive analysis and scanning electron microscopy (SEM). It was demonstrated that Ce- and Zr- containing structures had relatively high thermal stability: their element and phase compositions and surface structure underwent virtually no changes after annealing in the temperature range 600-800 °C. Annealing of Ce- and Zr-containing coatings in the temperature range 850-900 °C resulted in substantial changes of their surface composition and structure: a relatively homogeneous and porous surface becomes coated by large pole-like crystals. The catalytic studies showed rather high activity of Ce- and Zr-containing coatings in the reaction of naphthalene destruction at temperatures up to 850 °C. Mn-containing structures of the type MnOx + SiO2 + TiO2/Ti have a well-developed surface coated by “nano-whiskers”. The phase composition and surface structure of manganese-containing layers changes dramatically in the course of thermal treatment. After annealing above 600 °C nano-whiskers vanish with formation of molten structures on the surface. The Mn-containing oxide systems demonstrated lower conversion degrees than the Ce- and Zr-containing coatings, which can be attributed to substantial surface modification and formation of molten manganese silicates at high temperatures.

  7. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  8. Collaborative Research and Development (CR&D). Delivery Order 0014: Anti-Fretting Coatings Research Development

    DTIC Science & Technology

    2006-12-01

    properties Deposition Cu / Al in At% Roughness Ra (µm) Nano Hardness (GPa) Modulus (GPa) Thickness (µm) 1 Plasma ≈ 6 ≈ 12 ≈ 1.8 ≈ 89.6 ≈ 300 2... sprayed coatings of different copper to aluminum ( Cu / Al ) ratios and one cathodic arc coating. Bench level gross slip fretting experiments and post...some of Ti6Al4V disks were commercially grit blasted and then plasma sprayed with Al -bronze coatings 1 and 2, which have different Cu / Al

  9. Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Danroc, J.; Lacombe, J.

    The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES

  10. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  11. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  12. Plasma effects on the passive external thermal control coating of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  13. Cadmium telluride in tellurium—cadmium films consisting of ultradispersed particles

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Migunova, A. A.; Lisitsyn, V. N.

    2015-08-01

    Solid solutions of tellurium in cadmium, cadmium in tellurium, and cadmium in cadmium telluride synthesized during sputtering are formed for the first time by ion-plasma sputtering and the codeposition of ultradispersed Te and Cd particle fluxes onto substrates moving with respect to the fluxes. This fact supports thermofluctuation melting and coalescence of small particles. The lattice parameter of cadmium telluride, which coexists with an amorphous solid solution of tellurium in cadmium in a coating, is smaller than the tabulated value and reaches it when the cadmium concentration in a coating increases to 70 at %. The lattice parameter of the fcc lattice of cadmium telluride increases with the cadmium concentration in a coating according to the linear relation a = 0.0002CCd + 0.6346 nm (where CCd is the cadmium concentration in the coating, at %), which is likely to indicate a certain broadening of the homogeneity area. The estimation of the particle size shows that the cadmium telluride grain size is 10-15 nm, which implies that the coatings are nanocrystalline. The absorption and transmission spectra of the tellurium—cadmium films at the fundamental absorption edge demonstrate that their energy gaps are larger than that of stoichiometric CdTe, which can be explained by the experimental conditions of crystal structure formation.

  14. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel.more » The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).« less

  15. Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

    NASA Technical Reports Server (NTRS)

    Riley, T.; Mahuson, T. C.; Seibert, K.

    1979-01-01

    A procedure is described for using argon and oxygen plasmas to promote adhesion of parylene coatings upon many difficult-to-bond substrates. Substrates investigated were gold, nickel, kovar, teflon (FEP), kapton, silicon, tantalum, titanium, and tungsten. Without plasma treatment, 180 deg peel tests yield a few g/cm (oz/in) strengths. With dc plasma treatment in the deposition chamber, followed by coating, peel strengths are increased by one to two orders of magnitude.

  16. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  17. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  18. Corrosion Behavior of Yttria-Stabilized Zirconia-Coated 9Cr-1Mo Steel in Molten UCl3-LiCl-KCl Salt

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesh, P.; Prabhakara Reddy, B.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2017-02-01

    For the electrorefining step in the pyrochemical reprocessing of spent metallic fuels of future sodium cooled fast breeder reactors, 9Cr-1Mo steel has been proposed as the container material. The electrorefining process is carried out using 5-6 wt.% UCl3 in LiCl-KCl molten salt as the electrolyte at 500 °C under argon atmosphere. In the present study, to protect the container vessel from hot corrosion by the molten salt, 8-9% yttria-stabilized zirconia (YSZ) ceramic coating was deposited on 9Cr-1Mo steel by atmospheric plasma spray process. The hot corrosion behavior of YSZ-coated 9Cr-1Mo steel specimen was investigated in molten UCl3-LiCl-KCl salt at 600 °C for 100-, 500-, 1000- and 2000-h duration. The results revealed that the weight change in the YSZ-coated specimen was insignificant even after exposure to molten salt for 2000 h, and delamination of coating did not occur. SEM examination showed the lamellar morphology of the YSZ coating after the corrosion test with occluded molten salt. The XRD analysis confirmed the presence of tetragonal and cubic phases of ZrO2, without any phase change. Formation of UO2 in some regions of the samples was evident from XRD results.

  19. Accumulated destructive effect of nanosecond repetitive voltage pulses on the insulated coatings of Fe-based nanocrystalline ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Jinliang

    2013-03-11

    Fe-based nanocrystalline ribbon is widely employed in pulsed power devices and accelerators. A temperature accumulation model is put forward to explain the accumulated destructive effect of discharge plasma bombardment on the TiO{sub 2} coatings of nanocrystalline ribbon under 50 Hz/100 ns voltage pulses. Experimental results revealed that the plasma channel expansion caused by air breakdown in the coating crack heated the coating repetitively, and the coating temperature was increased and accumulated around the crack. The fact that repetitive voltage pulses were more destructive than a single pulse with the same amplitude was caused by the intensified coating ablation under themore » temperature accumulation effect.« less

  20. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes.

    PubMed

    Désormeaux, Anik; Moreau, Marie Eve; Lepage, Yves; Chanard, Jacques; Adam, Albert

    2008-03-01

    The combination of negatively-charged membranes and angiotensin I-converting enzyme inhibitors (ACEi) evokes hypersensitivity reactions (HSR) during hemodialysis and bradykinin (BK)-related peptides have been hypothesized as being responsible for these complications. In this study, we tested the effects of neutralizing the membrane electronegativity (zeta potential) of polyacrylonitrile AN69 membranes by coating a polyethyleneimine layer (AN69-ST membranes) over the generation of kinins induced by blood contact with synthetic membranes. We used minidialyzers with AN69 or AN69-ST membranes in an ex vivo model of plasma and we showed that plasma dialysis with AN69 membranes led to significant BK and des-Arg(9)-BK release, which was potentiated by ACEi. This kinin formation was dramatically decreased by AN69-ST membranes, even in the presence of an ACEi, and kinin recovery in the dialysates was also significantly lower with these membranes. High molecular weight kininogen and factor XII detection by immunoblotting of the protein layer coating both membranes corroborated the results: binding of these proteins and contact system activation on AN69-ST membranes were reduced. This ex vivo experimental model applied to the plasma, dialysate and dialysis membrane could be used for the characterization of the kinin-forming capacity of any biomaterial potentially used in vivo in combination with drugs which modulate the pharmacological activity of kinins.

  1. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes

    PubMed Central

    Désormeaux, Anik; Moreau, Marie Eve; Lepage, Yves; Chanard, Jacques; Adam, Albert

    2014-01-01

    The combination of negatively-charged membranes and angiotensin I-converting enzyme inhibitors (ACEi) evokes hypersensitivity reactions (HSR) during hemodialysis and bradykinin (BK)-related peptides have been hypothesized as being responsible for these complications. In this study, we tested the effects of neutralizing the membrane electronegativity (zeta potential) of polyacrylonitrile AN69 membranes by coating a polyethyleneimine layer (AN69-ST membranes) over the generation of kinins induced by blood contact with synthetic membranes. We used minidialyzers with AN69 or AN69-ST membranes in an ex vivo model of plasma and we showed that plasma dialysis with AN69 membranes led to significant BK and des-Arg9-BK release, which was potentiated by ACEi. This kinin formation was dramatically decreased by AN69-ST membranes, even in the presence of an ACEi, and kinin recovery in the dialysates was also significantly lower with these membranes. High molecular weight kininogen and factor XII detection by immunoblotting of the protein layer coating both membranes corroborated the results: binding of these proteins and contact system activation on AN69-ST membranes were reduced. This ex vivo experimental model applied to the plasma, dialysate and dialysis membrane could be used for the characterization of the kinin-forming capacity of any biomaterial potentially used in vivo in combination with drugs which modulate the pharmacological activity of kinins. PMID:18078988

  2. Membrane tension regulates clathrin-coated pit dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates the dynamics of CCPs.

  3. Surface modification using the biomimetic method in alumina-zirconia porous ceramics obtained by the replica method.

    PubMed

    Silva, André D R; Rigoli, Willian R; Osiro, Denise; Mello, Daphne C R; Vasconcellos, Luana M R; Lobo, Anderson O; Pallone, Eliria M J A

    2018-01-12

    The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance. Here, three-dimensional porous scaffolds of Al 2 O 3 containing 5% by volume of ZrO 2 were produced by the replica method. These scaffolds had their surfaces chemically treated with phosphoric acid and were coated with calcium phosphate using the biomimetic method simulated body fluid (SBF, 5×) for 14 days. The scaffolds, before and after biomimetic coating, were characterized mechanically, morphologically and structurally by axial compression tests, scanning electron microscopy, microtomography, apparent porosity, X-ray diffractometry, near-infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and reactivity. The in vitro cell viability and formation of mineralization nodules were used to identify the potential for bone regeneration. The produced scaffols after immersion in SBF were able to induce the nodules formation. These characteristics are advantaged by the formation of different phases of calcium phosphates on the material surface in a reduced incubation period. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  4. Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects.

    PubMed

    Michl, Thomas D; Coad, Bryan R; Doran, Michael; Osiecki, Michael; Kafshgari, Morteza Hasanzadeh; Voelcker, Nicolas H; Hüsler, Amanda; Vasilev, Krasimir; Griesser, Hans J

    2015-04-25

    We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.

  5. Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan

    2017-08-01

    Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.

  6. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  7. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  8. The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.

    2017-01-01

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  9. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.

    PubMed

    Tian, Peng; Liu, Xuanyong; Ding, Chuanxian

    2015-04-01

    Biodegradable magnesium-based implants have attracted much attention recently in orthopedic applications because of their good mechanical properties and biocompatibility. However, their rapid degradation in vivo will not only reduce their mechanical strength, but also induce some side effects, such as local alkalization and gas cavity, which may lead to a failure of the implant. In this work, a hydroxyapatite (HA) layer was prepared on plasma electrolytic oxidization (PEO) coating by hydrothermal treatment (HT) to fabricate a PEO/HT composite coating on biodegradable AZ31 alloy. The in vitro degradation behaviors of all samples were evaluated in simulated body fluid (SBF) and their surface cytocompatibility was also investigated by evaluating the adhesion and proliferation of osteoblast cells (MC3T3-E1). The results showed that the HA layer consisted of a dense inner layer and a needle-like outer layer, which successfully sealed the PEO coating. The in vitro degradation tests showed that the PEO/HT composite coating improved the corrosion resistance of AZ31 alloy in SBF, presenting nearly no severe local alkalization and hydrogen evolution. The lasting corrosion resistance of the PEO/HT composite coating may attribute to the new hydroxyapatite formation during the degradation process. Moreover, compared with AZ31 alloy and PEO coating, PEO/HT composite coating was more suitable for cells adhesion and proliferation, indicating improved surface cytocompatibility. The results show that the PEO/HT composite coating is promising as protective coating on biodegradable magnesium-based implants to enhance their corrosion resistance as well as improve their surface cytocompatibility for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tribological performance of an H-DLC coating prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  11. Model of formation of droplets during electric arc surfacing of functional coatings

    NASA Astrophysics Data System (ADS)

    Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.

    2016-01-01

    The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.

  12. Hydrophobic Surface Modification of Silk Fabric Using Plasma-Polymerized Hmdso

    NASA Astrophysics Data System (ADS)

    Rani, K. Vinisha; Chandwani, Nisha; Kikani, Purvi; Nema, S. K.; Sarma, Arun Kumar; Sarma, Bornali

    In this work, we study the hydrophobic properties of silk fabrics by deposition of plasma-polymerized (pp) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition. Recently, hydrophobic properties are under active research in textile industry. The effects of coating time and power on the HMDSO-coated silk fabrics are investigated. Water contact angle of pp-HMDSO-coated silk fabric surface is measured as a function of power and coating time. Fabric surface shows an enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy reveals the surface chemistry, and scanning electron microscopy shows the surface morphology of the uncoated and HMDSO-coated fabrics, respectively. In the case of uncoated fabric, water droplet absorbs swiftly, whereas in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140∘. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains such as ink, tea, milk, turmeric and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. In order to study the self-cleaning property, the fabric is tilted to 45∘ angle; stain droplets easily roll off from the fabric.

  13. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  14. The Effect of CFRP Surface Treatment on the Splat Morphology and Coating Adhesion Strength

    NASA Astrophysics Data System (ADS)

    Ganesan, Amirthan; Yamada, Motohiro; Fukumoto, Masahiro

    2014-01-01

    Metallization of Carbon Fiber-Reinforced Polymer (CFRP) composites aggrandized their application to aircraft, automobile, and wind power industries. Recently, the metallization of CFRP surface using thermal spray technique, especially the cold spray, a solid state deposition technique, is a topic of research. However, a direct cold spray deposition on the CFRP substrate often imposes severe erosion on the surface owing to the high-impact energy of the sprayed particles. This urges the requirement of an interlayer on the CFRP surface. In the present study, the effect of surface treatment on the interlayer adhesion strength is evaluated. The CFRP samples were initially treated mechanically, chemically, and thermally and then an interlayer was developed by atmospheric plasma spray system. The quality of the coating is highly dependent on the splat taxonomy; therefore the present work also devoted to study the splat formation behavior using the splat-collection experiments, where the molten Cu particles impinged on the treated CFRP substrates. These results were correlated with the coating adhesion strength. The coating adhesion strength was measured by pull-out test. The results showed that the surface treatment, particularly the chemical treatment, was fairly successful in improving the adhesion strength.

  15. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery.

    PubMed

    Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling

    2015-04-29

    For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.

  16. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  17. NASA Astrophysics Data System (ADS)

    Sampath, S.; Wayne, S. F.

    1994-09-01

    Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.

  18. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    PubMed

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  19. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  20. Modification of the Surface Properties of Polyimide Films using POSS Deposition and Oxygen Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.

    2008-01-01

    Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.

  1. Plasma-induced damage of tungsten coatings on graphite limiters

    NASA Astrophysics Data System (ADS)

    Fortuna, E.; Rubel, M. J.; Psoda, M.; Andrzejczuk, M.; Kurzydowski, K. J.; Miskiewicz, M.; Philipps, V.; Pospieszczyk, A.; Sergienko, G.; Spychalski, M.; Zielinski, W.

    2007-03-01

    Vaccum plasma sprayed tungsten coatings with an evaporated sandwich Re-W interlayer on graphite limiter blocks were studied after the experimental campaign in the TEXTOR tokamak. The coating morphology was modified by high-heat loads and co-deposition of species from the plasma. Co-deposits contained fuel species, carbon, boron and silicon. X-ray diffractometer phase analysis indicated the coexistence of metallic tungsten and its carbides (WC and W2C) and boride (W2B). In the Re-W layer the presence of carbon was detected in a several micrometres thick zone. In the overheated part of the limiter, the Re-W layer was transformed into a sigma phase.

  2. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  3. Characterization of Carbon-Contaminated B4C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma.

    PubMed

    Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E

    2018-01-22

    Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.

  4. Post-Plasma SiOx Coatings of Metal and Metal Oxide Nanoparticles for Enhanced Thermal Stability and Tunable Photoactivity Applications

    PubMed Central

    Post, Patrick; Jidenko, Nicolas; Weber, Alfred P.; Borra, Jean-Pascal

    2016-01-01

    The plasma-based aerosol process developed for the direct coating of particles in gases with silicon oxide in a continuous chemical vapor deposition (CVD) process is presented. It is shown that non-thermal plasma filaments induced in a dielectric barrier discharge (DBD) at atmospheric pressure trigger post-DBD gas phase reactions. DBD operating conditions are first scanned to produce ozone and dinitrogen pentoxide. In the selected conditions, these plasma species react with gaseous tetraethyl orthosilicate (TEOS) precursor downstream of the DBD. The gaseous intermediates then condense on the surface of nanoparticles and self-reactions lead to homogeneous solid SiOx coatings, with thickness from nanometer to micrometer. This confirms the interest of post-DBD injection of the organo-silicon precursor to achieve stable production of actives species with subsequent controlled thickness of SiOx coatings. SiOx coatings of spherical and agglomerated metal and metal oxide nanoparticles (Pt, CuO, TiO2) are achieved. In the selected DBD operating conditions, the thickness of homogeneous nanometer sized coatings of spherical nanoparticles depends on the reaction duration and on the precursor concentration. For agglomerates, operating conditions can be tuned to cover preferentially the interparticle contact zones between primary particles, shifting the sintering of platinum agglomerates to much higher temperatures than the usual sintering temperature. Potential applications for enhanced thermal stability and tunable photoactivity of coated agglomerates are presented. PMID:28335219

  5. Thermal barrier coating life-prediction model development. Annual report no. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-10-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimenmore » procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.« less

  6. Method for the protection of extreme ultraviolet lithography optics

    DOEpatents

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  7. Metal catalyst technique for texturing silicon solar cells

    DOEpatents

    Ruby, Douglas S.; Zaidi, Saleem H.

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  8. Formation of Amorphous Carbon Nanoparticles by the Laser Electrodispersion Method

    NASA Astrophysics Data System (ADS)

    Gurevich, S. A.; Gorokhov, M. V.; Kozhevin, V. M.; Kukushkin, M. V.; Levitskii, V. S.; Markov, L. K.; Yavsin, D. A.

    2018-03-01

    Experimental results on the laser ablation of the highly oriented pyrolytic graphite by using light pulses of an Nd:YAG laser (pulse width 25 ns, pulse energy 220 mJ) are presented. Analysis of the surface profile of the carbon target shows that the target material melts in the course of the laser ablation. As a result of ablation, a coating consisting of carbon nanoparticles about 10 nm in size is formed on the substrate placed at a distance of 4 cm from the target. It is assumed that such particles are formed as a result of the electrodispersion of carbon droplets detached from the target surface and charged to an unstable state in the laser plasma plume. Raman spectra of the coatings indicate that the carbon nanoparticles being formed have an amorphous structure.

  9. Oxynitrides decorated 316L SS for potential bioimplant application

    NASA Astrophysics Data System (ADS)

    Saravanan Kaliaraj, Gobi; Kumar, N.

    2018-03-01

    Titanium oxynitride (TiON) and zirconium oxynitride (ZrON) were deposited onto 316L stainless steel (316L SS) using reactive magnetron sputtering technique. The monoclinic and cubic phase of TiON and ZrON were obtained by x-ray diffraction (XRD). Nanoindentation and wear test analysis exhibited the better mechanical properties of TiON and ZrON films. Wettability studies showed hydrophilic nature on coated films; whereas bare 316L SS substrate was least hydrophilic. Drastic reduction of bacterial adhesion (Pseudomonas aeruginosa), as well as biofilm formation, was observed in both the films at different time duration. TiON and ZrON films were exhibited excellent hemocompatibility by preventing the platelet activation. Furthermore, the coated films exhibited corrosion protection in presence and absence of hydrogen peroxide (H2O2) in artificial blood plasma (ABP) solution.

  10. Thermal Spray Formation of Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  11. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance.

    PubMed

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-03-29

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

  12. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    PubMed Central

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  13. Development of an inductively coupled impulse sputtering source for coating deposition

    NASA Astrophysics Data System (ADS)

    Loch, Daniel Alexander Llewellyn

    In recent years, highly ionised pulsed plasma processes have had a great impact on improving the coating performance of various applications, such as for cutting tools and ITO coatings, allowing for a longer service life and improved defect densities. These improvements stem from the higher ionisation degree of the sputtered material in these processes and with this the possibility of controlling the flux of sputtered material, allowing the regulation of the hardness and density of coatings and the ability to sputter onto complex contoured substrates. The development of Inductively Coupled Impulse Sputtering (ICIS) is aimed at the potential of utilising the advantages of highly ionised plasma for the sputtering of ferromagnetic material. In traditional magnetron based sputter processes ferromagnetic materials would shunt the magnetic field of the magnetron, thus reducing the sputter yield and ionisation efficiency. By generating the plasma within a high power pulsed radio frequency (RF) driven coil in front of the cathode, it is possible to remove the need for a magnetron by applying a high voltage pulsed direct current to the cathode attracting argon ions from the plasma to initiate sputtering. This is the first time that ICIS technology has been deployed in a sputter coating system. To study the characteristics of ICIS, current and voltage waveforms have been measured to examine the effect of increasing RF-power. Plasma analysis has been conducted by optical emission spectroscopy to investigate the excitation mechanisms and the emission intensity. These are correlated to the set RF-power by modelling assumptions based on electron collisions. Mass spectroscopy is used to measure the plasma potential and ion energy distribution function. Pure copper, titanium and nickel coatings have been deposited on silicon with high aspect ratio via to measure the deposition rate and characterise the microstructure. For titanium and nickel the emission modelling results are in good agreement with the model expectations showing that electron collisions are the main excitation mechanism. The plasma potential was measured as 20 eV, this is an ideal level for good adatom mobility with reduced lattice defects. All surfaces in the via were coated, perpendicular column growth on the sidewalls indicates a predominantly ionised metal flux to the substrate and the deposition rates agree with the literature value of the sputter yield of the materials. The results of the studies show that ICIS is a viable process for the deposition of magnetic coatings with high ionisation in the plasma.

  14. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties.

    PubMed

    Gao, Qiang; Yu, Meng; Su, Yajuan; Xie, Meihua; Zhao, Xin; Li, Peng; Ma, Peter X

    2017-03-15

    Numerous antimicrobial coatings have been developed for biomedical devices/implants, but few can simultaneously fulfill the requirements for antimicrobial and antifouling ability and biocompatibility. In this study, to develop an antimicrobial and antibiofilm surface coating, diblock amphiphilic molecules with antimicrobial and antifouling segments in a single chain were rationally designed and synthesized. Cationic antimicrobial polypeptides (AMP) were first synthesized by N-carboxyanhydride ring-opening polymerization (NCA-ROP). Heterofunctionalized poly(ethylene glycol) with different lengths (methacrylate-PEG n -tosyl, n=10/45/90) was synthesized and site-specifically conjugated with polypeptides to form diblock amphiphiles. Along with increased PEG chain length, hemolytic activity was considerably improved, and broad-spectrum antimicrobial activity is retained. Three MA-PEG n -b-AMP copolymers were further grafted onto the surface of silicone rubber (a commonly used catheter material) via plasma/UV-induced surface polymerizations to form a bottlebrush-like coating with excellent antimicrobial activity against several pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and effectively prevent biofilm formation. This bottlebrush coating also greatly reduced protein adsorption and platelet adhesion, indicating its excellent antifouling ability. An in vitro cytotoxicity study also demonstrated that this coating is biocompatible with mammalian cells. After subcutaneous implantation of the materials in rats, we demonstrated that the g-PEG 45 -b-AMP bottlebrush coating exhibits significant anti-infective activity in vivo. Thus, this facilely synthesized PEGylated AMP bottlebrush coating is a feasible method to prevent biomedical devices-associated infections. Current antimicrobial coatings are often associated with concerns such as antibiotic resistance, environmental pollution, short-time antimicrobial activity, biofouling, poor blood compatibility and cytotoxicity, etc. To overcome these drawbacks, a robust PEGylated cationic amphiphilic peptides-based bottlebrush-like surface coating is demonstrated here, which fulfil the requirements of antimicrobial and antifouling as well as biocompatibility in the meantime. Briefly, the rational designed g-PEG n -b-AMP block copolymers (n=10/45/90) were synthesized and grafted on silicone surface. This bottlebrush-like coating efficiently kill the contacted bacteria and prevent the biofilm formation, greatly reduced protein and platelet adhesion. It also exhibits excellent blood compatibility and low cytotoxicity in vitro. In particular, g-PEG 45 -b-AMP coating exhibits significant anti-infection effect in vivo. This coating offering an effective strategy for combating biomedical devices-associated infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  16. Program for plasma-sprayed self-lubricating coatings

    NASA Technical Reports Server (NTRS)

    Walther, G. C.

    1979-01-01

    A method for preparing composite powders of the three coating components was developed and a procedure that can be used in applying uniform coatings of the composite powders was demonstrated. Composite powders were prepared by adjusting particle sizes of the components and employing a small amount of monoaluminum phosphate as an inorganic binder. Quantitative microscopy (image analysis) was found to be a convenient method of characterizing the composition of the multiphase plasma-sprayed coatings. Area percentages and distribution of the components were readily obtained by this method. The adhesive strength of the coating to a nickel-chromium alloy substrate was increased by about 40 percent by a heat treatment of 20 hours at 650 C.

  17. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    PubMed Central

    Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914

  18. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    PubMed

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  19. Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction

    NASA Astrophysics Data System (ADS)

    Torres, D. A.; Gordillo-Delgado, F.; Plazas-Saldaña, J.

    2017-01-01

    Plasma electrolytic oxidation (PEO) is an environmentally friendly technique that allows the growth of ceramic coatings without organic solvents and non-toxic residues. This method was applied to ASME SB-265 titanium (Ti) plates (2×2×0.1cm) using voltage pulses from a switching power supply (340V) for 10 minutes at frequency of 1000Hz changing duty cycle at 10, 60 and 90% and the electrolytes were Na3PO4 and NaOH. The treated sheets surfaces were analysed by X-ray diffraction and scanning electron microscopy. According to the diffractograms, the duty cycle increase produces amorphous TiO2 coating on Ti sheets and the thickness increases. After sintering at 900°C during 1 hour, the 10% duty cycle generated a combination of anatase and rutile phases at the sample surface with weight percentages of 13.3 and 86.6% and particle sizes of 32.461±0.009nm and 141.14±0.03 nm, respectively. With this sample, the total reduction of hexavalent chromium was reached at 50 minutes for 1ppm solution. This photocatalytic activity was measured following the colorimetric method ASTM-3500-Cr B.

  20. Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Li, Wenshuai; Zhao, Huayu; Zhong, Xinghua; Wang, Liang; Tao, Shunyan

    2014-08-01

    Yttria (Y2O3) and zirconia (ZrO2) stabilized by 8 and 20 wt.%Y2O3 thermal barrier coatings (TBCs) subjected to calcium-magnesium-alumino-silicate (CMAS) have been investigated. Free-standing Y2O3, 8 and 20 wt.%YSZ coatings covered with synthetic CMAS slurry were heated at 1300 °C in air for 24 h in order to assess the effect of Y2O3 on the corrosion resistance of the coatings subjected to CMAS. The microstructures and phase compositions of the coatings were characterized by SEM, EDS, XRD, RS, and TEM. TBCs with higher Y2O3 content exhibited better CMAS corrosion resistance. Phase transformation of ZrO2 from tetragonal (t) to monoclinic (m) occurred during the interaction of 8YSZ TBCs and CMAS, due to the depletion of Y2O3 in the coating. Some amounts of original c-ZrO2 still survived in 20YSZ TBCs along with a small amount of m-ZrO2 that appeared after reaction with CMAS. Furthermore, Y2O3 coating was found to be particularly highly effective in resisting the penetration of molten CMAS glass at high temperature (1300 °C). This may be ascribed to the formation of sealing layers composed of Y-apatite phase [based on Ca4Y6 (SiO4)6O and Y4.67(SiO4)3O] by the high-temperature chemical interactions of Y2O3 coating and CMAS glass.

  1. Electrochemical Corrosion Behavior of Ta2N Nanoceramic Coating in Simulated Body Fluid

    PubMed Central

    Cheng, Jian; Xu, Jiang; Liu, Lin Lin; Jiang, Shuyun

    2016-01-01

    In order to improve the corrosion and wear resistance of biomedical Ti-6Al-4V implants, a Ta2N nanoceramic coating was synthesized on a Ti-6Al-4V substrate by the double glow discharge plasma process. The Ta2N coating, composed of fine nanocrystals, with an average grain size of 12.8 nm, improved the surface hardness of Ti-6Al-4V and showed good contact damage tolerance and good adhesion strength to the substrate. The corrosion resistance of the Ta2N coating in Ringer’s physiological solution at 37 °C was evaluated by different electrochemical techniques: potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), potentiostatic polarization and capacitance measurements (Mott-Schottky approach). The evolution of the surface composition of the passive films at different applied potentials was determined by X-ray photoelectron spectroscopy (XPS). The results indicated that the Ta2N coating showed higher corrosion resistance than both commercially pure Ta and uncoated Ti-6Al-4V in this solution, because of the formed oxide film on the Ta2N coating having a smaller carrier density (Nd) and diffusivity (Do) of point defects. The composition of the surface passive film formed on the Ta2N coating changed with the applied potential. At low applied potentials, the oxidation of the Ta2N coating led to the formation of tantalum oxynitride (TaOxNy) but, subsequently, the tantalum oxynitride (TaOxNy) could be chemically converted to Ta2O5 at higher applied potentials. PMID:28773893

  2. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  3. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1986-01-01

    The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.

  4. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro.

    PubMed Central

    Monier, S; Parton, R G; Vogel, F; Behlke, J; Henske, A; Kurzchalia, T V

    1995-01-01

    VIP21-caveolin is a membrane protein, proposed to be a component of the striated coat covering the cytoplasmic surface of caveolae. To investigate the biochemical composition of the caveolar coat, we used our previous observation that VIP21-caveolin is present in large complexes and insoluble in the detergents CHAPS or Triton X-114. The mild treatment of these insoluble structures with sodium dodecyl sulfate leads to the detection of high molecular mass complexes of approximately 200, 400, and 600 kDa. The 400-kDa complex purified to homogeneity from dog lung is shown to consist exclusive of the two isoforms of VIP21-caveolin. Pulse-chase experiments indicate that the oligomers form early after the protein is synthesized in the endoplasmic reticulum (ER). VIP21-caveolin does indeed insert into the ER membrane through the classical translocation machinery. Its hydrophobic domain adopts an unusual loop configuration exposing the N- and C-flanking regions to the cytoplasm. Similar high molecular mass complexes can be produced from the in vitro-synthesized VIP21-caveolin. The complex formation occurs only if VIP21-caveolin isoforms are properly inserted into the membrane; formation is cytosol-dependent and does not involve a vesicle fusion step. We propose that high molecular mass oligomers of VIP21-caveolin represent the basic units forming the caveolar coat. They are formed in the ER and later, between the ER and the plasma membrane, these oligomers could associate into larger detergent-insoluble structures. Images PMID:7579702

  5. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  6. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  7. Silicon dioxide space coatings studied ellipsometrically

    NASA Technical Reports Server (NTRS)

    De, Bhola N.; Zhao, Yong; Hruska, Jane; Peterkin, Jane; Woollam, John A.

    1990-01-01

    Mechanisms of initial oxidation of silicon for the formation of silicon dioxide have been investigated. The oxidation of silicon in an atomic oxigen plasma environment is found to exhibit two distinct and linear oxide growth curves for each of the plasma powers used in ashing (25, 50, and 100 watts). Data obtained indicate that the exponent to the pressure in the oxide growth rate formula changes from 1.4 + or - 0.1 to 0.7 + or - 0.1 as one crosses the critical thickness. These data contradict the theory predicting that this exponent should be 1 for both regimes. The activation energy for oxidation in the zone reaction regime is found to be 0.17 eV, in contrast to the published value of 1-2 eV for thermally grown oxides.

  8. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  9. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  10. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    NASA Astrophysics Data System (ADS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-03-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  11. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  12. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    PubMed

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014. Copyright © 2013 Wiley Periodicals, Inc.

  13. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-12-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  14. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  15. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  16. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  17. High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Song, Xiu

    2017-02-01

    Al2O3-Cr2O3/NiCoCrAlYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase composition of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microscopy (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500°C in static air was investigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approximately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhesive wear.

  18. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    PubMed

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  19. Antifibrotic effect of dexamethasone/alginate-coated silicone sheet in the abraded middle ear mucosa.

    PubMed

    Jang, Chul Ho; Ahn, Seung Hyun; Kim, Geun Hyung

    2016-12-01

    Silicone sheet is a material which is commonly used in middle ear surgery to prevent the formation of adhesions between the tympanic membrane and the medial bony wall of the middle ear cavity. However, silicone sheet can induce a tight and hard fibrous capsule in the region of the stapes, and this is particularly common in cases of eustachian tube dysfunction. As a result of the fibrous encapsulation around the silicone sheet, postoperative aeration of the stapes can be interrupted causing poor hearing gain. In this study, we performed an in vitro and in vivo evaluation of the antifibrotic effects of a dexamethasone and alginate (Dx/alginate) coating on silicone sheet. The Dx/alginate-coated silicone sheets were fabricated using a plasma-treatment and coating method. The Dx/alginate-coated silicone sheets effectively limited in vitro fibroblast attachment and proliferation due to the controlled release of Dx, which can be modified by manipulation of the alginate coating. For the in-vivo evaluation, guinea pigs (albino, male, weighing 250g) were divided into two groups, with the control group (n=5) implanted with silicone sheet and the test group (n=5) receiving Dx/alginate-coated silicone sheet. Animals were sacrificed 3 weeks after implantation, and histological analysis was performed using hematoxylin and eosin (H&E) and immunohistochemical staining techniques. Dx/alginate-coated silicone sheets showed marked inhibition of fibrosis in both the in vitro and in vivo studies. Silicone sheet that incorporates a Dx/alginate coating can release Dx and inhibit fibrosis in the middle ear. This material could be utilized in middle ear surgery as a means of preserving proper aeration and hearing gain following ossiculoplasty. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles.

    PubMed

    Konduru, Nagarjun V; Jimenez, Renato J; Swami, Archana; Friend, Sherri; Castranova, Vincent; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M

    2015-10-12

    The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more (141)Ce from silica-coated (35%) was cleared than from uncoated (19%) (141)CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary (141)Ce from silica-coated (141)CeO2 was still minimal (<1%) although lower than from uncoated (141)CeO2 NPs. Post-gavage, nearly 100% of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected (141)CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of (141)Ce in other organs except the liver. We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration.

Top