Science.gov

Sample records for plasma diagnostic applications

  1. Diagnostics and biomedical applications of radiofrequency plasmas

    NASA Astrophysics Data System (ADS)

    Lazović, Saša

    2012-11-01

    In this paper we present spatial profiles of ion and atomic oxygen concentrations in a large scale cylindrical 13.56 MHz capacitively coupled plasma low pressure reactor suitable for indirect biomedical applications (like treatment of textile to increase antibacterial properties) and direct (treatment of seeds of rare and protected species). Such reactor can easily be used for the sterilization of medical instruments by removing bacteria, spores, prions and fungi as well. We also discuss electrical properties of the system based on the signals obtained by the derivative probes and show the light emission profiles close to the sample platform. In the case of seeds treatment, the desired effect is to plasma etch the outer shell of the seed which will lead to the easier nutrition and therefore increase of the germination. In the case of textile treatment the functionalization is done by bounding atomic oxygen to the surface. It appears that antibacterial properties of the textile are increased by incorporating nanoparticles to the fibres which can successfully be done after the plasma treatment. From these two examples it is obvious that the balance of ion and atomic oxygen concentrations as well as proper choice of ion energy and power delivered to the plasma direct the nature of the plasma treatment.

  2. Applications of digital processing for noise removal from plasma diagnostics

    SciTech Connect

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-11-11

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.

  3. Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas

    SciTech Connect

    Wang Zhehui; Ticos, Catalin M.; Wurden, Glen A.

    2007-10-15

    Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 10{sup 15} m{sup -3} electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas ({approx}10 eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.

  4. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  5. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  6. Biomedical applications and diagnostics of atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj; Puač, N.; Lazović, S.; Maletić, D.; Spasić, K.; Malović, G.

    2012-03-01

    Numerous applications of non-equilibrium (cold, low temperature) plasmas require those plasmas to operate at atmospheric pressure. Achieving non-equilibrium at atmospheric pressure is difficult since the ionization growth is very fast at such a high pressure. High degree of ionization on the other hand enables transfer of energy between electrons and ions and further heating of the background neutral gas through collisions between ions and neutrals. Thus, all schemes to produce non-equilibrium plasmas revolve around some form of control of ionization growth. Diagnostics of atmospheric pressure plasmas is difficult and some of the techniques cannot be employed at all. The difficulties stem mostly from the small size. Optical emission spectroscopy and laser absorption spectroscopy require very high resolution in order to resolve the anatomy of the discharges. Mass analysis is not normally applicable for atmospheric pressure plasmas, but recently systems with triple differential pumping have been developed that allow analysis of plasma chemistry at atmospheric pressures which is essential for numerous applications. Application of such systems is, however, not free from problems. Applications in biomedicine require minimum heating of the ambient air. The gas temperature should not exceed 40 °C to avoid thermal damage to the living tissues. Thus, plasmas should operate at very low powers and power control is essential. We developed unique derivative probes that allow control of power well below 1 W and studied four different sources, including dielectric barrier discharges, plasma needle, atmospheric pressure jet and micro atmospheric pressure jet. The jet operates in plasma bullet regime if proper conditions are met. Finally, we cover results on treatment of bacteria and human cells as well as treatment of plants by plasmas. Localized delivery of active species by plasmas may lead to a number of medical procedures that may also involve removal of bacteria, fungi and

  7. Applications of quantum cascade lasers in plasma diagnostics: a review

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Davies, P. B.; Lang, N.; Rousseau, A.; Welzel, S.

    2012-10-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics.

  8. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  9. Application of optical phase conjugation to plasma diagnostics (invited)

    SciTech Connect

    Jahoda, F.C.; Anderson, B.T.; Forman, P.R.; Weber, P.G.

    1985-05-01

    Several possibilities for plasma diagnostics provided by optical phase conjugation and, in particular, self-pumped phase conjugation in barium titanate (BaTiO/sub 3/) are discussed. These include placing a plasma within a dye laser cavity equipped with a phase conjugate mirror for intracavity absorption measurements, time differential refractometry with high spatial resolution, and simplified real-time holographic interferometry. The principles of phase conjugation with particular reference to photorefractive media and the special advantages of self-pumped phase conjugation are reviewed prior to the discussion of the applications. Distinctions are made in the applications between those for which photorefractive conjugators are essential and those for which they only offer experimental simplification relative to other types of phase conjugators.

  10. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  11. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  12. Development, diagnostic and applications of radio-frequency plasma reactor

    NASA Astrophysics Data System (ADS)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  13. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  14. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  15. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz-30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  16. Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications

    DTIC Science & Technology

    2011-12-01

    future. The combustion process in these engines typically involves highly turbulent reactive flow conditions, often beyond the limits of our...electric field gives rise to new electron and ion impact processes which can enhance the propagation and branching of radicals and ultimately...is generated separately and the flame is ignited as the gases pass over the plasma region. The actual oxidation process occurs further downstream

  17. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  18. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  19. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  20. Diagnostics of Nanodusty Plasma

    NASA Astrophysics Data System (ADS)

    Greiner, Franko; Groth, Sebastian; Tadsen, Bejamin; Piel, Alexander

    2015-11-01

    The diagnostic of nanodusty plasmas, i.e. plasmas including nano-sized dust particles, is a challenging task. For both, the diagnostic of the nanodusty plasma itself, and the in-situ diagnostic of the nanoparticles, no standard diagnostic exist. Nanodust particle size and density can be estimated using light scattering techniques, namely kinetic Mie ellipsometry and extinction measurements. The charge of the nanoparticles can be estimated from the analysis of dust density waves (DDW). Parameters like the electron density, which give information about the plasma itself, may be deduced from the DDW analysis. We present detailed investigations on nanodust in a reactive Argon-Acetylene plasma created in an rf-driven parallel plate reactor at low pressure using the above mentioned portfolio of diagnostic. Funded by DFG under contract SFB TR-24/A2.

  1. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    NASA Astrophysics Data System (ADS)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  2. Principles of plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian H.

    The physical principles, techniques, and instrumentation of plasma diagnostics are examined in an introduction and reference work for students and practicing scientists. Topics addressed include basic plasma properties, magnetic diagnostics, plasma particle flux, and refractive-index measurements. Consideration is given to EM emission by free and bound electrons, the scattering of EM radiation, and ion processes. Diagrams, drawings, graphs, sample problems, and a glossary of symbols are provided.

  3. Construction, calibration, and application of a compact spectrophotometer for EUV (300-2500-A) plasma diagnostics.

    PubMed

    Moos, H W; Chen, K I; Terry, J L; Fastie, W G

    1979-04-15

    A 400-mm normal incidence concave grating spectrophotometer, specifically designed for plasma diagnostics, is described. The wavelength drive, in which the grating is translated as well as rotated, is discussed in detail; the wavelength linearity of the sine drive and methods of improving it are analyzed. The instrument can be used in any orientation, is portable under vacuum, and quite rugged. The construction techniques utilized produce a high quality vacuum making the instrument compatible with both high purity plasma devices and synchrotron radiation sources. The photometric sensitivity calibration was found to be very stable during extended use on high temperature plasma devices. The applications of the instrument to diagnose plasmas in two tokamaks and a mirror device are described. A facility used for photometric calibration of extreme ultraviolet (lambda > 300-A) spectrophotometers against NBS standard diodes is described. The instrumental calibration obtained using this facility was checked by using synchrotron radiation from SURF II; very good agreement was observed.

  4. Laser-based diagnostics applications for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    van der Meiden, H. J.; van den Berg, M. A.; Brons, S.; Ding, H.; van Eck, H. J. N.; 't Hoen, M. H. J.; Karhunen, J.; de Kruif, T. M.; Laan, M.; Li, C.; Lissovski, A.; Morgan, T. W.; Paris, P.; Piip, K.; van de Pol, M. J.; Scannell, R.; Scholten, J.; Smeets, P. H. M.; Spork, C.; Zeijlmans van Emmichoven, P. A.; Zoomers, R.; De Temmerman, G.

    2013-11-01

    Several laser based diagnostics are implemented on to the linear plasma generator Magnum-PSI, wherein ITER divertor relevant plasma-wall conditions are realized. Laser Induced Desorption Quadrupole Mass Spectroscopy (LID-QMS) and Laser Induced Breakdown Spectroscopy (LIBS) are installed to measure deuterium retention in plasma facing components. Combined with Thermal Desorption Spectroscopy, LID-QMS can be used to measure lateral retention profiles. LIBS is used to measure the surface composition qualitatively, after plasma exposure. An advanced Thomson Scattering (TS) system measures electron density, neutral density and electron temperature profiles (spatial resolution < 2 mm) across the maximum 100 mm plasma diameter. Very low electron density (9 × 1018 m-3) can be measured within seconds with accuracies better than 6%. The minimum measurable electron density and temperature are ~ 1 × 1017 m-3 and ~ 0.07 eV, respectively. By virtue of the high system sensitivity, single pulse TS can be performed on high density pulsed plasmas (used for replicating ELMs). For measuring the ion temperature and flow velocity of the plasma a Collective TS system (CTS) is being built: the small Debye length of the Magnum-PSI plasma enables application of this method at relatively short laser wavelength. In a feasibility study it was shown that forward CTS with a seeded Nd:YAG laser operating at 1064 nm, can be applied at Magnum-PSI to measure ion temperature and axial velocity with an accuracy of < 8% and < 15%, respectively. Two high spectral resolution ( ~ 0.005 nm) detection schemes are applied simultaneously: an Echelle grating spectrometer (enabling profile measurements) and a system based on a Fabry-Perot etalon that enables wavelength scanning over its free spectral range, by tilting the device. The status and performance of the various laser based plasma and surface diagnostics will be reported along with experimental results.

  5. Diagnostic enhancements for plasma processing

    SciTech Connect

    Selwyn, G.S.; Henins, I.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Funds obtained under this project were used to enhance the diagnostic capabilities of the plasma-processing program in the Physics Division at LANL and include successful development and implementation of in-situ Raman spectroscopy and infrared emission spectroscopy. These methods were used to detect the presence and nature of ground-state and electronically excited molecular oxygen formed in an atmospheric-pressure, nonthermal plasma source used for environmental, industrial and decontamination applications.

  6. Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Nastuta, Andrei

    A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

  7. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    SciTech Connect

    Gilmore, Mark; Hsu, Scott; Witherspoon, F. Douglas; Cassibry, Jason; Bauer, Bruno S.

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  8. In-situ measurement of plasma surface interactions and diagnostic development for fusion applications

    NASA Astrophysics Data System (ADS)

    Harrison, Soren David

    This work describes the measurement of plasma surface interactions (PSI) in nuclear fusion devices (e.g. tokamaks) and the successful development of a novel in-situ PSI diagnostic. The Alpha Radioisotope Remote Ion Beam Analysis (ARRIBA) diagnostic is designed to measure erosion, deposition, and hydrogenic retention at surfaces inside fusion devices. ARRIBA will enable groundbreaking insight into tokamak PSI, which is a high-leverage research area in the quest for abundant, clean, safe energy from nuclear fusion. Chapter 1 describes the impact of PSI on the performance of nuclear fusion devices. Chapter 2 provides a review of PSI diagnostics and discusses their implementation, strengths, and weaknesses in the harsh environment of fusion machines. The first two chapters motivate the research and development described in subsequent chapters. Chapter 3 provides an overview and introduction to the ARRIBA diagnostic; this chapter covers the essential elements of how the diagnostic functions. Chapter 4 describes the mechanical aspects of the ARRIBA diagnostic. Chapter 5 discusses the measurement, simulation, and analysis of ARRIBA data. And finally, Chapter 6 discusses the conclusion of this work.

  9. The application of atomic physics within impurity diagnostics for fusion plasmas

    SciTech Connect

    Loch, S. D.; Ballance, C. P.; Pindzola, M. S.; Griffin, D. C.

    2013-04-19

    With the focus of ITER on the transport and emission properties of tungsten, generating atomic data for complex species has received much interest. Focusing on impurity influx diagnostics, we discuss recent work on heavy species. Perturbative approaches do not work well for near neutral systems so non-perturbative data are required, presenting a particular challenge for these influx diagnostics. Recent results on Mo{sup +} are given as an illustration of how the diagnostic applications can guide the theoretical calculations for such systems.

  10. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  11. Stark width and shift for electron number density diagnostics of low temperature plasma: Application to silicon Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivković, M.; Konjević, N.

    2017-05-01

    In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.

  12. Extremely compact capillary discharge-based soft x-ray lasers and their application to dense plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge

    2002-11-01

    Several applications, including the diagnostics of dense plasmas, require bright beams of coherent soft x-ray radiation. Recently significant progress has been made in the development of very compact high brightness soft x-ray lasers with excellent spatial coherence based on fast capillary discharges. Fast discharge-driven compressions in capillary channels produce axially uniform plasmas columns of narrow diameter in which saturated laser amplification is produced by collisional electron excitation of Ne-like ions. With laser pulse energies of several hundred μJ, peak spectral brightness of ˜ 2× 10^25 photons/ (s mm ^2 mrad ^2 0.01% bandwidth) and repetition rate of several Hz, the 46.9 nm the table-top Ne-like Ar capillary discharge laser has been successfully used in several applications. In long capillary plasma columns strong refractive anti-guiding and gain guiding act as an intrinsic mode selection mechanism that makes it possible to achieve essentially full spatial coherence. Such soft x-ray laser beams can probe scale-lengths and plasma densities beyond the limits that plasma refraction and absorption impose on optical laser probes, as initially demonstrated at Lawrence Livermore National Lab with a laboratory-size soft x-ray laser pumped by the Nova laser. With similar brightness, but much higher repetition rate and smaller foot print, the Ne-like Ar capillary discharge laser was used in the first table-top soft x-ray laser plasma diagnostics experiments, that include the shadowgraphy of micro-capillary discharges and interferometry of laser-created plasmas. In combination with a Mach-Zehnder interferometer that uses diffraction gratings as beam splitters it was used to study two-dimensional hydrodynamic effects in laser-created plasmas. Interferograms of plasmas generated at relatively low irradiation intensities (1×10^11- 7×10^12 W cm_2) with 13 ns FWHM duration light pulses revealed the unexpected formation of a concave density profile with a

  13. ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS

    SciTech Connect

    Guennou, C.; Auchere, F.; Soubrie, E.; Bocchialini, K.; Barbey, N.

    2012-12-15

    Differential emission measure (DEM) analysis is one of the most used diagnostic tools for solar and stellar coronae. Being an inverse problem, it has limitations due to the presence of random and systematic errors. We present in this series of papers an analysis of the robustness of the inversion in the case of SDO/AIA observations. We completely characterize the DEM inversion and its statistical properties, providing all the solutions consistent with the data along with their associated probabilities, and a test of the suitability of the assumed DEM model. While Paper I focused on isothermal conditions, we now consider multithermal plasmas and investigate both isothermal and multithermal solutions. We demonstrate how the ambiguity between noises and multithermality fundamentally limits the temperature resolution of the inversion. We show that if the observed plasma is multithermal, isothermal solutions tend to cluster on a constant temperature whatever the number of passbands or spectral lines. The multithermal solutions are also found to be biased toward near-isothermal solutions around 1 MK. This is true even if the residuals support the chosen DEM model, possibly leading to erroneous conclusions on the observed plasma. We propose tools for identifying and quantifying the possible degeneracy of solutions, thus helping the interpretation of DEM inversion.

  14. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  15. Low-pressure plasma diagnostic methods

    SciTech Connect

    Eddy, T.L.

    1989-01-01

    Diagnostic techniques have been recently developed that permit the determination of the deviation from local thermal equilibrium (LTE) in subatmospheric electric arcs and plasma jets. A review is presented of the methods that are applicable to MPD and arcjet thruster plasmas but that have not been used in space propulsion research. Appropriate plasma diagnostics can lead to increased thrust, better nozzle design, and improved modeling capabilities. These methods include nonintrusive techniques, and can determine the electron, gas, and total excitation, temperatures, as well as the electron and atom densities, without using LTE or partial LTE assumptions. General relations for analysis and experimental results for argon constricted arcs, an arc in a rotating magnetic field, and plasma torch jets are presented. The methods discussed can also be applied to plasma mixtures. 23 refs.

  16. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  17. ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. I. ISOTHERMAL PLASMAS

    SciTech Connect

    Guennou, C.; Auchere, F.; Soubrie, E.; Bocchialini, K.; Barbey, N.

    2012-12-15

    Differential emission measure (DEM) analysis is a major diagnostic tool for stellar atmospheres. However, both its derivation and its interpretation are notably difficult because of random and systematic errors, and the inverse nature of the problem. We use simulations with simple thermal distributions to investigate the inversion properties of SDO/AIA observations of the solar corona. This allows a systematic exploration of the parameter space, and using a statistical approach the respective probabilities of all the DEMs compatible with the uncertainties can be computed. Following this methodology, several important properties of the DEM inversion, including new limitations, can be derived and presented in a very synthetic fashion. In this first paper, we describe the formalism and we focus on isothermal plasmas as building blocks to understand the more complex DEMs studied in the second paper. The behavior of the inversion of AIA data being thus quantified, and we provide new tools to properly interpret the DEM. We quantify the improvement of the isothermal inversion with six AIA bands compared to previous EUV imagers. The maximum temperature resolution of AIA is found to be 0.03 log T{sub e} , and we derive a rigorous test to quantify the compatibility of observations with the isothermal hypothesis. However, we demonstrate limitations in the ability of AIA alone to distinguish different physical conditions.

  18. Laser diagnostics for plasma turbulence

    NASA Astrophysics Data System (ADS)

    The purpose of this effort is to further develop the multiple-beam laser scattering diagnostic for tokamak plasmas. Present laser scattering diagnostics have very poor spatial resolution. Yet good spatial resolution is necessary if adequate comparison of theory and experiment is to occur. The proposed multiple beam scattering diagnostic promises a spatial resolution of approximately 10 cm at a fluctuation wave number of 5 cm(exp -1) when the angular envelope of the beams is 0.1 radians. A larger angular envelope would further improve the spatial resolution. This kind of spatial resolution is impossible with current laser scattering diagnostics. Enclosed are two items. These items constitute the major results of this study. Appendix A is a draft of a paper being prepared for submission to the journal on the review of scientific instruments. This paper consists of three sections. Section 1 compares the proposed diagnostic to conventional laser scattering diagnostics and argues for the need of increased spatial resolution. Section 2 presents a thorough rendering of the conceptual basis of the proposed multiple beam diagnostic. Section 3 presents an optical design suitable for use on the TEXT upgrade tokamak. Appendix B is a schematic of a proposed proof-of-principle bench-top experiment of the multiple beam scattering diagnostic. It is designed to demonstrate the concept thoroughly at a greatly reduced cost. An actual multiple beam CO2 laser scattering experiment on a controlled laboratory plasma would be a good follow-up before attempting construction of the diagnostic on a major tokamak.

  19. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  20. Diagnostics of Plasma Propulsion Devices

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark A.

    1998-11-01

    Plasma rockets are rapidly emerging as critical technologies in future space flight. These devices take on various forms, ranging from electro-thermal to electromagnetic accelerators, generally categorized by the method in which electrical energy is converted to thrust. As is the case in many plasma devices, non-intrusive optical (emission, or laser-based) diagnostics is an essential element in the characterization of these plasma sources, as access to the discharges in these plasma engines is often limited. Furthermore, laser-based diagnostics offer additional benefits, including improved spatial resolution, and can provide state-specific measurements of species densities, velocities and energy distributions. In recent years, we have developed and applied a variety of emission and laser-based diagnostics strategies to the characterization of arcjet plasma and closed-drift xenon Hall plasma accelerators. Both of these types of plasma propulsion devices are of immediate interest to the space propulsion community, and are under varying stages of development. Arcjet thrusters have unique properties, with strong plasma density, temperature and velocity gradients, which enhance the coupling between the gasdynamic and plasma physics. Closed-drift Hall plasma thrusters are low density electrostatic devices that are inherently turbulent, and exhibit varying degrees of anomalous cross-field electron transport. Our most extensive, collective effort has been to apply laser-induced fluorescence, Doppler-free laser absorption, and Raman scattering to the characterization of hydrogen and helium arcjet flows. Detailed measurements of velocity, temperatures, and electron densities are compared to the results of magneto-hydrodynamic flowfield simulations. The results show that while the simulations capture many aspects of the flow, there are still some unresolved discrepancies. The database established for Hall thrusters is less extensive, as the laser absorption spectroscopy of

  1. Laser plasma diagnostics of dense plasmas

    SciTech Connect

    Glendinning, S.G.; Amendt, P.; Budil, K.S.; Hammel, B.A.; Kalantar, D.H.; Key, M.H.; Landen, O.L.; Remington, B.A.; Desenne, D.E.

    1995-07-12

    The authors describe several experiments on Nova that use laser-produced plasmas to generate x-rays capable of backlighting dense, cold plasmas (p {approximately} 1--3 gm/cm{sup 3}, kT {approximately} 5--10 eV, and areal density {rho}{ell}{approximately} 0.01--0.05 g/cm{sup 2}). The x-rays used vary over a wide range of h{nu}, from 80 eV (X-ray laser) to 9 keV. This allows probing of plasmas relevant to many hydrodynamic experiments. Typical diagnostics are 100 ps pinhole framing cameras for a long pulse backlighter and a time-integrated CCD camera for a short pulse backlighter.

  2. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  3. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  4. Spectroscopic diagnostics of dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ouaras, Karim

    2014-10-01

    The formation of carbon nanoparticles particles in low pressure magnetized hydrocarbon plasmas is investigated using infrared quantum cascade laser absorption spectroscopy (QCLAS), mass spectrometry (MS) and laser extinction spectroscopy (LES). Results showed that dust formation is correlated to the presence of a large amount of large positively charged hydrocarbon ions. Large negative ions or neutral species were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas. Growth of carbon nanoparticles has been widely studied in RF plasma. Our aim is to complete these studies in different discharge system, in which the growth mechanisms may be different. In particular, we focus our work on dipolar ECR microwave discharge. The magnetic field of the plasma source is likely to trap carbon-containing charged particles and then modify the dust growth kinetics. In the present study the combination of these diagnostics gives us the tools to study the kinetics of plasma processes. In this way both qualitative and quantitative characteristics could be obtained. An outstanding role may be attributed to the positive ions in the monitored magnetized plasmas, whereas usually formation of dust is supposed driven by negative ions. In addition, we focus our work in tungsten nanoparticle in particular with LES, this noninvasive technique provide us the tool to follow the dynamics and concentration dust. K. Ouaras, L. Colina Delacqua, G. Lombardi, K. Hassouni, and X. Bonnin.

  5. Advanced plasma diagnostics for plasma processing

    NASA Astrophysics Data System (ADS)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  6. Diagnostics of Pulsed Hydrogen Plasmas

    NASA Astrophysics Data System (ADS)

    Dubois, Jerome; Cunge, Gilles; Joubert, Olivier; Darnon, Maxime; Vallier, Laurent; Posseme, Nicolas; Etching Group Team

    2014-10-01

    Hydrogen plasmas present a great potential interest for new materials such as graphene or C-nanotubes. To modify or clean such ultrathin layers without damaging the material, low ion energy bombardment is required (conditions such as those obtained in pulsed ICP reactor). By contrast, for other applications the ion energy must be high, to get a significant etch rate for example. To assist the development of innovative processes in H2 plasmas, we have thus analyzed systematically CW and pulsed H2 plasmas both with and without RF bias power. In particular, we carry out time-resolved ion flux, and time-averaged ion energy measurements in different pulsing configurations. A large variety of ion energies and shapes of IVDF are reported depending on pulsing parameters. The IVDF are typically very broad (due to the low ion transit time of low mass ion through the sheath) and either bi or tri-modal (H +, H2 + and H3 + contributions). The time variations of the ion flux in pulsed plasmas also presents peculiar features that will be discussed. Finally, we show that a specific issue is associated to H2 plasmas: they reduce the chamber walls material therefore releasing impurities (O atoms...) in the plasma with important consequences on processes.

  7. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  8. Optical diagnostics of dusty plasmas

    NASA Astrophysics Data System (ADS)

    Remy, Jerome Alphonse Robert

    The central topic of this thesis is dusty plasmas, in which particles are generated or injected. Such plasmas, when ignited in silane-based gas mixtures, are widely used in the semiconductor industry for depositing silicon layers (amorphous, micro-crystalline or polymorphous). These layers have applications in flat panel displays, sensors, and solar cells for instance. The inclusion of nano-crystallites in the amorphous silicon layer produces cells with enhanced properties but calls at the same time for a better comprehension and control of the particles' formation and growth. The role played by silicon-based radical species in these processes more particularly prompts detailed studies. Dusty plasmas are also a field of enduring interest to the astrophysics community. The interstellar medium can be simulated in a laboratory plasma to identify the carbon-based molecular complexes (Polycyclic Aromatic Hydrocarbons or PAHs) whose ions are thought to be responsible for unidentified emission and absorption bands seen in the spectra of starlight. This thesis covers some aspects of both industry-oriented and astrophysical dusty plasmas. The experimental study on silane-based plasmas includes optical measurements performed in emission, absorption, and by analyzing the light scattered by particles grown in-situ. The negative charge acquired by the particles while immersed in the plasma disturbs their dynamics but also the electrical properties of the discharge. Based on the monitoring of the plasma impedance, it is shown that the plasma is affected by the particles' presence, independently from the nature of the silane carrier gas. Optical emission spectroscopy performed on SiH, H a and H 2 excited states indicates that the silane dissociation occurs in the vicinity of the RF-powered electrode. A Fourier Transform Infrared (FTIR) time-dependent analysis of the silane consumption after plasma ignition demonstrates that the silane dissociation is actually a slow but

  9. Plasma spectroscopic diagnostic tool using collisional-radiative models and its application to different plasma discharges for electron temperature and neutral density determination

    NASA Astrophysics Data System (ADS)

    Sciamma, Ella Marion

    A spectroscopic diagnostic tool has been developed to determine the electron temperature and the neutral density in helium, hydrogen and argon plasmas from absolutely calibrated spectroscopic measurements. For each gas, a method of analysis which uses models specific to each species present in the plasma (neutral atom or singly ionized atom) has been defined. The experimental electron density is used as an input parameter to the models, and the absolutely calibrated spectroscopic data are processed beforehand to obtain the populations of the upper excited levels corresponding to the observed spectral lines. For helium plasmas, the electron temperature is inferred from the experimental helium ion excited level p = 4 population using a corona model, and then the neutral density is determined from the experimental helium neutral excited level populations using a collisional-radiative model for helium neutrals. For hydrogen plasmas, combinations of the electron temperature and the neutral density are determined from the experimental hydrogen neutral excited level populations using a collisional-radiative model specific to hydrogen atoms. For argon plasmas, the electron temperature is inferred from the experimental argon ion excited level populations using a collisional-radiative model for argon ions, and then the neutral density is determined from the experimental argon neutral excited level populations using a collisional-radiative model for argon neutrals. This diagnostic tool was applied to three experiments with different geometries and plasma conditions to test the validity of each data analysis method. The helium and hydrogen data analysis methods were tested and validated on helium and hydrogen plasmas produced in the VASIMR experiment, a plasma propulsion system concept. They gave electron temperatures and neutral densities that were consistent with other diagnostics and theory. The argon diagnostic tool was tested on argon plasmas produced in the VASIMR

  10. Complementary optical diagnostics of noble gas plasmas

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Stewart, R. S.

    2001-10-01

    In this talk we will discuss our theoretical modeling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electrical fields ranging from 3x10-17 Vcm^2 to 2x10-16 Vcm^2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the ^1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to move complex systems, including the addition of molecules for EDF determination.

  11. Diagnostics of transient non-equilibrium atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter

    2015-09-01

    Atmospheric pressure plasmas have received a renewed interest in last decades for a variety of applications ranging from environmental remediation, material processing and synthesis to envisioned medical applications such as wound healing. While most low pressure plasmas are diffuse, atmospheric pressure plasmas are often filamentary in nature. The existence of these filaments is correlated with strong gradients in plasma properties both in space and time that can significantly affect the plasma chemistry. As these filaments are often randomly appearing in space and time, it poses great challenges for diagnostics often requiring the stabilization of the filament to study the in situ plasma kinetics. In this contribution, diagnostics of a stabilized nanosecond pulsed plasma filament in a pin-pin geometry and a filament in a nanosecond pulsed atmospheric pressure plasma jet will be presented. We will focus on electron kinetics and OH and H radical production in water containing plasmas. The extension of these diagnostics to plasmas in liquids will also be discussed. The author acknowledges support from NSF PHYS1500135, Department of Energy Plasma Science Center through the U.S. Department of Energy, Office of Fusion Energy Sciences (Contract No. DE-SC0001939), University of Minnesota and STW (Netherlands).

  12. Some plasma aspects and plasma diagnostics of ion sources.

    PubMed

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  13. Laser diagnostics of plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Rao, Xing

    In this study, a microwave re-entrant cavity discharge system and a direct current (DC) plasmatron are used to investigate flame enhancement and nitric oxide (NO) formation using laser and optical diagnostics. The uniqueness of this study lies in the direct coupling concept, a novel highly efficient strategy used here for the first time. To investigate combustion dynamics of direct microwave coupled combustion, an atmospheric high-Q re-entrant cavity applicator is used to couple microwave (2.45 GHz) electromagnetic energy directly into the reaction zone of a premixed laminar methane-oxygen flame using a compact torch. When microwave energy increases, a transition from electric field enhancement to microwave plasma discharge is observed. At 6 to 10 Watts, ionization and eventually break-down occurs. 2-D laser induced fluorescence (LIF) imaging of hydroxyl radicals (OH) and carbon monoxide (CO) is conducted in the reaction zone over this transition, as well as spectrally resolved flame emission measurements. These measurements serve to monitor excited state species and derive rotational temperatures using OH chemiluminescence for a range of equivalence ratios (both rich and lean) and total flow rates. Combustion dynamics is also investigated for plasma enhanced methane-air flames in premixed and nonpremixed configurations using a transient arc DC plasmatron. Results for OH and CO PLIF also indicate the differences in stability mechanism, and energy consumption for premixed and nonpremixed modes. It is shown that both configurations are significantly influenced by in-situ fuel reforming at higher plasma powers. Parametric studies are conducted in a plasma assisted methane/air premixed flame for quantitative NO production using a DC plasmatron with PLIF imaging. Quantitative measurements of NO are reported as a function of gas flow rate (20 to 50 SCFH), plasma power (100 to 900 mA, 150 to 750 W) and equivalence ratio (0.7 to 1.3). NO PLIF images and single point NO

  14. Synthetic diagnostics platform for fusion plasmas (invited)

    SciTech Connect

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-08-26

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  15. Synthetic diagnostics platform for fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-11-01

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  16. Synthetic diagnostics platform for fusion plasmas (invited)

    DOE PAGES

    Shi, L.; Valeo, E. J.; Tobias, B. J.; ...

    2016-08-26

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less

  17. Synthetic diagnostics platform for fusion plasmas (invited)

    SciTech Connect

    Shi, L. Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-11-15

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C{sup 1} are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP’s capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C{sup 1} output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  18. Synthetic diagnostics platform for fusion plasmas (invited)

    SciTech Connect

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-08-26

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  19. THz time-domain spectroscopy for tokamak plasma diagnostics

    SciTech Connect

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  20. THz time-domain spectroscopy for tokamak plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Causa, F.; Zerbini, M.; Johnston, M.; Buratti, P.; Doria, A.; Gabellieri, L.; Gallerano, G. P.; Giovenale, E.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.

    2014-08-01

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  1. Spectroscopic diagnostics of high temperature plasmas

    SciTech Connect

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  2. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  3. Diagnostics of mobile dust in scrape-off layer plasmas

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Castaldo, C.; Bergsåker, H.; Rudakov, D.

    2011-07-01

    Dust production and accumulation pose serious safety and operational implications for the next generation fusion devices. Mobile dust particles can result in core plasma contamination with impurities, and those with high velocities can significantly contribute to the wall erosion. Diagnostics for monitoring dust in tokamaks during plasma discharges are hence important as they can provide information on dust velocity and size, and—in some cases—on dust composition. Such measurements are also valuable as an input for theoretical models of dust dynamics in scrape-off layer plasmas. Existing in situ dust diagnostics, focusing on the range of dust parameters they can detect, are reviewed. Particular attention is paid to the diagnostics which allow us to detect tails of the dust velocity and size distributions, e.g. small and very fast particles. Some of the techniques discussed have been adopted from space-related research and have been shown to be feasible and useful for tokamak applications as well.

  4. Online plasma diagnostics of a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  5. Spectroscopic imaging diagnostics for burning plasma experiments

    SciTech Connect

    Stutman, D.; Finkenthal, M.; Suliman, G.; Tritz, K.; Delgado-Aparicio, L.; Kaita, R.; Johnson, D.; Soukhanovskii, V.; May, M.J.

    2005-02-01

    Spectroscopic imaging of plasma emission profiles from a few electron volts to tens of kilo-electron volts enables basic diagnostics in present day tokamaks. For the more difficult burning plasma conditions, light extraction and detection techniques, as well as instrument designs need to be investigated. As an alternative to light extraction with reflective optics, we discuss normal incidence, transmissive-diffractive optics (e.g., transmission gratings), which might withstand plasma exposure with less degradation of optical properties. Metallic multilayer reflectors are also of interest for light extraction. Although a shift of the diffraction peak might occur, instrument designs that accommodate such shifts are possible. As imaging detectors we consider 'optical' arrays based on conversion of the short-wavelength light into visible light followed by transport of the visible signal with hollow lightguides. The proposed approaches to light extraction and detection could enable radiation resistant diagnostics.

  6. Spectroscopic imaging diagnostics for burning plasma experiments

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.; Suliman, G.; Tritz, K.; Delgado-Aparicio, L.; Kaita, R.; Johnson, D.; Soukhanovskii, V.; May, M. J.

    2005-02-01

    Spectroscopic imaging of plasma emission profiles from a few electron volts to tens of kilo-electron volts enables basic diagnostics in present day tokamaks. For the more difficult burning plasma conditions, light extraction and detection techniques, as well as instrument designs need to be investigated. As an alternative to light extraction with reflective optics, we discuss normal incidence, transmissive-diffractive optics (e.g., transmission gratings), which might withstand plasma exposure with less degradation of optical properties. Metallic multilayer reflectors are also of interest for light extraction. Although a shift of the diffraction peak might occur, instrument designs that accommodate such shifts are possible. As imaging detectors we consider "optical" arrays based on conversion of the short-wavelength light into visible light followed by transport of the visible signal with hollow lightguides. The proposed approaches to light extraction and detection could enable radiation resistant diagnostics.

  7. Plasma diagnostics for x-ray driven foils at Z

    SciTech Connect

    Heeter, R F; Bailey, J E; Cuneo, M E; Emig, J; Foord, M E; Springer, P T; Thoe, R S

    2000-06-17

    We report the development of techniques to diagnose plasmas produced by X-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW X-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated 3-crystal Johann spectrometer with dual lines of sight to meet these requirements. We present sample data from experiments in which 1 cm, 180 eV tungsten pinches photoionized foils composed of 200{angstrom} Fe and 300{angstrom} NaF co-mixed and sandwiched between 1000{angstrom} layers of Lexan (CHO), and discuss the application of this work to benchmarking astrophysical models.

  8. X-ray scattering as a dense plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Nardi, Eran; Zinamon, Zeev; Riley, David; Woolsey, Nigel C.

    1998-04-01

    We show here that x-ray scattering can be a useful and potentially powerful plasma diagnostic, much in the same way as in liquid metals. The model used in the calculations is briefly described. The basic atomic data used here are obtained from the average atom INFERNO model. Three different configurations were studied: an Al plasma at several eV and a density of 0.1 g/cm3, which could be produced by radiatively heating an Al foil; an ultradense Al plasma which could be realized using colliding shock waves; and femtosecond laser produced plasmas. In the latter case we show that the applicability of the x-ray scattering method for obtaining information on both electron and ion temperature can be used in order to evaluate the electron-ion relaxation time. It is also shown that small angle scattering provides an equation of state diagnostic.

  9. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  10. Plasma diagnostic x-ray tomography system

    NASA Astrophysics Data System (ADS)

    Eshelman, C. D.; Tseng, H. K.; Dolan, T. J.; Prelas, M. A.

    1991-03-01

    A radiation-hardened 60-channel x-ray tomography system has been developed to determine the two-dimensional distribution of x-ray emissivity from magnetically confined plasmas. In order to maximize their field of view, the diode arrays are mounted in re-entrant tubes inside the plasma chamber diagnostic ports. Metal foil vacuum windows serve as x-ray filters and permit the diodes and cables to be at atmospheric pressure. Preamplifiers are mounted at the outside end of the re-entrant tubes. The diode arrays and preamplifiers are protected from the harsh radiation environment by lead shielding. Image reconstruction is done using the harmonic expansion method or the linear algebraic method. For plasmas with some cylindrical symmetry the harmonic expansion method is superior, but for small discrete objects the Cartesian algebraic method is better. Preliminary data from the Missouri Magnetic Mirror plasma with electron cyclotron resonance heating show evidence of a hot electron ring.

  11. Near-infrared spectroscopy for burning plasma diagnostic applicationsa)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and γ-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  12. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  13. SPDE: Solar Plasma Diagnostic Experiment

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  14. SPDE: Solar Plasma Diagnostic Experiment

    NASA Astrophysics Data System (ADS)

    Bruner, Marilyn E.

    1995-09-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  15. Mobile CARS instrument for combustion and plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Anderson, Torger J.; Dobbs, Gregory M.; Eckbreth, Alan C.

    1986-11-01

    The compact and easily transportable CARS system for combustion and plasma diagnostics presented is adaptable to a wide variety of test environments and experiments, as well as capable of withstanding high noise and vibration levels. The system incorporates remotely controlled operation capabilities in order to keep operating personnel and delicate components from noisy, hazardous environments. Attention is given to the system's application to single-pulse temperature and concentration measurements in such frequently encountered combustion systems as gas turbines, diesel engines, and plasma-process applications. Initial measurement demonstrations have been accomplished for a supersonic combustor flow.

  16. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  17. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  18. Optical mixing as a plasma diagnostic

    SciTech Connect

    Forman, P.R.; Riesenfeld, W.

    1980-03-01

    The nonlinear interaction of electromagnetic waves in a plasma are examined as the basis for a new and useful diagnostic tool. In particular, we consider the Raman-Induced Kerr Effect (RIKE) in a magnetic field-free plasma, and evaluate the characteristics of various laser sources and detecting equipment necessary for the implementation of a sensitive RIKE scattering system. Our conclusion is that the present state of technology permits the design of promising diagnostics systems of this type. Finally, we express reasonable conjectures on the generalization of the effect to magnetoplasmas, in which the measurement could lead to the determination not only of density, but also of the magnitude and direction of the imbedded magnetic field.

  19. Plasma diagnostics for the compact ignition tokamak

    SciTech Connect

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.

  20. Two novel plasma diagnostic tools: fiber sensors and phase conjugation

    SciTech Connect

    Jahoda, F.C.

    1984-01-01

    A rapidly developing technology (single-mode optical fiber sensors) and recent fundamental research in nonlinear optics (phase conjugation) both offer opportunities for novel plasma diagnostics. Single-mode fiber sensors can replace electrical wire probes for current and magnetic field measurements with advantages in voltage insulation requirements, electromagnetic noise immunity, much greater bandwidth, and some configuration flexibility. Faraday rotation measurements through fibers wound on the ZT-40M RFP have demonstrated quantitative results, but competing linear birefringence effects still hinder independent interpretation. Optical phase conjugation (in which a phase reversed copy of a laser beam is generated) allows real time distortion corrections in laser diagnostics. Self-pumped phase conjugation in BaTiO/sub 3/ improves the quality of phase conjugation imagery and greatly simplifies experimentation directed toward plasma diagnostics. Our initial applications are (a) time-differential refractometry with high spatial resolution and (b) intracavity absorption Zeeman spectroscopy.

  1. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  2. Plasma Position Diagnostics for the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Pizzicaroli, G.; Alladio, F.; Bombarda, F.; Licciulli, A.; Fersini, M.; Diso, D.; Paulicelli, E.

    2007-11-01

    Prototype coils of the electromagnetic diagnostics for the Ignitor experiment have been manufactured adopting innovative methods to improve the ceramic insulator resilience to neutron and gamma radiation. Thus, real time plasma position measurements should be possible over a broader range of high performance plasma regimes with D-D and D-T fuel. An alternative method is under study to provide the necessary spatial information also at the highest parameters that the Ignitor experiment can achieve (BT˜13 T, Ip˜11 MA, neutron yield˜3x10^19 n/s), where the electromagnetic diagnostics may fail. The new instrument is based on the diffraction and detection of the soft X-ray radiation emitted at the plasma edge. Gas Electron Multiplier (GEM) detectors are considered as the best candidates to provide signals with high counting rates (>1 MHz) and high S/N ratios, to be used by the control systemootnotetextD. Pacella, et al, Nucl. Instr. Meth. A 508, 414 (2003). A curved Multilayer Mirror placed inside one of the equatorial ports will diffract the radiation onto a properly shielded GEM detector that is located outside the machine vacuum and not in direct view of the plasma.

  3. Optical imaging diagnostics for fusion plasmas

    SciTech Connect

    Allen, S.L.

    1988-04-01

    Imaging diagnostics are used for spatially/emdash/and temporally/emdash/resolved quantitative measurements of plasma properties such as the ionization particle source, particle and energy loss, and impurity radiation in magnetically confined fusion plasmas. Diagnostics equipped with multi-element solid-state detectors (often with image intensifiers) are well suited to the environment of large fusion machines with high magnetic field and x-ray and neutron fluxes. We have both conventional (16msframe) and highspeed video cameras to measure neutral deuterium H/sub ..cap alpha../ (6563 /angstrom/) emissions from fusion plasmas. Continuous high-speed measurements are made with video cameras operating at 0.1 to 0.5 msframe; gated cameras provide snapshots of 10 to 100 ..mu..s during each 16-ms video frame. Digital data acquisition and absolute intensity calibrations of the cameras enable detailed quantitative source measurements: these are extremely important in determining the particle balance of the plasma. In a liner confinement device, radial transport can be determined from the total particle balance. In a toroidal confinement device, the details of particle recycling can be determined. Optical imaging in other regions of the spectrum are also important, particularly for the diverter region of large tokamaks. Absolutely calibrated infrared cameras have been used to image to temperature changes in the wall and thereby determine the heat flux. Absolutely calibrated imaging ultraviolet spectrometers measure impurity concentrations; both spatial and spectral imaging instruments are employed. Representative data from each of these diagnostic systems will be presented. 16 refs., 8 figs.

  4. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  5. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  6. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  7. Measurements of transition probabilities for two N I infrared transitions and their application for diagnostics of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Baclawski, A.; Musielok, J.

    2010-02-01

    Spectra emitted from a wall-stabilized arc, running in a gas mixture of helium, argon, nitrogen, oxygen and traces of hydrogen have been studied. Intensities of selected spectral transitions of neutral nitrogen and oxygen have been measured. Applying the Boltzmann plot method and using a reliable set of O I transition probabilities of spectral lines, originating from levels considerably spread in excitation energies, the temperatures of arc plasmas have been determined. Line intensities of two N I infrared transitions, originating from doubly excited terms 3p' 2F o and 3p' 2G have been measured. In order to obtain the corresponding transition probabilities ( Aki) for these lines, intensities of other N I infrared lines, with well known transition probabilities (taken from recently published data by Wiese and Fuhr [W.L. Wiese and J.R. Fuhr, Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen, J. Phys. Chem. Ref. Data 36 (2007) 1287-1345] from National Institute of Standards and Technology — NIST) have been measured. For evaluation of the transition probabilities the temperatures obtained from the above mentioned O I Boltzmann plots have been used. The results agree satisfactorily with older data found in literature. The new Aki values for transitions involving the doubly excited levels, together with Aki values taken from the above mentioned NIST source (used for determination of the new Aki values), are proposed as a convenient set for determining temperatures of plasmas containing nitrogen atoms.

  8. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-06-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  9. Diagnostic Development for ST Plasmas on NSTX

    SciTech Connect

    D. Johnson; NSTX Team

    2003-06-16

    Spherical tokamaks (STs) have much lower aspect ratio (a/R) and lower toroidal magnetic field, relative to tokamaks and stellarators. This paper will highlight some of the challenges and opportunities these features pose in the diagnosis of ST plasmas on the National Spherical Torus Experiment (NSTX), and discuss some of the corresponding diagnostic development that is underway. The low aspect ratio necessitates a small center stack, with tight space constraints and large thermal excursions, complicating the design of magnetic sensors in this region. The toroidal magnetic field on NSTX is less than or equal to 0.6 T, making it impossible to use ECE as a good monitor of electron temperature. A promising new development for diagnosing electron temperature is electron Bernstein wave (EBW) radiometry, which is currently being pursued on NSTX. A new high-resolution charge exchange recombination spectroscopy system is being installed. Since non-inductive current initiation and sustainment ar e top-level NSTX research goals, measurements of the current profile J(R) are essential to many planned experiments. On NSTX several modifications are planned to adapt the MSE technique to lower field, and two novel MSE systems are being prototyped. Several high speed 2-D imaging techniques are being developed, for viewing both visible and x-ray emission. The toroidal field is comparable to the poloidal field at the outside plasma edge, producing a large field pitch (>50{sup o}) at the outer mid-plane. The large shear in pitch angle makes some fluctuation diagnostics like beam emission spectroscopy very difficult, while providing a means of achieving spatial localization for microwave scattering investigations of high-k turbulence, which are predicted to be virulent for NSTX plasmas. A brief description of several of these techniques will be given in the context of the current NSTX diagnostic set.

  10. Coronal plasma diagnostics from eclipse observations

    NASA Astrophysics Data System (ADS)

    Landi, E.; Habbal, S. R.; Tomczyk, S.

    2015-12-01

    In this talk we will discuss the diagnostic potential of observationsof visible spectral lines formed in the extended solar corona that canbe obtained during eclipses. We will discuss the possible diagnosticapplications of visible eclipse observations to measure the physicalparameters of the extended corona, to understand solar wind origin andacceleration, and to determine the evolution of Coronal Mass Ejectionsduring onset.We will first review the mechanisms of formation of spectral lineintensities, we will then illustrate their diagnostic applications,and show some results from recent eclipse observations. We will alsoreview the spectral lines that are most likely to be observed inthe extended solar corona during the upcoming 2017 eclipse in thecontinental United States.

  11. Plasma pharmacy - physical plasma in pharmaceutical applications.

    PubMed

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  12. Some diagnostic interpretations from railgun plasma profile experiments

    SciTech Connect

    Stainsby, D.F.; Bedford, A.J.

    1984-03-01

    Some aspects of a railgun experimental series to investigate plasma profiles are reviewed. Certain diagnostic records clearly show plasma leakage past the projectile, and correspondence between various in-bore events and muzzle voltage. A muzzle flash detector is shown to have a useful role as a plasma diagnostic tool.

  13. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  14. Diagnostics of N2 Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface

    NASA Astrophysics Data System (ADS)

    Saloum, S.; Naddaf, M.; Alkhaled, B.

    2008-02-01

    N2-x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 <= x <= 80), at a constant applied RF power of 300 W. N2 dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I_N/I_{N_2} of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N2 second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N2, with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N_{2}^{+} density varies between 5 × 109 and 1.4 × 1010 cm-3 and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B 2Σ+-X 2Σ+) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased.

  15. Diagnostic characterization of ablation plasma ion implantation

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Jones, M. C.; Johnston, M. D.; Lau, Y. Y.; Wang, L. M.; Lian, J.; Doll, G. L.; Lazarides, A.

    2003-06-01

    Experiments are reported in which two configurations for ablation-plasma-ion-implantation (APII) are characterized by diagnostics and compared. The first configuration oriented the target parallel to the deposition substrate. This orientation yielded ion-beam-assisted deposition of thin films. A delay (>5 μs) between laser and high voltage was necessary for this geometry to avoid arcing between negatively biased substrate and target. The second experimental configuration oriented the target perpendicular to the deposition substrate, reducing arcing, even for zero/negative delay between the laser and the high voltage pulse. This orientation also reduced neutral atom, ballistic deposition on the substrate resulting in a pure ion implantation mode. Ion density measurements were made by resonant laser diagnostics and Langmuir probes, yielding total ion populations in the range of 1014. Implanted ion doses were estimated by electrical diagnostics, and materials analysis, including x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy, yielding implanted doses in the range 1012 ions/cm2 per pulse. This yields an APII efficiency of order 10% for implantation of laser ablated ions. Scaling of ion dose with voltage agrees well with a theory assuming the Child-Langmuir law and that the ion current at the sheath edge is due to the uncovering of the ions by the movement of the sheath. Thin film analysis showed excellent adhesion with smoother films for an accelerating voltage of -3.2 kV; higher voltages (-7.7 kV) roughened the film.

  16. Diagnostics for first plasma and development plan on KSTAR

    SciTech Connect

    Lee, J. H.; Na, H. K.; Lee, S. G.; Bak, J. G.; Seo, D. C.; Seo, S. H.; Oh, S. T.; Ko, W. H.; Chung, J.; Nam, Y. U.; Lee, K. D.; Ka, E. M.; Oh, Y. K.; Kwon, M.; Jeong, S. H.

    2010-06-15

    The first plasma with target values of the plasma current and the pulse duration was finally achieved on June 13, 2008 in the Korea Superconducting Tokamak Advanced Research (KSTAR). The diagnostic systems played an important role in achieving successful first plasma operation for the KSTAR tokamak. The employed plasma diagnostic systems for the KSTAR first plasma including the magnetic diagnostics, millimeter-wave interferometer, inspection illuminator, H{sub {alpha}}, visible spectrometer, filterscope, and electron cyclotron emission (ECE) radiometer have provided the main plasma parameters, which are essential for the plasma generation, control, and physics understanding. Improvements to the first diagnostic systems and additional diagnostics including an x-ray imaging crystal spectrometer, reflectometer, ECE radiometer, resistive bolometer, and soft x-ray array are scheduled to be added for the next KSTAR experimental campaign in 2009.

  17. Diagnostics of plasma-surface interactions in plasma processes

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji

    2014-10-01

    Low temperature plasma including electrons, ions, radicals and photons can be applied because only high temperature of electron but for background gases. Recently plasma applications in biology and medicine have grown significantly. For complexity of mechanisms, it is needed to understand comprehensively the plasma-surface interactions. To diagnose the interactions comprises of three areas; (1) incident species generated in plasmas toward the surface, (2) surface reactions such as scission and bond of chemical bonds, and (3) products after the reactions. Considered with non-linearity of the chemical reactions as changed by an initial state, we have focused and developed to observe dangling bonds in situ at real time by electron spin resonance (ESR). Moreover, individual contribution and simultaneous irradiation of each species such as radicals and photons have been studied in utilization of light shades and windows in similar manner of the pellets for plasma process evaluation (PAPE). As exampled, the interaction of polymeric materials, fungal spores and edible meats with plasmas were studied on the basis of the real time in situ observations of dangling bonds or surface radicals formation.

  18. 3D Diagnostic Of Complex Plasma

    SciTech Connect

    Hall, Edward; Samsonov, Dmitry

    2011-11-29

    This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

  19. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  20. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  1. Compact collimated fiber optic array diagnostic for railgun plasmas.

    PubMed

    Tang, V; Solberg, J M; Ferriera, T J; Tully, L K; Stephan, P L

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  2. Compact collimated fiber optic array diagnostic for railgun plasmas

    SciTech Connect

    Tang, V.; Solberg, J. M.; Ferriera, T. J.; Tully, L. K.; Stephan, P. L.

    2009-01-15

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  3. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  4. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    SciTech Connect

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  5. Advanced Laser and RF Plasma Sources and Diagnostics

    DTIC Science & Technology

    2013-03-01

    June 2011. 3. R. Giar and J. Scharer, “Focused Excimer Laser Initiated, RF Sustained High Pressure Air Plasmas.” Journal of Applied Physics 110...AFRL-OSR-VA-TR-2013-0063 Advanced Laser and RF Plasma Sources and Diagnostics John Scharer University of Wisconsin March...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Laser and RF Plasma Sources and Diagnostics 5b. GRANT NUMBER F A9550-09-l-0357 5c. PROGRAM ELEMENT

  6. Microfluidic reactors for diagnostics applications.

    PubMed

    McCalla, Stephanie E; Tripathi, Anubhav

    2011-08-15

    Diagnostic assays are an important part of health care, both in the clinic and in research laboratories. In addition to improving treatments and clinical outcomes, rapid and reliable diagnostics help track disease epidemiology, curb infectious outbreaks, and further the understanding of chronic illness. Disease markers such as antigens, RNA, and DNA are present at low concentrations in biological samples, such that the majority of diagnostic assays rely on an amplification reaction before detection is possible. Ideally, these amplification reactions would be sensitive, specific, inexpensive, rapid, integrated, and automated. Microfluidic technology currently in development offers many advantages over conventional benchtop reactions that help achieve these goals. The small reaction volumes and energy consumption make reactions cheaper and more efficient in a microfluidic reactor. Additionally, the channel architecture could be designed to perform multiple tests or experimental steps on one integrated, automated platform. This review explores the current research on microfluidic reactors designed to aid diagnostic applications, covering a broad spectrum of amplification techniques and designs.

  7. Automatization of hardware configuration for plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R. D.; Zabolotny, W.; Linczuk, P.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-09-01

    Soft X-ray plasma measurement systems are mostly multi-channel, high performance systems. In case of the modular construction it is necessary to perform sophisticated system discovery in parallel with automatic system configuration. In the paper the structure of the modular system designed for tokamak plasma soft X-ray measurements is described. The concept of the system discovery and further automatic configuration is also presented. FCS application (FMC/ FPGA Configuration Software) is used for running sophisticated system setup with automatic verification of proper configuration. In order to provide flexibility of further system configurations (e.g. user setup), common communication interface is also described. The approach presented here is related to the automatic system firmware building presented in previous papers. Modular construction and multichannel measurements are key requirement in term of SXR diagnostics with use of GEM detectors.

  8. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  9. Plasma Diagnostics of Free Radical Species.

    NASA Astrophysics Data System (ADS)

    Harkin, Carmel Geraldine

    Available from UMI in association with The British Library. The work described in this thesis involved the use of a variety of spectroscopic techniques in the analysis of the free radical species NH_2 and SiCl_2. Time delayed emission spectroscopy was used to examine the phosphor, BaClF:Sm ^{2+}, and ruby. High resolution polarised fluorescence has been used to study the dynamics of the NH_2 -H and NH_2-He collision systems. Interesting propensity rules have been observed on the angular momentum number, N, and the projection quantum numbers in the molecule frame, K_{a} and K _{c}, which are in disagreement with previous published work. Polarised collision features and the evidence of reactive collisions have also been observed. A study of the effects of plasma conditions on the emission of species produced by the decomposition of the SiCl_4 plasma, in a microwave argon discharge, has been carried out. Bands at 330 nm and 390 nm, previously assigned to the SiCl_2 radical, have been shown to respond differently to varying SiCl_4 flow rates. The structure at 390 nm may be due to Si_2. Time resolved emission spectroscopy has been used to examine the feasibility of using a phosphor BaClF:Sm ^{2+} and/or ruby, doped with various Cr^{3+} ion concentrations, as a suitable material for remote sensor applications, ultimately for the production of a fibre optic temperature sensor.

  10. Plasma networking in magnetically confined plasmas and diagnostics of nonlocal heat transport in tokamak filamentary plasmas

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1999-02-01

    The method of multilevel dynamical contrasting is applied to analyzing available data from tokamak plasmas. The results illustrate a possibility of extending the concept of the plasma percolating networks in dense Z pinches (and other inertially confined plasmas) to the case of magnetically confined plasmas. This extension suggests a necessity to append the conventional picture of the nonfilamentary plasma (which is nearly a fluid described by conventional magnetohydrodynamics) with a "network" component which is formed by the strongest long-living filaments of electric current and penetrate the "fluid" component. Signs of networking are found in visible light and soft x-ray images, and magnetic probing data. A diagnostic algorithm is formulated for identifying the role of plasma networking in observed phenomena of nonlocal (non-diffusive) heat transport in a tokamak.

  11. Calculation of fully relativistic cross sections for electron excitation of cesium atom and its application to the diagnostics of hydrogen-cesium plasma

    NASA Astrophysics Data System (ADS)

    Priti; Dipti; Gangwar, R. K.; Srivastava, R.

    2017-01-01

    Electron impact excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma, which is relevant to the negative ion based neutral beam injectors for the ITER project. As an application, the calculated detailed cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. Other processes such as radiative population transfer, electron impact ionization and mutual neutralization of Cs+ ion with negative hydrogen ion along with their reverse processes are also taken into account. The calculated cross-sections and the extracted plasma parameters from the present model are compared with the available experimental and theoretical results.

  12. Diagnostic applications of DNA probes.

    PubMed

    Pfaller, M A

    1991-02-01

    This review has described several of the most common molecular biologic techniques that are, or will be, employed in the diagnostic laboratory. The potential advantages of these DNA probe assays in the diagnosis of infectious diseases include: rapid detection and identification of infectious agents; the ability to screen selected specimens using batteries of probes; and the detection of nonviable or difficult-to-culture organisms. The potential disadvantages of DNA probe assays include: the use of isotopic detection methods for optimum sensitivity; limited diagnostic sensitivity of current assays; slow turna-round time for some assay formats; expense of current reagents; limited availability of many probes; lack of technical expertise in most diagnostic laboratories; and the requirement for antimicrobial susceptibility testing (requires culture). Given the above advantages and disadvantages, there are several key issues that must be considered before adopting DNA probe technology in the diagnostic laboratory; the cost of performing routine culture and identification versus the cost of screening with probes--both the number and type of specimens and the time savings that may be realized by eliminating routine cultures; the prevalence of the infectious agent--even the best DNA probe assay may not be useful or practical in a low-prevalence situation; the need for additional equipment and space; and the interpretation of false-positive and false-negative results--additional research is needed in this area. However, laboratories must consider these issues when using a test other than the current gold standard (i.e., culture). DNA probe technology is with us and expanding rapidly. The intelligent application of this new technology will require communication between laboratorians and clinicians and careful consideration of the many advantages and disadvantages discussed above.

  13. Technology Advances in Support of Fusion Plasma Imaging Diagnostics

    NASA Astrophysics Data System (ADS)

    Jiang, Qi; Lai, Jiali; Hu, Fengqi; Li, Maijou; Chang, Yu-Ting; Domier, Calvin; Luhmann, Neville, Jr.

    2012-10-01

    Innovative technologies are under investigation in key areas to enhance the performance of microwave and millimeter-wave fusion plasma imaging diagnostics. Novel antenna and mixer configurations are being developed at increasingly higher frequencies, to facilitate the use of electron cyclotron emission imaging (ECEI) on high field (> 2.6 T) plasma devices. Low noise preamplifier-based imaging antenna arrays are being developed to increase the sensitivity and dynamic range of microwave imaging reflectometry (MIR) diagnostics for the localized measurement of turbulent density fluctuations. High power multi-frequency sources, fabricated using advanced CMOS technology, offer the promise of allowing MIR-based diagnostic instruments to image these density fluctuations in 2-D over an extended plasma volume in high performance tokamak plasmas. Details regarding each of these diagnostic development areas will be presented.

  14. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  15. Technology Issues of Burning Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Kaye, A. S.

    2008-03-01

    The ITER Tokamak will require many diagnostics both for safe and reliable operation of the machine and for understanding of the physics underlying the performance. The design of these diagnostics raises many challenging technical issues not faced on smaller machines. These arise partly from the increase demands on established diagnostics arising from the increased size, higher magnetic field, large heating power, and in particular the dramatically longer pulse duration of ITER, which make issue such as power loading on first wall components more challenging. The demands on reliability and availability of the machine in order to achieve the objectives within the agreed time schedule also place severe additional demands on the design, quality assurance and maintainability of diagnostics. ITER will produce many orders of magnitude more neutrons than previous Tokamaks and will be a licensed nuclear facility. This has important implications for the traceability, quality assurance and availability of safety critical diagnostics, and for the control of the design and procurement of all diagnostics. The high neutron flux/fluence also constrains the design of diagnostics, which must offer shielding consistent with the allowable dose rates on critical components of the Tokamak, and themselves be tolerant of the radiation level at the diagnostic. This paper presents an overview of the more critical issues for ITER diagnostics.

  16. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  17. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the

  18. Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas

    SciTech Connect

    Medley, S.S.; Hendel, H.

    1982-11-01

    Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.

  19. Diagnostics of ST Plasmas in NSTX: Challenges and Opportunities

    SciTech Connect

    D. Johnson; P. Efthimion; J. Foley; B. Jones; E. Mazzucato; H. Park; G. Taylor; F. Levinton; N. Luhmann

    2001-09-26

    This paper will highlight some of the challenges and opportunities present in the diagnosis of spherical torus (ST) plasmas on the National Spherical Torus Experiment (NSTX) and discuss the corresponding diagnostic development that is presently underway. After a brief description of diagnostic systems currently installed, examples of ST-specific diagnostic challenges will be highlighted, as will another case, where the ST configuration offers opportunities for new measurements.

  20. Advanced Plasma Diagnostic Analysis using Neural Networks

    NASA Astrophysics Data System (ADS)

    Tritz, Kevin; Reinke, Matt

    2016-10-01

    Machine learning techniques, specifically neural networks (NN), are used with sufficient internal complexity to develop an empirically weighted relationship between a set of filtered X-ray emission measurements and the electron temperature (Te) profile for a specific class of discharges on NSTX. The NN response matrix is used to calculate the Te profile directly from the filtered X-ray diode measurements which extends the electron temperature time response from the 60Hz Thomson Scattering profile measurements to fast timescales (>10kHz) and greatly expands the applicability of Te profile information to fast plasma phenomena, such as ELM dynamics. This process can be improved by providing additional information which helps the neural network refine the relationship between Te and the corresponding X-ray emission. NN supplement limited measurements of a particular quantity using related measurements with higher time or spatial resolution. For example, the radiated power (Prad) determined using resistive foil bolometers is related to similar measurements using AXUV diode arrays through a complex and slowly time-evolving quantum efficiency curve in the VUV spectral region. Results from a NN trained using Alcator C-Mod resistive foil bolometry and AXUV diodes are presented, working towards hybrid Prad measurements with the quantitative accuracy of resistive foil bolometers and with the enhanced temporal and spatial resolution of the unfiltered AXUV diode arrays. Work supported by Department of Energy Grant #: DE-FG02-09ER55012.

  1. Mechanical considerations for MFTF-B plasma-diagnostic system

    SciTech Connect

    Thomas, S.R. Jr.; Wells, C.W.

    1981-10-19

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done.

  2. X-ray diagnostics of hohlraum plasma flow

    SciTech Connect

    Back, C.A.; Glenzer, S.H.; Landen, O.L.; MacGowan, B.J.; Shepard, T.D.

    1996-05-13

    In this study we use spectroscopy and x-ray imaging to investigate the macroscopic plasma flow in mm-sized laser-produced hohlraum plasmas. By using multiple diagnostics to triangulate the emission on a single experiment, we can pinpoint the position of dopants placed inside the hohlraum. X-ray emission from the foil has been used in the past to measure electron temperature. Here we analyze the spatial movement of dopant plasmas for comparison to hydrodynamic calculations.

  3. Miniaturized Plasma and Neutral Diagnostics for JIMO

    NASA Technical Reports Server (NTRS)

    McHarg, M. G.; Enloe, C. L.; Krause, L. A.; Herrero, F. A.

    2003-01-01

    We describe a miniaturized suite of instruments which provides both bulk energy resolved plasma properties and coarse neutral mass spectroscopy suitable for measurements on the Jupiter Icy Moons Orbiter (JIMO). The suite is comprised of two instruments; the Miniaturized Electro-Static Analyzer (MESA), and the Flat Plasma Spectrometer (FLAPS), designed to measure the near earth environment on the Air Force Academy small satellite missions Falconsat-2 and 3.

  4. Diagnostics in ? helicon plasmas for ? deposition

    NASA Astrophysics Data System (ADS)

    Granier, A.; Nicolazo, F.; Vallée, C.; Goullet, A.; Turban, G.; Grolleau, B.

    1997-05-01

    0963-0252/6/2/008/img3 and 0963-0252/6/2/008/img4 helicon plasmas used for plasma enhanced chemical vapour deposition of 0963-0252/6/2/008/img5 films are investigated in the 1 - 10 mTorr pressure and 0 - 800 W rf power ranges. The positive oxygen ions are analysed by energy selective mass spectrometry and Langmuir probes. The oxygen atom concentration is monitored by actinometry and ionization threshold mass spectrometry. In oxygen plasmas it is shown that 0963-0252/6/2/008/img6 is the major positive ion, and that the oxygen molecules are far from being completely dissociated, due to a very high oxygen atom recombination frequency on the reactor walls. The dissociation degree increases with the rf power reaching 10% at 500 W. In 0963-0252/6/2/008/img4 plasmas, the plasma density and electron temperature decrease as the TEOS fraction increases. In contrast, the degree of oxygen dissociation increases sharply with the addition of a few per cent TEOS, is maximum for about 5% TEOS and decreases as TEOS fraction is further increased. In a 95:5 0963-0252/6/2/008/img4 plasma (5 mTorr, 300 W) the fluxes of oxygen positive ions and atoms impinging onto a floating substrate are estimated to be 0963-0252/6/2/008/img9 and 0963-0252/6/2/008/img10 respectively. Under these plasma conditions, near-stoichiometric 0963-0252/6/2/008/img11 films, with low OH content, are deposited at ambient temperature. The corresponding atom to ion flux ratio is about 250, which suggests the dominant role of oxygen atoms in the deposition kinetics. The comparison of the compositions of layers grown in a 5 mTorr 95:5 0963-0252/6/2/008/img4 plasma at two rf powers confirms the major role of oxygen atoms.

  5. Miniaturized Plasma and Neutral Diagnostics for JIMO

    NASA Technical Reports Server (NTRS)

    McHarg, M. G.; Enloe, C. L.; Krause, L. A.; Herrero, F. A.

    2003-01-01

    We describe a miniaturized suite of instruments which provides both bulk energy resolved plasma properties and coarse neutral mass spectroscopy suitable for measurements on the Jupiter Icy Moons Orbiter (JIMO). The suite is comprised of two instruments; the Miniaturized Electro-Static Analyzer (MESA), and the Flat Plasma Spectrometer (FLAPS), designed to measure the near earth environment on the Air Force Academy small satellite missions Falconsat-2 and 3.

  6. Diagnostics of plasma and particle flows extracted from bipolar gridded plasma sources

    NASA Astrophysics Data System (ADS)

    Dudin, Stanislav; Rafalskyi, Dmytro; Aanesland, Ane

    2016-09-01

    Gridded plasma sources have a strong interest from both industry and research community due to large number of their applications, including electric propulsion, plasma acceleration for fundamental studies, ion beam surface treatment and semiconductor etching, etc. Commonly, a dc electric field is applied between the grids of these sources to accelerate positive ions, while the space charge compensation of the beam is achieved using an additional external electron source. Few recent concepts assume bipolar extraction of particles, such that both positive and negative particles are extracted from plasma and accelerated. The formed beam can be composed of extracted continuously or alternately positive and negative ions, or positive ions and electrons. Diagnostics of these beams is a challenging task, in particular absolute flux and energy distribution measurements for different species present in the bipolar beam. In this work we present few recent diagnostic techniques allowing to measure absolute fluxes and energies of +/- ions and electrons, and also methods to investigate temporal behavior of these flows.

  7. Plasma Diagnostics of a Capillary Plasma Channel for Laser Guiding

    SciTech Connect

    Terauchi, Hiromitsu; Higashiguchi, Takeshi; Yugami, Noboru; Bobrova, Nadezhda A.

    2010-11-04

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Normarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 200 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  8. Applications of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Oldham, Christopher John

    Surface modification techniques using plasmas have historically been completed in a low pressure environment due to Pd (pressure x gap distance) considerations influencing the behavior of plasma generation. Generally, plasmas produced in a low pressure environment are of a non-thermal or cold nature. The basic feature of non-thermal plasmas is the majority of electrical energy used to generate the plasma is primarily used to produce energetic electrons for generating chemical species. Low pressure plasmas serve many purposes for materials processing. Since the plasma environment is contained within a closed vessel, the plasma can be controlled very easily. Low pressure plasmas have been used in many industries but the complexity associated with the large pumping stations and limitation to batch processing has motivated new work in the area of atmospheric plasmas. Atmospheric plasmas offer both economic and technical justification for use over low pressure plasmas. Since atmospheric plasmas can be operated at ambient conditions, lower costs associated with continuous processing and a decrease in the complexity of equipment validate atmospheric plasma processing as a next generation plasma-aided manufacturing process. In an effort to advance acceptance of atmospheric plasma processing into industry, a process was developed, the dielectric barrier discharge (DBD), in order to generate a homogeneous and non-thermal plasma discharge at ambient conditions. The discharge was applied to the reduction of known food borne pathogens, deposition of thin film materials, and modification of lignocellulosic biomass.

  9. Microwave-plasma interactions studied via mode diagnostics in ALPHA

    NASA Astrophysics Data System (ADS)

    Friesen, T.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Eriksson, S.; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    The goal of the ALPHA experiment is the production, trapping and spectroscopy of antihydrogen. A direct comparison of the ground state hyperfine spectra in hydrogen and antihydrogen has the potential to be a high-precision test of CPT symmetry. We present a novel method for measuring the strength of a microwave field for hyperfine spectroscopy in a Penning trap. This method incorporates a non-destructive plasma diagnostic system based on electrostatic modes within an electron plasma. We also show how this technique can be used to measure the cyclotron resonance of the electron plasma, which can potentially serve as a non-destructive measurement of plasma temperature.

  10. Microwave-plasma interactions studied via mode diagnostics in ALPHA

    NASA Astrophysics Data System (ADS)

    Friesen, T.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Eriksson, S.; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-12-01

    The goal of the ALPHA experiment is the production, trapping and spectroscopy of antihydrogen. A direct comparison of the ground state hyperfine spectra in hydrogen and antihydrogen has the potential to be a high-precision test of CPT symmetry. We present a novel method for measuring the strength of a microwave field for hyperfine spectroscopy in a Penning trap. This method incorporates a non-destructive plasma diagnostic system based on electrostatic modes within an electron plasma. We also show how this technique can be used to measure the cyclotron resonance of the electron plasma, which can potentially serve as a non-destructive measurement of plasma temperature.

  11. Radio stimulation and diagnostics of space plasmas

    NASA Technical Reports Server (NTRS)

    Lee, Min-Chang

    1993-01-01

    We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.

  12. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    Three regions of plasma temperature/energy are being investigated to understand fully the behavior of the plasma created by the propulsion device and the operation of the RPA. Each type of plasma has a RPA associated with it; i.e. a thermal RPA, a collimated RPA, and a high temperature RPA. Through the process of developing the thermal and collimated RPAs, the proper knowledge and experience has been gained to not only design a high temperature RPA for the plasma rocket, but to understand its operation, results, and uncertainty. After completing a literature search for, reading published papers on, and discussing the operation of the RPA with electric propulsion researchers, I applied the knowledge gained to the development of a RPA for thermal plasma. A design of a thermal RPA was made which compensates for a large Debye length and low ionized plasma. From this design a thermal RPA was constructed. It consists of an outer stainless steel casing, a phenolic insulator (outgases slightly), and stainless steel mesh for the voltage screens. From the experience and knowledge gained in the development of the thermal RPA, a RPA for collimated plasma was developed. A collimated RPA has been designed and constructed. It compensate for a smaller Debye length and much higher ionization than that existing in the thermal plasma. It is 17% of the size of the thermal RPA. A stainless steel casing shields the detector from impinging electrons and ions. An insulating material, epoxy resin, was utilized which has a negligible outgassing. This material can be molded in styrofoam and machined quite nicely. It is capable of withstanding moderately high temperatures. Attached to this resin insulator are inconel screens attached by silver plated copper wire to a voltage supply. All the work on the RPAs and thermal ion source, I performed in the University of Alabama in Huntsville's (UAH) engineering machine shop.

  13. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    The plasma rocket is located at NASA Johnson Space Center. To produce a thrust in space. an inert gas is ionized into a plasma and heated in the linear section of a tokamak fusion device to 1 x 10(exp 4) - 1.16 x 10(exp 6)K(p= 10(exp 10) - 10(exp 14)/cu cm ). The magnetic field used to contain the plasma has a magnitude of 2 - 10k Gauss. The plasma plume has a variable thrust and specific impulse. A high temperature retarding potential analyzer (RPA) is being developed to characterize the plasma in the plume and at the edge of the magnetically contained plasma. The RPA measures the energy and density of ions or electrons entering into its solid angle of collection. An oscilloscope displays the ion flux versus the collected current. All measurements are made relative to the facility ground. A RPA is being developed in a process which involves the investigation of several prototypes. The first prototype has been tested on a thermal plasma. The knowledge gained from its development and testing were applied to the development of a RPA for collimated plasma. The prototypes consist of four equally spaced grids and an ion collector. The outermost grid is a ground. The second grid acts as a bias to repel electrons. The third is a variable v voltage ion suppressor. Grid four (inner grid) acts to repel secondary electrons, being biased equal to the first. Knowledge gained during these two stages are being applied to the development of a high temperature RPA Testing of this device involves the determination of its output parameters. sensitivity, and responses to a wide range of energies and densities. Each grid will be tested individually by changing only its voltage and observing the output from the RPA. To verify that the RPA is providing proper output. it is compared to the output from a Langmuir or Faraday probe.

  14. Spectroscopic diagnostics of high temperature plasmas. [Annual report

    SciTech Connect

    Moos, W.

    1990-12-31

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  15. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  16. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  17. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  18. Diagnostic evaluations of microwave generated helium and nitrogen plasma mixtures

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.; Dinkel, Duane W.

    1990-01-01

    The goal of this work is to continue the development to fundamentally understand the plasma processes as applied to spacecraft propulsion. The diagnostic experiments used are calorimetric, dimensional, and spectroscopic measurements using the TM 011 and TM 012 modes in the resonance cavity. These experimental techniques are highly important in furthering the understanding of plasma phenomena and of designing rocket thrusters. Several experimental results are included using nitrogen and helium gas mixtures.

  19. IRMA: A tunable infrared multicomponent acquisition system for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Mechold, L.; Käning, M.; Anders, J.; Wienhold, F. G.; Nelson, D.; Zahniser, M.

    2000-10-01

    A compact and transportable infrared multicomponent acquisition (IRMA) system based on infrared absorption spectroscopy has been developed for plasma diagnostics and control. The IRMA system contains four independent tunable diode lasers which can be temporally multiplexed and directed into plasma reactors or into a multipass cell for exhaust gas detection. Rapid scan software with real-time line shape analysis provides simultaneous measurements of the absolute concentrations of several molecular species.

  20. Plasma core reactor applications

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1976-01-01

    Analytical and experimental investigations were conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration. Axial working fluid channels are located along a fraction of each cavity peripheral wall. Results of calculations for outward-directed radiant energy fluxes corresponding to radiating temperatures of 2000 to 5000 K indicate total operating pressures from 80 to 650 atm, centerline temperatures from 6900 to 30,000 K, and total radiated powers from 25 to 2500 MW, respectively. Applications are described for this type of reactor such as (1) high-thrust, high specific impulse space propulsion, (2) highly efficient systems for generation of electricity, and (3) hydrogen or synthetic fuel production systems using the intense radiant energy fluxes.

  1. Plasma core reactor applications

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1976-01-01

    Analytical and experimental investigations were conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration. Axial working fluid channels are located along a fraction of each cavity peripheral wall. Results of calculations for outward-directed radiant energy fluxes corresponding to radiating temperatures of 2000 to 5000 K indicate total operating pressures from 80 to 650 atm, centerline temperatures from 6900 to 30,000 K, and total radiated powers from 25 to 2500 MW, respectively. Applications are described for this type of reactor such as (1) high-thrust, high specific impulse space propulsion, (2) highly efficient systems for generation of electricity, and (3) hydrogen or synthetic fuel production systems using the intense radiant energy fluxes.

  2. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  3. Diagnostics of the Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Issautier, K.

    The solar wind is a fully ionized plasma, coming from the outer atmosphere of the Sun, the so-called solar corona, which expands as a supersonic flow into the interplanetary medium [55]. The first observations indicating that the Sun might be emitting a wind were made by Biermann in 1946 of comet tails [1], which are observed to point away from the Sun. Comets usually exhibit two tails: a dust tail driven by the radiation pressure and a plasma tail, which points in slightly different directions pushed by the “solar corpuscular radiation” of the Sun. In 1958, E.N. Parker explained theoretically this “particle radiation” using a simple fluid model [55], showing that the solar atmosphere is not in hydrostatic equilibrium but must expand into the interplanetary medium as a wind. The existence of this solar wind was debated until it was indeed confirmed by spacecraft Lunik 2 and 3 [16] and continuously observed by Mariner 2 [53]. The Parker theory is discussed fully in Chap. 7 (Velli).

  4. Heat flow diagnostics for helicon plasmas

    SciTech Connect

    Berisford, Daniel F.; Bengtson, Roger D.; Raja, Laxminarayan L.; Cassady, Leonard D.; Chancery, William J.

    2008-10-15

    We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.

  5. Heat flow diagnostics for helicon plasmas.

    PubMed

    Berisford, Daniel F; Bengtson, Roger D; Raja, Laxminarayan L; Cassady, Leonard D; Chancery, William J

    2008-10-01

    We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.

  6. A Recoverable Plasma Diagnostics Package (RPDP) for Spacelab

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Ackerson, K. L.; Anderson, R. R.; Craven, J. D.; Dangelo, N.; Frank, L. A.; Gurnett, D. A.; Shaw, R. R.; Block, L. P.; Falthammar, C. G.

    1980-01-01

    The RPDP is a fully instrumented, ejectable and recoverable unit with flight and ground support systems so that it can be utilized attached to the orbiter remote manipulator system, tethered from the orbiter, or as an orbiter subsatellite. Core instruments on the RPDP are flight proven hardware which provide diagnostics measurements of energetic particles, AC electromagnetic and electrostatic waves, vector magnetic field signatures of current systems, vector electric field signatures associated with plasma flow and particle acceleration, thermal plasma ion composition and density, thermal plasma electron density and temperature, and images of optical emissions regions in UV or visible wavelengths.

  7. Whispering Gallery Mode Spectroscopy as a Diagnostic for Dusty Plasmas

    SciTech Connect

    Thieme, G.; Basner, R.; Ehlbeck, J.; Roepcke, J.; Maurer, H.; Kersten, H.; Davies, P. B.

    2008-09-07

    Whispering-gallery-mode spectroscopy is being assessed as a diagnostic method for the characterisation of size and chemical composition of spherical particles levitated in a plasma. With a pulsed laser whispering gallery modes (cavity resonances) are excited in individual microspheres leading to enhanced Raman scattering or fluorescence at characteristic wavelengths. This method can be used to gain specific information from the particle surface and is thus of great interest for the characterisation of layers deposited on microparticles, e.g. in molecular plasmas. We present investigations of different microparticles in air and results from fluorescent particles levitated in an Argon rf plasma.

  8. Overview of the Tri Alpha Energy Plasma Diagnostics Program

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Gota, Hiroshi; Putvinski, Sergei; Tuszewski, Michel; Binderbauer, Michl; the TAE Team

    2016-10-01

    Tri Alpha Energy (TAE) seeks to study the evolution of advanced beam-driven field-reversed configuration (FRC) plasmas sustained and heated by neutral beam (NB) injection. Heating of FRCs is the focus of the upcoming C-2W program. Data on the FRC plasma performance is provided by a comprehensive suite of diagnostics including magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. While many of these diagnostic systems were first implemented for the earlier C-2 and C-2U experiments, virtually all of them benefit from continuous improvement and upgrades. TAE maintains a large plasma diagnostics development program working on a variety of new systems for future devices including: far-infrared polarimetry, visible and infrared fast imaging cameras, proton detector arrays, end loss analyzers, impurity and majority ion CHERS, and 100-channel bolometer units with proprietary compact local data acquisition. In addition, extensive ongoing work focuses on developing advanced methods of measuring the internal magnetic fields of the FRC plasma.

  9. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  10. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  11. Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostic

    SciTech Connect

    Wolter, Matthias; Haass, Moritz; Ockenga, Taalke; Kersten, Holger; Blazec, Joseph; Basner, Ralf

    2008-09-07

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles of different sizes with the surrounding plasma for diagnostic purpose. In the plasma micro-disperse particles are negatively charged and confined in the sheath. The particles are trapped by an equilibrium of gravity, electric field force and ion drag force. From the behavior, local electric fields can be determined, e.g. particles are used as electrostatic probes. In combination with additional measurements of the plasma parameters with Langmuir probes and thermal probes as well as by comparison with an analytical sheath model, the structure of the sheath can be described. In the present work we focus on the behavior of micro-particles of different sizes and several plasma parameters e.g. the gas pressure and the rf-power.

  12. Electron density measurements in very electronegative plasmas using different diagnostic techniques: theory and experiments

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Lafleur, Trevor; Aanesland, Ane

    2016-09-01

    Very electronegative plasmas (known as ``ion-ion'' plasmas) are used in different applications including material processing, space propulsion and thermonuclear fusion. Diagnostics of ion-ion plasmas can be performed using different probe techniques, including Langmuir and hairpin probes, RF, microwave and optical diagnostics. However, in certain applications (for example, in the electronegative thruster PEGASES), the electron density is too low (<1012m-3) to be reliably measured by these standard techniques. This is further complicated by the presence of strong, non-homogeneous, magnetic fields in the plasma ( 200 G) and the relatively small plasma size (few cm). In this work we compare results achieved with a Langmuir probe, and with an independent measurement of the electron density using a matched dipole probe. Measurements are performed in an SF6 plasma with an electronegativity in the range between a few hundred to a few thousand. We show here that though the model itself can correctly describe the plasma-probe interactions, there is a critical value of plasma electronegativity above which the electron density measured with a Langmuir probe can give only an upper limit estimation.

  13. Optical diagnostics of dusty plasmas during nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Mikikian, M.; Labidi, S.; von Wahl, E.; Lagrange, J. F.; Lecas, T.; Massereau-Guilbaud, V.; Géraud-Grenier, I.; Kovacevic, E.; Berndt, J.; Kersten, H.; Gibert, T.

    2017-01-01

    Carbon-based thin films deposited on surfaces exposed to a typical capacitively-coupled RF plasma are sources of molecular precursors at the origin of nanoparticle growth. This growth leads to drastic changes of the plasma characteristics. Thus, a precise understanding of the dusty plasma structure and dynamics is required to control the plasma evolution and the nanoparticle growth. Optical diagnostics can reveal some particular features occurring in these kinds of plasmas. High-speed imaging of the plasma glow shows that instabilities induced by nanoparticle growth can be constituted of small brighter plasma regions (plasmoids) that rotate around the electrodes. A single bigger region of enhanced emission is also of particular interest: the void, a main central dust-free region, has very distinct plasma properties than the surrounding dusty region. This particularity is emphasized using optical emission spectroscopy with spatiotemporal resolution. Emission profiles are obtained for the buffer gas and the carbonaceous molecules giving insights on the changes of the electron energy distribution function during dust particle growth. Dense clouds of nanoparticles are shown to be easily formed from two different thin films, one constituted of polymer and the other one created by the plasma decomposition of ethanol.

  14. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  15. Sequential quadrature measurements for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Martin-Hidalgo, Julio

    The study of the ionosphere has been very important due to its effects on terrestrial and satellite communications. This thesis presents an introduction of the ionosphere effects, its modeling and measurement methods that have been used along the history. The Sweeping Impedance Probe (SIP) has proven over the years to be a reliable method based on the radio frequency (RF) behavior of the plasma. A new SIP architecture is presented based on the latest techniques available, using a Vector Network Analyzer (VNA) detection and employing dynamic correction of errors with Correlated Double Sampling (CDS) and a reference channel. The design will be detailed showing the component selection based on their performance parameters. In this sense, several analyses have been made to ensure that the sweep rate and accuracy requirements can be met. The testing and calibration methodology is developed to further increase the final accuracy of the instrument. Lastly, the main conclusions of the project are summarized and new and exciting lines of work are presented for what is expected to be the next generation of SIP instruments.

  16. Surface plasma wave applications

    SciTech Connect

    Fontana, E.

    1989-01-01

    Surface plasma waves (SPWs) are electromagnetic oscillations that occur at the interface between a metal and a dielectric medium. The wave amplitude reaches a maximum at the interface and decays exponentially along the normal direction within each medium, with a decaying length on the order of a wavelength. Because SPW excitation is a resonant phenomenon which is strongly dependent on the boundary conditions, SPWs are sensitive probes of optical and structural properties of the interface, allowing, by means of visible light, the detection of changes of sub-angstrom dimensions in thin films covering a metal surface. The resonant nature of the excitation also leads to a wave intensity two to three orders of magnitude higher than the intensity produced by a conventional electromagnetic wave striking a metal surface. Therefore, light scattering from surface irregularities can be enhanced by the same factor under SPW excitation, and structural information can be obtained. Measurement of SPW basic parameters such as amplitude, velocity and damping is achieved using simple optical procedures. These procedures are described and applied in this thesis for the characterization of multilayer rough surfaces and for the simultaneous determination of coating thickness and substrate optical constants of dielectric-coated, metal mirrors. These applications are relevant in the diagnosis of optical and structural properties of thin films. We also use the high sensitivity of SPWs to the presence of very thin coatings to design a surface plasmon immunoassay (SPI) for monitoring immunochemical reactions occurring nearby a metal surface. In particular, the SPI can be used as a simple and rapid procedure to determine antibody levels in blood serum, which is of interest in the field of immunology.

  17. Neutral Beam Injection for Plasma and Magnetic FieldDiagnostics

    SciTech Connect

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton,Fred

    2007-08-01

    At the Lawrence Berkeley National Laboratory (LBNL) adiagnostic neutral beam injection system for measuring plasma parameters,flow velocity, and local magnetic field is being developed. High protonfraction and small divergence is essential for diagnostic neutral beams.In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller)elliptical beam spot at 2.5 m from the end of the extraction column isproduced. The beam will deliver up to 5 A of hydrogen beam to the targetwith a pulse width of ~;1 s, once every 1 - 2 min. The H1+ ion species ofthe hydrogen beamwill be over 90 percent. For this application, we havecompared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antennabehind a dielectric RF-window. The second one uses an internal antenna insimilar ion source geometry. The source needs to generate uniform plasmaover a large (8 cm x 5 cm) extraction area. We expect that the ion sourcewith internal antenna will be more efficient at producing the desiredplasma density but might have the issue of limited antenna lifetime,depending on the duty factor. For both approaches there is a need forextra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator materialsuch as quartz that has been observed to generate plasma with higheratomic fraction than sources with metal walls. The ion beam will beextracted and accelerated by a set of grids with slits, thus forming anarray of 6 sheet-shaped beamlets. The multiple grid extraction will beoptimized using computer simulation programs. Neutralization of the beamwill be done in neutralization chamber, which has over 70 percentneutralization efficiency.

  18. Quantitative diagnostics of reactive, multicomponent low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schwarz-Selinger, Thomas

    2013-09-01

    The special emphasis in this work is put on the quantitative determination of the plasma composition of an inductively coupled low temperature plasma (ICP). Several standard plasma diagnostic techniques were applied. As a test case for a multi-component low-temperature plasma argon-hydrogen as well as argon-hydrogen-nitrogen mixed plasmas were investigated. For steady-state plasma operation the ion density and electron temperature were determined with a single tip Langmuir probe. A multi-grid miniature retarding-field analyzer was used to measure the mass integrated ion flux. An energy-dispersive mass spectrometer - a so-called plasma monitor (PM) - was applied to sample ions from the plasma to derive the ion composition. The degree of dissociation of hydrogen and the gas temperature were derived from optical emission spectroscopy. The gas temperature was estimated by the rotational distribution of the Q-branch lines of the hydrogen Fulcher- α diagonal band for the argon-hydrogen mixed plasmas and from the second positive system of N2 in argon-hydrogen-nitrogen mixed plasmas. The degree of dissociation of hydrogen was measured by actinometry. The influence of the substrate material of the counter electrode (stainless steel, copper, tungsten, Macor, and aluminium) on the atomic hydrogen concentration was investigated by OES. In addition, ionization-threshold mass spectrometry (ITMS) was used to determine the densities of atomic nitrogen (N) and atomic hydrogen (H and D). Pulsed plasma operation was applied to directly measure the loss rate of H, D and N in the afterglow from the temporal decay of the ITMS signal. From these data the wall loss probability of atomic hydrogen was determined. Furthermore, a zero-dimensional rate equation model was devised to explain the ion composition in these mixed plasmas with different admixture ratios. In addition to the experimental data on electron density, gas temperature, total pressure, atomic hydrogen density, and Ar, H2

  19. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.

    PubMed

    Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  20. Medical diagnostic applications and sources.

    PubMed

    Whittingham, T A

    2007-01-01

    The ways in which ultrasound is used in medical diagnosis are reviewed, with particular emphasis on the ultrasound source (probe) and implications for acoustic exposure. A brief discussion of the choice of optimum frequency for various target depths is followed by a description of the general features of diagnostic ultrasound probes, including endo-probes. The different modes of diagnostic scanning are then discussed in turn: A-mode, M-mode, B-mode, three-dimensional (3D) and 4D scanning, continuous wave (CW) Doppler, pulse-wave spectral Doppler and Doppler imaging. Under the general heading of B-mode imaging, there are individual descriptions of the principles of chirps and binary codes, B-flow, tissue harmonic imaging and ultrasound contrast agent-specific techniques. Techniques for improving image quality within the constraints of real-time operation are discussed, including write zoom, parallel beam forming, spatial compounding and multiple zone transmission focusing, along with methods for reducing slice thickness. At the end of each section there is a summarising comment on the basic features of the acoustic output and its consequences for patient safety.

  1. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  2. Study of Limited-view Tomography Algorithms for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Yu, Shenglin

    2002-09-01

    Optical Computed Tomography is a useful tool for plasma diagnostics. But in plasma physics, viewing access is very limited, which leads a highly undetermined inversion problem. Two major approaches to this problem are compared in this paper: Maximum Entropy (ME) method and Simultaneous Iterative Reconstruction Technique (SIRT). The results of numerical simulation and experiments illustrate that both two algorithms can yield good qualities of reconstruction with limited views when some prior information has incorporated into calculation. Especially, in the case of two views, with prior information, a good result can even be achieved by ME algorithm.

  3. Evaluation of two-beam spectroscopy as a plasma diagnostic

    SciTech Connect

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler.

  4. Charge resolved electrostatic diagnostic of colliding copper laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.

    2011-10-15

    The collision of two laser generated plasma plumes can result, under appropriate conditions, in the formation of a ''stagnation layer.'' The processes underlying this phenomenon are complex and time dependent. The majority of experiments over the last few decades have focused upon spectroscopic diagnostic of colliding plasmas. We have performed electrostatic diagnosis of multiply charged copper ions (Cu{sup +} to Cu{sup 5+}) generated via Q-switched pulsed laser ({lambda} = 1.06 {mu}m, {tau} = 6 ns, and E{sub L} = 52-525 mJ) generation of copper plasma plumes from a planar target. Time dependent current traces, charge yields, and kinetic energy (K{sub e}) distributions are obtained for single plasma plumes (S{sub p}) and colliding plasma plumes (C{sub p}). The charge yield from a C{sub p} relative to twice that from a S{sub p} is characterized by a charge yield ratio (CYR) parameter. Superior ion yields for all charge states occur for a discrete range of fluences (F) from colliding plasma plumes leading to a CYR parameter exceeding unity. The kinetic energy distributions from colliding plasma plumes display well defined energy compression via narrowing of the distributions for all fluences and charge states. The extent of this energy compression is charge dependent. Space charge forces within the stagnation layer and the resulting charge dependent acceleration of ions are proposed to account for the transfer of ion kinetic energy in favour of collisional ionization mechanisms.

  5. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  6. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    SciTech Connect

    Stutman, Dan

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  7. Aerospace applications of pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  8. BRIEF COMMUNICATION: Calculation of a magnetic field effect on emission spectra of light diatomic molecules for diagnostic application to fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.

    2009-12-01

    A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.

  9. Low pressure plasma diagnostics by cars and other techniques

    SciTech Connect

    Hata, N. )

    1989-01-01

    Within the past several years, intensive research activities relating amorphous-silicon technology have stimulated plasma-chemical-vapor-deposition (plasma-CVD) diagnostics by laser-spectroscopic techniques. Among them, coherent anti-Stokes Raman spectroscopy (CARS) has attracted much attention because of its great success in combustion diagnostics, and has been employed for low-pressure-plasma studies. Gas-phase species such as SiH{sub 4}, H{sub 2}, Si{sub 2}H{sub 6}, SiH{sub 2}, and GeH{sub 4} have been detected, time dependences of their concentration and spatial profiles of their concentration and rotational temperature have been determined, and the gas-phase mechanisms have been discussed. This talk will employ those results as examples, and discuss (1) the potential of CARS for gas-phase analysis in CVD (including (i) what species are monitored, (ii) what information is obtained, and (iii) what are the advantages and limitations), and (2) some other diagnostic techniques that provide additional information for better understandings of CVD mechanisms.

  10. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  11. Diagnostic applications of nail clippings.

    PubMed

    Stephen, Sasha; Tosti, Antonella; Rubin, Adam I

    2015-04-01

    "Nail clipping is a simple technique for diagnosis of several nail unit dermatoses. This article summarizes the practical approach, utility, and histologic findings of a nail clipping in evaluation of onychomycosis, nail unit psoriasis, onychomatricoma, subungual hematoma, melanonychia, and nail cosmetics, and the forensic applications of this easily obtained specimen. It reviews important considerations in optimizing specimen collection, processing methods, and efficacy of special stains in several clinical contexts. Readers will develop a greater understanding and ease of application of this indispensable procedure in assessing nail unit dermatoses."

  12. Magnetic Diagnostics at the Wisconsin Plasma Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Clark, Michael; Egedal, Jan; Wallace, John; Weisberg, David; Forest, Cary

    2015-11-01

    A flexible suite of magnetic diagnostics is being developed to measure low and high frequency magnetic fields, the 3-D magnetic field structure throughout the plasma volume, and the 2-D structure (polar and azimuthal fields) on the surface of the sphere. The internal 3-D structure is ascertained by scanning insertion probes with high sensitivity, high bandwidth, 3-axis hall effect sensors. Careful engineering of these insertion probes is required to effectively remove the heat load while simultaneously maintaining high performance (hot, dense, steady state) plasmas. A surface array of 3-axis hall-effect sensors and 2-axis flux loops will provide 3-D, low frequency magnetic field measurements as well as high frequency fluctuations in the polar and azimuthal directions due to plasma waves. This surface array can be used to observe the spatial structure of global modes such as spherical ion acoustic waves and can provide insight into the structure and magnitude of internal plasma flows. The engineering and capabilities of these diagnostics is the focus of this poster.

  13. A Miniature Sweeping Impedance Probe for Ionospheric Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Martin-Hidalgo, J.; Swenson, C.

    2013-12-01

    The impedance of a probe immersed in ionospheric plasma at radio frequencies is an important technique for determining absolute electron density. Building on 50 years of history in developing and flying RF probes for plasma diagnostics at Utah State, a new SIP (Sweeping Impedance Probe) design has been completed which will obtain qualitative improvement over previous instruments in terms of accuracy and sweep rate. This instrument will provide a continuous measurement of the plasma impedance magnitude and phase with an expected accuracy of 1% and 1 degree respectively over the 1 to 20 MHz range. This new SIP will be launched in January 2014 onboard the Auroral Spatial Structures Probe (ASSP) NASA sounding rocket mission using a short monopole probe. The rocket apogee of 600 km will allow the characterization of the plasma in the E and F layers at auroral latitudes and the study of short term and spatial variations along the high-altitude profile of the sounding rocket. Although this SIP design has been developed for a sounding rocket, it can be optimized and miniaturized for Cubesat's and included along other ionospheric diagnostic instruments such as double and Langmuir probes. This presentation is focused on the overall design of the instrument, the tests results for the ASSP instrument and conceptual designs for future CubeSat mission similar to the NSF DICE mission.

  14. Laser Applications in Flow Diagnostics

    DTIC Science & Technology

    1988-10-01

    Albert , C., "Application of Automated Holographic Interferometry," ICIASF 1975 Record, IEEE, New York, New York, p. 237-246, September 1975. 3.64 Bryanston...Presented at the IUTAM Unsteady Aerodynamics Conference, Jesus College, Cambridge, September 1984. 3.70 Bryanston-Cross, P. J., Camus , J. J., and

  15. Plasma plume diagnostics of low power stationary plasma thruster (SPT-20M8) with collisional radiative model

    NASA Astrophysics Data System (ADS)

    Uttamsing Rajput, Rajendrasing; Alona, Khaustova; Loyan, Andriy V.

    2017-03-01

    Electric propulsion offers higher specific impulse compared to the chemical propulsion systems. It reduces the overall propellant mass and enables high operational lifetimes. Scientific Technological Center of Space Power and Energy (STC SPE), KhAI is involved in designing, manufacturing and testing of stationary plasma thrusters (SPT). Efforts are made to perform plasma diagnostics with corona and collisional radiative models (C-R model), as expected corona model falls short below 4 eV because of the heavy particle collisions elimination, whereas the C-R model's applicability is confirmed. Several tests are performed to analyze the electron temperature at various operational parameters of thruster like discharge voltage and mass flow rate. SPT-20M8 far and near-field plumes diagnostics are performed. Feasibility of C-R model by comparing its result to optical emission spectroscopy (OES) to investigate the electron temperature is validated with the probe measurements within the 10% of discrepancy.

  16. High density plasmas and new diagnostics: An overview (invited)

    SciTech Connect

    Celona, L. Gammino, S.; Mascali, D.

    2016-02-15

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  17. The human plasma proteome: history, character, and diagnostic prospects.

    PubMed

    Anderson, N Leigh; Anderson, Norman G

    2002-11-01

    The human plasma proteome holds the promise of a revolution in disease diagnosis and therapeutic monitoring provided that major challenges in proteomics and related disciplines can be addressed. Plasma is not only the primary clinical specimen but also represents the largest and deepest version of the human proteome present in any sample: in addition to the classical "plasma proteins," it contains all tissue proteins (as leakage markers) plus very numerous distinct immunoglobulin sequences, and it has an extraordinary dynamic range in that more than 10 orders of magnitude in concentration separate albumin and the rarest proteins now measured clinically. Although the restricted dynamic range of conventional proteomic technology (two-dimensional gels and mass spectrometry) has limited its contribution to the list of 289 proteins (tabulated here) that have been reported in plasma to date, very recent advances in multidimensional survey techniques promise at least double this number in the near future. Abundant scientific evidence, from proteomics and other disciplines, suggests that among these are proteins whose abundances and structures change in ways indicative of many, if not most, human diseases. Nevertheless, only a handful of proteins are currently used in routine clinical diagnosis, and the rate of introduction of new protein tests approved by the United States Food and Drug Administration (FDA) has paradoxically declined over the last decade to less than one new protein diagnostic marker per year. We speculate on the reasons behind this large discrepancy between the expectations arising from proteomics and the realities of clinical diagnostics and suggest approaches by which protein-disease associations may be more effectively translated into diagnostic tools in the future.

  18. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  19. Electrical Diagnostics of a Macroscopic rf Plasma Display Panel Cell

    DTIC Science & Technology

    2003-07-20

    display panel cell B. Caillier, Ph. Guillot, J. Galy, L.C. Pitchford , J.P. Boeuf. Centre de Physique des Plasmas et Applications de Toulouse...Universitd Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France 1. Introduction Although Plasma Display Panels (PDPs) are now produced...these experiments. [4] L.C. Pitchford , J. Kang, C. Punset, and J.P. Boeuf, J. Appl. Phys. 92, 6990 (2002) [5] B. Caillier, et al, "Plasma Display Cell Operating in a RF Regime" ,ESCAMPIG 2002, 1-355. 130

  20. Plasma Diagnostics Through Analysis of Ne I Line Shape Characteristics

    SciTech Connect

    Milosavljevic, Vladimir

    2004-12-01

    On the basis of the experimentally determined 26 prominent neutral neon (Ne I) line shapes (in the 3s-3p, 3s-3p', 3s'-3p', 3s'-3p and 3p-3d transitions) the basic plasma parameters i.e. electron temperature (T) and electron density (N) have been obtained using the line deconvolution procedure, in a plasma created in a linear, low-pressure, pulsed arc operated in pure neon. The mentioned plasma parameters have also been measured using independent experimental diagnostics techniques. Agreement has been found among the two sets of the obtained parameters. This recommends the deconvolution procedure for plasma diagnostical purposes. Self-confidence of the method has checked using Ne I spectral lines which originate from different energy levels. The advance used of the method has been done in the way to find energy level from which it does not existing any more assumption of LTE.This method may be of interest also in astrophysics where direct measurements of the main plasma parameters (T and N) are not possible. With the development of space born spectroscopy the good quality spectra will be enabling to use this method. The separate electron (We) and ion (Wi) contributions to the total Stark width (Wt), which have not been measured so far, have also been obtained for neon spectral lines. The measured and calculated We data are compared to available theoretical We values. It has found stronger influence of the ion contribution to the Ne I lines shape than the predicted ones calculated by the current theory. It has also tested the ion contribution to the Ne II lines shape. Small influence of the ion contribution to the some Ne II line shape has evidenced.

  1. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  2. Characterization of a theta-pinch plasma using triple probe diagnostic

    SciTech Connect

    Jung, S.; Suria, V; Andruczyk, D; Ruzic, D. N.

    2011-01-01

    Plasma diagnostics were carried out in a theta-pinch device to investigate the applicability for plasma-material interaction under fusion-like conditions. A series of triple probe diagnostics show that the plasma is sustained for approximately 80 {micro}s at each pulse, with 3.0 (10){sup 21} m{sup -3} plasma density and up to 40 eV electron temperature when a 32 {micro}F main capacitor is discharged at 20 kV. In order to increase plasma density and temperature, an RF antenna is installed near one end of a Pyrex tube and a 50 {micro}F preionization capacitor is connected to an electrode placed at the same end as the antenna. In this configuration, several time delays between the main and preionization capacitors are tested. When the preionization capacitor was triggered 45 {micro}s before the main bank discharge, it resulted in high energetic plasma being obtained with a few density spikes at 10{sup 22} m{sup -3} and electron temperature around 100 eV.

  3. Role of spectroscopic diagnostics in studying nanosecond laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Burger, Miloš; Pantić, Dragan; Nikolić, Zoran; Djeniže, Stevan

    2017-05-01

    We studied the impact of varying the intensity of Nd:YAG nanosecond 1.06 μm laser radiation on the morphology and internal structure of copper plasma plumes were examined. Standard diagnostic techniques used to deduce axial distributions of electron density and temperature revealed effects of a pronounced plasma screening regime. Methods of fast imaging spectroscopy are used to examine the transition from weak- to high-screening plasma, applying irradiance on the order of 109 W cm-2 in helium atmosphere. Behavior of both ionized and neutral species was observed up to 1 μs after the laser pulse. Showing significant differences with an increase of laser irradiance, the change in plasma propagation mechanisms is attributed to internal shockwave dynamics within the plasma plume. Implications of observed behavior to plasma uniformity can affect diagnostics, and are relevant to both modeling and applications. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  4. Development of a non-LTE spectral post-processor for dense plasma simulations with application to spectroscopic diagnostics in spherical implosions at Nova

    SciTech Connect

    Pollak, G.D.; Delamater, N.D.; Nash, J.K.; Hammel, B.A.

    1993-02-01

    A new non-LTE spectroscopy post-processing package is described. The package processes dump files from 1 or 2-dimensional radiation-hydrodynamics code simulations. Given the grid motion, temperatures, and ion densities contained in the dump files, as well as data from an arbitrarily detailed atomic model, the post-processor calculates internally consistent detailed frequency dependent opacities and radiation fields. The radiation transport equation is solved in the S{sub n} approximation using lambda iteration. Sub-cycling is used to achieve a more accurate solution to both the kinetics and radiation field calculations. Line broadening is included using Voigt widths based on the atomic rate coefficients, and Stark widths are included for K-shell spectra. The Sobolev escape factor approximation is available as an option. This post-processing package has been used to analyze spectra obtained recently at Nova with Ar doped deuterium filled capsules. The dopant was designed to be primarily a density diagnostic but can also be used for temperature diagnosis as well. We have run this post-processor with a wide array of atomic models for Argon, ranging from one containing only singly excited levels for the Hydrogenic, He-like, and Li-like sequences, to one containing a large number of doubly- and triply-excited levels in these sequences. We show a strong dependence of the degree of agreement between simulation and experiment on the model complexity with only the most complex model in close agreement.

  5. Optimized and Automated design of Plasma Diagnostics for Additive Manufacture

    NASA Astrophysics Data System (ADS)

    Stuber, James; Quinley, Morgan; Melnik, Paul; Sieck, Paul; Smith, Trevor; Chun, Katherine; Woodruff, Simon

    2016-10-01

    Despite having mature designs, diagnostics are usually custom designed for each experiment. Most of the design can be now be automated to reduce costs (engineering labor, and capital cost). We present results from scripted physics modeling and parametric engineering design for common optical and mechanical components found in many plasma diagnostics and outline the process for automated design optimization that employs scripts to communicate data from online forms through proprietary and open-source CAD and FE codes to provide a design that can be sent directly to a printer. As a demonstration of design automation, an optical beam dump, baffle and optical components are designed via an automated process and printed. Supported by DOE SBIR Grant DE-SC0011858.

  6. Solar Prominence Modelling and Plasma Diagnostics at ALMA Wavelengths

    NASA Astrophysics Data System (ADS)

    Rodger, Andrew; Labrosse, Nicolas

    2017-09-01

    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6 mm (Band 3) and 1.1 - 1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.

  7. New Generation of Diagnostic Beam Injectors for Large Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander A.

    1999-11-01

    During the last decades the injection of neutral beams has been widely used in magnetic fusion devices for diagnostic purposes. Modern fusion facilities are characterized by quite stringent conditions for measurements with diagnostic neutral beam injectors (DNBIs). In particular, an access to the plasma is often strongly limited, the beam penetration into the plasma core is low, the background radiation and particle outfluxes are high, especially in the presence of high power heating neutral beams. Note that the required characteristics of DNBIs differ in many respects from those of injectors for plasma heating. Generally, diagnostic beams should have a higher energy and current stability, lower angular divergence and the beam size, and a higher equivalent current density. In addition, in contrast to heating beams, modulation of a diagnostic beam with a frequency of 5-500 Hz and even higher is often required to improve the signal-to-noise ratio (see, for example, [1]). Considerable progress has been recently made at the Budker Institute in developing DNBIs which are capable of meeting the requirements of plasma diagnostics in modern fusion devices, including CHERS, Rutherford scattering, motional Stark effect, active charge-exchange, etc [2,3]. For different applications, three basic versions of DNBIs have been developed: CW injectors with a relatively low current (up to 10 mA for 60 keV energy), long pulse injectors (up to 10 s, 50 keV) with a moderate current (1-2 eq. A for hydrogen) and short pulse ones (milliseconds range) with a higher current (up to 20A). The plasma emitter in the injectors is created either by the RF discharge or by an arc discharge. In many cases, the beam focusing is needed to increase the current density in the plasma. In the developed DNBIs, it is provided by spherically formed grids of the ion optical system. The paper describes the developed DNBIs and reviews experimental results on the measurements of plasma parameters at different

  8. Diagnostic application of magnetic islands rotation in JET

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Alessi, E.; Baruzzo, M.; Casolari, A.; Giovannozzi, E.; Giroud, C.; Hawkes, N.; Menmuir, S.; Pucella, G.; Contributors, JET

    2016-07-01

    Measurements of the propagation frequency of magnetic islands in JET are compared with diamagnetic drift frequencies, in view of a possible diagnostic application to the determination of markers for the safety factor profile. Statistical analysis is performed for a database including many well-diagnosed plasma discharges. Propagation in the plasma frame, i.e. with subtracted E  ×  B Doppler shift, results to be in the ion diamagnetic drift direction, with values ranging from 0.8 (for islands at the q  =  2 resonant surface) to 1.8 (for more internal islands) times the ion diamagnetic drift frequency. The diagnostic potential of the assumption of island propagation at exactly the ion diamagnetic frequency is scrutinised. Rational-q locations obtained on the basis of this assumption are compared with the ones measured by equilibrium reconstruction including motional Stark effect measurements as constraints. Systematic shifts and standard deviations are determined for islands with (poloidal, toroidal) periodicity indexes of (2, 1), (3, 2), (4, 3) and (5, 3) and possible diagnostic applications are indicated.

  9. [Plasma technology for biomedical material applications].

    PubMed

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  10. Polarizer design for millimeter-wave plasma diagnostics.

    PubMed

    Leipold, F; Salewski, M; Jacobsen, A S; Jessen, M; Korsholm, S B; Michelsen, P K; Nielsen, S K; Stejner, M

    2013-08-01

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  11. Polarizer design for millimeter-wave plasma diagnostics

    SciTech Connect

    Leipold, F.; Salewski, M.; Jacobsen, A. S.; Jessen, M.; Korsholm, S. B.; Michelsen, P. K.; Nielsen, S. K.; Stejner, M.

    2013-08-15

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  12. Measurements by the plasma diagnostics package on STS-3

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G. B.

    1982-01-01

    A comprehensive set of measurements about the orbiter environment are provided by the plasma diagnostics package (PDP). Ion and electron particle densities, energies, and spatial distribution functions; ion mass for identification of particular molecular ion species; and magnetic fields, electric fields and electromagnetic waves over a broad frequency range are studied. Shuttle environmental measurements will be made both on the pallet and, by use of the remote manipulator system (RMS), the PDP will be maneuvered in and external to the bay area to continue environmental measurements and to carry on a joint plasma experiment with the Utah State University fast-pulsed electron generator. Results of orbiter environment EMI measurements and S-band field strengths as well as preliminary results from wake search operations indicating wake boundary identifiers are reported.

  13. Laser diagnostics of welding plasma by polarization spectroscopy.

    PubMed

    Lucas, Owen; Alwahabi, Zeyad T; Linton, Valerie; Meeuwissen, Karel

    2007-05-01

    The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.

  14. Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma

    NASA Astrophysics Data System (ADS)

    Nemets, A. R.; Krupin, V. A.; Klyuchnikov, L. A.; Korobov, K. V.; Nurgaliev, M. R.

    2016-12-01

    The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z eff( r) in T-10 discharges. The importance of Z eff measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurements is 1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a "continuum window" of 5236 ± 6 Å and brightness of the lines C5+ (5291 Å), He1+ (4686 Å), and Dβ (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z eff( r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.

  15. Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma

    SciTech Connect

    Nemets, A. R. Krupin, V. A.; Klyuchnikov, L. A. Korobov, K. V.; Nurgaliev, M. R.

    2016-12-15

    The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z{sub eff}(r) in T-10 discharges. The importance of Z{sub eff} measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurements is ~1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a “continuum window” of 5236 ± 6 Å and brightness of the lines C{sup 5+} (5291 Å), He{sup 1+} (4686 Å), and D{sub β} (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z{sub eff}(r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.

  16. Challenges in plasma and laser wakefield accelerated beams diagnostic

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Anania, M. P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G.; Marchetti, B.; Mostacci, A.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.

    2013-08-01

    The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

  17. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  18. Circulating Plasma MicroRNAs As Diagnostic Markers for NSCLC

    PubMed Central

    Hou, Jinpao; Meng, Fei; Chan, Lawrence W. C.; Cho, William C. S.; Wong, S. C. Cesar

    2016-01-01

    Lung cancer is the most common cause of cancer deaths all over the world, in which non-small cell lung cancer (NSCLC) accounts for ~85% of cases. It is well known that microRNAs (miRNAs) play a critical role in various cellular processes, mediating post-transcriptional silencing either by mRNA degradation through binding the 3′ UTR of target mRNA or by translational inhibition of the protein. In the past decade, miRNAs have also been increasingly identified in biological fluids such as human serum or plasma known as circulating or cell-free miRNAs, and may function as non-invasive diagnostic markers for various cancer types including NSCLC. Circulating tumor cells (CTCs) are those cells that are shed from solid tumors and then migrate into the circulation. However, reports concerning the roles of CTCs are quite rare, which may be attributed to the difficulties in the enrichment and detection of CTCs in the circulation. Although, there have been reassuring advances in identifying circulating miRNA-panels, which are assumed to be of diagnostic value in NSCLC early stage, some issues remain concerning the reliability of using miRNA panels as a diagnostic tool for NSCLC. In the current review, we are aiming at providing insights into the miRNAs biology, the mechanisms of miRNAs release into the bloodstream, cell-free miRNAs as the diagnostic markers for NSCLC and the current limitations of CTCs as diagnostic markers in NSCLC. PMID:27857721

  19. Predictive Gyrokinetic Transport Simulations and Application of Synthetic Diagnostics

    NASA Astrophysics Data System (ADS)

    Candy, J.

    2009-11-01

    In this work we make use of the gyrokinetic transport solver TGYRO [1] to predict kinetic plasma profiles consistent with energy and particle fluxes in the DIII-D tokamak. TGYRO uses direct nonlinear and neoclassical fluxes calculated by the GYRO and NEO codes, respectively, to solve for global, self-consistent temperature and density profiles via Newton iteration. Previous work has shown that gyrokinetic simulation results for DIII-D discharge 128913 match experimental data rather well in the plasma core, but with a discrepancy in both fluxes and fluctuation levels emerging closer to the edge (r/a > 0.8). The present work will expand on previous results by generating model predictions across the entire plasma core, rather than at isolated test radii. We show that TGYRO predicts temperature and density profiles in good agreement with experimental observations which simultaneously yield near-exact (to within experimental uncertainties) agreement with power balance calculations of the particle and energy fluxes for r/a <=0.8. Moreover, we use recently developed synthetic diagnostic algorithms [2] to show that TGYRO also predicts density and electron temperature fluctuation levels in close agreement with experimental measurements across the simulated plasma volume. 8pt [1] J. Candy, C. Holland, R.E. Waltz, M.R. Fahey, and E. Belli, ``Tokamak profile prediction using direct gyrokinetic and neoclassical simulation," Phys. Plasmas 16, 060704 (2009). [2] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz, and G.R. Tynan, ``Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence," Phys. Plasmas 16, 052301 (2009).

  20. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    SciTech Connect

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  1. Interpretation of STS-3/plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1984-01-01

    The Plasma Diagnostics Package, which was flown aboard STS-3 recorded various chemical releases from the Orbiter. Changes in the plasma environment were observed to occur during Flash Evaporator System (FES) releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electro-static noise is enhanced and plasma density irregularity (delta n/N) is observed to increase by as much as 4 times and is strongly peaked below 6 Hz. In the case of water dumps, background electrostatic noise is enhanced or suppressed depending on frequency and Delta N/N is also seen to increase by as much as 4 times. Various changes in the plasma environment are effected by primary and vernier thruster operations. In addition, thruster activity stimulates electrostatic noise with a spectrum which is most intense at frequencies below 10 kHz.

  2. Application of superconductivity to medical diagnostics

    SciTech Connect

    Farrell, D.E.; Tripp, J.H.; Zanzucchi, P.E.

    1981-01-01

    This communication discusses a development in medical diagnostics, made possible by the application of a SQUID magnetic susceptometer to in vivo measurement of the iron stored in human tissue. Some new results are reported which indicate that a carefully designed susceptometer can provide the clinician with a useful non-invasive measure of excess iron in the human liver. Extension of this technique to other important iron storage problems is discussed.

  3. Plasma diagnostics in a PVD triode ion plating installation

    NASA Astrophysics Data System (ADS)

    Wouters, Stan Lambert Maria

    1998-12-01

    In this thesis, two diagnostics tools are combined to relate the plasma process parameters in the triode ion plating system (BAI 640) to the film microstructure of wear resistant coatings. As diagnostics tools, the energy-resolved mass analyzer of Balzers (PPM 421) and self-constructed Langmuir probes are used. The PPM 421 detects ion fluxes from the whole plasma volume, with its highest sensitivity along the axis of the ion optics while the probe measures electron and ion fluxes in the proximity of the probe. It is important to know which ions and which neutrals, with how much energy or speed, impinge on the surface of the substrates. An ion mass scan and a neutral mass scan, performed by the PPM 421 inserted next to the substrate table, can give information on the most important species, while the energy scan gives information on the energy distribution of these species. These so called energy spectra of neutrals and ions are a convolution of different energy distributions. This indicates that there are potential hills in the plasma were the ions can accelerate. The fast neutrals mostly originate from a charge exchange collision with the ions. The Langmuir probe can help to locate the potential hills in the plasma. Moreover, a simple current-voltage measurement, performed by this type of collecting probe, can give the value of the plasma parameters with some reasonable accuracy. In combination with the results of the film microstructure, performed by X-ray diffraction, the process parameters of a deposition can be optimized to obtain films with controlled adhesion properties, friction protection and microhardness. The configuration of the triode ion plating installation is given in its different modes used in this thesis, e.g. heating, etching and ion plating/evaporation mode. Finally, film properties, such as the macroscopic residual stress, the stress free lattice parameter, the preferred orientation, the Vickers microhardness and film thickness is discussed

  4. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, Brian R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 μm in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  5. Papers presented at the Tenth Topical Conference on High-Temperature Plasma Diagnostics

    SciTech Connect

    Not Available

    1994-08-01

    This report contains papers on the following topics: Effects of limited spatial resolution on fluctuation measurements; vertical viewing of electron-cyclotron radiation in Text-U; measurement of temperature fluctuations from electron-cyclotron emission; a varying cross section magnetic coil diagnostic used in digital feedback control of plasma position in Text-Upgrade; high-sensitivity, high resolution measurements of radiated power on Text-U; wave launching as a diagnostic tool to investigate plasma turbulence; edge parameters from an energy analyzer and particle transport on Text-U; initial results from a charge exchange q-Diagnostic on Text-U; a method for neutral spectra analysis taking ripple-trapped particle losses into account; application of a three sample volume{sup S(k,{omega}}) estimate to optical measurements of turbulence on Text; initial operation of the 2D Firsis on Text-Upgrade; horizontal-view interferometer on Text-Upgrade; plasma potential measurements on Text-Upgrade with A 2 MeV heavy ion beam; fluctuation measurements using the 2 MeV heavy ion beam probe on Text-U; the time domain triple probe method; a phase contrast imaging system for Text-U; and development of rugged corner cube detectors for the Text-U-Fir interferometer. These papers have been placed on the database elsewhere.

  6. Real-time plasma control based on the ISTTOK tomography diagnostic.

    PubMed

    Carvalho, P J; Carvalho, B B; Neto, A; Coelho, R; Fernandes, H; Sousa, J; Varandas, C; Chávez-Alarcón, E; Herrera-Velázquez, J J E

    2008-10-01

    The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.

  7. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing

    PubMed Central

    Yu, Stephanie C. Y.; Chan, K. C. Allen; Zheng, Yama W. L.; Jiang, Peiyong; Liao, Gary J. W.; Sun, Hao; Akolekar, Ranjit; Leung, Tak Y.; Go, Attie T. J. I.; van Vugt, John M. G.; Minekawa, Ryoko; Oudejans, Cees B. M.; Nicolaides, Kypros H.; Chiu, Rossa W. K.; Lo, Y. M. Dennis

    2014-01-01

    Noninvasive prenatal testing using fetal DNA in maternal plasma is an actively researched area. The current generation of tests using massively parallel sequencing is based on counting plasma DNA sequences originating from different genomic regions. In this study, we explored a different approach that is based on the use of DNA fragment size as a diagnostic parameter. This approach is dependent on the fact that circulating fetal DNA molecules are generally shorter than the corresponding maternal DNA molecules. First, we performed plasma DNA size analysis using paired-end massively parallel sequencing and microchip-based capillary electrophoresis. We demonstrated that the fetal DNA fraction in maternal plasma could be deduced from the overall size distribution of maternal plasma DNA. The fetal DNA fraction is a critical parameter affecting the accuracy of noninvasive prenatal testing using maternal plasma DNA. Second, we showed that fetal chromosomal aneuploidy could be detected by observing an aberrant proportion of short fragments from an aneuploid chromosome in the paired-end sequencing data. Using this approach, we detected fetal trisomy 21 and trisomy 18 with 100% sensitivity (T21: 36/36; T18: 27/27) and 100% specificity (non-T21: 88/88; non-T18: 97/97). For trisomy 13, the sensitivity and specificity were 95.2% (20/21) and 99% (102/103), respectively. For monosomy X, the sensitivity and specificity were both 100% (10/10 and 8/8). Thus, this study establishes the principle of size-based molecular diagnostics using plasma DNA. This approach has potential applications beyond noninvasive prenatal testing to areas such as oncology and transplantation monitoring. PMID:24843150

  8. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing.

    PubMed

    Yu, Stephanie C Y; Chan, K C Allen; Zheng, Yama W L; Jiang, Peiyong; Liao, Gary J W; Sun, Hao; Akolekar, Ranjit; Leung, Tak Y; Go, Attie T J I; van Vugt, John M G; Minekawa, Ryoko; Oudejans, Cees B M; Nicolaides, Kypros H; Chiu, Rossa W K; Lo, Y M Dennis

    2014-06-10

    Noninvasive prenatal testing using fetal DNA in maternal plasma is an actively researched area. The current generation of tests using massively parallel sequencing is based on counting plasma DNA sequences originating from different genomic regions. In this study, we explored a different approach that is based on the use of DNA fragment size as a diagnostic parameter. This approach is dependent on the fact that circulating fetal DNA molecules are generally shorter than the corresponding maternal DNA molecules. First, we performed plasma DNA size analysis using paired-end massively parallel sequencing and microchip-based capillary electrophoresis. We demonstrated that the fetal DNA fraction in maternal plasma could be deduced from the overall size distribution of maternal plasma DNA. The fetal DNA fraction is a critical parameter affecting the accuracy of noninvasive prenatal testing using maternal plasma DNA. Second, we showed that fetal chromosomal aneuploidy could be detected by observing an aberrant proportion of short fragments from an aneuploid chromosome in the paired-end sequencing data. Using this approach, we detected fetal trisomy 21 and trisomy 18 with 100% sensitivity (T21: 36/36; T18: 27/27) and 100% specificity (non-T21: 88/88; non-T18: 97/97). For trisomy 13, the sensitivity and specificity were 95.2% (20/21) and 99% (102/103), respectively. For monosomy X, the sensitivity and specificity were both 100% (10/10 and 8/8). Thus, this study establishes the principle of size-based molecular diagnostics using plasma DNA. This approach has potential applications beyond noninvasive prenatal testing to areas such as oncology and transplantation monitoring.

  9. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  10. Doppler spectroscopy and D-alpha emission diagnostics for the C-2 FRC plasma

    SciTech Connect

    Gupta, Deepak K.; Paganini, E.; Bonelli, L.; Deng, B. H.; Gornostaeva, O.; Hayashi, R.; Knapp, K.; McKenzie, M.; Pousa-Hijos, R.; Primavera, S.; Schroeder, J.; Tuszewski, M.; Balvis, A.; Giammanco, F.; Marsili, P.

    2010-10-15

    Two Doppler spectroscopy diagnostics with complementary capabilities are developed to measure the ion temperatures and velocities of FRC plasmas in the C-2 device. First, the multichord ion doppler diagnostic can simultaneously measure 15 chords of the plasma using an image intensified camera. Second, a single-chord fast-response ion Doppler diagnostic provides much higher faster time response by using a 16-channel photo-multiplier tube array. To study the neutral density of deuterium under different wall and plasma conditions, a highly sensitive eight-channel D-alpha diagnostic has been developed and calibrated for absolute radiance measurements. These spectroscopic diagnostics capabilities, combined with other plasma diagnostics, are helping to understand and improve the field reversed configuration plasmas in the C-2 device.

  11. Doppler spectroscopy and D-alpha emission diagnostics for the C-2 FRC plasma.

    PubMed

    Gupta, Deepak K; Paganini, E; Balvis, A; Bonelli, L; Deng, B H; Giammanco, F; Gornostaeva, O; Hayashi, R; Knapp, K; Marsili, P; McKenzie, M; Pousa-Hijos, R; Primavera, S; Schroeder, J; Tuszewski, M

    2010-10-01

    Two Doppler spectroscopy diagnostics with complementary capabilities are developed to measure the ion temperatures and velocities of FRC plasmas in the C-2 device. First, the multichord ion doppler diagnostic can simultaneously measure 15 chords of the plasma using an image intensified camera. Second, a single-chord fast-response ion Doppler diagnostic provides much higher faster time response by using a 16-channel photo-multiplier tube array. To study the neutral density of deuterium under different wall and plasma conditions, a highly sensitive eight-channel D-alpha diagnostic has been developed and calibrated for absolute radiance measurements. These spectroscopic diagnostics capabilities, combined with other plasma diagnostics, are helping to understand and improve the field reversed configuration plasmas in the C-2 device.

  12. Plasma wakefield diagnostics using probe electron beam and microchannel plates

    SciTech Connect

    Fainberg, Ya.B.; Balakirev, V.A.; Berezin, A.K.

    1996-12-31

    The analytical and numerical investigations of trajectories of the probe beam electrons in the two dimensional wakefield, excited in plasma by a dense bunch of relativistic electrons with Gauss longitudinal and transverse distribution of density is carried out. On basis of calculations of probe beam deviations the diagnostic instruments is developed for parameters of experiments conducted in NSC KIPT. The diagnostic instruments consist of an electron gun forming the electron beam with energy 10KeV, current 10{mu}A and diameter 2mm which passes through the chamber of interaction and falls on collector of diameter 10mm. Collector (screen) is placed in front of the first plate of microchannel amplifier which consists of three microchannel plates (MCP) with sizes 20 - 30mm, The voltage 3kV was applied to the each plate. Total amplification of MCP amplifier is 10{sup 4} - 10{sup 5} in dependence on quantity of particles, falling on the first plate. As a result the deviations of probe beam by excited wakefield the electrons fall on first plate of amplifier and are registered by anode of amplifier, located behind the third plates. Calculated probe beam deviations and obtained amplification of MCP amplifier permit to find out and to investigate the electrical wakefields, excited by the sequence of relativistic bunches (number of particles in bunch is 2x10{sup 9}, energy is 14MeV) in plasma of density 10{sup 11} - 10{sup 13} cm{sup {minus}3}. The maximal value of the fields registered by such technique is not less 2kv/cm.

  13. Measurement of the plasma radial electric field by the motional Stark effect diagnostic on JET plasmas

    NASA Astrophysics Data System (ADS)

    Reyes Cortes, S.; Hawkes, N. C.; Lotte, P.; Fenzi, C.; Stratton, B. C.; Hobirk, J.; De Angelis, R.; Orsitto, F.; Varandas, C. A. F.

    2003-03-01

    The radial electric field gradient or the E×B flow shear has been pointed out as the underlying mechanism for turbulence suppression, responsible for an internal transport barrier formation in advanced tokamak scenarios. A comprehensive study on these subjects requires a direct measurement of the plasma radial electric field Er. The poloidal component of the magnetic field is assessed by the motional Stark effect (MSE) polarimeter, which is currently a standard diagnostic in fusion devices, allowing a local and nonperturbative measurement of the magnetic pitch angle. A precise measure to the state of polarization of the Stark components gives the information on the direction of the magnetic field. Due to the particular orientation of the Lorentz component, that is nearly perpendicular to Er, the MSE diagnostic is very sensitive to the plasma intrinsic radial electric field. This article describes a technique to measure Er involving the change of the polarization angle of the MSE emission, by using two beam injectors at different energies, firing sequentially. Experimental results for the low Er case, i.e., with very little plasma rotation, showing the ability of the MSE to perform this measurement, will be presented. This is the first time that evidence of a direct measurement of the plasma Er is reported from the Joint European Torus.

  14. Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1991-01-01

    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized.

  15. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  16. Z-pinch diagnostics, plasma and liner instabilities and new x-ray techniques

    SciTech Connect

    Oona, H.; Anderson, B.; Benage, J.

    1996-09-01

    Pulse power experiments of the last several decades have contributed greatly to the understanding of high temperature and high density plasmas and, more recently, to the study of hydrodynamic effects in thick imploding cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load, with the resulting Lorenz force compressing the load to produce hydrodynamic motion and/or high temperature, high density plasma. In Los Alamos, Pulsed power experiments are carried out at two facilities. Experiments at low current (from several million to ten million Amperes) are conducted on the Pegasus II capacitor bank. Experiments with higher currents (10`s to 100`s MA range) are performed in Ancho Canyon with the explosively driven Procyon and MAGO magnetic flux compression generator systems. In this paper, the authors present a survey of diagnostic capabilities and results from several sets of experiments. First, they discuss the initiation and growth of instabilities in plasmas generated from the implosion of hollow z-pinches in the pegasus and Procyon experiments. Next they discuss spectroscopic data from the plasmas produced by the MAGO system. They also show time resolved imaging data from thick ({approximately} .4 mm) liner implosions. Finally, the authors discuss improvements to x-ray and visible light imaging and spectrographic diagnostic techniques. The emphasis of this paper is not so much a detailed discussion of the experiments, but a presentation of imaging and spectroscopic results and the implications of these observations to the experiments.

  17. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  18. [Mass spectrometry analysis of blood plasma lipidome as method of disease diagnostics, evuation of effectiveness and optimization of drug therapy].

    PubMed

    Lokhov, P G; Maslov, D L; Balashova, E E; Trifonova, O P; Medvedeva, N V; Torkhovskaya, T I; Ipatova, O M; Archakov, A I; Malyshev, P P; Kukharchuk, V V; Shestakova, E A; Shestakova, M V; Dedov, I I

    2015-01-01

    A new method for the analysis of blood lipid based on direct mass spectrometry of lipophilic low molecular weight fraction of blood plasma has been considered. Such technique allows quantification of hundreds of various types of lipids and this changes existing concepts on diagnostics of lipid disorders and related diseases. The versatility and quickness of the method significantly simplify its wide use. This method is applicable for diagnostics of atherosclerosis, diabetes, cancer and other diseases. Detalization of plasma lipid composition at the molecular level by means of mass spectrometry allows to assess the effectiveness of therapy and to optimize the drug treatment of cardiovascular diseases by phospholipid preparations.

  19. Plasma diagnostics package. Volume 1: OSS-1 section

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (1) of the Plasma Diagnostics Package (PDP) final science report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-3 as a part of the Office of Space Science first payload (OSS-1). This work was performed during the period of launch, March 22, l982, through June 30, l983. During this period the primary data reduction effort consisted of processing summary plots of the data received by the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). The scientific analyses during the performance period consisted of general studies which incorporated the results of several of the PDP's instruments, detailed studies which concentrated on data from only one or two of the instruments, and joint studies of beam-plasma interactions with the OSS-1 Fast Pulse Electron Generator (FPEG) of the Vehicle Charging and Potential Investigation (VCAP). Internal reports, published papers and oral presentations which involve PDP/OSS-1 data are listed in Sections 3 and 4. A PDP/OSS-1 scientific results meeting was held at the University of Iowa on April 19-20, 1983. This meeting was attended by most of the PDP and VCAP investigators and provided a forum for discussing and comparing the various results, particularly with regard to the shuttle orbiter environment. One of the most important functional objectives of the PDP on OSS-1 was to characterize the orbiter environment.

  20. Therapeutic and diagnostic applications of nanoparticles.

    PubMed

    Youns, Mahmoud; Hoheisel, Jörg D; Efferth, Thomas

    2011-03-01

    Nanoparticles are sphere-like biocompatible materials made of inert silica, metal or crystals of a few nanometers in size. They are emerging as a novel class of therapeutics for cancer treatment. Being more selective and specific toward their targets, nanoparticles have the ability to enhance the anticancer effects and to simultaneously reduce systemic toxicity compared with conventional therapeutics. Furthermore, they offer the potential to overcome drug resistance leading to higher intracellular drug accumulation. Nowadays, nanotechnologies are applied to molecular diagnostics and incorporated in cutting-edge molecular diagnostic methods, such as DNA and protein microarray biochips. Nanotechnologies enable diagnosis at the single-cell and single-molecule levels. Recent progress in cancer nanotechnology raises exciting opportunities for specific drug delivery. The purpose of this review is to give an overview about different types of nanoparticles and to summarize the latest results regarding their diagnostic and therapeutic applications in the clinic with more focus on cancer treatment. Furthermore, we discuss opportunities, limitations, and challenges faced by therapeutic nanoparticles.

  1. Plasma diagnostics package. Volume 2: Spacelab 2 section, part A

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (2), which consists of two parts (A and B), of the Plasma Diagnostics Package (PDP) Final Science Report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-51F as a part of the Spacelab 2 (SL-2) payload. This work was performed during the period of launch, July 29, l985, through June 30, l988. During this period the primary data reduction effort consisted of processing summary plots of the data received by 12 of the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). The scientific analyses during the performance period consisted of follow-up studies of shuttle orbiter environment and orbiter/ionosphere interactions and various plasma particle and wave studies which dealt with data taken when the PDP was on the Remote Manipulator System (RMS) arm and when the PDP was in free flight. Of particular interest during the RMS operations and free flight were the orbiter wake studies and joint studies of beam/plasma interactions with the SL-2 Fast Pulse Electron Generator (FPEG) of the Vehicle Charging and Potential Investigation (VCAP). Internal reports, published papers and presentations which involve PDP/SL-2 data are listed in Sections 3 and 4. A PDP/SL-2 scientific results meeting was held at the University of Iowa on June 10, l986. This meeting was attended by most of the PDP and VCAP investigators and provided a forum for discussing and comparing the various results, particularly with regard to the PDP free flight.

  2. A solar tornado observed by EIS. Plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Levens, P. J.; Labrosse, N.; Fletcher, L.; Schmieder, B.

    2015-10-01

    Context. The term "solar tornadoes" has been used to describe apparently rotating magnetic structures above the solar limb, as seen in high resolution images and movies from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). These often form part of the larger magnetic structure of a prominence, however the links between them remain unclear. Here we present plasma diagnostics on a tornado-like structure and its surroundings, seen above the limb by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard the Hinode satellite. Aims: We aim to extend our view of the velocity patterns seen in tornado-like structures with EIS to a wider range of temperatures and to use density diagnostics, non-thermal line widths, and differential emission measures to provide insight into the physical characteristics of the plasma. Methods: Using Gaussian fitting to fit and de-blend the spectral lines seen by EIS, we calculated line-of-sight velocities and non-thermal line widths. Along with information from the CHIANTI database, we used line intensity ratios to calculate electron densities at each pixel. Using a regularised inversion code we also calculated the differential emission measure (DEM) at different locations in the prominence. Results: The split Doppler-shift pattern is found to be visible down to a temperature of around log T = 6.0. At temperatures lower than this, the pattern is unclear in this data set. We obtain an electron density of log ne = 8.5 when looking towards the centre of the tornado structure at a plasma temperature of log T = 6.2, as compared to the surroundings of the tornado structure where we find log ne to be nearer 9. Non-thermal line widths show broader profiles at the tornado location when compared to the surrounding corona. We discuss the differential emission measure in both the tornado and the prominence body, which suggests that there is more contribution in the tornado at temperatures below log T = 6.0 than in the

  3. Combined complementary plasma diagnostics to characterize a 2f plasma with additional DC current with conditioning effects at the chamber wall

    NASA Astrophysics Data System (ADS)

    Klick, Michael; Rothe, Ralf; Baek, Kye Hyun; Lee, Eunwoo

    2016-09-01

    Multiple frequencies and DC current used in a low-pressure plasma rf discharge result in an increased complexity. This needs plasma diagnostics applied, in particular in a plasma process chamber. That is done under manufacturing conditions which restrict the applicable plasma diagnostics to non-invasive methods with small footprint. So plasma chamber parameters, optical emission spectroscopy (OES), and self-excited electron spectroscopy (SEERS) are used to characterize the plasma and to understand chamber wall conditioning effects in an Ar plasma. The parameters are classified according to their origin--the region they are representative for. The center ion density is estimated from the DC current and compared to the SEERS electron density reflecting the electron density close to that at the chamber wall. The conditioning effects are caused by Si sputtering at a Si wafer changing the chamber wall state only when the chamber is clean, subsequent plasmas in the same chamber are not affected in that way. Through the combination of the complementary methods it can be shown that the chamber wall condition finally changes the radial plasma density distribution. Also the heating of electrons in the sheath is shown to be influenced by conditioning effects.

  4. Optical Diagnostics of the Plasma and Surface during Inductively Coupled Plasma Etching

    NASA Astrophysics Data System (ADS)

    Herman, Irving P.

    1999-10-01

    The use of optical diagnostics to analyze the etching of Si, Ge, and InP by chlorine in an inductively coupled plasma (ICP) is investigated. Optical probes, along with other conventional plasma diagnostics, are used to characterize the process through measurements of the constituents of the plasma and the surface composition to obtain a more complete picture of the etching process. Neutral Cl2 and Cl densities are determined by optical emission actinometry by following optical emission from Cl_2. The absolute densities of Cl_2^+ and Cl^+ are determined by laser- induced fluorescence (LIF) of Cl_2^+ and Langmuir probe measurements of the total positive ion density. The surface is probed by using laser-induced thermal desorption with an XeCl laser (308 nm) to desorb the steady-state adlayer and optical methods to detect these desorbed species. The development of a new method to detect optically these laser desorbed (LD) species is detailed, that of examining transient changes in the plasma-induced emission (PIE). This LD-PIE method is more universal than the previously reported detection by LIF (LD-LIF), but requires more calibration due to varying electron density and temperature with varying plasma conditions. This is detailed for Si etching, for which LD-PIE and LD-LIF results are compared. The calibration methods are seen to be valid when the surface is analyzed as the rf power supplied to the reactor is varied. The electron density - needed for LD-PIE calibration - is measured by microwave interferometry. An improved understanding of the etching mechanism is obtained by combining the results of each of these measurements. This work was supported by NSF Grant No. DMR-98-15846. note

  5. Reflective multilayer optic as hard X-ray diagnostic on laser-plasma experiment.

    PubMed

    Brejnholt, N F; Decker, T A; Hill, R M; Chen, H; Williams, G J; Park, J; Alameda, J B; Fernández-Perea, M; Pivovaroff, M J; Soufli, R; Descalle, M-A; Peebles, J; Kerr, S M

    2015-01-01

    A multilayer-based optic was tested for use as an X-ray diagnostic on a laser-plasma experiment. The multilayer optic was employed to selectively pass X-rays between 55 and 100 keV. An order of magnitude improvement in signal-to-noise ratio is achieved compared to a transmission crystal spectrometer. A multilayer response model, taking into account the source size and spectral content, is constructed and the outlook for application above 500 keV is briefly discussed. LLNL-JRNL-664311.

  6. Application of modern diagnostic methods to environmental improvement. Annual progress report, October 1994--September 1995

    SciTech Connect

    Shepard, W.S.

    1995-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), an interdisciplinary research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to aid in solving DOE`s nuclear waste problem. The program is a comprehensive effort which includes five focus areas: advanced diagnostic systems; development/application; torch operation and test facilities; process development; on-site field measurement and analysis; technology transfer/commercialization. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and process control. Also, the measured parameters, will be employed to improve, optimize and control the operation of the plasma torch and the overall plasma treatment process. Moreover, on-site field measurements at various DOE facilities are carried out to aid in the rapid demonstration and implementation of modern fieldable diagnostic methods. Such efforts also provide a basis for technology transfer.

  7. Atmospheric pressure plasma jet applications

    SciTech Connect

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S.

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  8. Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques

    NASA Astrophysics Data System (ADS)

    Röpcke, Jürgen; Engeln, Richard; Schram, Daan; Rousseau, Antoine; Davies, Paul B.

    Within the last decade, mid-infrared absorption spectroscopy between 3 and 20 μm - known as infrared laser absorption spectroscopy (IRLAS) and based on tunable semiconductor lasers, namely lead salt diode lasers, often called tunable diode lasers (TDLs), and quantum cascade lasers (QCLs) - has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, and organosilicon compounds has led to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present contribution is threefold (1) to review recent achievements in our understanding of molecular phenomena in plasmas including interactions with solid surfaces, (2) to report on selected studies of the spectroscopic properties and kinetic behavior of radicals, and (3) to review new applications of QCLs and to describe the current status of advanced instrumentation for QCLAS in the midinfrared.

  9. Emission Line Ratios of FE III as Astrophysical Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Tyndall, Niall B.; Keenan, Francis P.; Ballance, Connor P.; Ramsbottom, Catherine A.; Ferland, Gary J.; Hibbert, Alan

    2017-05-01

    Recent, state-of-the-art calculations of A-values and electron impact excitation rates for Fe iii are used in conjunction with the Cloudy modeling code to derive emission-line intensity ratios for optical transitions among the fine-structure levels of the 3d6 configuration. A comparison of these with high-resolution, high signal-to-noise spectra of gaseous nebulae reveals that previous discrepancies found between theory and observation are not fully resolved by the latest atomic data. Blending is ruled out as a likely cause of the discrepancies, because temperature- and density-independent ratios (arising from lines with common upper levels) match well with those predicted by theory. For a typical nebular plasma with electron temperature {T}{{e}}=9000 K and electron density {N}{{e}}={10}4 {{cm}}-3, cascading of electrons from the levels {}3{{{G}}}5, {}3{{{G}}}4 and {}3{{{G}}}3 plays an important role in determining the populations of lower levels, such as {}3{{{F}}}4, which provide the density diagnostic emission lines of Fe iii, such as {}5{{{D}}}4 - {}3{{{F}}}4 at 4658 Å. Hence, further work on the A-values for these transitions is recommended, ideally including measurements if possible. However, some Fe iii ratios do provide reliable {N}{{e}}-diagnostics, such as 4986/4658. The Fe iii cooling function, calculated with Cloudy using the most recent atomic data, is found to be significantly greater at T e ≃ 30,000 K than predicted with the existing Cloudy model. This is due to the presence of additional emission lines with the new data, particularly in the 1000-4000 Å wavelength region.

  10. Narrow bandwidth Thomson photon source and diagnostic development using laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Tsai, Hai-En; van Tilborg, Jeroen; Benedetti, Carlo; Esarey, Eric; Friedman, Alex; Grote, David; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Steinke, Sven; Swanson, Kelly; Toth, Csaba; Vay, Jean-Luc; Vetter, Kai; Zhang, Yigong; Leemans, Wim

    2017-03-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs), and these sources at the same time provide precision diagnostics of beam evolution to support LPA development. We review design of experiments and laser capabilities to realize a photon source, integrating LPA acceleration for compactness, control of scattering to increase photon flux, and electron deceleration to mitigate beam dump size. These experiments are developing a compact photon source system with the potential to enable new monoenergetic photon applications currently restricted by source size, including nuclear nonproliferation. Diagnostic use of the energy-angle spectra of Thomson scattered photons is presented to support development of LPAs to meet the needs of advanced high yield/low-energy-spread photon sources and future high energy physics colliders.

  11. Laser Diagnostic Method for Plasma Sheath Potential Mapping

    NASA Astrophysics Data System (ADS)

    Walsh, Sean P.

    Electric propulsion systems are gaining popularity in the aerospace field as a viable option for long term positioning and thrusting applications. In particular, Hall thrusters have shown promise as the primary propulsion engine for space probes during interplanetary journeys. However, the interaction between propellant xenon ions and the ceramic channel wall continues to remain a complex issue. The most significant source of power loss in Hall thrusters is due to electron and ion currents through the sheath to the channel wall. A sheath is a region of high electric field that separates a plasma from a wall or surface in contact. Plasma electrons with enough energy to penetrate the sheath may result emission of a secondary electron from the wall. With significant secondary electron emission (SEE), the sheath voltage is reduced and so too is the electron retarding electric field. Therefore, a lower sheath voltage further increases the particle loss to the wall of a Hall thruster and leads to plasma cooling and lower efficiency. To further understand sheath dynamics, laser-induced fluorescence is employed to provide a non-invasive, in situ, and spatially resolved technique for measuring xenon ion velocity. By scanning the laser wavelength over an electronic transition of singly ionized xenon and collecting the resulting fluorescence, one can determine the ion velocity from the Doppler shifted absorption. Knowing the velocity at multiple points in the sheath, it can be converted to a relative electric potential profile which can reveal a lot about the plasma-wall interaction and the severity of SEE. The challenge of adequately measuring sheath potential profiles is optimizing the experiment to maximize the signal-to-noise ratio. A strong signal with low noise, enables high resolution measurements and increases the depth of measurement in the sheath, where the signal strength is lowest. Many improvements were made to reduce the background luminosity, increase the

  12. TPX diagnostics for tokamak operation, plasma control and machine protection

    SciTech Connect

    Edmonds, P.H.; Medley, S.S.; Young, K.M.

    1995-08-01

    The diagnostics for TPX are at an early design phase, with emphasis on the diagnostic access interface with the major tokamak components. Account has to be taken of the very severe environment for diagnostic components located inside the vacuum vessel. The placement of subcontracts for the design and fabrication of the diagnostic systems is in process.

  13. Plasma-water systems studied with optical diagnostics including sum-frequency generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito

    2016-09-01

    Recently, various applications of plasma-water systems have been reported, such as materials synthesis, agricultural applications, and medical treatments. As one of basic studies of such systems, we are investigating water surface structure influenced by a plasma via vibrational sum-frequency generation spectroscopy. Vibrational sum-frequency generation spectroscopy is known to be an interfacially active diagnostic technique, as such process occurs in noncentrosymmetric medium. Visible and wavenumber-tunable infrared beams are simultaneously irradiated to the interface. The interfacial water has ice-like ( 3200 cm-1), liquid-like ( 3400 cm-1), and free OH (3700 cm-1) structures (assignment of the ice-like structure still remains contentious), and the intensity of the signal becomes stronger when the tunable infrared beam resonates with a vibration of the structures. The results indicate that with generating air dielectric barrier discharges for supplying reactive species to the water surface, all investigated signals originating from the above-mentioned three structures decrease. Furthermore, the signal strengths are recovered after terminating the plasma generation. We currently believe that the surface density of the reactive species should be high when they are found at the water surface. Details on the experimental results of the sum-frequency generation spectroscopy, as well as other spectroscopic results of plasma-water systems, will be presented at the conference.

  14. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  15. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  16. Dust Accelerators And Their Applications In High-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Ticoş, Cǎtǎlin M.; Wang, Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  17. Diagnostics tools and methods for negative ion source plasmas, a review

    NASA Astrophysics Data System (ADS)

    Tsumori, Katsuyoshi; Wada, Motoi

    2017-04-01

    Plasma parameter measurements for negative hydrogen (H-) ion sources have been playing an important role in clarifying fundamental physics related to negative ion production and destruction processes. Measured data of beam properties, such as H- ion current density with the co-extracted electron current and the emittance, were correlated to local concentration of charged particles and temperature often characterized by Langmuir probes and optical emission spectrometry. Langmuir probes coupled to pulse lasers quantified local H- ion densities from early days of H- ion source development, while the cavity ring down photodetachment method removed Langmuir probes from contemporary large-size high power density ion sources. Technological progress has made source plasma diagnostics possible during beam extraction, which has thrown light on the transport of H- ions during the application of the extraction electric field. The advancement of plasma diagnostics for high intensity H- ion sources are summarized in this report together with recent results from the research and development negative ion source being operated for collaborative research programs at National Institute for Fusion Science.

  18. Diagnostic applications of nucleic acid circuits.

    PubMed

    Jung, Cheulhee; Ellington, Andrew D

    2014-06-17

    CONSPECTUS: While the field of DNA computing and molecular programming was engendered in large measure as a curiosity-driven exercise, it has taken on increasing importance for analytical applications. This is in large measure because of the modularity of DNA circuitry, which can serve as a programmable intermediate between inputs and outputs. These qualities may make nucleic acid circuits useful for making decisions relevant to diagnostic applications. This is especially true given that nucleic acid circuits can potentially directly interact with and be triggered by diagnostic nucleic acids and other analytes. Chemists are, by and large, unaware of many of these advances, and this Account provides a means of touching on what might seem to be an arcane field. We begin by explaining nucleic acid amplification reactions that can lead to signal amplification, such as catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR). In these circuits, a single-stranded input acts on kinetically trapped substrates via exposed toeholds and strand exchange reactions, refolding the substrates and allowing them to interact with one another. As multiple duplexes (CHA) or concatemers of increasing length (HCR) are generated, there are opportunities to couple these outputs to different analytical modalities, including transduction to fluorescent, electrochemical, and colorimetric signals. Because both amplification and transduction are at their root dependent on the programmability of Waston-Crick base pairing, nucleic acid circuits can be much more readily tuned and adapted to new applications than can many other biomolecular amplifiers. As an example, robust methods for real-time monitoring of isothermal amplification reactions have been developed recently. Beyond amplification, nucleic acid circuits can include logic gates and thresholding components that allow them to be used for analysis and decision making. Scalable and complex DNA circuits (seesaw gates

  19. Recombinase Polymerase Amplification for Diagnostic Applications.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Bergeron, Michel G

    2016-07-01

    First introduced in 2006, recombinase polymerase amplification (RPA) has stirred great interest, as evidenced by 75 publications as of October 2015, with 56 of them just in the last 2 years. The widespread adoption of this isothermal molecular tool in many diagnostic fields represents an affordable (approximately 4.3 USD per test), simple (few and easy hands-on steps), fast (results within 5-20 min), and sensitive (single target copy number detected) method for the identification of pathogens and the detection of single nucleotide polymorphisms in human cancers and genetically modified organisms. This review summarizes the current knowledge on RPA. The molecular diagnostics of various RNA/DNA pathogens is discussed while highlighting recent applications in clinical settings with focus on point-of-care (POC) bioassays and on automated fluidic platforms. The strengths and limitations of this isothermal method are also addressed. RPA is becoming a molecular tool of choice for the rapid, specific, and cost-effective identification of pathogens. Owing to minimal sample-preparation requirements, low operation temperature (25-42 °C), and commercial availability of freeze-dried reagents, this method has been applied outside laboratory settings, in remote areas, and interestingly, onboard automated sample-to-answer microfluidic devices. RPA is undoubtedly a promising isothermal molecular technique for clinical microbiology laboratories and emergence response in clinical settings. © 2016 American Association for Clinical Chemistry.

  20. Understanding CMEs using plasma diagnostics of the related dimmings

    NASA Astrophysics Data System (ADS)

    Vanninathan, Kamalam; Veronig, Astrid; Gomory, Peter; Dissauer, Karin; Temmer, Manuela; Hannah, Iain; Kontar, Eduard

    2017-04-01

    Coronal Mass Ejections (CMEs) are often associated with dimmings that are well observed in Extreme Ultra-violet (EUV) wavelengths. Such dimmings are suggested to represent the evacuation of mass that is carried out by CMEs and are a unique and indirect means to study CME properties. While Earth-directed CMEs (on-disk CMEs) are difficult to observe due to the bright background solar disk and projection effects, their corresponding dimmings are clearly discernible and ideally suited for analysis. Using data from the 6 EUV channels of Solar Dynamics Observatory/Atmospheric Imaging Assembly for Differential Emission Measure (DEM) diagnostics, we determine the plasma characteristics of the dimming region. These data are well suited for this kind of study due to the good temperature ranges covered by the multiple passbands of the instrument. We analyse 7 on-disk and 5 off-limb events and derive the weighted density and temperature as a function of time, from the DEMs. From such an analysis we differentiate 2 types of dimming regions: core and secondary dimmings. Core dimmings often occur in pairs lying on either sides of the active region and in opposite polarity regions while the secondary dimming is more extended. In both the regions the derived plasma parameters reach a minimum within 30-60 min after the flare. For each event the core dimming region shows a higher decrease in density and temperature than the corresponding secondary dimming regions. The values of these parameters remains low within the core dimming region for the entire duration of this study ( 10 hrs after the flare) while the secondary dimming region starts to show a gradual increase after 1-2 hrs. We also use spectroscopic data from Hinode/Extreme-Ultraviolet Imaging Spectrometer to differentiate core and secondary dimming regions. We find that the Fe XIII 202 Å line shows double component profiles within the core dimming region with strong blueshifts of 100 km/s while the secondary dimming region

  1. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  2. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications

    PubMed Central

    Kratz, Jeremy D.; Chaddha, Ashish; Bhattacharjee, Somnath

    2016-01-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD. PMID:26809711

  3. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    PubMed

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  4. Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques

    NASA Astrophysics Data System (ADS)

    Welzel, S.; Rousseau, A.; Davies, P. B.; Röpcke, J.

    2007-10-01

    Within the last decade mid infrared absorption spectroscopy between 3 and 20 μm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present article is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas, (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals, and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid infrared.

  5. Spectroscopic diagnostics of electron temperature and energy conversion efficiency of laser-sustained plasma in flowing argon

    NASA Astrophysics Data System (ADS)

    Mazumder, J.; Krier, H.; Chen, X.

    1988-08-01

    Laser sustained plasmas are often formed during laser materials interaction. The University's 10 kW CW CO2 laser has been used to study argon plasmas for the application to laser supported propulsion and laser materials processing. The spectroscopic diagnostic method has been applied to study laser-sustained plasmas in 1 atmosphere pure argon gas flow with an f/7 on-axis laser focusing scheme. High flow speeds of 2 to 10 m/sec are achieved. Plasma electron temperatures distributions are determined from the 415.8 nm Ar1 line and its adjacent continuum intensities. Plasma core temperatures as high as 20,000 K are reported. The total absorption of the incident laser power and the radiation loss by the plasma are calculated from the temperature distribution. Results indicated that up to 86 percent of the incident laser power can be absorbed and nearly 60 percent of the incident laser power can be retained by the flowing argon gas to provide thrust. Further research is called for in the Laser Induced Fluorescence (LIF) technique for diagnostics of the downstream mixing zone and the plasma outer region. Experiments over a wider range of operating conditions, as well as multiple plasma testings, are required to find the optimum operating scheme.

  6. Analysis of plasma wave interference patterns in the Spacelab 2 PDP data. [PDP (Plasma Diagnostics Package)

    SciTech Connect

    Feng, Wei.

    1992-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) explored the plasma environment around the shuttle. Wideband spectrograms of plasma waves were obtained from the PDP at frequencies from 0 to 30 kHz up to 400 m from the shuttle. These spectrograms frequently showed interference patterns caused by waves with wavelengths short compared to the antenna length (3.89 meters). Two types of interference patterns were observed in the wideband data: associated with the ejection of an electron beam from the space shuttle; associated with lower hybrid waves generated by an interaction between the neutral gas cloud around shuttle and the ambient ionospheric plasma. Analysis of these antenna interference patterns permits a determination of the wavelength, the plasma rest frame frequency, the direction of propagation, the power spectrum and in some cases the location of the source. The electric field noise associated with the electron beam was observed in the wideband data for two periods during which an electron frequency range at low frequencies (below 10 kHz) and shows clear evidence of interference patterns. The broadband low frequency noise was the dominant type of noise produced by the electron beam. The waves have a linear dispersion relation very similar to ion acoustic waves. The returning to the shuttle in response to the ejected electron beam. The waves associated with the lower hybrid resonance have rest frame frequencies near the lower hybrid frequency and propagate perpendicular to the magnetic field. The occurrence of these waves depends strongly on the PDP's position relative to the shuttle and the magnetic field direction. The authors results confirm previous identifications of these waves as lower hybrid waves and suggest they are driven by pick-up ions (H[sub 2]O[sup +]) produced by a charge exchange interaction between a water cloud around the shuttle and the ambient ionosphere.

  7. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  8. Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.

    2013-08-01

    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.

  9. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  10. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  11. Electrical grounding, shielding, and isolation for the MFTF-B plasma diagnostic system

    SciTech Connect

    Deadrick, F.J.

    1983-11-28

    The electrical grounding, shielding, and isolation of plasma diagnostics on the Mirror Fusion Test Facility (MFTF-B) is a key part of the overall design. The Electromagnetic Interference (EMI) environment in which the Plasma Diagnostics System (PDS) will be required to operate is very harsh. The electrical grounding and shielding design which is being implemented to cope with this environment follows one which has been used successfully on the Tandem Mirror Experiment (TMX). Details of the MFTF-B plasma diagnostics facility, equipment grounding, shielding and isolation, and the cabling system are described in this paper.

  12. Plasma haptoglobin and immunoglobulins as diagnostic indicators of deoxynivalenol intoxication

    PubMed Central

    Kim, Eun-Joo; Cho, Joon-Hyoung; Ku, Hyun-Ok; Pyo, Hyun-Mi; Kang, Hwan-Goo; Choi, Kyoung-Ho

    2008-01-01

    This study aimed to discover potential biomarkers for dioxynivalenol (DON) intoxication. B6C3F1 male mice were orally exposed to 0.83, 2.5 and 7.5 mg/kg body weight (bw) DON for 8 days and the differential protein expressions in their blood plasma were determined by SELDI - Time-of-Flight/Mass Spectrometry (TOF/MS) and the immunoglobulins (Igs) G, A, M and E in the serum were investigated. 11.7 kDa protein was significantly highly expressed according to DON administration and this protein was purified by employing a methyl ceramic HyperD F column with using optimization buffer for adsorption and desorption. The purified protein was identified as a haptoglobin precursor by peptide mapping with using LC/Q-TOF/MS and MALDI-TOF/MS and this was confirmed by western blotting and ELISA. IgG and IgM in serum were decreased in a dose-dependent manner and IgA was decreased at 7.5 mg/kg bw DON administration, but the IgE level was not changed. To compare the expressions of haptoglobin and the Igs patterns between aflatoxin B1 (AFB1), zearalenone (ZEA) and DON intoxications, rats were orally administered with AFB1 1.0, ZEA 240 and DON 7.5 mg/kg bw for 8 days. Haptoglobin was increased only at DON 7.5 mg/kg bw, while it was slightly decreased at ZEA 240 mg/kg bw and it was not detected at all at AFB1 1.0 mg/kg bw. IgG and IgA were decreased by DON, but IgG, IgA, IgM and IgE were all increased by AFB1. No changes were observed by ZEA administration. These results show that plasma haptoglobin could be a diagnostic biomarker for DON intoxication when this is combined with examining the serum Igs. PMID:18716445

  13. Perfluorocarbon Compounds: Applications In Diagnostic Imaging

    NASA Astrophysics Data System (ADS)

    Mattrey, Robert F.

    1986-06-01

    Perfluorocarbon compounds (PFC's), well known in industry and of late as synthetic oxygen carriers, have a wide range of significant applications in diagnostic imaging. Their enhancement effect is detectable by ultrasound and magnetic resonance and if radiopaque, such as perfluoroctylbromide (PFOB), by standard radiography and computed tomography (CT). We have utilized PFOB as a CT contrast agent to enhance the blood pool, and as both a CT and an ultrasound contrast agent to enhance the liver, spleen, abscesses, infarctions, and tumors or any tissue where inflammatory cells can be found. PFC's, except for the echogenic enhancement of the vascular space on their first pass to the lung, do not enhance the blood pool on ultrasound. Otherwise, ultrasound applications are similar to those observed for CT. Fluosol, which was available for human trials, is not radiopaque and therefore served as an ultrasound contrast agent. In a preliminary clinical trial, Fluosol produced tumor enhancement in man at 1.6g/kg allowing the visualization of previously missed lesions and liver and spleen enhancement at 2.4g/kg allowing the visualization of previously missed non-enhancing lesions. Perfluorocarbon toxicity seems to be related to the constituents of the emulsion rather than the perfluorocarbon itself. Improvements in the emulsifier and emulsification technology has yielded stable emulsions at high concentrations and low toxicity.

  14. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  15. Diagnostic of plasma streams from ion thrusters for space propulsion using emissive probes

    NASA Astrophysics Data System (ADS)

    Conde, L.; Tierno, S. P.; Domenech-Garret, J. L.; Donoso, J. M.; Castillo, M. A.; Eíriz, I.; Sáez de Ocáriz, I.

    2016-10-01

    The emissive probes are employed for the determination of the local plasma potential of plasma streams produced by ion thrusters. Its operation basically relies on electron collection and emission and are less sensitive to the ion motion than collecting probes. The diagnostic using emissive probes is reviewed with emphasis in low density plasmas. Our results support the conclusion that potential structures around the probe, as virtual cathodes, would be responsible for the operation of emissive probes in low density plasmas.

  16. Low temperature plasma applications in medicine

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; Metelmann, H.-R.; von Woedtke, Th.

    2016-11-01

    The main field of plasma medicine is the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. CAP is effective both to inactivate a broad spectrum of microorganisms including multiple drug resistant ones and to stimulate proliferation of mammalian cells. Clinical application has started in the field of wound healing and treatment of infective skin diseases.

  17. Industrial Applications of Low Temperature Plasmas

    SciTech Connect

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  18. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  19. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  20. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  1. Invited Review Article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices

    DOE PAGES

    Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...

    2017-04-27

    Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less

  2. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.

  3. STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of the temperature pressure and plasma

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G.

    1983-01-01

    Designed to withstand the thermal extremes of the STS-3 mission through the use of heaters and thermal blankets, the plasma diagnostics package sat on the release/engagement mechanism on the OSS-1 payload pallet without a coldplate and was attached to the RMS for two extended periods. Plots show temperature versus mission elapsed time for two temperature sensors. Pressure in the range of 10 to the -3 power torr and 10 to the -7 power torr, measured 3 inches from the skin of the package is plotted against GMT during the mission. The most distinctive feature of the pressure profile is the modulation at the obit period. It was found that pressure peaks when the atmospheric gas is rammed into the cargo bay. Electric and magnetic noise spectra and time variability due to orbiter systems, UHF and S-band transmitter field strengths, and measurements of the ion spectra obtained both in the cargo bay and during experiments are plotted.

  4. The diverse applications of plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  5. The diverse applications of plasma

    SciTech Connect

    Sharma, Mukul Darwhekar, Gajanan; Dubey, Shivani; Jain, Sudhir Kumar

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  6. Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications

    PubMed Central

    Bi, Wenya Linda; Zhang, Michael; Wu, Winona W.; Mei, Yu; Dunn, Ian F.

    2016-01-01

    There has been a recent revolution in our understanding of the genetic factors that drive meningioma, punctuating an equilibrium that has existed since Cushing’s germinal studies nearly a century ago. A growing appreciation that meningiomas share similar biologic features with other malignancies has allowed extrapolation of management strategies and lessons from intra-axial central nervous system neoplasms and systemic cancers to meningiomas. These features include a natural proclivity for invasion, frequent intratumoral heterogeneity, and correlation between biologic profile and clinical behavior. Next-generation sequencing has characterized recurrent somatic mutations in NF2, TRAF7, KLF4, AKT1, SMO, and PIK3CA, which are collectively present in ~80% of sporadic meningiomas. Genomic features of meningioma further associate with tumor location, histologic subtype, and possibly clinical behavior. Such genomic decryption, along with advances in targeted pharmacotherapy, provides a maturing integrated view of meningiomas. We review recent advances in meningioma genomics and probe their potential applications in diagnostic, therapeutic, and prognostic frontiers. PMID:27458586

  7. Neural network application to comprehensive engine diagnostics

    NASA Technical Reports Server (NTRS)

    Marko, Kenneth A.

    1994-01-01

    We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.

  8. Corpuscular plasma diagnostics complex on a tokamak with a strong field

    NASA Astrophysics Data System (ADS)

    Kislyakov, A. I.; Krasilnikov, A. V.; Petrov, M. P.; Romannikov, A. N.

    A project of corpuscular diagnostics complex for a tokamak with a strong field is considered. The complex comprises atomic particle analysers of several types and a neutral atom diagnostics injector DINA-4. Mathematical model for calculation of neutrals concentration distribution in the tokamak plasma with diagnostic beam and without it is proposed. Based on this model, charge-exchange atom spectra, recorded by corpuscular analysers, are produced, the complex capabilities, physical problems, which may be solved, using this complex, are determined.

  9. Spatial diagnostics of the laser induced lithium fluoride plasma

    SciTech Connect

    Baig, M. A.; Qamar, Aisha; Fareed, M. A.; Anwar-ul-Haq, M.; Ali, Raheel

    2012-06-15

    We present spatial characteristics of the lithium fluoride plasma generated by the fundamental and second harmonic of a Nd:YAG laser. The plume emission has been recorded spatially using five spectrometers covering the spectral region from 200 nm to 720 nm. The electron density is measured from the Stark broadened line profile of the line at 610.37 nm, whereas the plasma temperature has been determined using the Boltzmann plot method including all the observed spectral lines of lithium. Both the plasma parameters; electron density and plasma temperature decrease with the increase of the distance from the target surface. The thermal conduction towards the target, the radiative cooling of the plasma, and the conversion of thermal energy into kinetic energy are the main mechanisms responsible for the spatially decrease of the plasma parameters.

  10. Submillimeter Spectroscopic Diagnostics in a Semiconductor Processing Plasma

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; Holt, Jennifer A.; De Lucia, Frank C.; Ewing, Paul R.; Stout, Phillip J.; Armacost, Michael D.

    2013-06-01

    Millimeter and submillimeter rotational spectroscopy was used to characterize and measure the abundances of compounds in a semiconductor processing plasma. Plasmas were generated using flow mixtures of Ar, C_4F_8, and O_2 in a chamber with quartz windows for submillimeter wave transmission. Species of interest included the plasma products CF, CF_2, COF_2, and CO. Abundances as a function of flow mixtures and pressures as well as rf drive levels will be presented.

  11. Progress in spectroscopic plasma diagnostics and atomic data

    NASA Astrophysics Data System (ADS)

    von Hellermann, W.; Breger, P.; Core, W. G.; Gerstel, U.; Hawkes, N. C.; Howman, A.; König, R. W. T.; Maggi, C. F.; Meigs, A. G.; Morgan, P. D.; Svensson, J.; Stamp, M. F.; Summers, H. P.; Wolf, R. C.; Zastrow, K.-D.

    1995-09-01

    The paper illustrates the role of quantitative spectroscopy for the diagnosis of fusion plasmas and the importance of extensive consistency checks. Four examples are given of recent spectroscopic observations which have triggered new approaches both to plasma modeling and atomic excitation processes. The examples highlight the role of passive charge exchange emission and its implication for plasma edge physics, non-thermal features in the He II spectrum and temperature anisotropies observed in high power neutral beam heated plasmas, the importance of geometric mapping in an arbitrary magnetic configuration for the evaluation of line integrand spectra, and finally the complexity of atomic processes involved in the spectral analysis for helium transport studies.

  12. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  13. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    SciTech Connect

    Gerhardt, Stefan P.; Erickson, Keith; Kaita, Robert; Lawson, John; Mozulay, Robert; Mueller, Dennis; Que, Weiguo; Rahman, Nabidur; Schneider, Hans; Smalley, Gustav; Tresemer, Kelsey

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  14. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  15. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  16. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  17. Two Non-Invasive Optical Diagnostics for the Plasma Couette Experiment

    NASA Astrophysics Data System (ADS)

    Tabbutt, Megan; Flanagan, Ken; Milhone, Jason; Nornberg, Mark; Roesler, Fred; Forest, Cary; WiPAL Team Team

    2016-10-01

    Two non-invasive optical diagnostics have been developed for the Plasma Couette Experiment Upgrade (PCX-U). PCX-U is capable of producing electron temperatures of 5 to 15 eV, densities between 1010 and 5 ×1011 cm-3, and ion temperatures between 0.5 eV to 2 eV. The first diagnostic described utilizes a low cost USB spectrometer for optical emission spectroscopy (OES). Combined with a modified coronal model, OES is used to measure electron temperature in Argon plasmas. A higher resolution spectrometer is used to image ion lines which can be analyzed to determine moments of the ion energy distribution function, particularly ion temperature and flow. Both optical diagnostics are mounted on a linear stage for scanning chords across the plasma volume. Abel transform techniques are used to create radial profiles of measured plasma properties. DOE, NSF.

  18. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  19. Plasma diagnostic approach for the low-temperature deposition of silicon quantum dots using dual frequency PECVD

    NASA Astrophysics Data System (ADS)

    Sahu, B. B.; Yin, Y.; Lee, J. S.; Han, Jeon G.; Shiratani, M.

    2016-10-01

    Although studies of silicon (Si) quantum dots (QDs) were started just a few years ago, progress is noteworthy concerning unique film properties and their potential application for devices. In particular, relating to the Si QD process optimization, it is essential to control the deposition environment by studying the role of plasma parameters and atomic and molecular species in the process plasmas. In this work, we report on advanced material processes for the low-temperature deposition of Si QDs by utilizing radio frequency and ultrahigh frequency dual frequency (DF) plasma enhanced chemical vapor deposition (PECVD) method. DF PECVD can generate a very high plasma density in the range ~9  ×  1010 cm-3 to 3.2  ×  1011 cm-3 at a very low electron temperature (T e) ~ 1.5 to 2.4 eV. The PECVD processes, using a reactive mixture of H2/SiH4/NH3 gases, are carefully studied to investigate the operating regime and to optimize the deposition parameters by utilizing different plasma diagnostic tools. The analysis reveals that a higher ion flux at a higher plasma density on the substrate is conducive to enhancing the overall crystallinity of the deposited film. Along with high-density plasmas, a high concentration of atomic H and N is simultaneously essential for the high growth rate deposition of Si QDs. Numerous plasma diagnostics methods and film analysis tools are used to correlate the effect of plasma- and atomic-radical parameters on the structural and chemical properties of the deposited Si QD films prepared in the reactive mixtures of H2/SiH4/NH3 at various pressures.

  20. Diagnostic of dense plasmas using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Yu, Q. Z.; Zhang, J.; Li, Y. T.; Zhang, Z.; Jin, Z.; Lu, X.; Li, J.; Yu, Y. N.; Jiang, X. H.; Li, W. H.; Liu, S. Y.

    2005-12-01

    The spectrally and spatially resolved X-ray spectra emitted from a dense aluminum plasma produced by 500 J, 1 ns Nd:glass laser pulses are presented. Six primary hydrogen-like and helium-like lines are identified and simulated with the atomic physics code FLY. We find that the plasma is almost completely ionized under the experimental conditions. The highest electron density we measured reaches up to 1023 cm-3. The spatial variations of the electron temperature and density are compared with the simulations of MEDUSA hydrocode for different geometry targets. The results indicate that lateral expansion of the plasma produced with this laser beam plays an important role.

  1. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Mod

    SciTech Connect

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-15

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot ({approx}10 min) time scale with {approx}1 {mu}m depth and {approx}1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic - nuclear scattering of MeV ions - to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  2. Bayes' theorem application in the measure information diagnostic value assessment

    NASA Astrophysics Data System (ADS)

    Orzechowski, Piotr D.; Makal, Jaroslaw; Nazarkiewicz, Andrzej

    2006-03-01

    The paper presents Bayesian method application in the measure information diagnostic value assessment that is used in the computer-aided diagnosis system. The computer system described here has been created basing on the Bayesian Network and is used in Benign Prostatic Hyperplasia (BPH) diagnosis. The graphic diagnostic model enables to juxtapose experts' knowledge with data.

  3. Plasma-assisted surface modification and radical diagnostics

    NASA Astrophysics Data System (ADS)

    Sugai, H.; Yamage, M.; Hikosaka, Y.; Nakano, T.; Toyoda, H.

    1993-05-01

    Plasma-assisted deposition and etching have widely been applied to microelectronics devices in industries as well as to huge vacuum devices in nuclear fusion. A more detailed understanding of plasma processing is essential for development of new techniques for small-scale ( < {1}/{4} μm ) etching and large-scale ( >10 m) deposition. A scaling law for uniformity of large-scale deposition was found in a simulation experiment of boron coating of fusion devices, using a less hazardous boride B 10H 14 (decaborane). Moreover, boron etching by a fluorocarbon plasma was demonstrated along with a new modeling of surface-coverage effects. Appearance mass spectrometry which is a powerful tool for neutral radical detection, has successfully been applied to a CF 4 containing RF plasma for semiconductor etching. Addition of a small amount of H 2 into CF 4 drastically modified the kinetics of CF 2 and CF 3 radicals as a result of surface processes.

  4. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  5. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  6. Large area cold plasma applicator for decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, G. A.

    2008-04-01

    Cold plasma applicators have been used in the Medical community for several years for uses ranging from hemostasis ("stop bleeding") to tumor removal. An added benefit of this technology is enhanced wound healing by the destruction of infectious microbial agents without damaging healthy tissue. The beam is typically one millimeter to less than a centimeter in diameter. This technology has been adapted and expanded to large area applicators of potentially a square meter or more. Decontamination applications include both biological and chemical agents, and assisting in the removal of radiological agents, with minimal or no damage to the contaminated substrate material. Linear and planar multiemitter array plasma applicator design and operation is discussed.

  7. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  8. Diagnostic potential of plasma carboxymethyllysine and carboxyethyllysine in multiple sclerosis

    PubMed Central

    2010-01-01

    Background This study compared the level of advanced glycation end products (AGEs), N-(Carboxymethyl)lysine (CML) and N-(Carboxyethyl)lysine (CEL), in patients with multiple sclerosis (MS) and healthy controls (HCs), correlating these markers with clinical indicators of MS disease severity. Methods CML and CEL plasma levels were analyzed in 99 MS patients and 43 HCs by tandem mass spectrometry (LC/MS/MS). Patients were stratified based on drug modifying therapies (DMTs) including interferon beta, glatiramer acetate and natalizumab. Results The level of plasma CEL, but not CML, was significantly higher in DMT-naïve MS patients when compared to HCs (P < 0.001). Among MS patients, 91% had higher than mean plasma CEL observed in HCs. DMTs reduced CML and CEL plasma levels by approximately 13% and 40% respectively. CML and CEL plasma levels correlated with the rate of MS clinical relapse. Conclusion Our results suggest that AGEs in general and CEL in particular could be useful biomarkers in MS clinical practice. Longitudinal studies are warranted to determine any causal relationship between changes in plasma level of AGEs and MS disease pathology. These studies will pave the way for use of AGE inhibitors and AGE-breaking agents as new therapeutic modalities in MS. PMID:21034482

  9. Cesium control and diagnostics in surface plasma negative ion sources

    SciTech Connect

    Dudnikov, Vadim; Chapovsky, Pavel; Dudnikov, Andrei

    2010-02-15

    For efficient and reliable negative ion generation it is very important to improve a cesium control and diagnostics. Laser beam attenuation and resonance fluorescence can be used for measurement of cesium distribution and cesium control. Resonant laser excitation and two-photon excitation can be used for improved cesium ionization and cesium trapping in the discharge chamber. Simple and inexpensive diode lasers can be used for cesium diagnostics and control. Cesium migration along the surface is an important mechanism of cesium escaping. It is important to develop a suppression of cesium migration and cesium accumulation on the extraction system.

  10. Time-dependent electron temperature diagnostics for high-power, aluminum z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Nash, T. J.; Mock, R. C.; Spielman, R. B.; Seamen, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.

    1997-01-01

    Time-resolved x-ray pinhole photographs and time-integrated radially resolved x-ray crystal-spectrometer measurements of azimuthally symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a one-dimensional radiation-hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of 1 kV in the core to below 1 kV in the surrounding plasma halo.

  11. Plasma Diagnostics and Thrust Performance Analysis of a Microwave-Excited Microplasma Thruster

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Ono, Kouichi; Takahashi, Kazuo; Eriguchi, Koji

    2006-10-01

    A microwave-excited microplasma source for a miniature electrothermal thruster has been investigated by optical emission spectroscopy and an electrostatic probe. The microplasma source is made of a dielectric tube 10 mm long and 1.5 mm in inner diameter, producing high temperature Ar plasmas in the pressure range from 5 to 40 kPa. Plasma diagnostics showed that higher microwave frequencies and dielectric constants resulted in desirable plasma characteristics: electron densities of 1017-1019 m-3 and rotational temperatures of 700-1800 K at microwave powers below 10 W. Moreover, the temperature increased toward the exit of the plasma chamber where a micronozzle is equipped. Numerical analysis of thrust performance based on the plasma diagnostics indicated that smaller throat diameters of the micronozzle produced better thrust performances: thrusts of 0.98-1.2 mN and specific impulses of 67-81 s.

  12. Development of laser-based diagnostics for 1-MA z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Presura, R.; Kindel, J. M.; Shevelko, A. P.; Chalyy, O.; Astanovitskiy, A.; Haboub, A.; Altemara, S. D.; Papp, D.; Durmaz, T.

    2009-11-01

    The 50 TW Leopard laser coupled with the 1-MA Zebra generator was used for development of new diagnostics of z-pinch plasmas. Two plasma diagnostics are presented: an x-ray broadband backlighting for z-pinch absorption spectroscopy and parametric two-plasmon decay of the laser beam in dense z-pinch plasma. Implementation of new diagnostics on the Zebra generator and the first results are discussed. The absorption spectroscopy is based on backlighting of z-pinch plasma with a broadband x-ray radiation from a Sm laser plasma. Detailed analysis of the absorption spectra yields the electron temperature and density of z-pinch plasma at the non-radiative stage. The parametric two-plasmon decay of intensive laser radiation generates 3/2φ and 1/2φ harmonics. These harmonics can be used to derive a temperature of z-pinch plasma with the electron density near the quarter of critical plasma density.

  13. Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic

    2015-11-01

    The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.

  14. Laser-induced incandescence diagnostic for in situ monitoring of nanoparticle synthesis in an atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Patel, Shane; Shneider, Mikhail; Stratton, Brent; Raitses, Yevgeny

    2014-10-01

    A DC arc discharge with a consumed graphite electrode is commonly used for synthesis of carbon nanoaparticles in a low temperature (0.1-1 eV), atmospheric pressure plasma. The formation of nanoparticles in this plasma is poorly understood; it is not clear where nanoparticles nucleate and grow in the arc discharge. Therefore, a laser-induced incandescence (LII) diagnostic for in situ monitoring of the nanoparticles' spatial distribution in the plasma is currently being constructed. The LII diagnostic involves heating the particles with a short-pulsed laser, and measuring the induced spatiotemporal incandescence profiles on longer timescales. By appropriately modeling the induced spatiotemporal incandescence profiles, one can measure particle diameters and volume fraction. LII diagnostics have been extensively used to study soot particles in flames. However, they have never been applied in a strongly coupled plasma background. Even though the spatial dimensions for soot and nanoparticles are similar, great care is needed in developing an LII diagnostic for monitoring nanoparticles in a plasma background. Therefore, we will calibrate our LII diagnostic by measuring spatiotemporal incandescence profiles of known, research grade soot and nanoparticles. This work was supported by DOE Contract DE-AC02-09CH11466.

  15. Electron density and temperature diagnostics for atmospheric pressure plasmas using continuum radiation

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Moon, Se Youn; Choe, Wonho

    2014-10-01

    Information on electrons is particularly valuable because most of the important plasma reactions are governed by electron kinetics. However, diagnostics of electron density (ne) and temperature (Te) of low temperature atmospheric pressure plasmas is still challenging although there are some advanced diagnostics available such as laser Thomson scattering or optical emission spectroscopy combined with complex plasma equilibrium models. In this work, we report a simple spectroscopic diagnostic method with high temporal and spatial resolution based on continuum radiation in the UV and visible range for ne and Te. Together with the basic principle for the diagnostics including electron-atom bremsstrahlung (or neutral bremsstrahlung) and hydrogen radiative dissociation continuum, some experimental results in several argon and helium atmospheric pressure plasmas will be presented. In a typical argon 13.56 MHz parallel plate capacitive discharge, the measured values are Te = 2.5 eV and ne = 0.7--1.1 × 1012 cm-3 at Prf = 110--200 W. Two-dimensional Te profile of an Ar pulsed plasma jet using a DSLR camera and this diagnostics will also be shown.

  16. Approach to rapid plasma shape diagnostics in tokamaks

    SciTech Connect

    Lee, D.K.; Peng, Y.K.M.

    1980-07-01

    A deterministic approach to estimating the plasma boundary shape and location, based only on the signals of small B vector pickup loops in the vicinity of the plasma, is studied. The pickup loops provide information on par. delta B/sub R//par. delta t and B/sub Z//par. delta t, which can be processed to provide data on B/sub R/, B/sub Z/, psi, and psi/par. delta n (normal derivative), thus leading to a Cauchy boundary condition for solving ..delta..*psi = 0 between the loop locations and the plasma boundary flux surface. Numerical equilibria calculated for the Impurity Study Experiment (ISX-B) with different shapes are used to simulate pickup loop signals. Random errors are added to the signals to test the efficacy of two different approaches: global fitting and local fitting. Reasonably accurate results are obtained by the method of global fitting of the boundary values, which is based on the expansion of psi in terms of eigenfunctions of ..delta..*psi = 0 in a toroidal ring coordinate system. This approach is shown to permit a random error of nearly 100% in poloidal B vector field values at the loops and still reproduce the plasma shape and location within a few percent. This method appears to have the potential of rapidly displaying the plasma shape and location.

  17. Atmospheric Pressure Plasma Based Flame Control and Diagnostics

    DTIC Science & Technology

    2015-01-01

    ppm (1014 – 1015 cm-3) 20 mm  Reasonable agreement close to stoichiometric conditions but overshoot in the fuel rich and lean regime Atomic O...to 10%)  Flame speed enhancement (>20%)  Extension of lean limit (factor of two)  Distributed ignition  Development of new diagnostics

  18. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  19. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  20. Simulation and diagnostics of high density plasmas for multiple electron bunch wakefield generation

    NASA Astrophysics Data System (ADS)

    Kallos, Efthymios; Muggli, Patric; Katsouleas, Tom; Yakimenko, Vitaly; Stolyarov, Daniil; Pogorelsky, Igor; Pavlishin, Igor; Kusche, Karl; Babzien, Marcus; Ben-Zvi, Ilan; Kimura, Wayne

    2006-10-01

    The wakefield generated in a plasma from an electron beam can be enhanced if instead of a single bunch the beam is modulated into multiple bunches. Then the wakefields generated from the microbunches can add up in phase if the plasma density is tuned precisely at the separation between them. In the experimental setup at Brookhaven's Accelerator Test Facility the 45MeV electron beam is IFEL modulated into 150 microbunches 10.6μm apart. Here we present plasma simulations that confirm the wakefield enhancement and diagnostics we performed to tune the plasma density (Stark broadening, HeNe laser interferometry).

  1. Diagnostic studies of ion beam formation in inductively coupled plasma

    SciTech Connect

    Jacobs, Jenee L.

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  2. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  3. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    SciTech Connect

    Eckstrom, D.J.; Williams, M.S.

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  4. Application of the Ideal Perturbed Equilibrium Code to DIII-D Magnetic Diagnostic Upgrade Designs

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Menard, J. E.; Park, J. K.; Strait, E. J.

    2012-10-01

    The Ideal Perturbed Equilibrium Code (IPEC) has been upgraded with advanced visualization tools and synthetic diagnostics to make its output directly comparable with DIII-D diagnostic measurements. Using the synthetic magnetic diagnostics, IPEC has been used to assist in the design of an advanced 3D magnetic field diagnostic currently being built as an upgrade to the DIII-D tokamak experiment. This poster outlines the application of IPEC modeling to the magnetic diagnostic design, highlighting the power and versatility of both the computational tools and proposed diagnostics. Of the many new measurements that will be possible with the magnetic diagnostic upgrade, special emphasis is given here to the ability to directly measure electromagnetic torques on the plasma. The magnetic diagnostic design will be able to simultaneously measure electromagnetic torque from non-axisymmetric fields with toroidal mode numbers 1, 2 and 3. This will open the door to many new possibilities in studying rotational braking effects that will be further supported by IPEC.

  5. Magnetic-probe diagnostics for railgun plasma armatures

    SciTech Connect

    Parker, J.V.

    1989-06-01

    Magnetic probes were employed on the first plasma armature railgun experiments, and they have been used continuously since then for position determination and qualitative determination of the armature current. In the last few years, improvements in experimental technique and analysis have permitted more accurate measurements of the plasma-armature current distribution. This paper reviews the various probe configurations in use today and presents analytic approximations for the dependence of the probe signal on probe location and railgun geometry. Rail current and armature current probes are compared and contrasted with respect to resolution and accuracy. Further improvements in measurement accuracy are predicted for close-spaced magnetic-probe arrays.

  6. Applications of laser diagnostics in energy conservation research

    SciTech Connect

    Hutchinson, R.A.

    1985-02-01

    During the past decade, intensive research and development has demonstrated the feasibility, checked the accuracy, and extended the sensitivity of laser diagnostics for combustion systems. Combinations of diagnostics can now provide in-situ, time-, and space-resolved measurements of temperature, velocity, and species concentration. Although these tools are powerful, they also can be exceedingly difficult to use, and their application remains largely in the hands of specialized instrument developers rather than problem-oriented researchers. This report outlines a variety of applications for existing diagnostics that may interest both instrument developers and researchers in particular fields.

  7. A Microwave-Excited Microplasma Thruster: Plasma Diagnostics, Performance Testing, and Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Ono, Kouichi; Eriguchi, Koji

    2006-10-01

    Decreasing the scale of propulsion systems is of critical importance on the development of microspacecraft. This paper is concerned with an application of microplasmas to a microthruster, presenting some experimental and numerical results. The microthruster consists of a cylindrical microplasma source 10 mm in length and 1.5 mm in inner diameter and a conical micronozzle fabricated in a 1.0 mm thick quartz plate with a throat diameter of 0.2 mm. The microplasma source produces hot plasmas by 4-GHz microwaves in the pressure range from 5 to 50 kPa, and then the micronozzle converts such high thermal energy into directional kinetic energy as a supersonic jet. Plasma diagnostics and performance testing showed that the electron density, rotational temperature, thrust, and specific impulse obtained were 10^19 m-3, 1000 K, 1.1 mN, and 73 s, respectively, at an Ar/N2 gas flow rate of 50/0.5 sccm and an input power of 9 W. Comparison with a numerical analysis implies that the micronozzle has an adiabatic wall rather than an isothermal one.

  8. Generation and Diagnostics of Microwave Discharge Expanding Nitrogen Plasma

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Yoshida, Kazuyuki; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2008-10-01

    We examine a microwave discharge expanding nitrogen plasma on its vibrational and rotational temperatures (Tv, Tr) by using optical emission spectroscopy (OES), and on its electron density and temperature by using a double probe. In the present study, we generated microwave discharge plasma in a cylindrical quartz tube (26 mm i.d.) and the plasma flowed and expanded rapidly into a rarefied gas wind tunnel with its pressure 2.6x10-3 torr. The microwave output power was set at 300 W. The gas flow rate was set at 300 ml/min. In OES measurement, we measured the band spectra of 1stPS and 2ndPS. We compare the experimentally measured spectrum with the calculate one to determine Tv and Tr of the generated plasma. Electron temperature did not reduce monotonically, which is due to complicated energy relaxation process contributed by metastables or vibrational levels. Intensity of 2ndPS decreased more rapidly than that of 1stPS, which is considered to be mainly due to the lowering of Te. We found different way of variation in Tv of 1stPS and that of 2ndPS.

  9. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  10. Overview of C-2 field-reversed configuration experiment plasma diagnostics.

    PubMed

    Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  11. EDITORIAL: The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS--> Nader Sadeghi,

  1. Infrared laser induced plasma diagnostics of silver target

    SciTech Connect

    Ahmat, L. Nadeem, Ali; Ahmed, I.

    2014-09-15

    In the present work, the optical emission spectra of silver (Ag) plasma have been recorded and analyzed using the laser induced breakdown spectroscopy technique. The emission line intensities and plasma parameters were investigated as a function of lens to sample distance, laser irradiance, and distance from the target surface. The electron number density (n{sub e}) and electron temperature (T{sub e}) were determined using the Stark broadened line profile and Boltzmann plot method, respectively. A gradual increase in the spectral line intensities and the plasma parameters, n{sub e} from 2.89 × 10{sup 17} to 3.92 × 10{sup 17 }cm{sup −3} and T{sub e} from 4662 to 8967 K, was observed as the laser irradiance was increased 2.29 × 10{sup 10}–1.06 × 10{sup 11} W cm{sup −2}. The spatial variations in n{sub e} and T{sub e} were investigated from 0 to 5.25 mm from the target surface, yielding the electron number density from 4.78 × 10{sup 17} to 1.72 × 10{sup 17 }cm{sup −3} and electron temperature as 9869–3789 K. In addition, the emission intensities and the plasma parameters of silver were investigated by varying the ambient pressure from 0.36 to 1000 mbars.

  2. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis.

    PubMed

    Wang, Xiao; Sundquist, Kristina; Elf, Johan L; Strandberg, Karin; Svensson, Peter J; Hedelius, Anna; Palmer, Karolina; Memon, Ashfaque A; Sundquist, Jan; Zöller, Bengt

    2016-08-01

    For excluding deep-vein thrombosis (DVT), a negative D-dimer and low clinical probability are used to rule out DVT. Circulating microRNAs (miRNAs) are stably present in the plasma, serum and other body fluids. Their diagnostic function has been investigated in many diseases but not in DVT. The aims of present study were to assess the diagnostic ability of plasma miRNAs in DVT and to examine their correlation with known markers of hypercoagulability, such as D-dimer and APC-PCI complex. Plasma samples were obtained from 238 patients (aged 16-95 years) with suspected DVT included in a prospective multicentre management study (SCORE). We first performed miRNA screening of plasma samples from three plasma pools containing plasma from 12 patients with DVT and three plasma pools containing plasma from 12 patients without DVT using a microRNA Ready-to-use PCR Panel comprising 742 miRNA primer sets. Thirteen miRNAs that differentially expressed were further investigated by quantitative real-time (qRT)-PCR in the entire cohort. The plasma level of miR-424-5p (p=0.01) were significantly higher, whereas the levels of miR-136-5p (p=0.03) were significantly lower in DVT patients compared to patients without DVT. Receiver-operating characteristic curve analysis showed the area under the curve (AUC) values of 0.63 for miR-424-5p and 0.60 for miR-136-5p. The plasma level of miR-424-5p was associated with both D-dimer and APC-PCI complex levels (p<0.0001 and p=0.001, respectively). In conclusions, these findings indicate that certain miRNAs are associated with DVT and markers of hypercoagulability, though their diagnostic abilities are probably too low.

  3. X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2015-12-01

    The investigation of a recombining laser plasma is topical primarily because it can be used to simulate the interaction between plasma jets in astrophysical objects. It has been shown that the relative intensities of transitions of a resonance series of He-like multicharged ions can be used for the diagnostics of the recombining plasma. It has been found that the intensities of the indicated transitions for ions with the nuclear charge number Z n ~ 10 are sensitive to the plasma density in the range N e ~ 1016-1020 cm-3 at temperatures of 10-100 eV. The calculations performed for the F VIII ion have determined the parameters of plasma jets created at the ELFIE nanosecond laser facility (Ecole Polytechnique, France) in order to simulate astrophysical phenomena. The resulting universal calculation dependences can be used to diagnose different recombining plasmas containing helium-like fluorine ions.

  4. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  5. Optical diagnostics of laser-produced aluminium plasmas under water

    NASA Astrophysics Data System (ADS)

    Walsh, N.; Costello, J. T.; Kelly, T. J.

    2017-06-01

    We report on the findings of double-pulse studies performed on an aluminium target submerged in water using Nd:YAG laser pulses. Shadowgraphy measurements were performed to examine the dynamic behaviour of the cavitation bubble that eventually forms some considerable time post-plasma ignition. These measurements were used to inform subsequent investigations designed to probe the bubble environment. The results of time-resolved imaging from within the cavitation bubble following irradiation by a second laser pulse reveal the full dynamic evolution of a plasma formed in such an environment. Rapid displacement of the plasma plume in a direction normal to the target surface followed by a diffusive outwards expansion is observed and a qualitative model is proposed to explain the observed behaviour. Line profiles of several ionic and atomic species were observed within the irradiated cavitation bubble. Electron densities were determined using the Stark broadening of the Al II line at 466.3 nm and electron temperatures inferred using the ratio of the Al II (466.3 nm) and Al I (396.15 nm) lines. Evidence of self-reversal of neutral emission lines was observed at times corresponding to growth and collapse phases of the cavitation bubble suggesting high population density for ground state atoms during these times.

  6. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  7. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  8. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  9. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    SciTech Connect

    Deng, B. H.; Kinley, J. S.; Schroeder, J.

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  10. Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Kaganovich, D.; Hafizi, B.; Palastro, J. P.; Ting, A.; Helle, M. H.; Chen, Y.-H.; Jones, T. G.; Gordon, D. F.

    2016-12-01

    Raman backscattered radiation of intense laser pulses in plasmas is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.

  11. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  12. Electron kinetic effects on optical diagnostics in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Duff, J.; Parke, E.

    2014-08-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = Te/mec2 model may be insufficient; we present a more precise model with τ2-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  13. Electron kinetic effects on optical diagnostics in fusion plasmas

    SciTech Connect

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E.; Brower, D. L. Ding, W. X.

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  14. Application of modern diagnostic methods to environmental improvement. Annual progress report, January--October 1994

    SciTech Connect

    Shepard, W.S.

    1994-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), a research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to real world processes; measurements are made in hot, highly corrosive atmospheres in which conventional measurement devices are ineffective. Task 1 of this agreement is concerned with the development and application of various diagnostic methods to characterize the plasma properties, the melt properties and the downstream emissions from a plasma torch facility designed to vitrify mixed waste. Correlation of the measured properties with the operating parameters of the torch will be sought to improve, optimize and control the overall operation of the plasma treatment process. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and control purposes of treatment processes in general. Task 2 of this agreement is concerned with the development of a system to monitor and control the combustion stoichiometry in real time in order to minimize environmental impact and maximize process efficiency. Staged fuel injection is also being studied to minimize NO{sub x} formation.

  15. Plasma focus: Present status and potential applications

    SciTech Connect

    Brzosko, J.S.; Nardi, V.; Powell, C.

    1997-12-01

    Initially, dense plasma focus (DPF) machines were constructed independently by Filippov in Moscow and Mather in Los Alamos at the end of the 1950s. Since then, more than 30 laboratories have carried vigorous DPF programs, oriented mainly toward the studies of physics of ion acceleration and trapping in the plasma focus environment. Applications of the DPF as intense neutron and X-ray sources have been recognized since its discovery but not implemented for various reasons. Recently, some groups (including AES) addressed the issue of DPF applications, and some of them are briefly discussed in this paper.

  16. Tracer-encapsulated pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Viniar, I.; Lukin, A.; Reznichenko, P.; Umov, A.

    2005-05-01

    An injector for making solid hydrogen pellets around impurity cores has been developed for plasma transport study in large helical device. A technique has been employed for automatic loading carbon or polystyrene cores of 0.2 mm diameter from a gun magazine to a light-gas gun barrel. The injector is equipped with a cryocooler and is able to form a 3.2 mm long and 3 mm diameter cylindrical solid hydrogen pellet at 7-8 K with an impurity core in its center within 6 min and to inject it in the light-gas gun up to 1 km/s.

  17. Tracer-encapsulated pellet injector for plasma diagnostics

    SciTech Connect

    Sudo, S.; Viniar, I.; Lukin, A.; Reznichenko, P.; Umov, A.

    2005-05-15

    An injector for making solid hydrogen pellets around impurity cores has been developed for plasma transport study in large helical device. A technique has been employed for automatic loading carbon or polystyrene cores of 0.2 mm diameter from a gun magazine to a light-gas gun barrel. The injector is equipped with a cryocooler and is able to form a 3.2 mm long and 3 mm diameter cylindrical solid hydrogen pellet at 7-8 K with an impurity core in its center within 6 min and to inject it in the light-gas gun up to 1 km/s.

  18. X-Ray Diagnostics of Laser-Produced Aluminum Plasmas

    DTIC Science & Technology

    1976-06-01

    Absorption of x-ray photons in the intrinsic region liberate electron-hole pairs which travel in opposite directions and result in a charge output...11 CCNTINUE V*ff IT6 (6,201) (TLMI,J) ,I=1,N) 12 CCNTINUE REAC(5,102) (FGILd ) ,1=1, N) CC 13 I = 1,N FLCG(I) = ALCG(FCILd)) 12 CCNTINUE P E AC ... Galati , fl. and Peacock, H.J., X-ray Sgectrcsco£y of the Ion Population in the Plasma "Prouucea a :e~"€𔃿e Surface of a ^I^ne "Bassij/e Tarcjet "BJ

  19. Plasma Diagnostics for Plasma Polymer Coatings Used in Fabrication of Thin Wall CH Shells for Direct Drive OMEGA Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Ross, P.; Nikroo, A.; Czechowicz, D.; Dicken, M.

    2002-11-01

    High aspect ratio CH shells, 1 μm thick, 9001 μm diameter, are crucial for the success of the cryogenic direct drive inertial confinement fusion (ICF) experiments at the OMEGA laser facility at the University of Rochester's Laboratory for Laser Energetics (LLE). Plasma polymer coatings are currently used in fabrication of such shells, which can be made substantially stronger by altering parameters. High strength is important for inherently fragile high aspect ratio shells. The plasma characteristics used in the deposition process were studied in order to determine a correlation between the plasma parameters and the strength of shells. Several plasma processing parameters such as deposition pressure, power and relative and absolute gas flow rates were varied. The plasma was studied using several techniques such as optical emission spectroscopy, Langmuir probe diagnostics, and mass spectrometry. These diagnostic results were then correlated with direct measurements of the target strength (burst testing and buckle testing) and permeability to determine the ideal parameters for creating the strongest and most permeable ICF targets.

  20. Formation of Imploding Plasma Liners for HEDP and MIF Application

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel; Messer, Sarah; Bomgardner, Richard; Phillips, Mike; Wu, Linchun; Elton, Ray

    2014-11-11

    /s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding

  1. Optical diagnostics on dense Z-pinch plasmas

    SciTech Connect

    Riley, R.A. Jr.; Lovberg, R.H.; Shlachter, J.S.; Scudder, D.W.

    1992-05-01

    A novel ``point-diffraction`` interferometer has been implemented on the Los Alamos Solid Fiber Z-Pinch experiment. The laser beam is split into two legs after passing through the plasma. The reference leg is filtered with a pin-hole aperture and recombined with the other leg to form an interferogram. This allows compact mounting of the optics and relative ease of alignment. The Z-Pinch experiment employs a pulsed-power generator that delivers up to 700 KA with a 100ns rise-time through a fiber of deuterium or deuterated polyethylene (CD{sub s}) that is 5-cm long and initially solid with radius r{approx}15{mu}m. The interferometer, using a {triangle}t{approx}200ps pulse from a Nd:YAG laser frequency doubled to {lambda}=532nm, measures the electron line density and, assuming azimuthal symmetry, the density as a function of radial and axial position. Calculations predict Faraday rotations of order {pi}/2 for plasma and current densities that this experiment was designed to produce. The resulting periodic loss of fringes would provide the current density distribution.

  2. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    NASA Astrophysics Data System (ADS)

    Yeates, P.; Kennedy, E. T.

    2010-11-01

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t <100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t >160 ns) resulted in sustained "decay," i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (Ne) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  3. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2010-11-15

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t<100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t>160 ns) resulted in sustained 'decay', i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (N{sub e}) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  4. Infrared and far-infrared laser development for plasma diagnostics at Oak Ridge National Laboratory

    SciTech Connect

    Casson, W.H.; Bennett, C.A.; Fletcher, L.K.; Hunter, H.T.; Hutchinson, D.P.; Lee, J.; Ma, C.DH.; Richards, R.K.; Vander Sluis, K.L.

    1987-01-01

    Three IR and FIR based diagnostics will be developed ann installed on the Advanced Toroidal Facility (ATF) at ORNL. An interferometer operating at 119 mu m will measure plasma density along 14 vertical chords across the plasma cross-section. A small-angle Thomson scattering experiment using a 10.6-mu m pulsed laser will determine the feasibility of measuring alpha particle distribution in a burning plasma. Plans are being developed for installing an FIR-based scattering experiment on ATF to measure density fluctuations. 4 refs., 4 figs.

  5. Characterization of electrostatic shock in laser-produced optically-thin plasma flows using optical diagnostics

    NASA Astrophysics Data System (ADS)

    Morita, T.; Sakawa, Y.; Kuramitsu, Y.; Dono, S.; Aoki, H.; Tanji, H.; Waugh, J. N.; Gregory, C. D.; Koenig, M.; Woolsey, N. C.; Takabe, H.

    2017-07-01

    We present a method for evaluating the properties of electrostatic shock in laser-produced plasmas by using optical diagnostics. A shock is formed by a collimated jet in counter-streaming plasmas in nearly collisionless condition, showing the steepening of the transition width in time. In the present experiment, a streaked optical pyrometry was applied to evaluate the electron density and temperatures in the upstream and downstream regions of the shock so that the shock conditions are satisfied, by assuming thermal bremsstrahlung emission in optically thin plasmas. The derived electron densities are nearly consistent with those estimated from interferometry.

  6. View of the Challenger's payload bay and the Plasma Diagnostic package

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The solar optical universal polarimeter (SOUP) experiment is visible among the cluster of Spacelab 2 hardware in the cargo bay of the Shuttle Challenger. Various components of the instrument positioning system (IPS) are conspicuous at the center of the frame. The Plasma Diagnostic package (PDP) is seen attached to the remote manipulator system (RMS) above the open payload bay.

  7. View of the Challenger's payload bay and the Plasma Diagnostic package

    NASA Image and Video Library

    1985-08-01

    51F-33-024 (29 July-6 Aug 1985) --- The Challenger's remote manipulator system (RMS) arm grasps the plasma diagnostics package (PDP) over the experiment-laden cargo bay of the earth orbiting spacecraft. The instrument pointing system, in a resting mode here, is prominent in the bay.

  8. Diagnostics and controls for spatiotemporal couplings for laser-plasma accelerator drivers

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Vincenti, H.; Mittelberger, D. E.; Mao, H.-S.; Gonsalves, A. J.; Toth, C.; Leemans, W. P.

    2017-03-01

    Diagnostic and control of spatiotemporal couplings for laser-plasma acceleration drive lasers are discussed. Near-field angular dispersion and spatial chirp were measured by GRENOUILLE. The calculation of the pulse front tilt evolution is presented, and it is shown that the pulse front angle near focus can be controlled within 5 mrad, and finely tuned through temporal chirp.

  9. Basis set expansion for inverse problems in plasma diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  10. Basis set expansion for inverse problems in plasma diagnostic analysis

    SciTech Connect

    Jones, B.; Ruiz, C. L.

    2013-07-15

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  11. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  12. Microfluidic blood plasma separation for medical diagnostics: is it worth it?

    PubMed

    Mielczarek, W S; Obaje, E A; Bachmann, T T; Kersaudy-Kerhoas, M

    2016-09-21

    Circulating biomarkers are on the verge of becoming powerful diagnostic tools for various human diseases. However, the complex sample composition makes it difficult to detect biomarkers directly from blood at the bench or at the point-of-care. Blood cells are often a source of variability of the biomarker signal. While the interference of hemoglobin is a long known source of variability, the release of nucleic acids and other cellular components from hemocytes is a new concern for measurement and detection of circulating extracellular markers. Research into miniaturised blood plasma separation has been thriving in the last 10 years (2006-2016). Most point-of-care systems need microscale blood plasma separation, but developed solutions differ in complexity and sample volume range. But could blood plasma separation be avoided completely? This focused review weights the advantages and limits of miniaturised blood plasma separation and highlights the most interesting advances in direct capture as well as smart blood plasma separation.

  13. Operation of a multiple cell array detector in plasma experiments with a heavy ion beam diagnostic

    SciTech Connect

    Goncalves, B.; Malaquias, A.; Nedzelskiy, I. S.; Pereira, L.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.; Khrebtov, S.M.; Dreval, N.B.; Krupnik, L.I.; Hidalgo, C.; Depablos, J.

    2004-10-01

    A multiple cell array detector (MCAD) has been developed to investigate the spatial structure of plasma turbulence in fusion plasmas. This system is expected to provide simultaneous measurements of edge and core density fluctuations with both temporal and spatial resolution, extending the range and number of the sample volumes simultaneously recorded by a heavy ion beam diagnostic (HIBD). Since the detector (usually located close to the vessel wall of a plasma device) operates in a strong plasma radiation environment, the effective shielding of the detector presents a special problem. This article describes and compares the MCAD operation conditions on ISTTOK tokamak and TJ-II stellarator. Experimental results of the detector performance are presented together with the first measurements of n{sub e}{sigma}{sub eff} in the TJ-II plasmas.

  14. [Plasma cholesterol determination in birds--a diagnostic tool for detection of organophosphate and carbamate intoxication].

    PubMed

    Kiesau, B; Kummerfeld, N

    1998-07-01

    An investigation was done on the clinical usefulness of the dry chemistry analyzer Vitros DT 60 II for determination of avian plasma cholinesterase. The analytical reliability of the method, evaluated by precision and accuracy, proved to be high for plasma of numerous pet and wild birds. Values of normal plasma-cholinesterase activity were established for different psittacine and European wild birds. Significant differences in physiologic plasma-cholinesterase activity were noted between closely related species as well as between juvenile and adult birds. These findings emphasize the necessity to use control values of the same species and age group for comparison. Dry chemistry plasma-cholinesterase determination can be used as a diagnostic tool for detection of organophosphate and carbamate poisonings in the majority of investigated birds.

  15. MFTF-B plasma-diagnostics-system instrumentation and data-acquisition system

    SciTech Connect

    Goerz, D.A.; Lau, N.H.C.; Mead, J.E.; Throop, A.L.

    1981-10-21

    The change of scope for MFTF from a simple mirror to a tandem mirror configuration utilizing thermal barriers has expanded the range of plasma parameters and increased the requirements of the plasma diagnostics system. The instrument set that is needed for start-up operation has been identified and conceptual design work is proceeding. This paper describes the diagnostic instrumentation as presently envisioned for start-up operation, with a summary of the detectors and data channels. Also presented is an overview of the current conceptual design for the Local Control and Data Acquisition System and the Data Processing and Display system. As more detailed design is done, the exact number and nature of instruments may change, but overall, the system described here is one expected to satisfy the requirements for start-up and be expandable to the basic set of diagnostics.

  16. Backreflection diagnostics for ultra-intense laser plasma experiments based on frequency resolved optical gating

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Hornung, J.; Schmidt, C.; Eckhardt, M.; Roth, M.; Stöhlker, T.; Bagnoud, V.

    2017-02-01

    We report on the development and implementation of a time resolved backscatter diagnostics for high power laser plasma experiments at the petawatt-class laser facility PHELIX. Pulses that are backscattered or reflected from overcritical plasmas are characterized spectrally and temporally resolved using a specially designed second harmonic generation frequency resolved optical gating system. The diagnostics meets the requirements made by typical experiments, i.e., a spectral bandwidth of more than 30 nm with sub-nanometer resolution and a temporal window of 10 ps with 50 fs temporal resolution. The diagnostics is permanently installed at the PHELIX target area and can be used to study effects such as laser-hole boring or relativistic self-phase-modulation which are important features of laser-driven particle acceleration experiments.

  17. Advanced Diagnostics for Reacting Flows.

    DTIC Science & Technology

    1987-10-30

    CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block nurmoer) ,FIELO GRCUP SLBGROUP Laser, Imaging, Combustion, Plasma ...interdisciplinary program to establish advanced optical diagnostic techniques applicable to combustion and plasma flows. The primary effort is on digital...report include research on laser wavelength modulation spectroscopy and development of plasma diagnostics based on laser-induced fluorescence and Stark

  18. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  19. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  20. High-efficiency fast scintillators for 'optical' soft x-ray arrays for laboratory plasma diagnostics

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Vero, R.; Finkenthal, M.; Suliman, G.; Kaita, R.; Majeski, R.; Stratton, B.; Roquemore, L.; Tarrio, C

    2007-08-20

    Scintillator-based 'optical' soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic faceplates (FOPs) as substrates, and a thin aluminum foil(150 nm) to reflect the visible light emitted by the scintillator back to the optical detector.Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics.Its luminescence decay time of the order of?1-10 {mu}s is thus suitable for the 10 {mu}s time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built,and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  1. Improving plasma shaping accuracy through consolidation of control model maintenance, diagnostic calibration, and hardware change control

    SciTech Connect

    Baggest, D.S.; Rothweil, D.A.; Pang, S.

    1995-12-01

    With the advent of more sophisticated techniques for control of tokamak plasmas comes the requirement for increasingly more accurate models of plasma processes and tokamak systems. Development of accurate models for DIII-D power systems, vessel, and poloidal coils is already complete, while work continues in development of general plasma response modeling techniques. Increased accuracy in estimates of parameters to be controlled is also required. It is important to ensure that errors in supporting systems such as diagnostic and command circuits do not limit the accuracy of plasma parameter estimates or inhibit the ability to derive accurate plasma/tokamak system models. To address this issue, we have developed more formal power systems change control and power system/magnetic diagnostics calibration procedures. This paper discusses our approach to consolidating the tasks in these closely related areas. This includes, for example, defining criteria for when diagnostics should be re-calibrated along with required calibration tolerances, and implementing methods for tracking power systems hardware modifications and the resultant changes to control models.

  2. High-efficiency fast scintillators for "optical" soft x-ray arrays for laboratory plasma diagnostics.

    PubMed

    Delgado-Aparicio, L F; Stutman, D; Tritz, K; Vero, R; Finkenthal, M; Suliman, G; Kaita, R; Majeski, R; Stratton, B; Roquemore, L; Tarrio, C

    2007-08-20

    Scintillator-based "optical" soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic face-plates (FOPs) as substrates, and a thin aluminum foil (150 nm) to reflect the visible light emitted by the scintillator back to the optical detector. Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics. Its luminescence decay time of the order of approximately 1-10 micros is thus suitable for the 10 micros time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built, and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  3. Dust as a versatile matter for high-temperature plasma diagnostic

    SciTech Connect

    Wang Zhehui; Ticos, Catalin M.

    2008-10-15

    Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented.

  4. Development of the Zebra load region for increased capability plasma diagnostics and improved Leopard laser access

    NASA Astrophysics Data System (ADS)

    Astanovitskiy, Alexey; Presura, R.; Ivanov, V. V.; Haboub, A.; Plachaty, C.; Kindel, J. M.

    2008-11-01

    A new geometry for the load area in the Zebra (1MA pulse generator) is developed. It will form the basis for future experiments requiring Leopard (1057nm, 50TW laser) to Zebra coupling and give extended capability to z-pinch diagnostics. This required the development of a new current return, which allows laser access and installation of the OD 4'' parabolic mirror for the x-ray radiography, isochoric heating and magnetized plasma experiments, and accommodates wire-array z-pinch loads, to which the laser may then be coupled. In addition, this configuration allows diagnostics access close to the plasma, leading to a significant increase of the spatial resolution for imaging of z-pinches, as well as the photon flux in imaging and spectroscopy of laser produced plasmas. These diagnostics will allow coupling of the Leopard beam for x-ray laser probing of the pinch plasma and we will test point-projection x-ray backlighting of the pinch plasma.

  5. Diagnostics of Drift Velocities of Electrons in a Laser Plasma by Spectropolarimetry of the Plasma Emission

    SciTech Connect

    Petrashen', A.G.

    2005-07-15

    Expressions are obtained for the rate constants of the induction of ordering of angular momenta in an ensemble of ions formed as a result of trapping of electrons in a laser plasma. Dependences of the degree of polarization of plasma radiation on the drift energy of free electrons of the plasma are obtained. Drift energies of electrons at different distances from the target are determined on the basis of experimental data.

  6. Diagnostics and results from coaxial plasma gun development for the PLX- α project

    NASA Astrophysics Data System (ADS)

    Case, A.; Brockington, S.; Cruz, E.; Witherspoon, F. D.

    2016-10-01

    We present results from the diagnostics used during development of the contoured gap coaxial plasma guns for the PLX- α project at LANL. Plasma-jet diagnostics include fast photodiodes for velocimetry, a ballistic pendulum for total plasmoid momentum, and interferometry for line integrated density. Deflectometry will be used for line integrated perpendicular density gradients. Time-resolved high-resolution spectroscopy using a novel detector and time-integrated survey spectroscopy are used for measurements of velocity and temperature, as well as impurities. We will also use a Faraday cup for density, fast imaging for plume geometry, and time-integrated imaging for overall light emission. Experimental results are compared to the desired target parameters for the plasma jets (up to n 2 ×1016cm-3 , v 50km / s , mass 5gm , radius = 4cm , and length 10cm). This work supported by the ARPA-E ALPHA Program.

  7. Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X.

    PubMed

    Frerichs, H; Effenberg, F; Schmitz, O; Biedermann, C; Feng, Y; Jakubowski, M; König, R; Krychowiak, M; Lore, J; Niemann, H; Pedersen, T S; Stephey, L; Wurden, G A

    2016-11-01

    Interpretation of spectroscopic measurements in the edge region of high-temperature plasmas can be a challenge since line of sight integration effects make direct interpretation in terms of quantitative, local emission strengths often impossible. The EMC3-EIRENE code-a 3D fluid edge plasma and kinetic neutral gas transport code-is a suitable tool for full 3D reconstruction of such signals. A versatile synthetic diagnostic module has been developed recently which allows the realistic 3D setup of various plasma edge diagnostics to be captured. We highlight these capabilities with two examples for Wendelstein 7-X (W7-X): a visible camera for the analysis of recycling, and a coherent-imaging system for velocity measurements.

  8. Plasma neuronal specific enolase: a potential stage diagnostic marker in human African trypanosomiasis

    PubMed Central

    Sternberg, Jeremy M.; Mitchell, Julia A.

    2014-01-01

    Background This study was carried out to determine the potential of neuronal specific enolase (NSE) as a stage diagnostic marker in human African trypanosomiasis. Methods Plasma and cerebrospinal fluid were obtained from a cohort of Trypanosoma brucei rhodesiense-infected patients and non-infected controls. Neuronal specific enolase concentrations were measured by ELISA and analysed in relation to diagnosis and disease-stage data. Results Plasma NSE concentration was significantly increased in late-stage patients (median 21 ng/ml), compared to the control (median 11 ng/ml), but not in early-stage patients (median 5.3 ng/ml). Cerebrospinal fluid NSE concentration did not vary between stages. Conclusion Plasma NSE is a potential stage diagnostic in this cohort and merits further investigation. PMID:24789741

  9. Overview of the electric propulsion plasma diagnostics suite for the VASIMR VX-200 testbed

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher; Longmier, Benjamin; Ballenger, Maxwell; Squire, Jared; Glover, Tim; Carter, Mark; Bering, Edgar; Giambusso, Matthew

    2012-10-01

    Descriptions of the various plasma diagnostics and data analysis methods are given for instruments used in high power (> 100 kW) electric propulsion testing. These include planar Langmuir probes, an articulating retarding potential analyzer, a double Langmuir probe, a multi-axis magnetometer, a high frequency electric field probe, microwave interferometer, and momentum flux targets. These diagnostics have been used to measure the efficiencies of the thruster, plasma source, ion cyclotron resonance booster, and magnetic nozzle as well as used to explore physical phenomena in the plume such as ion/electron detachment, plasma turbulence, and magnetic field line stretching. Typical plume parameters range up to 10^13 cm-3 electron density, 1 kG applied magnetic fields, ion energies in excess of 150 eV, and cold electrons (2 -- 5 eV) with a spatial measurement range over 2 m.

  10. The Development of Diode Laser Infrared Absorption Spectroscopy as a Plasma Diagnostic.

    NASA Astrophysics Data System (ADS)

    McClain, Robert Leslie

    absorptions in several lines in the 9.5mu band of CO_2 were observed. In principle the infrared absorption diagnostic is applicable to many other species, including atoms, positive and negative molecular ions, free radicals, and other reaction products.

  11. Plasmas as Antennas - Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Borg, Gerard

    1999-11-01

    A variety of antennas are employed in telecommunications and radar systems. Some applications pose special problems. Large structures are easily detected by hostile radar. The performance of multi-element HF-VHF arrays is complicated by mutual coupling between large radiating elements. High speed data communications and radar can be limited by signal decay and ringing. A novel solution is an antenna made of plasma that can be made to disappear on microsecond time scales. Recent experiments at the Australian National University (G.G. Borg et. al. App. Phys. Letts. Vol. 74, 3272-3274 [1999]), have shown that highly efficient (25 - 50radiating elements for the range 3 - 300 MHz can be formed using low power (10 - 50 W average) plasma surface waves launched at one end of a tube containing a suitable gas. Only a single capacitive coupler is needed to launch the waves - there is no electrical connection to the other end of the tube. The regimes of wave propagation correlate with expectations from plasma surface wave theory. Actual communications experiments have shown that these plasma antennas can have surprisingly low noise provided they are excited by the rf surface waves and not by a low frequency or DC ohmic current. Applications to HF-VHF communications and radar are being developed. These include both single ruggedised plasma elements and multi-element arrays.

  12. Magnetic Field and Plasma Diagnostics from Coordinated Prominence Observations

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Levens, P.; Dalmasse, K.; Mein, N.; Mein, P.; Lopez-Ariste, A.; Labrosse, N.; Heinzel, P.

    2016-04-01

    We study the magnetic field in prominences from a statistical point of view, by using THEMIS in the MTR mode, performing spectropolarimetry of the He I D3 line. Combining these measurements with spectroscopic data from IRIS, Hinode/EIS as well as ground-based telescopes, such as the Meudon Solar Tower, we infer the temperature, density, and flow velocities of the plasma. There are a number of open questions that we aim to answer: - What is the general direction of the magnetic field in prominences? Is the model using a single orientation of magnetic field always valid for atypical prominences? %- Does this depend on the location of the filament on the disk (visible in Hα, in He II 304 Å) over an inversion line between weak or strong network ? - Are prominences in a weak environment field dominated by gas pressure? - Measuring the Doppler shifts in Mg II lines (with IRIS) and in Hα can tell us if there are substantial velocities to maintain vertical rotating structures, as has been suggested for tornado-like prominences. We present here some results obtained with different ground-based and space-based instruments in this framework.

  13. Hinode/EIS plasma diagnostics in the flaring solar chromosphere

    NASA Astrophysics Data System (ADS)

    Graham, D. R.; Fletcher, L.; Hannah, I. G.

    2011-08-01

    Context. The impulsive phase of solar flares is a time of rapid energy deposition and heating in the lower solar atmosphere, leading to changes in the temperature, density, ionisation and velocity structure of this region. Aims: We aim to study the lower atmosphere during the impulsive phase of a flare using imaging and spectroscopic data from Hinode/EIS, RHESSI and TRACE. We place these observations in context by using a wide range of temperature observations from each instrument. Methods: We analyse sparse raster data from the Hinode/EIS spectrometer to derive the density and line-of-sight velocity in flare footpoints, in a GOES C6.6 flare observed on 05-June-2007. The raster duration was 150s across the centre of a small active region, allowing multiple exposures of the flare ribbons and footpoints. Using RHESSI and Hinode/XRT we test both non-thermal and thermal models for the HXR emission. Results: During the flare impulsive phase, we find evidence from XRT for flare footpoints at temperatures exceeding 7 MK. We measure the electron number density increasing up to a few ×1010 cm-3 in the footpoints, at temperatures of ~1.5-2 MK, accompanied by small downflows at temperatures below Fe XIII and upflows of up to ~140 km s-1 at temperatures above. This is reasonable in the context of HXR diagnostics of the flare electron beam. The electrons inferred have sufficient energy to affect the chromospheric ionisation structure. Conclusions: EIS sparse raster data coupled with RHESSI imaging and spectroscopy prove useful here in studying the lower atmosphere of solar flares, and in this event suggest heat deposition relatively high in the chromosphere drives chromospheric evaporation while increasing the observed electron densities at footpoints. However, from RHESSI spectral fitting it is not possible to say whether the data are more consistent with a model including a non-thermal beam, or purely thermal model.

  14. Development of plasma needle to be used for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bora, B.; Jain, J.; Inestrosa-Izurieta, M. J.; Avaria, G.; Moreno, J.; Pavez, C.; Marcelain, K.; Armisen, R.; Soto, L.

    2016-05-01

    Plasma needle is a novel design of a plasma source at atmospheric pressure to achieve a non-thermal plasma jet. The advantage of the plasma needle is that it can be operated in open air, outside a vessel. The plasma that is generated with the plasma needle is small (about one millimetre) and non-thermal, the temperature of the neutral particles and ions is in about room temperature and suitably can interact with living biological cell without damaging the cell. In this work, we report the development of a plasma needle, which is operated by a dc power source and produced a stable plasma jet on water surface. Argon gas is used to operate the plasma needle. The preliminary electrical diagnostics of the plasma needle shows that the discharge is filamentary in nature. For diagnostic of the plasma jet produced by the developed plasma needle, the produced plasma jet is directed to water surface and characterization are carried out by means of electrical discharge characteristics and optical emission spectroscopy. In this work, preliminary results of the diagnostic will be presented.

  15. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  16. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  17. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  18. Non-linear optical diagnostic studies of high pressure non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Lempert, Walter

    2012-10-01

    Picosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) is used for study of vibrational energy loading and relaxation kinetics in high pressure nitrogen and air nsec pulsed non-equilibrium plasmas in a pin-to-pin geometry. It is found that ˜33% of total discharge energy in a single pulse in air at 100 torr couples directly to nitrogen vibration by electron impact, in good agreement with master equation modeling predictions. However in the afterglow the total quanta in vibrational levels 0 -- 9 is found to increase by a factor of approximately 2 and 4 in nitrogen and air, respectively, a result in direct contrast to modeling results which predict the total number of quanta to be essentially constant. More detailed comparison between experiment and model show that the VDF predicted by the model during, and directly after, the discharge pulse is in good agreement with that determined experimentally, however for time delays exceeding ˜10 μsec the experimental and predicted VDFs diverge rapidly, particularly for levels v = 2 and greater. Specifically modeling predicts a rapid drop in population of high levels due to net downward V-V energy transfer whereas the experiment shows an increase in population in levels 2 and 3 and approximately constant population for higher levels. It is concluded that a collisional process is feeding high vibrational levels at a rate which is comparable to the rate at which population of the high levels is lost due to net downward V-V. A likely candidate for the source of additional vibrational quanta is the quenching of metastable electronic states of nitrogen to highly excited vibrational levels of the ground electronic state. Recent progress in the development and application of psec coherent Raman electric field and spontaneous Thomson scattering diagnostics for study of high pressure nsec pulsed plasmas will also be presented.

  19. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  20. Application of optical emission spectroscopy for the SNS H- ion source plasma studies

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Stockli, M. P.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.

    2015-04-01

    The SNS H- ion source is a dual-frequency RF-driven (13.56-MHz low power continuous RF superimposed by 2-MHz high power pulsed RF with ˜1.0 ms pulse length at 60 Hz), Cs-enhanced ion source. This paper discusses the applications of optical emission spectroscopy for the ion source plasma conditioning, cesiation, failure diagnostics, and studies of plasma build-up and outage issues.

  1. Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope-assisted labeling.

    PubMed

    Haviland, Julia A; Tonelli, Marco; Haughey, Dermot T; Porter, Warren P; Assadi-Porter, Fariba M

    2012-08-01

    Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy and cavity ring-down spectroscopy to analyze serial plasma samples and real-time breath measurements following selective (13)C-isotope-assisted labeling. These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. This novel diagnostics approach is fast, noninvasive, and sensitive for determining specific pathway utilization, and provides a direct translational application in the health care field.

  2. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas.

    PubMed

    Cazzaniga, C; Nocente, M; Rebai, M; Tardocchi, M; Calvani, P; Croci, G; Giacomelli, L; Girolami, M; Griesmayer, E; Grosso, G; Pillon, M; Trucchi, D M; Gorini, G

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the (12)C(n, α)(9)Be reaction occurring between neutrons and (12)C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  3. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect

    Cazzaniga, C. Nocente, M.; Gorini, G.; Rebai, M.; Giacomelli, L.; Tardocchi, M.; Croci, G.; Grosso, G.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Griesmayer, E.; Pillon, M.

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, α){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  4. Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas

    2015-11-01

    We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.

  5. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic

    SciTech Connect

    Stutman, D.; Finkenthal, M.

    2011-11-15

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer.

  6. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  7. Local area network for the plasma diagnostics system of MFTF-B

    SciTech Connect

    Lau, N.H.; Minor, E.G.

    1983-01-01

    The MFTF-B Plasma Diagnostics System will be implemented in stages, beginning with a start-up set of diagnostics and evolving toward a basic set. The start-up set contains 12 diagnostics which will acquire a total of about 800 Kbytes of data per machine pulse; the basic set contains 23 diagnostics which will acquire a total of about 8 Mbytes of data per pulse. Each diagnostic is controlled by a Foundation System consisting of a DEC LSI-11/23 microcomputer connected to CAMAC via a 5 Mbits/second serial fiber-optic link and connected to a supervisory computer (Perkin-Elmer 3250) via a 9600 baud RS232 link. The Foundation System is a building block used throughout MFTF-B for control and status monitoring. However, its 9600 baud link to the supervisor presents a bottleneck for the large data transfers required by diagnostics. To overcome this bottleneck the diagnostics Foundation Systems will be connected together with an additional LSI-11/23 called the master to form a Local Area Network (LAN) for data acquisition.

  8. Diffusing Wave Spectroscopy: Application for Blood Diagnostics

    NASA Astrophysics Data System (ADS)

    Meglinski, Igor; Tuchin, Valery V.

    This chapter describes the application of diffusing wave spectroscopy (DWS) for noninvasive characterization of skin blood flow and skin blood microcirculation in vivo. The DWS is a simple but ingenious approach, utilizing the loss of correlation of scattered laser light to observe the structural changes and displacement of scattering particles, such as red blood cells (RBC) within the biological tissues. This approach has the potential to be so specific that it can revolutionize the currently developed techniques for blood flow monitoring. Developments in DWS are likely to lead it to be used for characterization of skin blood microcirculation, to assess burn depth, to diagnose atherosclerotic disease, and investigate mechanisms of photodynamic therapy for cancer treatment, as well as to monitor pharmacological intervention for failing surgical skin flaps or replants.

  9. Applying X-ray Imaging Crystal Spectroscopy for Use as a High Temperature Plasma Diagnostic.

    PubMed

    Cao, Norman M; Mier Valdivia, Andrés M; Rice, John E

    2016-08-25

    X-ray spectra provide a wealth of information on high temperature plasmas; for example electron temperature and density can be inferred from line intensity ratios. By using a Johann spectrometer viewing the plasma, it is possible to construct profiles of plasma parameters such as density, temperature, and velocity with good spatial and time resolution. However, benchmarking atomic code modeling of X-ray spectra obtained from well-diagnosed laboratory plasmas is important to justify use of such spectra to determine plasma parameters when other independent diagnostics are not available. This manuscript presents the operation of the High Resolution X-ray Crystal Imaging Spectrometer with Spatial Resolution (HIREXSR), a high wavelength resolution spatially imaging X-ray spectrometer used to view hydrogen- and helium-like ions of medium atomic number elements in a tokamak plasma. In addition, this manuscript covers a laser blow-off system that can introduce such ions to the plasma with precise timing to allow for perturbative studies of transport in the plasma.

  10. The art of measuring gastrin in plasma: a dwindling diagnostic discipline?

    PubMed

    Rehfeld, Jens F

    2008-01-01

    The gastrointestinal hormone gastrin is measured in plasma in physiological, pathophysiological and diagnostic investigations. In the diagnosis of hypergastrinaemic diseases such as gastrinomas and gastric achlorhydria, measurement of gastrin concentrations in circulation is crucial. Gastrin circulates, however, not as a single peptide but as a mixture of peptides of different lengths and amino acid derivatizations. Moreover, in hypergastrinaemia the peptide pattern changes. Consequently, diagnostic gastrin measurements require immunoassays that recognize the pathological plasma patterns, which are characterized by a predominance of the large peptides (gastrin-34 and gastrin-71) and less, if any, of the shorter main form of gastrin in normal tissue, gastrin-17. Alternatively, and in specific cases, "processing-independent assays" (PIA) for progastrin may be considered, since hypersecreting gastrin cells also release substantial amounts of biosynthetic precursors and processing intermediates. Recently, gastrin kits that do not take the pathological plasma patterns into account have been marketed and may miss the diagnosis. Therefore, proper diagnosis of gastrinomas and other hypergastrinaemic diseases requires insight into cellular gastrin synthesis and peripheral metabolism, and also into the design of useful immunoassays. This review discusses the art of measuring gastrin in plasma with adequate diagnostic specificity.

  11. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  12. Research and Diagnostic Applications of Monoclonal Antibodies to Coccidioides immitis.

    DTIC Science & Technology

    1985-01-01

    for Human and Animal Mycology , Georgia, May 1985. 17. COSATI CODES 18. SUBJECT TERMS (Co tinue on reverse if necessary and identify by block number...IX Congress of the International Society for Human and Animal Mycology , Atlanta GA, May 1985. ISHAM START ’IResearch and Diagnostic Applications of

  13. Influence of plasma diagnostics and constraints on the quality of equilibrium reconstructions on Joint European Torus

    NASA Astrophysics Data System (ADS)

    Gelfusa, M.; Murari, A.; Lupelli, I.; Hawkes, N.; Gaudio, P.; Baruzzo, M.; Brix, M.; Craciunescu, T.; Drozdov, V.; Meigs, A.; Peluso, E.; Romanelli, M.; Schmuck, S.; Sieglin, B.; JET-EFDA Contributors

    2013-10-01

    One of the main approaches to thermonuclear fusion relies on confining high temperature plasmas with properly shaped magnetic fields. The determination of the magnetic topology is, therefore, essential for controlling the experiments and for achieving the required performance. In Tokamaks, the reconstruction of the fields is typically formulated as a free boundary equilibrium problem, described by the Grad-Shafranov equation in toroidal geometry and axisymmetric configurations. Unfortunately, this results in mathematically very ill posed problems and, therefore, the quality of the equilibrium reconstructions depends sensitively on the measurements used as inputs and on the imposed constraints. In this paper, it is shown how the different diagnostics (Magnetics Measurements, Polarimetry and Motional Stark Effect), together with the edge current density and plasma pressure constraints, can have a significant impact on the quality of the equilibrium on JET. Results show that both the Polarimetry and Motional Stark Effect internal diagnostics are crucial in order to obtain reasonable safety factor profiles. The impact of the edge current density constraint is significant when the plasma is in the H-mode of confinement. In this plasma scenario the strike point positions and the plasma last closed flux surface can change even by centimetres, depending on the edge constraints, with a significant impact on the remapping of the equilibrium-dependent diagnostics and of pedestal physics studies. On the other hand and quite counter intuitively, the pressure constraint can severely affect the quality of the magnetic reconstructions in the core. These trends have been verified with several JET discharges and consistent results have been found. An interpretation of these results, as interplay between degrees of freedom and available measurements, is provided. The systematic analysis described in the paper emphasizes the importance of having sufficient diagnostic inputs and of

  14. Influence of plasma diagnostics and constraints on the quality of equilibrium reconstructions on Joint European Torus

    SciTech Connect

    Gelfusa, M.; Gaudio, P.; Peluso, E.; Murari, A.; Baruzzo, M.; Lupelli, I.; Hawkes, N.; Brix, M.; Drozdov, V.; Meigs, A.; Romanelli, M.; Schmuck, S.; Sieglin, B.; Collaboration: JET-EFDA Contributors

    2013-10-15

    One of the main approaches to thermonuclear fusion relies on confining high temperature plasmas with properly shaped magnetic fields. The determination of the magnetic topology is, therefore, essential for controlling the experiments and for achieving the required performance. In Tokamaks, the reconstruction of the fields is typically formulated as a free boundary equilibrium problem, described by the Grad-Shafranov equation in toroidal geometry and axisymmetric configurations. Unfortunately, this results in mathematically very ill posed problems and, therefore, the quality of the equilibrium reconstructions depends sensitively on the measurements used as inputs and on the imposed constraints. In this paper, it is shown how the different diagnostics (Magnetics Measurements, Polarimetry and Motional Stark Effect), together with the edge current density and plasma pressure constraints, can have a significant impact on the quality of the equilibrium on JET. Results show that both the Polarimetry and Motional Stark Effect internal diagnostics are crucial in order to obtain reasonable safety factor profiles. The impact of the edge current density constraint is significant when the plasma is in the H-mode of confinement. In this plasma scenario the strike point positions and the plasma last closed flux surface can change even by centimetres, depending on the edge constraints, with a significant impact on the remapping of the equilibrium-dependent diagnostics and of pedestal physics studies. On the other hand and quite counter intuitively, the pressure constraint can severely affect the quality of the magnetic reconstructions in the core. These trends have been verified with several JET discharges and consistent results have been found. An interpretation of these results, as interplay between degrees of freedom and available measurements, is provided. The systematic analysis described in the paper emphasizes the importance of having sufficient diagnostic inputs and of

  15. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  16. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    SciTech Connect

    1996-12-31

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  18. Plasma Diagnostics in High Resolution X-Ray Spectra of Magnetic Cataclysmic Variables

    SciTech Connect

    Mauche, C W

    2001-10-02

    Using the Chandra HETG spectrum of EX Hya as an example, we discuss some of the plasma diagnostics available in high-resolution X-ray spectra of magnetic cataclysmic variables. Specifically, for conditions appropriate to collisional ionization equilibrium plasmas, we discuss the temperature dependence of the H- to He-like line intensity ratios and the density and photoexcitation dependence of the He-like R line ratios and the Fe XVII I(17.10 {angstrom})/I(17.05 {angstrom}) line ratio. We show that the plasma temperature in EX Hya spans the range from {approx}0.5 to {approx}10 keV and that the plasma density n {ge} 2 x 10{sup 14} cm{sup -3}, orders of magnitude greater than that observed in the Sun or other late-type stars.

  19. Laser-Aided Diagnostics of Atoms and Particulates in Magnetron Sputtering Plasmas

    SciTech Connect

    Nafarizal, N.; Takada, N.; Sasaki, K.

    2009-07-07

    Laser-aided diagnostic technique is introduced as an advanced and valuable technique to evaluate the properties of plasma. This technique is an expensive and sophisticated technique which requires researchers to have a basic knowledge in optical spectroscopy. In the present paper, we will generally introduce the experimental work using laser-induced fluorescence (LIF) and laser light scattering (LLS) techniques. The LIF was used to evaluate the spatial distribution of Cu atoms in magnetron sputtering plasma. The change in the spatial distribution was studied as a function of discharge power. On the other hand, the LLS was used to evaluate the generation of Cu particulates in high-pressure magnetron sputtering plasma. The temporal evolution of Cu particulates in the gas phase of sputtering plasma was visualized successfully.

  20. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  1. Resonant Plasma Wakefield Experiment: Plasma Simulations and Multibunched Electron Beam Diagnostics

    NASA Astrophysics Data System (ADS)

    Kallos, Efthymios; Muggli, Patric; Katsouleas, Thomas; Yakimenko, Vitaly; Stolyarov, Daniil; Pogorelsky, Igor; Pavlishin, Igor; Kusche, Karl; Babzien, Marcus; Ben-Zvi, Ilan; Kimura, Wayne D.

    2006-11-01

    In the multibunch plasma wakefield acceleration experiment at the Brookhaven National Lab's Accelerator Test Facility a 45 MeV electron beam is initially modulated through the IFEL interaction with a CO2 laser beam at 10.6 μm into a train of short microbunches, which are spaced at the laser wavelength. It is then fed into a high-density capillary plasma with a density resonant at this spacing (1.0 × 1019cm-3). The microbunched beam can resonantly excite a plasma wakefield much larger than the wakefield excited from the non-bunched beam. Here we present plasma simulations that confirm the wakefield enhancement and the results of a series of CTR measurements performed of the multibunched electron beam.

  2. Perspectives of Use of Diagnostic Mirrors with Transparent Protection Layer in Burning Plasma Experiments

    SciTech Connect

    Mukhin, Eugene E.; Razdobarin, Gennadiy T.; Semenov, Vladimir V.; Tolstyakov, Sergey Yu.; Kochergin, Mikhail M.; Kurskiev, Gleb S.; Podushnikova, Klara A.; Andreev, Alexandr N.; Davydov, Denis V.; Rastegaeva, Marina G.; Khimich, Yuriy P.; Gorshkov, Vladimir N.; Nikitin, Dmitriy B.; Litnovsky, Andrej M.

    2008-03-12

    We evaluate using of metal mirrors over-coated with transparent protection layer for the in-vessel diagnostic systems in reactor-grade fusion devices. Ideally, these should satisfy the contradictory demands of high reflectivity and small rate degradation when being bombarded by CX atoms. The serious threat to the performance of diagnostic mirrors is surface contamination with carbon-based material eroded from carbon tiles. Via coupling the protective layer to a bulk mirror we can mitigate the deposit infiuence on the reflectance spectra. The regards are given to survivability in plasma environment of protected coated metallic mirrors.

  3. Neutral Beam Source and Target Plasma for Development of a Local Electric Field Fluctuation Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.

  4. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between

  5. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  6. Plasma/Wall interaction of an insulated material by laser-induced fluorescence diagnostic

    SciTech Connect

    Claire, N.; Doveil, F.

    2015-07-01

    We present Argon Ion Velocity Distribution Function (IVDF) in the vicinity of an insulated BNSiO{sub 2} ceramic and a glass plate in a non magnetized plasma by laser-induced fluorescence diagnostic. Results show the rather surprising self-consistent formation of a positive or inverse sheath in the two cases. The positive plasma potential repels ions from the insulated wall and is not explained by any sheath theory. Electron secondary emission of the ceramic can be a good candidate to explain these results. (authors)

  7. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2012-01-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  8. Development of fast steering mirror control system for plasma heating and diagnostics

    SciTech Connect

    Okada, K. Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.; Nishiura, M.

    2014-11-15

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  9. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections.

    PubMed

    Pallen, M J

    2014-12-01

    The term 'shotgun metagenomics' is applied to the direct sequencing of DNA extracted from a sample without culture or target-specific amplification or capture. In diagnostic metagenomics, this approach is applied to clinical samples in the hope of detecting and characterizing pathogens. Here, I provide a conceptual overview, before reviewing several recent promising proof-of-principle applications of metagenomics in virus discovery, analysis of outbreaks and detection of pathogens in contemporary and historical samples. I also evaluate future prospects for diagnostic metagenomics in the light of relentless improvements in sequencing technologies.

  10. Recent Progress in Nanomedicine: Therapeutic, Diagnostic and Theranostic Applications

    PubMed Central

    Rizzo, Larissa Y.; Theek, Benjamin; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2013-01-01

    In recent years, the use of nanomedicine formulations for therapeutic and diagnostic applications has increased exponentially. Many different systems and strategies have been developed for drug targeting to pathological sites, as well as for visualizing and quantifying important (patho-) physiological processes. In addition, ever more efforts have been undertaken to combine diagnostic and therapeutic properties within a single nanomedicine formulation. These so-called nanotheranostics are able to provide valuable information on drug delivery, drug release and drug efficacy, and they are considered to be highly useful for personalizing nanomedicine-based (chemo-) therapeutic interventions. PMID:23578464

  11. The Buffer Diagnostic Prototype: A fault isolation application using CLIPS

    NASA Technical Reports Server (NTRS)

    Porter, Ken

    1994-01-01

    This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.

  12. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  13. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  14. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease.

    PubMed

    Rombach, S M; Dekker, N; Bouwman, M G; Linthorst, G E; Zwinderman, A H; Wijburg, F A; Kuiper, S; Vd Bergh Weerman, M A; Groener, J E M; Poorthuis, B J; Hollak, C E M; Aerts, J M F G

    2010-09-01

    Fabry disease is an X-linked lysosomal storage disorder due to deficiency of alpha-Galactosidase A, causing accumulation of globotriaosylceramide and elevated plasma globotriaosylsphingosine (lysoGb3). The diagnostic value and clinical relevance of plasma lysoGb3 concentration was investigated. All male and adult female patients with classical Fabry disease could be discerned by an elevated plasma lysoGb3. In young pre-symptomatic Fabry heterozygotes, lysoGb3 levels can be normal. Individuals carrying the R112H and P60L mutations, without classical Fabry symptoms, showed no elevated plasma lysoGb3. Multiple regression analysis showed that there is no correlation of plasma lysoGb3 concentration with total disease severity score in Fabry males. However, plasma lysoGb3 concentration did correlate with white matter lesions (odds ratio: 6.1 per 100 nM lysoGb3 increase (95% CI: 1.4-25.9, p=0.015). In females, plasma lysoGb3 concentration correlated with overall disease severity. Furthermore, plasma lysoGb3 level was related to left ventricular mass (19.5+/-5.5 g increase per 10 nM lysoGb3 increase; p=0.001). In addition, it was assessed whether lifetime exposure to lysoGb3 correlates with disease manifestations. Male Fabry patients with a high lysoGb3 exposure (>10,000 U), were moderately or severely affected, only one mildly. Female patients with a low exposure (<1000 U) were asymptomatic or mildly affected. A large proportion of the females with an exposure >1000 U showed disease complications. Plasma lysoGb3 is useful for the diagnosis of Fabry disease. LysoGb3 is an independent risk factor for development of cerebrovascular white matter lesions in male patients and left ventricular hypertrophy in females. Disease severity correlates with exposure to plasma lysoGb3.

  15. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    SciTech Connect

    Bongers, W. A.; Beveren, V. van; Westerhof, E.; Goede, A. P. H.; Krijger, B.; Berg, M. A. van den; Graswinckel, M. F.; Schueller, F. C.; Thoen, D. J.; Nuij, P. J. W. M.; Baar, M. R. de; Donne, A. J. H.; Hennen, B. A.; Kantor, M.

    2011-06-15

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.

  16. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control.

    PubMed

    Bongers, W A; van Beveren, V; Thoen, D J; Nuij, P J W M; de Baar, M R; Donné, A J H; Westerhof, E; Goede, A P H; Krijger, B; van den Berg, M A; Kantor, M; Graswinckel, M F; Hennen, B A; Schüller, F C

    2011-06-01

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.

  17. High-power terahertz optically pumped NH{sub 3} laser for plasma diagnostics

    SciTech Connect

    Mishchenko, V. A.; Petrushevich, Yu. V.; Sobolenko, D. N.; Starostin, A. N.

    2012-06-15

    The parameter of a terahertz (THz) laser intended for plasma diagnostics in electrodynamic accelerators and tokamaks with a strong magnetic field are discussed. Generation of THz radiation in an ammonia laser under the action of high-power pulsed optical pumping by the radiation of a 10P(32) CO{sub 2} laser is simulated numerically. The main characteristics of the output radiation, such as its spectrum, peak intensity, time dependence, and total energy, are calculated.

  18. High-power terahertz optically pumped NH3 laser for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mishchenko, V. A.; Petrushevich, Yu. V.; Sobolenko, D. N.; Starostin, A. N.

    2012-06-01

    The parameter of a terahertz (THz) laser intended for plasma diagnostics in electrodynamic accelerators and tokamaks with a strong magnetic field are discussed. Generation of THz radiation in an ammonia laser under the action of high-power pulsed optical pumping by the radiation of a 10P(32) CO2 laser is simulated numerically. The main characteristics of the output radiation, such as its spectrum, peak intensity, time dependence, and total energy, are calculated.

  19. Development of measurement technique for carbon atoms employing vacuum ultraviolet absorption spectroscopy with a microdischarge hollow-cathode lamp and its application to diagnostics of nanographene sheet material formation plasmas

    SciTech Connect

    Takeuchi, Wakana; Sasaki, Hajime; Takashima, Seigo; Kato, Satoru; Hiramatsu, Mineo; Hori, Masaru

    2009-06-01

    This study describes the development of a compact measurement technique for absolute carbon (C) atom density in processing plasmas, using vacuum ultraviolet absorption spectroscopy (VUVAS) employing a high-pressure CO{sub 2} microdischarge hollow-cathode lamp (C-MHCL) as the light source. The characteristics of the C-MHCL as a resonance line source of C atoms at 165.7 nm for VUVAS measurements of the absolute C atom density are reported. The emission line profile of the C-MHCL under typical operating conditions was estimated to be the Voigt profile with a DELTAnu{sub L}/DELTAnu{sub D} value of 2.5, where DELTAnu{sub L} is the Lorentz width and DELTAnu{sub D} is the Doppler width. In order to investigate the behavior of C and H atoms in the processing plasma used for the fabrication of two-dimensional nanographene sheet material, measurements of the atom densities were carried out using the VUVAS technique. The H atom density increased with increasing pressure, while the C atom density was almost constant at 5x10{sup 12} cm{sup -3}. The density ratio of C to H atoms in the plasma was found to influence the morphology of carbon nanowalls (CNWs). With increasing H/C density ratio, the growth rate decreased and the space between the walls of the CNWs became wider.

  20. PREFACE: The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Nader; Czarnetzki, Uwe

    2010-03-01

    The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics (FLTPD) was held in Blansko, near Brno, Czech Republic. FLTPD is a biennial European event in which scientists working on low temperature plasmas present their recent results, pointing out in particular the originality of the diagnostic techniques used. The idea of starting this series of workshops was born out of a discussion between Frieder Döbele, Bill Graham and one of us when travelling together from Bar Harbor, USA (after the 6th LAPD) to Montreal, Canada, in October 1993. It became evident that we had been lacking a European meeting that could bring together experts in the field of low temperature plasma diagnostics and facilitate sharing the knowledge of these diagnostics with a new generation of scientists. The first FLTPD was held in Les Houches, France, in February 1995. Since then it has been held in the spring of every other year in different European countries, as shown below. The next meeting will be held in Zinnowitz, near Greifswald, Germany, in May 2011. Year Location Chair of LOC 1995 Les Houches, France J Derouard 1997 Bad Honnef, Germany F Döbele 1999 Saillon, Switzerland Ch Hollenstein 2001 Rolduc, The Netherlands R van de Sanden 2003 Specchia, Italy S De Benedictis 2005 Les Houches, France N Sadeghi 2007 Cumbria, United Kingdom M Bowden 2009 Blansko, Czech Republic F Krčma To favour brainstorming and extended discussions between participants, FLTPD meetings have always been organized in isolated locations with the number of attendees limited to about 70. Workshops are held over three and a half days with about ten expert presentations by invited speakers (a few from overseas), as well as short oral or poster contributions. This special issue of Journal of Physics D: Applied Physics contains 20 articles representative of contributions to the last FLTPD in Blansko. All invited speakers and others who gave presentations, as selected by the Scientific Committee, were invited

  1. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  2. Laser-based diagnostics for characterizing materials exposed to a plasma environment

    NASA Astrophysics Data System (ADS)

    Shaw, G. C.; Biewer, T. M.; Caughman, J. B. O.; Goulding, R.; Leonard, K.; Lore, J.; Martin, M.; Martin, R.; Rapp, J.; Wirth, B.

    2013-10-01

    To address the needs of fusion reactors, diagnostic techniques for plasma-material interactions (PMI) are being developed at ORNL. Laser-based diagnostic techniques (LBDT) will be used to both characterize the plasma environment and probe the material surface during plasma exposure. A Nd:YAG laser is needed for LBDT. Initial setup and diagnostic testing of the beam will be performed before installing it onto the ORNL device, PHISX (Prototype High Intensity Source Experiment). Installation of the Nd:YAG laser on PHISX, will enable Thomson Scattering (TS) measurements as well as Laser Induced Ablation/Breakdown/Desorption Spectroscopy (LIAS/LIBS/LIDS) to be performed in-situ on material targets. The material targets can be further characterized ex-situ by surface techniques available at ORNL; ex-situ results will be compared to the in-situ characterizations. This poster will show the initial setup and plans for LBDT on PHISX at ORNL. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  3. The importance of EBIT data for Z-pinch plasma diagnostics

    SciTech Connect

    Safronova, A S; Kantsyrev, V L; Neill, P; Safronova, U I; Fedin, D A; Ouart, N D; Yilmaz, M F; Osborne, G; Shrestha, I; Williamson, K; Hoppe, T; Harris, C; Beiersdorfer, P; Hansen, S

    2007-04-04

    The results from the last six years of x-ray spectroscopy and spectropolarimetry of high energy density Z-pinch plasmas complemented by experiments with the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory (LLNL) are presented. The two topics discussed are the development of M-shell x-ray W spectroscopic diagnostics and K-shell Ti spectropolarimetry of Z-pinch plasmas. The main focus is on radiation from a specific load configuration called an 'X-pinch'. X-pinches are excellent sources for testing new spectral diagnostics and for atomic modelling because of the high density and temperature of the pinch plasmas, which scale from a few {micro}m to several mm in size. They offer a variety of load configurations, which differ in wire connections, number of wires, and wire materials. In this work the study of X-pinches with tungsten wires combined with wires from other, lower-Z materials is reported. Utilizing data produced with the LLNL EBIT at different energies of the electron beam the theoretical prediction of line positions and intensity of M-shell W spectra were tested and calibrated. Polarization-sensitive X-pinch experiments at the University of Nevada, Reno (UNR) provide experimental evidence for the existence of strong electron beams in Ti and Mo X-pinch plasmas and motivate the development of x-ray spectropolarimetry of Z-pinch plasmas. This diagnostic is based on the measurement of spectra recorded simultaneously by two spectrometers with different sensitivity to the linear polarization of the observed lines and compared with theoretical models of polarization-dependent spectra. Polarization-dependent K-shell spectra from Ti X-pinches are presented and compared with model calculations and with spectra generated by a quasi-Maxwellian electron beam at the LLNL EBIT-II electron beam ion trap.

  4. Modeling and Simulation for Nanoparticle Plasma Jet Diagnostic Probe for Runaway Electron Beam-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Galkin, S. A.

    2016-10-01

    The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.

  5. In-bore diagnostic and modeling of an electrothermal plasma launcher

    SciTech Connect

    Hurley, J.D.

    1993-01-01

    A diagnostic method has been developed to measure the high heat flux produced in the electrothermal plasma launcher SIRENS. The method involves attaching a thermocouple to the back surface of a target to obtain the temperature history of the back surface, which is a direct indication of the heat flux incident on the front surface. The measured temperature history is an input to a developed one dimensional (1-D), time dependent heat conduction code which uses the temperature history of the back surface to determine the incident heat flux on the front surface of the target. A one dimensional time dependent code, ODIN, was developed to model the plasma formation and flow in electrothermal launchers. ODIN models the plasma formation and flow into the source section and the plasma expansion into and through the barrel section. ODIN models the energy transport, particle transport, plasma resistivity, plasma viscosity, and equation-of-state. The source and barrel sections were broken into a specific number of cells and each cell was considered to be in local thermodynamic equilibrium (LTE), with the plasma modeled as a viscous fluid. The primary objective of the numerical simulation was to predict the time and axial variation of the plasma flow and to predict the magnitude of the drag forces acting on the plasma. SIRENS has been operated at atmospheric conditions using a fuse placed between the two electrodes in the source section to initiate the discharge. Three different types of fuses were tested, with the best results obtaining using a thin triangular shaped aluminum fuse. SIRENS has also be used to launch projectiles, with projectile masses ranging from 400 mg to 1500 mg. The maximum velocity obtained was 1.74 km/sec at an input energy of 2.5 kJ, using a 540 mg Lexan projectile with an efficiency of 33%.

  6. In-Bore Diagnostic and Modeling of AN Electrothermal Plasma Launcher

    NASA Astrophysics Data System (ADS)

    Hurley, Jeffery Dale

    A diagnostic method has been developed to measure the high heat flux produced in the electrothermal plasma launcher SIRENS. The method involves attaching a thermocouple to the back surface of a target to obtain the temperature history of the back surface, which is a direct indication of the heat flux incident on the front surface. The measured temperature history is an input to a developed one dimensional (1-D), time dependent heat conduction code which uses the temperature history of the back surface to determine the incident heat flux on the front surface of the target. A one dimensional time dependent code, ODIN, was developed to model the plasma formation and flow in electrothermal launchers. ODIN models the plasma formation and flow in the source section and the plasma expansion into and through the barrel section. ODIN models the energy transport, particle transport, plasma resistivity, plasma viscosity, and equation-of-state. The source and barrel sections were broken into a specific number of cells and each cell was considered to be in local thermodynamic equilibrium (LTE), with the plasma modeled as a viscous fluid. The primary objective of the numerical simulation was to predict the time and axial variation of the plasma flow and to predict the magnitude of the drag forces acting on the plasma. SIRENS has been operated at atmospheric conditions using a fuse placed between the two electrodes in the source section to initiate the discharge. Three different types of fuses were tested, with the best results obtained using a thin triangular shaped aluminum fuse. SIRENS has also been used to launch projectiles, with projectile masses ranging from 400 mg to 1500 mg. The maximum velocity obtained was 1.74 km/sec at an input energy of 2.5 kJ, using a 540 mg Lexan projectile with an efficiency of 33%.

  7. [Two-temperature diagnostic studies by emission spectra for nonequilibrium Ti-H plasma].

    PubMed

    Deng, Chun-feng; Lu, Biao; Wu, Chun-lei; Wang, Yi-fu; Wen, Zhong-wei

    2014-12-01

    Using the T-H solid solution made by titanium absorbed hydrogen as the cathode, the Ti-H plasma produced by the pulsed vacuum are ion source was nonequilibrium: it contained both the component of titanium and hydrogen; there existed gradient in the radiaL, the horizontal and the time. As a result, it could not be described by a single temperature. The present paper assumed that the subsystem consisting of electrons and the subsystem consisting of other heavy particles reached equilibrium respectively, meaning that the Ti-H plasma was described by the two temperatures as electron temperature and heavy ion temperature, it was non-equilibrium two-temperature plasma Using Culdberg-Waage dissociation equation to describe the molecular dissociation process in the system, using Saha ionization equation to describe the atomic ionization process, combining plasma's charge quasi-neutral condition and introducing atomic emission spectroscopy as a plasma diagnostic method which would not interfere the plasma at the same time; the temperature and the particle number density of the Ti-H plasma were diagnosed. Using MATLAB as a tool, both the titanium atoms and monovalent titanium ions' ionization were considered, and the calculated results showed that with the electtron density determined by the Stark broadening of spectral lines in advance, except the heavy particle temperature and the hydrogen number density, the Ti-H plasma's parameters could be diagnosed fairly accurately; the accuracy of the electron density values had a great effect on the calculation results; if the heavy particle temperature could be determined in advance, the temperature and the particle number density of the Ti-H plasma could be accurately analyzed quantitatively.

  8. Limited Diagnostic Utility of Plasma Adrenocorticotropic Hormone for Differentiation between Adrenal Cushing Syndrome and Cushing Disease.

    PubMed

    Hong, A Ram; Kim, Jung Hee; Hong, Eun Shil; Kim, I Kyeong; Park, Kyeong Seon; Ahn, Chang Ho; Kim, Sang Wan; Shin, Chan Soo; Kim, Seong Yeon

    2015-09-01

    Measurement of the plasma adrenocorticotropic hormone (ACTH) level has been recommended as the first diagnostic test for differentiating between ACTH-independent Cushing syndrome (CS) and ACTH-dependent CS. When plasma ACTH values are inconclusive, a differential diagnosis of CS can be made based upon measurement of the serum dehydroepiandrosterone sulfate (DHEA-S) level and results of the high-dose dexamethasone suppression test (HDST). The aim of this study was to assess the utility of plasma ACTH to differentiate adrenal CS from Cushing' disease (CD) and compare it with that of the HDST results and serum DHEA-S level. We performed a retrospective, multicenter study from January 2000 to May 2012 involving 92 patients with endogenous CS. The levels of plasma ACTH, serum cortisol, 24-hour urine free cortisol (UFC) after the HDST, and serum DHEA-S were measured. Fifty-seven patients had adrenal CS and 35 patients had CD. The area under the curve of plasma ACTH, serum DHEA-S, percentage suppression of serum cortisol, and UFC after HDST were 0.954, 0.841, 0.950, and 0.997, respectively (all P<0.001). The cut-off values for plasma ACTH, percentage suppression of serum cortisol, and UFC after HDST were 5.3 pmol/L, 33.3%, and 61.6%, respectively. The sensitivity and specificity of plasma ACTH measurement were 84.2% and 94.3%, those of serum cortisol were 95.8% and 90.6%, and those of UFC after the HDST were 97.9% and 96.7%, respectively. Significant overlap in plasma ACTH levels was seen between patients with adrenal CS and those with CD. The HDST may be useful in differentiating between these forms of the disease, especially when the plasma ACTH level alone is not conclusive.

  9. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  10. PIC Simulation of RF Plasma Sheath Formation and Initial Validation of Optical Diagnostics using HPC Resources

    NASA Astrophysics Data System (ADS)

    Icenhour, Casey; Exum, Ashe; Martin, Elijah; Green, David; Smithe, David; Shannon, Steven

    2014-10-01

    The coupling of experiment and simulation to elucidate near field physics above ICRF antennae presents challenges on both the experimental and computational side. In order to analyze this region, a new optical diagnostic utilizing active and passive spectroscopy is used to determine the structure of the electric fields within the sheath region. Parallel and perpendicular magnetic fields with respect to the sheath electric field have been presented. This work focuses on the validation of these measurements utilizing the Particle-in-Cell (PIC) simulation method in conjunction with High Performance Computing (HPC) resources on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Plasma parameters of interest include electron density, electron temperature, plasma potentials, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model of the experimental setup. The overall goal of this study is to develop models for complex RF plasma systems and to help outline the physics of RF sheath formation and subsequent power loss on ICRF antennas in systems such as ITER. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.

  11. Improvements in a Tracer-Encapsulated Solid Pellet and Its Injector for More Advanced Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Tamura, Naoki; Sudo, Shigeru; Suzuki, Chihiro; Funaba, Hisamichi; Takagi, Masaru; Satoh, Nakahiro; Hayashi, Hiromi; Maeno, Hiroya; Yokota, Mitsuhiro; Ogawa, Hideki

    2017-04-01

    A Tracer-Encapsulated Solid Pellet (TESPEL) has been developed for promoting a precise study of the impurity transport in a magnetically-confined high-temperature plasma. This paper gives a brief report of the recent improvements in the TESPEL and its injector for more advanced plasma diagnostics. The TESPEL can be considered as a double-layered impurity pellet. This structure enables us to produce a both poloidally and toroidally localized “tracer” impurity source in the plasma, and to specify the total amount of the tracer impurity deposited in the plasma precisely. Recent experiments on the Large Helical Device by using the TESPEL suggest that the importance of the impurity source location in the impurity transport study. Thus we have developed new-type TESPELs, which are greatly improved in regard to the above-mentioned unique features. In addition, we also developed a new TESPEL injector, which enables us to inject the TESPEL obliquely into the plasma. This injector can also contribute to a further shallower penetration of the TESPEL into the plasma.

  12. Cross-diagnostic comparison of fluctuation measurements in a linear plasma column

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Archer, Nicholas A. A.; Bashyal, Atit; Chakraborty Thakur, Saikat; Tynan, George R.

    2015-11-01

    The advent of fast imaging diagnostics, which provide two-dimensional measurements on relevant plasma time scales, has proven invaluable for interpreting plasma dynamics in laboratory devices. Despite its success, imaging remains a qualitative aid for many studies, because intensity is difficult to map onto a single physical variable for use in a theoretical model. This work continues our exploration of the relationship between visible-light and electrostatic probe measurements in the Controlled Shear Decorrelation Experiment (CSDX). CSDX is a well-characterized linear machine producing dense plasmas relevant to the tokamak edge (Te ~ 3 eV, ne ~1013 /cc). Visible light from ArI and ArII line emission is collected at high frame rates using a fast digital camera. Floating potential and ion-saturation current are measured by an array of electrostatic probe tips. We present a detailed comparison between imaging and probe measurements of fluctuations, including temporal, spatial, and spectral properties in various operational regimes.

  13. A new pure ion plasma device with laser induced fluorescence diagnostic

    SciTech Connect

    Anderegg, F.; Huang, X.; Sarid, E.; Driscoll, C.F.

    1997-06-01

    We describe a new apparatus for magnetic confinement of a pure ion plasma, with laser diagnostics to measure test particle transport across the magnetic field. In addition to the axisymmetric trapping potential, rotating electrostatic wall perturbation is used to counteract the plasma loss processes, giving steady-state ion confinement for weeks. Electronic spin polarization of the ion ground states is used to label the test particles; this spin orientation is controlled by direct optical pumping. The laser-induced fluorescence (LIF) technique is used to nondestructively measure the ion velocity distribution; and an absolute calibration of the charge density is obtained from the LIF measurement of the plasma rotation velocity. Two new technological improvements compatible with ultrahigh vacuum systems have been used: a semirigid Teflon insulated coaxial cable has low microphonic noise, and an antireflective coating is used to reduce reflection of ultraviolet light inside the vacuum chamber. {copyright} {ital 1997 American Institute of Physics.}

  14. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.

    PubMed

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.

  15. Contribution of satellite lines to temperature diagnostics with He-like triplet lines in photoionized plasma

    NASA Astrophysics Data System (ADS)

    Wang, Feilu; Han, Bo; Salzmann, David; Zhao, Gang

    2017-04-01

    In the present paper, the He α triplet line ratios (resonance, intercombination, and forbidden lines) are computed for photoionized plasmas, when the contributions of nearby satellite lines are taken into account. The computations have been carried out with our radiative-collisional code, RCF, which is based on the flexible atomic code. The calculations of these line ratios have been done for three materials, namely, silicon, magnesium, and neon. Our calculations are used to derive the plasma temperatures for several astronomical objects, where the spectra are emitted from photoionizing plasmas. It is shown that the incorporation of the satellite lines from doubly excited Li-like ions into the He α triplet lines is necessary to obtain reliable temperature diagnostics for these astrophysical objects.

  16. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  17. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  18. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  19. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    NASA Astrophysics Data System (ADS)

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  20. The effects of a multidensity plasma on ultraviolet spectroscopic electron density diagnostics

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.

    1984-01-01

    Spectroscopic electron density diagnostics have been developed for interpretation of UV, EUV, and X-ray emission line spectra of solar and other astrophysical plasmas, and tokamak plasmas. In principle, accurate electron densities can be determined. However, in practice, a number of difficulties arise with respect to the determination of very accurate electron densities in the 1100-3000 A region. The present study has the objective to investigate one of these difficulties, taking into account the effect on line ratios produced by a source composed of several regions of substantially different densities, all at the same temperature. The study is in particular concerned with a source in which small high density knots are embedded in low-density plasma. Attention is given to line ratios involving the O IV multiplet near 1400 A, obtained from the spectrum of a surge observed outside the solar limb.

  1. "IRMA" a Tunable Infrared Multi-Component Acquisition System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Mechold, L.; Anders, J.; Wienhold, F. G.; Nelson, D.; Zahniser, M.

    1999-10-01

    The monitoring of transient or stable plasma reaction products, in particular the measurement of their ground state concentrations, is the key to an improved understanding of molecular non-equilibrium plasmas. Infrared tunable diode laser absorption spectroscopy (TDLAS) is a modern promising technique with specific capabilities for on-line process control in research and industry. For plasma diagnostics and control a compact and transportable multi-component TDLAS acquisition system, "IRMA", has been developed. The IRMA system contains 4 independent laser stations. A multi-path cell is included. Based on rapid scan software the absolute concentrations of several molecular species can be measured simultaneously within milliseconds and used as digital output. The contribution gives a survey of the optical subsystem, the data processing and the analysis technique. The flexibility and versatility of IRMA is demonstrated at examples of time-dependent species density measurement.

  2. Infrared Imaging Tools for Diagnostic Applications in Dermatology.

    PubMed

    Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds.

  3. Infrared Imaging Tools for Diagnostic Applications in Dermatology

    PubMed Central

    Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds. PMID:26691203

  4. Thruster Plume Plasma Diagnostics: A Ground Chamber Experiment for a 2-Kilowatt Arcjet

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, G. Barry; Chornak, Michael T.

    2005-01-01

    Although detailed near field (0 to 3 cm) information regarding the exhaust plume of a two kilowatt arc jet is available (refs. 1 to 6), there is virtually little or no information (outside of theoretical extrapolations) available concerning the far field (2.6 to 6.1 m). Furthermore real information about the plasma at distances between (3 to 6 m) is of critical importance to high technology satellite companies in understanding the effect of arc jet plume exhausts on space based power systems. It is therefore of utmost importance that one understands the exact nature of the interaction between the arc jet plume, the spacecraft power system and the surrounding electrical plasma environment. A good first step in understanding the nature of the interactions lies in making the needed plume parameter measurements in the far field. All diagnostic measurements are performed inside a large vacuum system (12 m diameter by 18 m high) with a full scale arc jet and solar array panel in the required flight configuration geometry. Thus, necessary information regarding the plume plasma parameters in the far field is obtained. Measurements of the floating potential, the plasma potential, the electron temperature, number density, density distribution, debye length, and plasma frequency are obtained at various locations about the array (at vertical distances from the arc jet nozzle: 2.6, 2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). Plasma diagnostic parameters are measured for both the floating and grounded configurations of the arc jet anode and array. Spectroscopic optical measurements are then acquired in close proximity to the nozzle, and contamination measurements are made in the vicinity of the array utilizing a mass spectrometer and two Quartz Crystal Microbalances (QCM's).

  5. PLASMA DIAGNOSTICS OF AN EIT WAVE OBSERVED BY HINODE/EIS AND SDO/AIA

    SciTech Connect

    Veronig, A. M.; Kienreich, I. W.; Muhr, N.; Temmer, M.; Goemoery, P.; Vrsnak, B.; Warren, H. P.

    2011-12-10

    We present plasma diagnostics of an Extreme-Ultraviolet Imaging Telescope (EIT) wave observed with high cadence in Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) sit-and-stare spectroscopy and Solar Dynamics Observatory/Atmospheric Imaging Assembly imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T Almost-Equal-To 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km s{sup -1}. These redshifts are followed by blueshifts with upward velocities up to -5 km s{sup -1} indicating relaxation of the plasma behind the wave front. During the wave evolution, the downward velocity pulse steepens from a few km s{sup -1} up to 20 km s{sup -1} and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS Fe XIII 202/203 A line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no H{alpha} Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a Almost-Equal-To -540 m s{sup -2} and a start velocity of v{sub 0} Almost-Equal-To 590 km s{sup -1}. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.

  6. Frugal Biotech Applications of Low-Temperature Plasma.

    PubMed

    Machala, Zdenko; Graves, David B

    2017-09-01

    Gas discharge low-temperature air plasma can be utilized for a variety of applications, including biomedical, at low cost. We term these applications 'frugal plasma' - an example of frugal innovation. We demonstrate how simple, robust, low-cost frugal plasma devices can be used to safely disinfect instruments, surfaces, and water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Growth of γ-alumina thin films by pulsed laser deposition and plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Yahiaoui, K.; Abdelli-Messaci, S.; Messaoud Aberkane, S.; Siad, M.; Kellou, A.

    2017-07-01

    The present work discusses about the synthesis of alumina thin films, which have applications in current and next-generation solid-state electronic devices due to their attractive properties. Alumina thin films were synthesized by pulsed laser deposition at different oxygen pressures and substrate temperatures. The dependence of substrate temperature, oxygen pressure, and the deposition time on the properties of the films has been observed by growing three series of alumina thin films on Si (100). The first films are synthesized using substrate temperatures ranging from room temperature to 780 °C at 0.01 mbar of O2. The second series was realized at a fixed substrate temperature of 760 °C and varied oxygen pressure (from 0.005 to 0.05 mbar). The third set of series was elaborated at different deposition times (from 15 to 60 min) while the oxygen pressure and the substrate temperature were fixed at 0.01 mbar and 760 °C, respectively. The films were characterized using X-ray diffractometer (XRD) for structural analysis, a scanning electron microscope for morphological analysis, a nano-indenter for mechanical analysis (hardness and Young's modulus), and Rutherford backscattering spectroscopy for thickness and stoichiometry measurements. Using optical emission spectroscopy, plasma diagnostic was carried out both in the vacuum and in the presence of oxygen with a pressure ranging from 0.01 to 0.05 mbar. Several neutral, ionic, and molecular species were identified such as Al, Al+, and Al++ in vacuum and in oxygen ambiance, O and AlO molecular bands in oxygen-ambient atmosphere. The spatiotemporal evolution of the most relevant species was achieved and their velocities were estimated. The highest amount of crystallized alumina in γ-phase was found in the films elaborated under 0.01 mbar of O2, at a substrate temperature of 780 °C, and a deposition time of 60 min.

  8. X-ray Doppler Velocimetry: An imaging diagnostic of 3D fluid flow in turbulent plasma

    NASA Astrophysics Data System (ADS)

    Koch, J. A.; Field, J. E.; Kilkenny, J. D.; Harding, E.; Rochau, G. A.; Covington, A. M.; Dutra, E. C.; Freeman, R. R.; Hall, G. N.; Haugh, M. J.; King, J. A.

    2017-06-01

    We describe a novel technique for measuring bulk fluid motion in materials that is particularly applicable to very hot, x-ray emitting plasmas in the high energy density physics (HEDP) regime. This X-ray Doppler Velocimetry technique relies on monochromatic imaging in multiple closely-spaced wavelength bands near the center of an x-ray emission line in a plasma, and utilizes bent crystals to provide the monochromatic images. Shorter wavelength bands are preferentially sensitive to plasma moving toward the viewer, while longer wavelength bands are preferentially sensitive to plasma moving away from the viewer. Combining multiple images in different wavelength bands allows for reconstruction of the fluid velocity field integrated along the line of sight. Extensions are also possible for absorption geometries, and for three dimensions. We describe the technique, and we present the results of simulations performed to benchmark the viability of the technique for implosion plasma diagnosis.

  9. Clinical applications of plasma based electrosurgical systems

    NASA Astrophysics Data System (ADS)

    Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.

    2013-02-01

    Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.

  10. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    SciTech Connect

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  11. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  12. Requirements for dry hard copy in medical diagnostic applications

    NASA Astrophysics Data System (ADS)

    De Langhe, Dirk; De Clerck, Marc; Tytgat, Bart; McLain, Jim; Defieuw, Geert; Verdonck, Emiel

    1996-03-01

    Today, dry process and color printers are more and more common in medical applications. The main applications for these printers are in ultrasound, nuclear medicine, medical imaging workstations and endoscopy. Each of these disciplines has its specific application requirements. Image quality and other considerations with regard to medical applications are discussed. Although the emphasis in medical imaging lies within grayscale imaging, the increased use of techniques such as doppler imaging, power doppler in ultrasound and image processing with workstations, intensify the need for high quality color output on hardcopy. For the radiology department, hardcopy must be of diagnostic quality and suitable for light box viewing. The different criteria to meet these requirements such as resolution, noise, density and physical properties are discussed. Also a short description of the implementation in the Agfa DRYSTAR 2000TM printer and its consumables will be explained. The achieved quality level will be supported by measurements. Starting from specific image processing for grayscale imaging (such as Look Up Tables) and specific imaging processing for color imaging, a new dedicated image processing method for medical dry hard copy will be presented. Both optimal grayscale imaging and color imaging combined are needed in ultrasound. In relation to this item, some non resolved issues will be explained. As a conclusion, a brief presentation of a hospital application test, validating the system for diagnostic purposes is given.

  13. Applications of the concept of generalized vorticity to space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Edwards, W. F.; Rasmussen, C.; Thompson, R. C.

    1981-01-01

    A reformulation of the momentum equation for electrons or ions in a collisionless plasma leads to an equation which describes the behavior of the plasma in terms of a generalized vorticity. This vorticity is both divergence-free and conserved along plasma flow streamlines. When the plasma has zero vorticity, a special relation is established which appears to have application to small scale magnetic features within both conventional space plasmas and superconductors.

  14. VUV diagnostics of electron impact processes in low temperature molecular hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Komppula, J.; Tarvainen, O.

    2015-08-01

    Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman band ({{B}1}Σ\\text{u}+\\to {{X}1}Σ\\text{g}+ ) and molecular continuum ({{a}3}Σ\\text{g}+\\to {{b}3}Σ\\text{u}+ ), of the hydrogen molecule in the VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-forbidden excitations reduces the uncertainty caused by the non-equilibrium distributions of electron energy and molecular vibrational level, which are typically known poorly in plasma sources. The described methods are applied to estimate the rates of various plasma processes in a filament arc discharge.

  15. High Temporal and Spatial Resolution Electron Density Diagnostic for the Edge Plasma based on Stark Broadening

    NASA Astrophysics Data System (ADS)

    Zafar, Abdullah; Martin, Elijah; Shannon, Steve; Isler, Ralph; Caughman, John

    2016-10-01

    Passive spectroscopic measurements of Stark broadening have been reliably used to determine electron density for decades. However, a low-density limit ( 1014 cm-3) exists due to Doppler and instrument broadening of the spectral line profile. A synthetic electron density diagnostic capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free, spectral line profile of a Balmar series transition by using an active laser based technique. The diagnostic approach outlined here greatly reduces both of these broadening contributions using Doppler-free saturation spectroscopy (DFSS), allowing access to lower density regimes. The measured profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The modeling and experimental results for this active spectroscopic technique are presented for a magnetized (<=5 T), low-density (1011-1013 cm-3) plasma. Details of applying DFSS to the plasma edge are also discussed.

  16. Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes

    NASA Astrophysics Data System (ADS)

    Mataras, Dimitrios

    2001-10-01

    In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.

  17. 3-D Plasma Equilibrium Reconstruction at the HSX Stellarator - Current Status and Diagnostic Development

    NASA Astrophysics Data System (ADS)

    Chlechowitz, E.; Anderson, D. T.; Schmitt, J. C.

    2012-10-01

    The equilibrium magnetic field configuration of tokamaks and stellarators can be determined by measuring the plasma current and pressure profile. V3FIT, a three dimensional plasma equilibrium reconstruction code [1], and a set of magnetic pick-up coils have been used to reconstruct HSX equilibria in the past. To discriminate between possible equilibrium solutions, the output from a 10 channel Thomson scattering system has been implemented in the reconstruction algorithm. Furthermore, an upgrade of 50 magnetic diagnostics is planned, measuring poloidal and radial magnetic field components. The positions of the diagnostics have been chosen because of their high signal effectiveness and/or a high ranking in a SVD analysis study [2]. The efficiency of both placement methods can be compared by using subsets of the coils. The number of possible solutions from reconstruction has been drastically reduced, depending on the allowed 2̂ range [1], using the complete set of coils. [4pt] [1] J.D. Hanson et al, Nucl. Fusion 49 075031 (2009) [2] N. Pomphrey et al, Phys. Plasmas 14, 056103 (2007)

  18. Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer's disease.

    PubMed

    Kessler, H; Pajonk, F-G; Meisser, P; Schneider-Axmann, T; Hoffmann, K-H; Supprian, T; Herrmann, W; Obeid, R; Multhaup, G; Falkai, P; Bayer, T A

    2006-11-01

    Increasing evidence links Alzheimer's disease (AD) with misbalanced Cu homeostasis. Recently, we have shown that dietary Cu supplementation in a transgenic mouse model for AD increases bioavailable brain Cu levels, restores Cu, Zn-super oxide-1 activity, prevents premature death, and lowers A beta levels. In the present report we investigated AD patients with normal levels of A beta 42, Tau and Phospho-Tau in the cerebrospinal fluid (CSF) in comparison with AD patients exhibiting aberrant levels in these CSF biomarkers. The influence of these cerebrospinal fluid (CSF) diagnostic markers with primary dependent variables blood Cu, Zn and ceruloplasmin (CB) and secondary with CSF profiles of Cu, Zn and neurotransmitters was determined. Multivariate tests revealed a significant effect of factor diagnostic group (no AD diagnosis in CSF or AD diagnosis in CSF) for variables plasma Cu and CB (F=4.80; df=2, 23; p=0.018). Subsequent univariate tests revealed significantly reduced plasma Cu (-12.7%; F=7.05; df=1, 25; p=0.014) and CB (-14.1%; F=9.44; df=1, 24; p=0.005) levels in patients with aberrant CSF biomarker concentrations. Although only AD patients were included, the reduced plasma Cu and CB levels in patients with a CSF diagnosis of advanced AD supports previous observations that a mild Cu deficiency might contribute to AD progression.

  19. Cross-diagnostic comparison of fluctuation measurements in a cylindrical argon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam; Chakraborty Thakur, Saikat; Tynan, George

    2016-10-01

    The advent of fast imaging diagnostics, which provide two-dimensional measurements on relevant plasma time scales, has proven invaluable for interpreting plasma dynamics in laboratory devices. Despite its success, imaging remains a qualitative aid for many studies, because intensity is difficult to map onto a single physical variable for use in a theoretical model. This work continues our exploration of the relationship between visible-light imaging and other diagnostics in the Controlled Shear Decorrelation Experiment (CSDX). CSDX is a well-characterized linear machine producing dense plasmas relevant to the tokamak edge (Te 5 eV, ne 1013 /cc). Visible light from ArI and ArII line emission is collected at high frame rates using a fast digital camera, floating potential and ion-saturation current are measured by an array of electrostatic probe tips, and average profiles of ion temperature and velocity are obtained using laser-induced fluorescence (LIF). We present a detailed comparison between these measurements, including temporal, spatial, and spectral properties in various operational regimes.

  20. Magnetic diagnostic responses for compact stellarators

    SciTech Connect

    Steven P. Hirshman; Edward A. Lazarus; James D. Hanson; Stephen F. Knowlton; Lang L. Lao,

    2004-02-01

    The formulation of magnetic diagnostic response functions for a 3-dimensional stellarator plasma is described. Reciprocity relations are used to compute unique response functions for each type of magnetic diagnostic. Green's function response tables (databases) are generated from which both external and internal plasma current contributions to diagnostic signals can be rapidly computed. Applications to compact stellarators are described.

  1. RF generated atmospheric pressure plasmas and applications

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Herrmann, Hans W.; Henins, Ivars; Gautier, Donald C.

    2001-10-01

    RF generated atmospheric pressure plasma sources have been developed for various materials applications. They operate with rf power and produce a α-mode capacitive discharge that is stable, steady-state, non-thermal, and volumetric. The plasma parameters of this source have been measured: electron densities of 10^11 cm-3 and electron temperatures of 2 eV by using neutral bremsstrahlung emission. Localized electron heating near the sheath boundary has been observed and is related to the discharge stability and α to γ mode (or arcing) transition using 1D fluid model. The discharge stability improves with increase in rf frequency. The electrode surface property such as the secondary electron emission coefficient also plays a significant role in determining α to γ mode transition. For example, a stable α-mode air discharge is produced using 100 MHz rf power with the use of a boron nitride cover on one of the electrodes. In comparison, an air discharge becomes unstable at a lower rf frequency (e.g. 13.56 MHz) or with an alumina cover. Similar results were obtained with various feedgas such as steam, CO_2, and hydrocarbon containing gases. Further characterization of this high frequency source is under progress. For its applications, we have successfully demonstrated the effective neutralization of actual chemical warfare agents such as VX, GD and HD. In addition, significant progresses have been made in the area of etching of organic and metal film etching, and production of novel materials.

  2. Chagas disease diagnostic applications: present knowledge and future steps

    PubMed Central

    Balouz, Virginia; Agüero, Fernán; Buscaglia, Carlos A.

    2017-01-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is a life-long and debilitating illness of major significance throughout Latin America, and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stress the necessity of developing new methods operational in Point-of-Care (PoC) settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery. PMID:28325368

  3. Application of new simulation algorithms for modeling rf diagnostics of electron clouds

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Smithe, David N.; Stoltz, Peter H.

    2012-12-01

    Traveling wave rf diagnostics of electron cloud build-up show promise as a non-destructive technique for measuring plasma density and the efficacy of mitigation techniques. However, it is very difficult to derive an absolute measure of plasma density from experimental measurements for a variety of technical reasons. Detailed numerical simulations are vital in order to understand experimental data, and have successfully modeled build-up. Such simulations are limited in their ability to reproduce experimental data due to the large separation of scales inherent to the problem. Namely, one must resolve both rf frequencies in the GHz range, as well as the plasma modulation frequency of tens of MHz, while running for very long simulations times, on the order of microseconds. The application of new numerical simulation techniques allow us to bridge the simulation scales in this problem and produce spectra that can be directly compared to experiments. The first method is to use a plasma dielectric model to measure plasma-induced phase shifts in the rf wave. The dielectric is modulated at a low frequency, simulating the effects of multiple bunch crossings. This allows simulations to be performed without kinetic particles representing the plasma, which both speeds up the simulations as well as reduces numerical noise from interpolation of particle charge and currents onto the computational grid. Secondly we utilize a port boundary condition model to simultaneously absorb rf at the simulation boundaries, and to launch the rf into the simulation. This method improves the accuracy of simulations by restricting rf frequencies better than adding an external (finite) current source to drive rf, and absorbing layers at the boundaries. We also explore the effects of non-uniform plasma densities on the simulated spectra.

  4. Development and application of diagnostic systems to achieve fault tolerance

    SciTech Connect

    King, R.W.; Singer, R.M.

    1989-01-01

    Much work is currently being done to develop and apply diagnostic systems that are tolerant to faulted conditions in the process being monitored and in the sensors that measure the critical parameters associated with the process. A fault-tolerant diagnostic system based on state-determination, pattern-recognition techniques is currently undergoing testing and evaluation in certain applications at the EBR-II reactor. Testing and operational experience with the system to date has shown a high degree of tolerance to sensor failures, while being sensitive to very slight changes in the plant operational state. This paper briefly mentions related work being done by others, and describes in more detail the pattern-recognition system and the results of the testing and operational experience with the system at EBR-II. 9 refs., 10 figs.

  5. Developments of the in-check platform for diagnostic applications

    NASA Astrophysics Data System (ADS)

    Palmieri, Michele; Alessi, Enrico; Conoci, Sabrina; Marchi, Mauro; Panvini, Gaetano

    2008-02-01

    In-Check is STMicroelectronics proprietary platform for molecular diagnostics. In-Check lays its foundations on the monolithic integration of microelectronics and micromachining technology MEMS, with microfluidic and optical features, bio-chemical surface functionalization and molecular biology. It comprises a core lab-on-chip device, control and reading instrumentation, a complete suite of software modules, and application protocols. Leveraging on such capabilities, In-Check enables fast, highly sensitive and specific, multi-analytical capability of nucleic acid analysis. The platform provides a unique combination of nucleic acid amplification, by polymerase-chain-reaction and target identification and typing by DNA microarray. These integrated biological functionalities together with top quality standard and process control are key features for a platform to be accepted by the highly demanding modern medical diagnostic. This paper describes recent developments of In-Check and some core biological characterizations.

  6. Potential applications of human saliva as diagnostic fluid.

    PubMed

    Castagnola, M; Picciotti, P M; Messana, I; Fanali, C; Fiorita, A; Cabras, T; Calò, L; Pisano, E; Passali, G C; Iavarone, F; Paludetti, G; Scarano, E

    2011-12-01

    The use of human saliva as a diagnostic and prognostic fluid has until recently been somewhat disregarded. Although sample collection is non-invasive, physiological and genetic variations were largely responsible for its infrequent application in the past. Recently, several proteomic studies contributed to partial elucidation of the salivary proteome (more than 2400 protein components have been characterized), both in terms of composition, contributions to whole saliva and genetic/physiological variability. On this basis, is not too optimistic to believe that in the near future human saliva could become a relevant diagnostic fluid. In this review, the characterization by proteomic approaches of new salivary markers in oncology, head and neck carcinoma (oral cavity, oropharynx, larynx, and salivary glands), breast and gastric cancers, salivary gland function and disease, Sjögren syndrome, systemic sclerosis, dental and gingival pathology, systemic, psychiatric and neurological diseases, is described.

  7. Diagnostic inaccuracy of smartphone applications for melanoma detection.

    PubMed

    Wolf, Joel A; Moreau, Jacqueline F; Akilov, Oleg; Patton, Timothy; English, Joseph C; Ho, Jonhan; Ferris, Laura K

    2013-04-01

    To measure the performance of smartphone applications that evaluate photographs of skin lesions and provide the user with feedback about the likelihood of malignancy. Case-control diagnostic accuracy study. Academic dermatology department. PARTICIPANTS AND MATERIALS: Digital clinical images of pigmented cutaneous lesions (60 melanoma and 128 benign control lesions) with a histologic diagnosis rendered by a board-certified dermatopathologist, obtained before biopsy from patients undergoing lesion removal as a part of routine care. Sensitivity, specificity, and positive and negative predictive values of 4 smartphone applications designed to aid nonclinician users in determining whether their skin lesion is benign or malignant. Sensitivity of the 4 tested applications ranged from 6.8% to 98.1%; specificity, 30.4% to 93.7%; positive predictive value, 33.3% to 42.1%; and negative predictive value, 65.4% to 97.0%. The highest sensitivity for melanoma diagnosis was observed for an application that sends the image directly to a board-certified dermatologist for analysis; the lowest, for applications that use automated algorithms to analyze images. The performance of smartphone applications in assessing melanoma risk is highly variable, and 3 of 4 smartphone applications incorrectly classified 30% or more of melanomas as unconcerning. Reliance on these applications, which are not subject to regulatory oversight, in lieu of medical consultation can delay the diagnosis of melanoma and harm users.

  8. Cold plasma: overview of plasma technologies and applications

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is a novel nonthermal food processing technology. It is based on energetic, reactive gases which inactivate contaminating microbes on meats, poultry and fruits and vegetables. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization pro...

  9. Influence of excited state spatial distributions on plasma diagnostics: Atmospheric pressure laser-induced He-H2 plasma

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam K.; Hüwel, Lutz

    2012-10-01

    Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.

  10. Additive Manufacture (3D Printing) of Plasma Diagnostic Components and Assemblies for Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Quinley, Morgan; Chun, Katherine; Melnik, Paul; Sieck, Paul; Smith, Trevor; Stuber, James; Woodruff, Simon; Romero-Talamas, Carlos; Rivera, William; Card, Alexander

    2016-10-01

    We are investigating the potential impact of additive manufacturing (3D printing) on the cost and complexity of plasma diagnostics. We present a survey of the current state-of-the-art in additive manufacture of metals, as well as the design of diagnostic components that have been optimized for and take advantage of these processes. Included among these is a set of retarding field analyzer probe heads that have been printed in tungsten with internal heat sinks and cooling channels. Finite element analysis of these probe heads shows the potential for a 750K reduction in peak temperature, allowing the probe to take data twice as often without melting. Results of the evaluation of these probe heads for mechanical strength and outgassing, as well as their use on Alcator C-Mod will be presented. Supported by DOE SBIR Grant DE-SC0011858.

  11. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    SciTech Connect

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data.

  12. A diagnostic system for electrical faults in a high current discharge plasma setup.

    PubMed

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ∼4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  13. Nuclear background effects on plasma diagnostics for megajoule class laser facility

    NASA Astrophysics Data System (ADS)

    Rousseau, A.; Darbon, S.; Paillet, P.; Girard, S.; Bourgade, J. L.; Raine, M.; Duhamel, O.; Goiffon, V.; Magnan, P.; Chabane, A.; Cervantes, P.; Hamel, M.; Larour, J.

    2013-09-01

    Estimating the vulnerability is a key challenge for plasma diagnostics designed to operate in radiative background associated with megajoule class laser facilities. Since DT shots at OMEGA laser facility reproduce the perturbing source expected during the first 100 nanoseconds of a typical DT shot realized at National Ignition Facility (NIF) and Laser MegaJoule facility (LMJ), vulnerability of diagnostic elements such as optical relays or optical analyzers were experimentally studied and, if necessary, hardening approaches have been initiated to authorize their use at higher radiative constraints. Other facilities such as nuclear reactor or accelerator have been also used to estimate vulnerability issues as radiation induced emission of glasses or damage in multilayer coatings.

  14. Diagnostics of high-brightness short-pulse lasers and the plasmas they generate

    SciTech Connect

    Kyrala, G.A.; Fulton, R.D.; Cobble, J.A.; Schappert, G.T.; Taylor, A.J.

    1994-02-01

    The properties of a laser influence the interaction of the intense laser light with materials. The authors will describe some of the diagnostics that they have implemented at the Los Alamos Bright Source to correlate the changes in the x-ray spectrum and temporal history of a laser generated silicon plasmas with the changes of the incident XeCl laser light. One property is of special interest, the existence of a short prepulse. They find that the prepulse enhances the generation of the x-rays from a later pulse.

  15. Study of the Plasma Turbulence Dynamics by Measurements of Diagnostic Stimulated Electromagnetic Emission. Part II. Results of Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Sergeev, E. N.; Grach, S. M.

    2017-07-01

    The data on measured dynamic characteristics of diagnostic stimulated electromagnetic emission (SEE) of the ionosphere are presented. Numerical simulations of the SEE evolution within the framework of a theoretical model of the broad-continuum SEE feature with the use of improved (3D) empirical model of the spatial spectrum of artificial irregularities of the HF pumped ionospheric plasma are performed and compared with the measurement data. Possible applications of such a comparison for determining the spectrum parameters and studying the evolution of the geomagnetic field-aligned artificial irregularities (striations) are discussed. It is concluded that changes in the intensity and spectrum shape of the striations, mainly for transverse scales l ⊥ 2-18 m, play the decisive role in the observed variations of the magnitude and temporal characteristics of the overshoot effect (formation of the intensity maximum followed by the suppression of the ionospheric SEE intensity).

  16. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    SciTech Connect

    Alves, D.; Coelho, R. [Associação Euratom Collaboration: JET-EFDA Contributors

    2013-08-15

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  17. A novel ultra-thin 3D detector—For plasma diagnostics at JET and ITER tokamaks

    NASA Astrophysics Data System (ADS)

    García, Francisco; Pelligrini, G.; Balbuena, J.; Lozano, M.; Orava, R.; Ullan, M.

    2009-08-01

    A novel ultra-thin silicon detector called U3DTHIN has been designed and built for applications that range from Neutral Particle Analyzers (NPA) used in Corpuscular Diagnostics of High Temperature Plasma to very low X-ray spectroscopy. The main purpose of this detector is to provide a state-of-the-art solution to upgrade the current detector system of the NPAs at JET and also to pave the road for the future detection systems of the ITER experimental reactor. Currently the NPAs use a very thin scintillator-photomultiplier tube [F. García, S.S. Kozlovsky, D.V. Balin, Background Properties of CEM, MCP and PMT detectors at n-γ irradiation. Preprint PNPI-2392, Gatchina, 2000, p. 9 [1]; F. García, S.S. Kozlovsky, V.V. Ianovsky, Scintillation Detectors with Low Sensitivity to n-γ Background. Preprint PNPI-2391, Gatchina, 2000, p. 8 [2

  18. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics.

    PubMed

    Alves, D; Coelho, R

    2013-08-01

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  19. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Alves, D.; Coelho, R.; JET-EFDA Contributors

    2013-08-01

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  20. Applications of FT-IR spectrophotometry in cancer diagnostics.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  1. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  2. Recovery of the characteristics of plasma turbulence from the radial correlation backscattering diagnostics

    NASA Astrophysics Data System (ADS)

    Gusakov, E. Z.; Krutkin, O. L.

    2017-06-01

    Signals of the backscattering radial correlation Doppler diagnostics of plasma density fluctuations in the presence of the cutoff of the probing wave are analyzed theoretically with allowance for the curvature of magnetic surfaces. The scattering of the probing electromagnetic wave is considered in the linear (Born) approximation with respect to the amplitude of fluctuations. Using the Wentzel-Kramers-Brillouin approach, analytical expressions for the scattered signal and the correlation function of two scattered signals corresponding to oblique probing at different frequencies are derived. A criterion is obtained for the tilt angle of the antenna pattern at which the two-point turbulence correlation function can be measured directly. A method is proposed to recover the spectrum of plasma density fluctuations from the data on the radial wavenumbers even if this criterion is violated.

  3. Spectroscopy of heliumlike argon resonance and satellite lines for plasma temperature diagnostics

    NASA Astrophysics Data System (ADS)

    Biedermann, C.; Radtke, R.; Fournier, K. B.

    2002-12-01

    The n=2-1 spectral emission pattern of heliumlike argon, together with the associated satellite emission originating from lithiumlike argon have been measured with high-resolution x-ray spectroscopy at the Berlin electron-beam ion trap. The observed line intensity across a wide range of excitation energies was weighted by an electron-energy distribution to analyze as a function of plasma temperature the line ratios between KLL dielectronic recombination satellites, in particular the j+z, j, and k satellites, and the w-resonance line. A good agreement between various theoretical models is found, supporting the method of line-ratio measurement as a temperature diagnostic for plasmas. A value for the so-called R-line ratio is determined and calculations with the HULLAC suite of codes predict it to be electron density independent over a wide range.

  4. Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer.

    PubMed

    Ushenko, V A; Dubolazov, O V; Karachevtsev, A O

    2014-04-01

    The model of a Mueller matrix description of mechanisms of optical anisotropy typical for polycrystalline films of blood plasma--optical activity, birefringence, as well as linear and circular dichroism--is suggested. On this basis, the algorithms of reconstruction of parameters distribution (polarization plane rotations, phase shifts, coefficients of linear and circular dichroism) of the indicated types of anisotropy were found for different spectrally selective ranges. Within the statistical analysis of such distributions, the objective criteria of differentiation of films of blood plasma taken from healthy women and breast cancer patients were determined. From the point of view of probative medicine, the operational characteristics (sensitivity, specificity and accuracy) of the method of Mueller matrix reconstruction of optical anisotropy parameters were found, and its efficiency in diagnostics of breast cancer was demonstrated.

  5. Physics of the Inner Heliosphere 1-10 Rs: Plasma Diagnostics and Models

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.

    1998-01-01

    While the mechanisms responsible for the solar corona and the high-speed solar wind streams are still unknown, model computations offer means of predicting the properties of such mechanisms in light of the empirical constraints currently available. Modeling and data analysis efforts were aimed at understanding the plasma properties of the acceleration of the solar wind, its filamentary nature, and the conditions needed to account for a rapidly accelerating solar wind, reaching its terminal speed within 10 R(sub s). A sequence of models ranging from steady one-fluid descriptions of the solar wind to multi-fluid time-dependent models were developed. Plasma diagnostics evolved from the analysis of data acquired from Skylab to SOHO, and complemented by ground-based observations.

  6. Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa.

    PubMed

    Näsström, Elin; Parry, Christopher M; Vu Thieu, Nga Tran; Maude, Rapeephan R; de Jong, Hanna K; Fukushima, Masako; Rzhepishevska, Olena; Marks, Florian; Panzner, Ursula; Im, Justin; Jeon, Hyonjin; Park, Seeun; Chaudhury, Zabeen; Ghose, Aniruddha; Samad, Rasheda; Van, Tan Trinh; Johansson, Anders; Dondorp, Arjen M; Thwaites, Guy E; Faiz, Abul; Antti, Henrik; Baker, Stephen

    2017-05-09

    Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood culture, a method that lacks sensitivity, portability and speed. We have previously shown that specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal (Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other febrile diseases including malaria. After applying supervised pattern recognition modelling, we could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid patients. After comparing the direction of change and degree of multivariate significance, we identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing a new approach for typhoid diagnostics.

  7. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  8. Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas

    SciTech Connect

    Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.

    2004-10-01

    A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.

  9. Diagnostic Overview of the C-2U Advanced Beam-Driven Field-Reversed Configuration Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Gota, Hiroshi; Putvinski, Sergei; Tuszewski, Michel; Binderbauer, Michl; The TAE Team

    2015-11-01

    The C-2U experiment at Tri Alpha Energy seeks to study the evolution of advanced beam-driven field-reversed configuration (FRC) plasmas sustained by neutral beam (NB) injection for 5 + ms. Data on the FRC plasma performance is provided by a comprehensive suite of diagnostics including magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape that will both improve accuracy and facilitate active control of the FRC plasma.

  10. Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications.

    PubMed

    Bonifacio, Alois; Cervo, Silvia; Sergo, Valter

    2015-11-01

    In clinical practice, one objective is to obtain diagnostic information while minimizing the invasiveness of the tests and the pain for the patients. To this end, tests based on the interaction of light with readily available biofluids including blood, urine, or saliva are highly desirable. In this review we examine the state of the art regarding the use of surface-enhanced Raman spectroscopy (SERS) to investigate biofluids, focusing on diagnostic applications. First, a critical evaluation of the experimental aspects involved in the collection of SERS spectra is presented; different substrate types are introduced, with a clear distinction between colloidal and non-colloidal metal nanostructures. Then the effect of the excitation wavelength is discussed, along with anomalous bands and artifacts which might affect SERS spectra of biofluids. The central part of the review examines the literature available on the SERS spectra of blood, plasma, serum, urine, saliva, tears, and semen. Finally, diagnostic applications are critically discussed in the context of the published evidence; this section clearly reveals that SERS of biofluids is most promising as a rapid, cheap, and non-invasive tool for mass screening for cancer.

  11. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  12. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Thompson, M C; Gota, H; Putvinski, S; Tuszewski, M; Binderbauer, M

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  13. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    SciTech Connect

    Thompson, M. C. Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-15

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  14. Diagnostic du plasma d'ablation laser pour lacroissance de couches minces

    NASA Astrophysics Data System (ADS)

    Basillais, A.; Benzerga, R.; Le Menn, E.; Mathias, J.; Boulmer-Leborgne, C.; Perrière, J.

    2003-06-01

    Dans ce travail, nous nous sommes intéressés à la croissance de films de nitrure d'aluminium par ablation laser d'une cible d'aluminium assistée par un plasma d'azote créé par une décharge RF. Parallèlement, la spectroscopie d'émission a été largement utilisée pour le diagnostic de la plume plasma et du plasma de décharge RF afin de trouver des informations permettant de suivre le phénomène de croissance et qui seraient la signature d'un film de bonne stœchiométrie et qualité cristalline ou son contraire. Ainsi, l'étude de l'émission de la raie d'oxygène à 777nm dans le plasma d'ablation laser a permis d'expliquer le mécanisme de contamination des films par l'oxygène. De la même façon, nous nous sommes intéressés à l'émission de l'azote atomique dans la plume plasma et proche du substrat, dans la zone sombre où ces espèces participent directement à la croissance du film. Ainsi l'étude parallèle de l'influence des paramètres expérimentaux sur la qualité des films et sur la composition du plasma nous a permis d'optimiser le dispositif expérimental.

  15. Plasma diagnostics package assessment of the STS-3 orbiter environment and systems for science

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G. B.

    1983-01-01

    Primary objectives of the Plasma Diagnostics Package (PDP) on STS-3 as part of the OSS-1 'Pathfinder' payload were to measure aspects of the Orbiter's induced environment and to utilize Orbiter crew and subsystems in the conduct of scientific investigations. Instrumentation temperatures were found to be within predicted limits, payload bay pressure varied from ambient up to 0.001 torr with thruster firings, EMI levels were found to be below worst case estimates, and V x B motional potentials were observed to vary + or - 5 V with respect to Orbiter ground. These parameters exhibited orbit-period modulation. Payload bay plasma varied in density and composition from ambient to a rarefied mixture with Orbiter-produced H2O(+). Energetic electrons and ions with energies up to 10's of eV were observed occasionally. Primary and vernier thrusters induce a momentary perturbation to the electron density, to the pressure and to the electric field with low energy ions and electrons occasionally produced. With the PDP on the RMS, both automode and manual modes were used to seek sources of EMI, to characterize the Orbiter's plasma wake and to measure beam-plasma phenomena.

  16. An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development

    SciTech Connect

    Droemer, Darryl W.; Crain, Marlon D.; Lare, Gregory A.; Bennett, Nichelle L.; Johnston, Mark D.

    2013-06-13

    National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed power–driven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camera–based optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

  17. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    SciTech Connect

    Rácz, R. Biri, S.; Pálinkás, J.; Romano, F. P.

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  18. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    SciTech Connect

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-21

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  19. Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar

    2016-08-01

    Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.

  20. Image analysis of cell natural fluorescence: diagnostic applications in haematology

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Mazzinghi, Piero; Fusi, Franco; Bernabei, Pietro A.; Landini, Stefano; Ferrini, Pierluigi R.; Pratesi, Riccardo

    1996-11-01

    Haematic cells, excited with radiation of suitable wavelength, give rise to a natural fluorescence (NF) emission. This paper investigates NF to develop new techniques for applications in both basic research and medical diagnostics. Results show that the cell populations examined exhibit peculiar emission bands. The intracellular fluorescence pattern reveals that flouresence is mainly located at cytoplasmic-level, thus related to the metabolic processes of the cells. The photophysical properties of cells appear different among the normal populations and between normal and leukaemic ones. Therefore the recognition of the various cellular elements, according to their fluorescence emission, is possible.