Sample records for plasma confinement

  1. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  2. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  3. Effect of laser peening with glycerol as plasma confinement layer

    NASA Astrophysics Data System (ADS)

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  4. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  5. Elmo bumpy square plasma confinement device

    DOEpatents

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  6. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  7. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  8. Experimental confirmation of stable, small-debye-length, pure-electron-plasma equilibria in a stellarator.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Lefrancois, R G; Marksteiner, Q

    2006-09-01

    The creation of the first small-Debye length, low temperature pure electron plasmas in a stellarator is reported. A confinement time of 20 ms has been measured. The long confinement time implies the existence of macroscopically stable equilibria and that the single particle orbits are well confined despite the lack of quasisymmetry in the device, the Columbia non-neutral torus. This confirms the beneficial confinement effects of strong electric fields and the resulting rapid E x B rotation of the electrons. The particle confinement time is presently limited by the presence of bulk insulating materials in the plasma, rather than any intrinsic plasma transport processes. A nearly flat temperature profile is seen in the inner part of the plasma.

  9. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; de Vries, P.; Zarzoso, D.; Contributors, JET-EFDA

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ˜ 1.5-2, H98 ˜ 1, whereas the hybrid plasmas have βN ˜ 2.5-3, H98 < 1.5. The database study contains both low- (δ ˜ 0.2-0.25) and high-triangularity (δ ˜ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as Mach_A^{0.41+/- 0.07} and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ˜ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.

  10. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  11. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  12. Experimental investigation of discharge plasma magnetic confinement in the NSTASR ion thruster

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Fitzgerald, Dennis; Owens, Al

    2005-01-01

    Magnetic confinement studies were performed on the state-of-the-art NSTAR ion thruster. The goal of the experimental studies was determine the dependence of plasma confinement and plasma uniformity on the strength and shape of the imposed ring-cusp magnetic field.

  13. Carbon impurities behavior and its impact on ion thermal confinement in high-ion-temperature deuterium discharges on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Nagaoka, K.; Takahashi, H.; Yokoyama, M.; Murakami, S.; Nakano, H.; Ida, K.; Yoshinuma, M.; Seki, R.; Kamio, S.; Fujiwara, Y.; Oishi, T.; Goto, M.; Morita, S.; Morisaki, T.; Osakabe, M.; LHD Experiment Group1, the

    2018-07-01

    The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma.

  14. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.

    2017-03-01

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/ni, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  15. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission.

    PubMed

    Carbajal, L; Dendy, R O; Chapman, S C; Cook, J W S

    2017-03-10

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n_{α}/n_{i}, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  16. Suppressed ion-scale turbulence in a hot high-β plasma

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-12-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  17. Suppressed ion-scale turbulence in a hot high-β plasma

    PubMed Central

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-01-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675

  18. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  19. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  20. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  1. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  2. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  3. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, L.R.; Post, D.E. Jr.; Dawson, J.M.

    1983-11-23

    This invention relates generally to high energy confined plasmas and more particularly is directed to measuring the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a confined energetic plasma.

  4. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  5. Interchange Instability and Transport in Matter-Antimatter Plasmas

    NASA Astrophysics Data System (ADS)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  6. Simulation of High-Beta Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  7. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    PubMed

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  8. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  9. Theory of plasma confinement in non-axisymmetric magnetic fields.

    PubMed

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  10. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE PAGES

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi; ...

    2016-03-11

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less

  11. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less

  12. Self-confinement of finite dust clusters in isotropic plasmas.

    PubMed

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  13. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  14. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  15. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    PubMed

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  16. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  17. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    DOE PAGES

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...

    2017-03-07

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  18. Toroidal band limiter for a plasma containment device

    DOEpatents

    Kelley, George G.

    1978-01-01

    This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.

  19. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  20. Physical investigation of a quad confinement plasma source

    NASA Astrophysics Data System (ADS)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  1. Spectra of confined positronium

    NASA Astrophysics Data System (ADS)

    Munjal, D.; Silotia, P.; Prasad, V.

    2017-12-01

    Positronium is studied under the effect of spherically confined plasma environment. Exponentially Cosine Screened Coulomb potential (ECSC) has been used to include the dense plasma screening effect on positronium. Time independent Schrodinger equation is solved numerically. Various physical parameters such as energy eigenvalues, radial matrix elements, oscillator strengths, and polarizability are well explored as a function of confinement parameters. Oscillator strength gets drastically modified under confinement. We have also obtained the results for Ps confined under spherically confined Debye potential and compared with results of ECSC potential. Also incidental degeneracy for different values of confinement parameters has been reported for the first time for positronium.

  2. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is underway and JET has successfully achieved H 98(y,2)  =  1 for plasma currents up to 2.5 MA at moderate β N.

  3. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  4. The energy confinement response of DIII-D plasmas to Resonant Magnetic Perturbations

    DOE PAGES

    Cui, L.; Nazikian, Raffi; Grierson, B. A.; ...

    2017-07-11

    Here, Resonant Magnetic Perturbations (RMPs) are a leading method for edge localized modes (ELMs) Control in fusion plasmas. However they can also cause a rapid degradation in energy confinement. In this paper we show that the energy confinement in low collisionality (v* e < 0.3) DIII-D ITER Similar Shape (ISS) plasmas often recovers after several energy confinement times for RMP amplitudes up to the threshold for ELM suppression. Immediately following the application of the RMP, the plasma stored energy decreases in proportion to the decrease in the line-averaged density during density "pump-out". Later in the discharge confinement recovery is observedmore » in the thermal ion channel and is correlated with the increase in the ion temperature at the top of the H-mode pedestal. A correlation between the inverse scale length of the ion temperature (α/L Ti) and the E x B shearing rate at the top of the pedestal is seen during the confinement recovery phase. Transport analysis reveals that the confinement improvement in the ion channel results from the self-similarity in the ion temperature profiles in the plasma core combined with the observed increase in α/L Ti in the plasma edge following density pump-out. In contrast the electron temperature scale length (α/L Ti) remains essentially unchanged in response to the application of the RMP. At significantly higher RMP levels the edge EXB shearing rate and α/L Ti does not increase and the confinement does not recover following density pump-out.« less

  5. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    NASA Astrophysics Data System (ADS)

    Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul

    2018-03-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.

  6. Effects of acute temperature change, confinement and housing on plasma corticosterone in water snakes, Nerodia sipedon (Colubridae: Natricinae).

    PubMed

    Sykes, Kyle Lea; Klukowski, Matthew

    2009-03-01

    Body temperature affects many aspects of reptilian behavior and physiology, but its effect on hormonal secretion has been little studied, especially in snakes. Major objectives of this study were to determine if acute changes in body temperature during confinement influenced plasma corticosterone levels and if initial body temperatures upon capture in the field were related to baseline corticosterone levels in water snakes (Nerodia sipedon). Water snakes were bled upon capture in the field and after one hour of confinement in a cooled, control, or heated incubator. Since little is known about the potential metabolic changes in response to stress in reptiles, plasma triglyceride levels were also measured. Upon completion of the field study, snakes were housed for 5-8 days without food to determine the effect of chronic stress on both corticosterone and triglyceride levels. Plasma corticosterone concentrations were measured using enzyme-linked immunosorbant assay (ELISA) and plasma triglycerides were determined enzymatically. In the field, experimental alterations of body temperature during confinement had no effect on corticosterone levels. Similarly, there was no correlation between initial body temperature and baseline plasma corticosterone concentrations. However, post-confinement corticosterone levels were approximately three-times greater in females than males. Plasma triglyceride levels were not affected by temperature treatment, confinement, or sex. Compared to field values, both baseline and post-confinement corticosterone levels were elevated after the chronic stress of short-term laboratory housing but triglyceride levels decreased. Overall, these results indicate that sex but not body temperature has a major influence on the adrenocortical stress response in Nerodia sipedon.

  7. Final Report: Levitated Dipole Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less

  8. E-H mode transition of a high-power inductively coupled plasma torch at atmospheric pressure with a metallic confinement tube

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2012-08-01

    Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.

  9. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    PubMed

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  10. Study on the Characteristics of Plasma Profiles in Improved Confinement Plasmas in HT-7 Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Shouyin; Gao, Xiang; Li, Jiangang; Wan, Baonian; Kuang, Guangli; Mao, Jianshan; Zhang, Xiaodong; Xie, Jikang; Wan, Yuanxi; Team HT-7

    2000-10-01

    In HT-7 superconducting tokamak of circular limiter configuration (R0=122cm, a=30cm, Bt:1 ~2.2T), plasma profiles were modified and controlled by means of gas puffing, supersonic molecule injection, pellet injection, ICRF and IBW heating as well as LHW heating and current drive; improved plasma confinements were achieved either by application of one of the above measures or by the combination of them, study of the effects of the characteristics of plasma profiles on plasma confinements were performed. The results show that in most of the improved confinement plasmas in HT-7, there are very steep and strong peeking electron temperature profiles in core plasma, and/or large decrease of local temperature in radius of 0.5 ~0.7a which makes temperature gradient steeper when improvements begin, as temperature profile evolves back to previous normal shape the improvements end. Electron density profile and soft X-ray profiles were studied as well. This research was supported under Natural Science Foundation of China contract No.19905010.

  11. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

  12. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  13. Plasma confinement system and methods for use

    DOEpatents

    Jarboe, Thomas R.; Sutherland, Derek

    2017-09-05

    A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.

  14. Railgun armature velocity improvement, SBIR phase 2

    NASA Astrophysics Data System (ADS)

    Thurmond, Leo E.; Bauer, David P.

    1992-08-01

    Railgun hypervelocity performance has not been repeatably demonstrated at velocities over 6 km/s. A significant performance limiting phenomena is the formation of secondary current paths in parallel with the main projectile accelerating plasma. A confined plasma armature technique was developed to prevent secondary armature formation. Confinement prevents loss of ionized material from the plasma armature and thereby prevents formation of a low rail-to-rail conductance. We controlled pressure in the confined armature via controlled venting through ports in the rails. Railgun tests with the confined armature show that sealing at the rail-confinement vessel interface is critical and difficult to achieve. Our tests show that during low seal leakage operation secondaries are prevented. However, maintaining good seal for the entire launch is very difficult.

  15. Transport properties of NSTX-U L- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Guttenfelder, Walter; Bell, Ron; Diallo, Ahmed; Leblanc, Ben; Podesta, Mario

    2016-10-01

    The confinement and transport properties of L- and H-mode plasmas in NSTX-U has been studied using the TRANSP code. A dedicated series of L-mode discharges was obtained to study the dependence of confinement and transport on power level and beam aiming angle. The latter is made possible by having two beamlines with 3 sources each, capable of injecting with tangency radii from Rtan = 50 to 130 cm (Rgeo = 92 cm). L-mode plasmas typically have confinement enhancement factors with H98y,2 =0.6 to 0.65, exhibiting a 25% decrease in confinement time as the beam power is raised from 1 to 3 MW. Associated with this is an increase in the electron thermal diffusivity in the core of the plasma from 3.5 to 10 m2/s. Electron thermal transport is the dominant energy loss channel in these plasmas. H-mode plasmas exhibit improved confinement, with H98y,2 =1 or above, and core electron thermal diffusivity values <1 m2/s. Details of these studies will be presented, along with the results of the beam tangency radius scan in L-mode plasmas. This research was supported by the U.S. Department of Energy contract # DE-AC02-09CH11466.

  16. Formation of high-β plasma and stable confinement of toroidal electron plasma in Ring Trap 1a)

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H.

    2011-05-01

    Formation of high-β electron cyclotron resonance heating plasma and stable confinement of pure electron plasma have been realized in the Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet. The effects of coil levitation resulted in drastic improvements of the confinement properties, and the maximum local β value has exceeded 70%. Hot electrons are major component of electron populations, and its particle confinement time is 0.5 s. Plasma has a peaked density profile in strong field region [H. Saitoh et al., 23rd IAEA Fusion Energy Conference EXC/9-4Rb (2010)]. In pure electron plasma experiment, inward particle diffusion is realized, and electrons are stably trapped for more than 300 s. When the plasma is in turbulent state during beam injection, plasma flow has a shear, which activates the diocotron (Kelvin-Helmholtz) instability. The canonical angular momentum of the particle is not conserved in this phase, realizing the radial diffusion of charged particles across closed magnetic surfaces. [Z. Yoshida et al., Phys Rev. Lett. 104, 235004 (2010); H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).].

  17. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  18. Isotope effects on L-H threshold and confinement in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Weisen, H.; Hillesheim, J. C.; Chankin, A.; Delabie, E.; Horvath, L.; Auriemma, F.; Carvalho, I. S.; Corrigan, G.; Flanagan, J.; Garzotti, L.; Keeling, D.; King, D.; Lerche, E.; Lorenzini, R.; Maslov, M.; Menmuir, S.; Saarelma, S.; Sips, A. C. C.; Solano, E. R.; Belonohy, E.; Casson, F. J.; Challis, C.; Giroud, C.; Parail, V.; Silva, C.; Valisa, M.; Contributors, JET

    2018-01-01

    The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.

  19. Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: Two-dimensional mapping of the ambient and plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Kaushik; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-04-15

    An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have beenmore » obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.« less

  20. Semiempirical models of H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.; Redi, M.; Boyd, D.

    1985-05-01

    The H-mode transition can lead to a rapid increase in tokamak plasma confinement. A semiempirical transport model was derived from global OH and L-mode confinement scalings and then applied to simulation of H-mode discharges. The radial diffusivities in the model also depend on local density and pressure gradients and satisfy an appropriate dimensional constraint. Examples are shown of the application of this and similar models to the detailed simulation of two discharges which exhibit an H-mode transition. The models reproduce essential features of plasma confinement in the ohmic heating, low and high confinement phases of these discharges. In particular, themore » evolution of plasma energy content through the H-mode transition can be reproduced without any sudden or ad hoc modification of the plasma transport formulation.« less

  1. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  2. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-10-10

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  3. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  4. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2016-07-05

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  5. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-10-31

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  6. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-04-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  7. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA

    2009-08-04

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  8. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-03-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  9. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamakmore » energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less

  10. The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.

    2018-03-01

    Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, L.; Nazikian, Raffi; Grierson, B. A.

    Here, Resonant Magnetic Perturbations (RMPs) are a leading method for edge localized modes (ELMs) Control in fusion plasmas. However they can also cause a rapid degradation in energy confinement. In this paper we show that the energy confinement in low collisionality (v* e < 0.3) DIII-D ITER Similar Shape (ISS) plasmas often recovers after several energy confinement times for RMP amplitudes up to the threshold for ELM suppression. Immediately following the application of the RMP, the plasma stored energy decreases in proportion to the decrease in the line-averaged density during density "pump-out". Later in the discharge confinement recovery is observedmore » in the thermal ion channel and is correlated with the increase in the ion temperature at the top of the H-mode pedestal. A correlation between the inverse scale length of the ion temperature (α/L Ti) and the E x B shearing rate at the top of the pedestal is seen during the confinement recovery phase. Transport analysis reveals that the confinement improvement in the ion channel results from the self-similarity in the ion temperature profiles in the plasma core combined with the observed increase in α/L Ti in the plasma edge following density pump-out. In contrast the electron temperature scale length (α/L Ti) remains essentially unchanged in response to the application of the RMP. At significantly higher RMP levels the edge EXB shearing rate and α/L Ti does not increase and the confinement does not recover following density pump-out.« less

  12. Confinement time of electron plasma approaching magnetic pumping transport limit in small aspect ratio C-shaped torus

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.

    2016-06-01

    A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.

  13. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  14. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  15. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  16. Confinement in Wendelstein 7-X Limiter Plasmas

    DOE PAGES

    Hirsch, M.; Dinklage, A.; Alonso, A.; ...

    2017-06-14

    Observations on confinement in the first experimental campaign on the optimized Stellarator Wendelstein 7-X are summarized. In this phase W7-X was equipped with five inboard limiters only and thus the discharge length restricted to avoid local overheating. Stationary plasmas are limited to low densities <2–3 centerdot 10 19 m -3. With the available 4.3 MW ECR Heating core T e ~ 8 keV, T i ~ 1–2 keV are achieved routinely resulting in energy confinement time τ E between 80 ms to 150 ms. For these conditions the plasmas show characteristics of core electron root confinement with peaked T e-profilesmore » and positive E r up to about half of the minor radius. Lastly, profiles and plasma currents respond to on- and off-axis heating and co- and counter ECCD respectively.« less

  17. Method of and apparatus for accelerating a projectile

    DOEpatents

    Goldstein, Yeshayahu S. A.; Tidman, Derek A.

    1986-01-01

    A projectile is accelerated along a confined path by supplying a pulsed high pressure, high velocity plasma jet to the rear of the projectile as the projectile traverses the path. The jet enters the confined path at a non-zero angle relative to the projectile path. The pulse is derived from a dielectric capillary tube having an interior wall from which plasma forming material is ablated in response to a discharge voltage. The projectile can be accelerated in response to the kinetic energy in the plasma jet or in response to a pressure increase of gases in the confined path resulting from the heat added to the gases by the plasma.

  18. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    PubMed

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  19. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  20. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    PubMed

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  1. Energy Confinement Recovery in Low Collisionality ITER Shape Plasmas with Applied Resonant Magnetic Perturbations (RMPs)

    NASA Astrophysics Data System (ADS)

    Cui, L.; Grierson, B.; Logan, N.; Nazikian, R.

    2016-10-01

    Application of RMPs to low collisionality (ν*e < 0.4) ITER shape plasmas on DIII-D leads to a rapid reduction in stored energy due to density pumpout that is sometimes followed by a gradual recovery in the plasma stored energy. Understanding this confinement recovery is essential to optimize the confinement of RMP plasmas in present and future devices such as ITER. Transport modeling using TRANSP+TGLF indicates that the core a/LTi is stiff in these plasmas while the ion temperature gradient is much less stiff in the pedestal region. The reduction in the edge density during pumpout leads to an increase in the core ion temperature predicted by TGLF based on experimental data. This is correlated to the increase in the normalized ion heat flux. Transport stiffness in the core combined with an increase in the edge a/LTi results in an increase of the plasma stored energy, consistent with experimental observations. For plasmas where the edge density is controlled using deuterium gas puffs, the effect of the RMP on ion thermal confinement is significantly reduced. Work supported by US DOE Grant DE-FC02-04ER54698 and DE-AC02-09CH11466.

  2. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; MST Team

    2011-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with minimal external magnetization, (2) toroidal confinement physics, and (3) basic plasma physics is summarized. New tools and diagnostics are accessing physics barely studied in the RFP. Several diagnostic advances are important for ITER/burning plasma. A 1 MW neutral beam injector operates routinely for fast ion, heating, and transport investigations. Energetic ions are also created spontaneously by tearing mode reconnection, reminiscent of astrophysical plasmas. Classical confinement of impurity ions is measured in reduced-tearing plasmas. Fast ion slowing-down is also classical. Alfven-eigenmode-like activity occurs with NBI, but apparently not TAE. Stellarator-like helical structure appears in the core of high current plasmas, with improved confinement characteristics. FIR interferometry, Thomson scattering, and HIBP diagnostics are beginning to explore microturbulence scales, an opportunity to exploit the RFP's high beta and strong magnetic shear parameter space. A programmable power supply for the toroidal field flexibly explores scenarios from advanced inductive profile control to low current tokamak operation. A 1 MW 5.5 GHz source for electron Bernstein wave injection is nearly complete to investigate heating and current drive in over-dense plasmas. Supported by DOE and NSF.

  3. Spatial confinement effects on spectroscopic and morphological studies of nanosecond laser-ablated Zirconium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-12-01

    Spatial confinement effects on plasma parameters and surface morphology of laser ablated Zr (Zirconium) are studied by introducing a metallic blocker. Nd:YAG laser at various fluencies ranging from 8 J cm-2 to 32 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6 mm, 8 mm and 10 mm from the target surface. It is revealed from LIBS analysis that both plasma parameters i.e. excitation temperature and electron number density increase with increasing laser fluence due to enhancement in energy deposition. It is also observed that spatial confinement offered by metallic blocker is responsible for the enhancement of both electron temperature and electron number density of Zr plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 12,600 K and 14 × 1017 cm-3 respectively whereas, these values are enhanced to 15,000 K and 21 × 1017 cm-3 in the presence of blocker. The physical mechanisms responsible for the enhancement of Zr plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning Electron Microscope (SEM) analysis was performed to explore the surface morphology of laser ablated Zr. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters for surface structuring.

  4. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  5. Generation and confinement of microwave gas-plasma in photonic dielectric microstructure.

    PubMed

    Debord, B; Jamier, R; Gérôme, F; Leroy, O; Boisse-Laporte, C; Leprince, P; Alves, L L; Benabid, F

    2013-10-21

    We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 10¹⁴ cm⁻³. The fiber guided fluorescence emission presents strong Ar⁺ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.

  6. An Analytic Model for the Compression of Plasma Toroids

    DTIC Science & Technology

    1990-10-01

    chamber are only 18 cm apart in the formation section, and the total chamber length can be several meters. The concept is to form a confined plasma ring , and...Focusing of Magnetically Confined Plasma Rings ," Physical Review Letters, Vol. 61, No. 25, pp.2843-2846, 19 December 1988. 2. Turner, W. C., Goldenbaum, G

  7. Dual levitated coils for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Wofford, J. D.; Ordonez, C. A.

    2013-04-01

    Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.

  8. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The potential applications of fusion reactors, the desirable properties of reactors intended for various applications, and the limitations of the Tokamak concept are discussed. The principles and characteristics of 20 distinct alternative confinement concepts are described, each of which may be an alternative to the Tokamak. The devices are classed as Tokamak-like, stellarator-like, mirror machines, bumpy tori, electrostatically assisted, migma concept, and wall-confined plasma.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  10. Magnetic confinement of weakly ionized plasma with superconducting bulk magnets

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Hidenori; Ohishi, Kazuya; Ishikawa, Kazuhito; Morita, Tomonori; Yoshikawa, Masaaki; Ikuta, Hiroshi; Mizutani, Uichiro

    2003-04-01

    This letter describes the application of single-domain superconducting bulk magnets as a plasma confinement. A through-hole was drilled at the center of a Sm123 bulk superconductor of 39 mm diameter and 17 mm thickness. When the sample was field cooled to 77 K, the resulting bulk magnet trapped a magnetic field of ˜0.65 T called a magnetic mirror, in the bore of the hole. The magnet was applied to a weakly ionized neon plasma column. Both the magnet and discharge glass tube were immersed in liquid nitrogen. The spatial distribution in the tube of red fluorescence of the plasma showed that the magnet certainly confined the plasma. These results would provide a clue to applications of the compact magnet of strong magnetic field.

  11. Ionoregulatory and endocrine responses to disturbed salt and water balance in Mozambique tilapia exposed to confinement and handling stress.

    PubMed

    Breves, Jason P; Hirano, Tetsuya; Grau, E Gordon

    2010-03-01

    This study assessed the endocrine and ionoregulatory responses by tilapia (Oreochromis mossambicus) to disturbances of hydromineral balance during confinement and handling. In fresh water (FW), confinement and handling for 0.5, 1, 2 and 6h produced elevations in plasma cortisol and glucose; a reduction in plasma osmolality was observed at 6h. Elevations in plasma prolactins (PRL(177) and PRL(188)) accompanied this fall in osmolality while no effect upon growth hormone (GH) was evident; an increase in insulin-like growth-factor I (IGF-I) occurred at 0.5h. In seawater (SW), confinement and handling increased plasma osmolality and glucose between 0.5 and 6h; no effect on plasma cortisol was seen due to variable control levels. Concurrently, both PRLs were reduced in stressed fish with only transient changes in the GH/IGF-I axis. Next, the branchial expression of Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and Na(+)/Cl(-) cotransporter (NCC) was characterized following confinement and handling for 6h. In SW, NKCC mRNA levels increased in stressed fish concurrently with elevated plasma osmolality and diminished gill Na(+), K(+)-ATPase activity; NCC was unchanged in stressed fish irrespective of salinity. Taken together, PRL and NKCC participate in restoring osmotic balance during acute stress while the GH/IGF-I axis displays only modest responses. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOEpatents

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  13. Long-Lived Pure Electron Plasma in Ring Trap-1

    NASA Astrophysics Data System (ADS)

    Saitoh, Haruhiko; Yoshida, Zensho; Morikawa, Junji; Watanabe, Sho; Yano, Yoshihisa; Suzuki, Junko

    The Ring Trap-1 (RT-1) experiment succeeded in producing a long-lived (of the order 102 s), stable, non-neutral (pure electron) plasma. Electrons are confined by a magnetospheric dipole field. To eliminate a loss channel of the plasmas caused by support structures, a superconducting coil was magnetically levitated. This coil levitation drastically improved the confinement properties of the electron plasma compared to previous Prototype-Ring Trap (Proto-RT) experiments.

  14. Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Nakano, H.; Ida, K.; Tsujimura, T. I.; Kubo, S.; Kobayashi, T.; Tanaka, K.; Seki, R.; Takeiri, Y.; Yokoyama, M.; Maeta, S.; Nakata, M.; Yoshinuma, M.; Yamada, I.; Yasuhara, R.; Ido, T.; Shimizu, A.; Tsuchiya, H.; Tokuzawa, T.; Goto, M.; Oishi, T.; Morita, S.; Suzuki, C.; Emoto, M.; Tsumori, K.; Ikeda, K.; Kisaki, M.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Makino, R.; Seki, T.; Kasahara, H.; Saito, K.; Kamio, S.; Nagasaki, K.; Mutoh, T.; Kaneko, O.; Morisaki, T.; the LHD Experiment Group

    2017-08-01

    A simultaneous high ion temperature (T i) and high electron temperature (T e) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of T e/T i by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity {χ\\text{i}}/T\\text{i}1.5 at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in T i in the entire plasma region, even though the core transport was degraded.

  15. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy.

    PubMed

    Fu, Yangting; Hou, Zongyu; Wang, Zhe

    2016-02-08

    Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave "compressing" effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.

  16. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Brett Edward

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0more » $$\\vec{J}$$∙$$\\vec{B}$$/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP.« less

  17. Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André

    2018-02-01

    An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.

  18. Overview of C-2W Field-Reversed Configuration Experimental Program

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  19. Influence of the distance between target surface and focal point on the expansion dynamics of a laser-induced silicon plasma with spatial confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2018-05-01

    Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.

  20. Confinement of nonneutral plasmas in the Prototype Ring Trap device

    NASA Astrophysics Data System (ADS)

    Himura, Haruhiko; Yoshida, Zensho; Nakashima, Chihiro; Morikawa, Junji; Kakuno, Hidekazu; Tahara, Shigeru; Shibayama, Norihisa

    1999-12-01

    Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) was constructed at University of Tokyo, and experiments on the device have been intensively conducted. The main goal of Proto-RT is to explore an innovative method to attain a plasma equilibrium with extremely high-β (β>1) in a toroidal geometry using non-neutral condition. At the first series of the experiments, pure electron plasmas (ne˜1013m-3) have been successfully confined inside a separatrix. No disruption is so far observed. The confinement time of the electron plasmas is of order 0.1 ms for an X point configuration. The non-neutrality of Δne˜1013m-3 is already beyond the critical value which is required to produce an enough self-electric field E in non-neutral plasmas with n0˜1019m-3, causing a strong E×B flow thoroughly over the plasmas where the hydrodynamic pressure of the flow is predicted to balance with the thermal pressure of the plasmas.

  1. Production and study of high-beta plasma confined by a superconducting dipole magneta)

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Hansen, A.; Mauel, M. E.; Ortiz, E.; Boxer, A. C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4GHz, and a population of energetic electrons, with mean energies above 50keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  2. Energy-confinement scaling for high-beta plasmas in the W7-AS stellarator.

    PubMed

    Preuss, R; Dinklage, A; Weller, A

    2007-12-14

    High-beta energy-confinement data are subjected to comparisons of scaling invariant, first-principles physical models. The models differ in the inclusion of basic equations indicating the nature of transport. The result for high-beta data of the W7-AS stellarator is that global transport is described best with a collisional high-beta model, which is different from previous outcomes for low-beta data. Model predictive calculations indicate the validation of energy-confinement prediction with respect to plasma beta and collisionality nu*. The finding of different transport behaviors in distinct beta regimes is important for the development of fusion energy based on magnetic confinement and for the assessment of different confinement concepts.

  3. The Physics Basis of ITER Confinement

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2009-02-01

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode—the preferred confinement regime of ITER.

  4. Observation of Trapped-Electron Mode Microturbulence in Improved Confinement Reversed-Field Pinch Plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James R.

    This is a dissertation for the completion of a Doctorate of Philosophy in Physics degree granted at the University of Wisconsin-Madison. Density fluctuations in the large-density-gradient region of improved confinement Madison Sym- metric Torus (MST) RFP plasmas exhibit multiple features that are characteristic of the trapped- electron mode (TEM). In fusion relevant plasmas, thermal transport is a key avenue of research in order to achieve a burning plasma. In the reversed field pinch (RFP) magnetic geometry, the dy- namics of conventional plasma discharges are primarily governed by magnetic stochasticity stem- ming from multiple long-wavelength tearing modes, that sustain the RFP discharge but have an adverse effect on the plasma confinement. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasma. Under these conditions with certain plasma equilibria, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at frequencies f 50 kHz that have normalized perpendicular wavenumbers k⊥rhos ≤ 0.2, and propagate in the electron diamagnetic drift direction. By adjusting the plasma current or the inductive suppression, there are observable variations in the spectral features. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with a local density gradient dependent parameter. These characteristics are consistent with the predictions of unstable TEMs based on gyrokinetic analysis using the GENE code. This thesis represents the first observation and description of TEM-like instabilities in the RFP geometry.

  5. Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement

    DOE PAGES

    Wang, H. Q.; Guo, Houyang Y.; Petrie, Thomas W.; ...

    2017-03-18

    The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N 2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N 2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss powermore » to the L-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection leads to an increase in core radiation, up to 50% of the injected power, and a reduction in pedestal temperature over 60%, thus significantly degrading the confinement, i.e., with H 98 reducing from 1.1 to below 0.7. As for Ne seeding, H 98 near 0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N 2 seeded plasmas, radiation is predominately confined in the boundary plasma, with up to 50% of heating power being radiated in the divertor region and less than 25% in the core at the onset of detachment. In the case of strong N 2 gas puffing, the confinement recovers during the detachment, from ~20% reduction at the onset of the detachment to greater than that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.« less

  6. Radiation reaction in fusion plasmas.

    PubMed

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  7. Plasma control and utilization

    DOEpatents

    Ensley, Donald L.

    1976-12-28

    A plasma is confined and heated by a microwave field resonant in a cavity excited in a combination of the TE and TM modes while responding to the resonant frequency of the cavity as the plasma dimensions change to maintain operation at resonance. The microwave field is elliptically or circularly polarized as to prevent the electromagnetic confining field from going to zero. A high Q chamber having superconductive walls is employed to minimize wall losses while providing for extraction of thermonuclear energy produced by fusion of nuclei in the plasma.

  8. Observation of the hot electron interchange instability in a high beta dipolar confined plasma

    NASA Astrophysics Data System (ADS)

    Ortiz, Eugenio Enrique

    In this thesis the first study of the high beta, hot electron interchange (HEI) instability in a laboratory, dipolar confined plasma is presented. The Levitated Dipole Experiment (LDX) is a new research facility that explores the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. In initial experiments long-pulse, quasi-steady state microwave discharges lasting more than 10 sec have been produced with equilibria having peak beta values of 20%. Creation of high-pressure, high beta plasma is possible only when intense HEI instabilities are stabilized by sufficiently high background plasma density. LDX plasma exist within one of three regimes characterized by its response to heating and fueling. The observed HEI instability depends on the regime and can take one of three forms: as quasiperiodic bursts during the low density, low beta plasma regime, as local high beta relaxation events in the high beta plasma regime, and as global, intense energy relaxation bursts, both in the high beta and afterglow plasma regimes. Measurements of the HEI instability are made using high-impedance, floating potential probes and fast Mirnov coils. Analysis of these signals reveals the extent of the transport during high beta plasmas. During intense high beta HEI instabilities, fluctuations at the edge significantly exceed the magnitude of the equilibrium field generated by the high beta electrons and energetic electron confinement ends in under 100 musec. For heated plasmas, one of the consequences of the observed high beta transport is the presence of hysteresis in the neutral gas fueling required to stabilize and maintain the high beta plasma. Finally, a nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI instability has been adapted for LDX and compared to experimental observations.

  9. Production and Study of High-Beta Plasma Confined by a Superconducting Dipole Magnet

    NASA Astrophysics Data System (ADS)

    Garnier, Darren

    2005-10-01

    The Levitated Dipole Experiment (LDX)http://psfcwww2.psfc.mit.edu/ldx/ is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, MHD stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally-peaked plasma pressure that exceeds the local magnetic pressure (β> 1), and the absence of magnetic shear allows particle and energy confinement to decouple. In this presentation, the first experiments using the LDX facility are reported. Long-pulse, quasi-steady state microwave discharges lasting up to 12 seconds have been produced that are consistent with equilibria having peak beta values of 10%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports and later the coil will be magnetically levitated. The plasma was created by multi- frequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominated the plasma pressure. Creation of high-pressure, high-beta plasma is only possible when intense hot electron interchange instabilities are stabilized sufficiently by a high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma-fueling rate and confinement times are sufficiently long. External shaping coils are seen to modify the outer plasma boundary and affect the transition.

  10. Dipole configuration for confinement of positrons and electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Horn-Stanja, J.; Hergenhahn, U.; Paschkowski, N.; Sunn Pedersen, T.; Stoneking, M. R.; Dickmann, M.; Singer, M.; Vohburger, S.; Hugenschmidt, C.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2016-10-01

    Laboratory creation and confinement of electron-positron plasmas, which are expected to exhibit atypical plasma physics characteristics, would enable tests of many theory and simulation predictions (e.g., the stabilization of anomalous transport mechanisms). This is the goal of APEX/PAX (A Positron-Electron eXperiment/Positron Accumulation eXperiment). Following demonstration of efficient (38%) E ×B injection and subsequent confinement (τ = 3-5 ms) of cold positrons in a dipole magnetic field, the system is undergoing upgrades from a supported permanent magnet to a supported HTSC (high-temperature superconductor) coil, then to a levitated HTSC coil suitable for the simultaneous confinement of electrons and positrons. This contribution will report on the design and testing of the new systems and subsystems (e.g., for cooling, excitation, and levitation) and, if available, on results of upcoming experiments using a ``rotating wall'' to generate inward particle flux deeper into the confinement region. on behalf of the APEX/PAX team and collaborators.

  11. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  12. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobsmore » escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.« less

  13. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  14. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    PubMed

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-03

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  15. Experiments with planar inductive ion source meant for creation of H+ beams.

    PubMed

    Vainionpaa, J H; Kalvas, T; Hahto, S K; Reijonen, J

    2007-06-01

    In this article the effects of different engineering parameters of rf-driven ion sources with an external spiral antenna and a quartz rf window are studied. This article consists of three main topics: the effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species, and the effect of different antenna geometries on the extracted current density. The effect of source geometry was studied using three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum (Al) and alumina (Al(2)O(3)). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. The highest measured proton fractions were measured using Al(2)O(3) plasma chamber and no multicusp confinement. For the compared ion sources the source with multicusp confinement and Al(2)O(3) plasma chamber yields the highest current densities. Multicusp confinement increased the maximum extracted current by up to a factor of 2. Plasma production with different antenna geometries were also studied. The highest current density was achieved using 4.5 loop solenoid antenna with 6.0 cm diameter. A slightly lower current density with lower pressure was achieved using a tightly wound 3 loop spiral antenna with 3.3 cm inner diameter and 6 cm outer diameter.

  16. Turbulent inward pinch of plasma confined by a levitated dipole magnet

    NASA Astrophysics Data System (ADS)

    Boxer, A. C.; Bergmann, R.; Ellsworth, J. L.; Garnier, D. T.; Kesner, J.; Mauel, M. E.; Woskov, P.

    2010-03-01

    The rearrangement of plasma as a result of turbulence is among the most important processes that occur in planetary magnetospheres and in experiments used for fusion energy research. Remarkably, fluctuations that occur in active magnetospheres drive particles inward and create centrally peaked profiles. Until now, the strong peaking seen in space has been undetectable in the laboratory because the loss of particles along the magnetic field is faster than the net driven flow across the magnetic field. Here, we report the first laboratory measurements in which a strong superconducting magnet is levitated and used to confine high-temperature plasma in a configuration that resembles planetary magnetospheres. Levitation eliminates field-aligned particle loss, and the central plasma density increases markedly. The build-up of density characterizes a sustained turbulent pinch and is equal to the rate predicted from measured electric-field fluctuations. Our observations show that dynamic principles describing magnetospheric plasma are relevant to plasma confined by a levitated dipole.

  17. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.

    1977-01-01

    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.

  18. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increasemore » again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.« less

  19. Heavy ion beam probe operation in time varying equilibria of improved confinement reversed field pinch discharges.

    PubMed

    Demers, D R; Chen, X; Schoch, P M; Fimognari, P J

    2010-10-01

    Operation of a heavy ion beam probe (HIBP) on a reversed field pinch is unique from other toroidal applications because the magnetic field is more temporal and largely produced by plasma current. Improved confinement, produced through the transient application of a poloidal electric field which leads to a reduction of dynamo activity, exhibits gradual changes in equilibrium plasma quantities. A consequence of this is sweeping of the HIBP trajectories by the dynamic magnetic field, resulting in motion of the sample volume. In addition, the plasma potential evolves with the magnetic equilibrium. Measurement of the potential as a function of time is thus a combination of temporal changes of the equilibrium and motion of the sample volume. A frequent additional complication is a nonideal balance of ion current on the detectors resulting from changes in the beam trajectory (magnetic field) and energy (plasma potential). This necessitates use of data selection criteria. Nevertheless, the HIBP on the Madison Symmetric Torus has acquired measurements as a function of time throughout improved confinement. A technique developed to infer the potential in the improved confinement reversed field pinch from HIBP data in light of the time varying plasma equilibrium will be discussed.

  20. Hollow laser plasma self-confined microjet generation

    NASA Astrophysics Data System (ADS)

    Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team

    2017-10-01

    Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.

  1. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.

    2016-06-15

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  2. Compact Torus plasma ring accelerator: a new type driver for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.

    1986-08-22

    We discuss the acceleration of magnetically-confined plasma rings to provide a driver for ICF. The acceleration of plasma rings is predicted to be efficient and following focusing, to generate ion-bombardment power in the range 10/sup 15/ to 10/sup 16/ W/cm/sup 2/ at a total deposition energy of multimegajoules. The simplicity of plasma ring accelerator suggests that a 5 MJ (on target) driver would cost in the range 1 to 5 $/joule. First experimental tests of the accelerator are described.

  3. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.

    2017-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.

  4. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, S.; Goto, I.; Hatayama, A.

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep intomore » the source plasma region when the effective confinement time is short.« less

  5. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Fallon, C.; Hayden, P.; Mujawar, M.; Yeates, P.; Costello, J. T.

    2014-09-01

    Ion signals from laser produced plasmas (LPPs) generated inside aluminum rectangular cavities at a fixed depth d = 2 mm and varying width, x = 1.0, 1.6, and 2.75 mm were obtained by spatially varying the position of a negatively biased Langmuir probe. Damped oscillatory features superimposed on Maxwellian distributed ion signals were observed. Depending on the distance of the probe from the target surface, three to twelve fold enhancements in peak ion density were observed via confinement of the LPP, generated within rectangular cavities of varying width which constrained the plasma plume to near one dimensional expansion in the vertical plane. The effects of lateral spatial confinement on the expansion velocity of the LPP plume front, the temperature, density and expansion velocity of ions, enhancement of ion flux, and ion energy distribution were recorded. The periodic behavior of ion signals was analyzed and found to be related to the electron plasma frequency and electron-ion collision frequency. The effects of confinement and enhancement of various ion parameters and expansion velocities of the LPP ion plume are explained on the basis of shock wave theory.

  6. A novel method for fabrication of size-controlled metallic nanoparticles by laser ablation

    NASA Astrophysics Data System (ADS)

    Choudhury, Kaushik; Singh, R. K.; Ranjan, Mukesh; Kumar, Ajai; Srivastava, Atul

    2017-12-01

    Time resolved experimental investigation of laser produced plasma-induced shockwaves has been carried out in the presence of confining walls placed along the lateral directions using a Mach Zehnder interferometer in air ambient. Copper was used as target material. The primary and the reflected shock waves and their effects on the evolution of medium density and the plasma density have been studied. The reflected shock wave has been seen to be affecting the shape and density of the plasma plume in the confined geometry. The same experiments were performed with water and isopropyl alcohol as the ambient liquids and the produced nanoparticles were characterised for size and size distribution. Significant differences in the size and size distribution are seen in case of the nanoparticles produced from the ablation of the targets with and without confining boundary. The observed trend has been attributed to the presence of confining boundary and the way it affects the thermalisation time of the plasma plume. The experiments also show the effect of medium density on the mean size of the copper nanoparticles produced.

  7. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  8. A double-layer based model of ion confinement in electron cyclotron resonance ion source.

    PubMed

    Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G

    2014-02-01

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  9. Radio frequency discharge with control of plasma potential distribution.

    PubMed

    Dudnikov, Vadim; Dudnikov, A

    2012-02-01

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  10. An Optical Trap for Relativistic Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Ping

    2002-11-01

    Optical traps have achieved remarkable success recently in confining ultra-cold matter.Traps capable of confining ultra-hot matter, or plasma, have also been built for applications such as basic plasma research and thermonuclear fusion. For instance, low-density plasmas with temperature less than 1 keV have been confined with static magnetic fields in Malmberg-Penning traps. Low-density 10-50 keV plasmas are confined in magnetic mirrors and tokamaks. High density plasmas have been trapped in optical traps with kinetic energies up to 10 keV [J. L. Chaloupka and D. D. Meyerhofer, Phys. Rev. Lett. 83, 4538 (1999)]. We present the results of experiment, theory and numerical simulation on an optical trap capable of confining relativistic plasma. A stationary interference grating with submicron spacing is created when two high-power (terawatt) laser pulses of equal wavelength (1-micron) are focused from orthogonal directions to the same point in space and time in high density underdense plasma. Light pressure gradients bunch electrons into sheets located at the minima of the interference pattern. The density of the bunched electrons is found to be up to ten times the background density, which is orders-of-magnitude above that previously reported for other optical traps or plasma waves. The amplitudes and frequencies of multiple satellites in the scattered spectrum also indicate the presence of a highly nonlinear ion wave and an electron temperature about 100 keV. Energy transfer from the stronger beam to the weaker beam is also observed. Potential applications include a test-bed for detailed studies of relativistic nonlinear scattering, a positron source and an electrostatic wiggler. This research is also relevant to fast igniter fusion or ion acceleration experiments, in which laser pulses with intensities comparable to those used in the experiment may also potentially beat [Y. Sentoku, et al., Appl. Phys. B 74, 207215 (2002)]. The details of a specific application, the injection of electrons into laser-driven plasma waves, will also be presented. With crossed beams, the energy of a laser-accelerated electron beam is increased and its emittance is decreased compared with a single beam, potentially paving the way towards an all-optical monoenergetic electron injector.

  11. The effect of a metal wall on confinement in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this only leads to a confinement benefit in the case of nitrogen seeding where, as the pedestal widens, the obtained pedestal pressure gradient is conserved. In the case of deuterium fuelling in JET-ILW the pressure gradient is strongly degraded in the fuelling scan leading to no net confinement gain due to the pedestal widening. The pedestal code EPED correctly predicts the pedestal pressure of the unseeded plasmas in JET-ILW within ±5%, however it does not capture the complex variation of pedestal width and gradient with fuelling and impurity seeding. Also it does not predict the observed increase of pedestal pressure by nitrogen seeding in JET-ILW. Ideal peeling ballooning MHD stability analysis shows that the widening of the pedestal leads to a down shift of the marginal stability boundary by only 10-20%. However, the variations in the pressure gradient observed in the JET-ILW fuelling experiment is much larger and spans a factor of more than two. As a result the experimental points move from deeply unstable to deeply stable on the stability diagram in a deuterium fuelling scan. In AUG-W nitrogen seeded plasmas, a widening of the pedestal has also been observed, consistent with the JET observations. The absence of carbon can thus affect the pedestal structure, and mainly the achieved pedestal gradient, which can be recovered by seeding nitrogen. The underlying physics mechanism is still under investigation and requires further understanding of the role of impurities on the pedestal stability and pedestal structure formation.

  12. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  13. Modelling of Field-Reversed Configuration Experiment with Large Safety Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, L; Guo, H; Hoffman, A

    2005-11-28

    The Translation-Confinement-Sustainment facility has been operated in the 'translation-formation' mode in which a plasma is ejected at high-speed from a {theta}-pinch-like source into a confinement chamber where it settles into a field-reversed-configuration state. Measurements of the poloidal and toroidal field have been the basis of modeling to infer the safety factor. It is found that the edge safety factor exceeds two, and that there is strong forward magnetic shear. The high-q arises because the large elongation compensates for the modest ratio of toroidal-to-poloidal field in the plasma. This is the first known instance of a very high-{beta} plasma with amore » safety factor greater than unity. Two-fluid modeling of the measurements also indicate several other significant features: a broad 'transition layer' at the plasma boundary with probable line-tying effects, complex high-speed flows, and the appearance of a two-fluid minimum-energy state in the plasma core. All these features may contribute to both the stability and good confinement of the plasma.« less

  14. Improved Confinement Regimes and the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Coppi, B.; Detragiache, P.

    2013-10-01

    The Ignitor experiment is the only one designed and planned to reach ignition under controlled DT burning conditions. The machine prameters have been established on the basis of existing knowledge of the confinement properties of high density plasmas. The optimal plasma evolution in order to reach ignition by means of Ohmic heating only, without the contribution of transport barriers has been identified. Improved confinement regimes are expected to be accessible by means of the available ICRH additional heating power and the injection of pellets for density profile control. Moreover, ECRH of the outer edge of the (toroidal) plasma column has been proposed using very high frequency sources developed in Russia. Ignition can then be reached at slightly reduced machine parameters. Significant exploration of the behavior of burning, sub-ignited plasmas can be carried out in less demanding operational conditions than those needed for ignition with plasmas accessing the I or H-regimes. These conditions will be discussed together with the provisions made in order to maintain the required (for ignition) degree of plasma purity. Sponsored in part by the U.S. DOE.

  15. Vibrational Modes of Oblate Clouds of Charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Spencer, Ross L.

    2000-10-01

    When a nonneutral plasma confined in a Penning trap is allowed time to expand, its shape at global thermal equilibrium is that of a thin oblate spheroid [D. L. Paulson et al., Phys. Plasmas 5, 345 (1998)]. Oscillations similar to those of a drumhead can be externally induced in such a plasma. Although a theory developed by Dubin predicts the frequencies of the various normal modes of oscillation [Phys. Rev. Lett. 66, 2076 (1991)], this theory assumes that the plasma has zero temperature and is confined by an ideal quadrupole electric field. Neither of these conditions is strictly true in experiments [C. S. Weimer et al., Phys. Rev. A 49, 3842 (1994)] where physical properties of the plasma are deduced from measurements of these frequencies, causing the measurements and ideal theory to differ by about 20%. We reformulate the problem of the normal oscillatory modes as a principal-value integral eigenvalue equation, including finite-temperature and non-ideal confinement effects. The equation is solved numerically to obtain the plasma's normal mode frequencies and shapes; reasonable agreement with experiment is obtained.

  16. Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  17. Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  18. Role of poloidal flows on the particle confinement time in a simple toroidal device : an experimental study

    NASA Astrophysics Data System (ADS)

    Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel

    2017-10-01

    In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.

  19. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spong, D.A.; Hirshman, S.P.; Whitson, J.C.

    A new class of low aspect ratio toroidal hybrid stellarators is found using more general plasma confinement optimization criterion than quasi-symmetrization. The plasma current profile and shape of the outer magnetic flux surface are used as control variables to achieve near constancy of the longitudinal invariant J* on internal flux surfaces (quasi-omnigeneity), in addition to a number of other desirable physics target properties. We find that a range of compact (small aspect ratio A), high {beta} (ratio of thermal energy to magnetic field energy), low plasma current devices exist which have significantly improved confinement both for thermal as well asmore » energetic (collisionless) particle components. With reasonable increases in magnetic field and geometric size, such devices can also be scaled to confine 3.5 MeV alpha particle orbits.« less

  1. Edge Plasma behavior during Improved Confinement by Lower Hybrid Wave Heating in HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jian-gang; Bao, Yi; Luo, Jia-rong; Wan, Bao-nian; Liu, Yue-xiu; Gong, Xian-zu; Chen, Jun-ling; Liang, Yun-feng

    2002-10-01

    Lower hybrid heating (LHH) has been successfully carried out in the HT-6M tokamak. The H-mode has been obtained with a power threshold of 50 kW under a boronized wall condition. Both energy and particle confinements have been improved along with a dropped edge plasma density and an increase electron temperature during the LHH phase. A negative Er well plays a key role of triggering and sustaining the good confinement. Both electrostatic fluctuation of the plasma potential and the density fluctuations dropped to an ultra-low level. The observation of an enhanced Er shear before the reduction in turbulence level is consistent with an increased Er shear as the cause of turbulence suppression.

  2. Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2014-06-20

    Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30)  m(-3) and temperatures around 1 keV.

  3. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, David E.; Logan, B. Grant

    1981-01-01

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.

  4. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordienko, V.A.; Dubinov, A.E.; Zhuravlev, S.S.

    A new type of magnetic confinement system--a Galathea with a myxine in the shape of a convex polyhedron--is proposed. The system was modeled experimentally by passing an RF current through the myxine. On the one hand, the myxine acts as an inductor whose electric field ionizes the gas and, on the other, it acts as an RF magnetic confinement system. A steady-state plasma produced and confined in this system is almost spherical in shape. The electron density and specific (per unit volume) glow intensity of the plasma produced are found to be higher than those in conventional helical inductors.

  6. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Nishioka, S.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less

  7. Changes in particle transport as a result of resonant magnetic perturbations in DIII-D (vol 19, 056503, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordijck, S.; Doyle, E. J.; McKee, G. R.

    2012-01-01

    Publisher s Note: Changes in particle transport as a result of resonant magnetic perturbations in DIII-D [Phys. Plasmas 19, 056503 (2012)]a) In the Invited Papers from the 53rd Annual Meeting of the APS Division of Plasma Physics of the May 2012 issue of the journal, this article was originally published online and in print in the incorrect section; it was published within Ionospheric, Solar-System and Astrophysical Plasmas (Sec. 65) instead of Magnetically Confined Plasmas, Heating, Confinement (Sec. 61). AIP apologizes for this error. a)

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K.C.

    A theory for plasma confinement in snakes is developed based on the consequences of the momentum transport resulting from the symmetry-breaking-induced plasma viscosity in the vicinity of an m=1 magnetic island. Here, m is the poloidal mode number of the island. The symmetry-breaking mechanism is the distortion of the magnetic surface associated with the magnetic island embedded in the equilibrium magnetic field. It is demonstrated that a combination of the turbulence suppression and the effects of the orbit squeezing could be responsible for the observed improved plasma confinement in snakes.

  9. Study of the confinement properties in a reversed-field pinch with mode rotation and gas fuelling

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Nielsen, P.; Pasqualotto, R.; Drake, J. R.

    2002-08-01

    An extensive investigation of the global confinement properties in different operating scenarios in the rebuilt EXTRAP T2R reversed-field pinch (RFP) experiment is reported here. In particular, the role of a fast gas puff valve system, used to control plasma density, on confinement is studied. Without gas puffing, the electron density decays below 0.5×1019 m-3. The poloidal beta varies between 5% and 15%, decreasing at large I/N. The energy confinement time ranges from 70 to 225 μs. With gas puffing, the density is sustained at ne≈1.5×1019 m-3. However, a general slight deterioration of the plasma performances is observed for the same values of I/N: the plasma becomes cooler and more radiative. The poloidal beta is comparable to that in the scenarios without puff but the energy confinement time drops ranging from 60 to 130 μs. The fluctuation level and the energy confinement time have been found to scale with the Lundquist number as S-0.05+/-0.07 and S0.5+/-0.1, respectively. Mode rotation is typical for all the discharges and rotation velocity is observed to increase with increasing electron diamagnetic velocity.

  10. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  11. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  12. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  13. BX-U linear trap for one-way production and confinement of Li+ and e- plasmas

    NASA Astrophysics Data System (ADS)

    Himura, Haruhiko

    2016-03-01

    A modified version of the Penning-Malmberg trap was developed wherein both positive and negative harmonic potential wells were created by using multi-ring electrodes. The sequence of particle injection, particle trapping, and plasma extraction from the potential wells was controlled by a set of switching circuits. All the guns launching charged particles were collected together in one side of the linear trap. Nevertheless, pure electron (e-) and lithium-ion (Li+) plasmas were not only separately produced on the machine axis but also confined simultaneously. Preliminary data show that for B ≈ 0.13 T the e- plasma lasted for 15 s and the Li+ plasma lasted for ~ 4 s.

  14. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  15. Control of plasma stored energy for burn control using DIII-D in-vessel coils

    DOE PAGES

    Hawryluk, Richard J.; Eidietis, Nicholas W.; Grierson, Brian A.; ...

    2015-04-09

    A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator that modifies the confinement time can be used to adjust the fusion power. In relativelymore » low collisionality DIII-D discharges, the application of nonaxisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Furthermore, gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.« less

  16. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  17. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  18. Response of impurity particle confinement time to external actuators in QH-mode plasmas on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Garofalo, Andrea M.; ...

    2014-11-04

    A series of quiescent H-mode discharges have been executed with the specific aim of determining the particle confinement time of impurities in the presence of the edge harmonic oscillation. These discharges utilize non-intrinsic, non-recycling fully-stripped fluorine as the diagnostic species monitored by charge-exchange recombination spectroscopy. It is found that the EHO is an efficient means of impurity expulsion from the core plasma, with impurity exhaust rates comparable to or exceeding those in companion ELMing discharges. Furthermore, as the external torque from neutral beam injection is lowered, the global energy confinement time increases while the impurity confinement time does not displaymore » an increase.« less

  19. Is Onsager symmetry relevant in the transport equations for magnetically confined plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1991-03-01

    A global, algebraic view of the transport processes in a magnetically confined plasma is developed. Both the neoclassical (banana) and the anomalous transport matrices are represented in a factorized form, thus separating the roles of the dynamics and of the geometric constraints. The self-adjointness of the collision operator (the sole condition for classical Onsager symmetry) is shown to be a necessary, but not sufficient condition for this symmetry in confined plasmas. The latter results for the banana transport matrix from a delicate relationship between dynamic and geometric components. This structure is not present in the anomalous transport matrix, and themore » Onsager symmetry is broken in this case. It is stressed that the symmetry breaking does not violate any general principles.« less

  20. Identification of S VIII through S XIV emission lines between 17.5 and 50 nm in a magnetically confined plasma

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; García, R.; Hernández Sánchez, J.; Navarro, M.; Panadero, N.; Pastor, I.; Soleto, A.; the TJ-II Team

    2018-03-01

    43 spectral emission lines from F-like to Li-like sulphur ions have been identified in the wavelength range from 17.5 to 50 nm in spectra obtained following tracer injection into plasmas created in a magnetically confined plasma device, the stellarator TJ-II. Plasmas created and maintained in this heliac device with electron cyclotron resonance heating achieve central electron temperatures and densities up to 1.5 keV and 8 × 1018 m-3, respectively. Tracer injections were performed with ≤6 × 1016 atoms of sulphur contained within ˜300 μm diameter polystyrene capsules, termed tracer encapsulated solid pellets, using a gas propulsion system to achieve velocities between 250 and 450 m s-1. Once ablation of the exterior polystyrene shell by plasma particles is completed, the sulphur is deposited in the plasma core where it is ionized up to S+13 and transported about the plasma. In order to aid line identification, which is made using a number of atomic line emission databases, spectra are collected before and after injection using a 1 m focal length normal incidence spectrometer equipped with a CCD camera. This work is motivated by the need to clearly identify sulphur emission lines in the vacuum ultraviolet range of magnetically confined plasmas, as sulphur x-ray emission lines are regularly observed in both tokamak and stellarator plasmas.

  1. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  2. [Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].

    PubMed

    Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua

    2013-11-01

    The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.

  3. Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary.

    PubMed

    Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L

    2004-06-11

    A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

  4. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy.

    PubMed

    Hou, Zongyu; Wang, Zhe; Liu, Jianmin; Ni, Weidou; Li, Zheng

    2014-06-02

    Spark discharge has been proved to be an effective way to enhance the LIBS signal while moderate cylindrical confinement is able to increase the signal repeatability with limited signal enhancement effects. In the present work, these two methods were combined together not only to improve the pulse-to-pulse signal repeatability but also to simultaneously and significantly enhance the signal as well as SNR. Plasma images showed that the confinement stabilized the morphology of the plasma, especially for the discharge assisted process, which explained the improvement of the signal repeatability.

  5. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  6. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.

    PubMed

    Bang, W

    2015-07-01

    Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns.

  7. Stable confinement of electron plasma and initial results on positron injection in RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Kasaoka, N.; Sakamoto, W.; Nogami, T.

    2013-03-01

    The Ring Trap 1 (RT-1) device is a dipole field configuration generated by a levitated superconducting magnet. It offers very interesting opportunities for research on the fundamental properties on non-neutral plasmas, such as self-organization of charged particles in the strongly positive and negative charged particles on magnetic surfaces. When strong positron sources will be available in the future, the dipole field configuration will be potentially applicable to the formation of an electron-positron plasma. We have realized stable, long trap of toroidal pure electron plasma in RT-1; Magnetic levitation of the superconducting magnet resulted in more than 300s of confinement for electron plasma of ˜ 1011 m-3. Aiming for the confinement of positrons as a next step, we started a positron injection experiment. For the formation of positron plasma in the closed magnetic surfaces, one of the key issues to be solved is the efficient injection method of positron across closed magnetic surfaces. In contrast to linear configurations, toroidal configurations have the advantage that they are capable of trapping high energy positrons in the dipole field configuration and consider the possibility of direct trapping of positrons emitted from a 22Na source.

  8. A table top experiment to study plasma confined by a dipole magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Baitha, Anuj Ram

    2016-10-01

    There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.

  9. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.

    2016-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority. Programmable power supplies (PPS) are being developed to maximize inductive capability. Well-controlled flattops with current as low as 0.02 MA are produced with an existing PPS, and Ip <= 0.8 MA is anticipated with a second PPS under construction. The Lundquist number spans S =10(4 - 9) for 0.02-0.8 MA, allowing nonlinear MHD validation using NIMROD and DEBS at low S to be connected to highest S experiments. The PPS also enables MST tokamak operation for studying transients and runaway electron suppression with RMPs. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement plasmas. Fluctuations are measured with TEM properties including a density-gradient threshold larger than for tokamak plasmas. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. New diagnostics are being developed to measure the energetic ion profile and transport from EP instabilities with NBI. Supported by US DoE and NSF.

  10. Physics through the 1990s: Plasmas and fluids

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  11. Initial experimental test of a helicon plasma based mass filter

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-06-01

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.

  12. Overview of HIT-SI Results and Plans

    NASA Astrophysics Data System (ADS)

    Ennis, D. A.; Akcay, C.; Hansen, C. J.; Hicks, N. K.; Hossack, A. C.; Jarboe, T. R.; Marklin, G. J.; Nelson, B. A.; Victor, B. S.

    2011-10-01

    Experiments in the Helicity Injected Torus-Steady Inductive (HIT-SI) device have achieved record spheromak current amplification during operations in deuterium plasmas. HIT-SI investigates steady inductive helicity injection with the aim of forming and sustaining a high-beta equilibrium in a spheromak geometry using two semi-toroidal injectors. Recent operations in deuterium plasmas have produced toroidal plasma currents greater than 50 kA, with current amplifications (Itor / Iinj) > 3 , and poloidal flux amplifications (ψpol /ψinj) > 10 . High performance deuterium discharges are achieved by initially conditioning the plasma-facing alumina surface of the HIT-SI confinement volume with helium plasmas. During subsequent deuterium operation the alumina surface strongly pumps deuterium, thereby limiting the density in the confinement volume. Additional measurements during high current deuterium discharges demonstrate reduced current and electron density fluctuations, impurity O III ion temperatures up to 50 eV and a toroidal current persistence for 0.6 ms after the injectors are shut off. Progress and plans for the HIT-SI3 configuration, with three injectors mounted on the same side of the confinement volume, will also be presented. Work supported by USDoE and ARRA.

  13. Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tae; Romanelli, M.; Voitsekhovitch, I.; Koskela, T.; Conboy, J.; Giroud, C.; Maddison, G.; Joffrin, E.; contributors, JET

    2015-06-01

    A consistent deterioration of global confinement in H-mode experiments has been observed in JET [1] following the replacement of all carbon plasma facing components (PFCs) with an all metal (‘ITER-like’) wall (ILW). This has been correlated to the observed degradation of the pedestal confinement, as lower electron temperature (Te) values are routinely measured at the top of the edge barrier region. A comparative investigation of core heat transport in JET-ILW and JET-CW (carbon wall) discharges has been performed, to assess whether core confinement has also been affected by the wall change. The results presented here have been obtained by analysing a set of discharges consisting of high density JET-ILW H-mode plasmas and comparing them against their counterpart discharges in JET-CW having similar global operational parameters. The set contains 10 baseline ({βN}=1.5∼ 2 ) discharge-pairs with 2.7 T toroidal magnetic field, 2.5 MA plasma current, and 14 to 17 MW of neutral beam injection (NBI) heating. Based on a Te profile analysis using high resolution Thomson scattering (HRTS) data, the Te profile peaking (i.e. core Te (ρ = 0.3) / edge Te (ρ = 0.7)) is found to be similar, and weakly dependent on edge Te, for both JET-ILW and JET-CW discharges. When ILW discharges are seeded with N2, core and edge Te both increase to maintain a similar peaking factor. The change in core confinement is addressed with interpretative TRANSP simulations. It is found that JET-ILW H-mode plasmas have higher NBI power deposition to electrons and lower NBI power deposition to ions as compared to the JET-CW counterparts. This is an effect of the lower electron temperature at the top of the pedestal. As a result, the core electron energy confinement time is reduced in JET-ILW discharges, but the core ion energy confinement time is not decreased. Overall, the core energy confinement is found to be the same in the JET-ILW discharges compared to the JET-CW counterparts.

  14. Transport induced by large scale convective structures in a dipole-confined plasma.

    PubMed

    Grierson, B A; Mauel, M E; Worstell, M W; Klassen, M

    2010-11-12

    Convective structures characterized by E×B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  15. Equation of motion approach for describing allowed transitions in Ne and Al3+ under classical and quantum plasmas

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2018-04-01

    The equation of motion coupled cluster methodology within relativistic framework has been applied to analyze the electron correlation effects on the low lying dipole allowed excited states of Ne and Al3+ under classical and quantum plasma environments. The effect of confinement due to classical plasma has been incorporated through screened Coulomb potential, while that of quantum plasma has been treated by exponential cosine screened Coulomb potential. The confined structural properties investigated are the depression of ionization potential, low lying excitation energies (dipole allowed), oscillator strengths, transition probabilities, and frequency dependent polarizabilities under systematic variation of the plasma-atom coupling strength determined through the screening parameter. Specific atomic systems are chosen for their astrophysical importance and availability of experimental data related to laboratory plasma with special reference to Al3+ ion. Here, we consider 1 s22 s22 p6(1S0)→1 s22 s22 p5 n s /n d (1P1) (n =3 ,4 ) dipole allowed transitions of Ne and Al3+. Results for the free (isolated) atomic systems agree well with those available in the literature. Spectroscopic properties under confinement show systematic and interesting pattern with respect to plasma screening parameter.

  16. Helium Catalyzed D-D Fusion in a Levitated Dipole

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.

    2003-10-01

    Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.

  17. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  18. Enhanced confinement in electron cyclotron resonance ion source plasma.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  19. Bridging the PSI Knowledge Gap: A Multi-Scale Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian D.

    2015-01-08

    Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences,more » while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de-coupled extrapolation to a multi-scale, coupled approach. The PSI Plasma Center consisted of three equal co-centers; one located at the MIT Plasma Science and Fusion Center, one at UC San Diego Center for Energy Research and one at the UC Berkeley Department of Nuclear Engineering, which moved to the University of Tennessee, Knoxville (UTK) with Professor Brian Wirth in July 2010. The Center had three co-directors: Prof. Dennis Whyte led the MIT co-center, the UCSD co-center was led by Dr. Russell Doerner, and Prof. Brian Wirth led the UCB/UTK center. The directors have extensive experience in PSI and material research, and have been internationally recognized in the magnetic fusion, materials and plasma research fields. The co-centers feature keystone PSI experimental and modeling facilities dedicated to PSI science: the DIONISOS/CLASS facility at MIT, the PISCES facility at UCSD, and the state-of-the-art numerical modeling capabilities at UCB/UTK. A collaborative partner in the center is Sandia National Laboratory at Livermore (SNL/CA), which has extensive capabilities with low energy ion beams and surface diagnostics, as well as supporting plasma facilities, including the Tritium Plasma Experiment, all of which significantly augment the Center. Interpretive, continuum material models are available through SNL/CA, UCSD and MIT. The participating institutions of MIT, UCSD, UCB/UTK, SNL/CA and LLNL brought a formidable array of experimental tools and personnel abilities into the PSI Plasma Center. Our work has focused on modeling activities associated with plasma surface interactions that are involved in effects of He and H plasma bombardment on tungsten surfaces. This involved performing computational material modeling of the surface evolution during plasma bombardment using molecular dynamics modeling. The principal outcomes of the research efforts within the combined experimental – modeling PSI center are to provide a knowledgebase of the mechanisms of surface degradation, and the influence of the surface on plasma conditions.« less

  20. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Department of Mathematics and Statistics, University of Tromso

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond,more » Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.« less

  1. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  2. Final Report: Levitated Dipole Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routinemore » investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m -3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.« less

  3. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  4. Coronal Loops: Observations and Modeling of Confined Plasma.

    PubMed

    Reale, Fabio

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  5. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2017-01-01

    The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS) plasma sustained in a mixture of Kr with O2 , N2 , Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (˜1 V ) compared to pure Kr plasma (˜0.01 V ), with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  6. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  7. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  9. Initial experimental test of a helicon plasma based mass filter

    DOE PAGES

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less

  10. Implementation of a plasma-neutral model in NIMROD

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2016-10-01

    Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.

  11. Crossed-field divertor for a plasma device

    DOEpatents

    Kerst, Donald W.; Strait, Edward J.

    1981-01-01

    A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.

  12. Pellet fuelling requirements to allow self-burning on a helical-type fusion reactor

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Miyazawa, J.; Yamada, H.; Masuzaki, S.; Sagara, A.; the FFHR Design Group

    2012-08-01

    Pellet refuelling conditions to sustain a self-burning plasma have been investigated by extrapolating the confinement property of the LHD plasma, which appears to be governed by a gyro-Bohm-type confinement property. The power balance of the burning plasma is calculated taking into account the profile change with pellet deposition and subsequent density relaxation. A self-burning plasma is achieved within the scope of conventional pellet injection technology. However, a very small burn-up rate of 0.18% is predicted. Higher velocity pellet injection is effective in improving the burn-up rate by deepening particle deposition, whereas deep fuelling leads to undesirable fluctuation of the fusion output.

  13. Features of self-organized plasma physics in tokamaks

    NASA Astrophysics Data System (ADS)

    Razumova, K. A.

    2018-01-01

    The history of investigations the role of self-organization processes in tokamak plasma confinement is presented. It was experimentally shown that the normalized pressure profile is the same for different tokamaks. Instead of the conventional Fick equation, where the thermal flux is proportional to a pressure gradient, processes in the plasma are well described by the Dyabilanin’s energy balance equation, in which the heat flux is proportional to the difference of normalized gradients for self-consistent and real pressure profiles. The transport coefficient depends on the values of heat flux, which compensates distortion of the pressure profile with external impacts. Radiative cooling of the plasma edge decreases the heat flux and improves the confinement.

  14. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  15. Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassam, A.B.

    1999-10-01

    Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less

  16. Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Caspary, Kyle Jonathan

    Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.

  17. Optical emission spectroscopy of magnetically confined laser induced vanadium pentoxide (V2O5) plasma

    NASA Astrophysics Data System (ADS)

    Amin, Saba; Bashir, Shazia; Anjum, Safia; Akram, Mahreen; Hayat, Asma; Waheed, Sadia; Iftikhar, Hina; Dawood, Assadullah; Mahmood, Khaliq

    2017-08-01

    Optical emission spectra of a laser induced plasma of vanadium pentoxide (V2O5) using a Nd:YAG laser (1064 nm, 10 ns) in the presence and absence of the magnetic field of 0.45 T have been investigated. The effect of the magnetic field (B) on the V2O5 plasma at various laser irradiances ranging from 0.64 GW cm-2 to 2.56 GW cm-2 is investigated while keeping the pressure of environmental gases of Ar and Ne constant at 100 Torr. The magnetic field effect on plasma parameters of V2O5 is also explored at different delay times ranging from 0 μs to 10 μs for both environmental gases of Ar and Ne at the laser irradiance of 1.28 GW cm-2. It is revealed that both the emission intensity and electron temperature of the vanadium pentoxide plasma initially increase with increasing irradiance due to the enhanced energy deposition and mass ablation rate. After achieving a certain maximum, both exhibit a decreasing trend or saturation which is attributable to the plasma shielding effect. However, the electron density shows a decreasing trend with increasing laser irradiance. This trend remains the same for both cases, i.e., in the presence and in the absence of magnetic field and for both background gases of Ar and Ne. However, it is revealed that both the electron temperature and electron density of the V2O5 plasma are significantly enhanced in the presence of the magnetic field for both environments at all laser irradiances and delay times, and more pronounced effects are observed at higher irradiances. The enhancement in plasma parameters is attributed to the confinement as well as Joule heating effects caused by magnetic field employment. The confinement of the plasma is also confirmed by the analytically calculated value of magnetic pressure β, which is smaller than plasma pressure at all irradiances and delay times, and therefore confirms the validity of magnetic confinement of the V2O5 plasma.

  18. UCLA Tokamak Program Close Out Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reachingmore » a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.« less

  19. Plasma Confinement in the UCLA Electric Tokamak.

    NASA Astrophysics Data System (ADS)

    Taylor, Robert J.

    2001-10-01

    The main goal of the newly constructed large Electric Tokamak (R = 5 m, a = 1 m, BT < 0.25 T) is to access an omnigeneous, unity beta(S.C. Cowley, P.K. Kaw, R.S. Kelly, R.M. Kulsrud, Phys. fluids B 3 (1991) 2066.) plasma regime. The design goal was to achieve good confinement at low magnetic fields, consistent with the high beta goal. To keep the program cost down, we adopted the use of ICRF as the primary heating source. Consequently, antenna surfaces covering 1/2 of the surface of the tokamak has been prepared for heating and current drive. Very clean hydrogenic plasmas have been achieved with loop voltage below 0.7 volt and densities 3 times above the Murakami limit, n(0) > 8 x 10^12 cm-3 when there is no MHD activity. The electron temperature, derived from the plasma conductivity is > 250 eV with a central electron energy confinement time > 350 msec in ohmic conditions. The sawteeth period is 50 msec. Edge plasma rotation is induced by plasma biasing via electron injection in an analogous manner to that seen in CCT(R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P. Pribyl, D. Darrow, and M. Ono. Phys. Rev Lett. 63 2365 1989.) and the neoclassical bifurcation is close to that described by Shaing et al(K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63 2369 (1989).). In the ohmic phase the confinement tends to be MHD limited. The ICRF heating eliminates the MHD disturbances. Under second harmonic heating conditions, we observe an internal confinement peaking characterized by doubling of the core density and a corresponding increase in the central electron temperature. Charge exchange data, Doppler data in visible H-alpha light, and EC radiation all indicate that ICRF heating works much better than expected. The major effort is focused on increasing the power input and controlling the resulting equilibrium. This task appears to be easy since our current pulses are approaching the 3 second mark without RF heating or current drive. Our initial experience with current profile control, needed for high beta plasma equilibrium, will be also discussed.

  20. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  1. Local regulation of interchange turbulence in a dipole-confined plasma torus using current-collection feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, T. M., E-mail: tmr2122@columbia.edu; Mauel, M. E., E-mail: mauel@columbia.edu; Worstell, M. W.

    2015-05-15

    Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations with complex dynamics and short spatial coherence. We report the first use of local current-collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of turbulence regulation is limited to a correlation length near the collector. Changing the gain and phase of collection results in power either extracted from or injected into the turbulence. The measured plasma response shows some agreement with calculations of the linear response of global interchange-like MHD and entropy modes to current-collection feedback.

  2. A numerical study of neutral-plasma interaction in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2017-10-01

    Interactions between plasma and neutral species can have a large effect on the dynamic behavior of magnetically confined plasma devices, such as the edge region of tokamaks and the plasma formation of Z-pinches. The presence of neutrals can affect the stability of the pinch and change the dynamics of the pinch collapse, and they can lead to deposition of high energy particles on the first wall. However, plasma-neutral interactions can also have beneficial effects such as quenching the disruptions in tokamaks. In this research a reacting plasma-neutral model, which combines a magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model, is used to study the interaction between plasma and neutral gas. Incorporating this model into NIMROD allows the study of electron-impact ionization, radiative recombination, and resonant charge-exchange in plasma-neutral systems. An accelerated plasma moving through a neutral gas background is modeled in both a parallel plate and a coaxial electrode configuration to explore the effect of neutral gas in pinch-like devices. This work is supported by a Grant from US DOE.

  3. Observation of finite-. beta. MHD phenomena in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, K.M.

    1984-09-01

    Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1more » internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.« less

  4. Physics objectives of PI3 spherical tokamak program

    NASA Astrophysics Data System (ADS)

    Howard, Stephen; Laberge, Michel; Reynolds, Meritt; O'Shea, Peter; Ivanov, Russ; Young, William; Carle, Patrick; Froese, Aaron; Epp, Kelly

    2017-10-01

    Achieving net energy gain with a Magnetized Target Fusion (MTF) system requires the initial plasma state to satisfy a set of performance goals, such as particle inventory (1021 ions), sufficient magnetic flux (0.3 Wb) to confine the plasma without MHD instability, and initial energy confinement time several times longer than the compression time. General Fusion (GF) is now constructing Plasma Injector 3 (PI3) to explore the physics of reactor-scale plasmas. Energy considerations lead us to design around an initial state of Rvessel = 1 m. PI3 will use fast coaxial helicity injection via a Marshall gun to create a spherical tokamak plasma, with no additional heating. MTF requires solenoid-free startup with no vertical field coils, and will rely on flux conservation by a metal wall. PI3 is 5x larger than SPECTOR so is expected to yield magnetic lifetime increase of 25x, while peak temperature of PI3 is expected to be similar (400-500 eV) Physics investigations will study MHD activity and the resistive and convective evolution of current, temperature and density profiles. We seek to understand the confinement physics, radiative loss, thermal and particle transport, recycling and edge physics of PI3.

  5. Experimental Studies of Compact Toroidal Plasma on BCTX

    NASA Astrophysics Data System (ADS)

    Morse, Edward C.; Coomer, Eric D.; Hartman, Charles W.

    1998-11-01

    The Berkeley Compact Toroid Experiment (BCTX) is a spheromak-type magnetically confined fusion confinement experiment. The plasma is formed using a Marshall gun and injected into a 70 cm diameter copper flux conserver. The BCTX device has an RF heating sy stem which can deliver twenty megawatts of RF power for 100 μs pulse length. The RF system operates at 450 MHz, and energy is coupled into the plasma by lower hybrid waves. The purpose of the experiment is to assess the energy-confining capability of the spheromak plasma configuration by using the RF power as a heat pulse and determining the decay rate of the plasma temperature following the heat pulse. Electron temperatures up to 150 eV have been measured in BCTX using Thomson scattering. Core dens ities have been measured with the Raman-calibrated Thomson system in the 2 arrow 5 × 10^14 per cc range. Other diagnostics include magnetic probes, a laser interferometer electron density measurement, three UV spectrometers for impurity l ine radiation, and an ion Doppler temperature measurement. Some data will be presented which shows the effects of an axial pinch being present in the device, giving the device a nonzero q at the wall.

  6. Isotope Mass Scaling of Turbulence and Transport

    NASA Astrophysics Data System (ADS)

    McKee, George; Yan, Zheng; Gohil, Punit; Luce, Tim; Rhodes, Terry

    2017-10-01

    The dependence of turbulence characteristics and transport scaling on the fuel ion mass has been investigated in a set of hydrogen (A = 1) and deuterium (A = 2) plasmas on DIII-D. Normalized energy confinement time (B *τE) is two times lower in hydrogen (H) plasmas compare to similar deuterium (D) plasmas. Dimensionless parameters other than ion mass (A) , including ρ*, q95, Te /Ti , βN, ν*, and Mach number were maintained nearly fixed. Matched profiles of electron density, electron and ion temperature, and toroidal rotation were well matched. The normalized turbulence amplitude (ñ / n) is approximately twice as large in H as in D, which may partially explain the increased transport and reduced energy confinement time. Radial correlation lengths of low-wavenumber density turbulence in hydrogen are similar to or slightly larger than correlation lengths in the deuterium plasmas and generally scale with the ion gyroradius, which were maintained nearly fixed in this dimensionless scan. Predicting energy confinement in D-T burning plasmas requires an understanding of the large and beneficial isotope scaling of transport. Supported by USDOE under DE-FG02-08ER54999 and DE-FC02-04ER54698.

  7. A model for inferring transport rates from observed confinement times in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.

    1985-03-01

    A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.

  8. Scientific program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerich, C.

    1983-01-01

    The Fifth International Conference on High-Power Particle Beams is organized jointly by the Lawrence Livermore National Laboratory and Physics International Company. As in the previous conferences in this series, the program includes the following topics: high-power, electron- and ion-beam acceleration and transport; diode physics; high-power particle beam interaction with plasmas and dense targets; particle beam fusion (inertial confinement); collective ion acceleration; particle beam heating of magnetically confined plasmas; and generation of microwave/free-electron lasers.

  9. Banana fluxes in the plateau regime for a nonaxisymmetrically confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Fantechi, S.

    1990-09-01

    The banana (or banana-plateau) fluxes, related to the generalized stresses {l angle}{bold B}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle}, {l angle}{bold B}{sub {ital T}}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle} have been determined in the plateau regime, for a plasma confined by a toroidal magnetic field of arbitrary geometry. The complete set of transport coefficients for both the parallel'' (ambipolar) and toroidal'' (nonambipolar) banana fluxes was obtained in the 13-moment (13M) approximation, going beyond the previously known expressions in the nonaxisymmetric case. The main emphasis is laid on the structure of the transport matrix and of its coefficients. It is shown thatmore » the Onsager symmetry of this matrix partly breaks down (for the mixed electron--ion coefficients) in a nonaxisymmetrically confined plasma.« less

  10. Boundary perturbations coupled to core 3/2 tearing modes on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Yu, L.; Domier, C. W.; Luhmann, N. C., Jr.; Austin, M. E.; Paz-Soldan, C.; Turnbull, A. D.; Classen, I. G. J.; the DIII-D Team

    2013-09-01

    High confinement (H-mode) discharges on the DIII-D tokamak are routinely subject to the formation of long-lived, non-disruptive magnetic islands that degrade confinement and limit fusion performance. Simultaneous, 2D measurement of electron temperature fluctuations in the core and edge regions allows for reconstruction of the radially resolved poloidal mode number spectrum and phase of the global plasma response associated with these modes. Coherent, n = 2 excursions of the plasma boundary are found to be the result of coupling to an n = 2, kink-like mode which arises locked in phase to the 3/2 island chain. This coupling dictates the relative phase of the displacement at the boundary with respect to the tearing mode. This unambiguous phase relationship, for which no counter-examples are observed, is presented as a test for modeling of the perturbed fields to be expected outside the confined plasma.

  11. Anomalous current diffusion and improved confinement in the HT-6M tohamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, J. G.; Wan, Y. X.; Huo, Y. P.; Guo, W. K.; Fan, S. P.; Yu, C. X.; Luo, J. R.; Yin, F. X.; Meng, Y. D.; Zheng, L.; Yin, F.; Lin, B. L.; Zhang, S. Y.; Wang, S. Y.; Lu, H. J.; Liu, S. X.; Tong, X. D.; Ding, L. C.; Wu, Z. Y.; Yin, X. J.; Guo, Q. L.; Gong, X. Z.; Wu, X. C.; Zhao, J. Y.; Xi, J. S.

    1994-10-01

    Current diffusion was studied during edge ohmic heating (EOH) experiments in the HT-6M tokamak. The EOH power system makes the plasma current linearly ramp up from an initial steady state ( Ip=55kA) to a second steady state ( Ip=60kA) at a fast ramp rate of 12 MA/s. A stable discharge of an improved confinement was observed experimentally in the HT-6M tokamak after the plasma current was ramped to rise rapidly to a second steady state. The plasma current is ramped up much faster than both the classical skin time and neoclassical skin time. Fast current ramp up increases the anomalous current diffusion. The measured values of {β P+l i}/{2} and the soft X-ray sawtooth inversion radius imply the anomalous current penetration. The mechanism of anomalous penetration and improved confinement is discussed.

  12. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance.

    PubMed

    Guia, Sophie; Jaeger, Baptiste N; Piatek, Stefan; Mailfert, Sébastien; Trombik, Tomasz; Fenis, Aurore; Chevrier, Nicolas; Walzer, Thierry; Kerdiles, Yann M; Marguet, Didier; Vivier, Eric; Ugolini, Sophie

    2011-04-05

    Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.

  13. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  14. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    NASA Astrophysics Data System (ADS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  15. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    PubMed

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  16. Overview of transport, fast particle and heating and current drive physics using tritium in JET plasmas

    NASA Astrophysics Data System (ADS)

    Stork, D.; Baranov, Yu.; Belo, P.; Bertalot, L.; Borba, D.; Brzozowski, J. H.; Challis, C. D.; Ciric, D.; Conroy, S.; de Baar, M.; de Vries, P.; Dumortier, P.; Garzotti, L.; Hawkes, N. C.; Hender, T. C.; Joffrin, E.; Jones, T. T. C.; Kiptily, V.; Lamalle, P.; Mailloux, J.; Mantsinen, M.; McDonald, D. C.; Nave, M. F. F.; Neu, R.; O'Mullane, M.; Ongena, J.; Pearce, R. J.; Popovichev, S.; Sharapov, S. E.; Stamp, M.; Stober, J.; Surrey, E.; Valovic, M.; Voitsekhovitch, I.; Weisen, H.; Whiteford, A. D.; Worth, L.; Yavorskij, V.; Zastrow, K.-D.; EFDA contributors, JET

    2005-10-01

    Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (nT/nD < 3%). Thermal tritium particle transport coefficients (DT, vT) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q95 ~ 2.8 and triangularity δ = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, ν* and β) and bulk energy confinement (decreases with ν* and is independent of β). In an extended ELMy H-mode data set, with ρ*, ν*, β and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives DT/Bphi ~ ρ*2.46ν*-0.23β-1.01q2.03. In hybrid scenarios (qmin ~ 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of DT with high values of vT is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (\\rho_{\\theta}^\\ast=q\\rho^{\\ast}) in a manner close to gyro-Bohm ({\\sim}\\rho_{\\theta}^{\\ast 3}) , with an added inverse β dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into JET CH plasmas. γ-rays from the reactions of fusion alpha and beryllium impurities (9Be(α, nγ)12C) characterized the fast fusion-alpha population evolution. The γ-decay times are consistent with classical alpha plus parent fast triton slowing down times (τTs + ταs) for high plasma currents (Ip > 2 MA) and monotonic q-profiles. In CH discharges the γ-ray emission decay times are much lower than classical (τTs+ταs), indicating alpha confinement degradation, due to the orbit losses and particle orbit drift predicted by a 3-D Fokker-Planck numerical code and modelled using TRANSP.

  17. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    NASA Astrophysics Data System (ADS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  18. Behavior of moving plasma in solenoidal magnetic field in a laser ion source.

    PubMed

    Ikeda, S; Takahashi, K; Okamura, M; Horioka, K

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  19. The effect of severe starvation and captivity stress on plasma thyroxine and triiodothyronine concentrations in an antarctic bird (emperor penguin).

    PubMed

    Groscolas, R; Leloup, J

    1989-01-01

    The effect of confinement and severe starvation on the plasma thyroxine (T4) and triiodothyronine (T3) concentrations was determined in emperor penguins (Aptenodytes forsteri). During their annual cycle, emperor penguins fast freely for periods of up to 4 months and may thus represent a unique subject to study endocrine adaptations to fasting. Plasma T4 concentrations progressively decreased following capture and confinement of naturally fasting penguins, and within 15-20 days stabilized at levels three times lower than in free-living penguins. A transient fourfold increase in plasma T3 concentration developed within the day following confinement in parallel with a rise in daily body mass loss. Both plasma T3 concentration and mass loss subsided to normal levels within 15 days. The decrease in plasma T4 concentration is in accordance with the well-known inhibitory effect of stress on thyroid function in birds and mammals, whereas the transient increase in plasma T3 concentration seems related to enhancement of energy expenditure as a consequence of restlessness. Starvation severe enough to exhaust fat stores and to activate protein catabolism induced a 6- and 5 to 10-fold fall in plasma T4 and T3, respectively. This is in marked contrast with maintenance of plasma thyroid levels during long-term natural fasting associated with protein sparing (R. Groscolas and J. Leloup (1986) Gen. Comp. Endocrinol. 63, 264-274). Surprisingly, there was a final reincrease in plasma T4 concentration in very lean penguins. These results suggest that the effect of starvation on plasma thyroid hormones seems to depend on how much protein catabolism is activated and demonstrate the acute sensitivity of thyroid hormone balance to stress in penguins.

  20. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    NASA Astrophysics Data System (ADS)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  1. Effect of stress during handling, seawater acclimation, confinement, and induced spawning on plasma ion levels and somatolactin-expressing cells in mature female Liza ramada.

    PubMed

    Khalil, Noha A; Hashem, Amal M; Ibrahim, Amal A E; Mousa, Mostafa A

    2012-08-01

    The present experiments were designed to determine the effect of different stress factors; handling, seawater acclimation, confinement, and induced spawning on plasma cortisol, hydro mineral balance as well as changes in size, number and integrated intensity of somatolactin (SL)-expressing cells in Liza ramada mature females confined to fresh water ponds. The plasma levels of cortisol, PO(4)(3-), Na(+), and K(+) were higher, while Ca(2+) and Mg(2+) were lower than controls during transportation without anesthesia. By using clove oil (5 mg L(-1)) as an anesthetic during transportation, the plasma cortisol, PO(4) (3-), Na(+), and K(+) were similar to controls, while Ca(2+) and Mg(2+) were higher. During seawater acclimation, the plasma cortisol and minerals were significantly higher except Na(+) which was lower than controls. In addition, during induction of spawning, the plasma levels of cortisol, PO(4)(3-), Na(+), K(+), and Mg(2+) were significantly higher than controls. The SL-producing cells are located in the pars intermedia (PI) bordering the neurohypophysis. The stress affected the number, size, and immunostaining of SL-expressing cells. During seawater acclimation, the size and the integrated intensity of SL immunoreactivity were lower, but the number of these cells was higher than controls. Furthermore, the number, size, and the integrated intensity of SL immunoreactivity were significantly lower than controls during handling and after spawning, which was opposite to confinement. The response of SL-expressing cells in PI in parallel with changes in cortisol and hydro mineral balance induced by stress support the possible role of SL in the adaptive response of fish to stress. © 2012 WILEY PERIODICALS, INC.

  2. Double layer field shaping systems for toroidal plasmas

    DOEpatents

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  3. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  4. Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.

    2016-05-01

    The nature of the multi-modal n  =  2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n  =  2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n  =  2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.

  5. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE PAGES

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...

    2016-03-31

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  6. Avoiding Tokamak Disruptions by Applying Static Magnetic Fields That Align Locked Modes with Stabilizing Wave-Driven Currents [Avoiding Tokamak Disruptions by Magnetically Aligning Locked Modes with Stabilizing Wave-Driven Currents

    DOE PAGES

    Volpe, F. A.; Hyatt, Alan; La Haye, Robert J.; ...

    2015-10-19

    The international ITER tokamak has the objective of demonstrating the scientific feasibility of magnetic confinement fusion as a source of energy. A concern towards the achievement of this goal is represented by major disruptions: complete losses of confinement often initiated by a non-rotating ('locked') magnetic island created by magnetic reconnection. During disruptions, energy and particles accumulated in the plasma volume over many seconds are lost in a few milliseconds and released on the plasma-facing materials. In addition, multi-MA level currents flowing in the tokamak plasma for its sustainment and confinement are lost, also in milliseconds, thus terminating the plasma dischargemore » and causing electromagnetic stresses that, if unmitigated, could lead to excessive device wear. Moreover it is shown that magnetic perturbations can be used to avoid disruptions by "guiding" the magnetic island to lock in a position where it is accessible to millimetre wave beams that fully stabilize it.« less

  7. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Max Planck Institute for the Physics of Complex Systems, Dresden

    2014-06-15

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as doesmore » the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.« less

  8. Studies of copper and gold vapour lasers

    NASA Astrophysics Data System (ADS)

    Clark, Graeme Lawrence

    The work described in this thesis covers various aspects of pulsed copper and gold vapour lasers. The work is divided into four main parts : a computer model of the kinetics of the copper vapour laser discharge; construction and characterization of a copper vapour laser and a gold vapour laser system (to be used for photodynamic cancer treatment); analysis of the thermal processes occurring in the various forms of thermal insulation used in these lasers; and studies of the use of metal walls to confine a discharge plasma. The results of this work were combined in the design of the first copper vapour laser to use metal rather than an electrically insulating ceramic material for confinement of the discharge plasma. Laser action in copper vapour has been achieved in a number of metal-walled designs, with continuous lengths of metal ranging from 30 mm, in a segmented design, to 400 mm, where the discharge plasma was confined by two molybdenum tubes of this length. A theoretical explanation of the behaviour of plasmas in metal-walled discharge vessels is described.

  9. Modelling of radiation impact on ITER Beryllium wall

    NASA Astrophysics Data System (ADS)

    Landman, I. S.; Janeschitz, G.

    2009-04-01

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  10. Magnetic bucket for rotating unmagnetized plasma.

    PubMed

    Katz, Noam; Collins, Cami; Wallace, John; Clark, Mike; Weisberg, David; Jara-Almonte, Jon; Reese, Ingrid; Wahl, Carl; Forest, Cary

    2012-06-01

    A new experiment is described which generates flow in unmagnetized plasma. Confinement is provided by a cage of permanent magnets, arranged to form an axisymmetric, high-order, multipolar magnetic field. This field configuration-sometimes called a "magnetic bucket"-has a vanishingly small field in the core of the experiment. Toroidal rotation is driven by J × B forces applied in the magnetized edge. The cross-field current that is required for this forcing flows from anodes to thermionic cathodes, which are inserted between the magnet rings. The rotation at the edge reaches 3 km/s and is viscously coupled to the unmagnetized core plasma. We describe the conditions necessary for rotation, as well as a 0-dimensional power balance used to understand plasma confinement in the experiment.

  11. Numerical modelling of electromagnetic loads on fusion device structures

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  12. Improved Confinement by Edge Multi-pulse Turbulent Heating on HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; Luo, Jia-rong; Li, Jian-gang; Pan, Yuan; Wang, Mao-quan; Liu, Bao-hua; Wan, Yuan-xi; Li, Qiang; Wu, Xin-chao; Liang, Yun-feng; Xu, Yu-hong; Yu, Chang-xuan

    1997-10-01

    In the recent experiment on HT-6M tokamak, an improved ohmic confinement phase has been observed after application of the edge multi-pulse turbulent heating, and variance of plasma current ΔIp/Ip is about 14-20%. The improved edge plasma confinement phase is characterized by (a) increased average electron density bar Ne and electron temperature Te; (b) reduced Hα radiation from the edge; (c) steeper density and temperature profiles at the edge; (d) a more negative radial electric field over a region of ~ 5 mm deep inside the limiter; (e) a deeper electrostatic potential well at the edge; (f) reduced magnetic fluctuations at the edge.

  13. Improved confinement in highly powered high performance scenarios on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Osborne, T.; Fenstermacher, M. E.; Ferron, J.; Groebner, R.; Grierson, B.; Holcomb, C.; Lasnier, C.; Leonard, A.; Luce, T.; Makowski, M.; Turco, F.; Solomon, W.; Victor, B.; Watkins, J.

    2017-08-01

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95  =  6, P IN up to 15 MW, H 98  =  1.4-1.8, and β N  =  2.5-4.0. The ion B   ×  \

  14. Effect of 3-D magnetic fields on neutral particle fueling and exhaust in MAST

    NASA Astrophysics Data System (ADS)

    Flesch, Kurt; Kremeyer, Thierry; Waters, Ian; Schmitz, Oliver; Kirk, Andrew; Harrison, James

    2017-10-01

    The application of resonant magnetic perturbations (RMPs) is used to suppress edge localized modes but causes in many cases a density pump-out. At MAST, this particle pump out was found to be connected to an amplifying MHD plasma response. An analysis is presented on past MAST discharges to understand the effect of these RMPs on the neutral household and on changes in neutral fueling and exhaust during the pump out. A global, 0-D particle balance model was used to study the neutral dynamics and plasma confinement during shots with and without RMP application. Using the D α emission measured by filterscopes and a calibrated 1-D CCD camera, as well as S/XB coefficients determined by the edge plasma parameters, globally averaged ion confinement times were calculated. In L-mode, discharges with RMPs that caused an MHD response had a 15-20% decrease in confinement time but an increase in total recycling flux. The application of RMPs in H-mode caused either a decrease or no change in confinement, like those in L-mode, depending on the configuration of the RMPs and plasma response. A spectroscopically assisted Penning gauge is being prepared for the next campaign at MAST-U to extend this particle balance to study impurity exhaust with RMPs. This work was funded in part by the U.S. DoE under Grant DE-SC0012315.

  15. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, Charles W.; Shearer, James W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  16. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  17. Mirror-field confined compact plasma source using permanent magnet for plasma processings.

    PubMed

    Goto, Tetsuya; Sato, Kei-Ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 10 11 cm -3 could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  18. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohydrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regime where microinstabilities could potentially be significant.

  19. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohdrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regine where microinstabilities could potentially be significant.

  20. Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.

    2007-06-01

    An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.

  1. Stable sustainment of plasmas with electron internal transport barrier by ECH in the LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Marushchenko, N. B.; Seki, R.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Akiyama, T.; Tanaka, K.; Tokuzawa, T.; Yamada, I.; Yamada, H.; Mutoh, T.; Takeiri, Y.; the LHD Experiment Group

    2018-02-01

    The long pulse experiments in the Large Helical Device has made progress in sustainment of improved confinement states. It was found that steady-state sustainment of the plasmas with improved confinement at the core region, that is, electron internal transport barrier (e-ITB), was achieved with no significant difficulty. Sustainment of a plasma having e-ITB with the line average electron density n e_ave of 1.1 × 1019 m-3 and the central electron temperature T e0 of ˜3.5 keV for longer than 5 min only with 340 kW ECH power was successfully demonstrated.

  2. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  3. Observation of Oscillatory Radial Electric Field Relaxation in a Helical Plasma.

    PubMed

    Alonso, J A; Sánchez, E; Calvo, I; Velasco, J L; McCarthy, K J; Chmyga, A; Eliseev, L G; Estrada, T; Kleiber, R; Krupnik, L I; Melnikov, A V; Monreal, P; Parra, F I; Perfilov, S; Zhezhera, A I

    2017-05-05

    Measurements of the relaxation of a zonal electrostatic potential perturbation in a nonaxisymmetric magnetically confined plasma are presented. A sudden perturbation of the plasma equilibrium is induced by the injection of a cryogenic hydrogen pellet in the TJ-II stellarator, which is observed to be followed by a damped oscillation in the electrostatic potential. The waveform of the relaxation is consistent with theoretical calculations of zonal potential relaxation in a nonaxisymmetric magnetic geometry. The turbulent transport properties of a magnetic confinement configuration are expected to depend on the features of the collisionless damping of zonal flows, of which the present Letter is the first direct observation.

  4. Collisionality dependence and ion species effects on heat transport in He and H plasma, and the role of ion scale turbulence in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nagaoka, K.; Murakami, S.; Takahashi, H.; Osakabe, M.; Yokoyama, M.; Seki, R.; Michael, C. A.; Yamaguchi, H.; Suzuki, C.; Shimizu, A.; Tokuzawa, T.; Yoshinuma, M.; Akiyama, T.; Ida, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Kobayashi, T.; Yamada, H.; Du, X. D.; Vyacheslavov, L. N.; Mikkelsen, D. R.; Yun, G. S.; the LHD Experimental Group

    2017-11-01

    Surveys of the ion and electron heat transports of neutral beam (NB) heating plasma were carried out by power balance analysis in He and H rich plasma at LHD. Collisionality was scanned by changing density and heating power. The characteristics of the transport vary depending on collisionality. In low collisionality, with low density and high heating power, an ion internal transport barrier (ITB) was formed. The ion heat conductivity (χ i) is lower than electron heat conductivity (χ e) in the core region at ρ  <  0.7. On the other hand, in high collisionality, with high density and low heating power, χ i is higher than χ e across the entire range of plasma. These different confinement regimes are associated with different fluctuation characteristics. In ion ITB, fluctuation has a peak at ρ  =  0.7, and in normal confinement, fluctuation has a peak at ρ  =  1.0. The two confinement modes change gradually depending on the collisionality. Scans of concentration ratio between He and H were also performed. The ion confinement improvements were investigated using gyro-Bohm normalization, taking account of the effective mass and charge. The concentration ratio affected the normalized χ i only in the edge region (ρ ~ 1.0). This indicates ion species effects vary depending on collisionality. Turbulence was modulated by the fast ion loss instability. The modulation of turbulence is higher in H rich than in He rich plasma.

  5. Preliminary studies for a beam-generated plasma neutralizer test in NIO1

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.

    2017-08-01

    The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.

  6. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas

    PubMed Central

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2016-01-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128

  7. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-01

    Runaway electrons with energies >100 keV are observed with the appearance of an m =1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m =1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  8. Manipulating Energetic Ion Velocity Space to Control Instabilities and Improve Tokamak Performance

    NASA Astrophysics Data System (ADS)

    Pace, David C.

    2017-10-01

    The first-ever demonstration of independent current (I) and voltage (V) control of high power neutral beams in tokamak plasma shots has successfully reduced the prevalence of instabilities and improved energetic ion confinement in experiments at the DIII-D tokamak. Energetic ions drive Alfvén eigenmode (AE) instabilities through a resonant energy exchange that can increase radial diffusion of the ions, thereby reducing beam heating and current drive efficiency. This resonance is incredibly sensitive to the ion velocity and orbit topology, which then allows changes in beam voltage (keeping the injected power constant through compensating changes in current) to remove nearly all instability drive. The implementation of temporal control of beam current and voltage allows for a reduction in the resonant energetic ion velocity space while maintaining the ability to inject maximum power. DIII-D low confinement (L-mode) plasmas demonstrate a nearly complete avoidance of AE activity in plasmas with 55 kV beam injection compared to the many AEs that are observed in plasmas featuring similar total beam power at 70 kV. Across the experimental range of beam settings, resulting increases in beam divergence have been inconsequential. High performance steady-state scenarios featuring equilibria that are conducive to dense arrays of Alfvén waves benefit the most from instability control mechanisms. One such scenario, the so-called high qmin scenario, demonstrates improved confinement and equilibrium evolution when the injected beam voltage begins at lower values (i.e., fewer resonances) and then increases as the plasma reaches its stationary period. These results suggest a future in which plasma confinement and performance is improved through continuous feedback control of auxiliary heating systems such that the energetic ion distribution is constantly adapted to produce an optimal plasma state. Work supported by US DOE under DE-FC02-04ER54698.

  9. Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.

    2015-09-15

    A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less

  10. Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  11. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress.

    PubMed

    Kiilerich, Pia; Servili, Arianna; Péron, Sandrine; Valotaire, Claudiane; Goardon, Lionel; Leguen, Isabelle; Prunet, Patrick

    2018-03-01

    This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  13. α Heating in a Stagnated Z-pinch

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-01

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear α particles which are confined by the strong magnetic field of the Z-pinch.

  14. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  15. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  16. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  17. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE PAGES

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-04-20

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  18. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.

    2016-11-01

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

  19. Operational Characteristics of Liquid Lithium Divertor in NSTX

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  20. Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.

    2012-06-01

    The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.

  1. Langmuir Probe Measurements in a Grid-Assisted Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Sagás, Julio César; Pessoa, Rodrigo Sávio; Maciel, Homero Santiago

    2018-02-01

    The grid-assisted magnetron sputtering is a variation of the magnetron sputtering commonly used for thin film deposition. In this work, Langmuir probe measurements were performed in such a system by using the grid under two basic and practical electrical conditions, i.e., floating and grounded. The results show that grounding the grid leads to an enhancement of the plasma confinement and to increases in both floating and plasma potential, as inferred from the probe characteristics. The grounded grid drains electrons from the plasma, acting as an auxiliary anode and reducing the plasma diffusion toward the chamber walls. For the same discharge current, the improved confinement results in a lower electron temperature when compared to floating condition, although the electron densities are comparable in both cases.

  2. Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings.

    PubMed

    Oliver, James B; Kupinski, Pete; Rigatti, Amy L; Schmid, Ansgar W; Lambropoulos, John C; Papernov, Semyon; Kozlov, Alexei; Spaulding, John; Sadowski, Daniel; Chrzan, Z Roman; Hand, Robert D; Gibson, Desmond R; Brinkley, Ian; Placido, Frank

    2011-03-20

    Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.

  3. Radio Frequency (RF) Trap for Confinement of Antimatter Plasmas Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Pearson, J. Boise

    2004-01-01

    Perturbations associated with a rotating wall electric field enable the confinement of ions for periods approaching weeks. This steady state confinement is a result of a radio frequency manipulation of the ions. Using state-of-the-art techniques it is shown that radio frequency energy can produce useable manipulation of the ion cloud (matter or antimatter) for use in containment experiments. The current research focuses on the improvement of confinement systems capable of containing and transporting antimatter.

  4. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  5. Dynamics of electrostatic fluctuations in the edge plasma in the U-3M torsatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olshansky, V. V.; Stepanov, K. N.; Tarasov, M. I.

    2010-10-15

    Results are presented from experimental and theoretical investigations of oscillatory and wave phenomena observed in the edge region in the U-3M torsatron during plasma creation and heating by an RF discharge in the ICR frequency range, accompanied by a transition to improved confinement. The main results are reported of diagnostic measurements of the spectral composition of oscillations, as well as of how the phase and amplitude relationships depend on time and on the RF power during its injection into the plasma. The measurements were carried out with electrostatic probes positioned at the edge of the plasma confinement region. The experimentalmore » results are interpreted using the kinetic theory of the electron-ion parametric instability of a plasma in the ion cyclotron frequency range and are compared with the results of numerical simulations.« less

  6. Vibrational modes of thin oblate clouds of charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Spencer, Ross L.

    2002-07-01

    A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.

  7. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechana, A.; Thamboon, P.; Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides highmore » flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.« less

  8. Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team

    2018-03-01

    The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.

  9. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmore » one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.« less

  10. Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephey, L.; Bader, A.; Effenberg, F.

    Tmore » he edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τ p * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. he fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. he X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τ p * and τ p decrease by 10 % – 25 % depending on plasma density. he τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. hese findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. his process is also effective for the control of effective helium exhaust times, as τ p , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τ p , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. Finally, however, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.« less

  11. Formation and extraction of a dense plasma jet from a helicon-plasma-injected inertial electrostatic confinement device

    NASA Astrophysics Data System (ADS)

    Ulmen, Benjamin Adam

    An inertial electrostatic confinement (IEC) device has several pressure and grid-geometry dependent modes of operation for the confinement of plasma. Although the symmetric grid star-mode is the most often studied for its application to fusion, the asymmetric grid jet-mode has its own potential application for electric space propulsion. The jet-mode gets its name from the characteristic bright plasma jet emanating from the central grid. In this dissertation work, a full study was undertaken to provide an understanding on the formation and propagation of the IEC plasma jet-mode. The IEC device vacuum system and all diagnostics were custom assembled during this work. Four diagnostics were used to measure different aspects of the jet. A spherical plasma probe was used to explore the coupling of an external helicon plasma source to the IEC device. The plasma current in the jet was measured by a combination of a Faraday cup and a gridded energy analyzer (GEA). The Faraday cup also included a temperature sensor for collection of thermal power measurements used to compute the efficiency of the IEC device in coupling power into the jet. The GEA allowed for measurement of the electron energy spectra. The force provided by the plasma jet was measured using a piezoelectric force sensor. Each of these measurements provided an important window into the nature of the plasma jet. COMSOL simulations provided additional evidence needed to create a model to explain the formation of the jet. It will be shown that the jet consists of a high energy electron beam having a peak energy of approximately half of the full grid potential. It is born near the aperture of the grid as a result of the escaping core electrons. Several other attributes of the plasma jet will be presented as well as a way forward to utilizing this device and operational mode for future plasma space propulsion.

  12. Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators

    DOE PAGES

    Stephey, L.; Bader, A.; Effenberg, F.; ...

    2018-05-29

    Tmore » he edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τ p * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. he fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. he X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τ p * and τ p decrease by 10 % – 25 % depending on plasma density. he τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. hese findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. his process is also effective for the control of effective helium exhaust times, as τ p , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τ p , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. Finally, however, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.« less

  13. Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators

    NASA Astrophysics Data System (ADS)

    Stephey, L.; Bader, A.; Effenberg, F.; Schmitz, O.; Wurden, G. A.; Anderson, D. T.; Anderson, F. S. B.; Biedermann, C.; Dinklage, A.; Feng, Y.; Frerichs, H.; Fuchert, G.; Geiger, J.; Harris, J. H.; König, R.; Kornejew, P.; Krychowiak, M.; Lore, J. D.; Unterberg, E. A.; Waters, I.; W7-X Team

    2018-06-01

    The edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τp * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. The fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. The X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τp * and τp decrease by 10 % - 25 % depending on plasma density. The τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. These findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. This process is also effective for the control of effective helium exhaust times, as τp , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τp , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. However, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.

  14. Plasma valve

    DOEpatents

    Hershcovitch, Ady; Sharma, Sushil; Noonan, John; Rotela, Elbio; Khounsary, Ali

    2003-01-01

    A plasma valve includes a confinement channel and primary anode and cathode disposed therein. An ignition cathode is disposed adjacent the primary cathode. Power supplies are joined to the cathodes and anode for rapidly igniting and maintaining a plasma in the channel for preventing leakage of atmospheric pressure through the channel.

  15. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylor, Larry R.; Meitner, Steven J.

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuelmore » atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.« less

  17. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  18. Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Newman, D. E.

    2015-12-01

    The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional equations to capture SOC dynamics. Most of these models, based on the use of fractional transport equations and related concepts, could prove useful both in reactor operation and experiment control and design.

  19. Ohmic ignition with high engineering beta based on the RFP

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Anderson, J. K.; Chapman, B. E.; McCollam, K. J.

    2017-10-01

    The RFP configuration allows the possibility of ohmic ignition for fusion energy, eliminating the need for auxiliary heating by rf or neutral beam injection. Complex plasma-facing antennas and NBI sources are therefore not required, simplifying the difficult fusion materials challenge. While all toroidal configurations require a volume-average 〈 B 〉 >= 5 T, the field strength at the magnet in the RFP is only Bcoil 3T since plasma current generates almost all of the field. Engineering beta is therefore maximized. We summarize access to ohmic ignition by examining a Lawson-like power balance for an RFP fusion plasma comparable to the ARIES-AT advanced tokamak, which generates neutron wall loading Pn / A 5 MW/m2. The required energy confinement for ohmic ignition in an RFP is similar to that for a tokamak. Confinement in MST is comparable to a same-size, same-field tokamak plasma, but 〈 B 〉 in MST is only 1/20th that required for fusion. While transport could ultimately be dominated by micro turbulence, extrapolation of stochastic transport using Lundquist number scaling for MHD tearing indicates standard RFP confinement (not enhanced by current profile control) could be sufficient to access ohmic ignition. This bolsters the possibility for steady-state inductive sustainment using oscillating field current drive. The high beta and classical energetic ion confinement measured in MST also bolster the RFP's fusion potential. Work supported by U.S. DoE.

  20. The study of the proteome of healthy human blood plasma under conditions of long-term confinement in an isolation chamber.

    PubMed

    Trifonova, O P; Pastushkova, L Kh; Samenkova, N F; Chernobrovkin, A L; Karuzina, I I; Lisitsa, A V; Larina, I M

    2013-05-01

    We identified changes in the proteome of healthy human blood plasma caused by exposure to 105-day confinement in an isolation chamber. After removal of major proteins and concentration of minor proteins, plasma fractions were analyzed by two-dimensional electrophoresis followed by identification of significantly different protein spots by mass spectrometric analysis of the peptide fragments. The levels of α- and β-chains of fibrinogen, a fragment of complement factor C4, apolipoproteins AI and E, plasminogen factor C1 complement, and immunoglobulin M changed in participants during the isolation period. These changes probably reflect the adaptive response to altered conditions of life.

  1. Control of ITBs in Magnetically Confined Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.

    2017-10-01

    In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.

  2. Effects of limiter biasing on the ATF torsatron

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Aceto, S. C.; Baylor, L. R.; Bell, J. D.; Bigelow, T. S.; England, A. C.; Harris, J. H.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Ma, C. H.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Zielinski, J. J.

    1992-12-01

    Positive limiter biasing on the currentless ATF torsatron produces a significant increase in the particle confinement with no improvement in the energy confinement. Experiments have been carried out in 1-T plasmas with ˜400 kW of ECH. Two rail limiters located at the last closed flux surface (LCFS), one at the top and one at the bottom of the device, are biased at positive and negative potentials with respect to the vessel. When the limiters are positively biased at up to 300 V, the density increases sharply to the ECH cutoff value. At the same time, the H α radiation drops, indicating that the particle confinement improves. When the density is kept constant, the H α radiation is further reduced and there is almost no change of plasma stored energy. Under these conditions, the density profiles become peaked and the electric field becomes outward-pointing outside the LCFS and more negative inside the LCFS. In contrast, negative biasing yields some reduction of the density and stored energy at constant gas feed, and the plasma potential profile remains the same. Biasing has almost no effect on the intrinsic impurity levels in the plasma.

  3. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  4. FLORA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1985-04-01

    FLORA solves, in a 2D domain for the linearized stability of a long-thin (paraxial)axisymmetric equilibrium. This is of interest for determining the magnetohydrodynamic stability of a magnetic mirror plasma confinement system including finite-Larmor radius and rotation effects. An axisymmetric plasma equilibrium is specified by providing pressure profiles, the plasma mass density, the vacuum magnetic fields, and plasma electric potential as functions of (?).

  5. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.

    PubMed

    Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less

  7. METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING

    DOEpatents

    Hall, L.S.

    1963-12-31

    A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)

  8. A table top experiment to investigate production and properties of a plasma confined by a dipole magnet

    NASA Astrophysics Data System (ADS)

    Baitha, Anuj Ram; Kumar, Ashwani; Bhattacharjee, Sudeep

    2018-02-01

    We report a table top experiment to investigate production and properties of a plasma confined by a dipole magnet. A water cooled, strong, cylindrical permanent magnet (NdFeB) magnetized along the axial direction and having a surface magnetic field of ˜0.5 T is employed to create a dipole magnetic field. The plasma is created by electron cyclotron resonance heating. Visual observations of the plasma indicate that radiation belts appear due to trapped particles, similar to the earth's magnetosphere. The electron temperature lies in the range 2-13 eV and is hotter near the magnets and in a downstream region. It is found that the plasma (ion) density reaches a value close to 2 × 1011 cm-3 and peaks at a radial distance about 3 cm from the magnet. The plasma beta β (β = plasma pressure/magnetic pressure) increases radially outward, and the maximum β for the present experimental system is ˜2%. It is also found that the singly charged ions are dominant in the discharge.

  9. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  10. From Lawson to Burning Plasmas: a Multi-Fluid Approach

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca; Betti, Riccardo

    2017-10-01

    The Lawson criterion, easily compared to experimental parameters, gives the value for the triple product of plasma density, temperature and energy confinement time needed for the plasma to ignite. Lawson's inaccurate assumptions of 0D geometry and single-fluid plasma model were improved in recent work, where 1D geometry and multi-fluid (ions, electrons and alphas) physics were included in the model, accounting for physical equilibration times and different energy confinement times between species. A much more meaningful analysis than Lawson's for current and future experiment would be expressed in terms of burning plasma state (Q=5, where Q is the ratio between fusion power and heating power). Minimum parameters for reaching Q=5 are calculated based on experimental profiles for density and temperatures and can immediately be compared with experimental performance by defining a no-alpha pressure. This is done in terms of the pressure that the plasma needs to reach for breakeven once the alpha heating has been subtracted from the energy balance. These calculations can be applied to current experiments and future burning-plasma devices. DE-FG02-93ER54215.

  11. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited).

    PubMed

    Delgado-Aparicio, L F; Maddox, J; Pablant, N; Hill, K; Bitter, M; Rice, J E; Granetz, R; Hubbard, A; Irby, J; Greenwald, M; Marmar, E; Tritz, K; Stutman, D; Stratton, B; Efthimion, P

    2016-11-01

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e , n Z , ΔZ eff , and n e,fast ). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

  12. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  13. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  14. Study of plasma convection and wall interactions in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    York, T. M.

    1986-06-01

    The subject contract research effort was initiated in September 1976 with two specific tasks: (1) to study the fundamental physics of confinement of an alternate concept (i.e., theta pinch based) devices; and (2) to study and to develop new diagnostic systems for use on major experiments at other locations in the country. There has been active collaboration with Los Alamos National Laboratory and Lawrence Livermore National Laboratory; there has been proposed collaboration with Princeton Plasma Physics Laboratory, Fusion Research Center at the University of Texas, and General Atomics.

  15. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  16. Nonlinear mixing of electromagnetic waves in plasmas.

    PubMed

    Stefan, V; Cohen, B I; Joshi, C

    1989-01-27

    Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.

  17. Plasma-edge studies using carbon resistance probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, W.R.

    1984-01-01

    Characterization of erosion and hydrogen-recycling processes occurring at the edge of magnetically confined plasmas requires knowledge of the energy and flux of hydrogen isotopes incident on the materials. A new plasma-edge probe technique, the carbon resistance probe, has been developed to obtain this information. This technique uti

  18. Research on Heating, Instabilities, Turbulence and RF Emission from Electric Field Dominated Plasmas

    DTIC Science & Technology

    1989-07-01

    Spence, "RF Plasma Emissions Measured with Calibrated, Broadband Antenna". February 19 Mr. Antonino Carnevali, Fusion Energy Division, ORNL,"Confinement...slides of the conference, plasma equipment exhibitors, and major Japanese fusion facilities. November 20 Dr. Antonino Carnevalli, RPI and Fusion Energy

  19. Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, Y.; Fujita, T.; Ishida, S.

    2002-09-15

    Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (Q{sub DT}{sup eq} up to 1.25) and a high fusion triple product n{sub D}(0){tau}{sub E}T{sub i}(0) = 1.5 x 10{sup 21} m{sup -3}skeV, JT-60U has demonstrated the integrated performance of highmore » confinement, high {beta}{sub N}, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-{beta}{sub p}) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-{beta}{sub p} mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-{beta}{sub p} mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD events on confinement such as sawteeth and ELMs. Through these studies, JT-60U has demonstrated applicability of the high confinement modes to ITER and the steady-state tokamak reactors.« less

  20. Laser-driven two-electron quantum dot in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-06-01

    We have investigated the energies of two-electron parabolic quantum dots (TEPQdots) embedded in plasmas characterized by more general exponential cosine screened Coulomb (MGECSC) potential under the action of a monochromatic, linearly polarized laser field by solving the corresponding Schrödinger equation numerically via the asymptotic iteration method. The four different cases of the MGECSC potential constituted by various sets of the potential parameters are reckoned in modeling of the interactions in the plasma environments which are Debye and quantum plasmas. The plasma environment is a remarkable experimental argument for the quantum dots and the interactions in plasma environments are different compared to the interactions in an environment without plasma and the screening specifications of the plasmas can be controlled through the plasma parameters. These findings constitute our major motivation in consideration of the plasma environments. An appreciable confinement effect is made up by implementing the laser field on the TEPQdot. The influences of the laser field on the system are included by using the Ehlotzky approximation, and then Kramers-Henneberger transformation is carried out for the corresponding Schrödinger equation. The influences of the ponderomotive force on two-electron quantum dots embedded in plasmas are investigated. The behaviours, the similarities and the functionalities of the laser field, the plasma environment, and the quantum dot confinement are also scrutinized. In addition, the role of the plasma environments in the mentioned analysis is also discussed in detail.

  1. An Overview of NSTX Research Facility and Recent Experimental Results

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2006-10-01

    The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.

  2. A two photon absorption laser induced fluorescence diagnostic for fusion plasmasa)

    NASA Astrophysics Data System (ADS)

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm2), narrow bandwidth (0.1 cm-1) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  3. Extended capability of the integrated transport analysis suite, TASK3D-a, for LHD experiment

    NASA Astrophysics Data System (ADS)

    Yokoyama, M.; Seki, R.; Suzuki, C.; Sato, M.; Emoto, M.; Murakami, S.; Osakabe, M.; Tsujimura, T. Ii.; Yoshimura, Y.; Ido, T.; Ogawa, K.; Satake, S.; Suzuki, Y.; Goto, T.; Ida, K.; Pablant, N.; Gates, D.; Warmer, F.; Vincenzi, P.; Simulation Reactor Research Project, Numerical; LHD Experiment Group

    2017-12-01

    The integrated transport analysis suite, TASK3D-a (Analysis), has been developed to be capable for routine whole-discharge analyses of plasmas confined in three-dimensional (3D) magnetic configurations such as the LHD. The routine dynamic energy balance analysis for NBI-heated plasmas was made possible in the first version released in September 2012. The suite has been further extended through implementing additional modules for neoclassical transport and ECH deposition for 3D configurations. A module has also been added for creating systematic data for the International Stellarator-Heliotron Confinement and Profile Database. Improvement of neutral beam injection modules for multiple-ion species plasmas and loose coupling with a large-simulation code are also highlights of recent developments.

  4. Research Technology

    NASA Image and Video Library

    1999-05-12

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  5. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  6. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and comparemore » with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.« less

  7. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  8. The GOL-NB program: further steps in multiple-mirror confinement research

    NASA Astrophysics Data System (ADS)

    Postupaev, V. V.; Batkin, V. I.; Beklemishev, A. D.; Burdakov, A. V.; Burmasov, V. S.; Chernoshtanov, I. S.; Gorbovsky, A. I.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.; Sidorov, E. N.; Yurov, D. V.

    2017-03-01

    Physical and technical details of the GOL-NB project are presented. GOL-NB is a medium-scale multiple-mirror trap that is under development in the Budker Institute, Novosibirsk, Russia. This device will be created in several years as a deep conversion of the existing GOL-3 facility. It will consist of a central trap with two 0.75 MW neutral beams, two multiple-mirror solenoids, two expander tanks and a plasma gun that creates the start plasma. The central trap with the neutral beam injection-heated plasma is a compact gas-dynamic system. The multiple-mirror sections should decrease the power and particle losses along the magnetic field. The confinement improvement factor depends on plasma parameters and on the magnetic configuration in the multiple mirrors. The main physical task of GOL-NB is direct demonstration of the performance of multiple-mirror sections that will change equilibrium plasma parameters in the central trap. In this paper we discuss results of the scenario modeling and progress in the hardware.

  9. Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve

    2015-11-01

    Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.

  10. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  11. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  12. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1983-09-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  13. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1984-12-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  14. Educational Outreach at the M.I.T. Plasma Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.

    1996-11-01

    Educational outreach at the MIT Plasma Fusion Center consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a new and improved C-MOD Jr, a confinement video game which helps students to discover how computers manipulate magnetic pulses to keep a plasma confined for as long as possible. Also on display will be an educational toy created by the Cambridge Physics Outlet, a PFC spin-off company. The PFC maintains a Home Page on the World Wide Web, which can be reached at http://cmod2.pfc.mit.edu/.

  15. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  16. Physical Processes in the MAGO/MFT Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garanin, Sergey F; Reinovsky, Robert E.

    2015-03-23

    The Monograph is devoted to theoretical discussion of the physical effects, which are most significant for the alternative approach to the problem of controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book includes the description of the approach, its difference from the major CTF systems—magnetic confinement and inertial confinement systems. General physical methods of the processes simulation in this approach are considered, including plasma transport phenomena and radiation, and the theory of transverse collisionless shock waves, the surface discharges theory, important for such kind of research. Different flows and magneto-hydrodynamic plasma instabilities occurring in the frames of this approach aremore » also considered. In virtue of the general physical essence of the considered phenomena the presented results are applicable to a wide range of plasma physics and hydrodynamics processes. The book is intended for the plasma physics and hydrodynamics specialists, post-graduate students, and senior students-physicists.« less

  17. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less

  18. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    DOE PAGES

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; ...

    2016-11-14

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less

  19. Plasma Studies in the SPECTOR Experiment as Target Development for MTF

    NASA Astrophysics Data System (ADS)

    Ivanov, Russ; Young, William; the Fusion Team, General

    2016-10-01

    General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.

  20. Confinement properties of tokamak plasmas with extended regions of low magnetic shear

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.

    2017-10-01

    Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.

  1. Thermonuclear Fusion: An Energy Source for the Future

    ERIC Educational Resources Information Center

    Drummond, William E.

    1973-01-01

    Discusses current research in thermonuclear fusion with particular emphasis on the problem of confining hot plasma. Recent experiments indicate that magnetic bottles called tokamaks may achieve the necessary confinement times, and this break-through has given renewed optimism to the feasibility of commercial fusion power by the turn of the…

  2. Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells

    PubMed Central

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W.; Wiseman, Paul W.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705

  3. Translations on Eastern Europe, Scientific Affairs, Number 569

    DTIC Science & Technology

    1978-01-12

    compensation of the plasma pres- sure is achieved by means of a magnetic field produced in conjunction with an induced high current flowing in the plasma ring (poloidal... plasma ring acts as the "secondary coil." -2 Inertial confinement is, in principle, simpler, but as yet realized technically only in the relatively

  4. Enhancement of soft X-ray lasing action with thin blade radiators

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Voorhees, David R.

    1988-01-01

    An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.

  5. Characterization of a medium-sized washer-gun for an axisymmetric mirror

    NASA Astrophysics Data System (ADS)

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  6. Characterization of a medium-sized washer-gun for an axisymmetric mirror.

    PubMed

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  7. A model for particle confinement in a toroidal plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The approach adopted in the NASA Lewis Bumpy Torus experiment is to confine and heat a toroidal plasma by the simultaneous application of strong dc magnetic fields and electric fields. Strong radial electric fields (about 1 kV/cm) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 trillion particles per cu cm, for which the particle containment time is 2.5 msec. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.

  8. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  9. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E. L.; Molvig, K.; Joglekar, A. S.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  10. Confinement control mechanism for two-electron Hulthen quantum dots in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-05-01

    In this study, for the first time, the energies of two-electron Hulthen quantum dots (TEHQdots) embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential under the combined influence of electric and magnetic fields are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. To do this, the four different forms of the MGECSC potential, which set through the different cases of the potential parameters, are taken into consideration. We propose that plasma environments form considerable quantum mechanical effects for quantum dots and other atomic systems and that plasmas are important experimental arguments. In this study, by considering the quantum dot parameters, the external field parameters, and the plasma screening parameters, a control mechanism of the confinement on energies of TEHQdots and the frequency of the radiation emitted by TEHQdots as a result of any excitation is discussed. In this mechanism, the behaviors, similarities, the functionalities of the control parameters, and the influences of plasmas on these quantities are explored.

  11. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed inmore » an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.« less

  12. SCR-1: Design and Construction of a Small Modular Stellarator for Magnetic Confinement of Plasma

    NASA Astrophysics Data System (ADS)

    Barillas, L.; Vargas, V. I.; Alpizar, A.; Asenjo, J.; Carranza, J. M.; Cerdas, F.; Gutiérrez, R.; Monge, J. I.; Mora, J.; Morera, J.; Peraza, H.; Queral, V.; Rojas, C.; Rozen, D.; Saenz, F.; Sánchez, G.; Sandoval, M.; Trimiño, H.; Umaña, J.; Villegas, L. F.

    2014-05-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST_1, created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m3), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5kW, in the first harmonic at 2.45GHz. The expected electron temperature and density are 15 eV and 1017 m-3 respectively with an estimated confinement time of 7.30 x 10-4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  13. Realizing Steady State Tokamak Operation for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2009-11-01

    Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.

  14. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  15. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (keff = 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GWth.

  16. First Plasma Results from the Levitated Dipole Experiment

    NASA Astrophysics Data System (ADS)

    Garnier, Darren T.

    2005-04-01

    On August 13, 2004, the first plasma physics experiments were conducted using the Levitated Dipole Experiment(LDX)http://www.psfc.mit.edu/ldx/. LDX was built at MIT's Plasma Science and Fusion Center as a joint research project of Columbia University and MIT. LDX is a first-of-its-kind experiment incorporating three superconducting magnets and exploring the physics of high-temperature plasma confined by dipole magnetic fields, similar to planetary magnetospheres. It will test recent theories that suggest that stable, high-β plasma can be confined without good curvature or magnetic shear, instead using plasma compressibility to provide stability. (Plasma β is the ratio of plasma pressure to magnetic pressure.) In initial experiments, 750 kA of current was induced in the dipole coil which was physically supported in the center of the 5 m diameter vacuum chamber. Deuterium plasma discharges, lasting from 4 to 10 seconds, were formed with multi-frequency ECRH microwave heating of up to 6.2 kW. Each plasma contained a large fraction of energetic and relativistic electrons that created a significant pressure that caused outward expansion of the magnetic field. Reconstruction of the magnetic equilibrium from external magnetic diagnostics indicate local peak plasma β 7 %. Along with an overview of the LDX device, results from numerous diagnostics operating during this initial supported campaign measuring the basic plasma parameters will be presented. In addition, observations of instabilities leading to rapid plasma loss and the effects of changing plasma compressibility will be explored.

  17. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  18. Whispering gallery effect in relativistic optics

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  19. Role of Reynolds Stress-Induced Poloidal Flow in Triggering the Transition to Improved Ohmic Confinement on the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Yu, C. X.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-04-01

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field Er, and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and Er, which may further trigger the transition.

  20. Role of reynolds stress-induced poloidal flow in triggering the transition to improved ohmic confinement on the HT-6M tokamak

    PubMed

    Xu; Yu; Luo; Mao; Liu; Li; Wan; Wan

    2000-04-24

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field E(r), and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and E(r), which may further trigger the transition.

  1. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.

    PubMed

    Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D

    2015-07-31

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

  2. Low to high confinement transition theory of finite-beta drift-wave driven shear flow and its comparison with data from DIII-D

    NASA Astrophysics Data System (ADS)

    Guzdar, P. N.; Kleva, R. G.; Groebner, R. J.; Gohil, P.

    2004-03-01

    Shear flow stabilization of edge turbulence in tokamaks has been the accepted paradigm for the improvement in confinement observed in high (H) confinement mode plasmas. Results on the generation of zonal flow and fields in finite β plasmas are presented. This theory yields a criterion for bifurcation from low to high (L-H) confinement mode, proportional to Te/√Ln , where Te is the electron temperature and Ln is the density scale-length at the steepest part of the density gradient. When this parameter exceeds a critical value (mostly determined by the strength of the toroidal magnetic field), the transition occurs. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D [J. L. Luxon, R. Anderson, F. Batty et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter due to the differences in the density gradient scale-lengths in the edge. The theory also provides a possible explanation for lowered threshold power, pellet injection H modes in DIII-D, thereby providing a unified picture of the varied observations on the L-H transition.

  3. Numerical Characterization of Wall Recycling Conditions of the HIDRA Stellarator using EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Marcinko, Steven; Curreli, Davide

    2015-11-01

    The wall recycling conditions created by energetic bombardment of plasma-facing components (PFCs) are of critical importance to determining the plasma and impurity profile in the edge region of a magnetically confined plasma. In this work a pre-online numerical characterization of the edge plasma in HIDRA has been carried out. HIDRA is the former WEGA experiment, now relocated to the University of Illinois at Urbana-Champaign. Numerical simulations of the HIDRA edge environment are performed utilizing the 3D edge plasma and neutral transport code EMC3-EIRENE [Y. Feng J. Nucl. Mater 241-243, 930 (1997)]. In our analysis, emphasis is placed on the influence of the neutrals and the impurities on edge plasma profiles and thus on energy and particle fluxes impingent onto PFCs. We examine the effect of different wall types, comparing high recycling conditions to situations of low recycling. The effect of intrinsic impurity screening is also taken into account under the expected HIDRA operating regimes. We report the calculated particle confinement time and fluid moments of both plasma and neutrals at the low recycling regimes expected with lithium-based PFCs, and compare them with the high recycling regimes found with conventional metal-based PFCs.

  4. Helium-like magnesium embedded in strongly coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Sukhamoy

    2016-05-06

    In recent days, with the advent of the x-ray free electron laser (FEL) with Linac coherent light source (LCLS) and the Orion laser, experimental studies on atomic systems within strongly coupled plasma environment with remarkable improvement in accuracy as compared to earlier experiments have become possible. In these kinds of experiments, hydrogen-like and helium-like spectral lines are used for determination of plasma parameters such as temperature, density. Accurate theoretical calculations are, therefore, necessary for such kind of studies within a dense plasma environment. In this work, ab initio calculations are carried out in the framework of the Rayleigh-Ritz variation principlemore » to estimate the ground state energy of helium-like magnesium within strongly coupled plasma environment. Explicitly correlated wave functions in Hylleraas coordinates have been used to incorporate the effect of electron correlation. The ion-sphere model potential that confines the central positive ion in a finite domain filled with plasma electrons has been adopted to mimic the strongly coupled plasma environment. Thermodynamic pressure ’felt’ by the ion in the ground states due to the confinement inside the ion spheres is also estimated.« less

  5. Convection in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Dessler, A. J.

    1990-01-01

    It is assumed that nonthermal escape from Triton's atmosphere produces a co-orbiting torus of unionized gas (presumably nitrogen and hydrogen) that subsequently becomes ionized by electron impact to populate a partial Triton plasma torus analogous to the Io plasma torus in Jupiter's magnetosphere. Centrifugal and magnetic-mirror forces confine the ions to a plasma sheet located between the magnetic and centrifugal equators. The ionization rate, and hence the torus ion concentration, is strongly peaked at the two points (approximately 180 deg apart in longitude) at which Triton's orbit intersects the plasma equator. During the course of Neptune's rotation these intersection points trace out two arcs roughly 75 deg in longitudinal extent, which we take to be the configuration of the resulting (partial) plasma torus. The implied partial ring currents produce a quadrupolar (four-cell) convection system that provides rapid outward transport of plasma from the arcs. Ring-current shielding, however, prevents this convection system from penetrating very far inside the plasma-arc distance. It is suggested that this convection/shielding process accounts for the radial confinement of trapped particles (150 keV or greater) within L = 14.3 as observed by the Voyager LECP instrument.

  6. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  7. Tokamak plasma current disruption infrared control system

    DOEpatents

    Kugel, H.W.; Ulrickson, M.

    1984-04-16

    This invention is directed to the diagnosis and detection of gross or macroinstabilities in a magnetically-confined fusion plasma device. Detection is performed in real time, and is prompt such that correction of the instability can be initiated in a timely fashion.

  8. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  9. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  10. Erratum: Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices (2015 Plasma Phys. Control. Fusion 57 123001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  11. Erratum: Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices (2015 Plasma Phys. Control. Fusion 57 123001)

    DOE PAGES

    Evans, T. E.

    2016-03-01

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  12. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Colin Stuart

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictionsmore » for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.« less

  13. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  14. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA

    2008-12-01

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  15. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, P.; Kennedy, E. T.; School of Physical Sciences, Dublin City University

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profilesmore » of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.« less

  16. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  17. Quantitative trait loci for magnitude of the plasma cortisol response to confinement in rainbow trout.

    PubMed

    Quillet, E; Krieg, F; Dechamp, N; Hervet, C; Bérard, A; Le Roy, P; Guyomard, R; Prunet, P; Pottinger, T G

    2014-04-01

    Better understanding of the mechanisms underlying interindividual variation in stress responses and their links with production traits is a key issue for sustainable animal breeding. In this study, we searched for quantitative trait loci (QTL) controlling the magnitude of the plasma cortisol stress response and compared them to body size traits in five F2 full-sib families issued from two rainbow trout lines divergently selected for high or low post-confinement plasma cortisol level. Approximately 1000 F2 individuals were individually tagged and exposed to two successive acute confinement challenges (1 month interval). Post-stress plasma cortisol concentrations were determined for each fish. A medium density genome scan was carried out (268 markers, overall marker spacing less than 10 cM). QTL detection was performed using qtlmap software, based on an interval mapping method (http://www.inra.fr/qtlmap). Overall, QTL of medium individual effects on cortisol responsiveness (<10% of phenotypic variance) were detected on 18 chromosomes, strongly supporting the hypothesis that control of the trait is polygenic. Although a core array of QTL controlled cortisol concentrations at both challenges, several QTL seemed challenge specific, suggesting that responses to the first and to a subsequent exposure to the confinement stressor are distinct traits sharing only part of their genetic control. Chromosomal location of the steroidogenic acute regulatory protein (STAR) makes it a good potential candidate gene for one of the QTL. Finally, comparison of body size traits QTL (weight, length and body conformation) with cortisol-associated QTL did not support evidence for negative genetic relationships between the two types of traits. © 2014 Stichting International Foundation for Animal Genetics.

  18. Radio-Frequency Plasma Cleaning of a Penning Malmberg Trap

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Martin, James; Pearson, J. Boise; Lewis, Raymond

    2005-01-01

    Radio-frequency-generated plasma has been demonstrated to be a promising means of cleaning the interior surfaces of a Penning-Malmberg trap that is used in experiments on the confinement of antimatter. {Such a trap was reported in Modified Penning-Malmberg Trap for Storing Antiprotons (MFS-31780), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 66.} Cleaning of the interior surfaces is necessary to minimize numbers of contaminant atoms and molecules, which reduce confinement times by engaging in matter/antimatter-annihilation reactions with confined antimatter particles. A modified Penning-Malmberg trap like the one described in the cited prior article includes several collinear ring electrodes (some of which are segmented) inside a tubular vacuum chamber, as illustrated in Figure 1. During operation of the trap, a small cloud of charged antiparticles (e.g., antiprotons or positrons) is confined to a spheroidal central region by means of a magnetic field in combination with DC and radiofrequency (RF) electric fields applied via the electrodes. In the present developmental method of cleaning by use of RF-generated plasma, one evacuates the vacuum chamber, backfills the chamber with hydrogen at a suitable low pressure, and uses an RF-signal generator and baluns to apply RF voltages to the ring electrodes. Each ring is excited in the polarity opposite that of the adjacent ring. The electric field generated by the RF signal creates a discharge in the low-pressure gas. The RF power and gas pressure are adjusted so that the plasma generated in the discharge (see Figure 2) physically and chemically attacks any solid, liquid, and gaseous contaminant layers on the electrode surfaces. The products of the physical and chemical cleaning reactions are gaseous and are removed by the vacuum pumps.

  19. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE PAGES

    Evans, T. E.

    2015-11-13

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  20. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOEpatents

    Deng, Xunming; Povolny, Henry S.

    2004-06-29

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  1. Confinement degradation by Alfvén-eigenmode induced fast-ion transport in steady-state scenario discharges

    DOE PAGES

    Heidbrink, William W.; Ferron, John R.; Holcomb, Christopher T.; ...

    2014-08-21

    Here, analysis of neutron and fast-ion D α data from the DIII-D tokamak shows that Alfvén eigenmode activity degrades fast-ion confinement in many high β N, high q min, steady-state scenario discharges. (β N is the normalized plasma pressure and q min is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing q min; however, not all high q min discharges show appreciablemore » degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.« less

  2. Successful experiments on an external MHD Accelerator: wall confinement of the plasma, annihilation of the electrothermal instability by magnetic gradient inversion, creation of a stable spiral current pattern

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; Dore, Jean-Christophe

    2013-09-01

    MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager

  3. Increased confinement and beta by inductive poloidal current drive in the RFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarff, J.S.; Lanier, N.E.; Prager, S.C.

    1996-10-01

    Progress in understanding magnetic-fluctuation-induced transport in the reversed field pinch (RFP) has led to the idea of current profile control to reduce fluctuations and transport. With the addition of inductive poloidal current drive in the Madison Symmetric Torus (MST), the magnetic fluctuation amplitude is halved, leading to a four- to five-fold increase in the energy confinement time to {tau}{sub E}{approximately}5 ms as a result of both decreased plasma resistance and increased stored thermal energy. The record low fluctuation amplitude coincides with a record high electron temperature of {approximately}600 eV (for MST), and beta {beta} = 2{mu}{sub 0} / B(a){sup 2}more » increases from 6% to 8% compared with conventional MST RFP plasmas. Other improvements include increased particle confinement and impurity reduction. 19 refs., 4 figs., 1 tab.« less

  4. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less

  5. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  6. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature,more » and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.« less

  7. Electrostatic-Dipole (ED) Fusion Confinement Studies

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  8. Control of neutral particle fueling and exhaust by plasma edge topology optimization in Wendelstein 7-X and HSX

    NASA Astrophysics Data System (ADS)

    Stephey, Laurie

    2016-10-01

    Comparative experiments at the HSX and Wendelstein 7-X stellarators are being performed. At W7-X it was shown that fine control of the edge magnetic structure in W7-X is a feasible actuator to control global particle confinement. During the startup campaign of W7-X, the edge magnetic structure is defined by five poloidal limiters. Inside of the last closed flux surface in the standard magnetic configuration, the 5/6 resonance and corresponding magnetic island are located directly inside of the plasma source region. Inward movement of the island in a predominantly electron-root transport regime has been found to increase the effective helium confinement time τp* He, a critical metric for plasma purity control in future burning plasmas, by a factor of two. The experimental analysis is supported by fully 3-D fluid plasma and kinetic neutral modeling using the EMC3-EIRENE code and will be compared to these experimental results from both devices. A single reservoir, single species particle balance will be extracted from experimental measurements aided by the fully 3-D modeling analysis from EMC3-EIRENE to quantify the causal link established above based on measured parameters. At HSX, similar investigations to those performed at W7-X are ongoing. HSX has substantial flexibility in both its edge magnetic configuration and also in edge connection lengths via limiter insertion. Both are being examined to study any resulting changes global particle confinement and provide insight into the physics of the underlying mechanism. Together with the results from W7-X, both experiments will provide information on the link between the plasma edge topology and the global particle confinement. This work was supported in part by the U.S. Department of Energy under Grants DE-SC0014210, DE-FG02-93ER54222, DE-AC05-00OR22725, DOE LANS Contract DE-AC52- 06NA25396, and within the EUROfusion Consortium under Euratom Grant No 633053.

  9. Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.

    2016-05-15

    While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution.more » Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.« less

  10. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    PubMed

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. The effects of arachidonic acid on the endocrine and osmoregulatory response of tilapia (Oreochromis mossambicus) acclimated to seawater and subjected to confinement stress.

    PubMed

    Van Anholt, R D; Spanings, F A T; Nixon, O; Wendelaar Bonga, S E; Koven, W M

    2012-06-01

    In previous studies in freshwater tilapia (Oreochromis mossambicus), dietary supplementation with arachidonic acid (ArA; 20:4n - 6) had considerable, opposing effects on the main ion-transporting enzyme Na(+)/K(+)-ATPase in gills and kidneys and changed the release of osmoregulatory hormones, such as cortisol. The present study was performed to assess the influence of dietary ArA on (1) the osmoregulatory capacity of tilapia acclimated to seawater (SW) (34‰) and (2) the osmoregulatory imbalance associated with acute stress. The increased ambient salinity was associated with significant alterations in the tissue fatty acid composition, particularly the n - 6 polyunsaturated fatty acids (PUFAs). Tissue levels of ArA were further increased as a result of dietary supplementation, whereas docosahexaenoic acid (DHA, 22:6n - 3) and eicosapentaenoic acid (EPA, 20:5n - 3) decreased in gills and kidneys. Basal plasma cortisol as well as lactate levels were elevated in the ArA-supplemented SW-acclimated tilapia compared with the control group. The 5 min of confinement (transient stress) increased plasma cortisol, glucose, and lactate levels with significantly higher levels in ArA-supplemented tilapia. Confinement was also associated with significantly elevated plasma osmolality, sodium, chloride, and potassium levels. ArA-supplemented tilapia showed markedly lower ionic disturbances after confinement, suggesting that dietary ArA can attenuate the hydromineral imbalance associated with acute stress. These results emphasize the involvement of ArA and/or its metabolites in the endocrine and osmoregulatory processes and the response to confinement stress.

  12. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; McKee, G. R.; Murakami, M.; Grierson, B. A.; Nakata, M.; Davis, E. M.; Marinoni, A.; Ono, M.; Rhodes, T. L.; Sung, C.; Schmitz, L.; Petty, C. C.; Ferron, J. R.; Turco, F.; Garofalo, A. M.; Holcomb, C. T.; Collins, C. M.; Solomon, W. M.

    2017-05-01

    Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q min) remained almost constant and modestly increased in the region outside of q min compared to the positive shear (PS) case, when T e/T i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of q min can be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T e/T i with NCS plasmas was commonly observed in DIII-D and JT-60U. The mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T e/T i compared with the PS case. This is consistent with gyrokinetic simulations, which show a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T e/T i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.

  13. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    DOE PAGES

    Yoshida, Maiko; McKee, George R.; Murakami, Masanori; ...

    2017-03-30

    We demonstrated negative magnetic shear in DIII-D and JT-60U in order to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T-e/T-i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q(min)) remained almost constant and modestly increased in the region outside of q(min) compared to the positive shear (PS) case, when T-e/T-i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of qmin canmore » be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T-e/T-i with NCS plasmas was commonly observed in DIII-D and JT-60U. Furthermore, the mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T-e/T-i compared with the PS case. This is consistent with gyrokinetic simulations, and this shows a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T-e/T-i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.« less

  14. Fast Ion Transport Studies in DIII-D High βN Steady-State Scenarios

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.

    2014-10-01

    DIII-D research is identifying paths to optimize energetic particle (EP) transport in high βN steady-state tokamak scenarios. Operation with qmin > 2 is predicted to achieve high βN, confinement, and bootstrap fraction. However DIII-D experiments have shown that Alfvén eigenmodes (AE) and correlated EP transport can limit the performance of some qmin > 2 plasmas. Enhanced EP transport occurs in plasmas with qmin = 2-2.5, q95 = 5-7, and relatively long slowing down time. Strong AEs are present, the confinement factor H89 = 1.6-1.8 and βN is limited to ~3 by the available power. These observations are consistent with EP transport models having a critical gradient in βf. However, adjusting the parameters can recover classical EP confinement or improve thermal confinement so that H89 > 2 . One example is a scenario with βP and βN ~ 3 . 2 , qmin > 3 and q95 ~ 11 developed to test control of long pulse, high heat flux operation on devices like EAST. This has an internal transport barrier at ρ ~ 0 . 7 , bootstrap fraction >75%, density limit fraction ~1, and H89 >= 2 . In these cases AE activity and EP transport is very dynamic - it varies between classical and anomalous from shot to shot and within shots. Thus these plasmas are close to a threshold for enhanced EP transport. This may be governed by a combination of a relatively low ∇βfast due to good thermal confinement and lower beam power, short slowing down time, and possibly changes to the q-profile. Another example is scenarios with qmin ~ 1.1. These typically have classical EP confinement and good thermal confinement. Thus by using its flexible parameters and profile control tools DIII-D is comparing a wide range of steady-state scenarios to identify the key physics setting EP transport. Work supported by the US Department of Energy under DE-AC52-07NA27344, SC-G903402, DE-FC02-04ER54698, and DE-AC02-09CH11466.

  15. Computations in Plasma Physics.

    ERIC Educational Resources Information Center

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  16. Immune responses in humans after 60 days of confinement

    NASA Technical Reports Server (NTRS)

    Schmitt, D. A.; Peres, C.; Sonnenfeld, G.; Tkackzuk, J.; Arquier, M.; Mauco, G.; Ohayon, E.

    1995-01-01

    A confinement experiment in a normobaric diving chamber was undertaken to better understand the effect of confinement and isolation on human psychology and physiology. Pre- and postconfinement blood samples were obtained from four test subjects and control donors to analyze immune responses. No modification in the levels of CD2+, CD3+, CD4+, CD8+, CD19+, and CD56+ cells was observed after confinement. Mitogen-induced T-lymphocyte proliferation and interleukin-2 receptor expression were not altered significantly. Whole blood interferon-alpha and gamma-induction and plasma cortisol levels were also unchanged, as was natural killer cell activity. These data suggest that in humans, no specific components of the immune response are affected by a 2-month isolation and confinement of a small group.

  17. External control of ion waves in a plasma by high frequency fields

    DOEpatents

    Kaw, P.K.; Dawson, J.M.

    1973-12-18

    An apparatus and method are described for stabilizing plasma instabilities, in a magnetically confined plasma column by transmitting into the plasma high frequency electromagnetic waves at a frequency close to the electron plasma frequency. The said frequencies, e.g., are between the plasma frequency and 1.5 times the plasma frequency at a power level below the level for producing parametric instabilities in a plasma having temperatures from below 10 eV to about 10 keV or more, at densities from below 10/sup 13/ to above 10/sup 18/ particles/cm/sup 3/. (Official Gazette)

  18. Investigation of the role of electron cyclotron resonance heating and magnetic configuration on the suprathermal ion population in the stellarator TJ-II using a luminescent probe

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.

    2018-02-01

    Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (<4 ms). A model that uses a zero-dimensional power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.

  19. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  20. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less

  1. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.

  2. Edge Mechanisms for Power Excursion Control in Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Hill, M. D.; Stacey, W. M.

    2017-10-01

    ITER must have active and preferably also passive control mechanisms that will limit inadvertent plasma power excursions which could trigger runaway fusion heating. We are identifying and investigating the potential of ion-orbit loss, impurity seeding, and various divertor ``choking'' phenomena to control or limit sudden increases in plasma density or temperature by reducing energy confinement, increasing radiation loss, etc., with the idea that such mechanisms could be tested on DIII-D and other existing tokamaks. We are assembling an edge-divertor code (GTEDGE-2) with a neutral transport model and a burn dynamics code, for this purpose. One potential control mechanism is the enhanced ion orbit loss from the thermalized ion distribution that would result from heating of the thermalized plasma ion distribution. Another possibility is impurity seeding with ions whose emissivity would increase sharply if the edge temperature increased. Enhanced radiative losses should also reduce the thermal energy flux across the separatrix, perhaps dropping the plasma into the poorer L-mode confinement regime. We will present some initial calculations to quantify these ideas. Work supported by US DOE under DE-FC02-04ER54698.

  3. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  4. Ion heat transport in improved confinement MST plasmas

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel J.; Kumar, Santhosh; Anderson, Jay K.

    2016-10-01

    Ion power balance in improved confinement (PPCD) plasmas in MST is dominated by electron collisional heating balanced by charge exchange transport. Neoclassical effects on ions in the RFP are inherently small and PPCD plasmas have reduced turbulence and stochasticity. Thus PPCD plasmas provide a good starting point for a transport model developed to account for collisional equilibration between species, classical conductive energy transport, and energy loss due to charge exchange collisions. This model also allows a possible noncollisional anomalous term to be isolated for study, and correlations between residual magnetic fluctuations during PPCD plasmas and anomalous heating and transport will be investigated. Recent modeling with DEGAS2 Monte Carlo neutral simulation suggests higher core neutral temperature than previously estimated with more simplistic assumptions. However, the working model does not fully account for the electron density increase in the core during PPCD, which is higher than expected from classical particle transport, and neutral and impurity ionization. Other possible mechanisms are considered and analyzed, including more complex impurity charge-state balance and pinch effects. Work supported by the US DOE. DEGAS2 is provided by PPPL.

  5. Observation of resonant and non-resonant magnetic braking in the n = 1 non-axisymmetric configurations on KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Kimin; Choe, W.; In, Y.; Ko, W. H.; Choi, M. J.; Bak, J. G.; Kim, H. S.; Jeon, Y. M.; Kwak, J. G.; Yoon, S. W.; Oh, Y. K.; Park, J.-K.

    2017-12-01

    Toroidal rotation braking by neoclassical toroidal viscosity driven by non-axisymmetric (3D) magnetic fields, called magnetic braking, has great potential to control rotation profile, and thereby modify tokamak stability and performance. In order to characterize magnetic braking in the various 3D field configurations, dedicated experiments have been carried out in KSTAR, applying a variety of static n=1 , 3D fields of different phasing of -90 , 0, and +90 . Resonant-type magnetic braking was achieved by -90 phasing fields, accompanied by strong density pump-out and confinement degradation, and explained by excitation of kink response captured by ideal plasma response calculation. Strong resonant plasma response was also observed under +90 phasing at q95 ∼ 6 , leading to severe confinement degradation and eventual disruption by locked modes. Such a strong resonant transport was substantially modified to non-resonant-type transport at higher q95 ∼ 7.2 , as the resonant particle transport was significantly reduced and the rotation braking was pushed to plasma edge. This is well explained by ideal perturbed equilibrium calculations indicating the strong kink coupling at lower q95 is reduced at higher q95 discharge. The 0 phasing fields achieved quiescent magnetic braking without density pump-out and confinement degradation, which is consistent with vacuum and ideal plasma response analysis predicting deeply penetrating 3D fields without an excitation of strong kink response.

  6. Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling

    PubMed Central

    You, Changjiang; Marquez-Lago, Tatiana T.; Richter, Christian Paolo; Wilmes, Stephan; Moraga, Ignacio; Garcia, K. Christopher; Leier, André; Piehler, Jacob

    2016-01-01

    The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane. PMID:27957535

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  8. An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator

    DTIC Science & Technology

    1988-11-01

    The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to

  9. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  10. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Combs, S. K.; Foust, C. R.; Milora, S. L.

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1 to 2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3 to 5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2 to 3 km/s.

  11. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  12. Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    DOE PAGES

    Wolf, R. C.; Ali, A.; Alonso, A.; ...

    2017-07-27

    Here, after completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreedmore » for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 10 19 m –3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.« less

  13. Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Ali, A.; Alonso, A.; Baldzuhn, J.; Beidler, C.; Beurskens, M.; Biedermann, C.; Bosch, H.-S.; Bozhenkov, S.; Brakel, R.; Dinklage, A.; Feng, Y.; Fuchert, G.; Geiger, J.; Grulke, O.; Helander, P.; Hirsch, M.; Höfel, U.; Jakubowski, M.; Knauer, J.; Kocsis, G.; König, R.; Kornejew, P.; Krämer-Flecken, A.; Krychowiak, M.; Landreman, M.; Langenberg, A.; Laqua, H. P.; Lazerson, S.; Maaßberg, H.; Marsen, S.; Marushchenko, M.; Moseev, D.; Niemann, H.; Pablant, N.; Pasch, E.; Rahbarnia, K.; Schlisio, G.; Stange, T.; Pedersen, T. Sunn; Svensson, J.; Szepesi, T.; Trimino Mora, H.; Turkin, Y.; Wauters, T.; Weir, G.; Wenzel, U.; Windisch, T.; Wurden, G.; Zhang, D.; Abramovic, I.; Äkäslompolo, S.; Aleynikov, P.; Aleynikova, K.; Alzbutas, R.; Anda, G.; Andreeva, T.; Ascasibar, E.; Assmann, J.; Baek, S.-G.; Banduch, M.; Barbui, T.; Barlak, M.; Baumann, K.; Behr, W.; Benndorf, A.; Bertuch, O.; Biel, W.; Birus, D.; Blackwell, B.; Blanco, E.; Blatzheim, M.; Bluhm, T.; Böckenhoff, D.; Bolgert, P.; Borchardt, M.; Borsuk, V.; Boscary, J.; Böttger, L.-G.; Brand, H.; Brandt, Ch.; Bräuer, T.; Braune, H.; Brezinsek, S.; Brunner, K.-J.; Brünner, B.; Burhenn, R.; Buttenschön, B.; Bykov, V.; Calvo, I.; Cannas, B.; Cappa, A.; Carls, A.; Carraro, L.; Carvalho, B.; Castejon, F.; Charl, A.; Chernyshev, F.; Cianciosa, M.; Citarella, R.; Ciupiński, Ł.; Claps, G.; Cole, M.; Cole, M. J.; Cordella, F.; Cseh, G.; Czarnecka, A.; Czermak, A.; Czerski, K.; Czerwinski, M.; Czymek, G.; da Molin, A.; da Silva, A.; Dammertz, G.; Danielson, J.; de la Pena, A.; Degenkolbe, S.; Denner, P.; Dhard, D. P.; Dostal, M.; Drevlak, M.; Drewelow, P.; Drews, Ph.; Dudek, A.; Dundulis, G.; Durodie, F.; van Eeten, P.; Effenberg, F.; Ehrke, G.; Endler, M.; Ennis, D.; Erckmann, E.; Esteban, H.; Estrada, T.; Fahrenkamp, N.; Feist, J.-H.; Fellinger, J.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fontdecaba, J.; Ford, O.; Fornal, T.; Frerichs, H.; Freund, A.; Führer, M.; Funaba, T.; Galkowski, A.; Gantenbein, G.; Gao, Y.; García Regaña, J.; Garcia-Munoz, M.; Gates, D.; Gawlik, G.; Geiger, B.; Giannella, V.; Gierse, N.; Gogoleva, A.; Goncalves, B.; Goriaev, A.; Gradic, D.; Grahl, M.; Green, J.; Grosman, A.; Grote, H.; Gruca, M.; Guerard, C.; Haiduk, L.; Han, X.; Harberts, F.; Harris, J. H.; Hartfuß, H.-J.; Hartmann, D.; Hathiramani, D.; Hein, B.; Heinemann, B.; Heitzenroeder, P.; Henneberg, S.; Hennig, C.; Hernandez Sanchez, J.; Hidalgo, C.; Hölbe, H.; Hollfeld, K. P.; Hölting, A.; Höschen, D.; Houry, M.; Howard, J.; Huang, X.; Huber, M.; Huber, V.; Hunger, H.; Ida, K.; Ilkei, T.; Illy, S.; Israeli, B.; Ivanov, A.; Jablonski, S.; Jagielski, J.; Jelonnek, J.; Jenzsch, H.; Junghans, P.; Kacmarczyk, J.; Kaliatka, T.; Kallmeyer, J.-P.; Kamionka, U.; Karalevicius, R.; Kasahara, H.; Kasparek, W.; Kenmochi, N.; Keunecke, M.; Khilchenko, A.; Kinna, D.; Kleiber, R.; Klinger, T.; Knaup, M.; Kobarg, Th.; Köchl, F.; Kolesnichenko, Y.; Könies, A.; Köppen, M.; Koshurinov, J.; Koslowski, R.; Köster, F.; Koziol, R.; Krämer, M.; Krampitz, R.; Kraszewsk, P.; Krawczyk, N.; Kremeyer, T.; Krings, Th.; Krom, J.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kühner, G.; Kurki-Suonio, T.; Kwak, S.; Lang, R.; Langish, S.; Laqua, H.; Laube, R.; Lechte, C.; Lennartz, M.; Leonhardt, W.; Lewerentz, L.; Liang, Y.; Linsmeier, Ch.; Liu, S.; Lobsien, J.-F.; Loesser, D.; Loizu Cisquella, J.; Lore, J.; Lorenz, A.; Losert, M.; Lubyako, L.; Lücke, A.; Lumsdaine, A.; Lutsenko, V.; Majano-Brown, J.; Marchuk, O.; Mardenfeld, M.; Marek, P.; Massidda, S.; Masuzaki, S.; Maurer, D.; McCarthy, K.; McNeely, P.; Meier, A.; Mellein, D.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, O.; Missal, B.; Mittelstaedt, J.; Mizuuchi, T.; Mollen, A.; Moncada, V.; Mönnich, T.; Morizaki, T.; Munk, R.; Murakami, S.; Musielok, F.; Náfrádi, G.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Ngo, T.; Nocentini, R.; Nührenberg, C.; Nührenberg, J.; Obermayer, S.; Offermanns, G.; Ogawa, K.; Ongena, J.; Oosterbeek, J. W.; Orozco, G.; Otte, M.; Pacios Rodriguez, L.; Pan, W.; Panadero, N.; Panadero Alvarez, N.; Panin, A.; Papenfuß, D.; Paqay, S.; Pavone, A.; Pawelec, E.; Pelka, G.; Peng, X.; Perseo, V.; Peterson, B.; Pieper, A.; Pilopp, D.; Pingel, S.; Pisano, F.; Plaum, B.; Plunk, G.; Povilaitis, M.; Preinhaelter, J.; Proll, J.; Puiatti, M.-E.; Sitjes, A. Puig; Purps, F.; Rack, M.; Récsei, S.; Reiman, A.; Reiter, D.; Remppel, F.; Renard, S.; Riedl, R.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Röhlinger, H.; Romé, M.; Rong, P.; Roscher, H.-J.; Roth, B.; Rudischhauser, L.; Rummel, K.; Rummel, T.; Runov, A.; Rust, N.; Ryc, L.; Ryosuke, S.; Sakamoto, R.; Samartsev, A.; Sanchez, M.; Sano, F.; Satake, S.; Satheeswaran, G.; Schacht, J.; Schauer, F.; Scherer, T.; Schlaich, A.; Schlüter, K.-H.; Schmitt, J.; Schmitz, H.; Schmitz, O.; Schmuck, S.; Schneider, M.; Schneider, W.; Scholz, M.; Scholz, P.; Schrittwieser, R.; Schröder, M.; Schröder, T.; Schroeder, R.; Schumacher, H.; Schweer, B.; Shanahan, B.; Shikhovtsev, I. V.; Sibilia, M.; Sinha, P.; Sipliä, S.; Skodzik, J.; Slaby, C.; Smith, H.; Spiess, W.; Spong, D. A.; Spring, A.; Stadler, R.; Standley, B.; Stephey, L.; Stoneking, M.; Stridde, U.; Sulek, Z.; Surko, C.; Suzuki, Y.; Szabó, V.; Szabolics, T.; Szökefalvi-Nagy, Z.; Tamura, N.; Terra, A.; Terry, J.; Thomas, J.; Thomsen, H.; Thumm, M.; von Thun, C. P.; Timmermann, D.; Titus, P.; Toi, K.; Travere, J. M.; Traverso, P.; Tretter, J.; Tsuchiya, H.; Tsujimura, T.; Tulipán, S.; Turnyanskiy, M.; Unterberg, B.; Urban, J.; Urbonavicius, E.; Vakulchyk, I.; Valet, S.; van Millingen, B.; Vela, L.; Velasco, J.-L.; Vergote, M.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vorkörper, A.; Wadle, S.; Wagner, F.; Wang, E.; Wang, N.; Warmer, F.; Wegener, L.; Weggen, J.; Wei, Y.; Wendorf, J.; Werner, A.; Wiegel, B.; Wilde, F.; Winkler, E.; Winters, V.; Wolf, S.; Wolowski, J.; Wright, A.; Xanthopoulos, P.; Yamada, H.; Yamada, I.; Yasuhara, R.; Yokoyama, M.; Zajac, J.; Zarnstorff, M.; Zeitler, A.; Zhang, H.; Zhu, J.; Zilker, M.; Zimbal, A.; Zocco, A.; Zoletnik, S.; Zuin, M.

    2017-10-01

    After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3  ×  1019 m-3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.

  14. Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, R. C.; Ali, A.; Alonso, A.

    Here, after completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreedmore » for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 10 19 m –3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.« less

  15. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  16. The inductive, steady-state sustainment of stable spheromaks

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  17. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  18. Anisotropic confinement effects in a two-dimensional plasma crystal.

    PubMed

    Laut, I; Zhdanov, S K; Räth, C; Thomas, H M; Morfill, G E

    2016-01-01

    The spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89, 053108 (2014)PLEEE81539-375510.1103/PhysRevE.89.053108], is studied theoretically and by molecular-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions are explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux.

  19. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.

    PubMed

    Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J

    2016-04-29

    Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  20. Study of Plasma Behavior during ECRH Injection in the GAMMA 10 SMBI Experiments

    NASA Astrophysics Data System (ADS)

    Maidul Islam, Md.; Nakashima, Yousuke; Kobayashi, Shinji; Nishino, Nobuhiro; Ichimura, Kazuya; Iijima, Takaaki; Shahinul Islam, Md.; Yokodo, Takayuki; Lee, Guanyi; Yoshimoto, Tsubasa; Yamashita, Sotaro; Yoshikawa, Masayuki; Kohagura, Junko; Hirata, Mafumi; Minami, Ryutaro; Kariya, Tsuyoshi; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Imai, Tsuyoshi

    2018-01-01

    Establishment of fueling system is one of the critical issues for the future fusion reactors. Fueling experiment supersonic molecular beam injection (SMBI) have been carried out in the central-cell of GAMMA 10. In GAMMA 10, electron cyclotron resonance heating (ECRH) is used at plug/barrier-cells for the formation of the axial confining potential. Recently, ECRH was applied during SMBI to plug the loss particles and increased the plasma density in the central-cell compared to without ECRH. This result suggests that the particles are confined during SMBI due to the injection of ECRH at plug/barrier-cells in GAMMA 10.

  1. High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak

    DOE PAGES

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; ...

    2016-04-27

    Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold P LH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible J edge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  2. Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane

    PubMed Central

    Kalay, Ziya; Fujiwara, Takahiro K.; Kusumi, Akihiro

    2012-01-01

    Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity. PMID:22479350

  3. PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Sudip K; Hirshman, Steven Paul; Wingen, Andreas

    The ability to sustain magnetically confined plasma in a state of stable equilibrium is crucial for optimal and cost-effective operations of fusion devices like tokamaks and stellarators. The Variational Moments Equilibrium Code (VMEC) is the de-facto serial application used by fusion scientists to compute magnetohydrodynamics (MHD) equilibria and study the physics of three dimensional plasmas in confined configurations. Modern fusion energy experiments have larger system scales with more interactive experimental workflows, both demanding faster analysis turnaround times on computational workloads that are stressing the capabilities of sequential VMEC. In this paper, we present PARVMEC, an efficient, parallel version of itsmore » sequential counterpart, capable of scaling to thousands of processors on distributed memory machines. PARVMEC is a non-linear code, with multiple numerical physics modules, each with its own computational complexity. A detailed speedup analysis supported by scaling results on 1,024 cores of a Cray XC30 supercomputer is presented. Depending on the mode of PARVMEC execution, speedup improvements of one to two orders of magnitude are reported. PARVMEC equips fusion scientists for the first time with a state-of-theart capability for rapid, high fidelity analyses of magnetically confined plasmas at unprecedented scales.« less

  4. Theoretical Issues for Plasma Regimes to be Explored by the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.; Sonnino, G.

    2014-10-01

    At present, the Ignitor experiment is the only one designed and planned to approach and explore ignition regimes under controlled DT burning conditions. The machine parameters have been established on the basis of existing knowledge of the confinement properties of high density plasmas. A variety of improved confinement regimes are expected to be accessible by means of the available ICRH heating power in addition to the prevalent programmable Ohmic heating power and relying on the injection of high velocity pellets for density profile control. The relevance of the various known confinement regimes to the objectives of Ignitor is discussed. Among other theoretical efforts, a non-linear thermal energy balance equation is investigated to study the onset of thermonuclear instability in the plasmas expected to be produced in Ignitor. The equation for the temperature profile in the equilibrium state is solved with the resulting profiles in agreement with those obtained by a full transport code and commonly adopted scalings for them. The evolution of the thermonuclear instability that relies on the solution of the time dependent energy balance equation is obtained. Sponsored in part by the U.S. DOE.

  5. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  6. Changes in transport and confinement in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Sallander, E.; Sallander, J.; Hedqvist, A.

    1999-09-01

    At the EXTRAP-T2 reversed field pinch a non-intrusive approach has been undertaken to monitor transport driven by magnetic fluctuations. Correlations are presented between fluctuations observed in the core and at the edge of the plasma. The fluctuations are characterized and their effect on the confinement of core electron energy is estimated.

  7. Real-tiem Adaptive Control Scheme for Superior Plasma Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander Trunov, Ph.D.

    2001-06-01

    During this Phase I project, IOS, in collaboration with our subcontractors at General Atomics, Inc., acquired and analyzed measurement data on various plasma equilibrium modes. We developed a Matlab-based toolbox consisting of linear and neural network approximators that are capable of learning and predicting, with accuracy, the behavior of plasma parameters. We also began development of the control algorithm capable of using the model of the plasma obtained by the neural network approximator.

  8. APPARATUS FOR HEATING IONS

    DOEpatents

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  9. Nonequilibrium thermodynamics and the transport phenomena in magnetically confined plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1987-09-01

    The neoclassical theory of transport in magnetically confined plasmas is reviewed. The emphasis is laid on a set of relationships existing among the banana transport coefficients. The surface-averaged entropy production in such plasmas is evaluated. It is shown that neoclassical effects emerge from the entropy production due to parallel transport processes. The Pfirsch-Schlueter effect can be clearly interpreted as due to spatial fluctuations of parallel fluxes on a magnetic surface: the corresponding entropy production is the measure of these fluctuations. The banana fluxes can be formulated in a quasithermodynamic form in which the average entropy production is a bilinear formmore » in the parallel fluxes and the conjugate generalized stresses. A formulation as a quadratic form in the thermodynamic forces is also possible, but leads to anomalies, which are discussed in some detail.« less

  10. Reflux physics and an operational scenario for the spheromak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, E. B.

    2010-07-20

    The spheromak [1] is a toroidal magnetic confinement geometry for plasma with most of the magnetic field generated by internal currents. It has been demonstrated to have excellent energy confinement properties: A peak electron temperature of 0.4 keV was achieved in the Compact Torus Experiment (CTX) experiment [2] and of 0.5 keV in the Sustained Spheromak Physics Experiment (SSPX) [3]. In both cases the plasmas were decaying slowly following formation and (in SSPX) sustainment by coaxial helicity injection (CHI) [4]. In SSPX, power balance analysis during this operational phase yielded electron thermal conductivities in the core plasma in the rangemore » of 1-10 m 2/s [5, 6], comparable to the tokamak L-mode. These results motivate the consideration of possible operating scenarios for future fusion experiments or even reactors.« less

  11. Interaction of laser pulse with confined plasma during exit surface nanosecond laser damage

    NASA Astrophysics Data System (ADS)

    Rubenchik, Alexander M.; Feit, Michael D.; Demos, Stavros G.

    2013-12-01

    Interpretation of spatial and time resolved images of rear surface ns laser damage in dielectrics requires understanding of the dynamic interaction of the incoming laser beam with the confined expanding plasma in the material. The detailed kinetics of the plasma, involving both expansion and retraction, depends on details of reflection and absorption in the hot material. The growth of the hot region is treated using a model previously developed to understand laser peening. The pressure is found to scale as the square root of laser intensity and drops off slowly after energy deposition is complete. For the conditions of our experimental observations in fused silica, our model predicts a pressure of about 9 GPa and a surface expansion velocity of about 1.5 km/sec, in good agreement with experimental observation.

  12. Body composition and metabolic changes during a 520-day mission simulation to Mars.

    PubMed

    Strollo, F; Macchi, C; Eberini, I; Masini, M A; Botta, M; Vassilieva, G; Nichiporuk, I; Monici, M; Santucci, D; Celotti, F; Magni, P; Ruscica, M

    2018-03-12

    The "Mars-500 project" allowed to evaluate the changes in psychological/physiological adaptation over a prolonged confinement, in order to gather information for future missions. Here, we evaluated the impact of confinement and isolation on body composition, glucose metabolism/insulin resistance and adipokine levels. The "Mars-500 project" consisted of 520 consecutive days of confinement from June 3, 2010 to Nov 4, 2011. The crew was composed of six male subjects (three Russians, two Europeans, and one Chinese) with a median age of 31 years (range 27-38 years). During the 520-day confinement, total body mass and BMI progressively decreased, reaching a significant difference at the end (417 days) of the observation period (- 9.2 and - 5.5%, respectively). Fat mass remained unchanged. A progressive and significant increase of fasting plasma glucose was observed between 249 and 417 days (+ 10/+ 17% vs baseline), with a further increase at the end of confinement (up to + 30%). Median plasma insulin showed a non-significant early increment (60 days; + 86%). Total adiponectin halved (- 47%) 60 days after hatch closure, remaining at this nadir (- 51%) level for a further 60 days. High molecular weight adiponectin remained significantly lower from 60 to 168 days. Based on these data, countermeasures may be envisioned to balance the potentially harmful effects of prolonged confinement, including a better exercise program, with accurate monitoring of (1) the individual activity and (2) the relationship between body composition and metabolic derangement.

  13. Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2017-07-01

    Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β t), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β t up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.

  14. Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta.

    PubMed

    Schlossberg, D J; Bodner, G M; Bongard, M W; Burke, M G; Fonck, R J; Perry, J M; Reusch, J A

    2017-07-21

    Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β_{t}), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β_{t} up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume.

  15. Multi-scale study of the isotope effect in ISTTOK

    NASA Astrophysics Data System (ADS)

    Liu, B.; Silva, C.; Figueiredo, H.; Pedrosa, M. A.; van Milligen, B. Ph.; Pereira, T.; Losada, U.; Hidalgo, C.

    2016-05-01

    The isotope effect, namely the isotope dependence of plasma confinement, is still one of the principal scientific conundrums facing the magnetic fusion community. We have investigated the impact of isotope mass on multi-scale mechanisms, including the characterization of radial correlation lengths (\\boldsymbol{L}{r} ) and long-range correlations (LRC) of plasma fluctuations using multi-array Langmuir probe system, in hydrogen (H) and deuterium (D) plasmas in the ISTTOK tokamak. We found that when changing plasma composition from the H dominated to D dominated, the LRC amplitude increased markedly (10-30%) and the \\boldsymbol{L}{r} increased slightly (~10%). The particle confinement also improved by about 50%. The changes of LRC and \\boldsymbol{L}{r} are congruent with previous findings in the TEXTOR tokamak (Xu et al 2013 Phys. Rev. Lett. 110 265005). In addition, using biorthogonal decomposition, both geodesic acoustic modes and very low frequency (<5 kHz) coherent modes were found to be contributing to LRC.

  16. Overview of LDX Results

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.

    2006-10-01

    The levitated dipole experiment (LDX) is a new research facility that is investigating plasma confinement and stability in a dipole magnetic field configuration as a possible catalyzed DD fusion power source that would avoid the burning of tritium. We report the production of high beta plasma confined by a laboratory superconducting dipole using neutral gas fueling and electron cyclotron resonance heating (ECRH). The pressure results from a population of anisotropic energetic trapped electrons that is sustained by microwave heating provided sufficient neutral gas is supplied to the plasma. The trapped electron beta was observed to be limited by the hot electron interchange (HEI) instability, but when the neutral gas was programmed so as to maintain the deuterium gas pressure near 0.2 mPa, the fast electron pressure increased by more than a factor of ten and the resulting stable high beta plasma was maintained quasi-continuously for up to 14 seconds. Low frequency (<10 kHz) fluctuations are sometimes observed at low neutral base pressure.

  17. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  18. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish, Liposarcus pardalis (castelnau), during hypoxia.

    PubMed

    Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert

    2006-04-01

    The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.

  20. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigatemore » their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.« less

  1. On the universality of power laws for tokamak plasma predictions

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Cambon, D.; Contributors, JET

    2018-02-01

    Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.

  2. Plasma sweeper to control the coupling of RF power to a magnetically confined plasma

    DOEpatents

    Motley, Robert W.; Glanz, James

    1985-01-01

    A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  3. Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel H.; O'neil, T. M.

    1999-01-01

    Plasmas consisting exclusively of particles with a single sign of charge (e.g., pure electron plasmas and pure ion plasmas) can be confined by static electric and magnetic fields (in a Penning trap) and also be in a state of global thermal equilibrium. This important property distinguishes these totally unneutralized plasmas from neutral and quasineutral plasmas. This paper reviews the conditions for, and the structure of, the thermal equilibrium states. Both theory and experiment are discussed, but the emphasis is decidedly on theory. It is a huge advantage to be able to use thermal equilibrium statistical mechanics to describe the plasma state. Such a description is easily obtained and complete, including for example the details of the plasma shape and microscopic order. Pure electron and pure ion plasmas are routinely confined for hours and even days, and thermal equilibrium states are observed. These plasmas can be cooled to the cryogenic temperature range, where liquid and crystal-like states are realized. The authors discuss the structure of the correlated states separately for three plasma sizes: large plasmas, in which the free energy is dominated by the bulk plasma; mesoscale plasmas, in which the free energy is strongly influenced by the surface; and Coulomb clusters, in which the number of particles is so small that the canonical ensemble is not a good approximation for the microcanonical ensemble. All three cases have been studied through numerical simulations, analytic theory, and experiment. In addition to describing the structure of the thermal equilibrium states, the authors develop a thermodynamic theory of the trapped plasma system. Thermodynamic inequalities and Maxwell relations provide useful bounds on and general relationships between partial derivatives of the various thermodynamic variables.

  4. Edge Ohmic Heating Experiment on HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Fan, Shuping; Li, Jian'gang; Meng, Yuedong; Luo, Jiarong; Yin, Fuxian; Zeng, Lei; Ding, Liancheng; Lin, Bili; Zhang, Wei; Han, Yuqing; Tong, Xingde; Luo, Lanchang; Gong, Xianzu; Jiang, Jiaguang; Wu, Mingjun; Yin, Fei

    1994-03-01

    An improved ohmic confinement has been achieved on HT-6M tokamak after application of edge ohmic heating pulse which makes plasma current rapidly ramp up (0.4 ms) in a ramp rate of 12 Ma/s. The improved ohmic confinement phase is characterized by (a) energy and particle confinement time increase, (b) non-symmetric increased density ne, (c) reduced Hα radiation, (d) increased Te and steeper Te, ne profile at the edge. The results from soft x-ray sawteeth inversion radius and βp + li/2 implied the anomalous current penetration.

  5. Observation of Poincaré-Andronov-Hopf Bifurcation in Cyclotron Maser Emission from a Magnetic Plasma Trap

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.

    2018-04-01

    We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap.

  6. Current-level triggered plasma-opening switch

    DOEpatents

    Mendel, C.W.

    1987-06-29

    An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field. 5 figs.

  7. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  8. Current-level triggered plasma-opening switch

    DOEpatents

    Mendel, Clifford W.

    1989-01-01

    An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Y.K.M.; Strickler, D.J.

    The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seenmore » at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.« less

  10. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Mark Allen

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that themore » levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.« less

  11. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  12. Resonant charge exchange for H-H+ in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Laricchiuta, Annarita; Colonna, Gianpiero; Capitelli, Mario; Kosarim, Alexander; Smirnov, Boris M.

    2017-11-01

    The dynamics of resonant charge exchange in proton-hydrogen collisions embedded in plasma is investigated in the framework of the asymptotic approach, modified to account for the effect of Debye-Hückel screening in particle interactions. The cross sections exhibit a marked dependence on the Debye length in regimes of severe plasma confinement. Processes involving excited states H( n)-H+ are also discussed.

  13. HIGH TEMPERATURE REACTOR

    DOEpatents

    Kulsrud, R.M.; Spitzer, L. Jr.

    1961-12-12

    An apparatus of the stellarator type for heating a plasma to high temperatures is designed. Circularizers at the end of then helical windings produce a circular magnetic surface and provide improved confining and heating of the plasma. Reverse curvature sections formed in the end loops of the reaction tube provide increased plasma pressure for a given magnetic field pressure and thereby minimize the current flow in the helical windings. (AEC)

  14. Long pulse high performance plasma scenario development for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.

    2006-05-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  15. Stability of Electrons in the Virtual Cathode Region of an IEC

    NASA Astrophysics Data System (ADS)

    Kim, Hyng-Jin; Miley, George; Momota, Hiromu

    2003-04-01

    In the Inertial Electrostatic Confinement (IEC) device, electrons are confined inside a virtual anode that in turn confines ions. Prior stability studies [1, 2] have considered systems in which one species is electrostatically confined by the other, and either or both species are out of local thermal equilibrium. In the present research, electron stability in the virtual cathode region of an ion injected IEC is being studied. The ion density in an IEC is non-uniform due to the radial electrostatic potential, and increases toward the center region. The potential near the virtual cathode is assumed to have a parabolic shape and is determined assuming that the net space charge density is constant in that region. The corresponding ion distribution function is assumed to have the form f = C [sigma] (H W) /L^0.5 and the electron response is taken to be diabatic. Then using a variational principle after linearizing the hydrodynamic equations, stability properties of the electron layer are determined. Results will be presented as a function of injected ion/electron current ratios. 1. L. Chacon and D. C. Barnes, Phys. Plasma 7, 4774 (2000). 2. D. C. Barnes, L. Chacon, and J. M. Finn, Phys. Plasmas 9, 4448 (2002).

  16. Modification of turbulence and turbulent transport associated with a confinement transition in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, Troy

    2009-11-01

    Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.

  17. Measurement of Debye length in laser-produced plasma.

    NASA Technical Reports Server (NTRS)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  18. Coupled transport in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Berk, H. L.; TAE Team

    2018-02-01

    Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.

  19. Intrinsic Flow and Momentum Transport during Improved Confinement in MST

    NASA Astrophysics Data System (ADS)

    Craig, D.; Tan, E.; Schott, B.; Anderson, J. K.; Boguski, J.; Nornberg, M. D.; Xing, Z. A.

    2017-10-01

    Progress in absolute wavelength calibration of the Charge Exchange Recombination Spectroscopy (CHERS) system on MST has enabled new observations and analysis of intrinsic flow and momentum transport. Localized toroidal and poloidal flow measurements with systematic accuracy of +/- 3 km/s have been obtained during improved confinement Pulsed Parallel Current Drive (PPCD) plasmas at high plasma current (400-500 kA). The magnetic activity prior to and during the transition to improved confinement tends to increase the flow and sets the initial condition for the momentum profile evolution during improved confinement where intrinsic flow drive appears to weaken. Inboard flows change in time during PPCD, consistent with changes in the core-resonant m =1, n =6 tearing mode phase velocity. Outboard flows near the magnetic axis are time-independent, resulting in the development of a strongly sheared toroidal flow in the core and asymmetry in the poloidal flow profile. The deceleration of the n =6 mode during the period of improved confinement correlates well with the n =6 mode amplitude and is roughly consistent with the expected torque from eddy currents in the conducting shell. The level of Dα emission and secondary mode amplitudes (n =7-10) do not correlate with the mode deceleration suggesting that the momentum loss from charge exchange with neutrals and diffusion due to residual magnetic stochasticity are not significant in PPCD. This work has been supported by the U.S.D.O.E.

  20. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Anne

    The tokamak is a type of toroidal device used to confine a fusion plasma using large magnetic fields. Tokamaks and stellarators the leading devices for confining plasmas for fusion, and the capability to predict performance in these magnetically confined plasmas is essential for developing a sustainable fusion energy source. The magnetic configuration of tokamaks and stellarators does not exist in Nature, yet, the fundamental processes governing transport in fusion plasmas are universal – turbulence and instabilities, driven by inhomogeneity and asymmetry in the plasma, conspire to transport heat and particles across magnetic field lines and can play critical roles inmore » impurity confinement and generation of intrinsic rotation. Turbulence exists in all plasmas, and in neutral fluids as well. The study of turbulence is essential to developing a fundamental understanding of the nature of the fourth state of matter, plasmas. Experimental studies of turbulence in tokamaks date back to early scattering observations from the late 1970s. Since that time, great advances in turbulence diagnostics have been made, all of which have significantly enhanced our knowledge and understanding of turbulence in tokamaks. Through comparisons with advanced gyrokinetic theory and turbulent-transport models a great deal of evidence exists to implicate turbulent-driven transport as an important mechanism determining transport in all channels: heat, particle and momentum However, prediction and control of turbulent-driven transport remains elusive. Key to development of predictive transport models for magnetically confined fusion plasmas is validation of the nonlinear gyrokinetic transport model, which describes transport due to turbulence. Validation of gyrokinetic codes must include detailed and quantitative comparisons with measured turbulence characteristics, in addition to comparisons with inferred transport levels and equilibrium profiles. For this reason, advanced plasma diagnostics for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for testing and validating predictive models for the transport of heat and particles in fusion plasmas due to turbulence. Once validated, the models are used to predict performance in ITER and other burning plasmas, such as the MIT ARC design. Most recently, data from the newly developed, so-called “CECE diagnostic” [Cima 1995, White 2008] and “nT phase angle measurements” [Haese 1999, White 2010] ]will be combined with data from density fluctuation diagnostics at ASDEX Upgrade to support a long-term program of physics research in turbulence and transport that will allow for more stringent testing and validation of gyrokinetic turbulent-transport codes. This work directly impacts the development of predictive transport models in the U.S. FES program, such as TGLF, developed by General Atomics, which are used to predict performance in ITER and other burning plasma devices as part of advancing the development of fusion energy sciences.« less

  1. Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R F

    2005-02-08

    The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circularmore » magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without contact with the chamber wall. This possibility reduces the probability of so-called ''temperature-gradient'' instabilities, known to be endemic to closed systems. Finally, the open-ended nature of the field readily allows the control of the radial potential distribution, a circumstance that has been shown, for example in the Gamma 10 tandem-mirror experiment at Tsukuba Japan, to suppress drift-type instability modes. Standing against all of these attractive properties of axisymmetric mirror-based systems is the fact, shown early on, that such systems are prone to MHD ''interchange'' instabilities, one in which the plasma column drifts transversely, at a rate far above classical transport. Observed early on, the ''cure'' that was universally adopted, as first demonstrated in the famous ''Ioffe experiment'', was to abandon axisymmetry and employ so-called ''magnetic-well'' fields, ones in which the field increases radially and axially from its interior, strongly suppressing the MHD interchange mode, up to plasma ''beta'' values approaching unity, observed in the 2X2B experiment. When the tandem mirror concept was introduced in 1976 every experiment that was constructed employed various combinations of non-axisymmetric coil configurations (''Baseball,'' and ''Yin-Yang'' coils) to create the magnetic fields. But it came at a heavy price: non-axisymmetric fields gave rise to new non-classical loss channels, and the complexity of the fields introduced difficult engineering problems. It was well recognized at the time that it would be highly advantageous to preserve axisymmetry of the tandem mirror coils, but there was no apparent way to stabilize the ubiquitous MHD interchange mode. A decade later a way to accomplish this end was analyzed theoretically, and, a few years later successfully demonstrated experimentally, in the Gas Dynamic Trap (GDT) experiment at Novosibirsk. The concept: the presence of a sufficient amount of plasma on the expanding field lines outside the end mirrors of a mirror machine can act as an ''anchor,'' MHD stabilizing the interior, confined, plasma. Moreover, Ryutov's theory showed that the pressure of this anchor plasma could be orders of magnitude smaller than that of the confined plasma, and still be able to stabilize it. In the GDT, which operates in a collision-dominated region (as opposed to the near-collisionless mode of a tandem mirror), the effluent plasma, though much lower in density than that of the confined plasma, is sufficient to stabilize the central plasma, up to plasma beta values of 40 percent. Furthermore, once MHD stabilized, the confined plasma in the GDT exhibited no signs of plasma turbulence or enhanced cross-field transport, even in the presence of a substantial population of high energy ions produced by neutral-beam injection.« less

  2. Development of Tokamak Transport Solvers for Stiff Confinement Systems

    NASA Astrophysics Data System (ADS)

    St. John, H. E.; Lao, L. L.; Murakami, M.; Park, J. M.

    2006-10-01

    Leading transport models such as GLF23 [1] and MM95 [2] describe turbulent plasma energy, momentum and particle flows. In order to accommodate existing transport codes and associated solution methods effective diffusivities have to be derived from these turbulent flow models. This can cause significant problems in predicting unique solutions. We have developed a parallel transport code solver, GCNMP, that can accommodate both flow based and diffusivity based confinement models by solving the discretized nonlinear equations using modern Newton, trust region, steepest descent and homotopy methods. We present our latest development efforts, including multiple dynamic grids, application of two-level parallel schemes, and operator splitting techniques that allow us to combine flow based and diffusivity based models in tokamk simulations. 6pt [1] R.E. Waltz, et al., Phys. Plasmas 4, 7 (1997). [2] G. Bateman, et al., Phys. Plasmas 5, 1793 (1998).

  3. Investigating Trapped Particle Asymmetry Modes and Temperature Effects in the Lawrence Non-neutral Torus II

    NASA Astrophysics Data System (ADS)

    Nirwan, R.; Swanson, P.; Stoneking, M. R.

    2017-10-01

    Electron plasma is confined in the Lawrence Non-Neutral Torus II using a purely toroidal magnetic field (R0 = 18 cm, B < 1 kG) for confinement times exceeding 1 second. The LNT II can be configured for fully toroidal traps or variable-length partial toroidal traps. The behavior of the plasma is observed by monitoring the image charge on isolated wall sectors. The plasma is excited by application of a sinusoidal tone burst to selected wall sectors. Phase-space separatrices are introduced by applying squeeze potentials to toroidally localized, but poloidally continuous sectors and the resulting interaction between trapped and passing particles populations results in asymmetry modes and transport. These experiments provide a comparison with similar experiments in cylindrical traps. We also report on the development of temperature measurement techniques and assess temperature affects on diocotron and asymmetry modes. This work is supported by National Science Foundation Grant No. PHY-1202540.

  4. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  5. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  6. Phase Contrast Imaging on the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Gong, Shaobo; Xu, Min; Jiang, Wei; Zhong, Wulv; Shi, Zhongbin; Wang, Huajie; Wu, Yifan; Yuan, Boda; Lan, Tao; Ye, Minyou; Duan, Xuru; HL-2A Team

    2016-10-01

    In this article we present the design of a phase contrast imaging (PCI) system on the HL-2A tokamak. This diagnostic is developed to infer line integrated plasma density fluctuations by measuring the phase shift of an expanded CO2 laser beam passing through magnetically confined high temperature plasmas. This system is designed to diagnose plasma density fluctuations with the maximum wavenumber of 66 cm-1. The designed wavenumber resolution is 2.09cm-1, and the time resolution is higher than 0.2 μs. The broad kρs ranging from 0.34 to 13.37 makes it suitable for turbulence measurement. An upgraded PCI system is also discussed, which is designed for the HL-2M tokamak. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2015GB120002), the National Natural Science Foundation of China (Grant No. 11375053, 11105144, 10905057, 11535013).

  7. Fusion energy division annual progress report, period ending December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less

  8. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.

    PubMed

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-07-26

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.

  9. Realizing steady-state tokamak operation for fusion energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2011-03-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  10. A Compact Nuclear Fusion Reactor for Space Flights

    NASA Astrophysics Data System (ADS)

    Nastoyashchiy, Anatoly F.

    2006-05-01

    A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products — charged particles. The energy balance considerably improves, as synchrotron radiation turn out "captured" in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.

  11. Continuous plasma laser. [method and apparatus for producing intense, coherent, monochromatic light from low temperature plasma

    NASA Technical Reports Server (NTRS)

    Libby, W. F.; Jensen, C. A.; Wood, L. L. (Inventor)

    1977-01-01

    The apparatus includes a housing for confining a gas at subatmospheric pressure and including a set of reflectors defining an optical cavity. At least one anode and cathode are positioned within the gas. First control means control the voltage applied to the anode and second control means independently control the temperature of the cathode. The pressure of the gas is controlled by a third control means. An intense monochromatic output is achieved by confining the gas in the housing at a controlled pre-determined reduced pressure, independently controlling the temperature of the electron emitting cathode and applying predetermined controlled low voltage to the anode.

  12. Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie

    2014-11-01

    Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.

  13. A key to improved ion core confinement in the JET tokamak: ion stiffness mitigation due to combined plasma rotation and low magnetic shear.

    PubMed

    Mantica, P; Angioni, C; Challis, C; Colyer, G; Frassinetti, L; Hawkes, N; Johnson, T; Tsalas, M; deVries, P C; Weiland, J; Baiocchi, B; Beurskens, M N A; Figueiredo, A C A; Giroud, C; Hobirk, J; Joffrin, E; Lerche, E; Naulin, V; Peeters, A G; Salmi, A; Sozzi, C; Strintzi, D; Staebler, G; Tala, T; Van Eester, D; Versloot, T

    2011-09-23

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

  14. Experimental plasma research project summaries

    NASA Astrophysics Data System (ADS)

    1992-06-01

    This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.

  15. Lithium As Plasma Facing Component for Magnetic Fusion Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masayuki Ono

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less

  16. Role of impurities in magnetically confined high temperature plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C.F.

    1976-01-01

    A summary is given of the atomic physics concerned with plasma cooling by impurities and the limiting effect that impurities may have on heating of plasmas by neutral injection. A general description is given of the tokamak concept and the present and next generation experiments are described. The time and spatial behavior of O and Mo multicharged ions in present hydrogen plasmas is presented. This is followed by a discussion of the power loss from a plasma containing one percent Fe. Finally, the limitation of plasma heating by energetic H or D injection is summarized. (MOW)

  17. Turbulent particle transport as a function of toroidal rotation in DIII-D H-mode plasmas

    DOE PAGES

    Wang, Xin; Mordijck, Saskia; Zeng, Lei; ...

    2016-03-01

    In this paper we show how changes in toroidal rotation, by controlling the injected torque, affect particle transport and confinement. The toroidal rotation is altered using the co- and counter neutral beam injection (NBI) in low collisionality H-mode plasmas on DIII-D with dominant electron cyclotron heating (ECH). We find that there is no correlation between the toroidal rotation shear and the inverse density gradient, which is observed on AUG whenmore » $${{T}_{\\text{e}}}/{{T}_{\\text{i}}}$$ is varied using ECH (Angioni et al 2011 Phys. Rev. Lett. 107 215003). In DIII-D, we find that in a discharge with balanced torque injection, the $$E\\times B$$ shear is smaller than the linear gyrokinetic growth rate for small $${{k}_{\\theta}}{{\\rho}_{s}}$$ for $$\\rho =0.6$$ –0.85. This results in lower particle confinement. In the co- and counter- injected discharges the $$E\\times B$$ shear is larger or close to the linear growth rate at the plasma edge and both configurations have higher particle confinement. In order to measure particle transport, we use a small periodic perturbative gas puff. This gas puff perturbs the density profiles and allows us to extract the perturbed diffusion and inward pinch coefficients. We observe a strong increase in the inward particle pinch in the counter-torque injected plasma. Lastly, the calculated quasi-linear particle flux, nor the linear growth rates using TGLF agree with experimental observations.« less

  18. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement.

    PubMed

    Strewe, C; Muckenthaler, F; Feuerecker, M; Yi, B; Rykova, M; Kaufmann, I; Nichiporuk, I; Vassilieva, G; Hörl, M; Matzel, S; Schelling, G; Thiel, M; Morukov, B; Choukèr, A

    2015-05-01

    The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ~500 m(3) mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research. Copyright © 2015 the American Physiological Society.

  19. Kinetic turbulence simulations at extreme scale on leadership-class systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    2013-01-01

    Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCFmore » and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).« less

  20. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  1. A high performance field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions,more » highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.« less

  2. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    NASA Astrophysics Data System (ADS)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  3. APPARATUS FOR HEATING A PLASMA

    DOEpatents

    Stix, T.H.

    1962-01-01

    The system contemplates the use of ion cyclotron motions for transferring energy to a plasma immersed in a confining magnetic field such as is found in thermonuclear reactors of the stellarator class. Oppositely directed windings are provided for producing ion-accelerating fields having a time and spatial periodicity and these have the advantage of producing ion cyclotron motions without the development of space charges which preclude the efficient energy transfer to the plasma. (AEC)

  4. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  5. Analysis of Ignitor Discharges with Double X-point Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    2008-11-01

    The Ignitor experiment was proposed and designed to achieve ignited and sub-ignited conditions in well confined deuterium-tritium plasmas. Thanks to its unique features (high magnetic field up to 13 T, high plasma current up to 11 MA, and high plasma density up to 5 x10^20 m-3), Ignitor is the only device capable of exploring plasma regimes that are relevant to a net power producing D-T reactor and are not accessible to other existing or planned machines. Double X-point scenarios with magnetic field up to 13 T and plasma current up to 9 MA are analyzed. In these configurations, the access to a high confinement state is assumed when the available plasma heating power, supported by the injected auxiliary power, is larger than the L-H threshold value, according to recent suggested scalings The H-regime is modeled by a global reduction of the thermal transport coefficients used for the L-regime. Situations in the presence and in the absence of sawtooth oscillations have been investigated. Quasi-stationary conditions can be attained when a process producing re- distribution of pressure and current profiles is active. B.Coppi, A.Airoldi, F.Bombarda, et al.,Nucl. Fusion 41, 1253 (2001) D.C. McDonald, A.J. Meakins, et al., PPCF 48, A439 (2006).

  6. Comparative properties of the interior and blowoff plasmas in a dynamic hohlraum

    DOE PAGES

    Apruzese, J. P.; Clark, R. W.; Davis, J.; ...

    2007-04-20

    A Dynamic Hohlraum (DH) is formed when arrays of tungsten wires driven by a high-current pulse implode and compress a cylindrical foam target. The resulting radiation is confined by the wire plasma and forms an intense, ~200–250 eV Planckian x-ray source. The internal radiation can be used for indirect drive inertial confinement fusion. The radiation emitted from the ends can be employed for radiation flow and material interaction studies. This external radiation is accompanied by an expanding blowoff plasma. In this paper, we have diagnosed this blowoff plasma using K-shell spectra of Mg tracer layers placed at the ends ofmore » some of the Dynamic Hohlraum targets. A similar diagnosis of the interior hohlraum has been carried out using Al and Mg tracers placed at 2mm depth from the ends. It is found that the blowoff plasma is about 20–25% as dense as that of the interior hohlraum, and that its presence does not significantly affect the outward flow of the nearly Planckian radiation field generated in the hohlraum interior. Finally, however, the electron temperature of the blowoff region, at ~120 eV, is only about half that of the interior hohlraum plasma.« less

  7. Miniature ion thruster ring-cusp discharge performance and behavior

    NASA Astrophysics Data System (ADS)

    Dankongkakul, Ben; Wirz, Richard E.

    2017-12-01

    Miniature ion thrusters are an attractive option for a wide range of space missions due to their low power levels and high specific impulse. Thrusters using ring-cusp plasma discharges promise the highest performance, but are still limited by the challenges of efficiently maintaining a plasma discharge at such small scales (typically 1-3 cm diameter). This effort significantly advances the understanding of miniature-scale plasma discharges by comparing the performance and xenon plasma confinement behavior for 3-ring, 4-ring, and 5-ring cusp by using the 3 cm Miniature Xenon Ion thruster as a modifiable platform. By measuring and comparing the plasma and electron energy distribution maps throughout the discharge, we find that miniature ring-cusp plasma behavior is dominated by the high magnetic fields from the cusps; this can lead to high loss rates of high-energy primary electrons to the anode walls. However, the primary electron confinement was shown to considerably improve by imposing an axial magnetic field or by using cathode terminating cusps, which led to increases in the discharge efficiency of up to 50%. Even though these design modifications still present some challenges, they show promise to bypassing what were previously seen as inherent limitations to ring-cusp discharge efficiency at miniature scales.

  8. Expanding Non-solenoidal Startup with Local Helicity Injection to Increased Toroidal Field and Helicity Injection Rate

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    Local helicity injection (LHI) is a non-solenoidal startup technique under development on the Pegasus ST. Plasma currents up to 0.18 MA have been initiated by LHI in conjunction with poloidal field induction. A 0-D power balance model has been developed to predict plasma current evolution by balancing helicity input against resistive dissipation. The model is being validated against a set of experimental measurements and magnetic reconstructions with radically varied plasma geometric evolutions. Outstanding physics issues with LHI startup are the scalings of confinement and MHD activity with helicity injection rate and toroidal field strength, as well as injector behavior at high field. Preliminary results from the newly-installed Thomson scattering system suggest core temperatures of a few hundred eV during LHI startup. Measurements are being expanded to multiple spatial points for ongoing confinement studies. A set of larger-area injectors is being installed in the lower divertor region, where increased toroidal field will provide a helicity injection rate over 3 times that of outboard injectors. In this regime helicity injection will be the dominant current drive. Experiments with divertor injectors will permit experimental differentiation of several possible confinement models, and demonstrate the feasibility of LHI startup at high field. Work supported by US DOE grant DE-FG02-96ER54375.

  9. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    PubMed

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  10. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  11. Alpha Channeling in Open-System Magnetic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasmamore » were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.« less

  12. Computer Simulation of Compression and Energy Release upon Laser Irradiation of Cylindrically Symmetric Target

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2017-12-01

    The paper is devoted to the theoretical and computational study of compression and energy release for magneto-inertial plasma confinement. This approach makes it possible to create new high-density plasma sources, apply them in materials science experiments, and use them in promising areas of power engineering.

  13. Power loss of a single electron charge distribution confined in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Department of Physics, Faculty of Science, I. K. Int'l University, Qazvin 34149-16818; Mahmoodi, J.

    2011-05-15

    The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.

  14. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    PubMed

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  15. Parameter dependence of ELM loss reduction by magnetic perturbations at low pedestal density and collisionality in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Leuthold, N.; Suttrop, W.; Fischer, R.; Kappatou, A.; Kirk, A.; McDermott, R.; Mlynek, A.; Valovič, M.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-05-01

    ELM mitigation by magnetic perturbations is studied at low pedestal collisionalities down to ITER-like values ({ν }{e,{PED}}* =0.1) in ASDEX Upgrade. A comprehensive database of ELM energy losses for varying plasma density, heating power, edge safety factor and magnetic perturbation structure has been assembled to investigate parameter dependencies of ELM mitigation. It is found that magnetic perturbations with a toroidal mode number n = 2 can reduce the ELM energy loss normalized to the energy stored in the plasma pedestal from about 30% to less than 5%, i.e. by a factor of six, below an electron pedestal collisionality of {ν }{e,{PED}}* =0.4. At this level of ELM mitigation a significant reduction of the pedestal pressure and, therefore, global plasma confinement occurs. This pedestal pressure reduction is mostly due to a reduction of plasma density, the so-called ‘pump-out’ effect. Refueling by neutral beams and in particular by pellet injection is possible and can re-establish confinement, however, the ELM energy loss increases as well with increasing density.

  16. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  17. Alfven Eigenmode Control in DIII-D

    NASA Astrophysics Data System (ADS)

    Hu, W.; Olofsson, E.; Welander, A.; van Zeeland, M.; Collins, C.; Heidbrink, W.

    2017-10-01

    Alfven eigenmodes (AE) driven by fast ions from neutral beam and ion cyclotron heating are common in present day tokamak plasmas and are expected to be destabilized by alpha particles in future burning plasma experiments. Because these waves have been shown to cause loss and redistribution of fast ions which can impact plasma performance and potentially device integrity, developing control techniques for AEs is of paramount importance. In the DIII-D plasma control system, spectral analysis of real-time ECE data is used as a monitor of AE amplitude, frequency, and location. These values are then used for feedback control of the neutral beam power to control Alfven waves and reduce fast ion loss. This work describes tests of AE control experiments in the current ramp up phase, during which multiple Alfven eigenmodes are typically unstable and fast ion confinement is degraded significantly. Comparisons of neutron emission and confined fast ion profiles with and without active AE control will be made. Work supported by the U.S. Dept. of Energy under Award Number DE-FC02-04ER54698.

  18. Spatial Studies of Ion Beams in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek

    2017-10-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  19. Particle Heating in Space and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Keesee, A. M.; Aquirre, E.; Good, T.

    2017-12-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ˜ 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  20. Results from the first operation phase of W7-X

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Sunn

    2016-10-01

    This talk will give a review of stellarator physics and the mission of Wendelstein 7-X (W7-X), and will summarize the most important results obtained during its first operation phase, OP1.1, which was completed in March 2016. The HELIAS reactor vision and open issues in stellarator research will also be discussed. The stellarator concept dates back to the 1950's. It has several intrinsic advantages, including being free of current-driven disruptions, and not needing current drive. However, the stellarator has been lagging behind the tokamak with respect to energy confinement. Recent advances in plasma theory and computational power have led to renewed interest in stellarators since they allow a complex but effective optimization of the confinement properties, one that should allow for tokamak-like confinement times. W7-X is the largest and most optimized stellarator in the world, and aims to show that the earlier weaknesses of the stellarator concept have been addressed successfully by optimization, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. It is built for steady-state operation, featuring 70 superconducting coils, and a confinement volume of about 30 m3. During OP1.1, it was operated at full field (B = 2.5 T on axis), with ECRH power up to 4.3 MW (later to be extended to 10 MW). Plasma operation was performed with helium and hydrogen, with deuterium planned for later phases. More than 2,000 discharges were created during the 10 operation weeks of OP1.1. Core Te 8 keV and Ti 2 keV were reached in discharge with densities in the low to mid 1019 range, and confinement times were on the order of 100-150 ms, within expectation. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement Number 633053.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less

  2. Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak

    DOE PAGES

    Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.

    2015-03-05

    Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.

  3. Stability of a Plasma Column. Free-Particle Model; STABILITE D'UNE COLONNE DE PLASMA. MODELE DES PARTICULES LIBRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyon, F.

    1963-12-01

    The stability of a field-free homogeneous column of plasma confined to an axial static field and the sum of an alternating and static B/sub tt/ field is considered in the freeparticle model. Conditions for the existence of a positive average restoring force are derived, and it is shown that for small deformations the column is stable for sufficientiy high frequency. (auth)

  4. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    PubMed

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  5. Transport in a toroidally confined pure electron plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, S.M.; ONeil, T.M.

    1996-07-01

    O{close_quote}Neil and Smith [T.M. O{close_quote}Neil and R.A. Smith, Phys. Plasmas {bold 1}, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal {ital E}{bold {times}}{ital B} drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength withinmore » the flux tube oscillate, and this produces corresponding oscillations in {ital T}{sub {parallel}} and {ital T}{sub {perpendicular}}. The collisional relaxation of {ital T}{sub {parallel}} toward {ital T}{sub {perpendicular}} produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by {Gamma}{sub {ital r}}=1/2{nu}{sub {perpendicular},{parallel}}{ital T}({ital r}/{rho}{sub 0}){sup 2}{ital n}/({minus}{ital e}{partial_derivative}{Phi}/{partial_derivative}{ital r}), where {nu}{sub {perpendicular},{parallel}} is the collisional equipartition rate, {rho}{sub 0} is the major radius at the center of the plasma, and {ital r} is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. {copyright} {ital 1996 American Institute of Physics.}« less

  6. PANDORA, a new facility for interdisciplinary in-plasma physics

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  7. Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiksel, G.; Hartog, D.D.; Cekic, M.

    1996-08-01

    It has long been recognized that fluctuations in the magnetic field are a potent mechanism for the anomalous transport of energy in confined plasmas. The energy transport process originates from particle motion along magnetic fields, which have a fluctuating component in the radial direction (perpendicular to the confining equilibrium magnetic surfaces). A key feature is that the transport can be large even if the fluctuation amplitude is small. If the fluctuations are resonant with the equilibrium magnetic field (i.e., the fluctuation amplitude is constant along an equilibrium field line) then a small fluctuation can introduce stochasticity to the field linemore » trajectories. Particles following the chaotically wandering field lines can rapidly carry energy across the plasma.« less

  8. Increased rate of response of the pituitary-adrenal system in rats adapted to chronic stress

    NASA Technical Reports Server (NTRS)

    Sakellaris, P. C.; Vernikos-Danellis, J.

    1975-01-01

    The response and adaptation of the pituitary-adrenal system to chronic stresses was investigated. These included individual caging, confinement, and exposure to cold for varying periods of time. Studies were carried out demonstrating that during the period of adaptation when plasma corticosterone concentrations returned toward their prestress level despite continued exposure to the stressor, the animals responded to additional stimuli of ether for 1 min, a saline injection, or release from confinement with a faster increase (within 2.5 min) in plasma corticosterone than controls (10 min). It is concluded that during adaptation to a chronic stress the pituitary-adrenal system is not inhibited by the circulating steroid level but is actually hypersensitive to additional stimuli.

  9. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Kevin J; Albright, Brian J; Yin, Lin

    2009-01-01

    VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration andmore » modeling reconnection in magnetic confinement fusion experiments.« less

  10. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.

    PubMed

    Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J

    2011-02-11

    A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  11. Co-axial discharges

    DOEpatents

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  12. CO-AXIAL DISCHARGES

    DOEpatents

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  13. Supersonic molecular beam injection effects on tokamak plasma applied non-axisymmetric magnetic perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; In, Y.; Jeon, Y. M.

    The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.

  14. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less

  15. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Qin, Hong

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  16. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE PAGES

    Gilson, Erik P.; Qin, Hong

    2018-01-30

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  17. One Dimensional Analysis of Inertially Confined Plasmas.

    DTIC Science & Technology

    1982-03-01

    Confinement Fuel Pellet’ - 3 2 General Flowchart for Program MOXNEX 8 3 General Program Organization of Subroutine ALPHA1 - 1J- 4 Values of <ov...is dumped in the current cell. Subprogram ALPHA1 calls 14 other subroutines to complete its tasks. General program organization is seen in Figure 3...OEROSITION T Figure 3. General Program Organization of Subroutine ALPHA1 6. Subroutine HTFLX. This subroutine computes the energy transfer

  18. Numerical simulation and experimentation of adjusting the curvatures of micro-cantilevers using the water-confined laser-generated plasma

    NASA Astrophysics Data System (ADS)

    Gu, Chunxing; Shen, Zongbao; Liu, Huixia; Li, Pin; Lu, Mengmeng; Zhao, Yinxin; Wang, Xiao

    2013-04-01

    This paper describes a precise and non-contact adjustment technique using the water-confined laser-generated plasma to adjust the curvature of micro-components (micro-mechanical cantilevers). A series of laser shock micro-adjustment experiments were conducted on 0.4 mm-thick Al samples using pulsed Nd:YAG lasers operating at 1064 nm wavelengths to verify the technical feasibility. Systematic study was carried out in the term of effects of various factors on the adjusting results, including laser energies, laser focus positions, laser shock times and confined regime configuration. The research results have shown that the different bending angles and bending directions can be obtained by changing the laser processing parameters. And, for the adjustment process, the absence of confined regime configuration could also generate suitable bending deformation. But, in the case of larger energy, the final surfaces would have the sign of ablation, hence resulting in poor surface quality. An analysis procedure including dynamic analysis performed by ANSYS/LS-DYNA and static analysis performed by ANSYS is presented in detail to attain the simulation of laser shock micro-adjustment to predict the final bending deformation. The predicted bending profiles is well correlated with the available experimental data, showing the finite element analysis can predict the final curvatures of the micro-cantilevers properly.

  19. During the long way to Mars: effects of 520 days of confinement (Mars500) on the assessment of affective stimuli and stage alteration in mood and plasma hormone levels.

    PubMed

    Wang, Yue; Jing, Xiaolu; Lv, Ke; Wu, Bin; Bai, Yanqiang; Luo, Yuejia; Chen, Shanguang; Li, Yinghui

    2014-01-01

    For future interplanetary manned spaceflight, mental issues, as well as physiological problems, must inevitably be considered and solved. Mars500 is a high-fidelity ground simulation experiment that involved 520 days of confined isolation for six multinational crewmembers. This experiment provided a good opportunity to perform psycho-physiological and psycho-social researches on such missions. To investigate emotional responses and psychological adaptation over long-term confinement, the International Affective Pictures System (IAPS) was selected as the visual emotional stimuli in this study. Additional data collected and analyzed included the Profile of Mood States (POMS) questionnaire and the levels of four types of plasma hormones: cortisol, 5-hydroxy tryptamine, dopamine, and norepinephrine. The results demonstrated an obvious bias on valence rating for unpleasant stimuli with time (p<0.05), and the correlation between psychological and biochemical data was identified (p<0.05). Overall, we concluded that the confined crew tended to assign positive ratings to negative pictures with time, which might be driven by a defensive system. There was a stage-changing pattern of psychological adaptation of the Mars500 crew, which is similar to the third-quarter phenomenon.

  20. During the Long Way to Mars: Effects of 520 Days of Confinement (Mars500) on the Assessment of Affective Stimuli and Stage Alteration in Mood and Plasma Hormone Levels

    PubMed Central

    Wang, Yue; Jing, Xiaolu; Lv, Ke; Wu, Bin; Bai, Yanqiang; Luo, Yuejia; Chen, Shanguang; Li, Yinghui

    2014-01-01

    For future interplanetary manned spaceflight, mental issues, as well as physiological problems, must inevitably be considered and solved. Mars500 is a high-fidelity ground simulation experiment that involved 520 days of confined isolation for six multinational crewmembers. This experiment provided a good opportunity to perform psycho-physiological and psycho-social researches on such missions. To investigate emotional responses and psychological adaptation over long-term confinement, the International Affective Pictures System (IAPS) was selected as the visual emotional stimuli in this study. Additional data collected and analyzed included the Profile of Mood States (POMS) questionnaire and the levels of four types of plasma hormones: cortisol, 5-hydroxy tryptamine, dopamine, and norepinephrine. The results demonstrated an obvious bias on valence rating for unpleasant stimuli with time (p<0.05), and the correlation between psychological and biochemical data was identified (p<0.05). Overall, we concluded that the confined crew tended to assign positive ratings to negative pictures with time, which might be driven by a defensive system. There was a stage-changing pattern of psychological adaptation of the Mars500 crew, which is similar to the third-quarter phenomenon. PMID:24695321

Top