Science.gov

Sample records for plasma diagnostic applications

  1. Diagnostics and biomedical applications of radiofrequency plasmas

    NASA Astrophysics Data System (ADS)

    Lazović, Saša

    2012-11-01

    In this paper we present spatial profiles of ion and atomic oxygen concentrations in a large scale cylindrical 13.56 MHz capacitively coupled plasma low pressure reactor suitable for indirect biomedical applications (like treatment of textile to increase antibacterial properties) and direct (treatment of seeds of rare and protected species). Such reactor can easily be used for the sterilization of medical instruments by removing bacteria, spores, prions and fungi as well. We also discuss electrical properties of the system based on the signals obtained by the derivative probes and show the light emission profiles close to the sample platform. In the case of seeds treatment, the desired effect is to plasma etch the outer shell of the seed which will lead to the easier nutrition and therefore increase of the germination. In the case of textile treatment the functionalization is done by bounding atomic oxygen to the surface. It appears that antibacterial properties of the textile are increased by incorporating nanoparticles to the fibres which can successfully be done after the plasma treatment. From these two examples it is obvious that the balance of ion and atomic oxygen concentrations as well as proper choice of ion energy and power delivered to the plasma direct the nature of the plasma treatment.

  2. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  3. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  4. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  5. Development, diagnostic and applications of radio-frequency plasma reactor

    NASA Astrophysics Data System (ADS)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  6. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  7. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  8. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz-30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  9. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz–30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  10. Plasma diagnostics for FED

    SciTech Connect

    Nelson, W.D.

    1981-01-01

    An overview of the plasma diagnostic instruments recommended for the Fusion Engineering Device (FED) is described. First the role and need for plasma diagnostics is discussed. This is followed by an identification of particles and radiation eminating from the plasma. Next some design considerations are presented for the overall set of diagnostic instruments. Finally, instruments used for control and for plasma performance measurements are included in separate lists.

  11. Application of dust grains and Langmuir probe for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Ussenov, Y. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.

    2014-01-01

    This paper presents the results of the analysis of the experimentally measured width of the dust-free region around a single electric probe in a dusty plasma of glow discharge. The experimental results were compared with the data of a theoretical study on the basis of the balance equation of the dust particles thermal energy and their electrostatic interaction energy with the probe. An alternative method for the determination of the buffer plasma parameters was developed by measuring the dust-free region area around the probe. Using this method the temperature and the concentration of electrons in an argon glow discharge plasma in the pressure range from P= 0.6 to P= 0.8\\ \\text{torr} were determined.

  12. Application of coherent lidar to ion measurements in plasma diagnostics

    SciTech Connect

    Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.; Simpson, M.L.

    1997-03-01

    A coherent lidar system has been constructed for the measurement of alpha particles in a burning plasma. The lidar system consists of a pulsed CO{sub 2} laser transmitter and a heterodyne receiver. The receiver local oscillator is a cw, sequence-band CO{sub 2} laser operating with a 63.23 GHz offset from the transmitter.

  13. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  14. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  15. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    NASA Astrophysics Data System (ADS)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  16. Application of Dynamic Logic Algorithm to Inverse Scattering Problems Related to Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Perlovsky, L.; Deming, R. W.; Sotnikov, V.

    2010-11-01

    In plasma diagnostics scattering of electromagnetic waves is widely used for identification of density and wave field perturbations. In the present work we use a powerful mathematical approach, dynamic logic (DL), to identify the spectra of scattered electromagnetic (EM) waves produced by the interaction of the incident EM wave with a Langmuir soliton in the presence of noise. The problem is especially difficult since the spectral amplitudes of the noise pattern are comparable with the amplitudes of the scattered waves. In the past DL has been applied to a number of complex problems in artificial intelligence, pattern recognition, and signal processing, resulting in revolutionary improvements. Here we demonstrate its application to plasma diagnostic problems. [4pt] Perlovsky, L.I., 2001. Neural Networks and Intellect: using model-based concepts. Oxford University Press, New York, NY.

  17. Plasma diagnostic reflectometry

    SciTech Connect

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-02-26

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements.

  18. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    SciTech Connect

    Laux, Christophe O.

    2007-04-06

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.

  19. Circulating DNA in plasma and serum: biology, preanalytical issues and diagnostic applications.

    PubMed

    Lui, Yanni Y N; Dennis, Y M L

    2002-10-01

    The recent studies in circulating nucleic acids have brought about a new dimension to medical diagnostics. In oncology, various tumor-associated molecular alterations have been detected in the plasma/serum of cancer patients. These findings have important implications for the diagnosis, prognostication and monitoring of many types of malignancies. In pregnancy, the discovery of fetal DNA in maternal circulation has opened up a new source of fetal genetic material for noninvasive analysis for numerous fetal conditions and detection of certain pregnancy-associated disorders. The measurement of circulating DNA has also found potential application in the post-treatment monitoring of transplant patients and the assessment and prognostication of trauma patients. Although much attention has focused on circulating DNA, the knowledge of its biology is still at an early stage. For example, the origin and mechanisms of release of circulating DNA remain to be elucidated. The eventual clinical application of circulating DNA technology would also require the thorough elucidation of preanalytical factors that may affect its measurement in clinical laboratories.

  20. Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Nastuta, Andrei

    A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

  1. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  2. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    SciTech Connect

    Gilmore, Mark; Hsu, Scott; Witherspoon, F. Douglas; Cassibry, Jason; Bauer, Bruno S.

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  3. Testing and Calibration of Novel Detectors for Nuclear and Plasma Physics Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ali, Zaheer; Haugh, Mike; Tellinghuisen, Jim; Glebov, Vladimir; Roberts, Sam; Stoeckl, Christian; Sangster, Craig

    2008-10-01

    Calibrated chemical vapor deposition (CVD) diamond diodes, X-ray diodes (XRDs), and PIN diodes are used in nuclear and plasma physics diagnostic experiments, such as those conducted at the National Ignition Facility at Lawrence Livermore National Laboratory (LLNL). Calibrations of these diodes are conducted at the OMEGA Laser at the Lab for Laser Energetics of the University of Rochester, as well as at the Titan Laser in the Jupiter Laser Facility at LLNL. The OMEGA Laser is a 30-kilojoule one-nanosecond system designed for inertial confinement fusion and nuclear physics research. The Titan Laser is a picosecond system designed for plasma and X-ray studies. In addition, National Security Technologies, LLC, (NSTec) has built a new hard X-ray calibration facility (the ``HEX Laboratory''), where X-ray detector systems are also calibrated. In this paper we will present our methods of absolute and relative calibration, results of calibration, and the capabilities of the HEX Laboratory.

  4. Diagnostic techniques for thermal plasmas

    SciTech Connect

    Fincke, J.R.; Snyder, S.C.; Swank, W.D.; Haggard, D.C.; Reynolds, L.D.

    1994-12-31

    The plasma diagnostic techniques discussed are Rayleigh and coherent Thomson scattering, Coherent-Anti-Stokes-Raman Spectroscopy (CARS) and enthalpy probes. The quantities measured are heavy species and electron temperature, ionized fraction, plasma composition, and velocity. Examples of results from both subsonic and supersonic jets are presented and limitations discussed.

  5. ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS

    SciTech Connect

    Guennou, C.; Auchere, F.; Soubrie, E.; Bocchialini, K.; Barbey, N.

    2012-12-15

    Differential emission measure (DEM) analysis is one of the most used diagnostic tools for solar and stellar coronae. Being an inverse problem, it has limitations due to the presence of random and systematic errors. We present in this series of papers an analysis of the robustness of the inversion in the case of SDO/AIA observations. We completely characterize the DEM inversion and its statistical properties, providing all the solutions consistent with the data along with their associated probabilities, and a test of the suitability of the assumed DEM model. While Paper I focused on isothermal conditions, we now consider multithermal plasmas and investigate both isothermal and multithermal solutions. We demonstrate how the ambiguity between noises and multithermality fundamentally limits the temperature resolution of the inversion. We show that if the observed plasma is multithermal, isothermal solutions tend to cluster on a constant temperature whatever the number of passbands or spectral lines. The multithermal solutions are also found to be biased toward near-isothermal solutions around 1 MK. This is true even if the residuals support the chosen DEM model, possibly leading to erroneous conclusions on the observed plasma. We propose tools for identifying and quantifying the possible degeneracy of solutions, thus helping the interpretation of DEM inversion.

  6. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  7. Laser diagnostic experiments on KrF laser ablation plasma-plume dynamics relevant to manufacturing applications*

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Ching, C. H.; Lash, J. S.; Lindley, R. A.

    1994-05-01

    A brief review is given of the potential applications of laser ablation in the automotive and electronics manufacturing industries. Experiments are presented on KrF laser ablation of three materials relevant to manufacturing applications: aluminum metal vs aluminum-nitride (AlN) and alumina (Al2O3) ceramics. Plasma and neutral-atom diagnostic data are presented from resonant-holographic-interferometry, dye-laser-resonance-absorption photography, and HeNe laser deflection. Data show that plasma electron densities in excess of 1018 cm-3 exist in the ablation of AlN, with lower densities in Al and Al2O3. Aluminum neutral and ion expansion velocities are in the range of cm/μs. Ambipolar electric fields are estimated to be 5-50 V/cm.

  8. Nonequilibrium diagnostics of plasma thrusters

    SciTech Connect

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  9. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  10. ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. I. ISOTHERMAL PLASMAS

    SciTech Connect

    Guennou, C.; Auchere, F.; Soubrie, E.; Bocchialini, K.; Barbey, N.

    2012-12-15

    Differential emission measure (DEM) analysis is a major diagnostic tool for stellar atmospheres. However, both its derivation and its interpretation are notably difficult because of random and systematic errors, and the inverse nature of the problem. We use simulations with simple thermal distributions to investigate the inversion properties of SDO/AIA observations of the solar corona. This allows a systematic exploration of the parameter space, and using a statistical approach the respective probabilities of all the DEMs compatible with the uncertainties can be computed. Following this methodology, several important properties of the DEM inversion, including new limitations, can be derived and presented in a very synthetic fashion. In this first paper, we describe the formalism and we focus on isothermal plasmas as building blocks to understand the more complex DEMs studied in the second paper. The behavior of the inversion of AIA data being thus quantified, and we provide new tools to properly interpret the DEM. We quantify the improvement of the isothermal inversion with six AIA bands compared to previous EUV imagers. The maximum temperature resolution of AIA is found to be 0.03 log T{sub e} , and we derive a rigorous test to quantify the compatibility of observations with the isothermal hypothesis. However, we demonstrate limitations in the ability of AIA alone to distinguish different physical conditions.

  11. diagnostic in a recombining plasma

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; Goto, M.

    2016-05-01

    In fusion devices the hydrogen Balmer lines are used to measure the neutral flux from the walls into the plasma using the atomic physics factor S/XB. This is a standard diagnostic which can be applied in ionizing plasma using {{H}α} , {{H}β} or {{H}γ} without knowledge of the electron density. We will extend this method to a recombining plasma in front of a surface. {{H}α} can be used in an analogous way to measure the plasma flow to this surface which can be e.g. a divertor target. The other Balmer lines are not suitable because the corresponding atomic physics factor R/YB depends on density due to three-body recombination. An application of this diagnostic method is provided.

  12. Properties of plasma radiation diagnostics

    SciTech Connect

    Idzorek, G.C.; Oona, H.

    1996-06-01

    A number of diagnostics utilizing the radiation emitted from high-temperature plasmas have been developed at Los Alamos. Photoemissive x-ray diodes with photon energy bandpass filters provide time resolved rough spectral data from bout 6 eV to > 10 keV photon energy. Filtered silicon photodiodes can be used down to 1 eV and offer the advantages of nominally flat response and ability to operate in poor vacuum conditions. Both types of diodes will provide a rough time resolved spectrum and both are relatively inexpensive, reliable, and passive (i.e. no synchronization problems). For higher energy resolution bent crystal spectrographs are used in the x-ray region. With the addition of streak cameras or gated microchannel plates these systems provide data with high energy and high time resolution. To measure the total energy output a thin foil bolometer is used that measures the change in foil resistance as it is heated by the plasma radiation. Information on the physical location of the plasma is provided by a suite of visible framing cameras and x-ray pinhole cameras. By combining these diagnostics into a complementary set good diagnostic information can be guaranteed on any plasma experiment.

  13. Recoverable Plasma Diagnostics Package (RPDP)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The recoverable plasma diagnostics package (RPDP) is an ejectable and recoverable satellite with flight and ground support systems so that it can be utilized in three modes: attached to an remote manipulator system; tethered; or as a subsatellite. The satellite is well instrumented with particle and field diagnostic as well as optical sensors to: investigate the dynamics of the natural environment or ejected perturbations from particle beams; measure the characteristics and propagation of electrostatic and electromagnetic waves; study wave particle interactions; and study natural properties of the magnetosphere, ionosphere, and upper atmosphere.

  14. Recoverable Plasma Diagnostics Package (RPDP)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The recoverable plasma diagnostics package (RPDP) is an ejectable and recoverable satellite with flight and ground support systems so that it can be utilized in three modes: attached to an remote manipulator system; tethered; or as a subsatellite. The satellite is well instrumented with particle and field diagnostic as well as optical sensors to: investigate the dynamics of the natural environment or ejected perturbations from particle beams; measure the characteristics and propagation of electrostatic and electromagnetic waves; study wave particle interactions; and study natural properties of the magnetosphere, ionosphere, and upper atmosphere.

  15. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  16. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  17. Plasma Applications

    NASA Astrophysics Data System (ADS)

    Kristiansen, M.; Guenther, A. H.

    Plasmas have numerous applications for civilian as well as defense purposes. However, technical development is still in its infancy. Many new important applications depend only upon the imagination of engineers and scientists. In contrast to other develping technologies, applications from the fields of plasma science and engineering can only evolve through a multidisciplinary synergism. Research in plasma chemistry and physics together with gaseous electronics, fluid dynamics and thermodynamics, particularly mass and heat transfer, must be coupled with electro-chemistry and material science research particularly those aspects dealing with surfaces. In this paper we attempt to evaluate the importance of plasma applications. Obviously, it is impossible to do justice to all the important areas. The selection of topics is, therefore, influenced by the authors' interests and background. We will outline most of the applications rather briefly and concentrate in some detail on those areas in which we are interested.

  18. Development and Application of a Pulsed Ionization Chamber-Based Multiprobe Plasma Diagnostic System.

    NASA Astrophysics Data System (ADS)

    Choi, Won Young

    An experimental system based on the Pulsed Ionization Chamber (PIC) technique was developed and applied to the investigation of the characteristics of nuclear-generated plasmas, which are related to critical engineering design parameters of uranium fluoride based gas-core reactor/MHD converter systems. Plasma parameters measured included ionization production rate, recombinational loss coefficient, electron density, mobility, and electrical conductivity for plasmas containing various concentrations of UF _6 and rare gases such as He, Ar and Xe. The measurements demonstrated the advantage of the PIC technique in obtaining multiple plasmas simultaneously. The PIC system was subsequently upgraded to the Multi-Probe Ionization Chamber (MPIC) to improve its capabilities and to extend its range of measurement to higher plasma densities and temperatures by providing it with additional measurement features in the form of conductivity and Langmuir probes. To accommodate these additional capabilities and to obtain complete automation of experiment, a technique was developed for remote switching between several GPIB instruments controlled by a software system. Performance tests of the MPIC system using both ^{60}Co and ^3 He(n,p)T ionization sources showed that the chamber functions according to design. Of particular importance, leakage current, the limiting factor in high temperature chamber operation, was negligible at temperature of 1000 K due to the new electrode design. In addition, the responses of the three measurement features (PIC, Conductivity, Langmuir) exhibit regions of overlap under high plasma density conditions with good agreement and reproducibility. At higher pressures and for electronegative species such as UF_6, evidence of cluster formation was observed with an approximate T^ {-4} plasma loss temperature dependence. The measured electrical conductivity of 1 atm He (1% UF _6) gas was in the range of 5times10 ^{-7} to 1times10 ^{-4} (S/m) over the thermal

  19. Application and Continued Development of Thin Faraday Collectors as a Lost Ion Diagnostic for Tokamak Fusion Plasmas

    SciTech Connect

    F. Ed Cecil

    2011-06-30

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  20. On the application of cw external cavity quantum cascade infrared lasers for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Lopatik, D.; Lang, N.; Macherius, U.; Zimmermann, H.; Röpcke, J.

    2012-11-01

    Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm-1 (4.42-7.66 µm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 1011-1014 molecules cm-3. In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature Tg has been calculated in dependence on the discharge power. Tg increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10-5. The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10-19 and 10-22 cm molecule-1.

  1. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  2. Multifunctional laser facility with photoelectric recording for plasma diagnostics

    SciTech Connect

    Pyatnitsky, L.N.; Yakushev, G.G.; Oberman, F.M. )

    1989-01-01

    A laser facility with photoelectric recording is described. It can be used in performing plasma diagnostics by four different measuring techniques. The application of photoelectric recording considerably simplifies the automation of measurements.

  3. MFTF-B plasma-diagnostic system

    SciTech Connect

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-10-21

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system.

  4. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  5. Comparative analyses of plasma probe diagnostics techniques

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-01

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  6. Rare Gases Transition Probabilities for Plasma Diagnostics

    SciTech Connect

    Katsonis, K.; Siskos, A.; Ndiaye, A.; Clark, R. E. H.; Cornille, M.; Abdallah, J. Jr.

    2006-01-15

    Evaluation of Ar and Xe transition probabilities to be used in Collisional-Radiative models for plasma diagnostics is addressed. Partial results are given for the typical case of the 4p <- 4d Ar III multiplet.

  7. Some plasma aspects and plasma diagnostics of ion sources (invited)

    SciTech Connect

    Wiesemann, Klaus

    2008-02-15

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma--basic data for plasma modeling.

  8. Some plasma aspects and plasma diagnostics of ion sources.

    PubMed

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  9. Laser diagnostics of plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Rao, Xing

    In this study, a microwave re-entrant cavity discharge system and a direct current (DC) plasmatron are used to investigate flame enhancement and nitric oxide (NO) formation using laser and optical diagnostics. The uniqueness of this study lies in the direct coupling concept, a novel highly efficient strategy used here for the first time. To investigate combustion dynamics of direct microwave coupled combustion, an atmospheric high-Q re-entrant cavity applicator is used to couple microwave (2.45 GHz) electromagnetic energy directly into the reaction zone of a premixed laminar methane-oxygen flame using a compact torch. When microwave energy increases, a transition from electric field enhancement to microwave plasma discharge is observed. At 6 to 10 Watts, ionization and eventually break-down occurs. 2-D laser induced fluorescence (LIF) imaging of hydroxyl radicals (OH) and carbon monoxide (CO) is conducted in the reaction zone over this transition, as well as spectrally resolved flame emission measurements. These measurements serve to monitor excited state species and derive rotational temperatures using OH chemiluminescence for a range of equivalence ratios (both rich and lean) and total flow rates. Combustion dynamics is also investigated for plasma enhanced methane-air flames in premixed and nonpremixed configurations using a transient arc DC plasmatron. Results for OH and CO PLIF also indicate the differences in stability mechanism, and energy consumption for premixed and nonpremixed modes. It is shown that both configurations are significantly influenced by in-situ fuel reforming at higher plasma powers. Parametric studies are conducted in a plasma assisted methane/air premixed flame for quantitative NO production using a DC plasmatron with PLIF imaging. Quantitative measurements of NO are reported as a function of gas flow rate (20 to 50 SCFH), plasma power (100 to 900 mA, 150 to 750 W) and equivalence ratio (0.7 to 1.3). NO PLIF images and single point NO

  10. Synthetic diagnostics platform for fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-11-01

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  11. Tomography as a promising diagnostic tool for plasma turbulence

    NASA Astrophysics Data System (ADS)

    Fujisawa, A.; Nagashima, Y.; Inagaki, S.; Onchi, T.; Ohshima, S.; Shimizu, A.

    2016-02-01

    A system for plasma turbulence tomography has been developed in a linear cylindrical plasma as a prototype with aiming at future application on toroidal plasma of higher temperature. This paper describes the diagnostic system in both aspects of the soft- and hardware, and reports the first results of tomographic reconstruction that can successfully produce local emission and its fluctuations. In the reconstruction process, two dimensional view of plasma is obtained for approximately 0.6 ms in every sampling time of 1 μs using parallel processing of 120 cores with 10 personal computers. The results include the steady state analysis of local fluctuation power spectra using fast Fourier transform, analysis of temporal behavior of fluctuation power spectra with wavelet transform, and analyses of the structural deformation or pattern of local plasma emission, demonstrating that the success of tomography as a promising diagnostic tool for plasma turbulence.

  12. Diagnostics of thermal spraying plasma jets

    SciTech Connect

    Fauchais, P.; Coudert, J.F.; Vardelle, M.; Vardelle, A.; Denoirjean, A. )

    1992-06-01

    The development of diagnostic techniques for dc plasma spraying is reviewed with attention given to the need for thick highly reproducible coatings of good quality for aeronautic and other uses. Among the techniques examined are fast cameras, laser-Doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), enthalpy probes, and emission spectroscopy. Particular emphasis is given to the effect of arc fluctuations on the spectroscopic measurements, and a method is introduced for obtaining temperature and species density of vapor clouds traveling with each particle in flight. Coating properties can be deduced from data on single particles, and statistical approaches are often unreliable without added data on surface temperature and particle velocity. Also presented is a method for deriving the temperature evolution of a cooled splat and successive layers and passes. These methods are of interest to the control of adhesion and cohesion in coatings for critical aerospace applications. 70 refs.

  13. Diagnostics of thermal spraying plasma jets

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Coudert, J. F.; Vardelle, M.; Vardelle, A.; Denoirjean, A.

    1992-06-01

    The development of diagnostic techniques for dc plasma spraying is reviewed with attention given to the need for thick highly reproducible coatings of good quality for aeronautic and other uses. Among the techniques examined are fast cameras, laser-Doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), enthalpy probes, and emission spectroscopy. Particular emphasis is given to the effect of arc fluctuations on the spectroscopic measurements, and a method is introduced for obtaining temperature and species density of vapor clouds traveling with each particle in flight. Coating properties can be deduced from data on single particles, and statistical approaches are often unreliable without added data on surface temperature and particle velocity. Also presented is a method for deriving the temperature evolution of a cooled splat and successive layers and passes. These methods are of interest to the control of adhesion and cohesion in coatings for critical aerospace applications.

  14. Microwave imaging diagnostics for plasma fluctuation studies

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    Electron Cyclotron Emission Imaging (ECEI) and Microwave Imaging Reflectometry (MIR) combined systems are being investigated by the UC Davis Plasma Diagnostic Group (PDG), in collaboration with Princeton Plasma Physics Laboratory (PPPL) researchers, Drs. E. Mazzucato, H.K. Park and T. Munsat, as well as researchers from the FOM-Instituut voor Plasmafysica Rijnhuizen,the Netherlands. The goal is to develop the plasma diagnostic systems based on the imaging technology developed in the UC Davis PDG group, for the study of plasma micro-turbulence, which is extremely important for the understanding of anomalous transport behavior of magnetically confined plasmas such as in tokamaks. This dissertation work provides the design of the optical systems, the design of the electronics, the testing of the antenna array and the data analysis of TEXTOR ECEI/MIR combined systems.

  15. THz time-domain spectroscopy for tokamak plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Causa, F.; Zerbini, M.; Johnston, M.; Buratti, P.; Doria, A.; Gabellieri, L.; Gallerano, G. P.; Giovenale, E.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.

    2014-08-01

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  16. THz time-domain spectroscopy for tokamak plasma diagnostics

    SciTech Connect

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  17. Spectroscopic diagnostics of high temperature plasmas

    SciTech Connect

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  18. Laser Diagnostics for Plasma Processes

    NASA Astrophysics Data System (ADS)

    Filimonov, Serguei Victor

    The time transients of vibrational/rotational excitation up to v = 7 vibrational level of the ground electronic state of nitrogen were measured in a positive column during the 1-10 mus pulsed electric discharges, and in the afterglow. Current densities were up to 25 A/cm^2, and pressures up to 6 Torr. It is shown that initially energy is being transferred, primarily into vibrational levels above v = 1, resulting in a highly non Boltzmann distribution. The redistribution between vibrational levels takes place within 100 mus after the discharge pulse. Beyond 100 mus the vibrational populations resemble closely Boltzmann distribution. Significant rotational heating was observed in the afterglow and is attributed to energy transfer from vibration to rotation via collisions with electrons. The rotational temperature was as high as 3500 K and reached maximum values between 80 and 100 mus after the discharge pulse. Standard, Coherent Anti-Stokes Raman Spectroscopy (CARS) was employed in all measurements. A novel laser interferometric system has been developed for real time in situ monitoring of the etch rate during the plasma etching. The two-beam-two-path optical set-up provides continuous etch rate measurements while plasma parameters are changing.

  19. Near-infrared spectroscopy for burning plasma diagnostic applicationsa)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and γ-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  20. Plasma Diagnostics of a Forward Laser Plasma Accelerated Thruster

    SciTech Connect

    Izumi, Masaya; Horisawa, Hideyuki; Takeda, Akihito; Kimura, Itsuro

    2006-05-02

    Fundamental investigations on plasma diagnostics of a forward laser plasma acceleration employing laser-foil interactions were conducted for an Al-foil target irradiated with an Nd:YAG laser of 1J/pulse with pulse-width of 10nsec. A time-of-flight measurement was also conducted to evaluate ion speeds. In addition, temporal evolutions of electron temperatures and densities were evaluated with electrostatic probes and spectroscopic diagnostics. Moreover, a preliminary one-dimensional particle-in-cell (PIC) simulation was conducted to elucidate acceleration mechanisms. From the results, it was shown that a speed of ions in a forward direction were about 135 km/sec, respectively. Also it was shown that the plasma temperature and density were about 2.5{approx}3 eV and 1010 cm-3.

  1. SPDE: Solar Plasma Diagnostic Experiment

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  2. Optical mixing as a plasma diagnostic

    SciTech Connect

    Forman, P.R.; Riesenfeld, W.

    1980-03-01

    The nonlinear interaction of electromagnetic waves in a plasma are examined as the basis for a new and useful diagnostic tool. In particular, we consider the Raman-Induced Kerr Effect (RIKE) in a magnetic field-free plasma, and evaluate the characteristics of various laser sources and detecting equipment necessary for the implementation of a sensitive RIKE scattering system. Our conclusion is that the present state of technology permits the design of promising diagnostics systems of this type. Finally, we express reasonable conjectures on the generalization of the effect to magnetoplasmas, in which the measurement could lead to the determination not only of density, but also of the magnitude and direction of the imbedded magnetic field.

  3. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  4. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  5. Plasma diagnostics for the compact ignition tokamak

    SciTech Connect

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.

  6. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  7. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  8. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  9. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  10. Mobile CARS instrument for combustion and plasma diagnostics

    SciTech Connect

    Anderson, T.J.; Dobbs, G.M.; Eckbreth, A.C.

    1986-11-15

    A compact and easily transportable coherent anti-Stokes Raman spectroscopy system for combustion and plasma diagnostics is described. The instrument is readily adaptable to a wide variety, test environments and experiments. The system is capable of withstanding high noise and vibration levels and is remotely operable to protect the operator and delicate components from high noise levels or hazardous environments. It is intended for single-pulse temperature and concentration measurements in practical combustion systems, such as gas turbines, diesel engines, and plasma process applications. The system is operational, and initial measurement demonstrations in a supersonic combusting flow are described.

  11. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  12. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-06-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  13. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-11-04

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/ps/mm{sup 2}, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within {+-}10%.

  14. A calorimetric probe for plasma diagnostics

    SciTech Connect

    Stahl, Marc; Trottenberg, Thomas; Kersten, Holger

    2010-02-15

    A calorimetric probe for plasma diagnostics is presented, which allows measurements of the power taken by a test substrate. The substrate can be biased and used as an electric probe in order to obtain information about the composition of the total heating power. A new calibration technique for calorimetric probes, which uses monoenergetic electrons at low pressure, has been developed for an improved accuracy. The use of the probe is exemplified with an experiment where both energetic neutral atoms and ions heat the test substrate.

  15. Coronal plasma diagnostics from eclipse observations

    NASA Astrophysics Data System (ADS)

    Landi, E.; Habbal, S. R.; Tomczyk, S.

    2015-12-01

    In this talk we will discuss the diagnostic potential of observationsof visible spectral lines formed in the extended solar corona that canbe obtained during eclipses. We will discuss the possible diagnosticapplications of visible eclipse observations to measure the physicalparameters of the extended corona, to understand solar wind origin andacceleration, and to determine the evolution of Coronal Mass Ejectionsduring onset.We will first review the mechanisms of formation of spectral lineintensities, we will then illustrate their diagnostic applications,and show some results from recent eclipse observations. We will alsoreview the spectral lines that are most likely to be observed inthe extended solar corona during the upcoming 2017 eclipse in thecontinental United States.

  16. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  17. Diagnostics for first plasma and development plan on KSTAR

    SciTech Connect

    Lee, J. H.; Na, H. K.; Lee, S. G.; Bak, J. G.; Seo, D. C.; Seo, S. H.; Oh, S. T.; Ko, W. H.; Chung, J.; Nam, Y. U.; Lee, K. D.; Ka, E. M.; Oh, Y. K.; Kwon, M.; Jeong, S. H.

    2010-06-15

    The first plasma with target values of the plasma current and the pulse duration was finally achieved on June 13, 2008 in the Korea Superconducting Tokamak Advanced Research (KSTAR). The diagnostic systems played an important role in achieving successful first plasma operation for the KSTAR tokamak. The employed plasma diagnostic systems for the KSTAR first plasma including the magnetic diagnostics, millimeter-wave interferometer, inspection illuminator, H{sub {alpha}}, visible spectrometer, filterscope, and electron cyclotron emission (ECE) radiometer have provided the main plasma parameters, which are essential for the plasma generation, control, and physics understanding. Improvements to the first diagnostic systems and additional diagnostics including an x-ray imaging crystal spectrometer, reflectometer, ECE radiometer, resistive bolometer, and soft x-ray array are scheduled to be added for the next KSTAR experimental campaign in 2009.

  18. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  19. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  20. Diagnostics for hot plasmas using hydrogen neutral beams

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Beams of neutral hydrogen atoms have found a number of uses in the diagnosis of hot plasmas. In the most straightforward application, neutral beams have been used to determine plasma line density, based on simple attenuation measurements. This technique has been applied most intensively recently to the study of beam-injected mirror plasmas. Neutral beams have also now been used in a number of tokamaks to supply a local increase of the neutral atom target density for charge exchange. By directing a time-modulated neutral beam across the sight-line of a charge-exchange analyzer, and measuring the modulated neutral particle efflux from the plasma, local measurements of the ion energy distribution function can be made. If a modulated diagnostic neutral beam is directed across the sight-line of an ultra-violet spectrometer, one can also make measurements of the local densities and possibly velocity distributions of fully stripped impurities. The fast hydrogen neutrals charge exchange with fully stripped impurities in the plasma, leaving the impurities in excited hydrogen-like states. In their prompt radiative decay the impurity ions emit characteristic uv lines, which can be detected easily.

  1. Analyses of Different Techniques for the Plasma Probe Diagnostics

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Benjamin

    2015-09-01

    The subject of this publication is comparison of the plasma parameters inferred from classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured EEDF using double differentiation of the probe characteristic We concluded that the plasma parameters inferred by the classical Langmuir procedure are subjected to significant inaccuracy due to non-Maxwellian EEDF, uncertainty of locating the plasma potential and arbitrariness in approximation of the ion current. The plasma density inferred from the ion part of the probe characteristic was found to diverge by as much as an order of magnitude from the density calculated as the EEDF integral, while the electron temperature is derived with significant uncertainty. Such inaccuracy is attributed to deficiencies in the ion current theories, i.e. unrealistic assumptions about Maxwellian-shaped EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and some others. We concluded that for highly non-equilibrium gas discharge plasmas at low gas pressure the probe measurements based on EEDF diagnostics is single reliable tool of for the basic research and industrial applications. Examples of EEDF measurements reiterate significance of the instrument technical characteristics, such as high energy resolution and wide dynamic range and importance of displaying the probe current derivatives in real time.

  2. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  3. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    SciTech Connect

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  4. Thomson Scattering Lineshape Fitting for Plasma Diagnostics

    1994-02-04

    HFIT30 is used for interpreting lineshape (intensity versus frequency) data from Thomson and Rayleigh light scattering from a plasma, to obtain temperatures and number densities of the component species in the plasma.

  5. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  6. Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas

    SciTech Connect

    Medley, S.S.; Hendel, H.

    1982-11-01

    Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.

  7. Laser scattering for temporal and spatial diagnostic of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Palomares Linares, Jose Maria

    2012-10-01

    Many recent industrial and technological applications like surface etching, inorganic films deposition, polymerization of surfaces or sterilization are developed within the field of low temperature plasmas. To study, monitor and model plasma processes is of great importance to have diagnostic tools that can provide reliable information on different plasma parameters. In general, laser scattering techniques provide a direct and accurate method for plasma diagnostic with spatial and temporal resolution. Laser Thomson scattering is used for the diagnostic of electron density and temperature, two of the most important parameters in low temperature discharges. With a similar setup Rayleigh and Raman scattering techniques are used for the diagnostic of gas density and temperature. In this contribution we deal with the different technical and theoretical aspects that are required for the application of these laser scattering techniques. Of special importance are the detection limit, laser stray light rejection and laser perturbations of the plasma. The present study is performed on different low temperature microwave discharges, both at low and atmospheric pressure. The laser scattering techniques provide information on the spatial distribution of the mentioned plasma parameters over different discharge conditions, including small micro-plasmas. Similarly, the temporal evolution of pulsed plasmas is studied, unraveling the features of the switching on and off phases of the discharges.

  8. Positron plasma diagnostics and temperature control for antihydrogen production.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lindelöf, D; Rizzini, E Lodi; Macrí, M; Madsen, N; Manuzio, G; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; van der Werf, D P

    2003-08-01

    Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.

  9. Mechanical considerations for MFTF-B plasma-diagnostic system

    SciTech Connect

    Thomas, S.R. Jr.; Wells, C.W.

    1981-10-19

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done.

  10. Challenges for Plasma Diagnostics in a Next Step Device (FIRE)

    SciTech Connect

    Kenneth M. Young

    2002-01-28

    The physics program of any next-step tokamak such as FIRE [Fusion Ignition Research Experiment] sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g., ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, i n fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for the TFTR [Tokamak Fusion Test Reactor] is essential; it must be qualified well before moving into D-T [deuterim-tritium] experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described.

  11. Transient calorimetric diagnostics for plasma processing

    NASA Astrophysics Data System (ADS)

    Bornholdt, Sven; Kersten, Holger

    2013-08-01

    This paper reports on an improvement of the calorimetric method for the determination of energy fluxes from plasma towards substrates by using a transient technique. It provides a short overview of the traditional method used for characterization of plasma-wall-interactions during plasma processing. The mathematical framework of the method and possible implications are discussed. It is shown how the method can be improved to obtain additional and detailed information about the energy influx in a shorter measurement time. For this purpose, the probe bias (if applied), which has commonly been kept constant is varied like in Langmuir probe measurements. The experimental validation of the theoretical considerations emphasizes the potential of the method for control in plasma processing. The possibility how the passive calorimetric probe can be used in continuous measurements for process monitoring without any feedback loops used by other probes, is finally discussed.

  12. New Electron Temperature Diagnostic for Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Loch, Stuart

    2004-11-01

    A new line ratio diagnostic design to measure electron temperature in plasma is presented. Unlike previous diagnostics, this new technique features emission lines originating from levels with different principal quantum numbers. A significant advantage of this approach is that the line ratio varies considerably with temperature in the 1 to 20 eV range. Another advantage is that both transitions are optically thin even for plasma density up to 1 E 14 cm-3. The drawbacks are: a large difference in the line intensities and the significant difference in wavelength. The event of high sensitivity CCD camera combine with precise calibration can to a large extent minimize these latest two issues. The diagnostic is tested on the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source. ASTRAL is a 2.3 m long helicon source designed to investigate basic plasma and space plasma processes. The device produces plasmas with the following typical parameters ne = 1 E9 to 1 E13 cm-3, Te = 2 to 20 eV and Ti = 0.03 to 0.3 eV. A series of 8 large coils produce an axial magnetic field up to 1.2 kGauss. Operating pressure varies from 0.1 to 100 mTorr. A water cooled fractional helix antenna is used to introduce RF power up to 2 kwatt through a standard matching circuit. The line ratio temperatures are measured by means of a 0.33 m McPherson Criss-Cross Scanning monochromator instrumented with a SPH5 Apogee CCD camera. The line ratio temperatures are compared to electron temperatures measured by a rf compensated Langmuir Probe. To validate the diagnostic, a new collisional radiative model that makes use of the latest excitation cross-section values is presented. The model is also used to predict the potential range of this new diagnostic both in terms of electron temperature and plasma density.

  13. Radio stimulation and diagnostics of space plasmas

    NASA Technical Reports Server (NTRS)

    Lee, Min-Chang

    1993-01-01

    We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.

  14. Spectroscopic diagnostics of high temperature plasmas. [Annual report

    SciTech Connect

    Moos, W.

    1990-12-31

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  15. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  16. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  17. UV laser ionization and electron beam diagnostics for plasma lenses

    SciTech Connect

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated.

  18. Plasma diagnostic method using intermodulation frequencies in a Langmuir probe

    SciTech Connect

    Kim, Dong-Hwan; Lee, Hyo-Chang; Kim, Yu-Sin; Chung, Chin-Wook

    2013-08-19

    A plasma diagnostic method using intermodulation frequencies is developed. When dual-frequency (ω{sub 1},ω{sub 2}) voltage signals are applied to a probe, the intermodulation frequencies (ω{sub 2}±ω{sub 1}, ω{sub 2}±2ω{sub 1}) between the signals are generated due to the nonlinearity of the sheath. From the analysis of the intermodulation frequencies, the plasma parameters, such as the electron temperature and the plasma density, can be obtained. The measured plasma parameters from this method are compared to the results from the measured electron energy distribution function, and they are in good agreement. Because the intermodulation currents originated from the plasma not from the stray component of the measurement system, an accurate measurement of the plasma parameters is achievable.

  19. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; Tilborg, J. van; Toth, Cs.; Leemans, W. P.

    2010-11-04

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g. diverse forms of electromagnetic emission) and difficulties (e.g. shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  20. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  1. Diagnostic evaluations of microwave generated helium and nitrogen plasma mixtures

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.; Dinkel, Duane W.

    1990-01-01

    The goal of this work is to continue the development to fundamentally understand the plasma processes as applied to spacecraft propulsion. The diagnostic experiments used are calorimetric, dimensional, and spectroscopic measurements using the TM 011 and TM 012 modes in the resonance cavity. These experimental techniques are highly important in furthering the understanding of plasma phenomena and of designing rocket thrusters. Several experimental results are included using nitrogen and helium gas mixtures.

  2. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination. PMID:27587177

  3. Note: Refined possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  4. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  5. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    Three regions of plasma temperature/energy are being investigated to understand fully the behavior of the plasma created by the propulsion device and the operation of the RPA. Each type of plasma has a RPA associated with it; i.e. a thermal RPA, a collimated RPA, and a high temperature RPA. Through the process of developing the thermal and collimated RPAs, the proper knowledge and experience has been gained to not only design a high temperature RPA for the plasma rocket, but to understand its operation, results, and uncertainty. After completing a literature search for, reading published papers on, and discussing the operation of the RPA with electric propulsion researchers, I applied the knowledge gained to the development of a RPA for thermal plasma. A design of a thermal RPA was made which compensates for a large Debye length and low ionized plasma. From this design a thermal RPA was constructed. It consists of an outer stainless steel casing, a phenolic insulator (outgases slightly), and stainless steel mesh for the voltage screens. From the experience and knowledge gained in the development of the thermal RPA, a RPA for collimated plasma was developed. A collimated RPA has been designed and constructed. It compensate for a smaller Debye length and much higher ionization than that existing in the thermal plasma. It is 17% of the size of the thermal RPA. A stainless steel casing shields the detector from impinging electrons and ions. An insulating material, epoxy resin, was utilized which has a negligible outgassing. This material can be molded in styrofoam and machined quite nicely. It is capable of withstanding moderately high temperatures. Attached to this resin insulator are inconel screens attached by silver plated copper wire to a voltage supply. All the work on the RPAs and thermal ion source, I performed in the University of Alabama in Huntsville's (UAH) engineering machine shop.

  6. Applications of Aptasensors in Clinical Diagnostics

    PubMed Central

    Hong, Ping; Li, Wenli; Li, Jinming

    2012-01-01

    Aptamers are artificial oligonucleotides (DNA or RNA) selected in vitro that bind a broad range of targets with high affinity and specificity; a sensitive yet simple method to utilize aptamers as recognition elements for the development of biosensors (aptasensors) is to transduce the signal electrochemically. So far, aptasensors have been applied to clinical diagnostics and several technologies are in development. Aptasensors will extend the limits of current clinical diagnostics. Although the potential diagnostic applications are unlimited, the most current applications are foreseen in the areas of biomarker detection, cancer clinical testing, detection of infectious microorganisms and viruses. This review attempts to list examples of the research progresses of aptamers in biosensor platforms that have been published in recent years; in particular, we display cases of aptasensors that are already incorporated in clinical diagnostics or have potential applications in clinical diagnostics. PMID:22438706

  7. Whispering Gallery Mode Spectroscopy as a Diagnostic for Dusty Plasmas

    SciTech Connect

    Thieme, G.; Basner, R.; Ehlbeck, J.; Roepcke, J.; Maurer, H.; Kersten, H.; Davies, P. B.

    2008-09-07

    Whispering-gallery-mode spectroscopy is being assessed as a diagnostic method for the characterisation of size and chemical composition of spherical particles levitated in a plasma. With a pulsed laser whispering gallery modes (cavity resonances) are excited in individual microspheres leading to enhanced Raman scattering or fluorescence at characteristic wavelengths. This method can be used to gain specific information from the particle surface and is thus of great interest for the characterisation of layers deposited on microparticles, e.g. in molecular plasmas. We present investigations of different microparticles in air and results from fluorescent particles levitated in an Argon rf plasma.

  8. A Recoverable Plasma Diagnostics Package (RPDP) for Spacelab

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Ackerson, K. L.; Anderson, R. R.; Craven, J. D.; Dangelo, N.; Frank, L. A.; Gurnett, D. A.; Shaw, R. R.; Block, L. P.; Falthammar, C. G.

    1980-01-01

    The RPDP is a fully instrumented, ejectable and recoverable unit with flight and ground support systems so that it can be utilized attached to the orbiter remote manipulator system, tethered from the orbiter, or as an orbiter subsatellite. Core instruments on the RPDP are flight proven hardware which provide diagnostics measurements of energetic particles, AC electromagnetic and electrostatic waves, vector magnetic field signatures of current systems, vector electric field signatures associated with plasma flow and particle acceleration, thermal plasma ion composition and density, thermal plasma electron density and temperature, and images of optical emissions regions in UV or visible wavelengths.

  9. Heat flow diagnostics for helicon plasmas

    SciTech Connect

    Berisford, Daniel F.; Bengtson, Roger D.; Raja, Laxminarayan L.; Cassady, Leonard D.; Chancery, William J.

    2008-10-15

    We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.

  10. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  11. New diagnostic facilities for Caltech plasma experiments

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang; Bellan, Paul

    2011-10-01

    An optically coupled high voltage probe (HV probe) and a visible and near infrared (VNIR) detector are being developed for Caltech solar coronal loop and astrophysical jet experiments. The HV probe uses a capacitive voltage divider coupled a fast LED to convert the electrical signal into an optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array powered by ambient laboratory lighting charges a capacitor that when triggered acts as a short-duration power supply for an onboard amplifier in the HV probe. The fast VNIR detector combined with specific atomic line filters measures the spectra with 10ns time resolution. Measurements show that before detachment, the gross VNIR emission power of the solar coronal plasma loop is a function of the axial electric current. H α and H β line emission power is found to be 102 ~103 greater than predicted by assuming local thermodynamic equilibrium. This indicates that the plasma is not in an ionization-recombination equilibrium state and can have a larger population of neutrals than predicted for an equilibrium state. NSF, DOE, AFOSR

  12. Diagnostics of the Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Issautier, K.

    The solar wind is a fully ionized plasma, coming from the outer atmosphere of the Sun, the so-called solar corona, which expands as a supersonic flow into the interplanetary medium [55]. The first observations indicating that the Sun might be emitting a wind were made by Biermann in 1946 of comet tails [1], which are observed to point away from the Sun. Comets usually exhibit two tails: a dust tail driven by the radiation pressure and a plasma tail, which points in slightly different directions pushed by the “solar corpuscular radiation” of the Sun. In 1958, E.N. Parker explained theoretically this “particle radiation” using a simple fluid model [55], showing that the solar atmosphere is not in hydrostatic equilibrium but must expand into the interplanetary medium as a wind. The existence of this solar wind was debated until it was indeed confirmed by spacecraft Lunik 2 and 3 [16] and continuously observed by Mariner 2 [53]. The Parker theory is discussed fully in Chap. 7 (Velli).

  13. Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostic

    SciTech Connect

    Wolter, Matthias; Haass, Moritz; Ockenga, Taalke; Kersten, Holger; Blazec, Joseph; Basner, Ralf

    2008-09-07

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles of different sizes with the surrounding plasma for diagnostic purpose. In the plasma micro-disperse particles are negatively charged and confined in the sheath. The particles are trapped by an equilibrium of gravity, electric field force and ion drag force. From the behavior, local electric fields can be determined, e.g. particles are used as electrostatic probes. In combination with additional measurements of the plasma parameters with Langmuir probes and thermal probes as well as by comparison with an analytical sheath model, the structure of the sheath can be described. In the present work we focus on the behavior of micro-particles of different sizes and several plasma parameters e.g. the gas pressure and the rf-power.

  14. Applications of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Oldham, Christopher John

    Surface modification techniques using plasmas have historically been completed in a low pressure environment due to Pd (pressure x gap distance) considerations influencing the behavior of plasma generation. Generally, plasmas produced in a low pressure environment are of a non-thermal or cold nature. The basic feature of non-thermal plasmas is the majority of electrical energy used to generate the plasma is primarily used to produce energetic electrons for generating chemical species. Low pressure plasmas serve many purposes for materials processing. Since the plasma environment is contained within a closed vessel, the plasma can be controlled very easily. Low pressure plasmas have been used in many industries but the complexity associated with the large pumping stations and limitation to batch processing has motivated new work in the area of atmospheric plasmas. Atmospheric plasmas offer both economic and technical justification for use over low pressure plasmas. Since atmospheric plasmas can be operated at ambient conditions, lower costs associated with continuous processing and a decrease in the complexity of equipment validate atmospheric plasma processing as a next generation plasma-aided manufacturing process. In an effort to advance acceptance of atmospheric plasma processing into industry, a process was developed, the dielectric barrier discharge (DBD), in order to generate a homogeneous and non-thermal plasma discharge at ambient conditions. The discharge was applied to the reduction of known food borne pathogens, deposition of thin film materials, and modification of lignocellulosic biomass.

  15. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  16. A limited-view-tomography for plasma diagnostics.

    NASA Astrophysics Data System (ADS)

    Denisova, Natalja

    2001-10-01

    In recent years progress in plasma diagnostics has led to the wide use of techniques and algorithms of computerized tomography. An important problem in the diagnostics of a plasma as a spectroscopic source is the determination of spatial distributions of the coefficients of emission (or absorption), which are directly related to the temperature and particle density. There are several methods for the reconstruction of the spatial distributions of the emission (absorption) coefficients from the integrated intensities. This paper describes a Maximum Entropy (ME) algorithm which seems especially attractive in the experimental situations when the number of views is strongly limited.The researcher should have enough justifications for reconstruction from a few views. This problem is discussed with reference to the reconstruction from two views of soft x-ray emissivity profiles in W7-AS stellarator.On the other hand, in experiments of this type there is usually some additional information which can be incorporated into the ME reconstruction algorithm. The crucial role of prior information is illustrated in reconstruction of a spatial distribution of electron density in a laser-produced plasma in a strong transverse magnetic field. References 1.Denisova N.V.Maximum-entropy-based tomography for gas and plasma diagnostics J.Phys.D:Appl.Phys. 31 (1998) 1888-1895. 1.Denisova N.V.Two-view tomography J.Phys.D.:Appl.Phys. 33 (2000) 313-319.

  17. Quantitative diagnostics of reactive, multicomponent low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schwarz-Selinger, Thomas

    2013-09-01

    The special emphasis in this work is put on the quantitative determination of the plasma composition of an inductively coupled low temperature plasma (ICP). Several standard plasma diagnostic techniques were applied. As a test case for a multi-component low-temperature plasma argon-hydrogen as well as argon-hydrogen-nitrogen mixed plasmas were investigated. For steady-state plasma operation the ion density and electron temperature were determined with a single tip Langmuir probe. A multi-grid miniature retarding-field analyzer was used to measure the mass integrated ion flux. An energy-dispersive mass spectrometer - a so-called plasma monitor (PM) - was applied to sample ions from the plasma to derive the ion composition. The degree of dissociation of hydrogen and the gas temperature were derived from optical emission spectroscopy. The gas temperature was estimated by the rotational distribution of the Q-branch lines of the hydrogen Fulcher- α diagonal band for the argon-hydrogen mixed plasmas and from the second positive system of N2 in argon-hydrogen-nitrogen mixed plasmas. The degree of dissociation of hydrogen was measured by actinometry. The influence of the substrate material of the counter electrode (stainless steel, copper, tungsten, Macor, and aluminium) on the atomic hydrogen concentration was investigated by OES. In addition, ionization-threshold mass spectrometry (ITMS) was used to determine the densities of atomic nitrogen (N) and atomic hydrogen (H and D). Pulsed plasma operation was applied to directly measure the loss rate of H, D and N in the afterglow from the temporal decay of the ITMS signal. From these data the wall loss probability of atomic hydrogen was determined. Furthermore, a zero-dimensional rate equation model was devised to explain the ion composition in these mixed plasmas with different admixture ratios. In addition to the experimental data on electron density, gas temperature, total pressure, atomic hydrogen density, and Ar, H2

  18. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  19. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    SciTech Connect

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  20. Evaluation of two-beam spectroscopy as a plasma diagnostic

    SciTech Connect

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler.

  1. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  2. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  3. Plasma diagnostics package (PDP) photographed in grasp of the RMS

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This view shows the plasma diagnostics package (PDP) photographed by STS-3 crewmen in the grasp of the end effector of the remote manipulator system (RMS) and other components of the OSS-1 package in the aft section of the Columbia's cargo hold. Other OSS-1 payload experiments seen in the bay include the Thermal Canister Experiment, the Solar Flare X-Ray Polarimeter Experiment, the Vehicle Charging and Potential Experiment and the Induced Atmosphere Experiment.

  4. Laser Induced Fluorescence Diagnostic for the ASTRAL Plasma Source.

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Kamar, Ola; Munoz, Jorge

    2006-10-01

    A Laser Induced Fluorescence (LIF) diagnostic is presented in this poster. The ion temperature measurements are made in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source using a diode laser based LIF diagnostic. ASTRAL produces Ar plasmas with the following parameters: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. Operating pressure varies from 0.1 to 100 mTorr and any gas can be used for the discharge. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A number of diagnostics are presently installed on the plasma device (Langmuir Probe, Spectrometer, LIF system). The LIF diagnostic makes use of a diode laser with the following characteristics: 1.5 MHz bandwidth, Littrow external cavity, mode-hop free tuning range up to 16 GHz, total power output of about 15 mW. The wavelength is measured by a precision wavemeter and frequent monitoring prevents wavelength drift. For Ar plasma, a new LIF scheme has been developed. The laser tuned at 686.354 nm, is used to pump the 3d^4F5/2 Ar II metastable level to the 4p^4D5/2 state. The fluorescence radiation between the 4p^4D5/2 and the 4s^4P3/2 terms (442.6 nm) is monitored by a PMT.

  5. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    SciTech Connect

    Stutman, Dan

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  6. Low pressure plasma diagnostics by cars and other techniques

    SciTech Connect

    Hata, N. )

    1989-01-01

    Within the past several years, intensive research activities relating amorphous-silicon technology have stimulated plasma-chemical-vapor-deposition (plasma-CVD) diagnostics by laser-spectroscopic techniques. Among them, coherent anti-Stokes Raman spectroscopy (CARS) has attracted much attention because of its great success in combustion diagnostics, and has been employed for low-pressure-plasma studies. Gas-phase species such as SiH{sub 4}, H{sub 2}, Si{sub 2}H{sub 6}, SiH{sub 2}, and GeH{sub 4} have been detected, time dependences of their concentration and spatial profiles of their concentration and rotational temperature have been determined, and the gas-phase mechanisms have been discussed. This talk will employ those results as examples, and discuss (1) the potential of CARS for gas-phase analysis in CVD (including (i) what species are monitored, (ii) what information is obtained, and (iii) what are the advantages and limitations), and (2) some other diagnostic techniques that provide additional information for better understandings of CVD mechanisms.

  7. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  8. Magnetic Diagnostics at the Wisconsin Plasma Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Clark, Michael; Egedal, Jan; Wallace, John; Weisberg, David; Forest, Cary

    2015-11-01

    A flexible suite of magnetic diagnostics is being developed to measure low and high frequency magnetic fields, the 3-D magnetic field structure throughout the plasma volume, and the 2-D structure (polar and azimuthal fields) on the surface of the sphere. The internal 3-D structure is ascertained by scanning insertion probes with high sensitivity, high bandwidth, 3-axis hall effect sensors. Careful engineering of these insertion probes is required to effectively remove the heat load while simultaneously maintaining high performance (hot, dense, steady state) plasmas. A surface array of 3-axis hall-effect sensors and 2-axis flux loops will provide 3-D, low frequency magnetic field measurements as well as high frequency fluctuations in the polar and azimuthal directions due to plasma waves. This surface array can be used to observe the spatial structure of global modes such as spherical ion acoustic waves and can provide insight into the structure and magnitude of internal plasma flows. The engineering and capabilities of these diagnostics is the focus of this poster.

  9. Diagnostic techniques in thermal plasma processing (Part II). Volume 2

    SciTech Connect

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000/sup 0/K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light. (WRF)

  10. Laser Thomson Scattering Diagnostics in the Low-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun

    2008-10-01

    Laser Thomson Scattering (LTS) is the non-invasive method for measuring the electron temperature and its density, which can be used for the calibrations of electric probes within collisional and magnetized plasmas. For LTS diagnostics in the low-temperature plasmas, one need to special optics for detection of the scattered light with restricting the Rayleigh and Stray lights. For this, one uses the Triple Grating Spectrometer (TGS), which is composed of Rayleigh block (notch filter for Rayleigh light) and double grating filter (DGF). All focusing lenses are used with achromatic doublet configuration for reducing the non-linear optical effects such as spherical aberration, coma, etc. The specifications of the grating and achromatic doublet lens are 1800 gr/mm with the dimensions of 84 mm x 84 mm and 400 mm of focal length with the diameter of 100 mm, respectively. In this configurations, the linear dispersion is given as 1.006 nm/mm. Considering the dimension of Charged Coupled Device (CCD) with the linear dispersion, the LTS system can be measure the electron temperatures of less than 10 eV (in most laboratory plasmas). The initial measurement of LTS measurement and comparative study with single probe are done in Divertor Plasma Simulator (DiPS) with the following plasma parameters; plasma density of 10^11-10^13 cm-3, electron temperature of 1-4 eV, and the magnetic field of 0.2-1 kG, respectively.

  11. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  12. High density plasmas and new diagnostics: An overview (invited)

    NASA Astrophysics Data System (ADS)

    Celona, L.; Gammino, S.; Mascali, D.

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  13. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines. PMID:26931960

  14. Sweep Langmuir Probe and Triple Probe Diagnostics for Transient Plasma Produced by Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Tang, Enling; Xiang, Shenghai; Yang, Minghai; Li, Lexin

    2012-08-01

    Two techniques are applied to diagnose characteristic parameters of plasma created by hypervelocity impact, such as electron temperature and electron density. The first technique is a sweep Langmuir probe (SLP), which is a new apparatus based on a dual channel circuit that can compensate for stray capacitance and obtain a good synchronicity, so that electrostatic turbulence with a good temporal resolution can be acquired. The second technique is a triple Langmuir probe (TLP), which is an electrostatic triple Langmuir probe diagnostic system, in which no voltage and frequency sweep is required. This technique allows to measure electron temperature, electron density as a function of time. Moreover, the triple Langmuir probe diagnostic system allows the direct display of electron temperature and semidirect display of electron density by an appropriate display system, the system permits us to eliminate almost all data processing procedures. SLP and TLP were applied to obtain fluctuations of the characteristic parameters of plasma generated by hypervelocity impact. As an example of their application to time-dependent plasma measurement, the electron temperature and electron density of plasmas were acquired in hypervelocity impact experiments. Characteristic parameters of plasma generated by hypervelocity impact were compared by the two kinds of diagnostic techniques mentioned above.

  15. Industrial applications of thermal plasmas

    NASA Astrophysics Data System (ADS)

    Szente, Roberto Nunes

    1995-09-01

    The main characteristics and applications of thermal plasmas are reviewed here. The industrial applications of thermal plasmas can be divided in: low power-cutting, welding, spraying; metallurgical and steelmaking; materials; environment. Some of the processes described in this article include: powder spraying, metal refining, tundish and laddle heating, production of ferroalloys and ceramic materials, and treatment of residues (aluminum scrap, steel dusts, ashes, hospital wastes, electroplating mud). The use of thermal plasmas in the environment arena in particular has attracted increasingly attention as the regulations for disposal of residues become tougher. More research and development is needed particularly for decreasing the erosion of the electrodes of plasma torches and fundamental understanding of high temperature chemistry, heat transfer, and electric arcs for broadening the applications of thermal plasmas.

  16. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  17. Molecular Diagnostic Applications in Colorectal Cancer

    PubMed Central

    Huth, Laura; Jäkel, Jörg; Dahl, Edgar

    2014-01-01

    Colorectal cancer, a clinically diverse disease, is a leading cause of cancer-related death worldwide. Application of novel molecular diagnostic tests, which are summarized in this article, may lead to an improved survival of colorectal cancer patients. Distinction of these applications is based on the different molecular principles found in colorectal cancer (CRC). Strategies for molecular analysis of single genes (as KRAS or TP53) as well as microarray based techniques are discussed. Moreover, in addition to the fecal occult blood testing (FOBT) and colonoscopy some novel assays offer approaches for early detection of colorectal cancer like the multitarget stool DNA test or the blood-based Septin 9 DNA methylation test. Liquid biopsy analysis may also exhibit great diagnostic potential in CRC for monitoring developing resistance to treatment. These new diagnostic tools and the definition of molecular biomarkers in CRC will improve early detection and targeted therapy of colorectal cancer.

  18. PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION

    SciTech Connect

    Landi, E.; Reale, F.

    2013-07-20

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  19. Prominence Plasma Diagnostics through Extreme-ultraviolet Absorption

    NASA Astrophysics Data System (ADS)

    Landi, E.; Reale, F.

    2013-07-01

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  20. Hanle effect as a magnetic diagnostic for field-reversed configuration plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.

    2016-11-01

    Hanle effect is presented as a low magnetic-field diagnostic for field-reversed configuration (FRC) plasmas. The non-perturbative technique is capable of measuring not only magnetic-field profile and direction but also field-null position and its shape. Conditions and configurations for the measurement are discussed. The technique is applicable to other low magnetic-field laboratory plasmas, e.g., magnetic-cusps, where measurements of low field are desirable, and it may also be extended to measure the two-dimensional vector magnetic-field.

  1. Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview.

    PubMed

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry.

  2. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  3. An Ultrafast X-ray Diagnostic Suite for Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Stewart, Richard; Steele, Paul; Vernon, Steve; Hsing, Warren; Haynes, Susan

    2011-10-01

    Ignition designs on the National Ignition Facility predict ~1019 neutrons in a time of 15-20 ps. The very short burn time and small size of the burning plasma will require x-ray diagnostics with time resolutions of a few ps and high spatial resolution which can function in extremely large neutron fluxes. One promising solution to this challenge is to perform an ultrafast conversion of the x-ray signals into the optical regime, <100 fs, and to relay image the signal out of the chamber and into a shielded bunker. A diagnostic suite, Grating Actuated Transient Optical Recorder (GATOR), has been developed which uses the ultrafast near-band-edge change in the optical index of refraction of semiconductors caused by x-ray generated free carriers to achieve this goal. The GATOR diagnostic suite has been tested on a laser-produced x-ray source at the Jupiter Laser Facility and the performance of this diagnostic suite, which includes a multi-temporal frame 2-D imager, a continuous-time 1-D imager and a single channel continuous-time recorder, is presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Characterization of a theta-pinch plasma using triple probe diagnostic

    SciTech Connect

    Jung, S.; Suria, V; Andruczyk, D; Ruzic, D. N.

    2011-01-01

    Plasma diagnostics were carried out in a theta-pinch device to investigate the applicability for plasma-material interaction under fusion-like conditions. A series of triple probe diagnostics show that the plasma is sustained for approximately 80 {micro}s at each pulse, with 3.0 (10){sup 21} m{sup -3} plasma density and up to 40 eV electron temperature when a 32 {micro}F main capacitor is discharged at 20 kV. In order to increase plasma density and temperature, an RF antenna is installed near one end of a Pyrex tube and a 50 {micro}F preionization capacitor is connected to an electrode placed at the same end as the antenna. In this configuration, several time delays between the main and preionization capacitors are tested. When the preionization capacitor was triggered 45 {micro}s before the main bank discharge, it resulted in high energetic plasma being obtained with a few density spikes at 10{sup 22} m{sup -3} and electron temperature around 100 eV.

  5. Diagnostic application of magnetic islands rotation in JET

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Alessi, E.; Baruzzo, M.; Casolari, A.; Giovannozzi, E.; Giroud, C.; Hawkes, N.; Menmuir, S.; Pucella, G.; Contributors, JET

    2016-07-01

    Measurements of the propagation frequency of magnetic islands in JET are compared with diamagnetic drift frequencies, in view of a possible diagnostic application to the determination of markers for the safety factor profile. Statistical analysis is performed for a database including many well-diagnosed plasma discharges. Propagation in the plasma frame, i.e. with subtracted E  ×  B Doppler shift, results to be in the ion diamagnetic drift direction, with values ranging from 0.8 (for islands at the q  =  2 resonant surface) to 1.8 (for more internal islands) times the ion diamagnetic drift frequency. The diagnostic potential of the assumption of island propagation at exactly the ion diamagnetic frequency is scrutinised. Rational-q locations obtained on the basis of this assumption are compared with the ones measured by equilibrium reconstruction including motional Stark effect measurements as constraints. Systematic shifts and standard deviations are determined for islands with (poloidal, toroidal) periodicity indexes of (2, 1), (3, 2), (4, 3) and (5, 3) and possible diagnostic applications are indicated.

  6. Streak Tubes for Diagnostics of Lasers and Plasmas

    NASA Astrophysics Data System (ADS)

    Sokolov, A. Yu; Konovalov, P. I.; Nurtdinov, R. I.; Vikulin, M. P.; Pryanishnikov, I. G.; Dolotov, A. S.; Krapiva, P. S.

    2016-09-01

    Designing a facility for laser fusion research requires sufficient advancement in diagnostics techniques for lasers and plasmas, including those involving streak camera imaging. Maximum specifications of streak cameras depend on the parameters of streak tubes. The paper illustrates how these devices function, and which of their parameters are limiting. The paper presents a novel technological platform designed at VNIIA, which was used to develop a new generation of streak tubes. Using these streak tubes in streak cameras, the efficiency of streak camera imaging techniques can be improved by several orders of magnitude, and new techniques can be designed.

  7. Polarizer design for millimeter-wave plasma diagnostics

    SciTech Connect

    Leipold, F.; Salewski, M.; Jacobsen, A. S.; Jessen, M.; Korsholm, S. B.; Michelsen, P. K.; Nielsen, S. K.; Stejner, M.

    2013-08-15

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  8. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  9. Spectroscopic investigations of tungsten EUV spectra for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter; Safronova, Ulyana; Brage, Tomas; Grumer, Jon

    2011-10-01

    The Livermore WOLFRAM spectroscopy project consists of experimental and theoretical investigations of tungsten ions of relevance to the diagnostics of magnetically confined fusion plasmas. A recent effort has focused on the complex extreme ultraviolet spectra of few-times ionized tungsten atoms that are expected to be abundant in ITER divertor plasmas. The tungsten ions were produced and excited in the Livermore EBIT-I electron beam ion trap by scanning the electron-beam energy between 30 and 300 eV. The emission was studied using a broad-band grazing-incidence spectrometer covering 150 - 300 Å and a high-resolution spectrometer covering the 180 - 220 Å region. Experimental spectra are presented together with analysis based on calculations using the FAC, GRASP, Cowan, HULLAC, and RMBPT codes. Part of this work was performed under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA-27344.

  10. Atomic Processes and Diagnostics of Low Pressure Krypton Plasma

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc

    2015-03-01

    Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.

  11. Evaluation of two-beam spectroscopy as a plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Billard, B. D.

    1980-12-01

    A two beam spectroscopy system is evaluated theoretically and experimentally. This spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is a nonperturbing plasma diagnostic which is shown to provide local (as opposed to line of sight averaged) information about fluctuations in the density of light sources within a plasma information not obtainable by the usual spectroscopic methods. The improved design, which abandons some of the components previously deemed essential, does not sacrifice any of the capabilities of the earlier systems in exchange for greater simplicity and increased light efficiency. The hot cathode discharge and prototype TBS system built for evaluation of the technique are described.

  12. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    SciTech Connect

    Tomita, H.; Iwai, H.; Iguchi, T.; Kawarabayashi, J.; Isobe, M.; Konno, C.

    2010-10-15

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10{sup -7} count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  13. Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Wilcox, P.; Ouart, N. D.; Yilmaz, M. F.; Struve, K. W.; Voronov, D. L.; Feshchenko, R. M.; Artyukov, I. A.; Vinogradov, A. V.

    2008-10-15

    New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

  14. Predictive Gyrokinetic Transport Simulations and Application of Synthetic Diagnostics

    NASA Astrophysics Data System (ADS)

    Candy, J.

    2009-11-01

    In this work we make use of the gyrokinetic transport solver TGYRO [1] to predict kinetic plasma profiles consistent with energy and particle fluxes in the DIII-D tokamak. TGYRO uses direct nonlinear and neoclassical fluxes calculated by the GYRO and NEO codes, respectively, to solve for global, self-consistent temperature and density profiles via Newton iteration. Previous work has shown that gyrokinetic simulation results for DIII-D discharge 128913 match experimental data rather well in the plasma core, but with a discrepancy in both fluxes and fluctuation levels emerging closer to the edge (r/a > 0.8). The present work will expand on previous results by generating model predictions across the entire plasma core, rather than at isolated test radii. We show that TGYRO predicts temperature and density profiles in good agreement with experimental observations which simultaneously yield near-exact (to within experimental uncertainties) agreement with power balance calculations of the particle and energy fluxes for r/a <=0.8. Moreover, we use recently developed synthetic diagnostic algorithms [2] to show that TGYRO also predicts density and electron temperature fluctuation levels in close agreement with experimental measurements across the simulated plasma volume. 8pt [1] J. Candy, C. Holland, R.E. Waltz, M.R. Fahey, and E. Belli, ``Tokamak profile prediction using direct gyrokinetic and neoclassical simulation," Phys. Plasmas 16, 060704 (2009). [2] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz, and G.R. Tynan, ``Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence," Phys. Plasmas 16, 052301 (2009).

  15. Diagnostics of Nano-Particle Formation in Process Plasmas

    NASA Astrophysics Data System (ADS)

    Kersten, Holger

    2015-09-01

    The main sources of particle generation during plasma surface processing and the formation of nano-composite materials are (i) the formation of large molecules, mesoscopic clusters and particles in the plasma bulk by chemically reactive gases, and (ii) the formation and incorporation of particles at surfaces (target, substrate) by means of plasma-wall interaction. The plasma process promotes the particle formation by excitation, dissociation and reaction of the involved species in the gas phase. The different stages of the particle growth in the gas phase can be observed by various plasma diagnostics as mass spectrometry, laser induced evaporation, photo-detachment, IR absorption, microwave cavity measurements, Mie scattering and self-excited electron resonance spectroscopy (SEERS). Common diagnostics of particle formation also use the observation and analysis of harmonics and other discharge characteristics. Especially the early stages of the particle growth are not well investigated since they are experimentally inaccessible by standard methods as mentioned above. A novel collection method based on neutral drag was tested in order to get a better insight into the early stages of particle growth. The experiments were performed in an asymmetric, capacitively coupled rf-discharge, where multiple growth cycles can be obtained. Making use of the correlation between the particle growth cycles and the bias voltage as well as the phase angle between discharge current and voltage it was possible to monitor each growth process in-situ. This allowed to collect particles at any desired stage of the growth cycle via the neutral drag method. Size distributions of the nanoparticles at the different stages of the growth cycle were determined ex-situ by transmission electron microscopy. The observed correlations of particle size and bias voltage, which can be used for prediction of the particle growth, are qualitatively explained. Furthermore, the change of the electron density

  16. Optical diagnostics for laser wakefields in plasma channels

    NASA Astrophysics Data System (ADS)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  17. Laser erosion diagnostics of plasma facing materials with displacement sensors and their application to safeguard monitors to protect nuclear fusion chambers

    NASA Astrophysics Data System (ADS)

    Kasuya, Koichi; Motokoshi, Shinji; Taniguchi, Seiji; Nakai, Mitsuo; Tokunaga, Kazutoshi; Mroz, Waldemar; Budner, Boguslaw; Korczyc, Barbara

    2015-02-01

    Tungsten and SiC are candidates for the structural materials of the nuclear fusion reactor walls, while CVD poly-crystal diamond is candidate for the window material under the hazardous fusion stresses. We measured the surface endurance strength of such materials with commercial displacement sensors and our recent evaluation method. The pulsed high thermal input was put into the material surfaces by UV lasers, and the surface erosions were diagnosed. With the increase of the total number of the laser shots per position, the crater depth increased gradually. The 3D and 2D pictures of the craters were gathered and compared under various experimental conditions. For example, the maximum crater depths were plotted as a function of shot accumulated numbers, from which we evaluated the threshold thermal input for the surface erosions to be induced. The simple comparison-result showed that tungsten was stronger roughly two times than SiC. Then we proposed how to monitor the surface conditions of combined samples with such diamonds coated with thin tungsten layers, when we use such samples as parts of divertor inner walls, fusion chamber first walls, and various diagnostic windows. We investigated how we might be able to measure the inner surface erosions with the same kinds of displacement sensors. We found out the measurable maximum thickness of such diamond which is useful to monitor the erosion. Additionally we showed a new scheme of fusion reactor systems with injectors for anisotropic pellets and heating lasers under the probable use of W and/or SiC.

  18. Application and Analysis of the Isoelectronic Line Ratio Temperature Diagnostic in a Planar Ablating-Plasma Experiment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Stutman, D.; Finkenthal, M.; Moos, H. W.; Kaita, R.; Majeski, R.

    2001-08-01

    Compact vacuum ultraviolet diagnostics for impurity emission measurements in boundary plasmas of nuclear fusion plasma devices are described. The instruments are designed for monitoring intensities of resonant impurity lines between 300 and 2000 Å. The intensities are used to infer basic yet important plasma parameters, such as density of impurity charge states, radiated power, or electron temperature and density estimates. All utilized components and materials satisfy ultrahigh vacuum and high bake-out temperature requirements, enabling the instruments to qualify for vacuum port or in-vessel placement, in close proximity to emitting plasmas. The instruments have high spatial (Δl⩽1 cm) and temporal (Δτ⩽100 μs) resolution. The spectral resolution is Δλ⩽20 Å. Planar diffraction gratings at near-normal incidence are used for dispersion of incident radiation, collimated by high precision mechanical stacked grid collimators. Highly localized field of view, adequate throughput, and compactness distinguish these diagnostics from conventional slit instruments. A prototype monochromator for λ=1550 Å has been built, evaluated, radiometrically calibrated, and used on the CDX-U spherical torus for monitoring C IV emission in ohmic and high harmonic fast wave heated plasmas with Te(0)⩽100 eV. An attractive mechanical collimator based Wadsworth mount spectrometer concept is presented and its application to impurity content and transport measurements in tokamaks is discussed.

  20. Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas

    SciTech Connect

    Soukhanovskii, V. A.; Stutman, D.; Finkenthal, M.; Moos, H. W.; Kaita, R.; Majeski, R.

    2001-08-01

    Compact vacuum ultraviolet diagnostics for impurity emission measurements in boundary plasmas of nuclear fusion plasma devices are described. The instruments are designed for monitoring intensities of resonant impurity lines between 300 and 2000 {angstrom}. The intensities are used to infer basic yet important plasma parameters, such as density of impurity charge states, radiated power, or electron temperature and density estimates. All utilized components and materials satisfy ultrahigh vacuum and high bake-out temperature requirements, enabling the instruments to qualify for vacuum port or in-vessel placement, in close proximity to emitting plasmas. The instruments have high spatial ({Delta}l{<=}1 cm) and temporal ({Delta}{tau}{<=}100 {mu}s) resolution. The spectral resolution is {Delta}{lambda}{<=}20 {angstrom}. Planar diffraction gratings at near-normal incidence are used for dispersion of incident radiation, collimated by high precision mechanical stacked grid collimators. Highly localized field of view, adequate throughput, and compactness distinguish these diagnostics from conventional slit instruments. A prototype monochromator for {lambda}=1550 {angstrom} has been built, evaluated, radiometrically calibrated, and used on the CDX-U spherical torus for monitoring C IV emission in ohmic and high harmonic fast wave heated plasmas with T{sub e}(0){<=}100 eV. An attractive mechanical collimator based Wadsworth mount spectrometer concept is presented and its application to impurity content and transport measurements in tokamaks is discussed.

  1. Interpretation of STS-3/plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1984-01-01

    The Plasma Diagnostics Package, which was flown aboard STS-3 recorded various chemical releases from the Orbiter. Changes in the plasma environment were observed to occur during Flash Evaporator System (FES) releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electro-static noise is enhanced and plasma density irregularity (delta n/N) is observed to increase by as much as 4 times and is strongly peaked below 6 Hz. In the case of water dumps, background electrostatic noise is enhanced or suppressed depending on frequency and Delta N/N is also seen to increase by as much as 4 times. Various changes in the plasma environment are effected by primary and vernier thruster operations. In addition, thruster activity stimulates electrostatic noise with a spectrum which is most intense at frequencies below 10 kHz.

  2. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  3. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, B.R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 {mu}m in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  4. New diagnostic method for monitoring plasma reactor walls: Multiple total internal reflection Fourier transform infrared surface probe

    NASA Astrophysics Data System (ADS)

    Godfrey, Anna R.; Ullal, Saurabh J.; Braly, Linda B.; Edelberg, Erik A.; Vahedi, Vahid; Aydil, Eray S.

    2001-08-01

    Films and adsorbates that deposit on reactor walls during plasma etching and deposition affect the discharge properties such as the charged particle and reactive radical concentrations. A systematic study of this plasma-wall interaction is made difficult by a lack of diagnostic methods that enable one to monitor the chemical nature of the reactor wall surface. A new diagnostic technique based on multiple total internal reflection Fourier transform infrared (MTIR-FTIR) spectroscopy was developed to monitor films and adsorbates on plasma etching and deposition reactor walls with monolayer sensitivity. Applications of this MTIR-FTIR probe are demonstrated. Specifically, we use this probe to (i) detect etch products and films that deposit on the reactor walls during Cl2 plasma etching of Si, (ii) determine the efficacy of a SF6 plasma to clean films deposited on reactor walls during Cl2/O2 etching of Si, and (iii) monitor wafer-to-wafer etching reproducibility.

  5. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  6. Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew; Batishchev, Oleg

    2012-10-01

    Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  7. Papers presented at the Tenth Topical Conference on High-Temperature Plasma Diagnostics

    SciTech Connect

    Not Available

    1994-08-01

    This report contains papers on the following topics: Effects of limited spatial resolution on fluctuation measurements; vertical viewing of electron-cyclotron radiation in Text-U; measurement of temperature fluctuations from electron-cyclotron emission; a varying cross section magnetic coil diagnostic used in digital feedback control of plasma position in Text-Upgrade; high-sensitivity, high resolution measurements of radiated power on Text-U; wave launching as a diagnostic tool to investigate plasma turbulence; edge parameters from an energy analyzer and particle transport on Text-U; initial results from a charge exchange q-Diagnostic on Text-U; a method for neutral spectra analysis taking ripple-trapped particle losses into account; application of a three sample volume{sup S(k,{omega}}) estimate to optical measurements of turbulence on Text; initial operation of the 2D Firsis on Text-Upgrade; horizontal-view interferometer on Text-Upgrade; plasma potential measurements on Text-Upgrade with A 2 MeV heavy ion beam; fluctuation measurements using the 2 MeV heavy ion beam probe on Text-U; the time domain triple probe method; a phase contrast imaging system for Text-U; and development of rugged corner cube detectors for the Text-U-Fir interferometer. These papers have been placed on the database elsewhere.

  8. X-ray and EUV diagnostics for the Nevada Terawatt Facility: Plasma imaging, spectroscopy and polarimetry

    SciTech Connect

    Kantsyrev, V.L.; Bauer, B.S.; Mancini, R.C.

    1999-07-01

    A wide variety of advanced extreme ultraviolet (EUV) and x-ray diagnostics ar being developed for the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno. Time-resolved short-wavelength imaging, backlighting, imaging spectroscopy, and polarization spectroscopy will be employed to measure profiles of plasma temperature, density, flow, charge state, and magnetic field. These diagnostics will be used to examine the early-time evolution of a current-driven wire, the formation of a plasma sheet from the explosion and merging of wires, etc. Wire materials will include Al, Ti, W, and various coatings (e.g., Mg, Ni, Cu). Doping of local regions of wires is planned, for additional spatial resolution of the plasma profiles. The instruments are state-of-the-art applications of glass capillary converters (GCC), multilayer mirrors (MLM), and crystals. The devices include: a prototype of a new glass-capillary-based two-dimensional imaging spectrometer; a pinhole camera with 6 MCP imagers; a 5-channel crystal/MLM spectrometer (Polychromator) with fast x-ray diodes and an added transmission grating spectrometer; a convex-crystal x-ray survey spectrometer; a prototype of an x-ray polarimeter/spectrometer; and a multiframe x-pinch backlighter yielding point-protection microscopy with few-micron, sub-ns resolution. Spectroscopic data will be interpreted with state-of-the-art spectral calculations that take into account line intensity, plasma broadening, opacity, and polarization effects, for both resonance and satellite lines. Emission spectroscopy will be used to measure plasma density and temperature in the hot plasma around exploding wires, with polarization measurements helping to determine the electron distribution function and the magnetic field in this region. The density and temperature of the high-density, low-temperature plasma inside exploding Al wires will be measured with absorption spectroscopy.

  9. [Plasma technology for biomedical material applications].

    PubMed

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  10. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  11. Z-pinch diagnostics, plasma and liner instabilities and new x-ray techniques

    SciTech Connect

    Oona, H.; Anderson, B.; Benage, J.

    1996-09-01

    Pulse power experiments of the last several decades have contributed greatly to the understanding of high temperature and high density plasmas and, more recently, to the study of hydrodynamic effects in thick imploding cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load, with the resulting Lorenz force compressing the load to produce hydrodynamic motion and/or high temperature, high density plasma. In Los Alamos, Pulsed power experiments are carried out at two facilities. Experiments at low current (from several million to ten million Amperes) are conducted on the Pegasus II capacitor bank. Experiments with higher currents (10`s to 100`s MA range) are performed in Ancho Canyon with the explosively driven Procyon and MAGO magnetic flux compression generator systems. In this paper, the authors present a survey of diagnostic capabilities and results from several sets of experiments. First, they discuss the initiation and growth of instabilities in plasmas generated from the implosion of hollow z-pinches in the pegasus and Procyon experiments. Next they discuss spectroscopic data from the plasmas produced by the MAGO system. They also show time resolved imaging data from thick ({approximately} .4 mm) liner implosions. Finally, the authors discuss improvements to x-ray and visible light imaging and spectrographic diagnostic techniques. The emphasis of this paper is not so much a detailed discussion of the experiments, but a presentation of imaging and spectroscopic results and the implications of these observations to the experiments.

  12. [Mass spectrometry analysis of blood plasma lipidome as method of disease diagnostics, evuation of effectiveness and optimization of drug therapy].

    PubMed

    Lokhov, P G; Maslov, D L; Balashova, E E; Trifonova, O P; Medvedeva, N V; Torkhovskaya, T I; Ipatova, O M; Archakov, A I; Malyshev, P P; Kukharchuk, V V; Shestakova, E A; Shestakova, M V; Dedov, I I

    2015-01-01

    A new method for the analysis of blood lipid based on direct mass spectrometry of lipophilic low molecular weight fraction of blood plasma has been considered. Such technique allows quantification of hundreds of various types of lipids and this changes existing concepts on diagnostics of lipid disorders and related diseases. The versatility and quickness of the method significantly simplify its wide use. This method is applicable for diagnostics of atherosclerosis, diabetes, cancer and other diseases. Detalization of plasma lipid composition at the molecular level by means of mass spectrometry allows to assess the effectiveness of therapy and to optimize the drug treatment of cardiovascular diseases by phospholipid preparations.

  13. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  14. Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1991-01-01

    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized.

  15. Suprathermal plasma observed on STS-3 Mission by plasma diagnostics package

    NASA Technical Reports Server (NTRS)

    Paterson, W.; Frank, L. A.; Owens, H.; Pickett, J. S.; Murphy, G. B.; Shawhan, S. D.

    1985-01-01

    Artificially produced electron beams were used extensively during the past decade as a means of probing the magnetosphere, and more recently as a means of actively controlling spacecraft potential. Experimentation in these areas has proven valuable, yet at times confusing, due to the interaction of the electron beam with the ambient plasma. The OSS-1/STS-3 Mission in March 1982 provided a unique opportunity to study beam-plasma interactions at an altitude of 240 km. On board for this mission was a Fast Pulse Electron Generator (FPEG). Measurements made by the Plasma Diagnostics Package (PDP) while extended on the Orbiter RMS show modifications of the ion and electron energy distributions during electron beam injection. Observations made by charged particle detectors are discussed and related to measurements of Orbiter potential. Several of the PDP instruments, the joint PDP/FPEG experiment, and observations made during electron beam injection are described.

  16. Forbidden lines of highly ionized ions for localized plasma diagnostics

    SciTech Connect

    Hinnov, E.; Fonck, R.; Suckewer, S.

    1980-06-01

    Numerous optically forbidden lines resulting from magnetic dipole transitions in low-lying electron configurations of highly ionized Fe, Ti and Cr atoms have been identified in PLT and PDX tokamak discharges, and applied for localized diagnostics in the high-temperature (0.5 to 3.0 keV) interior of these plasmas. The measurements include determination of local ion densities and their variation in time, and of ion motions (ion temperature, plasma rotations) through Doppler effect of the lines. These forbidden lines are particularly appropriate for such measurements because under typical tokamak conditions their emissivities are quite high (10/sup 11/ to 10/sup 14/ photons/cm/sup 3/-sec), and their relatively long wavelengths allow the use of intricate optical techniques and instrumentation. The spatial location of the emissivity is directly measurable, and tends to occur near radii where the ionization potential of the ion in question is equal to the local electron temperature. In future larger and presumably higher-temperature tokamaks analogous measurements with somewhat heavier atoms, particularly krypton, and perhaps zirconium appear both feasible and desirable.

  17. Plasma diagnostics package. Volume 1: OSS-1 section

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (1) of the Plasma Diagnostics Package (PDP) final science report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-3 as a part of the Office of Space Science first payload (OSS-1). This work was performed during the period of launch, March 22, l982, through June 30, l983. During this period the primary data reduction effort consisted of processing summary plots of the data received by the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). The scientific analyses during the performance period consisted of general studies which incorporated the results of several of the PDP's instruments, detailed studies which concentrated on data from only one or two of the instruments, and joint studies of beam-plasma interactions with the OSS-1 Fast Pulse Electron Generator (FPEG) of the Vehicle Charging and Potential Investigation (VCAP). Internal reports, published papers and oral presentations which involve PDP/OSS-1 data are listed in Sections 3 and 4. A PDP/OSS-1 scientific results meeting was held at the University of Iowa on April 19-20, 1983. This meeting was attended by most of the PDP and VCAP investigators and provided a forum for discussing and comparing the various results, particularly with regard to the shuttle orbiter environment. One of the most important functional objectives of the PDP on OSS-1 was to characterize the orbiter environment.

  18. Plasma diagnostics package. Volume 2: Spacelab 2 section, part A

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (2), which consists of two parts (A and B), of the Plasma Diagnostics Package (PDP) Final Science Report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-51F as a part of the Spacelab 2 (SL-2) payload. This work was performed during the period of launch, July 29, l985, through June 30, l988. During this period the primary data reduction effort consisted of processing summary plots of the data received by 12 of the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). The scientific analyses during the performance period consisted of follow-up studies of shuttle orbiter environment and orbiter/ionosphere interactions and various plasma particle and wave studies which dealt with data taken when the PDP was on the Remote Manipulator System (RMS) arm and when the PDP was in free flight. Of particular interest during the RMS operations and free flight were the orbiter wake studies and joint studies of beam/plasma interactions with the SL-2 Fast Pulse Electron Generator (FPEG) of the Vehicle Charging and Potential Investigation (VCAP). Internal reports, published papers and presentations which involve PDP/SL-2 data are listed in Sections 3 and 4. A PDP/SL-2 scientific results meeting was held at the University of Iowa on June 10, l986. This meeting was attended by most of the PDP and VCAP investigators and provided a forum for discussing and comparing the various results, particularly with regard to the PDP free flight.

  19. A solar tornado observed by EIS. Plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Levens, P. J.; Labrosse, N.; Fletcher, L.; Schmieder, B.

    2015-10-01

    Context. The term "solar tornadoes" has been used to describe apparently rotating magnetic structures above the solar limb, as seen in high resolution images and movies from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). These often form part of the larger magnetic structure of a prominence, however the links between them remain unclear. Here we present plasma diagnostics on a tornado-like structure and its surroundings, seen above the limb by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard the Hinode satellite. Aims: We aim to extend our view of the velocity patterns seen in tornado-like structures with EIS to a wider range of temperatures and to use density diagnostics, non-thermal line widths, and differential emission measures to provide insight into the physical characteristics of the plasma. Methods: Using Gaussian fitting to fit and de-blend the spectral lines seen by EIS, we calculated line-of-sight velocities and non-thermal line widths. Along with information from the CHIANTI database, we used line intensity ratios to calculate electron densities at each pixel. Using a regularised inversion code we also calculated the differential emission measure (DEM) at different locations in the prominence. Results: The split Doppler-shift pattern is found to be visible down to a temperature of around log T = 6.0. At temperatures lower than this, the pattern is unclear in this data set. We obtain an electron density of log ne = 8.5 when looking towards the centre of the tornado structure at a plasma temperature of log T = 6.2, as compared to the surroundings of the tornado structure where we find log ne to be nearer 9. Non-thermal line widths show broader profiles at the tornado location when compared to the surrounding corona. We discuss the differential emission measure in both the tornado and the prominence body, which suggests that there is more contribution in the tornado at temperatures below log T = 6.0 than in the

  20. Application of modern diagnostic methods to environmental improvement. Annual progress report, October 1994--September 1995

    SciTech Connect

    Shepard, W.S.

    1995-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), an interdisciplinary research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to aid in solving DOE`s nuclear waste problem. The program is a comprehensive effort which includes five focus areas: advanced diagnostic systems; development/application; torch operation and test facilities; process development; on-site field measurement and analysis; technology transfer/commercialization. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and process control. Also, the measured parameters, will be employed to improve, optimize and control the operation of the plasma torch and the overall plasma treatment process. Moreover, on-site field measurements at various DOE facilities are carried out to aid in the rapid demonstration and implementation of modern fieldable diagnostic methods. Such efforts also provide a basis for technology transfer.

  1. X-ray Imaging Diagnostics for Dense Strongly-Coupled Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Workman, J.; Tierney, T.; Evans, S.; Kyrala, G.; Benage, J., Jr.

    1998-11-01

    Dense, strongly-coupled plasmas (Γ > 1), found in astrophysical, geologic and ICF applications, can be difficult to diagnose. Determination of the equation of state of such plasmas requires dynamic measurements of internal plasma properties. X-ray backlighting can provide the diagnostic access needed for accurate measurements of plasma density and shock velocity. In this pursuit, we have designed a one-dimensional dual-spherical-crystal x-ray microscope capable of high-spatial and high-temporal shock-velocity and plasma-density measurements. Microscopes operating at energies of 1.35 keV and 4.75 keV, using the second and seventh order reflections of mica crystals, are described. With a magnification of 45X, the microscope's spatial resolution is predicted to be better than 2 microns when coupled to an x-ray streak camera. Preliminary x-ray measurements of spatial resolution are presented as well as ray-tracing analysis of the designs.

  2. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-06-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  3. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  4. Nanodiagnostics: application of nanotechnology in molecular diagnostics.

    PubMed

    Jain, K K

    2003-03-01

    Nanotechnology extends the limits of molecular diagnostics to the nanoscale. Nanotechnology-on-a-chip is one more dimension of microfluidic/lab-on-a-chip technology. Biological tests measuring the presence or activity of selected substances become quicker, more sensitive and more flexible when certain nanoscale particles are put to work as tags or labels. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Magnetic immunoassay techniques have been developed in which the magnetic field generated by the magnetically labeled targets is detected directly with a sensitive magnetometer. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures. DNA nanomachines can function as biomolecular detectors for homogeneous assays. Nanobarcodes, submicrometer metallic barcodes with striping patterns prepared by sequential electrochemical depositon of metal, show differential reflectivity of adjacent stripes enabling identification of the striping patterns by conventional light microscopy. All this has applications in population diagnostics and in point-of-care hand-held devices.

  5. Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.

    2013-08-01

    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.

  6. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  7. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  8. Analysis of plasma wave interference patterns in the Spacelab 2 PDP data. [PDP (Plasma Diagnostics Package)

    SciTech Connect

    Feng, Wei.

    1992-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) explored the plasma environment around the shuttle. Wideband spectrograms of plasma waves were obtained from the PDP at frequencies from 0 to 30 kHz up to 400 m from the shuttle. These spectrograms frequently showed interference patterns caused by waves with wavelengths short compared to the antenna length (3.89 meters). Two types of interference patterns were observed in the wideband data: associated with the ejection of an electron beam from the space shuttle; associated with lower hybrid waves generated by an interaction between the neutral gas cloud around shuttle and the ambient ionospheric plasma. Analysis of these antenna interference patterns permits a determination of the wavelength, the plasma rest frame frequency, the direction of propagation, the power spectrum and in some cases the location of the source. The electric field noise associated with the electron beam was observed in the wideband data for two periods during which an electron frequency range at low frequencies (below 10 kHz) and shows clear evidence of interference patterns. The broadband low frequency noise was the dominant type of noise produced by the electron beam. The waves have a linear dispersion relation very similar to ion acoustic waves. The returning to the shuttle in response to the ejected electron beam. The waves associated with the lower hybrid resonance have rest frame frequencies near the lower hybrid frequency and propagate perpendicular to the magnetic field. The occurrence of these waves depends strongly on the PDP's position relative to the shuttle and the magnetic field direction. The authors results confirm previous identifications of these waves as lower hybrid waves and suggest they are driven by pick-up ions (H[sub 2]O[sup +]) produced by a charge exchange interaction between a water cloud around the shuttle and the ambient ionosphere.

  9. Diagnostic characteristics and application of alcohol biomarkers.

    PubMed

    Topic, Aleksandra; Djukic, Mirjana

    2013-01-01

    Alcohol biomarkers play a significant role in the early diagnosis of alcohol intoxication/abuse, alcohol-related organ damages, assessment of alcoholism therapy outcomes, and in forensic medicine. Laboratory detection of excessive alcohol consumption can be carried out by direct measuring of the ethanol and/or metabolites in biological samples which is of particular importance in the cases of acute ethanol intoxication/controlling and/or monitoring of alcohol consumption, or indirectly, by using biomarkers. Preferred diagnostic characteristics of alcohol biomarkers, specificity and sensitivity dependent on the particular demands such as: prevention and treatment of alcoholism in primary and social care, criminal justice, workplace health and safety screening, trafficking control, etc. Alcohol biomarkers traditionally used in clinical practice [blood alcohol concentration (BAC), gamma-glutamyl transferase (GGT), carbohydrate-deficient transferrin (CDT), the ratio GGT/CDT, alanine aminotransferase (ALT), aspartate aminotransferase (AST), the rati. AST/ALT, mean cbrpuscular volume (MCV), phosphatidylethanol (PEth)] are well validated. They are used as screening/monitoring markers of acute/chronic excessive alcohol intake, alcoholism in pregnancy, and other disorders/conditions related to alcohol abuse. Numerous potential alcohol biomarkers have been discovered, but few are validated. Potential alcohol biomarkers (ethanol and serotonin metabolites, sialic acids, etc.) have good diagnostic characteristics, but their application in clinical practice is limited due to the costly equipment necessary for their measurement. Significant progress has been made in the development of sensitive and practical alcohol transdermal devices that can instantly/continuously measure BAC through human skin. Transdermal sensing of alcohol may become a valuable method for monitoring abstinence. A special aspect of alcoholism is genetic predisposition to alcohol abuse and alcoholism, or

  10. Diagnostic characteristics and application of alcohol biomarkers.

    PubMed

    Topic, Aleksandra; Djukic, Mirjana

    2013-01-01

    Alcohol biomarkers play a significant role in the early diagnosis of alcohol intoxication/abuse, alcohol-related organ damages, assessment of alcoholism therapy outcomes, and in forensic medicine. Laboratory detection of excessive alcohol consumption can be carried out by direct measuring of the ethanol and/or metabolites in biological samples which is of particular importance in the cases of acute ethanol intoxication/controlling and/or monitoring of alcohol consumption, or indirectly, by using biomarkers. Preferred diagnostic characteristics of alcohol biomarkers, specificity and sensitivity dependent on the particular demands such as: prevention and treatment of alcoholism in primary and social care, criminal justice, workplace health and safety screening, trafficking control, etc. Alcohol biomarkers traditionally used in clinical practice [blood alcohol concentration (BAC), gamma-glutamyl transferase (GGT), carbohydrate-deficient transferrin (CDT), the ratio GGT/CDT, alanine aminotransferase (ALT), aspartate aminotransferase (AST), the rati. AST/ALT, mean cbrpuscular volume (MCV), phosphatidylethanol (PEth)] are well validated. They are used as screening/monitoring markers of acute/chronic excessive alcohol intake, alcoholism in pregnancy, and other disorders/conditions related to alcohol abuse. Numerous potential alcohol biomarkers have been discovered, but few are validated. Potential alcohol biomarkers (ethanol and serotonin metabolites, sialic acids, etc.) have good diagnostic characteristics, but their application in clinical practice is limited due to the costly equipment necessary for their measurement. Significant progress has been made in the development of sensitive and practical alcohol transdermal devices that can instantly/continuously measure BAC through human skin. Transdermal sensing of alcohol may become a valuable method for monitoring abstinence. A special aspect of alcoholism is genetic predisposition to alcohol abuse and alcoholism, or

  11. Multiple diagnostics in a high-pressure hydrogen microwave plasma torch

    SciTech Connect

    Torres, J.; Mullen, J. J. A. M. van der; Gamero, A.; Sola, A.

    2010-02-01

    We present an experimental study of a hydrogen plasma produced by a microwave axial injection torch, launching the plasma in a helium-filled chamber. Three different diagnostic methods have been used to obtain the electron density and temperature as follows: The Stark intersection method of Balmer spectral lines (already tested in argon and helium plasmas); the modified Boltzmann-plot showing that the plasma is far from the local thermodynamic equilibrium but ruled by the excitation-saturation balance; and a study by the disturbed bilateral relations theory. All of these diagnostic techniques show a good agreement.

  12. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  13. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  14. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  15. Development of diffractive XUV-VUV light extractors for fusion plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Caravelli, G.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Kaita, R.; Roquemore, L.

    2009-11-01

    The diagnostic and control of next generation MFE and ICF fusion experiments will require optical light extractors capable of withstanding intense plasma and radiation exposure. A solution applicable from the XUV to the infrared is to use free-standing diffractive optics such as transmission gratings or zone plates. Here we present results on XUV-VUV diffractive extractors for the diagnostic of boundary MFE plasmas. For the VUV range we developed Si transmission gratings having 1 μm period, 5 μm thickness, 40% open fraction, 1x2 mm active area, and coated with Ni, while for the XUV range we use SiN gratings having 0.2 μm period, 0.3 μm thickness, 1x1 mm area, and coated with Ta. The grating extractors are spectrally and spatially calibrated in the laboratory using a newly developed extended XUV-VUV source and will be employed for imaging spectrometry on the NSTX experiment. The operational characteristics of the extended source and first space resolved XUV-VUV spectra will be presented. Work supported by DoE Grant DE-FG02-99ER54523 at JHU and Contract DE-AC02-09CH11466 at PU.

  16. [The correction to spectroscopic diagnostics of plasma jet with air engulfment].

    PubMed

    Zhao, Wen-hua; Tang, Huang-zai; Tian, Kuo; Zhang, Guan-zhong

    2004-04-01

    A high-resolution, multi-line spectroscopic diagnostic system was used to detect two spectral line intensities in plasma jet simultaneously. The temperature profiles of an arc plasma jet issued into atmosphere and the concentrations of the air engulfment in the plasma jet were experimentally determined by means of the line absolute intensity method in this paper. The temperature profiles were obtained in two cases: the air engulfment in the plasma jet being considered and not being considered. The comparison of temperatures obtained in these two cases illustrates that the air engulfment in the plasma jet has considerable influence on spectroscopic diagnostic results. The neglect of the air engulfment brings on error in the temperature diagnostics with the absolute line intensity method. Especially in the region far away from the exit of the nozzle, the error is obvious.

  17. Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications

    PubMed Central

    Bi, Wenya Linda; Zhang, Michael; Wu, Winona W.; Mei, Yu; Dunn, Ian F.

    2016-01-01

    There has been a recent revolution in our understanding of the genetic factors that drive meningioma, punctuating an equilibrium that has existed since Cushing’s germinal studies nearly a century ago. A growing appreciation that meningiomas share similar biologic features with other malignancies has allowed extrapolation of management strategies and lessons from intra-axial central nervous system neoplasms and systemic cancers to meningiomas. These features include a natural proclivity for invasion, frequent intratumoral heterogeneity, and correlation between biologic profile and clinical behavior. Next-generation sequencing has characterized recurrent somatic mutations in NF2, TRAF7, KLF4, AKT1, SMO, and PIK3CA, which are collectively present in ~80% of sporadic meningiomas. Genomic features of meningioma further associate with tumor location, histologic subtype, and possibly clinical behavior. Such genomic decryption, along with advances in targeted pharmacotherapy, provides a maturing integrated view of meningiomas. We review recent advances in meningioma genomics and probe their potential applications in diagnostic, therapeutic, and prognostic frontiers. PMID:27458586

  18. Neural network application to comprehensive engine diagnostics

    NASA Technical Reports Server (NTRS)

    Marko, Kenneth A.

    1994-01-01

    We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.

  19. STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of the temperature pressure and plasma

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G.

    1983-01-01

    Designed to withstand the thermal extremes of the STS-3 mission through the use of heaters and thermal blankets, the plasma diagnostics package sat on the release/engagement mechanism on the OSS-1 payload pallet without a coldplate and was attached to the RMS for two extended periods. Plots show temperature versus mission elapsed time for two temperature sensors. Pressure in the range of 10 to the -3 power torr and 10 to the -7 power torr, measured 3 inches from the skin of the package is plotted against GMT during the mission. The most distinctive feature of the pressure profile is the modulation at the obit period. It was found that pressure peaks when the atmospheric gas is rammed into the cargo bay. Electric and magnetic noise spectra and time variability due to orbiter systems, UHF and S-band transmitter field strengths, and measurements of the ion spectra obtained both in the cargo bay and during experiments are plotted.

  20. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Haleem, N. A.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-01

    electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.

  1. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.

  2. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Patil, D. S.; Mittal, K. C.

    2013-07-01

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10-4-10-3 mbar and 400-1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 1010 cm-3 to 3.8 × 1011 cm-3 and 4-14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  3. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  4. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    SciTech Connect

    Gerhardt, Stefan P.; Erickson, Keith; Kaita, Robert; Lawson, John; Mozulay, Robert; Mueller, Dennis; Que, Weiguo; Rahman, Nabidur; Schneider, Hans; Smalley, Gustav; Tresemer, Kelsey

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  5. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Kewlani, H; Mishra, L; Patil, D S; Mittal, K C

    2013-07-01

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10(-4)-10(-3) mbar and 400-1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10(10) cm(-3) to 3.8 × 10(11) cm(-3) and 4-14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  6. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  7. Design of the plasma current sensor diagnostic for MFTF-B

    SciTech Connect

    Goerz, D.A.; House, P.A.; Wells, C.W.

    1983-11-23

    The Plasma Current Sensor (PCS) diagnostic includes large diamagnetic loops (DL) that fully encircle the plasma as well as small multi-turn pickup coils (PCs) located between the plasma and the superconducting magnets. Both types of sensors respond to changing magnetic flux linkages caused by plasma currents and are used to measure plasma diamagnetism, from which estimates of temperature and density can be made. The DLs are used in the central cell and Axicell regions, while the PCs are used in the Yin-yang regions where DLs are impractical. Other PCs are used in the central cell to detect axial plasma currents, to help tune trim coils in the transition cell and confirm theoretical estimates of radial diffusion limits. This paper describes the PCS diagnostic and presents the detailed mechanical and electrical designs.

  8. Hilbert-Huang Transform in MHD Plasma Diagnostics

    SciTech Connect

    Kakurin, A.M.; Orlovsky, I.I.

    2005-12-15

    A new method for processing experimental data from MHD diagnostics is discussed that provides a more detailed study of the dynamics of large-scale MHD instabilities. The method is based on the Hilbert-Huang transform method and includes an empirical mode decomposition algorithm, which is used to decompose the experimental MHD diagnostic signals into a set of frequency- and amplitude-modulated harmonics in order to construct the time evolutions of the amplitudes and frequencies of these harmonics with the help of the Hilbert transform. The method can also be applied to analyze data from other diagnostics that measure unsteady oscillating signals.

  9. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  10. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  11. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  12. Influence of the bias signal amplitude and frequency on the harmonic probe measurements in plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bai, Yu-jing; Lu, Wen-qi; Li, Jian-quan; Xu, Jun; Wang, You-nian

    2016-08-01

    The harmonic probe technique may be used for the diagnostics of the plasma in insulative film deposition circumstances where the conventional Langmuir probe cannot work. In this study, we investigated the influence of the bias signal amplitude V0 and frequency f of the harmonic probe on the diagnostic results. While the measured electron temperature Te and ion density ni change little with f within the frequency range of 1-10 kHz, both of them show a considerable increase with V0 . The reasons for the results were analyzed, and based on the understanding, an improved harmonic probe technique was proposed. The validity of the improved technique was verified by comparing its results with those of a conventional Langmuir probe in Ar plasmas. The improved harmonic probe technique was applied in diagnostics of the plasma circumstance for microwave electron cyclotron resonance plasma enhanced radio frequency magnetron sputtering deposition of SiNx films.

  13. Characterization of scintillators for lost alpha diagnostics on burning plasma experiments

    SciTech Connect

    Nishiura, M.; Kubo, N.; Hirouchi, T.; Ido, T.; Nagasaka, T.; Mutoh, T.; Matsuyama, S.; Isobe, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Sasao, M.; Nakatsuka, M.; Fujioka, K.

    2006-10-15

    The characteristics of light output by ion beam irradiations under high ion fluxes have been measured for three kinds of scintillators: ZnS:Ag deposited on the glass plate, Y{sub 3}Al{sub 5}O{sub 12}:Ce powder stiffened with a binder, and Y{sub 3}Al{sub 5}O{sub 12}:Ce ceramics sintered at high temperature. The ion beam flux in the range from 10{sup 12} to 10{sup 13} ions/(cm{sup 2} s) is irradiated to simulate the burning plasma experiments. The decrease of light output has been observed by long time ion irradiation. The deterioration of ZnS:Ag deposited scintillator is most serious. The deterioration has been improved for the scintillators of Y{sub 3}Al{sub 5}O{sub 12}:Ce with a binder and that sintered. Their applications to ITER lost alpha diagnostics are discussed.

  14. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  15. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Bagcivan, Nazlim; Zhao, Lidong; Petkovic, Ivica; Schein, Jochen; Hartz-Behrend, Karsten; Kirner, Stefan; Marqués, José-Luis; Forster, Günter

    2011-09-01

    Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.

  16. Plasma diagnostic approach for the low-temperature deposition of silicon quantum dots using dual frequency PECVD

    NASA Astrophysics Data System (ADS)

    Sahu, B. B.; Yin, Y.; Lee, J. S.; Han, Jeon G.; Shiratani, M.

    2016-10-01

    Although studies of silicon (Si) quantum dots (QDs) were started just a few years ago, progress is noteworthy concerning unique film properties and their potential application for devices. In particular, relating to the Si QD process optimization, it is essential to control the deposition environment by studying the role of plasma parameters and atomic and molecular species in the process plasmas. In this work, we report on advanced material processes for the low-temperature deposition of Si QDs by utilizing radio frequency and ultrahigh frequency dual frequency (DF) plasma enhanced chemical vapor deposition (PECVD) method. DF PECVD can generate a very high plasma density in the range ~9  ×  1010 cm-3 to 3.2  ×  1011 cm-3 at a very low electron temperature (T e) ~ 1.5 to 2.4 eV. The PECVD processes, using a reactive mixture of H2/SiH4/NH3 gases, are carefully studied to investigate the operating regime and to optimize the deposition parameters by utilizing different plasma diagnostic tools. The analysis reveals that a higher ion flux at a higher plasma density on the substrate is conducive to enhancing the overall crystallinity of the deposited film. Along with high-density plasmas, a high concentration of atomic H and N is simultaneously essential for the high growth rate deposition of Si QDs. Numerous plasma diagnostics methods and film analysis tools are used to correlate the effect of plasma- and atomic-radical parameters on the structural and chemical properties of the deposited Si QD films prepared in the reactive mixtures of H2/SiH4/NH3 at various pressures.

  17. Industrial Applications of Low Temperature Plasmas

    SciTech Connect

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  18. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  19. Optical diagnostic instrument for monitoring etch uniformity during plasma etching of polysilicon in a chlorine-helium plasma

    SciTech Connect

    Hareland, W.A.; Buss, R.J.

    1993-06-01

    Nonuniform etching is a serious problem in plasma processing of semiconductor materials and has important consequences in the quality and yield of microelectronic components. In many plasmas, etching occurs at a faster rate near the periphery of the wafer, resulting in nonuniform removal of specific materials over the wafer surface. This research was to investigate in situ optical diagnostic techniques for monitoring etch uniformity during plasma processing of microelectronic components. We measured 2-D images of atomic chlorine at 726 nm in a chlorine-helium plasma during plasma etching of polysilicon in a parallel-plate plasma etching reactor. The 3-D distribution of atomic chlorine was determined by Abel inversion of the plasma image. The experimental results showed that the chlorine atomic emission intensity is at a maximum near the outer radius of the plasma and decreases toward the center. Likewise, the actual etch rate, as determined by profilometry on the processed wafer, was approximately 20% greater near the edge of the wafer than at its center. There was a direct correlation between the atomic chlorine emission intensity and the etch rate of polysilicon over the wafer surface. Based on these analyses, 3-D imaging would be a useful diagnostic technique for in situ monitoring of etch uniformity on wafers.

  20. Bayes' theorem application in the measure information diagnostic value assessment

    NASA Astrophysics Data System (ADS)

    Orzechowski, Piotr D.; Makal, Jaroslaw; Nazarkiewicz, Andrzej

    2006-03-01

    The paper presents Bayesian method application in the measure information diagnostic value assessment that is used in the computer-aided diagnosis system. The computer system described here has been created basing on the Bayesian Network and is used in Benign Prostatic Hyperplasia (BPH) diagnosis. The graphic diagnostic model enables to juxtapose experts' knowledge with data.

  1. Diagnostic of dense plasmas using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Yu, Q. Z.; Zhang, J.; Li, Y. T.; Zhang, Z.; Jin, Z.; Lu, X.; Li, J.; Yu, Y. N.; Jiang, X. H.; Li, W. H.; Liu, S. Y.

    2005-12-01

    The spectrally and spatially resolved X-ray spectra emitted from a dense aluminum plasma produced by 500 J, 1 ns Nd:glass laser pulses are presented. Six primary hydrogen-like and helium-like lines are identified and simulated with the atomic physics code FLY. We find that the plasma is almost completely ionized under the experimental conditions. The highest electron density we measured reaches up to 1023 cm-3. The spatial variations of the electron temperature and density are compared with the simulations of MEDUSA hydrocode for different geometry targets. The results indicate that lateral expansion of the plasma produced with this laser beam plays an important role.

  2. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  3. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  4. LabView virtual instrument for automatic plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Ballesteros, J.; Fernández Palop, J. I.; Hernández, M. A.; Crespo, R. Morales; del Pino, S. Borrego

    2004-01-01

    This article presents a LabView virtual instrument (VI) that automatically measures the I-V plasma probe characteristic and obtains the electron energy distribution function (EEDF) in plasmas. The VI determines several parameters characterizing the plasma using different methods to verify the validity of the results. The program controls some parameters associated with color coded warnings to verify the fidelity of the measured data and their later numerical treatment. The measurement process and data treatment are very fast, about 0.5 s, so that temporal evolutions of the EEDF can be scanned, to analyze the drift of the plasma. Finally, the program is easily portable since it is developed in the LabView environment, so it can be adapted to any platform using common laboratory instruments.

  5. Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic

    2015-11-01

    The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.

  6. Development of laser-based diagnostics for 1-MA z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Presura, R.; Kindel, J. M.; Shevelko, A. P.; Chalyy, O.; Astanovitskiy, A.; Haboub, A.; Altemara, S. D.; Papp, D.; Durmaz, T.

    2009-11-01

    The 50 TW Leopard laser coupled with the 1-MA Zebra generator was used for development of new diagnostics of z-pinch plasmas. Two plasma diagnostics are presented: an x-ray broadband backlighting for z-pinch absorption spectroscopy and parametric two-plasmon decay of the laser beam in dense z-pinch plasma. Implementation of new diagnostics on the Zebra generator and the first results are discussed. The absorption spectroscopy is based on backlighting of z-pinch plasma with a broadband x-ray radiation from a Sm laser plasma. Detailed analysis of the absorption spectra yields the electron temperature and density of z-pinch plasma at the non-radiative stage. The parametric two-plasmon decay of intensive laser radiation generates 3/2φ and 1/2φ harmonics. These harmonics can be used to derive a temperature of z-pinch plasma with the electron density near the quarter of critical plasma density.

  7. Submillimeter laser interferometer for high density plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu. E.; Kiselyev, V. K.; Kuleshov, E. M.; Knyaz'kov, B. N.; Kononenko, V. K.; Nesterov, P. K.; Yanovsky, M. S.

    1995-06-01

    There are presented the results of investigation of the one-channel homodyne laser interferometer λ=119 µm made on the basis of the hollow dielectric beamguide and quasioptical functional devices. The interferometer is designed for determination of the plasma electron density of the TOKAMAK-7. The density response threshold is 0.7% from the expected plasma density and the phase difference measurement total error is 5°

  8. Cesium control and diagnostics in surface plasma negative ion sources

    SciTech Connect

    Dudnikov, Vadim; Chapovsky, Pavel; Dudnikov, Andrei

    2010-02-15

    For efficient and reliable negative ion generation it is very important to improve a cesium control and diagnostics. Laser beam attenuation and resonance fluorescence can be used for measurement of cesium distribution and cesium control. Resonant laser excitation and two-photon excitation can be used for improved cesium ionization and cesium trapping in the discharge chamber. Simple and inexpensive diode lasers can be used for cesium diagnostics and control. Cesium migration along the surface is an important mechanism of cesium escaping. It is important to develop a suppression of cesium migration and cesium accumulation on the extraction system.

  9. The diverse applications of plasma

    SciTech Connect

    Sharma, Mukul Darwhekar, Gajanan; Dubey, Shivani; Jain, Sudhir Kumar

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  10. The diverse applications of plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  11. Applications of laser diagnostics in energy conservation research

    SciTech Connect

    Hutchinson, R.A.

    1985-02-01

    During the past decade, intensive research and development has demonstrated the feasibility, checked the accuracy, and extended the sensitivity of laser diagnostics for combustion systems. Combinations of diagnostics can now provide in-situ, time-, and space-resolved measurements of temperature, velocity, and species concentration. Although these tools are powerful, they also can be exceedingly difficult to use, and their application remains largely in the hands of specialized instrument developers rather than problem-oriented researchers. This report outlines a variety of applications for existing diagnostics that may interest both instrument developers and researchers in particular fields.

  12. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  13. Note: The expansion of possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ṡ 10-3 Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes.

  14. Note: The expansion of possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ⋅ 10(-3) Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes. PMID:27250479

  15. Note: The expansion of possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ⋅ 10(-3) Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes.

  16. Overview of C-2 field-reversed configuration experiment plasma diagnostics.

    PubMed

    Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  17. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  18. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    SciTech Connect

    Eckstrom, D.J.; Williams, M.S.

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  19. Diagnostics and required R and D for control of DEMO grade plasmas

    SciTech Connect

    Park, Hyeon K.

    2014-08-21

    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability.

  20. EDITORIAL: The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS--> Nader Sadeghi,

  1. Submillimeter laser interferometer-polarimeter for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu. E.; Kiselyev, Vladimir K.; Kuleshov, E. M.; Knyaz'kov, B. N.; Kononenko, V. K.; Nesterov, P. K.; Yanovsky, M. S.

    1994-08-01

    There are presented the results of investigation of the homodyne laser interferometer-polarimeter (lambda) equals 195 micrometers made on the quasioptical element basis and designed for the synchronous determination of the plasma electron density ne and the poloidal magnetic field Bp in 'TOKAMAK' mountings of the thermonuclear fusion.

  2. Plasma channel diagnostic based on laser centroid oscillations

    SciTech Connect

    Gonsalves, A. J.; Nakamura, K.; Lin, C.; Osterhoff, J.; Shiraishi, S.; Schroeder, C. B.; Geddes, C. G. R.; Tóth, Cs.; Esarey, E.; Leemans, W. P.

    2010-05-01

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. Experiments were performed using low-intensity (<1014 Wcm-2) laser pulses focused onto the entrance of a hydrogen-filled capillary discharge waveguide. Scanning the laser centroid position at the input of the channel and recording the exit position allows determination of the channel depth with an accuracy of a few percent, measurement of the transverse channel shape, and inference of the matched spot size. In addition, accurate alignment of the laser beam through the plasma channel is provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  3. System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Oliinychenko, Bogdan P.; Radchenko, Kostiantyn O.; Krasnoshchoka, Anastasiia K.; Shcherba, Olga K.

    2015-09-01

    The polarizing phase meter system of polycrystalline networks of human blood plasma which is used for the mammary gland pathology diagnostics was proposed in this paper. Increasing the accuracy of the phase value determination was achieved using a combination of low coherent source of radiation and circularly polarized probing of biological object. Thus, high informativity of polarizing phase meter system for the diagnosis of breast pathology using the phase mapping of the human blood plasma films were determined, thereafter statistical, correlational, fractal structure analysis of the obtained phase maps was carried out and the quantitative criterias of the phase diagnostics and differentiation of the breast pathological conditions were determined too.

  4. Atomic mass dependent electrostatic diagnostics of colliding laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.

    2013-09-15

    The behaviours of colliding laser plasma plumes (C{sub p}) compared with single plasma plumes (S{sub p}) are investigated for 14 different atomic mass targets. A Faraday cup, situated at the end of a drift tube (L = 0.99 m), is employed to record the time-of-flight (TOF) current traces for all elements and both plume configurations, for a fixed laser intensity of I{sub p} = 4.2 × 10{sup 10} W cm{sup −2} (F = 0.25 kJ cm{sup −2}). The ratio of the peak current from the C{sub p} relative to twice that from the S{sub p} is designated as the peak current ratio while the ratio of the integrated charge yield from the C{sub p} relative to twice that from the S{sub p} is designated as the charge yield ratio. Variation of the position of the Faraday cup within the drift tube (L = 0.33, 0.55, and 0.99 m) in conjunction with a lower laser fluence (F = 0.14 kJ cm{sup −2}) facilitated direct comparison of the changing TOF traces from both plasma configurations for the five lightest elements studied (C, Al, Si, Ti, and Mn). The results are discussed in the frame of laser plasma hydrodynamic modelling to approximate the critical recombination distance L{sub CR}. The dynamics of colliding laser plasma plumes and the atomic mass dependence trends observed are presented and discussed.

  5. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.

  6. Four-color laser diagnostics for Z-pinch and laser-produced plasma.

    PubMed

    Ivanov, V V; Anderson, A A; Begishev, I A

    2016-01-20

    Four-color laser diagnostics were developed for Z-pinch and laser plasma at the 1 MA pulsed power generator. Four harmonics of the Nd:YAG laser at wavelengths of 1064, 532, 266, and 213 nm were produced during the cascade conversion in three nonlinear crystals and propagated together in one beampath. Deep UV probing allows better penetration of the dense plasma. Laser probing at four wavelengths allows observation of plasma in a wide range of densities in one shot of the diagnostic laser. Examples of four-color laser shadowgraphy and interferometry of the wire-array load and laser plasma interaction are presented and discussed. PMID:26835923

  7. X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2015-12-01

    The investigation of a recombining laser plasma is topical primarily because it can be used to simulate the interaction between plasma jets in astrophysical objects. It has been shown that the relative intensities of transitions of a resonance series of He-like multicharged ions can be used for the diagnostics of the recombining plasma. It has been found that the intensities of the indicated transitions for ions with the nuclear charge number Z n ~ 10 are sensitive to the plasma density in the range N e ~ 1016-1020 cm-3 at temperatures of 10-100 eV. The calculations performed for the F VIII ion have determined the parameters of plasma jets created at the ELFIE nanosecond laser facility (Ecole Polytechnique, France) in order to simulate astrophysical phenomena. The resulting universal calculation dependences can be used to diagnose different recombining plasmas containing helium-like fluorine ions.

  8. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  9. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  10. X-linked adrenoleukodystrophy with non-diagnostic plasma very long chain fatty acids.

    PubMed Central

    Kennedy, C R; Allen, J T; Fensom, A H; Steinberg, S J; Wilson, R

    1994-01-01

    Measurement of plasma very long chain fatty acids is widely recognised as a sensitive screening test for X-linked adrenoleukodystrophy (X-ALD). This test has particular importance because of the highly variable clinical expression of X-ALD. In this affected family the progressive childhood form of X-ALD was accompanied by "non-diagnostic" concentrations of plasma very long chain fatty acids. The implications for diagnosis of X-ALD are discussed. PMID:8006665

  11. Neutron diagnostics for pulsed high-density thermonuclear plasmas.

    PubMed

    Ekdahl, C A

    1979-08-01

    Time-resolved measurements of the neutron flux from the Scylla IV-P linear theta-pinch experiment have been made with scintillator-photomultiplier combinations. Calibration of the detectors is accomplished by a comparison of their time-integrated output with the total neutron yield measured using a foil-activation technique for which an accurate calibration has been established. The temperature of the Maxwellian ion velocity distribution that would produce the observed flux is obtained from the Maxwellian reactivity < sigmav >(DD) for D (d,n)He3 and measurements of the temporal evolution of the plasma column density and dimensions. This determination of the time history of the ion temperature is in good agreement with the plasma energy measured using other techniques.

  12. Infrared laser induced plasma diagnostics of silver target

    SciTech Connect

    Ahmat, L. Nadeem, Ali; Ahmed, I.

    2014-09-15

    In the present work, the optical emission spectra of silver (Ag) plasma have been recorded and analyzed using the laser induced breakdown spectroscopy technique. The emission line intensities and plasma parameters were investigated as a function of lens to sample distance, laser irradiance, and distance from the target surface. The electron number density (n{sub e}) and electron temperature (T{sub e}) were determined using the Stark broadened line profile and Boltzmann plot method, respectively. A gradual increase in the spectral line intensities and the plasma parameters, n{sub e} from 2.89 × 10{sup 17} to 3.92 × 10{sup 17 }cm{sup −3} and T{sub e} from 4662 to 8967 K, was observed as the laser irradiance was increased 2.29 × 10{sup 10}–1.06 × 10{sup 11} W cm{sup −2}. The spatial variations in n{sub e} and T{sub e} were investigated from 0 to 5.25 mm from the target surface, yielding the electron number density from 4.78 × 10{sup 17} to 1.72 × 10{sup 17 }cm{sup −3} and electron temperature as 9869–3789 K. In addition, the emission intensities and the plasma parameters of silver were investigated by varying the ambient pressure from 0.36 to 1000 mbars.

  13. Application of modern diagnostic methods to environmental improvement. Annual progress report, January--October 1994

    SciTech Connect

    Shepard, W.S.

    1994-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), a research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to real world processes; measurements are made in hot, highly corrosive atmospheres in which conventional measurement devices are ineffective. Task 1 of this agreement is concerned with the development and application of various diagnostic methods to characterize the plasma properties, the melt properties and the downstream emissions from a plasma torch facility designed to vitrify mixed waste. Correlation of the measured properties with the operating parameters of the torch will be sought to improve, optimize and control the overall operation of the plasma treatment process. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and control purposes of treatment processes in general. Task 2 of this agreement is concerned with the development of a system to monitor and control the combustion stoichiometry in real time in order to minimize environmental impact and maximize process efficiency. Staged fuel injection is also being studied to minimize NO{sub x} formation.

  14. Thomson scattering as a method for laser plasma diagnostics

    SciTech Connect

    Alayi, Y.

    1983-12-01

    The Thomson scattering has been used to determine the density and temperature of an inhomogeneous nonstationary plasma. A common method to calibrate the Thomson scattering device consists in replacing the plasma by a gas and measuring the Rayleigh scattering cross section. The angular distribution of the scattered light in Argon is measured, the incident light is a ruby laser with ..delta..t = 30ns and lambda = 6943nm and vertically polarized. We have found that angular distribution is strongly favored in the forward direction (30/sup 0/, 45/sup 0/, 60/sup 0/) and defavored for backward direction (90/sup 0/, 120/sup 0/, 135/sup 0/, 150/sup 0/) in agreement with the results of George, et al, but in disagreement with the Rayleigh theory which assumes a uniform distribution. Our results may be related to the form of the scattered light spectrum which undergoes a dramatic change through the kinetic-hydrodynamic transition. The general form of the spectrum is determined by the parameter y = 1/Kl (where K = 4..pi.. sin (theta/2)/lambda, theta is the scattering angle and l is the free path path), which increases in the direction of the hydrodynamic regime (small angles). By analogy, the Thomson scattering presents the same aspects with ..cap alpha.. = 1/Klambda /SUB D/ (where lambda /SUB D/ is the Debye length). The deviation from the uniform distribution provides the possibility to determine the plasma turbulence spectrum from the scattered light.

  15. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  16. Electron kinetic effects on optical diagnostics in fusion plasmas

    SciTech Connect

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E.; Brower, D. L. Ding, W. X.

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  17. ITER Plasma at Electron Cyclotron Frequency Domain: Tokamak Core Plasma Diagnostics Based on the Synergy of Stimulated Raman and Brillouin Scatterings

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2012-10-01

    A novel plasma diagnostic method is proposed based on the synergy of stimulated Raman and Brillouin scatterings. A nonlinear plasma mode is excited in a 4-wave coupling,footnotetextV. Alexander STEFAN, Nonlinear Electromagnetic Radiation Plasma Interactions, (S-U-Press, 2008). leading to the appearance of suprathermal electrons and accelerated ions at the plasma edgefootnotetextV. Alexander Stefan, Abstract: D1.00018 : ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions; Bulletin of the American Physical Society APS April Meeting 2011 Volume 56, Number 4. with the parameters directly dependent on the plasma parameters in the core of tokamak. Accordingly, plasma diagnostic in the core region, (ion temperature), can be performed by the diagnostics of suprathermal electrons and accelerated ions at the edge plasma.

  18. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  19. Spectral diagnostics of laser erosion plasma of mercury chalcogenide targets

    NASA Astrophysics Data System (ADS)

    Kotlyarchuk, B. K.; Popovych, D. I.; Savchuk, V. K.; Savitsky, V. G.

    1995-11-01

    The article sets out to investigate spatial-time and spectral characteristics of laser erosive vapor-plasma torch (EVT), formed at the vaporization of mercury chalcogenines targets. Its influence on the synthesis processes of HgTe and CdHgTe layers, condensed in mercury vapor, is described. It is shown that the laser radiation flux density and Hg vapor pressure in the reaction chamber are dominating factors which determine the character of gas-dynamic spread and EVT composition of mercury chalcogenides targets.

  20. Tracer-encapsulated pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Viniar, I.; Lukin, A.; Reznichenko, P.; Umov, A.

    2005-05-01

    An injector for making solid hydrogen pellets around impurity cores has been developed for plasma transport study in large helical device. A technique has been employed for automatic loading carbon or polystyrene cores of 0.2 mm diameter from a gun magazine to a light-gas gun barrel. The injector is equipped with a cryocooler and is able to form a 3.2 mm long and 3 mm diameter cylindrical solid hydrogen pellet at 7-8 K with an impurity core in its center within 6 min and to inject it in the light-gas gun up to 1 km/s.

  1. Hydrogen-encapsulated impurity pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Viniar, I.; Reznichenko, P.; Lukin, A.; Umov, A.; Sudo, S.

    2001-06-01

    A novel technology is suggested for making solid hydrogen shells around impurity pellets to be injected into plasmas of fusion devices with a view to looking into its transport properties. In proof-of-principle tests, a 3 mm long and 3 mm diameter cylindrical solid hydrogen shell was formed around a 0.2 mm diameter globular pellet at a temperature of 8-11 K within 5 min and accelerated in a pipe-gun barrel up to 1 km/s.

  2. Electron-beam generated plasmas for processing applications

    NASA Astrophysics Data System (ADS)

    Meger, Robert; Leonhardt, Darrin; Murphy, Donald; Walton, Scott; Blackwell, David; Fernsler, Richard; Lampe, Martin; Manheimer, Wallace

    2001-10-01

    NRL's Large Area Plasma Processing System (LAPPS) utilizes a 5-10 mA/cm^2, 2-4 kV, 1 cm x 30-60 cm cross section beam of electrons guided by a magnetic field to ionize a low density (10-100 mTorr) gas.[1] Beam ionization allows large area, high density, low temperature plasmas to be generated in an arbitrary gas mixture at a well defined location. Energy and composition of particle fluxes to surfaces on both sides of the plasma can be controlled by gas mixture, location, rf bias, and other factors. Experiments have been performed using both pulsed and cw beams. Extensive diagnostics (Langmuir probes, mass and ion energy analyzers, optical emissions, microwave interferometry, etc.) have been fielded to measure the plasma properties and neutral particle fluxes (ions, neutrals, free radicals) with and without rf bias on nearby surfaces both with the beam on and off. Uniform, cold (Te < 1eV), dense (ne 10^13 cm-3) plasmas in molecular and atomic gases and mixtures thereof have been produced in agreement with theoretical expectations. Initial tests of LAPPS application such as ashing, etching, sputtering, and diamond growth have been performed. Program status will be presented. [1]R.A. Meger, et al, Phys. of Plasmas 8(5), p. 2558 (2001)

  3. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  4. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2010-11-15

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t<100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t>160 ns) resulted in sustained 'decay', i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (N{sub e}) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  5. Large area cold plasma applicator for decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, G. A.

    2008-04-01

    Cold plasma applicators have been used in the Medical community for several years for uses ranging from hemostasis ("stop bleeding") to tumor removal. An added benefit of this technology is enhanced wound healing by the destruction of infectious microbial agents without damaging healthy tissue. The beam is typically one millimeter to less than a centimeter in diameter. This technology has been adapted and expanded to large area applicators of potentially a square meter or more. Decontamination applications include both biological and chemical agents, and assisting in the removal of radiological agents, with minimal or no damage to the contaminated substrate material. Linear and planar multiemitter array plasma applicator design and operation is discussed.

  6. A dual far-infrared laser diagnostic of magnetized plasmas

    SciTech Connect

    Darrow, D.S.; Park, H.K.

    1988-02-01

    A dual far-infrared laser has been constructed and its properties have been exploited to probe tokamak-like discharges in the CDX toroidal device. Thermal variation of the difference frequency between the two far-infrared cavities is slow, though the cavities lack thermal stabilization, simply because their assembly on the same chassis exposes them to virtually identical temperature changes. The optical arrangement beyond the laser permits conversion within minutes between interferometry and density fluctuation observation, and within an hour between different operating wavelengths. Line-average densities of 2 /times/ 10/sup 13/ cm/sup -3/ and coherent fluctuations in the neighborhood of 20 kHz have been measured with this diagnostic. 15 refs., 5 figs., 2 tabs.

  7. Optimization of plasma diagnostics using Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Dreier, H.; Fischer, R.; Dinklage, A.; Hirsch, M.; Kornejew, P.

    2006-11-01

    The diagnostic set-up for Wendelstein 7-X, a magnetic fusion device presently under construction, is currently in the design process to optimize the outcome under given technical constraints. Compared to traditional design approaches, Bayesian Experimental Design (BED) allows to optimize with respect to physical motivated design criterions. It aims to find the optimal design by maximizing an expected utility function that quantifies the goals of the experiment. The expectation marginalizes over the uncertain physical parameters and the possible values of future data. The approach presented here bases on maximization of an information measure (Kullback-Leibler entropy). As an example, the optimization of an infrared multichannel interferometer is shown in detail. Design aspects like the impact of technical restrictions are discussed.

  8. Temperature diagnostics of ECR plasma by measurement of electron bremsstrahlung

    SciTech Connect

    Kasthurirangan, S.; Agnihotri, A. N.; Desai, C. A.; Tribedi, L. C.

    2012-07-15

    The x-ray bremsstrahlung spectrum emitted by the electron population in a 14.5 GHz ECR plasma source has been measured using a NaI(Tl) detector, and hence the electron temperature of the higher energy electron population in the plasma has been determined. The x-ray spectra for Ne and Ar gases have been systematically studied as a function of inlet gas pressure from 7 Multiplication-Sign 10{sup -7} mbar to 7 Multiplication-Sign 10{sup -5} mbar and for input microwave power {approx}1 W to {approx}300 W. At the highest input power and optimum pressure conditions, the end point bremsstrahlung energies are seen to reach {approx}700 keV. The estimated electron temperatures (T{sub e}) were found to be in the range 20 keV-80 keV. The T{sub e} is found to be peaking at a pressure of 1 Multiplication-Sign 10{sup -5} mbar for both gases. The T{sub e} is seen to increase with increasing input power in the intermediate power region, i.e., between 100 and 200 W, but shows different behaviour for different gases in the low and high power regions. Both gases show very weak dependence of electron temperature on inlet gas pressure, but the trends in each gas are different.

  9. Diagnostic value of plasma aldosterone/potassium ratio in hypoaldosteronism.

    PubMed

    Shiah, C J; Wu, K D; Tsai, D M; Liao, S T; Siauw, C P; Lee, L S

    1995-05-01

    The diagnosis of hypoaldosteronism usually depends upon a combination of abnormal clinical and laboratory findings. The most common abnormality in hypoaldosteronism is hyperkalemia, which may be combined with sodium depletion. In the present study, 5 of 16 patients diagnosed with isolated hypoaldosteronism (IHA) had sodium depletion due to renal salt wasting, and four patients had normokalemia. Of these 16 IHA patients, 70% had subnormal baseline and stimulated plasma renin activity (PRA). Six patients diagnosed with type I pseudohypoaldosteronism (PHA) had normal or high PRA and plasma aldosterone concentrations (PAC). In 11 control subjects, supine PAC correlated positively with serum potassium (SK), and PAC stimulated by furosemide and ambulation correlated with the 24-hour urinary potassium excretion (UK). However, these correlations were not found in IHA and PHA patients. The ratio of UK/UNa+K and UNa/UK correlated with the stimulated PAC when the IHA and control subjects were taken as a whole. However, these electrolyte excretion parameters bore no relationship to the supine PAC. The stimulated PAC/SK ratio was used to discriminate the three groups; all IHA patients had a ratio below 3. The results indicate that stimulated PAC reflects the bioactivity of aldosterone on the collecting tubule, and the stimulated PAC/SK ratio is useful for the diagnosis of hypoaldosteronism and pseudohypoaldosteronism.

  10. Optical and electrical diagnostics of fluorocarbon plasma etching processes

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul

    1999-05-01

    This article reviews recent work concerning the role of CF and CF2 radicals in etching and polymerization processes occurring in capacitively coupled radio-frequency plasmas in fluorocarbon gases used for the selective etching of SiO2 layers in microelectronic device fabrication. Laser-induced fluorescence (LIF) was used to determine time-resolved axial concentration profiles of these species in continuous and pulse-modulated CF4 and C2F6 plasmas. Calibration techniques, including broad-band UV absorption spectroscopy, were developed to put the LIF measurements on an absolute scale. A novel technique was used to determine the ion flux to the reactor walls in these polymerizing environments. The mass distribution of the ions arriving at the reactor walls was determined using a quadrupole mass spectrometer. It was found that CFx radicals are produced predominantly by the reflection of neutralized and dissociated CFx+ ions at the powered electrode surface. When the fluorine atom concentration is high, the CFx radicals are destroyed effectively by recombination catalysed by the reactor walls. When the fluorine atom concentration is lowered, the CF2 concentration rises markedly, and it participates in gas-phase oligomerization processes, forming large CxFy molecules and, after ionization, large CxFy+ ions. These species appear to be the true polymer precursors. This mechanism explains the well known correlation between high CF2 concentrations, polymer deposition and SiO2 over Si etch selectivity.

  11. MFTF-B plasma-diagnostics-system instrumentation and data-acquisition system

    SciTech Connect

    Goerz, D.A.; Lau, N.H.C.; Mead, J.E.; Throop, A.L.

    1981-10-21

    The change of scope for MFTF from a simple mirror to a tandem mirror configuration utilizing thermal barriers has expanded the range of plasma parameters and increased the requirements of the plasma diagnostics system. The instrument set that is needed for start-up operation has been identified and conceptual design work is proceeding. This paper describes the diagnostic instrumentation as presently envisioned for start-up operation, with a summary of the detectors and data channels. Also presented is an overview of the current conceptual design for the Local Control and Data Acquisition System and the Data Processing and Display system. As more detailed design is done, the exact number and nature of instruments may change, but overall, the system described here is one expected to satisfy the requirements for start-up and be expandable to the basic set of diagnostics.

  12. Dusty plasma diagnostics methods for charge, electron temperature, and ion density

    SciTech Connect

    Liu Bin; Goree, J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Thomas, H. M.; Ivlev, A. V.

    2010-05-15

    Diagnostic methods are developed to measure the microparticle charge Q and two plasma parameters, electron temperature T{sub e}, and ion density n{sub i}, in the main plasma region of a dusty plasma. Using video microscopy to track microparticles yields a resonance frequency, which along with a charging model allows an estimation of Q and T{sub e}. Only measurements of microparticle position and velocity are required, unlike other methods that use measurements of T{sub e} and plasma parameters as inputs. The resonance frequency measurement can also be used with an ion drag model to estimate n{sub i}. These methods are demonstrated using a single-layer dusty plasma suspension under microgravity conditions.

  13. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  14. Development of the Zebra load region for increased capability plasma diagnostics and improved Leopard laser access

    NASA Astrophysics Data System (ADS)

    Astanovitskiy, Alexey; Presura, R.; Ivanov, V. V.; Haboub, A.; Plachaty, C.; Kindel, J. M.

    2008-11-01

    A new geometry for the load area in the Zebra (1MA pulse generator) is developed. It will form the basis for future experiments requiring Leopard (1057nm, 50TW laser) to Zebra coupling and give extended capability to z-pinch diagnostics. This required the development of a new current return, which allows laser access and installation of the OD 4'' parabolic mirror for the x-ray radiography, isochoric heating and magnetized plasma experiments, and accommodates wire-array z-pinch loads, to which the laser may then be coupled. In addition, this configuration allows diagnostics access close to the plasma, leading to a significant increase of the spatial resolution for imaging of z-pinches, as well as the photon flux in imaging and spectroscopy of laser produced plasmas. These diagnostics will allow coupling of the Leopard beam for x-ray laser probing of the pinch plasma and we will test point-projection x-ray backlighting of the pinch plasma.

  15. Dust as a versatile matter for high-temperature plasma diagnostic

    SciTech Connect

    Wang Zhehui; Ticos, Catalin M.

    2008-10-15

    Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented.

  16. Process control using new approaches in plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Reeves, Steve; Fullwood, Clayton; Turner, Terry R.

    1994-09-01

    As semiconductor processing requirements evolve to meet the demands of decreasing geometries, new approached in plasma metrology will be needed to monitor the performances of the equipment and its processes. This performance has traditionally been monitored via Statistical Process Control (SPC) on output parameters such as etch rate and uniformity. These measurements are typically taken on single film wafers which may not be an accurate representation of product. With emerging, nonintrusive, RF sensor technology, equipment and process engineers have access to signals which provide better resolution in determining the health of the equipment. This paper will discuss the relationships between machine settings, real-time RF sensor measurements and the etch rate and uniformity metrics typically used in machine/process qualifications. Run to run control algorithms using the RF sensor measurements will also be presented. Finally, the implications of using RF sensor measurements to provide real-time closed loop control of machine settings will be discussed.

  17. Basis set expansion for inverse problems in plasma diagnostic analysis.

    PubMed

    Jones, B; Ruiz, C L

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  18. Basis set expansion for inverse problems in plasma diagnostic analysis

    SciTech Connect

    Jones, B.; Ruiz, C. L.

    2013-07-15

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  19. Basis set expansion for inverse problems in plasma diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  20. Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Effenberg, F.; Schmitz, O.; Biedermann, C.; Feng, Y.; Jakubowski, M.; König, R.; Krychowiak, M.; Lore, J.; Niemann, H.; Pedersen, T. S.; Stephey, L.; Wurden, G. A.

    2016-11-01

    Interpretation of spectroscopic measurements in the edge region of high-temperature plasmas can be a challenge since line of sight integration effects make direct interpretation in terms of quantitative, local emission strengths often impossible. The EMC3-EIRENE code—a 3D fluid edge plasma and kinetic neutral gas transport code—is a suitable tool for full 3D reconstruction of such signals. A versatile synthetic diagnostic module has been developed recently which allows the realistic 3D setup of various plasma edge diagnostics to be captured. We highlight these capabilities with two examples for Wendelstein 7-X (W7-X): a visible camera for the analysis of recycling, and a coherent-imaging system for velocity measurements.

  1. Plasma diagnostics in Hg-free short-arc lamps for automotive lighting

    NASA Astrophysics Data System (ADS)

    Kettlitz, M.; Wendt, M.; Schneidenbach, H.; Krylova, O.

    2007-07-01

    In the context of developing a mercury-free lamp for automotive lighting an optimization of lamp design and plasma radiation was performed. In contrast to existing quartz lamps, a new lamp design was chosen consisting of a sapphire capillary combined with ceramic parts and pure tungsten electrodes. The lamps consist of metal halides and between 1 and 20 bar of xenon. They were operated with an electronic ballast at input powers between 20 and 40 W. Besides an optimization of the tube materials, thermography and plasma diagnostics were performed to understand the processes inside the lamp and to find optimal operation conditions. In addition to experimental diagnostics, a simulation of self-reversed sodium spectral lines was performed to verify plasma parameters, particularly the xenon pressure which could not be determined from the experiment. Additionally, tendencies of the influence of single components could be estimated by modelling.

  2. Laser displacement meter application for milling diagnostics

    NASA Astrophysics Data System (ADS)

    Ryabov, Oleg; Mori, Kazuo; Kasashima, Nagayoshi

    1998-09-01

    This paper presents the application of a laser displacement meter for direct multi-purpose sensing of milling tool conditions. Using a laser displacement meter, a laser beam is projected onto the cutting tool and subsequently reflected. The intensity as well as the angle of the reflected beam are measured. The signals are interpreted for identification of tool geometry, tool whirling, or vibration. Signal processing and analysis depend on the application. A prototype system has been developed to demonstrate the feasibility of various applications, namely (1) tool setting evaluation, (2) in-process measurement of milling cutter geometry and detection of tool failure, (3) continuous monitoring of milling cutter deterioration, (4) detection and measurement of chatter in milling, (5) measurement of milling tool bending and (6) thermal expansion.

  3. Laser Thomson Scattering Diagnostics of Pulsed Filamentary Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Bolouki, Nima

    2012-10-01

    Laser Thomson scattering (LTS) has been applied to measure spatiotemporal evolution of electron density and electron temperature in a pulsed filamentary discharge. The light source of LTS is the second harmonics Nd:YAG laser with a energy of 8 mJ. Also a triple grating spectrometer (TGS) having high rejection rate for stray light is used to measure LTS spectra. In our experimental conditions, non-thermal and non-equilibrium micro-plasmas are generated at round atmospheric pressure. Moreover, the electrode set in this experiment is consisted of a needle electrode and a hemispherical electrode with an inter-electrode gap of 0.5 mm. The total electric charge that flows through the discharge channel vary from 20 nC to 850 nC by changing capacitance in electrical circuit. We could show that the total charge variation leads to increase in electron density from 10^22 m-3 to 10^23 m-3. However, the electron temperature remains almost constant at the main discharge. In order to investigate the streamer phase, we changed the gap up to 16mm, and then performed the LTS method to measure the electron density and electron temperature.

  4. Thomson Scattering Diagnostics in the Plasma of an Ion Thruster

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoji; Hiraoka, Yoshiaki; Sugita, Kensaku; Kurita, Tomoaki; Tomita, Kentaro; Uchino, Kiichiro; Nakashima, Hideki

    In order to validate the grid erosion evaluation code for the lifetime validation of ion thrusters, the electron number density/temperature in the vicinity of a screen gird in a 30 W class microwave discharge ion thruster were measured by means of laser Thomson scattering (LTS) technique. A photon counting method and a triple grating spectrometer were used against a small Thomson scattering signal and a strong stray laser light. Observed Thomson scattering spectrum tells that the electron energy distribution function was Maxwellian. From this spectrum and the Rayleigh scattering calibration using nitrogen gas, electron number density and electron temperature were calculated to be (3.8±0.2)×1017m-3 and 6.2±0.1 eV, respectively at incident microwave power of 8 W and krypton mass flow rate of 6.2 μg/s. The ion saturation currents estimated from the LTS measurement are in good agreement with ion beam currents through the screen grid for several conditions. These results show that LTS technique is a useful non-intrusive tool for measuring plasma property in the vicinity of the screen grid.

  5. Data bases for diagnostic of high temperature astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Landini, Massimo

    1997-01-01

    The spectral region below 2000 Å is crowded of lines from the most important elements in the universe and the x-ray and EUV emission of astrophysical plasmas is an extremely powerful tool to investigate temperature and density models of celestial sources. In the last two decades a number of space missions has been devoted to investigate the X-ray and EUV sky, and, even before, space born spectrograph, measured detailed spectra of the solar corona. Two high spectral resolution instruments, CDS and SUMER, on the SOHO mission, are producing a lot of high quality spectra of the solar corona between 150 and 1600 Å and high resolution observations are planned for the near future also from stars and galaxies. To properly exploit the huge amount of information supplied by the Observations and to plan new observations, the most updated sets of atomic data are necessary. Models of neutral atoms and ions, details of the most important atomic processes, (rates of collision and radiative ionizations and excitation, radiative decays, recombinations) are being collected in extended databases, to be accessed by the scientific community. A brief description is given of some of them that are in the way of upgrading.

  6. Magnetic Field and Plasma Diagnostics from Coordinated Prominence Observations

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Levens, P.; Dalmasse, K.; Mein, N.; Mein, P.; Lopez-Ariste, A.; Labrosse, N.; Heinzel, P.

    2016-04-01

    We study the magnetic field in prominences from a statistical point of view, by using THEMIS in the MTR mode, performing spectropolarimetry of the He I D3 line. Combining these measurements with spectroscopic data from IRIS, Hinode/EIS as well as ground-based telescopes, such as the Meudon Solar Tower, we infer the temperature, density, and flow velocities of the plasma. There are a number of open questions that we aim to answer: - What is the general direction of the magnetic field in prominences? Is the model using a single orientation of magnetic field always valid for atypical prominences? %- Does this depend on the location of the filament on the disk (visible in Hα, in He II 304 Å) over an inversion line between weak or strong network ? - Are prominences in a weak environment field dominated by gas pressure? - Measuring the Doppler shifts in Mg II lines (with IRIS) and in Hα can tell us if there are substantial velocities to maintain vertical rotating structures, as has been suggested for tornado-like prominences. We present here some results obtained with different ground-based and space-based instruments in this framework.

  7. Ultrahigh-sensitivity threshold neutron detector for plasma diagnostics

    SciTech Connect

    Valentine, K.H.; Kopp, M.K.; Allin, G.W.; Clay, W.T.; Miller, V.C.

    1984-01-01

    An ultrahigh-sensitivity fast fission counter was developed to selectively detect high-energy neutrons (E/sub n/>1 MeV) produced by D-D and D-T fusion reactions in thermonuclear plasmas. Discrimination against slow and epithermal neutrons produced by scattering or electrodissociation of deuterium was achieved by sensitizing the detector with 100 g of highly depleted /sup 238/UO/sub 2/, which has a fission threshold for neutron energies E/sun n/>1 MeV. The capacitive signal loading effects of the detector's large electrode area (5 m/sup 2/) were mitigated by using a transmission-line electrode configuration. Wideband, low-noise preamplifiers were developed to match the 25-..cap omega.. characteristic impedance of the transmission line. The neutron sensitivity of the detector was shown to be 0.07 counts.s/sup -1/.(neutron/(cm/sup 2/.s))/sup -1/ for E/sub n/>2 MeV in initial laboratory testing.

  8. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  9. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  10. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  11. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-01

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (1012-1015 m-3), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ˜ 170 G) and unmagnetized (B = 0) low density (7 × 1012 m-3-7 × 1013 m-3) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 1012 m-3-7 × 1013 m-3 show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 1013 m-3. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  12. Application of Dusty Plasmas for Space

    NASA Astrophysics Data System (ADS)

    Bhavasar, Hemang; Ahuja, Smariti

    plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.

  13. Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas

    2015-11-01

    We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.

  14. Non-linear optical diagnostic studies of high pressure non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Lempert, Walter

    2012-10-01

    Picosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) is used for study of vibrational energy loading and relaxation kinetics in high pressure nitrogen and air nsec pulsed non-equilibrium plasmas in a pin-to-pin geometry. It is found that ˜33% of total discharge energy in a single pulse in air at 100 torr couples directly to nitrogen vibration by electron impact, in good agreement with master equation modeling predictions. However in the afterglow the total quanta in vibrational levels 0 -- 9 is found to increase by a factor of approximately 2 and 4 in nitrogen and air, respectively, a result in direct contrast to modeling results which predict the total number of quanta to be essentially constant. More detailed comparison between experiment and model show that the VDF predicted by the model during, and directly after, the discharge pulse is in good agreement with that determined experimentally, however for time delays exceeding ˜10 μsec the experimental and predicted VDFs diverge rapidly, particularly for levels v = 2 and greater. Specifically modeling predicts a rapid drop in population of high levels due to net downward V-V energy transfer whereas the experiment shows an increase in population in levels 2 and 3 and approximately constant population for higher levels. It is concluded that a collisional process is feeding high vibrational levels at a rate which is comparable to the rate at which population of the high levels is lost due to net downward V-V. A likely candidate for the source of additional vibrational quanta is the quenching of metastable electronic states of nitrogen to highly excited vibrational levels of the ground electronic state. Recent progress in the development and application of psec coherent Raman electric field and spontaneous Thomson scattering diagnostics for study of high pressure nsec pulsed plasmas will also be presented.

  15. Some Historic and Current Aspects of Plasma Diagnostics Using Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger

    2013-03-01

    The use of atomic spectroscopy in the diagnostics of hot plasma, whether terrestrial or astrophysical, has a long and distinguished history. Some examples of past highlights will be given, along with a mention of their impact on contemporary thinking. In terms of more current lines of research on atomic spectroscopy relevant to plasma diagnostics, we will discuss more subtle effects concerning the influence of magnetic and nuclear interactions on atomic structure. For example, there are more effects of magnetic fields on atomic structure than the often though about Zeeman splitting of atomic energy levels. As magnetic fields exist in many astrophysical plasmas and also in Tokomak machines, this line of research may be of great importance to these very important branches of physics. Similarly, effects of nuclear-spin, through the hyperfine interaction, can have dramatic effects on the lifetimes of forbidden transitions. Again, important additions to plasma diagnostics are expected through effects caused by the hyperfine interaction. We will also stress the importance of Electron Beam Ion Traps as excellent laboratory light sources to study such potentially very interesting effects.

  16. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  17. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  18. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect

    Cazzaniga, C. Nocente, M.; Gorini, G.; Rebai, M.; Giacomelli, L.; Tardocchi, M.; Croci, G.; Grosso, G.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Griesmayer, E.; Pillon, M.

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, α){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  19. Applying X-ray Imaging Crystal Spectroscopy for Use as a High Temperature Plasma Diagnostic.

    PubMed

    Cao, Norman M; Mier Valdivia, Andrés M; Rice, John E

    2016-01-01

    X-ray spectra provide a wealth of information on high temperature plasmas; for example electron temperature and density can be inferred from line intensity ratios. By using a Johann spectrometer viewing the plasma, it is possible to construct profiles of plasma parameters such as density, temperature, and velocity with good spatial and time resolution. However, benchmarking atomic code modeling of X-ray spectra obtained from well-diagnosed laboratory plasmas is important to justify use of such spectra to determine plasma parameters when other independent diagnostics are not available. This manuscript presents the operation of the High Resolution X-ray Crystal Imaging Spectrometer with Spatial Resolution (HIREXSR), a high wavelength resolution spatially imaging X-ray spectrometer used to view hydrogen- and helium-like ions of medium atomic number elements in a tokamak plasma. In addition, this manuscript covers a laser blow-off system that can introduce such ions to the plasma with precise timing to allow for perturbative studies of transport in the plasma. PMID:27585305

  20. Influence of plasma diagnostics and constraints on the quality of equilibrium reconstructions on Joint European Torus

    NASA Astrophysics Data System (ADS)

    Gelfusa, M.; Murari, A.; Lupelli, I.; Hawkes, N.; Gaudio, P.; Baruzzo, M.; Brix, M.; Craciunescu, T.; Drozdov, V.; Meigs, A.; Peluso, E.; Romanelli, M.; Schmuck, S.; Sieglin, B.; JET-EFDA Contributors

    2013-10-01

    One of the main approaches to thermonuclear fusion relies on confining high temperature plasmas with properly shaped magnetic fields. The determination of the magnetic topology is, therefore, essential for controlling the experiments and for achieving the required performance. In Tokamaks, the reconstruction of the fields is typically formulated as a free boundary equilibrium problem, described by the Grad-Shafranov equation in toroidal geometry and axisymmetric configurations. Unfortunately, this results in mathematically very ill posed problems and, therefore, the quality of the equilibrium reconstructions depends sensitively on the measurements used as inputs and on the imposed constraints. In this paper, it is shown how the different diagnostics (Magnetics Measurements, Polarimetry and Motional Stark Effect), together with the edge current density and plasma pressure constraints, can have a significant impact on the quality of the equilibrium on JET. Results show that both the Polarimetry and Motional Stark Effect internal diagnostics are crucial in order to obtain reasonable safety factor profiles. The impact of the edge current density constraint is significant when the plasma is in the H-mode of confinement. In this plasma scenario the strike point positions and the plasma last closed flux surface can change even by centimetres, depending on the edge constraints, with a significant impact on the remapping of the equilibrium-dependent diagnostics and of pedestal physics studies. On the other hand and quite counter intuitively, the pressure constraint can severely affect the quality of the magnetic reconstructions in the core. These trends have been verified with several JET discharges and consistent results have been found. An interpretation of these results, as interplay between degrees of freedom and available measurements, is provided. The systematic analysis described in the paper emphasizes the importance of having sufficient diagnostic inputs and of

  1. Spectroscopic diagnostics of plasma-chemical-vapor deposition from silane and germane

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1987-04-01

    Coherent anti-Stokes Raman spectroscopy (CARS), laser-induced fluorescence (LIF), and emission spectroscopy are employed for the diagnostics of radio-frequency discharge plasmas of silane and germane; CARS signal of germane molecule; and LIF signal and ultraviolet emission signal of germanium atom in discharges, as well as signals from nongermanium-related neutral species are measured. The effect of hydrogen dilution on emission signal intensities in the steady-state discharge explains dynamic behaviors of the emission and CARS signal intensities in the closed discharge; these spectroscopic techniques are powerful diagnostic tools for gas-phase processes using mixed gas sources.

  2. Perspectives of Use of Diagnostic Mirrors with Transparent Protection Layer in Burning Plasma Experiments

    SciTech Connect

    Mukhin, Eugene E.; Razdobarin, Gennadiy T.; Semenov, Vladimir V.; Tolstyakov, Sergey Yu.; Kochergin, Mikhail M.; Kurskiev, Gleb S.; Podushnikova, Klara A.; Andreev, Alexandr N.; Davydov, Denis V.; Rastegaeva, Marina G.; Khimich, Yuriy P.; Gorshkov, Vladimir N.; Nikitin, Dmitriy B.; Litnovsky, Andrej M.

    2008-03-12

    We evaluate using of metal mirrors over-coated with transparent protection layer for the in-vessel diagnostic systems in reactor-grade fusion devices. Ideally, these should satisfy the contradictory demands of high reflectivity and small rate degradation when being bombarded by CX atoms. The serious threat to the performance of diagnostic mirrors is surface contamination with carbon-based material eroded from carbon tiles. Via coupling the protective layer to a bulk mirror we can mitigate the deposit infiuence on the reflectance spectra. The regards are given to survivability in plasma environment of protected coated metallic mirrors.

  3. Diffusing Wave Spectroscopy: Application for Blood Diagnostics

    NASA Astrophysics Data System (ADS)

    Meglinski, Igor; Tuchin, Valery V.

    This chapter describes the application of diffusing wave spectroscopy (DWS) for noninvasive characterization of skin blood flow and skin blood microcirculation in vivo. The DWS is a simple but ingenious approach, utilizing the loss of correlation of scattered laser light to observe the structural changes and displacement of scattering particles, such as red blood cells (RBC) within the biological tissues. This approach has the potential to be so specific that it can revolutionize the currently developed techniques for blood flow monitoring. Developments in DWS are likely to lead it to be used for characterization of skin blood microcirculation, to assess burn depth, to diagnose atherosclerotic disease, and investigate mechanisms of photodynamic therapy for cancer treatment, as well as to monitor pharmacological intervention for failing surgical skin flaps or replants.

  4. Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments

    SciTech Connect

    Ragozin, Eugene N.; Pirozhkov, Alexander S.; Yogo, Akifumi; Ma Jinglong; Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; Mori, Michiaki; Li, Zhong; Nishiuchi, Mamiko; Daido, Hiroyuki

    2006-12-15

    Proton acceleration experiments involving a 5 {mu}m thick Ti foil target irradiation are carried out with the femtosecond Ti:sapphire laser JLITE-X. The plasma emission at 13.5 nm is recorded employing concave multilayer mirrors, which image the front- and rear-side plasmas onto the sensitive surfaces of a fast x-ray photodiode and a backside-illuminated charge coupled device. Online time-of-flight fast-particle measurements are performed simultaneously with the extreme ultraviolet (XUV) measurements. A strong correlation is observed between the energetic proton signal and the spatiotemporal behavior of the XUV plasma emission. In particular, the longer duration of the prepulse-produced XUV plasma emission indicates a lowering of the maximum proton energy. This allows using the XUV emission for the diagnostics of the high-intensity laser-solid-target interaction.

  5. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    SciTech Connect

    1996-12-31

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Laser-Aided Diagnostics of Atoms and Particulates in Magnetron Sputtering Plasmas

    SciTech Connect

    Nafarizal, N.; Takada, N.; Sasaki, K.

    2009-07-07

    Laser-aided diagnostic technique is introduced as an advanced and valuable technique to evaluate the properties of plasma. This technique is an expensive and sophisticated technique which requires researchers to have a basic knowledge in optical spectroscopy. In the present paper, we will generally introduce the experimental work using laser-induced fluorescence (LIF) and laser light scattering (LLS) techniques. The LIF was used to evaluate the spatial distribution of Cu atoms in magnetron sputtering plasma. The change in the spatial distribution was studied as a function of discharge power. On the other hand, the LLS was used to evaluate the generation of Cu particulates in high-pressure magnetron sputtering plasma. The temporal evolution of Cu particulates in the gas phase of sputtering plasma was visualized successfully.

  7. Plasma Diagnostics in High Resolution X-Ray Spectra of Magnetic Cataclysmic Variables

    SciTech Connect

    Mauche, C W

    2001-10-02

    Using the Chandra HETG spectrum of EX Hya as an example, we discuss some of the plasma diagnostics available in high-resolution X-ray spectra of magnetic cataclysmic variables. Specifically, for conditions appropriate to collisional ionization equilibrium plasmas, we discuss the temperature dependence of the H- to He-like line intensity ratios and the density and photoexcitation dependence of the He-like R line ratios and the Fe XVII I(17.10 {angstrom})/I(17.05 {angstrom}) line ratio. We show that the plasma temperature in EX Hya spans the range from {approx}0.5 to {approx}10 keV and that the plasma density n {ge} 2 x 10{sup 14} cm{sup -3}, orders of magnitude greater than that observed in the Sun or other late-type stars.

  8. Optical and electrical diagnostics of an atmospheric pressure room-temperature plasma plume

    SciTech Connect

    Xian, Y.; Lu, X.; Tang, Z.; Xiong, Q.; Gong, W.; Liu, D.; Jiang, Z.; Pan, Y.

    2010-03-15

    Cold plasmas have recently received great attention. In this paper, optical and electrical diagnostics are carried out on a reliable and user-friendly plasma plume. A simple electrical model is used to simulate the electrical characteristics of the device. The plasma is represented by a resistor connected in parallel with a capacitor, an inductor, and another resistor, which are connected in series. The simulated current-voltage waveforms have very good agreement with experimental measurements. Besides, the emission spectra of the plasma are also studied. It shows that, when Ar is used as working gas, there is strong OH (hydroxyl radical) emission and the emission intensities of the N{sub 2} emission bands are more than three times higher than that of He. On the contrary, when He is used as working gas, the emission intensities of N{sub 2}{sup +} band are much stronger. Detail analyses on these observations are presented.

  9. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  10. Formation of Imploding Plasma Liners for HEDP and MIF Application

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel; Messer, Sarah; Bomgardner, Richard; Phillips, Mike; Wu, Linchun; Elton, Ray

    2014-11-11

    /s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding

  11. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  12. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between

  13. Development of fast steering mirror control system for plasma heating and diagnostics

    SciTech Connect

    Okada, K. Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.; Nishiura, M.

    2014-11-15

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  14. Development of fast steering mirror control system for plasma heating and diagnostics

    NASA Astrophysics Data System (ADS)

    Okada, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.

    2014-11-01

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  15. Development of fast steering mirror control system for plasma heating and diagnostics.

    PubMed

    Okada, K; Nishiura, M; Kubo, S; Shimozuma, T; Yoshimura, Y; Igami, H; Takahashi, H; Tanaka, K; Kobayashi, S; Ito, S; Mizuno, Y; Ogasawara, S

    2014-11-01

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  16. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Watanabe, Y.; Watabe, C.; Yamaguchi, N.; Tamano, T.

    2001-07-01

    A grazing incidence flat-field soft X-ray (20-350 Å) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  17. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2012-01-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  18. The Buffer Diagnostic Prototype: A fault isolation application using CLIPS

    NASA Technical Reports Server (NTRS)

    Porter, Ken

    1994-01-01

    This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.

  19. Millimeter-wave backscatter diagnostic for the study of short scale length plasma fluctuations (invited)

    SciTech Connect

    Rhodes, T. L.; Peebles, W. A.; Nguyen, X.; VanZeeland, M. A.; De Grassie, J. S.; Doyle, E. J.; Wang, G.; Zeng, L.

    2006-10-15

    The development, laboratory tests, and experimental results relating to a new high-k diagnostic technique for the study of short scale length turbulence are reported. The system is based on backscattering of a millimeter-wave (94 GHz) probe beam by density fluctuations within the plasma. This diagnostic has been fully integrated with an upgraded far-infrared forward scattering system on the DIII-D tokamak. The combined system monitors a broad turbulent spectral range from 0 to 40 cm{sup -1}. Short-scale (e.g., electron temperature gradient scale) modes as well as longer wavelength (e.g., ion temperature gradient and trapped electron mode scale) instabilities are simultaneously monitored to accurately characterize plasma turbulence. The backscattering geometry and innovative use of the second harmonic electron cyclotron resonance as an internal 'beam dump' allow detection of small level fluctuations at high k, while maximizing discrimination against the ubiquitous, larger level, low-k fluctuations.

  20. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas. Progress report

    SciTech Connect

    Moos, W.

    1986-10-02

    This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.

  1. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas

    SciTech Connect

    Moos, W.

    1986-10-02

    This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.

  2. Towards personalized diagnostics via longitudinal study of the human plasma N-glycome.

    PubMed

    Hennig, René; Cajic, Samanta; Borowiak, Matthias; Hoffmann, Marcus; Kottler, Robert; Reichl, Udo; Rapp, Erdmann

    2016-08-01

    Facilitated by substantial advances in analytical methods, plasma N-glycans have emerged as potential candidates for biomarkers. In the recent years, several investigations could link aberrant plasma N-glycosylation to numerous diseases. However, due to often limited specificity and sensitivity, only a very limited number of glycan biomarkers were approved by the authorities up to now. The inter-individual heterogeneity of the plasma N-glycomes might mask disease related changes in conventional large cross-sectional cohort studies, with a one-time sampling approach. But, a possible benefit of longitudinal sampling in biomarker discovery could be, that already small changes during disease progression are revealed, by monitoring the plasma N-glycome of individuals over time. To evaluate this, we collected blood plasma samples of five healthy donors over a time period of up to six years (min. 1.5 years). The plasma N-glycome was analyzed by xCGE-LIF, to investigate the intra-individual N-glycome variability over time. It is shown, that the plasma N-glycome of an individual is remarkably stable over a period of several years, and that observed small longitudinal changes are independent from seasons, but significantly correlated with lifestyle and environmental factors. Thus, the potential of future longitudinal biomarker discovery studies could be demonstrated, which is a further step towards personalized diagnostics. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.

  3. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  4. Development of plasma needle to be used for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bora, B.; Jain, J.; Inestrosa-Izurieta, M. J.; Avaria, G.; Moreno, J.; Pavez, C.; Marcelain, K.; Armisen, R.; Soto, L.

    2016-05-01

    Plasma needle is a novel design of a plasma source at atmospheric pressure to achieve a non-thermal plasma jet. The advantage of the plasma needle is that it can be operated in open air, outside a vessel. The plasma that is generated with the plasma needle is small (about one millimetre) and non-thermal, the temperature of the neutral particles and ions is in about room temperature and suitably can interact with living biological cell without damaging the cell. In this work, we report the development of a plasma needle, which is operated by a dc power source and produced a stable plasma jet on water surface. Argon gas is used to operate the plasma needle. The preliminary electrical diagnostics of the plasma needle shows that the discharge is filamentary in nature. For diagnostic of the plasma jet produced by the developed plasma needle, the produced plasma jet is directed to water surface and characterization are carried out by means of electrical discharge characteristics and optical emission spectroscopy. In this work, preliminary results of the diagnostic will be presented.

  5. Diagnostic system with database application for laryngological and dermatological disorders

    NASA Astrophysics Data System (ADS)

    Paczesny, Daniel; Kuls, Michal; Tarapata, Grzegorz

    2006-03-01

    This article describes the design and construction of a diagnostic system for laryngological and dermatological disorders. Searching for both solutions based on a dew point hygrometer with a semiconductor structure introduced. Some constructional solutions like the framework of a computer application for both systems are similar but the measurement approach is different. The major emphasis is put on the database applications dedicated for medical doctors. The database application which is a common part in both systems and also measurement devices together, create a diagnostic system which has been designed and constructed. Both systems have been tested in a hospital with the assistance of doctors specialized in this subjects. In the near future, the system will enable the analysis between achieved data and different disorders.

  6. PREFACE: The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Nader; Czarnetzki, Uwe

    2010-03-01

    The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics (FLTPD) was held in Blansko, near Brno, Czech Republic. FLTPD is a biennial European event in which scientists working on low temperature plasmas present their recent results, pointing out in particular the originality of the diagnostic techniques used. The idea of starting this series of workshops was born out of a discussion between Frieder Döbele, Bill Graham and one of us when travelling together from Bar Harbor, USA (after the 6th LAPD) to Montreal, Canada, in October 1993. It became evident that we had been lacking a European meeting that could bring together experts in the field of low temperature plasma diagnostics and facilitate sharing the knowledge of these diagnostics with a new generation of scientists. The first FLTPD was held in Les Houches, France, in February 1995. Since then it has been held in the spring of every other year in different European countries, as shown below. The next meeting will be held in Zinnowitz, near Greifswald, Germany, in May 2011. Year Location Chair of LOC 1995 Les Houches, France J Derouard 1997 Bad Honnef, Germany F Döbele 1999 Saillon, Switzerland Ch Hollenstein 2001 Rolduc, The Netherlands R van de Sanden 2003 Specchia, Italy S De Benedictis 2005 Les Houches, France N Sadeghi 2007 Cumbria, United Kingdom M Bowden 2009 Blansko, Czech Republic F Krčma To favour brainstorming and extended discussions between participants, FLTPD meetings have always been organized in isolated locations with the number of attendees limited to about 70. Workshops are held over three and a half days with about ten expert presentations by invited speakers (a few from overseas), as well as short oral or poster contributions. This special issue of Journal of Physics D: Applied Physics contains 20 articles representative of contributions to the last FLTPD in Blansko. All invited speakers and others who gave presentations, as selected by the Scientific Committee, were invited

  7. The importance of EBIT data for Z-pinch plasma diagnostics

    SciTech Connect

    Safronova, A S; Kantsyrev, V L; Neill, P; Safronova, U I; Fedin, D A; Ouart, N D; Yilmaz, M F; Osborne, G; Shrestha, I; Williamson, K; Hoppe, T; Harris, C; Beiersdorfer, P; Hansen, S

    2007-04-04

    The results from the last six years of x-ray spectroscopy and spectropolarimetry of high energy density Z-pinch plasmas complemented by experiments with the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory (LLNL) are presented. The two topics discussed are the development of M-shell x-ray W spectroscopic diagnostics and K-shell Ti spectropolarimetry of Z-pinch plasmas. The main focus is on radiation from a specific load configuration called an 'X-pinch'. X-pinches are excellent sources for testing new spectral diagnostics and for atomic modelling because of the high density and temperature of the pinch plasmas, which scale from a few {micro}m to several mm in size. They offer a variety of load configurations, which differ in wire connections, number of wires, and wire materials. In this work the study of X-pinches with tungsten wires combined with wires from other, lower-Z materials is reported. Utilizing data produced with the LLNL EBIT at different energies of the electron beam the theoretical prediction of line positions and intensity of M-shell W spectra were tested and calibrated. Polarization-sensitive X-pinch experiments at the University of Nevada, Reno (UNR) provide experimental evidence for the existence of strong electron beams in Ti and Mo X-pinch plasmas and motivate the development of x-ray spectropolarimetry of Z-pinch plasmas. This diagnostic is based on the measurement of spectra recorded simultaneously by two spectrometers with different sensitivity to the linear polarization of the observed lines and compared with theoretical models of polarization-dependent spectra. Polarization-dependent K-shell spectra from Ti X-pinches are presented and compared with model calculations and with spectra generated by a quasi-Maxwellian electron beam at the LLNL EBIT-II electron beam ion trap.

  8. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  9. Suspension Plasma Spraying: Process Characteristics and Applications

    NASA Astrophysics Data System (ADS)

    Vaßen, Robert; Kaßner, Holger; Mauer, Georg; Stöver, Detlev

    2010-01-01

    Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features like splat and pore sizes can be downsized to the nanometer range. Our present understanding of the deposition process including injection, suspension plasma plume interaction, and deposition will be outlined. The drawn conclusions are based on analysis of the coating microstructures in combination with particle temperature and velocity measurements as well as enthalpy probe investigations. The last measurements with the water cooled stagnation probe gives valuable information on the interaction of the carrier fluid with the plasma plume. Meanwhile, different areas of application of SPS coatings are known. In this paper, the focus will be on coatings for energy systems. Thermal barrier coatings (TBCs) for modern gas turbines are one important application field. SPS coatings offer the manufacture of strain-tolerant, segmented TBCs with low thermal conductivity. In addition, highly reflective coatings, which reduce the thermal load of the parts from radiation, can be produced. Further applications of SPS coatings as cathode layers in solid oxide fuel cells (SOFC) and for photovoltaic (PV) applications will be presented.

  10. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  11. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  12. Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Dufrene, Aaron T.

    The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is

  13. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  14. [Two-temperature diagnostic studies by emission spectra for nonequilibrium Ti-H plasma].

    PubMed

    Deng, Chun-feng; Lu, Biao; Wu, Chun-lei; Wang, Yi-fu; Wen, Zhong-wei

    2014-12-01

    Using the T-H solid solution made by titanium absorbed hydrogen as the cathode, the Ti-H plasma produced by the pulsed vacuum are ion source was nonequilibrium: it contained both the component of titanium and hydrogen; there existed gradient in the radiaL, the horizontal and the time. As a result, it could not be described by a single temperature. The present paper assumed that the subsystem consisting of electrons and the subsystem consisting of other heavy particles reached equilibrium respectively, meaning that the Ti-H plasma was described by the two temperatures as electron temperature and heavy ion temperature, it was non-equilibrium two-temperature plasma Using Culdberg-Waage dissociation equation to describe the molecular dissociation process in the system, using Saha ionization equation to describe the atomic ionization process, combining plasma's charge quasi-neutral condition and introducing atomic emission spectroscopy as a plasma diagnostic method which would not interfere the plasma at the same time; the temperature and the particle number density of the Ti-H plasma were diagnosed. Using MATLAB as a tool, both the titanium atoms and monovalent titanium ions' ionization were considered, and the calculated results showed that with the electtron density determined by the Stark broadening of spectral lines in advance, except the heavy particle temperature and the hydrogen number density, the Ti-H plasma's parameters could be diagnosed fairly accurately; the accuracy of the electron density values had a great effect on the calculation results; if the heavy particle temperature could be determined in advance, the temperature and the particle number density of the Ti-H plasma could be accurately analyzed quantitatively. PMID:25881442

  15. In-bore diagnostic and modeling of an electrothermal plasma launcher

    SciTech Connect

    Hurley, J.D.

    1993-01-01

    A diagnostic method has been developed to measure the high heat flux produced in the electrothermal plasma launcher SIRENS. The method involves attaching a thermocouple to the back surface of a target to obtain the temperature history of the back surface, which is a direct indication of the heat flux incident on the front surface. The measured temperature history is an input to a developed one dimensional (1-D), time dependent heat conduction code which uses the temperature history of the back surface to determine the incident heat flux on the front surface of the target. A one dimensional time dependent code, ODIN, was developed to model the plasma formation and flow in electrothermal launchers. ODIN models the plasma formation and flow into the source section and the plasma expansion into and through the barrel section. ODIN models the energy transport, particle transport, plasma resistivity, plasma viscosity, and equation-of-state. The source and barrel sections were broken into a specific number of cells and each cell was considered to be in local thermodynamic equilibrium (LTE), with the plasma modeled as a viscous fluid. The primary objective of the numerical simulation was to predict the time and axial variation of the plasma flow and to predict the magnitude of the drag forces acting on the plasma. SIRENS has been operated at atmospheric conditions using a fuse placed between the two electrodes in the source section to initiate the discharge. Three different types of fuses were tested, with the best results obtaining using a thin triangular shaped aluminum fuse. SIRENS has also be used to launch projectiles, with projectile masses ranging from 400 mg to 1500 mg. The maximum velocity obtained was 1.74 km/sec at an input energy of 2.5 kJ, using a 540 mg Lexan projectile with an efficiency of 33%.

  16. Limited Diagnostic Utility of Plasma Adrenocorticotropic Hormone for Differentiation between Adrenal Cushing Syndrome and Cushing Disease

    PubMed Central

    Hong, A Ram; Kim, Jung Hee; Hong, Eun Shil; Kim, I Kyeong; Park, Kyeong Seon; Ahn, Chang Ho; Kim, Sang Wan; Shin, Chan Soo

    2015-01-01

    Background Measurement of the plasma adrenocorticotropic hormone (ACTH) level has been recommended as the first diagnostic test for differentiating between ACTH-independent Cushing syndrome (CS) and ACTH-dependent CS. When plasma ACTH values are inconclusive, a differential diagnosis of CS can be made based upon measurement of the serum dehydroepiandrosterone sulfate (DHEA-S) level and results of the high-dose dexamethasone suppression test (HDST). The aim of this study was to assess the utility of plasma ACTH to differentiate adrenal CS from Cushing' disease (CD) and compare it with that of the HDST results and serum DHEA-S level. Methods We performed a retrospective, multicenter study from January 2000 to May 2012 involving 92 patients with endogenous CS. The levels of plasma ACTH, serum cortisol, 24-hour urine free cortisol (UFC) after the HDST, and serum DHEA-S were measured. Results Fifty-seven patients had adrenal CS and 35 patients had CD. The area under the curve of plasma ACTH, serum DHEA-S, percentage suppression of serum cortisol, and UFC after HDST were 0.954, 0.841, 0.950, and 0.997, respectively (all P<0.001). The cut-off values for plasma ACTH, percentage suppression of serum cortisol, and UFC after HDST were 5.3 pmol/L, 33.3%, and 61.6%, respectively. The sensitivity and specificity of plasma ACTH measurement were 84.2% and 94.3%, those of serum cortisol were 95.8% and 90.6%, and those of UFC after the HDST were 97.9% and 96.7%, respectively. Conclusion Significant overlap in plasma ACTH levels was seen between patients with adrenal CS and those with CD. The HDST may be useful in differentiating between these forms of the disease, especially when the plasma ACTH level alone is not conclusive. PMID:26248856

  17. Development of simple designs of multitip probe diagnostic systems for RF plasma characterization.

    PubMed

    Naz, M Y; Shukrullah, S; Ghaffar, A; Rehman, N U

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures.

  18. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  19. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  20. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  1. TiN Deposition and Process Diagnostics using Remote Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Wonkyun; Kim, Gi-Taek; Lee, Seunghun; Kim, Do-Geun; Kim, Jong-Kuk

    2013-08-01

    The discharge voltage-current characteristics and the optical diagnostics of a remote plasma sputtering system called by high density plasma assisted sputtering source (HiPASS) were investigated. The remote plasma was generated by the hollow cathode discharge (HCD) gun and was transported to the target surface by external electromagnet coils. This showed a wide process window because the sputtering voltage and current could be individually controlled. The ion density and energy distribution could be also controlled unlike the conventional magnetron sputtering. Titanium nitride films were deposited under different sputtering voltage. The high voltage mode induced the high ionization ratio of the sputtered atoms and the high ion energy toward the substrate. That resulted in the enlarged grain size, and the preferred orientation toward (220). Eventually, this optimized condition of HiPASS obtained the best hardness of TiN films to be about 48 GPa at the sputtering voltage of -800 V.

  2. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  3. Circulating MicroRNA-26a in Plasma and Its Potential Diagnostic Value in Gastric Cancer

    PubMed Central

    Liu, Sang; Kang, Meiyun; Chu, Haiyan; Wu, Dongmei; Tong, Na; Gong, Weida; Tao, Guoquan; Zhao, Qinghong; Qiang, Fulin; Zhu, Haixia; Wu, Qin; Wang, Meilin; Zhang, Zhengdong

    2016-01-01

    Background In the past decades, a good deal of studies has provided the possibility of the circulating microRNAs (miRNAs) as noninvasive biomarkers for cancer diagnosis. The aim of our study was to detect the levels of circulating miRNAs in tissues and plasmas of gastric cancer (GC) patients and evaluate their diagnostic value. Methods Tissue samples were collected from 85 GC patients. Plasma samples were collected from 285 GC patients and 285 matched controls. Differentially expressed miRNAs were filtered with by Agilent Human miRNA Microarray and TaqMan low density array (TLDA) with pooled samples, followed by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation. Receiver operating characteristic (ROC) curves were structured to evaluate the diagnostic accuracy of the miRNAs. The plasma level of miR-26a in GC patients of different clinical stages was compared. Results Four miRNAs (miR-26a, miR-142-3p, miR-148a, and miR-195) revealed coincidentally decreased levels in tissue and plasma of the GC patients compared with controls, and ROC curves were constructed to demonstrate that miR-26a had a highest area under the ROC curve (AUC) of 0.882. Furthermore, miR-26a was stably detected in the plasma of GC patients with different clinical characteristics. Conclusion Plasma miR-26a may provide a novel and stable marker of gastric cancer. PMID:27010210

  4. PLASMA DIAGNOSTICS OF AN EIT WAVE OBSERVED BY HINODE/EIS AND SDO/AIA

    SciTech Connect

    Veronig, A. M.; Kienreich, I. W.; Muhr, N.; Temmer, M.; Goemoery, P.; Vrsnak, B.; Warren, H. P.

    2011-12-10

    We present plasma diagnostics of an Extreme-Ultraviolet Imaging Telescope (EIT) wave observed with high cadence in Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) sit-and-stare spectroscopy and Solar Dynamics Observatory/Atmospheric Imaging Assembly imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T Almost-Equal-To 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km s{sup -1}. These redshifts are followed by blueshifts with upward velocities up to -5 km s{sup -1} indicating relaxation of the plasma behind the wave front. During the wave evolution, the downward velocity pulse steepens from a few km s{sup -1} up to 20 km s{sup -1} and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS Fe XIII 202/203 A line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no H{alpha} Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a Almost-Equal-To -540 m s{sup -2} and a start velocity of v{sub 0} Almost-Equal-To 590 km s{sup -1}. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.

  5. Thruster Plume Plasma Diagnostics: A Ground Chamber Experiment for a 2-Kilowatt Arcjet

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, G. Barry; Chornak, Michael T.

    2005-01-01

    Although detailed near field (0 to 3 cm) information regarding the exhaust plume of a two kilowatt arc jet is available (refs. 1 to 6), there is virtually little or no information (outside of theoretical extrapolations) available concerning the far field (2.6 to 6.1 m). Furthermore real information about the plasma at distances between (3 to 6 m) is of critical importance to high technology satellite companies in understanding the effect of arc jet plume exhausts on space based power systems. It is therefore of utmost importance that one understands the exact nature of the interaction between the arc jet plume, the spacecraft power system and the surrounding electrical plasma environment. A good first step in understanding the nature of the interactions lies in making the needed plume parameter measurements in the far field. All diagnostic measurements are performed inside a large vacuum system (12 m diameter by 18 m high) with a full scale arc jet and solar array panel in the required flight configuration geometry. Thus, necessary information regarding the plume plasma parameters in the far field is obtained. Measurements of the floating potential, the plasma potential, the electron temperature, number density, density distribution, debye length, and plasma frequency are obtained at various locations about the array (at vertical distances from the arc jet nozzle: 2.6, 2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). Plasma diagnostic parameters are measured for both the floating and grounded configurations of the arc jet anode and array. Spectroscopic optical measurements are then acquired in close proximity to the nozzle, and contamination measurements are made in the vicinity of the array utilizing a mass spectrometer and two Quartz Crystal Microbalances (QCM's).

  6. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    SciTech Connect

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  7. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  8. Exploring diagnostic capabilities for application to new photovoltaic technologies.

    SciTech Connect

    Rolfe, Kevin D.; Quintana, Enrico Carlo; Thompson, Kyle Richard; Quintana, Michael A.; Hacke, Peter

    2009-06-01

    Explosive growth in photovoltaic markets has fueled new creative approaches that promise to cut costs and improve reliability of system components. However, market demands require rapid development of these new and innovative technologies in order to compete with more established products and capture market share. Often times diagnostics that assist in R&D do not exist or have not been applied due to the innovative nature of the proposed products. Some diagnostics such as IR imaging, electroluminescence, light IV, dark IV, x-rays, and ultrasound have been employed in the past and continue to serve in development of new products, however, innovative products with new materials, unique geometries, and previously unused manufacturing processes require additional or improved test capabilities. This fast-track product development cycle requires diagnostic capabilities to provide the information that confirms the integrity of manufacturing techniques and provides the feedback that can spawn confidence in process control, reliability and performance. This paper explores the use of digital radiography and computed tomography (CT) with other diagnostics to support photovoltaic R&D and manufacturing applications.

  9. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-01-01

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  10. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-01-01

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation. PMID:27609095

  11. Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes

    NASA Astrophysics Data System (ADS)

    Mataras, Dimitrios

    2001-10-01

    In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.

  12. Efficient Thomson Scattering Measurement System for the Diagnostics of Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Nakatani, Keigo

    1999-10-01

    Optical measurement of electron energy distribution function (EEDF) is desirable for the diagnostics of processing plasmas. In Thomson scattering measurements, EEDF is directly derived from the Doppler broadened profile of the laser light scattered by free electrons, but one must solve the problem of very low signal intensity due to the small scattering cross section. We have constructed an efficient Thomson scattering measurement system for the diagnostics of processing plasmas, which is capable of performing multi-channel measurement of the Doppler broadened profile without suffering from strong interference due to Rayleigh scattering and other stray scattering. The measurement system consists of a specially designed triple monochromator and an ICCD camera. The plasma is irradiated by a frequency-doubled Nd:YAG laser (532 nm). With the aid of a spatial filter between the first and second stage, the triple monochromator outputs the dispersed scattered light with the center wavelength region (532 ± 0.5 nm) eliminated, enabling multi-channel measurements with the ICCD camera in the photon-counting mode. Use of a lens system as the focusing elements in the monochromator enables high transmittance and low aberration, both serving for a high signal collection efficiency. Preliminary Thomson scattering measurements indicated a promising performance of the measurement system.

  13. SiC detector damage and characterization for high intensity laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cannavò, A.

    2016-05-01

    Silicon-Carbide (SiC) detectors are always more extensively employed as diagnostics in laser-generated plasma due to their remarkable properties such as their high band gap, high carrier velocity, high detection efficiency, high radiation resistance and low leakage current at room temperature. SiC detectors, in comparison with Si detectors, have the advantage of being insensitive to visible light, having low reverse current at high temperature and high radiation hardness. A similar energy resolution characterizes the two types of detectors, being 0.8% in Si and 1.0% in SiC, as measured detecting 5.8 MeV alpha particles. Generally, SiC detectors are employed as laser-plasma diagnostics in time-of-flight configuration, permitting the simultaneous detection of photons, electrons and ions based on discrimination of velocity. SiC detectors can be employed in the proportionality regime, because their response is proportional to the radiation energy deposited in the active layer. Using thin absorbers in front of the detectors makes it possible to have further information on the radiation nature, intensity and energy. Surface characterization of SiC before and after prolonged exposure to hot plasma laser generated shows the formation of bulk defects and thin film deposition on the detector surface limiting the device functionality.

  14. Potential applications of human saliva as diagnostic fluid.

    PubMed

    Castagnola, M; Picciotti, P M; Messana, I; Fanali, C; Fiorita, A; Cabras, T; Calò, L; Pisano, E; Passali, G C; Iavarone, F; Paludetti, G; Scarano, E

    2011-12-01

    The use of human saliva as a diagnostic and prognostic fluid has until recently been somewhat disregarded. Although sample collection is non-invasive, physiological and genetic variations were largely responsible for its infrequent application in the past. Recently, several proteomic studies contributed to partial elucidation of the salivary proteome (more than 2400 protein components have been characterized), both in terms of composition, contributions to whole saliva and genetic/physiological variability. On this basis, is not too optimistic to believe that in the near future human saliva could become a relevant diagnostic fluid. In this review, the characterization by proteomic approaches of new salivary markers in oncology, head and neck carcinoma (oral cavity, oropharynx, larynx, and salivary glands), breast and gastric cancers, salivary gland function and disease, Sjögren syndrome, systemic sclerosis, dental and gingival pathology, systemic, psychiatric and neurological diseases, is described.

  15. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    SciTech Connect

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data.

  16. Materials analysis and particle probe: A compact diagnostic system for in situ analysis of plasma-facing components (invited)

    SciTech Connect

    Taylor, C. N.; Heim, B.; Gonderman, S.; Allain, J. P.; Yang, Z.; Kaita, R.; Roquemore, A. L.; Skinner, C. H.; Ellis, R. A.

    2012-10-15

    The objective of the materials analysis particle probe (MAPP) in NSTX is to enable prompt and direct analysis of plasma-facing components exposed to plasma discharges. MAPP allows multiple samples to be introduced to the level of the plasma-facing surface without breaking vacuum and analyzed using X-ray photoelectron spectroscopy (XPS), ion-scattering and direct recoil spectroscopy, and thermal desorption spectroscopy (TDS) immediately following the plasma discharge. MAPP is designed to operate as a diagnostic within the {approx}12 min NSTX minimum between-shot time window to reveal fundamental plasma-surface interactions. Initial calibration demonstrates MAPP's XPS and TDS capabilities.

  17. Soft x-ray pinhole imaging diagnostics for compact toroid plasmas

    NASA Astrophysics Data System (ADS)

    Crawford, E. A.; Taggart, D. P.; Bailey, A. D., III

    1990-10-01

    Soft x-ray pinhole imaging has recently become established as a valuable diagnostic for visualization of field reversed configuration (FRC) plasmas in the TRX-2, FRX-C/LSM devices. Gated MCP image converter devices with CsI cathodes and Be filters with a peak response around 11 nm wavelength are used for exposure durations ranging from a few tenths up to several microseconds. Results of experiments with single and Chevron channel plates are discussed along with estimates of linear exposure limitations with both film and CCD cameras as recording media. Plans for multiframe devices on the FRX-C/LSM and the LSX devices are also discussed.

  18. Diagnostics of high-brightness short-pulse lasers and the plasmas they generate

    SciTech Connect

    Kyrala, G.A.; Fulton, R.D.; Cobble, J.A.; Schappert, G.T.; Taylor, A.J.

    1994-02-01

    The properties of a laser influence the interaction of the intense laser light with materials. The authors will describe some of the diagnostics that they have implemented at the Los Alamos Bright Source to correlate the changes in the x-ray spectrum and temporal history of a laser generated silicon plasmas with the changes of the incident XeCl laser light. One property is of special interest, the existence of a short prepulse. They find that the prepulse enhances the generation of the x-rays from a later pulse.

  19. Application of particle image velocimetry to dusty plasma systems

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah D.

    2016-06-01

    > Particle image velocimetry is a fluid measurement technique that has been used for more than 20 years to characterize the particle transport and thermal state of dusty plasma systems. This manuscript provides an overview of this diagnostic technique, highlighting the strengths and limitations that are associated with its use. Additionally, the variations of this technique that have been applied in the study of dusty plasma systems will be discussed, along with a small selection of measurements that can be made with the technique. Potential future directions for this diagnostic tool within the dusty plasma community will also be discussed.

  20. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  1. Physics of the Inner Heliosphere 1-10 Rs: Plasma Diagnostics and Models

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.

    1998-01-01

    While the mechanisms responsible for the solar corona and the high-speed solar wind streams are still unknown, model computations offer means of predicting the properties of such mechanisms in light of the empirical constraints currently available. Modeling and data analysis efforts were aimed at understanding the plasma properties of the acceleration of the solar wind, its filamentary nature, and the conditions needed to account for a rapidly accelerating solar wind, reaching its terminal speed within 10 R(sub s). A sequence of models ranging from steady one-fluid descriptions of the solar wind to multi-fluid time-dependent models were developed. Plasma diagnostics evolved from the analysis of data acquired from Skylab to SOHO, and complemented by ground-based observations.

  2. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  3. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    SciTech Connect

    Alves, D.; Coelho, R. [Associação Euratom Collaboration: JET-EFDA Contributors

    2013-08-15

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  4. Applications of FT-IR spectrophotometry in cancer diagnostics.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  5. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    SciTech Connect

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-21

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  6. An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development

    SciTech Connect

    Droemer, Darryl W.; Crain, Marlon D.; Lare, Gregory A.; Bennett, Nichelle L.; Johnston, Mark D.

    2013-06-13

    National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed power–driven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camera–based optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

  7. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented. PMID:26931959

  8. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rácz, R.; Biri, S.; Pálinkás, J.; Mascali, D.; Castro, G.; Caliri, C.; Romano, F. P.; Gammino, S.

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  9. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  10. Plasma diagnostics package assessment of the STS-3 orbiter environment and systems for science

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G. B.

    1983-01-01

    Primary objectives of the Plasma Diagnostics Package (PDP) on STS-3 as part of the OSS-1 'Pathfinder' payload were to measure aspects of the Orbiter's induced environment and to utilize Orbiter crew and subsystems in the conduct of scientific investigations. Instrumentation temperatures were found to be within predicted limits, payload bay pressure varied from ambient up to 0.001 torr with thruster firings, EMI levels were found to be below worst case estimates, and V x B motional potentials were observed to vary + or - 5 V with respect to Orbiter ground. These parameters exhibited orbit-period modulation. Payload bay plasma varied in density and composition from ambient to a rarefied mixture with Orbiter-produced H2O(+). Energetic electrons and ions with energies up to 10's of eV were observed occasionally. Primary and vernier thrusters induce a momentary perturbation to the electron density, to the pressure and to the electric field with low energy ions and electrons occasionally produced. With the PDP on the RMS, both automode and manual modes were used to seek sources of EMI, to characterize the Orbiter's plasma wake and to measure beam-plasma phenomena.

  11. Diagnostic du plasma d'ablation laser pour lacroissance de couches minces

    NASA Astrophysics Data System (ADS)

    Basillais, A.; Benzerga, R.; Le Menn, E.; Mathias, J.; Boulmer-Leborgne, C.; Perrière, J.

    2003-06-01

    Dans ce travail, nous nous sommes intéressés à la croissance de films de nitrure d'aluminium par ablation laser d'une cible d'aluminium assistée par un plasma d'azote créé par une décharge RF. Parallèlement, la spectroscopie d'émission a été largement utilisée pour le diagnostic de la plume plasma et du plasma de décharge RF afin de trouver des informations permettant de suivre le phénomène de croissance et qui seraient la signature d'un film de bonne stœchiométrie et qualité cristalline ou son contraire. Ainsi, l'étude de l'émission de la raie d'oxygène à 777nm dans le plasma d'ablation laser a permis d'expliquer le mécanisme de contamination des films par l'oxygène. De la même façon, nous nous sommes intéressés à l'émission de l'azote atomique dans la plume plasma et proche du substrat, dans la zone sombre où ces espèces participent directement à la croissance du film. Ainsi l'étude parallèle de l'influence des paramètres expérimentaux sur la qualité des films et sur la composition du plasma nous a permis d'optimiser le dispositif expérimental.

  12. Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar

    2016-08-01

    Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.

  13. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of nanosecond-pulsed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Choe, Wonho; Kim, Holak; Park, Joo Young

    2015-06-01

    Electron diagnostics based on electron-neutral atom (e-a) bremsstrahlung in the UV and visible range emitted from atmospheric pressure plasmas is presented. Since the spectral emissivity of the e-a bremsstrahlung is determined by electron density (ne) and mean electron temperature (Te) representing the Maxwellian electron energy distribution, their diagnostics is possible. As an example, emission spectra measured from capacitive discharges are presented, which show good agreement with the theoretically calculated emissivity of the e-a bremsstrahlung. For a single pin electrode nanosecond-pulsed plasma jet (n-PPJ) in argon, we investigate the electron properties and the temporal behavior of the positive streamers. Streamers with many branches are clearly observed inside the dielectric tube, while a few main streamers propagate outside the tube along the jet axis. A two-dimensional (2D) measurement of the time-averaged Te distribution was developed using a commercial digital camera and optical band pass filters based on the emissivity ratio of two wavelengths of the e-a bremsstrahlung. The viable measurement range of Te is 0.5-7 eV for the choice of two wavelengths of 300s and 900s nm and 0.5-4 eV for two wavelengths of 400s and 900s nm, which are uncontaminated by the atomic and/or molecular spectra. The 2D Te distribution obtained using 514.5 and 632.8 nm emissions helps to reveal the role of electrons in streamer characteristics in the argon n-PPJ. Time-averaged Te of 2.0 eV and 1.0 eV inside and outside the tube, respectively, were measured. The streamer dynamics of the n-PPJ is shown to be dependent on Te.

  14. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  15. Plasma magnetic field diagnostic using two-photon Doppler-free LIF

    NASA Astrophysics Data System (ADS)

    Yoon, Young Dae; Bellan, Paul

    2015-11-01

    A detailed description of a new plasma B field diagnostic using Doppler-free two-photon laser-induced fluorescence is presented. The diagnostic is based on a method previously developed in the context of rubidium vapor experiments. Two counter-propagating 393nm diode laser beams are directed into an argon plasma to excite Ar-II ions from 3s2 3p4 4 s4P1 / 2 ⟶ 3s2 3p4 4 p4S3 / 2 ⟶ 3s2 3p4 4 d4P3 / 2 . These levels involve two similar (392.86 and 393.25nm) transition wavelengths, so the two counter-propagating beams effectively cancel out the Doppler effect. The excited ions then decay to the 3s2 3p4 4 p4P1 / 2 level, emitting a 324.98nm line which is to be detected by a photomultiplier tube. The Zeeman splitting -- normally unobservable because of the large Doppler broadening -- of the resultant fluorescence is then to be analyzed, yielding the magnetic field of the particular location. This method is expected to provide a 3-D localized, non-perturbing measurement of magnetic fields. An experimental implementation is currently in progress.

  16. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    NASA Astrophysics Data System (ADS)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  17. Clinical applications of plasma based electrosurgical systems

    NASA Astrophysics Data System (ADS)

    Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.

    2013-02-01

    Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.

  18. Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Angelo, C. A.; Garcimuño, M.; Díaz Pace, D. M.; Bertuccelli, G.

    2015-10-01

    In this paper, a generalized approach is developed and applied for plasma characterization and quantitative purposes in laser-induced breakdown spectroscopy (LIBS) experiences by employing a selected pair of spectral lines belonging to the same multiplet. It is based on the comparison between experimental ratios of line parameters and the theoretical calculus obtained under the framework of a homogeneous plasma in local thermodynamic equilibrium. The applicability of the method was illustrated by using the atomic resonance transitions 279.55-280.27 nm of Mg II, which are usually detected in laser-induced plasma (LIP) during laser ablation of many kinds of targets. The laser induced plasmas were produced using a Nd:YAG laser from a pressed pellet of powdered calcium hydroxide with a concentration of 300 ppm of Mg. The experimental ratios for peak intensities, total intensities and Stark widths were obtained for different time windows and matched to the theoretical calculus. The temperature and the electron density of the plasma, as well as the Mg columnar density (the atom/ion concentration times the length of the plasma along the line-of-sight), were determined. The results were interpreted under the employed approach.

  19. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    NASA Astrophysics Data System (ADS)

    Gupta, Susanta K. Sen

    2015-12-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma-liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining.

  20. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Kubo, S.; Tanaka, K.; Seki, R.; Ogasawara, S.; Shimozuma, T.; Okada, K.; Kobayashi, S.; Mutoh, T.; Kawahata, K.; Watari, T.; LHD Experiment Group; Saito, T.; Tatematsu, Y.; Korsholm, S. B.; Salewski, M.

    2014-02-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclotron heating beam. To clarify the diagnostic applicability of the gyrotron in the 77 GHz frequency band, we investigated the dependence of the probe and receiver beam trajectories in plasmas with high electron densities of (4-5) × 1019 m-3 and low electron densities of (1-2) × 1019 m-3. At high density, a stray radiation component was observed in the CTS spectrum whereas it was negligibly small at low density. The CTS spectrum was measured and analysed after the in situ beam alignment using a beam scan. Qualitatively, the CTS spectrogram shows consistent response to ion temperatures of 1-2 keV for electron densities of (1-2) × 1019 m-3 and electron temperatures of 2-4 keV. The measured CTS spectrum shows an asymmetric shape at the foot of the bulk-ion region during the injection of 180 keV fast ions. This shape is explained by the fast-ion distribution in the velocity space (v‖, v⊥) based on Monte Carlo simulation results. The analysis method of the CTS spectra is used to evaluate the ion temperature and fast-ion velocity distribution from the measured CTS data.

  1. Optical Plasma Diagnostics for Magnetic Reconnection Studies in the Versatile Toroidal Facility

    NASA Astrophysics Data System (ADS)

    Tarkowski, David; Fasoli, Ambrogio; Egedal, Jan

    2000-10-01

    Magnetic reconnection studies in a collisionless regime are performed on the MIT Versatile Toroidal Facility (VTF) with emphasis on particle dynamics around the magnetic null point. Plasmas are produced in the VTF by electron cyclotron resonance heating and are confined in a magnetic cusp field. Magnetic reconnection is driven by the ExB drift generated by the combination of the cusp field and the toroidal electric field, which is created by electromagnetic induction using an ohmic transformer. The plasmas are composed primarily of singly ionized argon with typical densities and electron temperatures on the order of 10^17 m-3 and 10 eV. The number of available optical lines and the optical thinness of the plasma suggest that optical diagnostics can play a key role on VTF. Passive spectroscopic measurements yield ion temperature and density and electron temperature as a function of time both before and after the reconnection event. The active measurement is a three level laser induced fluorescence (LIF) scheme. A 10 ns pulsed dye laser is used to pump the 611 nm Argon II line. LIF yields the ion distribution function at a single point in time and can be used to study ion evolution during the reconnection event. Measurement techniques and an analysis of first results will be presented.

  2. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  3. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    NASA Astrophysics Data System (ADS)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  4. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  5. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  6. Development of laser-plasma diagnostics using ultrafast atomic-scale dynamics. 96-ERD-046 final report

    SciTech Connect

    Bolton, P.R.; Kulander, K.C.; Boreham, B.W.

    1997-03-01

    Ultrashort laser pulse systems allow examination of intense, ultrafast laser-plasma interactions. More specifically, intense laser irradiation can induce short xuv/x-ray bursts from the surface of condensed phase targets. Ultrafast xuv/x-ray detection is needed to understand laser-plasma interactions in this dynamic regime. Support of the Stockpile Stewardship and Management Program requires this critical understanding. Our effort here has been to extend understanding of atomic-scale dynamics in such environments with the goal of developing next generation ultrafast xuv/x-ray diagnostics where the sensors will be the atoms and ions themselves and the time resolution will approach that of the induced atomic transitions ({approx} a few femtoseconds). Pivotal contributions to the rapidly developing field of highly nonperturbative interactions of ultrashort pulse lasers with atoms/ions have been made at this laboratory. In the visible/infrared wavelength regions the temporal and spectral content of ultrashort laser pulses are now reliably monitored within a single pulse using frequency resolved optical gating (FROG) which is based on rapid nonlinear optical processes such as the Kerr effect. New applications of this basic concept are still being developed. Corresponding detection for the xuv/x-ray wavelengths does not exist and is urgently needed in many laboratory programs. The FROG technique cannot be applied in the xuv/x-ray region. Current x-ray streak camera technology is limited to {approx}0.5 picosecond resolution.

  7. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  8. High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

    SciTech Connect

    Widmann, K

    1999-12-06

    Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 {yields} 1 transitions in heliumlike krypton (Kr{sup 34+}) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic K{alpha} x-ray emission of plasmas. The high-resolution measurements of the n = 2 {yields} 1 transitions in heliumlike xenon (Xe{sup 52+}) and hydrogenlike xenon (Xe{sup 53+}) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike K{alpha} transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.

  9. Nanomaterials for Photo-Based Diagnostic and Therapeutic Applications

    PubMed Central

    Menon, Jyothi U.; Jadeja, Parth; Tambe, Pranjali; Vu, Khanh; Yuan, Baohong; Nguyen, Kytai T.

    2013-01-01

    Photo-based diagnosis and treatment methods are gaining prominence due to increased spatial imaging resolution, minimally invasive modalities involved as well as localized treatment. Recently, nanoparticles (NPs) have been developed and used in photo-based therapeutic applications. While some nanomaterials have inherent photo-based imaging capabilities, others including polymeric NPs act as nanocarriers to deliver various fluorescent dyes or photosensitizers for photoimaging and therapeutic applications. These applications can vary from Magnetic Resonance Imaging (MRI) and optical imaging to photothermal therapy (PTT) and chemotherapy. Materials commonly used for development of photo-based NPs ranges from metal-based (gold, silver and silica) to polymer-based (chitosan, dextran, poly ethylene glycol (PEG) and poly lactic-co-glycolic acid (PLGA)). Recent research has paved the way for multi-modal 'theranostic' (a combination of therapy and diagnosis) nano-carriers capable of active targeting using cell-specific ligands and carrying multiple therapeutic and imaging agents for accurate diagnosis and controlled drug delivery. This review summarizes the different materials used today to synthesize photo-based NPs, their diagnostic and therapeutic applications as well as the current challenges faced in bringing these novel nano-carriers into clinical practices. PMID:23471164

  10. Cold plasma: overview of plasma technologies and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology. It is based on energetic, reactive gases which inactivate contaminating microbes on meats, poultry and fruits and vegetables. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization pro...

  11. Modeling of low-temperature plasmas generated using laser-induced breakdown spectroscopy: the ChemCam diagnostic tool on the Mars Science Laboratory Rover

    NASA Astrophysics Data System (ADS)

    Colgan, James

    2016-05-01

    We report on efforts to model the low-temperature plasmas generated using laser-induced breakdown spectroscopy (LIBS). LIBS is a minimally invasive technique that can quickly and efficiently determine the elemental composition of a target and is employed in an extremely wide range of applications due to its ease of use and fast turnaround. In particular, LIBS is the diagnostic tool used by the ChemCam instrument on the Mars Science Laboratory rover Curiosity. In this talk, we report on the use of the Los Alamos plasma modeling code ATOMIC to simulate LIBS plasmas, which are typically at temperatures of order 1 eV and electron densities of order 10 16 - 17 cm-3. At such conditions, these plasmas are usually in local-thermodynamic equilibrium (LTE) and normally contain neutral and singly ionized species only, which then requires that modeling must use accurate atomic structure data for the element under investigation. Since LIBS devices are often employed in a very wide range of applications, it is therefore desirable to have accurate data for most of the elements in the periodic table, ideally including actinides. Here, we discuss some recent applications of our modeling using ATOMIC that have explored the plasma physics aspects of LIBS generated plasmas, and in particular discuss the modeling of a plasma formed from a basalt sample used as a ChemCam standard1. We also highlight some of the more general atomic physics challenges that are encountered when attempting to model low-temperature plasmas. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. Work performed in conjunction with D. P. Kilcrease, H. M. Johns, E. J. Judge, J. E. Barefield, R. C. Wiens, S. M. Clegg.

  12. The photon-plasmon transitions and diagnostics of the space plasma turbulence

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Glushkov, Alexander; Khetselius, Olga

    We present a new approach to treating the space plasma turbulence, based on using to make diagnostic data regarding the photon-plasmon transitions. The theoretical definition of characteristics for these transitions is caried out within consistent theoretical approach, based on the Gell-Mann and Low formalism (energy approach in QED theory).We apply it to calculation of such transitions (Ps) with emission of photon and Langmuir quanta. It is well known that the hfs states of positronium Ps Ps differ in spin S, life time t and mode of annihilation. As a rule, probabilities of the cascade radiation transitions are more than the annihilation probability. The ortho-Ps atom has a metastable state 23s1 and probability of two-photon radiation transition from this state into 13s1 state (1.8•10(-3) 1/s) is significantly less than probability of the three-photon annihilation directly from 23s1level 8.9•10(5) s(-1), i.e. it is usually supposed that the ortho-Ps annihilates from 23s1state. Another situation may take place in plasma, where it is arisen the competition process of destruction of the metastable level - the photonplasmon transition 23s1-13s1with emission of photon and Langmuir quanta. In this paper we carried out the calculation of the probability of the Ps photon-plasmon transition and propose tu use it for diagnostics of the space plasma (dusty one etc.).Standard S-matrix calculation with using an expression for tensor of dielectric permeability of the isotropic space plasma and dispersion relationships for transverse and Langmuir waves [3] allows getting the corresponding probability P(ph-pl). Numerical value of P(ph-pl) is 5.2•10(6)•UL(s-1), where UL is density of the Langmuir waves energy. Our value is correlated with estimate, available in literature [3]: P(phpl)= 6•10(6)•UL (s-1). Comparison of the obtained probability with the life time t(3) allows getting the condition of predominance of the photon-plasmon transition over three

  13. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M.

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  14. Wall current probe: a non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement.

    PubMed

    Baude, R; Gaboriau, F; Hagelaar, G J M

    2013-08-01

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  15. A Langmuir probe diagnostic for time-of-flight measurements of transient plasmas produced by high-energy laser ablation

    SciTech Connect

    Patterson, J. R.; Emig, J. A.; Fournier, K. B.; Jenkins, P. P.; Trautz, K. M.; Seiler, S. W.; Davis, J. F.

    2012-10-15

    We discuss here the development of a Langmuir probe (LP) diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{mu}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  16. A Langmuir probe diagnostic for time-of-flight measurements of transient plasmas produced by high-energy laser ablation.

    PubMed

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-10-01

    We discuss here the development of a Langmuir probe (LP) diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/μs, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  17. Injected 1+ ion beam as a diagnostics tool of charge breeder ECR ion source plasmas

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Lamy, T.; Angot, J.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Choinski, J.; Standylo, L.; Galatà, A.; Patti, G.; Koivisto, H.

    2015-06-01

    Charge breeder electron cyclotron resonance ion sources (CB-ECRIS) are used as 1+  →n+  charge multiplication devices of post-accelerated radioactive ion beams. The charge breeding process involves thermalization of the injected 1+  ions with the plasma ions in ion-ion collisions, subsequent ionization by electron impact and extraction of the n+  ions. Charge breeding experiments of 85Rb and 133Cs ion beams with the 14.5 GHz PHOENIX CB-ECRIS operating with oxygen gas demonstrate the plasma diagnostics capabilities of the 1+  injection method. Two populations can be distinguished in the m/q-spectrum of the extracted ion beams, the low (1+  and 2+) charge states representing the uncaptured fraction of the incident 1+  ion beam and the high charge states that have been captured in ion-ion collisions and subsequently charge bred through electron impact ionization. Identification of the uncaptured fraction of the 1+  ions allows estimating the lower limit of ion-ion collision frequency of various charge states in the ECRIS plasma. The collision frequencies of highly charged ions (˜107 Hz) are shown to exceed their gyrofrequencies (˜106 Hz) at least by an order of magnitude, which implies that the dynamics of high charge state ions are dictated by magnetically confined electrons and ambipolar diffusion and only low charge state ions can be considered magnetized. Furthermore, it is concluded that the plasma density of the ECRIS charge breeder is most likely on the order of 1011 cm-3 i.e. well below the critical density for 14.5 GHz microwaves.

  18. A micro-scale plasma spectrometer for space and plasma edge applications (invited)

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Keesee, A. M.; Dugas, M.; Ellison, S.; Tersteeg, J.; Wagner, G.; Barrie, A.; Rager, A.; Elliott, D.

    2016-11-01

    A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.

  19. [The application of ultrasound for diagnostics of middle ear pathologies].

    PubMed

    Kunel'skaia, N L; Garov, E V; Zagorskaia, E E; Sheremet, A S; Baĭbakova, E V; Kudeeva, Ia Iu

    2015-01-01

    The objective of the present work was to summarize the results of the application of ultrasound tests for differential diagnostics of various diseases and lesions affecting the middle ear. Almost 7.000 threshold and suprathreshold studies were carried out in the patients presenting with various forms of sensorineural impairment of hearing. The ultrasound investigations were conducted with the use of the EKHOTEST-02 apparatus (Giperion, Moscow). The results of determination of threshold hearing sensitivity to ultrasound and lateralization of its threshold and suprathreshold values suggest their significance for the detection of even such a minimal disturbance in the cochlear function as the phenomenon of accelerated increase in loudness and the associated enhancement of the severity of the damage to the peripheral sensory system.

  20. Statistics of biospeckles with application to diagnostics of periodontitis

    NASA Astrophysics Data System (ADS)

    Starukhin, Pavel Y.; Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.

    1999-04-01

    Results of Monte-Carlo simulations Doppler shift are presented for the model of random medium that contain moving particles. The single-layered and two-layered configurations of the medium are considered. Doppler shift of the frequency of laser light is investigated as a function of such parameters as absorption coefficient, scattering coefficient, and thickness of the medium. Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the number of speckles, integration by aperture, has been studied in experiments in vivo.

  1. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications.

    PubMed

    Xu, Chenjie; Sun, Shouheng

    2009-08-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, proteins, peptides or antibodies, these NPs can be well-dispersed in biological solutions and used for drug delivery, magnetic separation, magnetic resonance imaging contrast enhancement and magnetic fluid hyperthermia. This Perspective reviews the common syntheses and controlled surface functionalization of monodisperse Fe(3)O(4)-based superparamagnetic NPs. It further outlines the exciting application potentials of these NPs in magnetic resonance imaging and drug delivery. PMID:20449070

  2. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    PubMed Central

    AlJehani, Yousef A.

    2014-01-01

    Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT) in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014), PubMed (using medical subject headings), and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplemented by hand-searching in peer-reviewed journals and cross-referenced with the articles accessed. Conclusions. Bony defects, caters, and furcation involvements seem to be better depicted on CBCT, whereas bone quality and periodontal ligament space scored better on conventional intraoral radiography. CBCT does not offer a significant advantage over conventional radiography for assessing the periodontal bone levels. PMID:24803932

  3. Single-crystal Diamond Detector for DT and DD plasmas diagnostic

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Cazzaniga, C.; Tardocchi, M.; Grosso, G.; Croci, G.; Perelli Cippo, E.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Gorini, G.

    2016-11-01

    Single-crystal Diamond Detectors (SDD) are good candidates as high-energy neutron detectors in the extreme conditions of the next generation thermonuclear fusion facilities like the ITER experiment, due to their high radiation hardness, fast response time and small size. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interaction on 12 C . In this work the SDD response to neutrons with energies between 2.8 and 3.8MeV was determined at the Legnaro CN accelerator at the INFN Laboratories in Legnaro (PD, Italy). This work is relevant for the characterization of SDDs response functions, which are key points for Deuterium-Deuterium and Deuterium-Tritium plasma diagnostic.

  4. Variable frequency VLF signals in the magnetosphere Associated phenomena and plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Carlson, C. R.; Helliwell, R. A.; Carpenter, D. L.

    1985-01-01

    Coherent variable-frequency signals (ramps) extending from 1 to 8 kHz, injected into the magnetosphere from Siple Station, Antarctica (L=4.3), exhibit upper and lower cutoffs when received at the conjugate station, Roberval, Quebec. Ramp group delay measurements and ionospheric sounding data are used to determine the cold plasma density and L shell of the propagation path. Relationships among f, df/dt, and the 'phase equator' for gyroresonance are calculated using second-order resonance equations generalized to relativistic electrons. The concept thereby introduced is used to develop a diagnostic technique which, for an assumed g(alpha)(v exp -n) electron distribution, provides an estimate of the energy dependence n. Additional aspects of the magnetospheric response to ramp injection, such as emission triggering, curvature due to dispersion, and amplitude saturation, are discussed.

  5. A 10MHz Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas

    2013-10-01

    HyperV Technologies has been developing an imaging diagnostic comprised of arrays of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers of 100 to 10,000 pixels can be constructed. By interfacing analog photodiode systems directly to commercial analog to digital convertors and modern memory chips, a prototype pixel with an extremely deep record length (128 k points at 40 Msamples/s) has been achieved for a 10 bit resolution system with signal bandwidths of at least 10 MHz. Progress on a prototype 100 Pixel streak camera employing this technique is discussed along with preliminary experimental results and plans for a 10,000 pixel imager. Work supported by USDOE Phase 1 SBIR Grant DE-SC0009492.

  6. Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas

    2015-11-01

    HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a scalable solution for 100 to 1000 pixel systems with 14 bit resolution and record-lengths of 128k frames has been developed. HyperV is applying these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 14 bit depth. Preliminary experimental results as well as future plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.

  7. Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas

    2014-10-01

    HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers of 100 to 1000 pixels can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a prototype 100 pixel array with an extremely deep record length (128 k points at 20 Msamples/s) and 10 bit pixel resolution has already been achieved. HyperV now seeks to extend these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 12 bit depth. Preliminary experimental results as well as Phase 2 plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.

  8. Plasma diagnostics package. Volume 2: Spacelab 2 section. Part B: Thesis projects

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (2), which consists of two parts (A and B), of the Plasma Diagnostics Package (PDP) Final Science Report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-51F as a part of the Spacelab 2 (SL-2) payload. This work was performed during the period of launch, July 29, 1985, through June 30, 1988. During this period the primary data reduction effort consisted of processing summary plots of the data received by 12 of the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). Three Master's and three Ph.D. theses were written using PDP instrumentation data. These theses are listed in Volume 2, Part B.

  9. STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of Orbiter transmitter and subsystem electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G.

    1983-01-01

    The plasma diagnostics package receiver system is described to identify the various antennas and to characterize the complement of receivers which cover the frequency range of 30 Hz to 800 Hz and S-band at 2200 + or - 300 MHz. Sample results are presented to show the variability of electromagnetic effects associated with the orbiter and the time variability of these effects. The electric field and magnetic field maximum and minimum field strength spectra observed during the mission at the pallet location are plotted. Values are also derived for the maximum UHF transmitter and S-band transmitter field strengths. Calibration data to convert from the survey plots to actual narrowband and broadband field strengths are listed.

  10. Invitation to the World of the Plasma for Light Source 3.Light Source Measurement 3.1 Laser Diagnostics of Plasmas for Light Sources

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Jinno, Masafumi

    Examples and basic theories of various methods of laser diagnostics of plasmas for light sources are introduced. Most introduced papers were presented at International Symposium on the Science and Technology of Light Sources (LS), which is the only international symposium on the science and technology of light sources.

  11. New diagnostic methods for laser plasma- and microwave-enhanced combustion.

    PubMed

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-08-13

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  12. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  13. Urethral ultrasonography: A novel diagnostic tool for dysuria following bipolar transurethral plasma kinetic prostatectomy.

    PubMed

    Wang, Guang-Chun; Bian, Cui-Dong; Zhou, Ting-Ting; Liu, Min; Huang, Jian-Hua; Peng, Bo

    2016-04-29

    Urethral ultrasonography is non-invasive and able to indicate the urethral lumen clearly, as well as the surrounding tissues of the posterior urethra, without contrast agent or X-ray irradiation. In this paper, we evaluate the reliability of urethral ultrasonography in the diagnosis of dysuria following bipolar transurethral plasma kinetic prostatectomy (TUPKP). A total of 120 benign prostate hyperplasia (BPH) patients with dysuria undergoing TUPKP were enrolled in this study, with a mean age of 72.8 years. All the patients received urethral ultrasonography, urethroscopy and bladder neck urethra stenosis oulectomy. Among the 120 cases, there were 22 cases of bladder neck closure, 20 bladder orifice stricture, 60 urethral stricture, 10 prostate remnants, 2 calculi in prostatic urethra, 4 dysfunction of bladder detrusor muscle and 2 flap of internal urethral orifice. χ2-test was used for the comparison of ultrasonography and urethral cystoscopy in the diagnosis of dysuria following TRPKP, and no significant difference was found between two diagnostic tools (χ 2 = 0.94, P > 0.05). Urethral ultrasonography is a reliable and minimally invasive diagnostic tool for dysuria following TUPKP and is conducive to early treatment of dysuria following prostatectomy. PMID:27163308

  14. Data Acquisition and Automation for Plasma Rotation Diagnostic in the TCABR Tokamak

    NASA Astrophysics Data System (ADS)

    Ronchi, G.; Severo, J. H. F.; de Sá, W. P.; Galvão, R. M. O.

    2015-03-01

    In this work we describe the implementation of a full modular system of data acquisition and processing for the plasma rotation diagnostic in the TCABR tokamak. The experimental setup uses a single monochromator and six photomultipliers (PMT), in which pair of PMTs measures the light at slightly different wavelengths. Thus, it can measure the time evolution of the Doppler shift of the impurities emission lines coming from three spatial positions (one for toroidal rotation and two for poloidal rotation). The data acquisition and preanalysis program were written with LabVIEW software and is capable of controlling the spectrometer wavelength, PMTs power supplies, data acquisition, and storage. All data are recorded in MDSplus trees that easily allow data visualization and post-processing analysis (both locally and remotely) via MATLAB, Python, Java and others programming languages. This system can run independently from other diagnostics and machine systems and can be integrated with the main tokamak control system by means of TCP/IP messages.

  15. Pulse-discharge plasmas for plasma-accelerator applications

    SciTech Connect

    Clayton, C. E.; Joshi, C.; Lopes, N. C.

    2012-12-21

    For particle-beam-driven plasma wakefield accelerators, a long and fully-ionized plasma is desirable. We describe an experiment at UCLA to develop a prototype of such plasma using a pulsed-current discharge. Scaling of the plasma density with glass-tube diameter and with discharge-circuit parameters is currently underway. We have found that 4 Torr of Argon can be fully ionized to a density of about 1.3 Multiplication-Sign 10{sup 17} cm{sup -3} when the current density in the 1 inch diameter, 1.2 meter-long tube is around 2 kA/cm{sup 2}, at least at one point along the discharge. The homogeneity of the plasma density in the longitudinal direction is crucial to prevent slippage of the driven plasma structures with the particles. Equally important are the transverse gradients since any dipole asymmetry in the transverse direction can lead to 'steering' of the particle beam. The longitudinal and transverse gradients may be a function of time into the discharge, the shape of the electrodes, the tube size, and the fractional ionization for a given fill pressure. These issues are currently under investigation.

  16. Low Temperature Plasma Physics: Fundamental Aspects and Applications

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Pfau, Sigismund; Schmidt, Martin; Schoenbach, Karl H.

    2001-06-01

    Low-temperature plasma physics is a very active area of research located on the boundaries between physics, chemistry and materials science. Recent technological developments, e.g. in plasma etching or plasma deposition, have led to a revived interest in plasma physics and technology. This volume describes in detail fundamentals and applications of low-temperature plasma physics including newest achievements. The authors of this volume are top scientists from the USA and Europe who present most recent successes in our understanding of how plasmas behave and put a strong focus on the links between theory and experiment or technological process.

  17. In situ process diagnostics of silane plasma for device-quality a-Si:H deposition

    NASA Astrophysics Data System (ADS)

    Shing, Y. H.; Perry, J. W.; Hermann, A. M.

    Coherent anti-Stokes Raman spectroscopy (CARS) and mass spectrometry (MS) have been applied to in situ process diagnostics of a silane plasma for device-quality a-Si:H film deposition. Silane depletion was directly measured by CARS and is linearly dependent on RF power in the region of 4-12 W with a slope of 0.5 percent/mW-sq cm. The depletion is also dependent on SiH4 flow rate starting with a 50 percent depletion at a low flow rate of 5.6 sccm and asymptotically approaching an 8 percent depletion at a flow rate of 80 sccm. The mass spectral line signal intensity of disilane increases with RF power and shows an apparent transition at 6 W. Disilane formation in silane plasma, film deposition rate, and silane depletion ratio as a function of the RF power indicate that the film growth mechanism in the low-power region of 3.5-6.5 W is substantially different from that in the high-power region of 6.5-12 W.

  18. THE IRON PROJECT: High-Energy-Density (HED) Plasma Opacities and Diagnostics

    NASA Astrophysics Data System (ADS)

    Gokce, Yasin; Bostelmann, T.; Nahar, S.; Pradhan, A.; Bailey, J.

    2014-05-01

    The composition of the Sun, the benchmark for astronomical objects, has been a longstanding problem for the last few decades. The abundances of common elements in the Sun, such as, carbon, nitrogen, oxygen, supported by helioseismology are at discrepant by up to 50% higher from those derived from state-of-the-art spectroscopy and elaborate 3-D radiative transfer models. The uncertainty is compounded by recent experiments at the Sandia National Laboratory on the Z-pinch inertial confinement fusion device which is able to re-create the HED plasma conditions existing at the solar radiative-convection zone boundary. Measured monochromatic iron opacities disagree with all known theoretical opacities models. The abundance problem and potential solution are related to radiative opacities. Uur continued investigation of the problem will be presented. We will also present collision strengths of carbon-like silicon which shows new resonances in the low energy region introduced by relativistic effects in the Breit-Pauli R-matrix method. Line intensity ratios of this ion, obtained for optically allowed transitions as seen in astronomical spectra, are the diagnostics for the density and termperature of the plasmas will be reported. Partial support of NSF, DOE.

  19. In situ process diagnostics of silane plasma for device-quality a-Si:H deposition

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Perry, J. W.; Hermann, A. M.

    1987-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) and mass spectrometry (MS) have been applied to in situ process diagnostics of a silane plasma for device-quality a-Si:H film deposition. Silane depletion was directly measured by CARS and is linearly dependent on RF power in the region of 4-12 W with a slope of 0.5 percent/mW-sq cm. The depletion is also dependent on SiH4 flow rate starting with a 50 percent depletion at a low flow rate of 5.6 sccm and asymptotically approaching an 8 percent depletion at a flow rate of 80 sccm. The mass spectral line signal intensity of disilane increases with RF power and shows an apparent transition at 6 W. Disilane formation in silane plasma, film deposition rate, and silane depletion ratio as a function of the RF power indicate that the film growth mechanism in the low-power region of 3.5-6.5 W is substantially different from that in the high-power region of 6.5-12 W.

  20. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    PubMed

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  1. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    PubMed

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals. PMID:27550744

  2. On the Use of Spectral Lines Emitted by Carbon Ions for Plasma Diagnostics in Magnetic Fusion Devices

    SciTech Connect

    Koubiti, M.; Capes, H.; Ferri, S.; Godbert-Mouret, L.; Marandet, Y.; Rosato, J.; Stamm, R.

    2008-10-22

    Profiles of the n = 5-6 ({lambda} = 4658 A) and n = 6-7(7726 A) lines emitted by Li-like carbon C{sup +3} ions have been computed for plasma conditions of tokamak and stellarator divertors (N{sub e} = 10{sup 19}-10{sup 21} m{sup -3}, Te = 1-10 eV). The broadening and profiles of these lines are proposed to be used for plasma diagnostic purposes in particular to crosscheck the validity of the plasma parameters determined from the CIV line intensities measured in JT-60U tokamak.

  3. Hydrogen Balmer beta: The separation between line peaks for plasma electron density diagnostics and self-absorption test

    NASA Astrophysics Data System (ADS)

    Ivković, Milivoje; Konjević, Nikola; Pavlović, Zoran

    2015-03-01

    We propose a diagnostic technique for the measurement of plasma electron number density, Ne, based on the wavelength separation between peaks, ΔλPS, of hydrogen Balmer beta line, Hβ. In favor of the proposed diagnostic technique we demonstrate high sensitivity of ΔλPS on Ne and low sensitivity on plasma elementary processes and plasma parameters that may distort the line profile. These properties of ΔλPS enable reliable Ne plasma diagnostics in the presence of considerable self-absorption. On the basis of available theoretical data tables for the Hβ line profiles, simple Ne=f(ΔλPS) formulas are proposed. Their validity is experimentally confirmed in a low initial pressure pulsed discharge for the Ne range of (0.2-7)*1023 m-3. The agreement of the proposed formulas with another diagnostic technique is well within 10%. In addition, the difference in Ne values obtained from peak separation and from the Hβ line width is successfully used as a self-absorption test for line profile.

  4. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Malinsky, P.; Matousek, J.; Torrisi, L.; Ullschmied, J.

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV-MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  5. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Rawat, R. S.; Tan, K. S.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  6. Multiplex PCR: Optimization and Application in Diagnostic Virology

    PubMed Central

    Elnifro, Elfath M.; Ashshi, Ahmed M.; Cooper, Robert J.; Klapper, Paul E.

    2000-01-01

    PCR has revolutionized the field of infectious disease diagnosis. To overcome the inherent disadvantage of cost and to improve the diagnostic capacity of the test, multiplex PCR, a variant of the test in which more than one target sequence is amplified using more than one pair of primers, has been developed. Multiplex PCRs to detect viral, bacterial, and/or other infectious agents in one reaction tube have been described. Early studies highlighted the obstacles that can jeopardize the production of sensitive and specific multiplex assays, but more recent studies have provided systematic protocols and technical improvements for simple test design. The most useful of these are the empirical choice of oligonucleotide primers and the use of hot start-based PCR methodology. These advances along with others to enhance sensitivity and specificity and to facilitate automation have resulted in the appearance of numerous publications regarding the application of multiplex PCR in the diagnosis of infectious agents, especially those which target viral nucleic acids. This article reviews the principles, optimization, and application of multiplex PCR for the detection of viruses of clinical and epidemiological importance. PMID:11023957

  7. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    NASA Astrophysics Data System (ADS)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  8. Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment.

    PubMed

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier F

    2013-01-01

    In this work an atmospheric pressure non-thermal resistive barrier (RB) plasma jet was constructed, characterized and was applied for biomedical applications. The RB plasma source can operate in both DC (battery) as well as in standard 60/50 Hz low frequency AC excitation, and it functions effectively in both direct and indirect plasma exposure configurations. The characteristics of the RB plasma jet such as electrical properties, plasma gas temperature and nitric oxides concentration were determined using voltage-current characterization, optical emission spectroscopy and gas analyzer diagnostic techniques. Plasma discharge power of 26.33 W was calculated from voltage-current characterization. An optical emission spectroscopy was applied and the gas temperature which is equivalent to the nitrogen rotational (Trot) temperatures was measured. The concentrations of the reactive oxygen species at different spatial distances from the tip of the plasma jet were measured and the ppm concentration of NO is at the preferred level for a wide range of standard biomedical treatment applications. The ppm values of nitric oxides after the cooling unit are observed to be of the same order of magnitude as compared to plasma jet. The portable RB plasma source was tested to be very effective for decontamination and disinfection of a wide range of foodborne and opportunistic nosocomial pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus and the preliminary results are presented. The effects of indirect exposure of the portable RBP source on monocytic leukemia cancer cells (THP-1) were also tested and the results demonstrate that a preference for apoptosis in plasma treated THP-1 cells under particular plasma parameters and dosage levels. PMID:23400199

  9. Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment.

    PubMed

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier F

    2013-01-01

    In this work an atmospheric pressure non-thermal resistive barrier (RB) plasma jet was constructed, characterized and was applied for biomedical applications. The RB plasma source can operate in both DC (battery) as well as in standard 60/50 Hz low frequency AC excitation, and it functions effectively in both direct and indirect plasma exposure configurations. The characteristics of the RB plasma jet such as electrical properties, plasma gas temperature and nitric oxides concentration were determined using voltage-current characterization, optical emission spectroscopy and gas analyzer diagnostic techniques. Plasma discharge power of 26.33 W was calculated from voltage-current characterization. An optical emission spectroscopy was applied and the gas temperature which is equivalent to the nitrogen rotational (Trot) temperatures was measured. The concentrations of the reactive oxygen species at different spatial distances from the tip of the plasma jet were measured and the ppm concentration of NO is at the preferred level for a wide range of standard biomedical treatment applications. The ppm values of nitric oxides after the cooling unit are observed to be of the same order of magnitude as compared to plasma jet. The portable RB plasma source was tested to be very effective for decontamination and disinfection of a wide range of foodborne and opportunistic nosocomial pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus and the preliminary results are presented. The effects of indirect exposure of the portable RBP source on monocytic leukemia cancer cells (THP-1) were also tested and the results demonstrate that a preference for apoptosis in plasma treated THP-1 cells under particular plasma parameters and dosage levels.

  10. Atmospheric pressure non-thermal plasma: Sources and applications

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.

    2008-07-01

    Non-thermal plasma at atmospheric pressure is an inherently unstable object. Nature of discharge plasma instabilities and conditions for observation of uniform non-thermal plasma at atmospheric pressure in different environments will be discussed. Various discharge techniques have been developed, which could support uniform non-thermal plasma with parameters varied in a wide range. Time limitation by plasma instabilities can be overcome by shortening pulse length or by restriction of plasma plug residence time with a fast gas flow. Discharge instabilities leading to formation of filaments or sparks are provoked by a positive feedback between the electric field and plasma density, while the counteracting process is plasma and thermal diffusion. With gas pressure growth the size of plasma fluctuation, which could be stabilized by diffusion, diminishes. As a result, to have long lived uniform plasma one should miniaturize discharge. There exist a number of active methods to organize negative feedback between the electric field and plasma density in order to suppress or, at least, delay the instability. Among them are ballast resistors in combination with electrode sectioning, reactive ballast, electronic feedback, and dielectric barrier across the electric current. The last methods are relevant for ac discharges. In the lecture an overview will be given of different discharge techniques scalable in pressure up to one atmosphere. The interest in this topic is dictated by a potential economic benefit from numerous non-thermal plasma technologies. The spectrum of non-thermal plasma applications is continuously broadening. An incomplete list of known applications includes: plasma-assisted chemical vapor deposition, etching, polymerization, gas-phase synthesis, protective coating deposition, toxic and harmful gas decomposition, destruction of warfare agents, electromagnetic wave shielding, polymer surface modifications, gas laser excitation, odor control, plasma assisted

  11. Electron cyclotron resonance deposition and plasma diagnostics of a-Si:H and a-C:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.

    1989-01-01

    Amorphous silicon (a-Si:H) and amorphous carbon (a-C:H) films deposited by electron cyclotron resonance (ECR) microwave plasma-enhanced chemical vapor deposition are discussed. It is shown that the ECR microwave plasma deposition technique can produce a-Si:H films with material qualities similar to and with a deposition rate one order of magnitude higher than for films deposited by radio-frequency glow discharge. The ECR-deposited a-C:H films are characterized by fluorescence, IR, and Raman spectroscopy. In situ optical emission spectroscopy plasma diagnostics indicates that ECR plasmas have a strong emission at 434 nm, which indicates a higher chemical reactivity than radio-frequency glow discharge plasmas. The radio frequency bias to the substrate is found to play a critical role in determining the film structure and the carbon bonding configuration of ECR-deposited a-C:H films.

  12. A Survey of Plasmas and Their Applications

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Grabbe, C. (Editor)

    2006-01-01

    Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).

  13. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G.

    2013-12-15

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (∼1 m), high-current (∼1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ∼5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  14. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    PubMed

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  15. High-sensitivity hyperspectral imager for biomedical video diagnostic applications

    NASA Astrophysics Data System (ADS)

    Leitner, Raimund; Arnold, Thomas; De Biasio, Martin

    2010-04-01

    Video endoscopy allows physicians to visually inspect inner regions of the human body using a camera and only minimal invasive optical instruments. It has become an every-day routine in clinics all over the world. Recently a technological shift was done to increase the resolution from PAL/NTSC to HDTV. But, despite a vast literature on invivo and in-vitro experiments with multi-spectral point and imaging instruments that suggest that a wealth of information for diagnostic overlays is available in the visible spectrum, the technological evolution from colour to hyper-spectral video endoscopy is overdue. There were two approaches (NBI, OBI) that tried to increase the contrast for a better visualisation by using more than three wavelengths. But controversial discussions about the real benefit of a contrast enhancement alone, motivated a more comprehensive approach using the entire spectrum and pattern recognition algorithms. Up to now the hyper-spectral equipment was too slow to acquire a multi-spectral image stack at reasonable video rates rendering video endoscopy applications impossible. Recently, the availability of fast and versatile tunable filters with switching times below 50 microseconds made an instrumentation for hyper-spectral video endoscopes feasible. This paper describes a demonstrator for hyper-spectral video endoscopy and the results of clinical measurements using this demonstrator for measurements after otolaryngoscopic investigations and thorax surgeries. The application investigated here is the detection of dysplastic tissue, although hyper-spectral video endoscopy is of course not limited to cancer detection. Other applications are the detection of dysplastic tissue or polyps in the colon or the gastrointestinal tract.

  16. SiC detectors for radiation sources characterization and fast plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Cannavò, A.; Torrisi, L.

    2016-09-01

    Semiconductor detectors based on SiC have been investigated to characterize the radiations (photons and particles) emitted from different sources, such as radioactive sources, electron guns, X-ray tubes and laser-generated plasmas. Detectors show high response velocity, low leakage current, high energy gap and high radiation hardness. Their high detection efficiency permits to use the detectors in spectroscopic mode and in time-of-flight (TOF) approach, generally employed to monitor low and high radiation fluxes, respectively. Using the laser start signal, they permit to study the properties of the generated plasma in vacuum by measuring accurately the particle velocity and energy using pulsed lasers at low and high intensities. Possible applications will be reported and discussed.

  17. PREFACE: Fourteenth International Symposium on Laser-Aided Plasma Diagnostics (LAPD14)

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2010-04-01

    The attached PDF contains, the full preface, a list of the scientific committee, former LAPD chairmen, local organizers, previous locations of LAPD meetings, participants email contacts and a list of the contributed papers. logo The Fourteenth International Symposium on Laser-Aided Plasma Diagnostics (LAPD14), was held from 21-24 September 2009 in Castelbrando, Treviso, Italy. The series of LAPD symposia was originally started at Kyushu University in 1983, and since then it has been organized every two years alternately in Japan, Europe and the United States, traveling around the world five times. Each LAPD Symposium brings together scientists working in different disciplines all related to the diagnostics of any type of plasma by laser or similar techniques. Researchers working on nuclear fusion, industrial process, low temperature plasma chemistry, laser development and material science, are invited to present prominent new diagnostic developments, with the aim of synergetic discussions. The broad spectrum of contributions represents one of the strengths of this symposium, which is an important, unique and fruitful source of cross-fertilization between these fields and a forum of discussions. The scope of LAPD14 was very broad, including many techniques related to laser probing of plasmas: incoherent and coherent Thomson scattering, polarimetry, interferometry, reflectometry, laser induced fluorescence, laser absorption spectroscopy, laser photodetachment spectroscopy, cavity ringdown spectroscopy, Raman scattering, reflectometry, microwave diagnostics and related laser and hardware developments. LAPD14 was attended by 66 researchers, from 15 different countries who presented a total of 57 papers (13 general, 12 topical, 10 short talks and 23 poster contributions). It is a tradition of LAPD that the first lecture of each meeting, which is more general and aims to review prominent new developments, is called 'the Akazaki lecture' in honor of Professor Masanori

  18. Study on re-sputtering during CN{sub x} film deposition through spectroscopic diagnostics of plasma

    SciTech Connect

    Liang, Peipei; Yang, Xu; Li, Hui; Cai, Hua; Sun, Jian; Xu, Ning; Wu, Jiada

    2015-10-15

    A nitrogen-carbon plasma was generated during the deposition of carbon nitride (CN{sub x}) thin films by pulsed laser ablation of a graphite target in a discharge nitrogen plasma, and the optical emission of the generated nitrogen-carbon plasma was measured for the diagnostics of the plasma and the characterization of the process of CN{sub x} film deposition. The nitrogen-carbon plasma was recognized to contain various species including nitrogen molecules and molecular ions excited in the ambient N{sub 2} gas, carbon atoms and atomic ions ablated from the graphite target and CN radicals. The temporal evolution and spatial distribution of the CN emission and their dependence on the substrate bias voltage show two groups of CN radicals flying in opposite directions. One represents the CN radicals formed as the products of the reactions occurring in the nitrogen-carbon plasma, revealing the reactive deposition of CN{sub x} film due to the reactive expansion of the ablation carbon plasma in the discharge nitrogen plasma and the effective formation of gaseous CN radicals as precursors for CN{sub x} film growth. The other one represents the CN radicals re-sputtered from the growing CN{sub x} film by energetic plasma species, evidencing the re-sputtering of the growing film accompanying film growth. And, the re-sputtering presents ion-induced sputtering features.

  19. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  20. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators.

    PubMed

    Biganzoli, I; Capone, C; Barni, R; Riccardi, C

    2015-02-01

    Background Oriented Schlieren (BOS) is an optical technique sensitive to the first spatial derivative of the refractive index inside a light-transmitting medium. Compared to other Schlieren-like techniques, BOS is more versatile and allows to capture bi-dimensional gradients rather than just one spatial component. We propose to adopt BOS for studying the capabilities of surface dielectric barrier discharges to work like plasma actuators in flow control applications. The characteristics of the BOS we implemented at this purpose are discussed, together with few results concerning the ionic wind produced by the discharge in absence of an external airflow.

  1. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators

    NASA Astrophysics Data System (ADS)

    Biganzoli, I.; Capone, C.; Barni, R.; Riccardi, C.

    2015-02-01

    Background Oriented Schlieren (BOS) is an optical technique sensitive to the first spatial derivative of the refractive index inside a light-transmitting medium. Compared to other Schlieren-like techniques, BOS is more versatile and allows to capture bi-dimensional gradients rather than just one spatial component. We propose to adopt BOS for studying the capabilities of surface dielectric barrier discharges to work like plasma actuators in flow control applications. The characteristics of the BOS we implemented at this purpose are discussed, together with few results concerning the ionic wind produced by the discharge in absence of an external airflow.

  2. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    SciTech Connect

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-05-15

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10{sup 6} images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  3. The photon-plasmon transitions and diagnostics of the space plasma turbulence

    NASA Astrophysics Data System (ADS)

    Glushkov, A.; Malinovskaya, S.; Ambrosov, S.

    We present a new approach to treating the space plasma turbulence based on using to make diagnostic data regarding the photon-plasmon transitions The theoretical definition of characteristics for these transitions is caried out within consistent theoretical approach based on the Gell-Mann and Low formalism energy approach in QED theory We apply it to calculation of such transitions Ps with emission of photon and Langmuir quanta It is well known that the positronium Ps is an exotic hydrogen isotope with the atomic mass M 2m e sim 1 milli-amu and ground state binding energy of E 6 8 eV The hfs states of Ps differ in spin S life time t and mode of annihilation para-Ps S 0 t 1 25 cdot 10 -10 n 3 s 2 gamma annihilation and ortho-Ps S 1 t 1 4 cdot 10 -7 n 3 s 3 gamma annihilation As a rule probabilities of the cascade radiation transitions are more than the annihilation probability The ortho-Ps atom has a metastable state 2 3 s 1 and probability of two-photon radiation transition from this state into 1 3 s 1 state 1 8 cdot 10 -3 s -1 is significantly less than probability of the three-photon annihilation directly from 2 3 s 1 level 8 9 cdot 10 5 s -1 i e it is usually supposed that the ortho-Ps annihilates from 2 3 s 1 state Another situation may take place in plasma where it is arisen the competition process of destruction of the metastable level -- the photon-plasmon transition 2 3 s 1 -1 3 s 1 with emission of photon and Langmuir quanta

  4. SOFT-X RAY DIAGNOSTICS AND TREATMENTS FOR FUTURE REAL TIME APPLICATIONS

    SciTech Connect

    Pacella, D.; Mazon, D.

    2008-03-12

    This paper offers a preliminary review of the present diagnostics and data analysis techniques in the domain of Soft X-ray (SXR) emissions of fusion magnetic plasmas, including a short description of the theoretical background as well. Particular attention is devoted to the wide use of SXR tomography and impurity transport simulation. In their actual form, these techniques are not adequate to future real time applications. For this goal a step forward in the diagnosing and analysis of SXR emissions is required. The following part of the paper is therefore dedicated to the discussion of these improvements. The first one is the SXR tomography optimized for real time applications, like that one developed at Tore Supra (Cadarache, France). Fast 2-D tomographic inversions using different techniques (regularisation of Minimum Fisher, Maximum entropy, Zernicke polynomial expansions), will be optimized to be performed in a few millisecond time scale, crucial for MHD analysis, mode detection and localisation. The other goal to be pursued is the energy resolved imaging, now possible with a gas Micro Pattern Gas Detector with pixel read-out, as recently demonstrated at FTU (Frascati, Italy) and at NSTX (Princeton NJ, US), together with an ad hoc modeling of SXR emissions, compatible with future real time applications.

  5. Plasma Science and Applications at the Intel

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2006-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the annual Intel International Science and Engineering Fair (ISEF). The 2006 prize was awarded for a project that investigated the correlation of GPS errors with various measures of near-earth plasma activity. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas. In addition, the CPS has begun as effort to examine the plasma content of state education standards with the goal of promoting the adoption of standards with appropriate plasma conten; e.g. are there three or four states of matter. The success of this and other activities depend on the voluntary labor of CPS members and associates. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  6. Diagnostics of the accretion plasma in magnetic CVs from high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Burwitz, V.; Reinsch, K.; Haberl, F.; Gänsicke, B. T.; Predehl, P.

    2002-01-01

    High-resolution X-ray spectroscopy with the Chandra low energy transmission grating spectrometer (LETGS) provides an unprecedented diagnostic tool for the hot accretion plasma and the settling flow in the accretion column of magnetic cataclysmic variables (mCVs). We show first results from our analysis of spin-phase resolved X-ray spectroscopy of the two prototype magnetic CVs, AM Her and PQ Gem. The LETGS spectra cover the wavelength range 2--170Å with a spectral resolution λ/Δ λ = 200--3000. For the first time, absorption structures in the soft X-ray component of the heated white-dwarf atmosphere are revealed and individual emission lines of H- and He-like O and N ions including the density sensitive components of the He-like triplets are resolved in the hard X-ray component originating from the settling flow. In addition, phase dependent Doppler-shifts of the emission lines are detected providing detailed information on the geometry of the accretion funnel.

  7. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics.

    PubMed

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; Kelley, R L; Kilbourne, C A; Porter, F S

    2008-10-01

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed. PMID:19044471

  8. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility.

    PubMed

    Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Liu, Jinsong; Yuan, Xiao; Jin, Fengtao

    2009-04-01

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH(2)OH)(4) (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code. PMID:19405658

  9. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Liu, Jinsong; Yuan, Xiao; Jin, Fengtao

    2009-04-01

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH2OH)4 (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code.

  10. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility

    SciTech Connect

    Zhao Yang; Yang Jiamin; Zhang Jiyan; Liu Jinsong; Yuan Xiao; Jin Fengtao

    2009-04-15

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH{sub 2}OH){sub 4} (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code.

  11. Fast data transmission in dynamic data acquisition system for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Byszuk, Adrian; Poźniak, Krzysztof; Zabołotny, Wojciech M.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Cieszewski, Radosław; Juszczyk, Bartłomiej; Kolasiński, Piotr; Zienkiewicz, Paweł; Chernyshova, Maryna; Czarski, Tomasz

    2014-11-01

    This paper describes architecture of a new data acquisition system (DAQ) targeted mainly at plasma diagnostic experiments. Modular architecture, in combination with selected hardware components, allows for straightforward reconfiguration of the whole system, both offline and online. Main emphasis will be put into the implementation of data transmission subsystem in said system. One of the biggest advantages of described system is modular architecture with well defined boundaries between main components: analog frontend (AFE), digital backplane and acquisition/control software. Usage of a FPGA chips allows for a high flexibility in design of analog frontends, including ADC <--> FPGA interface. Data transmission between backplane boards and user software was accomplished with the use of industry-standard PCI Express (PCIe) technology. PCIe implementation includes both FPGA firmware and Linux device driver. High flexibility of PCIe connections was accomplished due to use of configurable PCIe switch. Whenever it's possible, described DAQ system tries to make use of standard off-the-shelf (OTF) components, including typical x86 CPU & motherboard (acting as PCIe controller) and cabling.

  12. A collisional radiative model of hydrogen plasmas developed for diagnostic purposes of negative ion sources

    NASA Astrophysics Data System (ADS)

    Iordanova, Snejana; Paunska, Tsvetelina

    2016-02-01

    A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H+, H2+, and H3+. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the Hα to Hβ line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.

  13. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    SciTech Connect

    Brown, G. V.; Beiersdorfer, P.; Emig, J.; Frankel, M.; Gu, M. F.; Heeter, R. F.; Magee, E.; Thorn, D. B.; Widmann, K.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  14. Rapid, Absolute Calibration of X-ray Filters Employed By Laser-Produced Plasma Diagnostics

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; . Kelley, R L; Kilbourne, C A; Porter, F S

    2008-05-11

    The electron beam ion trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of X-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen X-ray energies. X-rays are detected using the high-resolution EBIT calorimeter spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the X-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated X-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  15. Preface to Special Topic: Plasmas for Medical Applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  16. Preface to Special Topic: Plasmas for Medical Applications

    SciTech Connect

    Keidar, Michael; Robert, Eric

    2015-12-15

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  17. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  18. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  19. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Begishev, I.; Theobald, W.; Bromage, J.; Regan, S. P.; Klein, S. R.; Munoz-Cordoves, G.; et al

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  20. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  1. High-repetition CO{sub 2} laser for collective Thomson scattering diagnostic of {alpha} particles in burning plasmas

    SciTech Connect

    Kondoh, T.; Hayashi, T.; Kawano, Y.; Kusama, Y.; Sugie, T.; Miura, Y.; Koseki, R.; Kawahara, Y.

    2006-10-15

    A high-repetition and high-energy transversely excited atmospheric carbon dioxide (CO{sub 2}) laser for a collective Thomson scattering (CTS) diagnostic has been developed to establish a diagnostic method of confined {alpha} particles in burning plasmas. To excite a single-transverse and single-longitudinal mode, a continuous wave seed laser was injected to an unstable resonator with a cavity length of {approx}4.4 m. Pulse energy of 10 J with a repetition rate of 10 Hz has been achieved in the single-mode operation. Pulse energies of 18 J with a repetition rate of 10 Hz and 36 J with single shot operation have also been achieved in the multimode operation. These results give a prospect for the CTS diagnostic on International Thermonuclear Experimental Reactor (ITER), which requires single-mode energy of 20 J with repetition rate of 40 Hz.

  2. Progress in Development of C60 Nanoparticle Plasma Jet for Diagnostic of Runaway Electron Beam-Plasma Interaction and Disruption Mitigation Study for ITER

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.

    2013-10-01

    We produced a C60 nanoparticle plasma jet (NPPJ) with uniquely fast response-to-delivery time (~ 1 - 2 ms) and unprecedentedly high momentum (~ 0 . 6 g .km/s). The C60 NPPJ was obtained by using a solid state TiH2/C60 pulsed power cartridge producing ~180 mg of C60 molecular gas by sublimation and by electromagnetic acceleration of the C60 plasma in a coaxial gun (~35 cm length, 96 kJ energy) with the output of a high-density (>1023 m-3) hyper-velocity (>4 km/s) plasma jet. The ~ 75 mg C60/C plasma jet has the potential to rapidly and deeply deliver enough mass to significantly increase electron density (to ne ~ 2 . 4 ×1021 m-3, i.e. ~ 60 times larger than typical DIII-D pre-disruption value, ne 0 ~ 4 ×1019 m-3), and to modify the 'critical electric field' and the runaway electrons (REs) collisional drag during different phases of REs dynamics. The C60 NPPJ, as a novel injection technique, allows RE beam-plasma interaction diagnostic by quantitative spectroscopy of C ions visible/UV line intensity. The system is scalable to ~ 1 - 2 g C60/C plasma jet output and technology is adaptable to ITER acceptable materials (BN and Be) for disruption mitigation. Work supported by US DOE DE-FG02-08ER85196 grant.

  3. Pretreatment plasma levels and diagnostic utility of hematopoietic cytokines in cervical cancer or cervical intraepithelial neoplasia patients.

    PubMed

    Ławicki, Sławomir; Będkowska, Grażyna E; Gacuta-Szumarska, Ewa; Knapp, Paweł; Szmitkowski, Maciej

    2012-07-04

    In this study, we compared plasma levels and the diagnostic utility of hematopoietic growth factors (HGFs) with SCC-Ag in cervical cancer patients in relation to control groups and cervical intraepithelial neoplasia (CIN) patients and healthy subjects. Pretreatment plasma levels of HGFs (SCF, GM-CSF, G-CSF and M-CSF) were determined by the use of immunoenzyme assay (ELISA), and SCC-Ag by chemiluminescent microparticle immunoassay (CMIA). Significantly different concentrations of GM-CSF, G-CSF and M-CSF were observed in the group of patients with cervical cancer and CIN compared to the healthy controls. Significant differences in plasma levels of GM-CSF and M-CSF between cervical cancer and benign lesions patients were also found. The HGFs and SCC-Ag diagnostic specificities received high values. The diagnostic sensitivity and the predictive value of a positive and negative test result were higher for M-CSF than for antigen SCC in the cancer group. The M-CSF area under the ROC curve (AUC) was the largest from hematopoietic cytokines and SCC-Ag. These results suggest the potential utility of M-CSF as a good candidate for a marker of cervical cancer as well as benign lesions of this organ (CIN).

  4. Prognostic and diagnostic value of plasma soluble ST2 concentrations in Acute Respiratory Distress Syndrome

    PubMed Central

    Bajwa, Ednan K.; Volk, Jessica A.; Christiani, David C.; Harris, R. Scott; Matthay, Michael A.; Thompson, B. Taylor; Januzzi, James L.

    2013-01-01

    Objective Soluble ST2 (sST2) is a biomarker of myocardial strain and inflammation. The characteristics of acute respiratory distress syndrome (ARDS) include inflammation and cardiovascular dysfunction. We sought to determine whether plasma sST2 concentration is associated with outcome and response to conservative fluid management, and whether sST2 concentration discriminates ARDS from decompensated heart failure (HF). Design, Setting, and Patients We assayed plasma sST2 concentrations in 826 patients in the Fluid and Catheter Treatment Trial (FACTT), a multi-center randomized controlled trial of conservative fluid management in ARDS, as well as a cohort of patients with decompensated HF. We tested whether sST2 was associated with outcome, response to therapy, and diagnostic utility for ARDS vs. HF. Measurements and Main Results Non-survivors had higher day 0 (P<.0001) and day 3 (P<.0001) sST2 concentrations. After adjustment for severity of illness, higher sST2 concentration was associated with mortality, with odds ratio (ORadj) 1.47 (95% confidence interval [CI] 0.99 – 2.20, P=.06) at day 0, 2.94 (95% CI 2.00 – 4.33, P<.0001) at day 3, and 3.63 (95% CI 2.38 – 5.53, P<.0001) if sST2 increased between days. Cumulative fluid balance was more positive among patients with higher day 0 (median 5212 mL, interquartile range [IQR] 200 – 12284 vs. 2020 mL, −2034 – 7091; P<0.0001), and day 3 sST2 (median 7678 mL, IQR 2217 – 14278 vs. 1492 mL, −2384 – 6239; P<0.0001). sST2 showed excellent discriminative ability between the FACTT and HF populations (Area under ROC curve=0.98, P<0.0001). Conclusions Higher sST2 concentrations are associated with worse outcome in ARDS and may have value for discriminating ARDS from heart failure. PMID:23939353

  5. Air Plasma Source for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Gordiets, B.; IPFN-IST, 1049-001 LX, Portugal Team; Lebedev Physical Institute of the Russian Academy of Sciences Team

    2011-10-01

    Plasma interactions with living matter are presently at the frontiers of plasma research and development. Plasmas contain numerous agents that influence biological activity. They provide essentially two types of biocidal species: reactive species, such as oxygen atoms that lead to lethality of micro-organisms through erosion, and UV radiation that can damage the DNA strands. In this work we investigate a surface wave (2.45 GHz) driven discharge plasma in air, with a small admixture of water vapor, as a source of ground state O(3P) oxygen atoms, NO molecules and UV radiation. A theoretical model describing both the wave driven discharge zone and its flowing afterglow is used to analyze the performance of this plasma source. The predicted plasma-generated NO(X) and O(3P) concentrations and NO(γ) radiation intensity along the source are presented and discussed as a function of the microwave power and water vapor percentage in the gas mixture. To validate the theoretical predictions, the relative concentrations of species have been determined by Mass Spectrometry, Fourier Transform Infrared Spectroscopy and Optical Spectroscopy. Acknowledgment: This work was funded by the Portuguese Foundation for Science and Technology, under research contract PTDC/FIS/108411/2008.

  6. Potential Diagnostic and Prognostic Value of Plasma Circulating MicroRNA-182 in Human Glioma

    PubMed Central

    Xiao, Yilei; Zhang, Lina; Song, Zikun; Guo, Chuanjun; Zhu, Jianxin; Li, Zhongmin; Zhu, Shugan

    2016-01-01

    Background Previous studies showed the aberrant expression of microRNA-182 (miR-182) in glioma tissue. However, the exact role of circulating miR-182 in glioma remains unclear. Here, we confirmed the expression of plasma circulating miR-182 in glioma patients, and further explored its potential diagnostic and prognostic value. Material/Methods Real-time quantitative PCR (RT-PCR) was used to measure circulating cell-free miR-182 from 112 glioma patients and 54 healthy controls. Results Our findings showed that the level of circulating miR-182 in glioma patients was higher than that in healthy controls (P<0.001), which was significantly associated with KPS score (P=0.025) and WHO grade (P<0.001). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.778. The optimal cut-off value was 1.56, and the sensitivity and specificity were 58.5% and 85.2%, respectively. Interestingly, a high predictive value of circulating miR-182 was observed in high-grade glioma (AUC=0.815). However, the AUC was lower in low-grade glioma (AUC=0.621). Kaplan-Meier analysis demonstrated that the cumulative 5-year overall survival rate in the high miR-182 group was significantly lower than that in the low miR-182 group in both overall survival (OS) (P=0.003) and disease-free survival (DFS) (P=0.006). Moreover, multivariate Cox analysis revealed that circulating miR-182 was an independent prognostic indicator for OS (P=0.034) and DFS (P=0.013). Conclusions These results suggest that circulating miR-182 may be a potential noninvasive biomarker for the diagnosis and prognosis of human glioma. PMID:26978735

  7. High-pressure duo-multichannel soft x-ray spectrometer for tokamak plasma diagnostics

    SciTech Connect

    Schwob, J.L.; Wouters, A.W.; Suckewer, S.

    1987-03-01

    A high-resolution, time-resolving soft X-ray multichannel spectrometer (SOXMOS) that permits the simultaneous measurement of emission in two different spectral ranges has been developed and tested extensively for tokamak plasma diagnostics. The basic instrument is a high-resolution, interferometrically adjusted, extreme grazing incidence Schwob-Fraenkel duochromator. The instrument is equipped with two multichannel detectors that are adjusted interferometrically and scan along the Rowland circle. Each consists of an MgF/sub 2/ coated, funneled microchannel plate, associated with a phosphor screen image intensifier that is coupled to a 1024-element photodiode array by a flexible fibrer optic conduit. The total wavelength coverage of the instrument is 5 to 340/sup 0/ A with a measured resolution (FWHM) of about 0.2 A when equipped with a 600 g/mm grating, and 5 to 85 A with a resolution of about 0.06 A using a 2400 g/mm grating. The simultaneous spectral coverage of each detector varies from 15 A at the short wavelength limit to 70 A at the long wavelength limit with the lower dispersion grating. The minimum read-out time for a full spectral portion is 17 ms, but several individual lines can be measured with 1 ms time resolution by selected pixel readout. Higher time resolution can be achieved by replacing one multichannel detector with a single channel electron multiplier detector. Examples of data from the PLT and TFTR tokamaks are presented to illustrate the instrument's versatility, high spectral resolution, and high signal-to-noise ratio even in the 10 A region. 44 refs., 20 figs.

  8. Application of 5-ALA for differential diagnostics of stomach diseases

    NASA Astrophysics Data System (ADS)

    Okhotnikova, Natalja L.; Dadvany, Sergey A.; Kuszin, Michail I.; Kharnas, Sergey S.; Zavodnov, Victor Y.; Sklyanskaya, Olga A.; Loschenov, Victor B.; Volkova, Anna I.; Agafonov, Valery V.

    2001-01-01

    59 patients with stomach diseases including gastric cancer or polyp, gastritis, esofagus disease were investigated. Before gastroscopy all patients were given 5-ALA in doses 5mg, 10mg and 20mg per 1kg of body weight orally. Fluorescence diagnostics which estimates concentration of ALA-induced PPIX in regular and alternated tissues of gastric mucosa were carried out in 2-4 hours. Using of 5-ALA has shown high diagnostic effectiveness for differential diagnostics of stomach diseases. This technique has proved 10 diagnosis of cancer and revealed 15 malignant stomach diseases including 4 cancer in situ for patients with preliminary diagnosis of gastric ulcer. It also revealed 5 patients with enhanced fluorescence for which aimed biopsy has shown high degree of inflammation process. The latter were assigned as a risk group.

  9. Application of optical flow method for imaging diagnostic in JET

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Alonso, A.; Lang, P. T.; Kocsis, G.; Tiseanu, I.; Zoita, V.; JET EFDA Contributors

    2010-05-01

    An optical flow method is applied to the study of several fusion plasma relevant issues, including plasma wall interactions. A multi-resolution coarse-to-fine procedure is used in order to cope with large displacements of objects between consecutive frames, characteristic of plasma images captured by JET fast visible camera. Occlusion modeling is also implemented. The method is able to provide good results for JET fast visible camera images which can be affected by saturation, discontinuous movement, reshaping of image objects, low gray-level in-depth resolution. Significant experimental cases concerning pellet injection, plasma filaments and MARFEs are analysed. The method is able to provide the real velocity for objects moving close to structures.

  10. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  11. Point-of-care diagnostics for niche applications.

    PubMed

    Cummins, Brian M; Ligler, Frances S; Walker, Glenn M

    2016-01-01

    Point-of-care or point-of-use diagnostics are analytical devices that provide clinically relevant information without the need for a core clinical laboratory. In this review we define point-of-care diagnostics as portable versions of assays performed in a traditional clinical chemistry laboratory. This review discusses five areas relevant to human and animal health where increased attention could produce significant impact: veterinary medicine, space travel, sports medicine, emergency medicine, and operating room efficiency. For each of these areas, clinical need, available commercial products, and ongoing research into new devices are highlighted.

  12. Computational Imaging, Sensing and Diagnostics for Global Health Applications

    PubMed Central

    Coskun, Ahmet F.; Ozcan, Aydogan

    2013-01-01

    In this Review, we summarize some of the recent work in emerging computational imaging, sensing and diagnostics techniques, along with some of the complementary non-computational modalities that can potentially transform the delivery of health care globally. As computational resources are becoming more and more powerful, while also getting cheaper and more widely available, traditional imaging, sensing and diagnostic tools will continue to experience a revolution through simplification of their designs, making them compact, light-weight, cost-effective, and yet quite powerful in terms of their performance when compared to their bench-top counterparts. PMID:24484875

  13. Point-of-care diagnostics for niche applications.

    PubMed

    Cummins, Brian M; Ligler, Frances S; Walker, Glenn M

    2016-01-01

    Point-of-care or point-of-use diagnostics are analytical devices that provide clinically relevant information without the need for a core clinical laboratory. In this review we define point-of-care diagnostics as portable versions of assays performed in a traditional clinical chemistry laboratory. This review discusses five areas relevant to human and animal health where increased attention could produce significant impact: veterinary medicine, space travel, sports medicine, emergency medicine, and operating room efficiency. For each of these areas, clinical need, available commercial products, and ongoing research into new devices are highlighted. PMID:26837054

  14. Magnetooptical Faraday and Light-Scattering Diagnostics of Laser Plasma in Leopard Laser Facility at UNR/NTF

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Yates, K.; Ivanov, V. V.; Sotnikov, V. I.; Yasin, E.; Wiewior, P.; Astanovitsky, A.; Chaly, O.; Kindel, J.

    2009-11-01

    Laser plasma of the solid target on Leopard Laser Facility at University of Nevada Reno was investigated using polarimetry, interferometry and laser-scattering diagnostics. 50 TW Nd:glass Leopard laser operates on 1056 nm wavelength, 10 J energy and 1ns/400 fs pulse width. Power flux on a target surface varied from 10^14 to 10^19W/cm^2 with 20 μm focus spot from off-axis parabola. The diagnostic of spontaneous magnetic fields in laser plasma was carried out using three-channel polarinterferometer with Faraday, shadow and interferogram channels. Ultrafast two-frame shadowgrams/interferograms with two probing beams with orthogonal polarizations were used for investigation of fast moving plasma phenomena (jets, ionization front propagation). Continuous 1W green DPSS-laser with external modulation was used for light scattering experiments for investigation of the late-time micro-particles generation in laser plasma with expected large charge number of the grain Z ˜ 100-1000.

  15. Development of x-ray and ion diagnostics of plasma obtained with a 10-TW femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ryć, L.; Dobrzański, L.; Dubecky, F.; Jabłoński, S.; Parys, P.; Słysz, W.; Rosiński, M.

    2016-07-01

    Several x-ray and ion semiconductor detectors have been developed for the diagnostics of femtosecond laser plasma generated by a 10-TW laser which was recently commissioned for operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw. A range of detectors has been employed including a CdTe detector for hard x-rays and four detectors for proton detection. These four are SiC and GaN employing a sandwich structure, an interdigitated M-S-M InP detector and finally a silicon photo-diode equipped with an aluminium filter (to shield against scattered light). The detectors presented are innovative as they are not commonly used for the diagnostic of laser plasma. The details of the internal structures of the detectors are presented. The immunity of the detectors to the noise coming from the laser system and the femtosecond plasma is discussed. Lastly, the possibility for further modifications and improvements are considered and discussed.

  16. LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications

    NASA Astrophysics Data System (ADS)

    Riès, D.; Dilecce, G.; Robert, E.; Ambrico, P. F.; Dozias, S.; Pouvesle, J.-M.

    2014-07-01

    In the field of biomedical application, many publications report on non-thermal plasma jet potentialities for cell behaviour modifications in cancer treatment, wound healing or sterilization. However most previous plasma jet characterizations were performed when jets expend freely in air. Only recently has the influence of the targeted surface been properly considered. In this work, modifications induced by various types of targets, mimicking the biological samples, in the plasma propagation and production of hydroxyl radicals are evidenced through time-resolved intensified charge-coupled device imaging and laser-induced fluorescence (LIF) measurements. A LIF model, also specifically dedicated to estimate air and water penetration inside the jet, is used and proves to be well adapted to characterize the plasma jet under biomedical application conditions. It is shown that the plasma produced by the plasma gun counter-propagates after impinging the surface which, for the same operating parameters, leads to an increase of almost one order of magnitude in the maximum OH density (from ˜2 × 1013 cm-3 for open-air propagation to ˜1 × 1014 cm-3 for a grounded metal target). The nature of the target, especially its electrical conductivity, as well as gas flow rate and voltage amplitude are playing a key role in the production of hydroxyl radicals. The strong interplay between gas flow dynamics and plasma propagation is here confirmed by air and water distribution measurements. The need for a multi-diagnostic approach, as well as great care in setting up the in situ characterization of plasma jets, is here emphasized. Special attention must not only be paid to voltage amplitude and gas flow rate but also to the nature, humidity and conductivity of the target.

  17. Multi-electrodes Atmospheric Pressure Plasma Jet Aiming Bio-applications

    NASA Astrophysics Data System (ADS)

    Han, Jeon G.; Sahu, B. B.; Shin, K. S.; Lee, J. S.; Hori, M.

    2015-09-01

    For the recent advancement in the field of plasma medicine, there is growing demand for the atmospheric-pressure plasma (APP) jet sources with desired plasma characteristics. In this study, a stable non-thermal low-voltage APP jet device was designed and developed for optical and electrical characterizations. The jet was operated at very low frequency in the range 10-40 KHz, which enabled the generation of low power (~ 7W) plasma with a plasma column diameter of about 5 mm. The jet has a visible radial diameter of approximately 10 mm. Optical emission spectroscopy was used as a diagnostic tool to investigate the generation of plasmas and radical species. Discharge parameters are also measured to evaluate the different operating conditions. The gas temperature measured at the substrate location varies from 300 to 315 K for different gases where the electrical input power ranged from 1 to 7 W. The highly reactive species like OH, O, N2, N2 + and along with the trace of NO are characterized with respect to the different gas flow rate of Ar/He/O2/N2, applied voltages, duty cycles and frequencies to evaluate the capability of the APP jet for future bio-applications.

  18. Observation of Hypervelocity Dust in Dense Supersonic Plasma Flows: Physics and Applications

    SciTech Connect

    Ticos, C. M.; Wang, Z.; Wurden, G. A.; Shukla, P. K.

    2008-10-15

    Synthetic diamond and graphite dust powders with a wide range of sizes, from a few to several tens of microns in diameter were accelerated to velocities up to 4 km/s in vacuum by plasma jet produced in a coaxial gun. Some of the key features of the plasma flow are high density, of the order of 10{sup 22} m{sup -3}, low ion and electron temperatures, of only a few eV, and good collimation over a distance of {approx_equal}2 m due to confinement by the self-generated magnetic field. The main features of this plasma-drag acceleration technique are presented and discussed. From basic science point of view hypervelocity dust is useful for studying the physics of dust interaction with energetic plasma flows at microscopic level. In physical applications, it has been proposed to use hypervelocity dust for diagnostic or control of magnetically confined fusion plasmas. In engineering, hypervelocity dusty plasmas are extensively employed in industrial processes involved in the processing of surfaces.

  19. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  20. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  1. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  2. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028

  3. Characterisation of coherent rotating modes in a magnetised plasma column using a mono-sensor tomography diagnostic

    NASA Astrophysics Data System (ADS)

    David, P.; Escarguel, A.; Camenen, Y.; Baude, R.

    2016-10-01

    In this paper, we report on the core plasma evolution during the rotation of coherent modes in a magnetized plasma column. The study makes use of an original tomographic diagnostic based on a single sensor. The experimental observations demonstrate that the mode shape is constant during the plasma rotation, therefore confirming an a priori assumption of single position measurements. The experimental set-up and the numerical inversion method used to interpret the data are presented. The results are then compared to two-dimensional probe measurements to assess their perturbative character and to give further details on the mode characteristics. A π / 2 phase shift between the electrostatic potential and density perturbation is evidenced.

  4. Ionization energy shift of characteristic K x-ray lines from high-Z materials for plasma diagnostics

    SciTech Connect

    Słabkowska, K.; Szymańska, E.; Polasik, M.; Pereira, N. R.; Rzadkiewicz, J.; Seely, J. F.; Weber, B. V.; Schumer, J. W.

    2014-03-15

    The energy of the characteristic x-rays emitted by high atomic number atoms in a plasma that contains energetic electrons depends on the atom's ionization. For tungsten, the ionization energy shift of the L-lines has recently been used to diagnose the plasma's ionization; the change in energy of a K-line has been measured for iridium and observed for ytterbium. Here, we present detailed computations of the ionization energy shift to K-lines of these and an additional element, dysprosium; for these atoms, some K-lines nearly coincide in energy with K-edges of slightly lower Z atoms so that a change in transmission behind a K-edge filter betrays a change in energy. The ionization energy shift of such high-energy K-lines may enable a unique diagnostic when the plasma is inside an otherwise opaque enclosure such as hohlraums used on the National Ignition Facility.

  5. Improved Optical Diagnostic and Microwave Power Supply, final report. An ARRA Supplement to Instabilities in Nonthermal Atmospheric Pressure Plasma

    SciTech Connect

    Hopwood, Jeffrey

    2011-05-30

    This is the final report for the supplemental program ''Improved Optical Diagnostic and Microwave Power Supply'' which has funded the purchase of laboratory instrumentation to enhance the main DOE project, ''Instabilities in Non-thermal Atmospheric Pressure Plasma.'' The main program’s goals include a scientific study of the plasma physics causing large-area plasmas to become unstable at atmospheric pressure. These fundamental scientific discoveries will then allow for the design of controllable cold plasma sources capable of materials processing, including photovoltaic devices, at one atmosphere. This leads to lower costs of energy production. This final report describes only the completion of the supplement. A high-speed spectroscopic camera capable of diagnosing plasma fluctuations and instabilities on time-scales of 2 ns was specified, purchased, installed and tested at the Tufts University Plasma Laboratory. In addition, a 30 watt microwave power system capable of producing short pulses of power in the 0.8 – 4.2 GHz bands was specified, purchased, installed and tested. Scientific experiments are continuing under the funding of the main grant, but a few preliminary examples of scientific discoveries made using these items are included in this report.

  6. Plasma mass filtering techniques: applications and requirements

    NASA Astrophysics Data System (ADS)

    Gueroult, Renaud; Fisch, Nathaniel J.

    2013-10-01

    Plasma mass filters differ from conventional chemical filtering techniques in that elements are dissociated, and can therefore be processed without regard to chemical form. In addition, plasma filters can be in principle operated at larger velocities compared to their gaseous and/or liquid counterparts, so that larger throughputs are possible. On the other hand, one has to pay the price of ionization, which sets a lower limit for the processing cost. Plasma mass filtering techniques are consequently foreseen as a promising solution for separation processes which are simultaneously chemically challenging and of high added value. Such separation processes can be, for example, found within the context of nuclear waste remediation, or nuclear spent fuel reprocessing. However, although plasma separation techniques appear globally attractive for these distinct needs, the plasma parameters required to fulfill a particular separation process are expected to depend strongly on the process's attributes (volume, composition, mass difference), which may vary significantly. Such operating parameters' variations are shown to be well accommodated by a particular configuration, called the Magnetic Centrifugal Mass Filter. Work supported by US DOE under contract Nos DE-AC02-09CH11466 and DE-FG02-06ER54851.

  7. Diagnostic application of KRAS mutation testing in uterine microglandular proliferations.

    PubMed

    Hong, Wei; Abi-Raad, Rita; Alomari, Ahmed K; Hui, Pei; Buza, Natalia

    2015-07-01

    Microglandular proliferations often pose a diagnostic challenge in small endocervical and endometrial biopsies. Microglandular hyperplasia (MGH) is one of the most common pseudoneoplastic glandular proliferations of uterine cervix, which can closely mimic endometrial adenocarcinomas (EAC) with a microglandular pattern (microglandular EAC). Although MGH is typically characterized by relatively uniform nuclei and rare to absent mitoses, atypical forms with architectural and/or cytologic deviation from the usual morphology have been previously described. Recently, a series of MGH with high mitotic activity has also been documented. Although careful morphological assessment and immunohistochemical workup can resolve the diagnostic dilemma in some cases, additional differential diagnostic tools are needed to separate both the common and atypical variants of MGH from EAC with microglandular pattern. Frequent KRAS mutation has been previously reported in endometrial complex mucinous lesions and endometrial mucinous carcinomas. However, the diagnostic utility of KRAS mutation analysis has not yet been explored in the context of cervical and endometrial microglandular lesions. Twelve mitotically active MGH cases and 15 cases of EAC with microglandular growth pattern were selected for the study. KRAS mutation analysis was performed in all cases by highly sensitive single-strand conformation polymorphism analysis. Clinical history and follow-up data were retrieved from electronic medical records. KRAS mutation was absent in all MGH cases, whereas 9 (60%) of 15 microglandular EAC cases tested positive for KRAS mutation. Our data indicate that KRAS mutation analysis may offer additional discriminatory power in separating benign MGH from EAC with microglandular pattern.

  8. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  9. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki; Tanaka, Kensaku; Arakawa, Yoshihiro; Nomura, Satoshi; Komurasaki, Kimiya

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  10. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas

    SciTech Connect

    Alonso, M. P.; Figueiredo, A. C. A.; Berni, L. A.; Machida, M.

    2010-10-15

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  11. Differential phase analysis of laser images of a polycrystalline component of blood plasma in diagnostics of pathological changes in mammary gland

    NASA Astrophysics Data System (ADS)

    Mintser, O. P.; Zabolotna, N. I.; Oliinychenko, B. P.; Komada, P.

    2013-01-01

    The present work is devoted to investigation of diagnostic potentiality of differential phase tomography of blood plasma. The data of further statistical, correlation and fractal analysis of phase tomograms for determining objective criteria of diagnostics of physiological state of a patient is provided.

  12. Plasma Functionalized Nanocarbon Materials and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng

    2015-09-01

    The plasma treatment method is important for modifying carbon nanomaterials since it has the advantage of being nonpolluting. It has the possibility of scaling up to produce large quantities necessary for commercial use. The liquid-related plasma is especially advantageous in avoiding use of toxic stabilizers and reducing agents during the nanoparticle formation process. In this work, both gas phase and liquid phase plasmas are used to modify nanocarbon materials including graphene and carbon nanotubes. The synthesis of metal nanoparticles functionalized nanocarbon materials including carbon nanotubes and graphene has been realized by an environmentally-friendly gas-liquid interfacial method. Furthermore, the new catalysts based on hybrid of nanocarbon materials and metal nanoparticles have been proved to be stable and high catalytic performance in organic molecule transformation reactions. In addition, the modification of few-layer graphene grown by chemical vapour deposition via the nitrogen plasma ion irradiation has been performed, and the modified graphene sheets as counter electrodes in bifacial dye-sensitized solar cells exhibit high performance.

  13. Tungsten spectroscopy relevant to the diagnostics development of ITER divertor plasmas

    SciTech Connect

    Clementson, J; Beiersdorfer, P; Magee, E W; McLean, H S; Wood, R D

    2009-12-01

    The ITER tokamak will have tungsten divertor tiles and, consequently, the divertor plasmas are expected to contain tungsten ions. The spectral emission from these ions can serve to diagnose the divertor for plasma parameters such as tungsten concentrations, densities, ion and electron temperatures, and flow velocities. The ITER divertor plasmas will likely have densities around 10{sup 14-15} cm{sup -3} and temperatures below 150 eV. These conditions are similar to the plasmas at the Sustained Spheromak Physics Experiment (SSPX) in Livermore. To simulate ITER divertor plasmas, a tungsten impurity was introduced into the SSPX spheromak by prefilling it with tungsten hexacarbonyl prior to the usual hydrogen gas injection and initiation of the plasma discharge. The possibility of using the emission from low charge state tungsten ions to diagnose tokamak divertor plasmas has been investigated using a high-resolution extreme ultraviolet spectrometer.

  14. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics

    PubMed Central

    Rai, Aswathy N.; Epperson, William B.; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches. PMID:26526746

  15. Optics, Diagnostics and Applications for Fourth-Generation Light Sources

    SciTech Connect

    Wootton, A; Barbee, T; Bionta, R; Chapman, H; Ditmire, T; Dyer, G; Kuba, J; Jankowski, A; London, R; Ryutov, R; Shepherd, R; Shlyaptsev, V; Toor, A

    2003-02-05

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), proposed for the Stanford Linear Accelerator Centre (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: (1) radiation field modeling, (2) experimental and theoretical material damage studies, (3) high resolution, high fluence-tolerant optical design, fabrication, and testing, (including material manufacturing), and (4) diagnostic design and testing.

  16. Elliptical X-ray analyzer spectrograph application to a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Tanaka, Tina J.; Palmer, Merrill A.; Henke, Burton L.

    1985-08-01

    A preliminary experimental study was conducted on the application of an elliptical analyzer spectrograph to X-ray diagnostics of pulsed plasmas. This spectrograph was designed to record a range of 100-2000 eV X-rays on calibrated Kodak RAR-21497 film. Using point calibrations and theoretical models, the spectrograph efficiency was predicted. Basic spectrograph geometry and photographic calibrations are presented in companion papers. A 20 J, 6 ns duration Nd:glass laser pulse was focussed upon planar targets of gold, aluminum, teflon and boron carbide. Sample spectra for line and X-ray yields analysis are presented.

  17. Novel applications of atmospheric pressure plasma on textile materials

    NASA Astrophysics Data System (ADS)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  18. Spectroscopic diagnostics of active screen plasma nitriding processes: on the interplay of active screen and model probe plasmas

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Röpcke, J.

    2015-09-01

    In a reactor used for active screen plasma nitriding (ASPN) the interplay of two plasma types, (i) the plasma of the cylindrical active screen driven in a pulsed dc mode (f = 1 kHz, 60% duty cycle) and (ii) the plasma at an internal model probe driven in a cw dc mode, ignited in a low pressure H2-N2 gas mixture (p = 3 mbar) containing small amounts of CH4 and CO2 have been studied by tunable diode laser infrared absorption (TDLAS) and optical emission spectroscopy (OES) techniques. Applying in situ TDLAS the evolution of the carbon containing precursors, CH4 and CO2, and of the reaction products, NH3, HCN, CO and H2O, has been monitored. The degree of dissociation of the carbon containing precursor molecules varied between 70% and 92%. The concentrations of the reaction products were found to be in the range 1012…1015 molecules cm-3. By analyzing the development of the molecular concentrations at changes of gas mixtures and plasma power values, it was found that (i) HCN and NH3 are the main products of plasma conversion in the case of methane admixture and (ii) CO, HCN and NH3 in the carbon dioxide case. The fragmentation efficiencies of methane and carbon dioxide (RF(CH4)  ≈  1…2   ×   1015 molecules J-1, RF(CO2)  ≈  0.5…1.0   ×   1016 molecules J-1) and the respective conversion efficiencies to the product molecules (R C(product) ≈ 1013-1015 molecules J-1) have been determined for different gas mixtures and plasma power values, while the influence of probe and screen plasmas, i.e. the phenomena caused by the interplay of both plasma sources, was analyzed. The additional usage of the plasma at the model probe has a sensitive influence on the generation of the reaction products, in particular that of NH3 and HCN. With the help of OES the rotational temperature of the screen plasma could be determined, which increases with power from 770 K to 950 K. Also with power the ionic component of nitrogen molecules, i

  19. Applications of a single-longitudinal-mode alexandrite laser for diagnostics of parameters of combustion interest

    NASA Astrophysics Data System (ADS)

    Li, Z. S.; Afzelius, M.; Zetterberg, J.; Aldén, M.

    2004-10-01

    We report on the applications of a single-longitudinal-mode (SLM) pulsed alexandrite laser system for diagnostics of parameters of flow/combustion interest. The laser system is characterized by its narrow linewidth, high peak power, and broad tunablity. The absolute frequency of the laser output was monitored by a wavelength diagnostic system, which included a high-resolution confocal etalon and a molecular iodine laser-induced fluorescence (LIF) detection system. Different nonlinear frequency conversion schemes were used to cover a large frequency range from the infrared to the deep UV. The versatility of the laser system for flow/combustion diagnostics is demonstrated in three applications, namely filtered Rayleigh scattering, high-resolution Doppler-free two-photon LIF of CO, and infrared LIF and polarization spectroscopy of CO2. The potential impacts of using this SLM laser system in laser flow/combustion diagnostic applications are discussed.

  20. Plasma Liner Development for MTF Applications: A Status Report

    NASA Technical Reports Server (NTRS)

    Eskridge, R. E.; Thio, Y. F.; Lee, M.; Martin, A.; Smith, J. W.; Griffin, S. T.; Schafer, Charles (Technical Monitor)

    2001-01-01

    An experimental plasma gun for Magnetic Target Fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. This gun has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.