Science.gov

Sample records for plasma endothelial vasoactive

  1. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    PubMed

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-02-28

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies.

  2. Corneal Endothelial Cell Integrity in Precut Human Donor Corneas Enhanced by Autocrine Vasoactive Intestinal Peptide

    PubMed Central

    Coll, Timothy; Gloria, Dante; Sprehe, Nicholas

    2017-01-01

    Purpose: To demonstrate that vasoactive intestinal peptide (VIP), a corneal endothelial (CE) cell autocrine factor, maintains the integrity of corneal endothelium in human donor corneoscleral explants precut for endothelial keratoplasty. Methods: Twelve paired human donor corneoscleral explants used as control versus VIP-treated explants (10 nM, 30 minutes, 37°C) were shipped (4°C) to the Lions Eye Institute for Transplantation and Research for precutting (Moria CBM-ALTK Keratome), shipped back to the laboratory, and cultured in ciliary neurotrophic factor (CNTF, 0.83 nM, 37°C, 24 hours). Trephined endothelial discs (8–8.5 mm) were analyzed for differentiation markers (N-cadherin, CNTF receptor α subunit [CNTFRα], and connexin 43) by Western blot after a quarter of the discs from 4 paired explants were cut away and stained with alizarin red S for microscopic damage analysis. Two additional paired explants (6 days in culture) were stained for panoramic view of central CE damage. Results: VIP treatment increased N-cadherin and CNTFRα levels (mean ± SEM) to 1.38 ± 0.11-fold (P = 0.003) and 1.46 ± 0.22-fold (P = 0.03) of paired controls, respectively, whereas CE cell CNTF responsiveness in upregulation of connexin 43 increased to 2.02 ± 0.5 (mean ± SEM)-fold of the controls (P = 0.04). CE damage decreased from (mean ± SEM) 10.0% ± 1.2% to 1.6% ± 0.3% (P < 0.0001) and 9.1% ± 1.1% to 2.4% ± 1.0% (P = 0.0006). After 6 days in culture, the damage in whole CE discs decreased from 20.0% (control) to 5.5% (VIP treated). Conclusions: VIP treatment before precut enhanced the preservation of corneal endothelium. PMID:28181929

  3. Paradoxical binding levels of vasoactive amines to cultured cerebral microvessel derived endothelial cells

    SciTech Connect

    Robinson, R.A.; TenEyck, C.J.; Linthicum, D.S.; Hart, M.N.

    1986-03-01

    Vascular sensitization to vasoactive amines (VAA) may be critical for the development of experimental autoimmune encephalitis as well as other autoimmune diseases. Some inbred stains of mice such as SJL/J are particularly sensitive to the effects of VAA while others (BALB/c) are not. This study was performed to determine if the differing response to VAA in vivo is due to differing levels of binding of VAA to cultured brain endothelial (En) cells in vitro. Cells were isolated, grown to confluence, washed twice with binding buffer and incubated with either /sup 3/H-histamine, /sup 3/H-mepyramine or /sup 3/H-5 hydroxytryptamine (5HT) for 1 hour at 37/sup 0/C. Results showed that the BALB derived En cells specifically bound approximately twice as much mepyramine and three times as much 5-HT as the SJL derived En cells. The relative low binding of VAA to SJL En cells may reflect the extreme in vivo sensitivity that this mouse strain displays toward VAA. These seemingly paradoxical levels of VAA binding in the cultured cerebral endothelium may be due to genetic factors and may give insight into diseases that affect the blood brain barrier.

  4. Metabolism of vasoactive peptides by human endothelial cells in culture. Angiotensin I converting enzyme (kininase II) and angiotensinase.

    PubMed

    Johnson, A R; Erdös, E G

    1977-04-01

    Cultured endothelial cells provide a model for the study of interactions of vasoactive peptides with endothelium. Endothelial cell cultured from veins of human umbilical cords contain both angiotensin I converting enzyme (kininase II) and angiotensinase activities. Intact monolayers of cells can both activate angiotensin I and inactivate bradykinin when the peptides are added to culture flasks in protein-free medium. Intact suspended cells or lysed cells convert angiotensin I to angiotensin II, inactivate bradykinin, and hydrolyze hippuryldiglycine to hippuric acid and diglycine. These actions are inhibited by SQ 20881, the specific inhibitor of converting enzyme. The kininase activity of endothelial cells was partially inhibited by antibody to human lung converting enzyme. Endothelial cells also inactivate longer analogs of bradykinin, such as kallidin, methionyl-lysyl bradykinin, and bradykinin coupled covalently to 500,000 mol wt dextran. The endothelial cells retained converting enzyme activity through four successive subcultures, indicating that the enzyme is synthesized by the cells surface, and it is apparently a marker for endothelial cells, since cultured human fibroblasts, smooth muscle cells, and baby hamster kidney cells do not have it. Endothelial cells also contain an aminopheptidase which hydrolyzes both angiotensin II and the synthetic substrate, alpha-L-aspartyl beta-naphthylamide. The angiotensinase activity increased when the cells were lysed, which suggests that the enzyme is localized within the cells, Hydrolysis of both alpha-L-aspartyl beta-naphthylamide and angiotensin II was inhibited by omicron-phenanthroline, indicating that the enzyme is an A-tipe anigotensinase.

  5. Endopeptidases 3.4.24.15 and 24.16 in endothelial cells: potential role in vasoactive peptide metabolism.

    PubMed

    Norman, M Ursula; Reeve, Shane B; Dive, Vincent; Smith, A Ian; Lew, Rebecca A

    2003-06-01

    The closely related metalloendopeptidases EC (EP24.15; thimet oligopeptidase) and 24.16 (EP24.16; neurolysin) cleave a number of vasoactive peptides such as bradykinin and neurotensin in vitro. We have previously shown that hypotensive responses to bradykinin are potentiated by an inhibitor of EP24.15 and EP24.16 (26), suggesting a role for one or both enzymes in bradykinin metabolism in vivo. In this study, we have used selective inhibitors that can distinguish between EP24.15 and EP24.16 to determine their activity in cultured endothelial cells (the transformed human umbilical vein endothelial hybrid cell line EA.hy926 or ovine aortic endothelial cells). Endopeptidase activity was assessed using a specific quenched fluorescent substrate [7-methoxycoumarin-4-acetyl-Pro-Leu-Gly-d-Lys(2,4-dinitrophenyl)], as well as the peptide substrates bradykinin and neurotensin (assessed by high-performance liquid chromatography with mass spectroscopic detection). Our results indicate that both peptidases are present in endothelial cells; however, EP24.16 contributes significantly more to substrate cleavage by both cytosolic and membrane preparations, as well as intact cells, than EP24.15. These findings, when coupled with previous observations in vivo, suggest that EP24.16 activity in vascular endothelial cells may play an important role in the degradation of bradykinin and/or other peptides in the circulation.

  6. The Effects of Low Density Lipoproteins on Endothelial Mediated Vasoactivity in the Coronary Circulation in Swine

    DTIC Science & Technology

    1998-03-27

    low density lipoproteins ( LDL ), alters normal endothelial function in patients with atherosclerosis. The aim of this study was to investigate the...coronary artery. Significance was set at the pS;O.05 level. LDL cholesterol was significantly higher in the high cholesterol (1 16±23 mg/dl) and high...linear relationship was found between the LDL concentration and diastolic blood pressure. Acetylcholine, substance P, adenosine, and nitroglycerin

  7. The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat.

    PubMed

    Burdon, Catriona A; Ruell, Patricia; Johnson, Nathan; Chapman, Phillip; O'Brien, Sinead; O'Connor, Helen T

    2015-01-01

    The aim of this study was to determine the effect of exercise in the heat on thermoregulatory responses and plasma vasoactive intestinal peptide concentration (VIP) and whether it is modulated by ice-slushy consumption. Ten male participants cycled at 62% V̇O2max for 90min in 32°C and 40% relative humidity. A thermoneutral (37°C) or ice-slushy (-1°C) sports drink was given at 3.5mlkg(-1) body mass every 15min during exercise. VIP and rectal temperature increased during exercise (mean±standard deviation: 4.6±4.4pmolL(-1), P=0.005; and 1.3±0.4°C, P<0.001 respectively) and were moderately associated (r=0.35, P=0.008). While rectal temperature and VIP were not different between trials, ice-slushy significantly reduced heat storage (P=0.010) and skin temperature (time×trial interaction P=0.038). It appears that VIP does not provide the signal linking cold beverage ingestion and lower skin temperature in the heat.

  8. [Effect of lysis of acupotomology on plasma vasoactive substance levels in rats with third lumbar vertebra transverse process syndrome].

    PubMed

    Guo, Chang-Qing; Liu, Nai-Gang; Li, Xiao-Hong; Sun, Hong-Mei; Lu, Jing; Ma, Hui-Fang; Chen, Zhan-Lu; Hu, Bo; Liu, Lin; Zhu, Han-Zhang

    2007-10-01

    To observe the effect of small needle-knife lysis on plasma calcitonin gene-related peptide (CGRP), endothelin (ET), 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha), thromboxane A2 (TXA2) contents in rats with experimental third lumbar vertebra transverse process syndrome (TLVTPS) so as to explore its underlying mechanism in clinical treatment. Forty SD rats were randomly divided into normal control, model, lysis and EA groups. TLVTPS model was established by embedding a piece of gelatin sponge (0.5 cm x 0.5 cm) to the transverse process of the 3rd lumbar vertebra under anesthesia. EA (2/100 Hz, 1-2 mA) was applied to left "Shenshu" (BL23) -"Yaoyangguan" (GV3) for 20 min, once every other day, 6 times altogether. For animals of lysis group, the lysis was performed by using a small needle-knife in the induration spot or cord-like region near the incision, once a week and twice altogether. Four weeks later after modeling, plasma CGRP, ET, 6-keto-PGF1alpha and TXA2 contents were detected by using radioimmunoassay and enzyme linked immunosorbent assay (ELISA). Compared with normal control group, plasma CGRP, ET, TXA2 and 6-keto-PGF1alpha increased significantly in model group (P<0.01); in comparison with model group, plasma CGRP, TXA2 and 6-keto-PGF1alpha in both EA and lysis groups decreased considerably (P<0.05, 0.01). No significant differences were found between EA and lysis groups in plasma CGRP, ET and 6-keto-PGF1alpha levels (P>0.05). Both EA and lysis of acupotomology have an adjusting effect on vasoactive substances (CGRP, TXA2 and 6-keto-PGF1alpha) levels in TLVTPS rats, which may contribute to their effects in improving local blood circulation and relieving soft tissue injury in the treatment of third lumbar vertebra transverse process syndrome.

  9. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed

    Yu, Q C; McNeil, P L

    1992-12-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis.

  10. The effect of global ischemia and reperfusion on the plasma levels of vasoactive peptides. The neuroendocrine response to cardiac arrest and resuscitation.

    PubMed

    Paradis, N A; Rose, M I; Garg, U

    1993-12-01

    Return of spontaneous circulation with CPR is a function of coronary perfusion pressure, which is determined by vasomotor tone and the force of compression. Vasomotor tone is affected by the relative stimulation of arterial vasoconstricting and vasorelaxing receptors by vasoactive substances. We measured the plasma levels of the endogenous vasoactive peptides arginine vasopressin (AVP) angiotensin II (ANG-II) and atrial natriuretic peptide (ANP) during cardiac arrest and resuscitation. A fibrillatory canine model of canine arrest was used. 'Down time' was greater than 10 min, during which no therapy, including BLS, was given. Standard ACLS was initiated at the end of the down time with manual external chest compression standardized to an esophageal pulse pressure of 50 mmHg. Blood samples were collected through an aortic catheter during spontaneous circulation and 3 min after initiation of ACLS. Peptide levels were measured using standard RIA techniques. Results are reported as the mean +/- S.D. in pg/ml. AVP levels increased from a baseline of 1.7 +/- 1.0 pg/ml during spontaneous circulation to 29.9 +/- 33.3 during cardiac arrest and CPR (P = 0.01). There was a moderate positive correlation between aortic pressure and circulating AVP levels after the first dose of epinephrine (R = 0.5). There was a trend towards higher AVP levels in animals with return of spontaneous circulation (P = 0.12). ANG-II levels increased from a baseline of 14.7 +/- 12.9 pg/ml during spontaneous circulation to 151 +/- 105 during cardiac arrest and CPR (P < 0.05). ANP levels increased from a baseline of 55 +/- 46 pg/ml during spontaneous circulation to 293 +/- 73 during cardiac arrest and CPR (P < 0.01). There were significant increases in the levels of these endogenous vasoactive peptides. This reflects the neuroendocrine response to global ischemia and CPR reperfusion. Plasma levels of these peptides may effect the vital organ perfusion pressures, response to exogenous vasopressors, and

  11. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability

    PubMed Central

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V.; Mayeux, Philip R.; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis. PMID:26956613

  12. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability.

    PubMed

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V; Mayeux, Philip R; Kilic, Fusun

    2016-03-09

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis.

  13. [Effects of Electroacupuncture Stimulation of "Neiguan" (PC 6) at Different Frequencies on Plasma Vasoactive Substance Levels in Myocardial Ischemic Reperfusion Rats].

    PubMed

    Wang, Shuang-kun; Lu, Chen; Wang, You-jing

    2015-10-01

    To observe the effect of electroacupuncture (EA) stimulation of "Neiguan" (PC 6) at different frequencies on plasma vasoactive substance levels in myocardial ischemia-reperfusion (MIR) injury rats, so as to explore its mechanisms underlying improvement of acute myocardial ischemia. A total of 40 Wistar rats were randomized into control, model, high frequency (HF, 120 Hz) and low frequency (LF, 20 Hz) groups (n = 10 in each group). The MIR model was established by occlusion of the anterior descending branch (ADB) of the left coronary artery for 30 min, followed by reperfusion for 40 min. EA (3 V, 120 Hz or 20 Hz) was applied to bilateral "Neiguan" (PC 6) for 50 min immediately after occlusion of ADB. Subsequently, the contents of plasma endothelin (ET), atrial natriuretic peptide (ANP), thromboxane B 2 (TXB2) and 6-Keto-PGF1, were assayed by radioimmunoassay, and the content of serum nitric oxide (NO) was detected by nitrate reductase method. Compared with the control group, the contents of plasma ET, ANP and TXB2 in the model group were significantly increased (P < 0.05), and that of plasma 6-Keto-PGF1α in the model group was notably decreased (P < 0.05), but no significant change was found in serum NO level (P > 0.05). Compared with the model group, the contents of plasma ET, ANP and TXB2 were considerably decreased, and plasma 6-Keto-PGF1α and serum NO contents were obviously increased in both HF and LF groups (P < 0.05). No significant differences were found between the HF and LF groups in plasma ET , ANP, TXB2 and 6-Keto-PGF1α contents (P > 0.05), but the HF EA was markedly superior to the LF EA in up-regulating the content of serum NO (P < 0.05). EA stimulation of "Neiguan" (PC 6) can down-regulate the contents of plasma ET, ANP and TXB2 and up-regulate contents of plasma 6-Keto-PGF1α and serum NO in MIR rats, which may contribute to its effect in relieving acute ischemic myocardial injury. The effect of HF EA is better than LF EA in raising blood NO level.

  14. Plasma levels of nitric oxide and related vasoactive factors following long-term treatment with angiotensin-converting enzyme inhibitor in patients with essential hypertension.

    PubMed

    Kohno, M; Yokokawa, K; Minami, M; Yasunari, K; Maeda, K; Kano, H; Hanehira, T; Yoshikawa, J

    1999-10-01

    Several mechanisms other than the inhibition of systemic and local formation of angiotensin II (Ang II) have been proposed to play a role in mediating the hypotensive effects of angiotensin-converting enzyme (ACE) inhibitors. In the present study, we measured plasma levels of nitric oxide (NO) and the related vasoactive factors bradykinin, 6-keto prostaglandin F1alpha (6-keto PGF1alpha) a stable metabolite of prostacyclin, and cyclic guanosine-3',5'-monophosphate (cGMP) before and after a 4-week treatment with the ACE inhibitor lisinopril in 17 patients with essential hypertension. Plasma NO levels were measured by the Griess method after conversion of nitrate to nitrite. Long-term lisinopril treatment significantly reduced blood pressure and increased plasma NO and 6-keto PGF1alpha. The treatment also tended to increase plasma levels of bradykinin and cGMP, but not to a significant extent. The posttreatment NO level was inversely correlated with posttreatment systolic, diastolic, and mean blood pressure (n = 17, r= -.68, P< .01, n = 17, r= -.54, P < .05, and n = 17, r= -.66, P< .01, respectively). The posttreatment bradykinin level was also modestly correlated with posttreatment systolic and mean blood pressure (n = 17, r = -.51, P < .05 and n = 17, r = -.55, P < .05, respectively). In contrast, posttreatment 6-keto PGF1alpha and cGMP levels were not correlated with posttreatment systolic, diastolic, or mean blood pressure. These findings raise the possibility that increased formation of NO and bradykinin, as well as inhibition of the renin-angiotensin system, contribute to the hypotensive effect of the ACE inhibitor observed in our hypertensive patients.

  15. Effects of psychological stress on small intestinal motility and expression of cholecystokinin and vasoactive intestinal polypeptide in plasma and small intestine in mice

    PubMed Central

    Cao, Shu-Guang; Wu, Wan-Chun; Han, Zhen; Wang, Meng-Ya

    2005-01-01

    AIM: To investigate the effects of psychological stress on small intestinal motility and expression of cholecystokinin (CCK) and vasoactive intestinal polypeptide (VIP) in plasma and small intestine, and to explore the relationship between small intestinal motor disorders and gastrointestinal hormones under psychological stress. METHODS: Thirty-six mice were randomly divided into psychological stress group and control group. A mouse model with psychological stress was established by housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. CCK and VIP levels in plasma and small intestine in mice were measured by radioimmunoassay (RIA). RESULTS: Small intestinal transit was inhibited (52.18±19.15% vs 70.19±17.79%, P<0.01) in mice after psychological stress, compared to the controls. Small intestinal CCK levels in psychological stress mice were significantly lower than those in the control group (0.75±0.53 μg/g vs 1.98±1.17 μg/g, P<0.01), whereas plasma CCK concentrations were not different between the groups. VIP levels in small intestine were significantly higher in psychological stress mice than those in the control group (8.45±1.09 μg/g vs 7.03±2.36 μg/g, P<0.01), while there was no significant difference in plasma VIP levels between the two groups. CONCLUSION: Psychological stress inhibits the small intestinal transit, probably by down-regulating CCK and up-regulating VIP expression in small intestine. PMID:15655834

  16. Passage of low density lipoproteins through monolayers of human arterial endothelial cells. Effects of vasoactive substances in an in vitro model

    SciTech Connect

    Langeler, E.G.; Snelting-Havinga, I.; van Hinsbergh, V.W.

    1989-07-01

    The endothelium controls the influx of lipoproteins into the arterial wall, a process that may be disturbed in arteriosclerotic blood vessels. We have used an in vitro model to investigate the characteristics of the passage of low density lipoproteins (LDL) through monolayers of human arterial endothelial cells. Umbilical artery, aorta, or carotid artery endothelial cells were cultured on polycarbonate filters and formed a tight monolayer in which the cells were connected by tight junctions. Passage of 125I-LDL through these monolayers proceeded linearly over a 24-hour period. It was threefold lower through monolayers of aorta or carotid artery cells than through monolayers of umbilical artery cells. The LDL passage process did not show saturation with LDL concentrations up to 800 micrograms/ml LDL-protein (i.e., 1.6 nmol/ml apolipoprotein B) between 2 and 4 hours after addition. However, during the first 30 to 60 minutes after addition of high concentrations of LDL, a reduction of the passage rate of both LDL and peroxidase, resulting in an apparent saturation of the passage process, was observed. The passage rate of the negatively charged acetylated LDL was twofold lower than that of native LDL. Addition of histamine to the endothelial monolayer resulted in a large, but transient, increase in permeability paralleled by a decrease in electrical resistance. The effects of histamine were mediated via an H1 receptor. Thrombin and Ca++ ionophore also induced an increase in permeability of the monolayer, while bradykinin did not. The effects of histamine and thrombin were paralleled by a rapid and marked increase in cytoplasmatic Ca++ concentration of the endothelial cells, while bradykinin induced only a small increase.

  17. Plasma vascular endothelial growth factor in acute mountain sickness.

    PubMed

    Maloney, J; Wang, D; Duncan, T; Voelkel, N; Ruoss, S

    2000-07-01

    To investigate the hypothesis that an increase in circulating vascular endothelial growth factor (VEGF) occurs in mountaineers at high altitude, particularly in association with acute mountain sickness (AMS) and/or low hemoglobin oxygen saturation. : Collection of medical histories, AMS scores, plasma samples, and arterial oxygen saturation (SaO(2)) measurements from mountaineers at 1,500 feet (sea level) and at 14,200 feet. Mount McKinley ("Denali"), AK. Sixty-six mountaineers. None. Plasma VEGF at 14,200 feet was not increased in any group. In fact, plasma VEGF was significantly lower in subjects who did not develop AMS (53 +/- 7.9 pg/mL; mean +/- SEM; n = 47) compared to control subjects at sea level (98.4 +/- 14.3 pg/mL; n = 7; p = 0.005). Plasma VEGF at 14, 200 feet for subjects with AMS (62 +/- 12 pg/mL; n = 15) did not differ significantly from subjects at 14,200 feet without AMS, or from control subjects at sea level. Of a small number of subjects with paired specimens at sea level and at base camp (n = 5), subjects who exhibited a decrease in plasma VEGF at 14,200 feet were those who did not develop AMS. Neither SaO(2), prior AMS, AMS symptom scores, or acetazolamide use were correlated with plasma VEGF. Subjects at high altitude who do not develop AMS have lower plasma VEGF levels compared to control subjects at sea level. Plasma VEGF at high altitude is not elevated in association with AMS or hypoxia. Sustained plasma VEGF at altitude may reflect a phenotype more susceptible to AMS.

  18. NOS expression is increased in endothelial cells exposed to plasma from women with preeclampsia.

    PubMed

    Davidge, S T; Baker, P N; Roberts, J M

    1995-09-01

    Endothelial cell function is proposed to be altered by a factor(s) in the maternal circulation of women with the pregnancy disorder preeclampsia. Our initial hypothesis was that in preeclampsia, such factor(s) would reduce synthesis of nitric oxide (NO) by endothelial cells. However, we previously observed increased NO synthase activity in endothelial cells exposed to plasma from preeclamptic women. This study tested whether exposing cells to plasma from preeclamptic women increased transcription and/or translation of endothelial NO synthase. Cultured bovine coronary microvascular endothelial cells were exposed to 2% plasma from patients with preeclampsia and patients with uncomplicated pregnancies. Nitrite production was greater in endothelial cells exposed to plasma from preeclamptic women (8.97 +/- 0.54 vs. 6.39 +/- 0.59 nmol nitrites.10(6) cells-1 x 24 h-1; P < 0.05). Similarly, endothelial NO synthase mass as measured by Western immunoblotting was significantly increased (20,980 +/- 1,406 vs. 15,047 +/- 1,003 absorbancy units; P < 0.02). There was no detectable difference in mRNA for endothelial NO synthase. However, actinomycin (3 micrograms/ml), a transcription inhibitor, significantly decreased nitrite production only in cells exposed to plasma from preeclamptic women (5.28 +/- 0.52 vs. 3.56 +/- 0.36 nmol.10(6) cells-1 x 24 h-1, P < 0.05). These findings indicate a regulation of the "constitutive" isoform of NO synthase by factor(s) in the blood of preeclamptic women, which may have significance in this pathological condition of pregnancy.

  19. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications.

    PubMed

    Pareta, Rajesh A; Reising, Alexander B; Miller, Tiffany; Storey, Dan; Webster, Thomas J

    2009-06-15

    Techniques to regenerate the vasculature have risen considerably over the last few decades due to the increased clinical diagnosis of artery narrowing and blood vessel blockage. Although initially re-establishing blood flow, current small diameter vascular regenerative materials often eventually cause thrombosis and restenosis due to a lack of initial endothelial cell coverage on such materials. The objective of this in vitro study was to evaluate commonly used vascular materials (specifically, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, nylon, commercially pure titanium, and a titanium alloy (Ti6Al4V)) modified using an ionic plasma deposition (IPD) process and a nitrogen ion implantation plasma deposition (NIIPD) process. Such surface modifications have been previously shown to create nanostructured surface features which mimic the natural nanostructured surface features of blood vessels. The modified and unmodified surfaces were characterized by scanning electron microscopy, atomic force microscopy and surface energy measurements. Furthermore, in vitro endothelial cell adhesion tests (a key first step for vascular material endothelialization) demonstrated increased endothelial cell adhesion on many modified (with IPD and NIIPD + IPD) compared to unmodified samples. In general, endothelial cell adhesion increased with nanoroughness and surface energy but demonstrated a decreased endothelial cell adhesion trend after an optimal coating surface energy value was reached. Thus, results from this study provided materials and a versatile surface modification process that can potentially increase endothelialization faster than current unmodified (conventional) polymer and metallic vascular materials.

  20. VASOACTIVE COMPONENTS OF DIALYSIS SOLUTION

    PubMed Central

    Zakaria, El Rasheid; Patel, Anuj A.; Li, Na; Matheson, Paul J.; Garrison, Richard N.

    2008-01-01

    Background Conventional peritoneal dialysis (PD) solutions elicit vasodilation, which is implicated in the variable rate of solute transport during the dwell. The components causing such vasoactivity are still controversial. This study was conducted to define the vasoactive components of conventional and new PD solutions. Methods Three visceral peritoneal microvascular levels were visualized by intravital video microscopy of the terminal ileum of anesthetized rats. Anesthesia-free decerebrate conscious rats served as control. Microvascular diameter and blood flow by Doppler measurements were conducted after topical peritoneal exposure to 4 clinical PD solutions and 6 prepared solutions designed to isolate potential vasoactive components of the PD solution. Results All clinically available PD solutions produced a rapid and generalized vasodilation at all intestinal microvascular levels, regardless of the osmotic solute. The pattern and magnitude of this dilation was not affected by anesthesia but was determined by arteriolar size, the osmotic solute, and the solution’s buffer anion system. The greatest dilation occurred in the small precapillary arterioles and was elicited by conventional PD solution and heat re-sterilized solution containing low glucose degradation products (GDPs). Hypertonic mannitol solutions produced a dilation that was approximately 50% less than the dilation obtained with glucose solutions with identical osmolarity and buffer. Increasing a solution’s osmolarity did not produce a parallel increase in the magnitude of dilation, suggesting a nonlinear relationship between the two variables. Lactate dissolved in an isotonic solution was completely non-vasoactive unless the solution’s H+ concentration was increased. At low pH, isotonic lactate produced a rapid but transient vasodilation. This vascular reactivity was similar in magnitude and pattern to that obtained with the isotonic 7.5% icodextrin solution (Extraneal; Baxter Healthcare

  1. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction.

    PubMed

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.

  2. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction

    PubMed Central

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients. PMID:25678749

  3. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    NASA Astrophysics Data System (ADS)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-03-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  4. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    PubMed Central

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382

  5. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement.

    PubMed

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin

    2016-03-03

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  6. Surface modification of coronary stents with SiCOH plasma nanocoatings for improving endothelialization and anticoagulation.

    PubMed

    Zhang, Qin; Shen, Yang; Tang, Chaojun; Wu, Xue; Yu, Qingsong; Wang, Guixue

    2015-02-01

    The surface properties of intravascular stent play a crucial role in preventing in-stent restenosis (ISR). In this study, SiCOH plasma nanocoatings were used to modify the surfaces of intravascular stents to improve their endothelialization and anticoagulation properties. SiCOH plasma nanocoatings with thickness of 30-40 nm were deposited by low-temperature plasmas from a gas mixture of trimethysilane (TMS) and oxygen at different TMS:O2 ratios. Water contact angle measurements showed that the SiCOH plasma nanocoating surfaces prepared from TMS:O2  = 1:4 are hydrophilic with contact angle of 29.5 ± 1.9°. The SiCOH plasma nanocoated 316L stainless steel (316L SS) wafers were first characterized by in vitro adhesion tests for blood platelets and human umbilical vein endothelial cells. The in vitro test results showed that the SiCOH plasma nanocoatings prepared from TMS:O2  = 1:4 had excellent hemo- and cytocompatibility. With uncoated 316L SS stents as the control, the SiCOH plasma nanocoated 316L SS stents were implanted into rabbit abdominal artery model for in vivo evaluation of re-endothelialization and ISR inhibition. After implantation for 12 weeks, the animals testing results showed that the SiCOH plasma nanocoatings accelerated re-endothelialization and inhibited ISR with lumen reduction of 26.3 ± 10.1%, which were considerably less than the 41.9 ± 11.6% lumen reduction from the uncoated control group.

  7. Early glycation products of endothelial plasma membrane proteins in experimental diabetes.

    PubMed

    Nguyen, Sarah; Pascariu, Mirela; Ghitescu, Lucian

    2006-01-01

    The participation of glucose and two intermediates of glucose metabolism: glucose-6-phosphate (G6P) and glyceraldehyde-3-phosphate (Gald3P) to the formation of early glycation products was comparatively evaluated in the endothelial plasma membrane of streptozotocin-induced diabetic rats. Antibodies risen to a carrier protein reductively glycated by each of the sugars mentioned above were used to probe by immunoblotting the proteins of the lung microvascular endothelium plasmalemma purified from normal and diabetic rats. The amount of glycated endothelial plasma membrane proteins was below the limit of detection in normoglycemic animals but increased dramatically in diabetic animals for glucose and G6P. In contrast, no signal was found in diabetic rats for Gald3P, indicating that either the contribution of this phosphotriose to the glycation of intracellular proteins is negligible in vivo, or the Schiff base generated by this sugar transforms very rapidly into products of advanced glycation. Globally, the endothelial plasma membrane proteins bound on average 300 times more glucose than G6P proving that, in spite of its low in vitro potency as glycating agent, glucose represents the main contributor to the intracellular formation of early glycation products. The most abundant glycated proteins of the lung endothelial plasma membrane were separated by two dimensional electrophoresis and identified by mass spectrometry.

  8. Examining and mitigating acellular hemoglobin vasoactivity.

    PubMed

    Cabrales, Pedro

    2013-06-10

    There has been a striking advancement in our understanding of red cell substitutes over the past decade. Although regulatory oversight has influenced many aspects of product development in this period, those who have approached the demonstration of efficacy of red cell substitutes have failed to understand their implication at the level of the microcirculation, where blood interacts closely with tissue. The understanding of the adverse effects of acellular hemoglobin (Hb)-based oxygen carriers (HBOCs) has fortunately expanded from Hb-induced renal toxicity to a more complete list of biochemical mechanism. In addition, various unexpected adverse reactions were seen in early clinical studies. The effects of the presence of acellular Hb in plasma are relatively unique because of the convergence of mechanical and biochemical natures. Controlling the variables using genetic engineering and chemical modification to change specific characteristics of the Hb molecule may allow for solving the complex multivariate problems of acellular Hb vasoactivity. HBOCs may never be rendered free of negative effects; however, quantifying the nature and extent of microvascular complications establishes a platform for designing new ameliorative therapies. It is time to leave behind the study of vasoactivity and toxicity based on bench-top measurements of biochemical changes and those based solely on systemic parameters in vivo, and move to a more holistic analysis of the mechanisms creating the problems, complemented with meaningful studies of efficacy.

  9. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  10. Proliferation-Related Activity in Endothelial Cells Is Enhanced by Micropower Plasma

    PubMed Central

    Suzuki, Kotaro

    2016-01-01

    Nonthermal plasma has received a lot of attention as a medical treatment technique in recent years. It can easily create various reactive chemical species (ROS) and is harmless to living body. Although plasma at gas-liquid interface has a potential for a biomedical application, the interactions between the gas-liquid plasma and living cells remain unclear. Here, we show characteristics of a micropower plasma with 0.018 W of the power input, generated at gas-liquid interface. We also provide the evidence of plasma-induced enhancement in proliferation activity of endothelial cells. The plasma produced H2O2, HNO2, and HNO3 in phosphate buffered saline containing Mg++ and Ca++ (PBS(+)), and their concentration increased linearly during 600-second discharge. The value of pH in PBS(+) against the plasma discharge time was stable at about 7.0. Temperature in PBS(+) rose monotonically, and its rise was up to 0.8°C at the bottom of a cell-cultured dish by the plasma discharge for 600 s. Short-time treatment of the plasma enhanced proliferation activity of endothelial cells. In contrast, the treatment of H2O2 does not enhance the cell proliferation. Thus, the ROS production and the nuclear factor-kappa B (NF-κB) activation due to the plasma treatment might be related to enhancement of the cell proliferation. Our results may potentially provide the basis for developing the biomedical applications using the gas-liquid plasma. PMID:28058258

  11. Endothelial Inflammatory Transcriptional Responses Induced by Plasma Following Inhalation of Diesel Emissions

    PubMed Central

    Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.

    2016-01-01

    Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053

  12. Actions of serum and plasma albumin on intracellular Ca2+ in human endothelial cells.

    PubMed Central

    Fuentes, E; Nadal, A; Jacob, R; McNaughton, P

    1997-01-01

    1. The effects of serum and plasma albumin on [Ca2+]i in human endothelial cells were examined using single-cell Ca2+ imaging. Two types of endothelial cell were used: human umbilical vein endothelial cells (HUVEC) in primary culture, and the endothelial-derived cell line ECV304. 2. Serum albumin caused a large and transient rise in [Ca2+]i, due to Ca2+ release from an IP3-sensitive internal store, followed by a maintained elevation in [Ca2+]i attributable to Ca2+ influx from the external medium. A half-maximal rise in [Ca2+]i was produced by a concentration of serum albumin of about 1 microgram ml-1. 3. The Ca(2+)-releasing action of serum albumin is abolished by methanol extraction and is therefore attributable to an attached polar lipid. A possible candidate is lysophosphatidic acid, known to be released from platelets during blood coagulation, which produced similar effects to those of serum albumin. 4. In HUVEC, plasma albumin caused a sustained decrease in [Ca2+]i from the mean resting level of 114 nM to 58 nM. No effect of plasma albumin was observed in ECV304 cells. 5. The decrease in [Ca2+]i caused by plasma albumin is due to an uptake into intracellular stores. The store loading substantially potentiates the action of Ca(2+)-releasing agonists such as histamine. 6. The results show that normal plasma albumin, which carries few lipids, lowers [Ca2+]i and potentiates the actions of Ca(2+)-releasing agonists by promoting Ca2+ uptake into intracellular stores. When converted to the serum form, by binding lysophosphatidic acid released during blood coagulation, albumin has a potent effect in elevating [Ca2+]i. Blood coagulation may therefore play a role in regulating vascular tone and capillary permeability. PMID:9365906

  13. Plasma Kallikrein Mediates Vascular Endothelial Growth Factor–Induced Retinal Dysfunction and Thickening

    PubMed Central

    Clermont, Allen; Murugesan, Nivetha; Zhou, Qunfang; Kita, Takeshi; Robson, Peter A.; Rushbrooke, Louise J.; Evans, D. Michael; Aiello, Lloyd Paul; Feener, Edward P.

    2016-01-01

    Purpose Plasma kallikrein is a serine protease and circulating component of inflammation, which exerts clinically significant effects on vasogenic edema. This study examines the role of plasma kallikrein in VEGF-induced retinal edema. Methods Intravitreal injections of VEGF and saline vehicle were performed in plasma prekallikrein–deficient (KLKB1−/−) and wild-type (WT) mice, and in both rats and mice receiving a selective plasma kallikrein inhibitor, VA999272. Retinal vascular permeability (RVP) and retinal thickness were measured by Evans blue permeation and optical coherence tomography, respectively. The retinal kallikrein kinin system was examined by Western blotting and immunohistochemistry. Retinal neovascularization was investigated in KLKB1−/− and WT mice subjected to oxygen-induced retinopathy. Results Vascular endothelial growth factor–induced RVP and retinal thickening were reduced in KLKB1−/− mice by 68% and 47%, respectively, compared to VEGF responses in WT mice. Plasma kallikrein also contributes to TNFα-induced retinal thickening, which was reduced by 52% in KLKB1−/− mice. Systemic administration of VA999272 reduced VEGF-induced retinal thickening by 57% (P < 0.001) in mice and 53% (P < 0.001) in rats, compared to vehicle-treated controls. Intravitreal injection of VEGF in WT mice increased plasma prekallikrein in the retina, which was diffusely distributed throughout the inner and outer retinal layers. Avascular and neovascular areas induced by oxygen-induced retinopathy were similar in WT and KLKB1−/− mice. Conclusions Vascular endothelial growth factor increases extravasation of plasma kallikrein into the retina, and plasma kallikrein is required for the full effects of VEGF on RVP and retinal thickening in rodents. Systemic plasma kallikrein inhibition may provide a therapeutic opportunity to treat VEGF-induced retina edema. PMID:27138737

  14. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    PubMed

    Suzuki, Go; Tokuno, Shinichi; Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF) during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  15. Nitric Oxide Plasma Level as a Barometer of Endothelial Dysfunction in Factory Workers.

    PubMed

    Miyata, Seiko; Noda, Akiko; Hara, Yuki; Ueyama, Jun; Kitaichi, Kiyoyuki; Kondo, Takaaki; Koike, Yasuo

    2017-07-27

    Objective Nitric oxide (NO) plays a key role in the regulation of vascular tone and is known as one of the key markers of endothelial dysfunction. We investigated the relationship between NO and risk factors of lifestyle-related disease in factory workers. Methods Our study included 877 factory workers presenting hypertension, dyslipidemia and type 2 diabetes. oxidated forms of NO, NO2-/NO3- (NOx) plasma concentrations were measured using a colorimetric method. Results NOx plasma levels in patients with lifestyle-related disease were significantly lower than those in the controls. The brachial-ankle pulse wave velocity (baPWV) measured in those patients was significantly greater than that of the controls. Multiple regression analysis revealed that LDL cholesterol was an independent risk factor for reducing NOx plasma concentrations. Interestingly, individuals with low NOx plasma concentrations were more likely to present type 2 diabetes compared to those with the highest plasma levels of NOx (odds ratio [OR] [95% confidence interval; CI]=3.65 [1.61-8.28], P=0.002, 2.67 [1.15-6.20], P=0.022, and 3.27 [1.43-7.48], P=0.005). Subjects with the lowest levels of plasma NOx were more likely to present dyslipidemia (OR [95% CI]=1.69 [1.13-2.53], P=0.01). Conclusion Endothelial function evaluated with plasma NOx may be indicative of lifestyle-related diseases independently from the vascular function assessed using baPWV. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Potter, Daniel; Brown, Ryan; Holcomb, John B; Grill, Raymond; Wataha, Kathryn; Park, Pyong Woo; Xue, Hasen; Kozar, Rosemary A

    2013-09-01

    We have recently demonstrated that injured patients in hemorrhagic shock shed syndecan 1 and that the early use of fresh frozen plasma (FFP) in these patients is correlated with improved clinical outcomes. As the lungs are frequently injured after trauma, we hypothesized that hemorrhagic shock-induced shedding of syndecan 1 exposes the underlying pulmonary vascular endothelium to injury resulting in inflammation and hyperpermeability and that these effects would be mitigated by FFP. In vitro, pulmonary endothelial permeability, endothelial monolayer flux, transendothelial electrical resistance, and leukocyte-endothelial binding were measured in pulmonary endothelial cells after incubation with equal volumes of FFP or lactated Ringer's (LR). In vivo, using a coagulopathic mouse model of trauma and hemorrhagic shock, pulmonary hyperpermeability, neutrophil infiltration, and syndecan 1 expression and systemic shedding were assessed after 3 h of resuscitation with either 1× FFP or 3× LR and compared with shock alone and shams. In vitro, endothelial permeability and flux were decreased, transendothelial electrical resistance was increased, and leukocyte-endothelial binding was inhibited by FFP compared with LR-treated endothelial cells. In vivo, hemorrhagic shock was associated with systemic shedding of syndecan 1, which correlated with decreased pulmonary syndecan 1 and increased pulmonary vascular hyperpermeability and inflammation. Fresh frozen plasma resuscitation, compared with LR resuscitation, abrogated these injurious effects. After hemorrhagic shock, FFP resuscitation inhibits endothelial cell hyperpermeability and inflammation and restores pulmonary syndecan 1 expression. Modulation of pulmonary syndecan 1 expression may mechanistically contribute to the beneficial effects FFP.

  17. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation.

    PubMed

    Jopling, Helen M; Odell, Adam F; Pellet-Many, Caroline; Latham, Antony M; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H; Zachary, Ian C; Ponnambalam, Sreenivasan

    2014-04-29

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis.

  18. Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films

    NASA Astrophysics Data System (ADS)

    Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan

    2012-02-01

    For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.

  19. A Gestational Profile of Placental Exosomes in Maternal Plasma and Their Effects on Endothelial Cell Migration

    PubMed Central

    Salomon, Carlos; Torres, Maria Jose; Kobayashi, Miharu; Scholz-Romero, Katherin; Sobrevia, Luis; Dobierzewska, Aneta; Illanes, Sebastian E.; Mitchell, Murray D.; Rice, Gregory E.

    2014-01-01

    Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group) were obtained from non-pregnant and pregnant women in the first (FT, 6–12 weeks), second (ST, 22–24 weeks) and third (TT, 32–38 weeks) trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP), respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte). Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001). During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001). Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction. PMID:24905832

  20. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    PubMed

    Salomon, Carlos; Torres, Maria Jose; Kobayashi, Miharu; Scholz-Romero, Katherin; Sobrevia, Luis; Dobierzewska, Aneta; Illanes, Sebastian E; Mitchell, Murray D; Rice, Gregory E

    2014-01-01

    Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group) were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks), second (ST, 22-24 weeks) and third (TT, 32-38 weeks) trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP), respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte). Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001). During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001). Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  1. Albuminuria Is Associated with Endothelial Dysfunction and Elevated Plasma Endothelin-1 in Sickle Cell Anemia

    PubMed Central

    Derebail, Vimal K.; Caughey, Melissa; Elsherif, Laila; Shen, Jessica H.; Jones, Susan K.; Maitra, Poulami; Pollock, David M.; Cai, Jianwen; Archer, David R.; Hinderliter, Alan L.

    2016-01-01

    Background The pathogenesis of albuminuria in SCD remains incompletely understood. We evaluated the association of albuminuria with measures of endothelial function, and explored associations of both albuminuria and measures of endothelial function with selected biological variables (vascular endothelial growth factor [VEGF], endothelin-1 [ET-1], soluble fms-like tyrosine kinase-1 [sFLT-1], soluble vascular cell adhesion molecule-1 [soluble VCAM-1] and plasma hemoglobin). Methods Spot urine measurements for albumin-creatinine ratio (UACR) and 24-hour urine protein were obtained. Endothelial function was assessed using brachial artery ultrasound with measurements of flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NTMD) and hyperemic velocity. Results Twenty three subjects with varying degrees of albuminuria were evaluated. UACR was significantly correlated with FMD (ρ = -0.45, p = 0.031). In univariate analysis, UACR was correlated with VEGF (ρ = -0.49; 95% CI: -0.75 –-0.1, p = 0.015), plasma hemoglobin (ρ = 0.50; 95% CI: 0.11–0.75, p = 0.013) and ET-1 (ρ = 0.40; 95% CI: -0.03–0.69, p = 0.06). Multivariable analysis showed significant associations of ET-1 (estimate: 455.1 [SE: 198.3], p = 0.02), VEGF (estimate: -1.1 [SE: 0.53], p = 0.04) and sFLT-1 (estimate: -1.14 [SE: 0.49], p = 0.02) with UACR. Only ET-1 (estimate: -8.03 [SE: 3.87], p = 0.04) was significantly associated with FMD in multivariable analyses. Finally, UACR was correlated with both 24-hour urine protein (ρ = 0.90, p < 0.0001) and urine aliquots for albumin-creatinine ratio obtained from the 24-hour urine collection (ρ = 0.97, p < 0.0001). Conclusion This study provides more definitive evidence for the association of albuminuria with endothelial dysfunction in SCD. Elevated circulating levels of ET-1 may contribute to SCD-related glomerulopathy by mediating endothelial dysfunction. PMID:27669006

  2. A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria.

    PubMed

    Mita-Mendoza, Neida K; van de Hoef, Diana L; Lopera-Mesa, Tatiana M; Doumbia, Saibou; Konate, Drissa; Doumbouya, Mory; Gu, Wenjuan; Anderson, Jennifer M; Santos-Argumedo, Leopoldo; Rodriguez, Ana; Fay, Michael P; Diakite, Mahamadou; Long, Carole A; Fairhurst, Rick M

    2013-01-01

    Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, 'parasite-derived' uric acid (UA) was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria. We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-Selectin), thrombomodulin (sTM), tissue factor (sTF) and vascular endothelial growth factor (VEGF) in the plasma of Malian children aged 0.5-17 years with uncomplicated malaria (UM, n = 487) and non-cerebral severe malaria (NCSM, n = 68). In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season). We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001). Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043), sICAM-1 (r = 0.255, p<0.0001) and sTM (r = 0.175, p = 0.0001) levels. After adjusting for parasite density, UA levels predict sTM levels. Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of endothelial TM may represent a novel mechanism of malaria pathogenesis, in

  3. A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential

    PubMed Central

    Go, Young-Mi; Park, Heonyong; Koval, Michael; Orr, Michael; Reed, Matthew; Liang, Yongliang; Smith, Debra; Pohl, Jan; Jones, Dean P.

    2011-01-01

    The redox potential of the plasma cysteine/cystine couple (EhCySS) is oxidized in association with risk factors for cardiovascular disease (CVD), including age, smoking, type 2 diabetes, obesity, and alcohol abuse. Previous in vitro findings support a cause–effect relationship for extracellular EhCySS in cell signaling pathways associated with CVD, including those controlling monocyte adhesion to endothelial cells. In this study, we provide evidence that mitochondria are a major source of reactive oxygen species (ROS) in the signaling response to a more oxidized extracellular EhCySS. This increase in ROS was blocked by overexpression of mitochondrial thioredoxin-2 (Trx2) in endothelial cells from Trx2-transgenic mice, suggesting that mitochondrial thiol antioxidant status plays a key role in this redox signaling mechanism. Mass spectrometry-based redox proteomics showed that several classes of plasma membrane and cytoskeletal proteins involved in inflammation responded to this redox switch, including vascular cell adhesion molecule, integrins, actin, and several Ras family GTPases. Together, the data show that the proinflammatory effects of oxidized plasma EhCySS are due to a mitochondrial signaling pathway that is mediated through redox control of downstream effector proteins. PMID:19879942

  4. Plasma C4d+ Endothelial Microvesicles Increase in Acute Antibody-Mediated Rejection.

    PubMed

    Tower, Cindy M; Reyes, Morayma; Nelson, Karen; Leca, Nicolae; Kieran, Niamh; Muczynski, Kimberly; Jefferson, Jonathan A; Blosser, Christopher; Kukla, Aleksandra; Maurer, David; Chandler, Wayne; Najafian, Behzad

    2017-09-01

    Antibody-mediated rejection (AMR) is a major cause of kidney allograft loss. Currently, AMR diagnosis relies on biopsy which is an invasive procedure. A noninvasive biomarker of acute AMR could lead to early diagnosis and treatment of this condition and improve allograft outcome. Microvesicles are membrane-bound vesicles released from the cell surface after injury. We hypothesized that because AMR is associated with allograft endothelial injury and C4d deposition, plasma microvesicles positive for endothelial (CD144) marker and C4d are increased in this condition. We studied microvesicle concentration in the plasma of 95 kidney transplant patients with allograft dysfunction and compared with 23 healthy volunteers. Biopsy diagnosis and scoring was performed using Banff classification. In the 28 subjects with AMR, the density of C4d+/CD144+ microvesicles was on average 11-fold (P = 0.002) higher than transplant recipients with no AMR and 24-fold (P = 0.008) than healthy volunteers. Densities of C4d+ and C4d+/annexin V+ (C4d+/AVB+) microvesicles were also increased in AMR patients compared with no AMR and healthy subjects. C4d+/AVB+ microvesicles correlated with AMR biopsy severity. Nine patients with acute AMR that received treatment showed a mean 72% decrease (P = 0.01) in C4d+/CD144+ microvesicle concentration compared with pretreatment values. Quantification of plasma C4d+ microvesicles provides information about presence of AMR, its severity and response to treatment in transplant patients.

  5. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment.

    PubMed

    Lee, Bun-Hee; Hong, Jin-Pyo; Hwang, Jung-A; Ham, Byung-Joo; Na, Kyoung-Sae; Kim, Won-Joong; Trigo, Jose; Kim, Yong-Ku

    2015-07-30

    Vascular endothelial growth factor (VEGF), a potent angiogenetic factor, is a known neurotrophic factor. In this study, we examined plasma levels of VEGF in 50 patients with schizophrenia (SPR) and 50 healthy control subjects. We also explored any changes in plasma VEGF levels after 6-week treatment with antipsychotic agents in patients with schizophrenia. All subjects with schizophrenia were either medication-naïve or medication-free for at least 4 weeks before assessment. Plasma VEGF levels in all subjects were significantly correlated with smoking duration, which was considered to be a significant covariate. Pre-treatment plasma VEGF levels in patients with schizophrenia were significantly lower than those in healthy controls. Post-treatment VEGF levels were significantly increased in patients with schizophrenia. Plasma VEGF levels in patients with schizophrenia did not exhibit significant correlation with the total or subscale scores of the Positive and Negative Syndrome Scale (PANSS) either at baseline or at the end of the 6-week treatment. In conclusion, our findings reveal that plasma VEGF levels before treatment were lower in patients with schizophrenia and that their VEGF levels increased after treatment. Thus, VEGF may have a neuroprotective role in the improvement of schizophrenia or in the treatment effects of antipsychotics.

  6. Suppression of angiogenesis by atmospheric pressure plasma in human aortic endothelial cells

    NASA Astrophysics Data System (ADS)

    Gweon, Bomi; Kim, Hyeonyu; Kim, Kijung; Kim, Mina; Shim, Eunyoung; Kim, Sunja; Choe, Wonho; Shin, Jennifer H.

    2014-03-01

    Atmospheric pressure plasma (APP) has been recognized as a promising tool for cancer therapy based on its ability to remove cancer cells by causing apoptosis and necrosis. However, the effect of APP on the neighboring tissues of tumors remains unknown. Moreover, the role of APP on the vessels near tumors could be very important, because once a tumor becomes vascularized, the potential for metastasis can increase dramatically. We show in the present study that APP can induce cell cycle arrest in endothelial cells and further suppress the angiogenesis process. These results strongly support the use of APP in cancer treatment.

  7. The effects of plasma electrolytically oxidized NiTi on in vitro endothelialization.

    PubMed

    Huan, Z; Yu, H; Li, H; Ruiter, M S; Chang, J; Apachitei, I; Duszczyk, J; de Vries, C J M; Fratila-Apachitei, L E

    2016-05-01

    The role of biomaterials surface in controlling the interfacial biological events leading to implant integration is of key importance. In this study, the effects of NiTi surfaces treated by plasma electrolytic oxidation (PEO) on human umbilical vein endothelial cells (HUVECs) have been investigated. The changes in NiTi surface morphology and chemistry were assessed by SEM, XPS and cross-section TEM/EDX analyzes whereas the effects of the resultant surfaces on in vitro endothelialization and cell junction proteins have been evaluated by life/dead staining, SEM, cells counting, qPCR and immunofluorescence. The findings indicated that the PEO-treated NiTi, with a microporous morphology and oxide dominated surface chemistry, supports viability and proliferation of HUVECs. Numerous thin filopodia probing the microporous surface assisted cells attachment. In addition, claudin-5 and occludin have been upregulated and expression of vascular endothelial-cadherin was not suppressed on PEO-treated NiTi relative to the reference electropolished surfaces. The results of this study suggest that novel NiTi surfaces may be developed using the PEO process, which can be of benefit to atherosclerosis treatment.

  8. PAI1: a novel PP1-interacting protein that mediates human plasma's anti-apoptotic effect in endothelial cells.

    PubMed

    Yao, Hui; He, Guangchun; Chen, Chao; Yan, Shichao; Lu, Lu; Song, Liujiang; Vijayan, K Vinod; Li, Qinglong; Xiong, Li; Miao, Xiongying; Deng, Xiyun

    2017-03-11

    Activation of apoptotic signalling in endothelial cells contributes to the detrimental effects of a variety of pathological stimuli. In investigating the molecular events underlying the anti-apoptotic effect of human plasma in cultured human endothelial cells, we unexpectedly uncovered a novel mechanism of apoptosis suppression by human plasma through an interaction between two previously unrelated proteins. Human plasma inhibited hypoxia-serum deprivation-induced apoptosis and stimulated BAD(S136) and Akt(S473) phosphorylation. Akt1 silencing reversed part (~52%) of the anti-apoptotic effect of human plasma, suggesting the existence of additional mechanisms mediating the anti-apoptotic effect other than Akt signalling. Human plasma disrupted the interaction of BAD with protein phosphatase 1 (PP1). Mass spectrometry identified fourteen PP1-interacting proteins induced by human plasma. Notably, a group of serine protease inhibitors including plasminogen activator inhibitor 1 (PAI1), a major inhibitor of fibrinolysis, were involved. Silencing of PAI1 attenuated the anti-apoptotic effect of human plasma. Furthermore, combined Akt1 and PAI1 silencing attenuated the majority of the anti-apoptotic effect of human plasma. We conclude that human plasma protects against endothelial cell apoptosis through sustained BAD phosphorylation, which is achieved by, at least in part, a novel interaction between PP1 with PAI1.

  9. MALT1 Protease Activation Triggers Acute Disruption of Endothelial Barrier Integrity via CYLD Cleavage.

    PubMed

    Klei, Linda R; Hu, Dong; Panek, Robert; Alfano, Danielle N; Bridwell, Rachel E; Bailey, Kelly M; Oravecz-Wilson, Katherine I; Concel, Vincent J; Hess, Emily M; Van Beek, Matthew; Delekta, Phillip C; Gu, Shufang; Watkins, Simon C; Ting, Adrian T; Gough, Peter J; Foley, Kevin P; Bertin, John; McAllister-Lucas, Linda M; Lucas, Peter C

    2016-09-27

    Microvascular endothelial cells maintain a tight barrier to prevent passage of plasma and circulating immune cells into the extravascular tissue compartment, yet endothelial cells respond rapidly to vasoactive substances, including thrombin, allowing transient paracellular permeability. This response is a cornerstone of acute inflammation, but the mechanisms responsible are still incompletely understood. Here, we demonstrate that thrombin triggers MALT1 to proteolytically cleave cylindromatosis (CYLD). Fragmentation of CYLD results in microtubule disruption and a cascade of events leading to endothelial cell retraction and an acute permeability response. This finding reveals an unexpected role for the MALT1 protease, which previously has been viewed mostly as a driver of pro-inflammatory NF-κB signaling in lymphocytes. Thus, MALT1 not only promotes immune cell activation but also acutely regulates endothelial cell biology, actions that together facilitate tissue inflammation. Pharmacologic inhibition of MALT1 may therefore have synergistic impact by targeting multiple disparate steps in the overall inflammatory response.

  10. Circulating Plasma Extracellular Microvesicle MicroRNA Cargo and Endothelial Dysfunction in Children with Obstructive Sleep Apnea.

    PubMed

    Khalyfa, Abdelnaby; Kheirandish-Gozal, Leila; Khalyfa, Ahamed A; Philby, Mona F; Alonso-Álvarez, María Luz; Mohammadi, Meelad; Bhattacharjee, Rakesh; Terán-Santos, Joaquin; Huang, Lei; Andrade, Jorge; Gozal, David

    2016-11-01

    Obese children are at increased risk for developing obstructive sleep apnea (OSA), and both of these conditions are associated with an increased risk for endothelial dysfunction (ED) in children, an early risk factor for atherosclerosis and cardiovascular disease. Although weight loss and treatment of OSA by adenotonsillectomy improve endothelial function, not every obese child or child with OSA develops ED. Exosomes are circulating extracellular vesicles containing functional mRNA and microRNA (miRNA) that can be delivered to other cells, such as endothelial cells. To investigate whether circulating exosomal miRNAs of children with OSA differentiate based on endothelial functional status. Obese children (body mass index z score >1.65) and nonobese children were recruited and underwent polysomnographic testing (PSG), and fasting endothelial function measurements and blood draws in the morning after PSG. Plasma exosomes were isolated from all subjects. Isolated exosomes were then incubated with confluent endothelial cell monolayer cultures. Electric cell-substrate impedance sensing systems were used to determine the ability of exosomes to disrupt the intercellular barrier formed by confluent endothelial cells. In addition, immunofluorescent assessments of zonula occludens-1 tight junction protein cellular distribution were conducted to examine endothelial barrier dysfunction. miRNA and mRNA arrays were also applied to exosomes and endothelial cells, and miRNA inhibitors and mimics were transfected for mechanistic assays. Plasma exosomes isolated from either obese children or nonobese children with OSA were primarily derived from endothelial cell sources and recapitulated ED, or its absence, in naive human endothelial cells and also in vivo when injected into mice. Microarrays identified a restricted signature of exosomal miRNAs that readily distinguished ED from normal endothelial function. Among the miRNAs, expression of exosomal miRNA-630 was reduced in children

  11. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan-1

    PubMed Central

    Peng, Zhanglong; Pati, Shibani; Potter, Daniel; Brown, Ryan; Holcomb, John B; Grill, Raymond; Wataha, Kathryn; Park, Pyong Woo; Xue, Hasen; Kozar, Rosemary A

    2013-01-01

    BACKGROUND We have recently demonstrated that injured patients in hemorrhagic shock shed syndecan-1 and that the early use of fresh frozen plasma (FFP) in these patients is correlated with improved clinical outcomes. As the lungs are frequently injured after trauma, we hypothesized that hemorrhagic shock-induced shedding of syndecan-1 exposes the underlying pulmonary vascular endothelium to injury resulting in inflammation and hyperpermeability, and that these effects would be mitigated by FFP. METHODS In vitro, pulmonary endothelial permeability, endothelial monolayer flux, transendothelial electrical resistance (TER), and leukocyte-endothelial binding were measured in pulmonary endothelial cells after incubation with equal volumes of FFP or lactated Ringers (LR). In vivo, using a coagulopathic mouse model of trauma and hemorrhagic shock, pulmonary hyperpermeability, neutrophil infiltration, and syndecan-1 expression and systemic shedding were assessed after three hours of resuscitation with either 1XFFP or 3XLR and compared to shock alone and shams. RESULTS In vitro, endothelial permeability and flux were decreased, TER was increased, and leukocyte-endothelial binding was inhibited by FFP compared to LR treated endothelial cells. In vivo, hemorrhagic shock was associated with systemic shedding of syndecan-1 which correlated with decreased pulmonary sydnecan-1 and increased pulmonary vascular hyperpermeability and inflammation. FFP resuscitation, compared to LR resuscitation, abrogated these injurious effects. CONCLUSIONS After hemorrhagic shock, FFP resuscitation inhibits endothelial cell hyperpermeability and inflammation and restores pulmonary syndecan-1 expression. Modulation of pulmonary syndecan-1 expression may mechanistically contribute to the beneficial effects FFP. PMID:23807246

  12. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults.

    PubMed

    Engler, Mary B; Engler, Marguerite M; Chen, Chung Y; Malloy, Mary J; Browne, Amanda; Chiu, Elisa Y; Kwak, Ho-Kyung; Milbury, Paul; Paul, Steven M; Blumberg, Jeffrey; Mietus-Snyder, Michele L

    2004-06-01

    Dark chocolate derived from the plant (Theobroma cacao) is a rich source of flavonoids. Cardioprotective effects including antioxidant properties, inhibition of platelet activity, and activation of endothelial nitric oxide synthase have been ascribed to the cocoa flavonoids. To investigate the effects of flavonoid-rich dark chocolate on endothelial function, measures of oxidative stress, blood lipids, and blood pressure in healthy adult subjects. The study was a randomized, double-blind, placebo-controlled design conducted over a 2 week period in 21 healthy adult subjects. Subjects were randomly assigned to daily intake of high-flavonoid (213 mg procyanidins, 46 mg epicatechin) or low-flavonoid dark chocolate bars (46 g, 1.6 oz). High-flavonoid chocolate consumption improved endothelium-dependent flow-mediated dilation (FMD) of the brachial artery (mean change = 1.3 +/- 0.7%) as compared to low-flavonoid chocolate consumption (mean change = -0.96 +/- 0.5%) (p = 0.024). No significant differences were noted in the resistance to LDL oxidation, total antioxidant capacity, 8-isoprostanes, blood pressure, lipid parameters, body weight or body mass index (BMI) between the two groups. Plasma epicatechin concentrations were markedly increased at 2 weeks in the high-flavonoid group (204.4 +/- 18.5 nmol/L, p < or = 0.001) but not in the low-flavonoid group (17.5 +/- 9 nmol/L, p = 0.99). Flavonoid-rich dark chocolate improves endothelial function and is associated with an increase in plasma epicatechin concentrations in healthy adults. No changes in oxidative stress measures, lipid profiles, blood pressure, body weight or BMI were seen.

  13. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    PubMed Central

    Sansbury, Brian E.; Bhatnagar, Aruni; Hill, Bradford G.

    2014-01-01

    An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS)—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT) and eNOS transgenic (eNOS-TG) mice were placed on low fat or high fat diets for 6 weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs) and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool. PMID:25505420

  14. Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-12-01

    We used a coculture model to evaluate the inflammatory potential of ammonia gas plasma modified PET and PTFE by flow cytometry and immunohistochemistry. In these studies, human endothelial cells from umbilical cord (HUVEC) and promonocytic U937 cells were used. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. U937 adhesion to endothelium on each surface was evaluated at day 1 and day 7. To further investigate the role of leukocyte-endothelial cell adhesion molecules (CAMs) in cell-to-cell interaction on material surfaces, the expression of the leukocyte-endothelial CAMs: ICAM-1, VCAM-1, PECAM-1, and E-selectin on HUVECs were evaluated after U937 cell adhesion. The results demonstrated that plasma treated PET (T-PET) and treated PTFE (T-PTFE) did not increase U937 cell adhesion compared to the negative control. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7, which is consistent with our prior observation that T-PET and T-PTFE did not cause HUVECs to increase the expression of adhesion molecules. After U937 cell adhesion, the expression of ICAM-1 and VCAM-1 of HUVECs were not different on T-PET and T-PTFE compared with the negative control. However, the expression of E-selectin was reduced on day 1, but not on day 7. The effects of plasma treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, the cell number increased significantly on the surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion and expression of

  15. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification.

    PubMed

    Alique, Matilde; Ruíz-Torres, María Piedad; Bodega, Guillermo; Noci, María Victoria; Troyano, Nuria; Bohórquez, Lourdes; Luna, Carlos; Luque, Rafael; Carmona, Andrés; Carracedo, Julia; Ramírez, Rafael

    2017-03-08

    Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.

  16. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification

    PubMed Central

    Bodega, Guillermo; Noci, María Victoria; Troyano, Nuria; Bohórquez, Lourdes; Luna, Carlos; Luque, Rafael; Carmona, Andrés; Carracedo, Julia; Ramírez, Rafael

    2017-01-01

    Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies. PMID:28278131

  17. Recovery of Endothelial Function in Severe Falciparum Malaria: Relationship with Improvement in Plasma L-Arginine and Blood Lactate Concentrations

    PubMed Central

    Yeo, Tsin W.; Lampah, Daniel A.; Gitawati, Retno; Tjitra, Emiliana; Kenangalem, Enny; McNeil, Yvette R.; Darcy, Christabelle J.; Granger, Donald L.; Weinberg, J. Brice; Lopansri, Bert K.; Price, Ric N.; Duffull, Stephen B.; Celermajer, David S.; Anstey, Nicholas M.

    2009-01-01

    Background Severe malaria is characterized by microvascular obstruction, endothelial dysfunction, and reduced levels of L-arginine and nitric oxide (NO). L-Arginine infusion improves endothelial function in moderately severe malaria. Neither the longitudinal course of endothelial dysfunction nor factors associated with recovery have been characterized in severe malaria. Methods Endothelial function was measured longitudinally in adults with severe malaria (n = 49) or moderately severe malaria (n = 48) in Indonesia, using reactive hyperemia peripheral arterial tonometry (RH-PAT). In a mixed-effects model, changes in RH-PAT index values in patients with severe malaria were related to changes in parasitemia, lactate, acidosis, and plasma L-arginine concentrations. Results Among patients with severe malaria, the proportion with endothelial dysfunction fell from 94% (46/49 patients) to 14% (6/42 patients) before discharge or death (P <.001). In severe malaria, the median time to normal endothelial function was 49 h (interquartile range, 20–70 h) after the start of antimalarial therapy. The mean increase in L-arginine concentrations in patients with severe malaria was 11 μmol/L/24 h (95% confidence interval [CI], 9–13 μmol/L/24 h), from a baseline of 49 μmol/L (95% CI, 37–45 μmol/L). Improvement of endothelial function in patients with severe malaria correlated with increasing levels of L-arginine (r = 0.56; P =.008) and decreasing levels of lactate (r = −0.44; P =.001). Conclusions Recovery of endothelial function in severe malaria is associated with recovery from hypoargininemia and lactic acidosis. Agents that can improve endothelial NO production and endothelial function, such as L-arginine, may have potential as adjunctive therapy early during the course of severe malaria. PMID:18605903

  18. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality.

    PubMed

    Zinter, Matt S; Spicer, Aaron; Orwoll, Benjamin O; Alkhouli, Mustafa; Dvorak, Christopher C; Calfee, Carolyn S; Matthay, Michael A; Sapru, Anil

    2016-02-01

    Angiopoietin-2 (Ang-2) is a key mediator of pulmonary vascular permeability. This study tested the association between plasma Ang-2 and mortality in pediatric acute respiratory distress syndrome (ARDS), with stratification for prior hematopoietic cellular transplantation (HCT), given the severe, yet poorly understood, ARDS phenotype of this subgroup. We enrolled 259 children <18 years of age with ARDS; 25 had prior HCT. Plasma Ang-2, von Willebrand Factor antigen (vWF), and vascular endothelial growth factor (VEGF) were measured on ARDS days 1 and 3 and correlated with patient outcomes. Day 1 and day 3 Ang-2 levels were associated with mortality independent of age, sex, race, and P/F ratio [odds ratio (OR) 3.7, 95% CI 1.1-11.5, P = 0.027; and OR 10.2, 95% confidence interval (CI) 2.2-46.5, P = 0.003, for each log10 increase in Ang-2]. vWF was associated with mortality (P = 0.027), but VEGF was not. The association between day 1 Ang-2 and mortality was independent of levels of both vWF and VEGF (OR 3.6, 95% CI 1.1-12.1, P = 0.039, for each log10 increase in Ang-2). 45% of the cohort had a rising Ang-2 between ARDS day 1 and 3 (adjusted mortality OR 3.3, 95% CI 1.2-9.2, P = 0.026). HCT patients with a rising Ang-2 had 70% mortality compared with 13% mortality for those without (OR 16.3, 95% CI 1.3-197.8, P = 0.028). Elevated plasma levels of Ang-2 were associated with mortality independent of vWF and VEGF. A rising Ang-2 between days 1 and 3 was strongly associated with mortality, particularly in pediatric HCT patients, suggesting vulnerability to ongoing endothelial damage.

  19. Change in Plasma Vascular Endothelial Growth Factor after Gamma Knife Radiosurgery for Meningioma: A Preliminary Study

    PubMed Central

    Hwang, Jeong-Hyun; Hwang, Sung-Kyoo

    2015-01-01

    Objective The purpose of this study was to investigate changes in the plasma level of vascular endothelial growth factor (VEGF) after Gamma Knife radiosurgery (GKRS) for the treatment of meningioma. Methods Fourteen patients with meningiomas had peripheral venous blood collected at the time of GKRS and at 1 week, 1 month, 3 month and 6 month visits. Plasma VEGF levels were measured using commercially available enzyme-linked immunosorbent assay. For controls, peripheral blood samples were obtained from 20 healthy volunteers. Results The mean plasma VEGF level (29.6 pg/mL) in patients with meningiomas before GKRS was significantly lower than that of the control group (62.4 pg/mL, p=0.019). At 1 week after GKRS, the mean plasma VEGF levels decreased to 23.4 pg/mL, and dropped to 13.9 pg/mL at 1 month, 14.8 pg/mL at 3 months, then increased to 27.7 pg/mL at 6 months. Two patients (14.3%) with peritumoral edema (PTE) showed a level of VEGF 6 months after GKRS higher than their preradiosurgical level. There was no significant association found in an analysis of correlation between PTE and tumor size, marginal dose, age, and sex. Conclusion Our study is first in demonstrating changes of plasma VEGF after stereotactic radiosurgery (SRS) for meningioma. This study may provide a stimulus for more work related to whether measurement of plasma level has a correlation with tumor response after SRS for meningioma. PMID:25733986

  20. Change in plasma vascular endothelial growth factor after gamma knife radiosurgery for meningioma: a preliminary study.

    PubMed

    Park, Seong-Hyun; Hwang, Jeong-Hyun; Hwang, Sung-Kyoo

    2015-02-01

    The purpose of this study was to investigate changes in the plasma level of vascular endothelial growth factor (VEGF) after Gamma Knife radiosurgery (GKRS) for the treatment of meningioma. Fourteen patients with meningiomas had peripheral venous blood collected at the time of GKRS and at 1 week, 1 month, 3 month and 6 month visits. Plasma VEGF levels were measured using commercially available enzyme-linked immunosorbent assay. For controls, peripheral blood samples were obtained from 20 healthy volunteers. The mean plasma VEGF level (29.6 pg/mL) in patients with meningiomas before GKRS was significantly lower than that of the control group (62.4 pg/mL, p=0.019). At 1 week after GKRS, the mean plasma VEGF levels decreased to 23.4 pg/mL, and dropped to 13.9 pg/mL at 1 month, 14.8 pg/mL at 3 months, then increased to 27.7 pg/mL at 6 months. Two patients (14.3%) with peritumoral edema (PTE) showed a level of VEGF 6 months after GKRS higher than their preradiosurgical level. There was no significant association found in an analysis of correlation between PTE and tumor size, marginal dose, age, and sex. Our study is first in demonstrating changes of plasma VEGF after stereotactic radiosurgery (SRS) for meningioma. This study may provide a stimulus for more work related to whether measurement of plasma level has a correlation with tumor response after SRS for meningioma.

  1. Atorvastatin reduces the proadhesive and prothrombotic endothelial cell phenotype induced by cocaine and plasma from cocaine consumers in vitro.

    PubMed

    Sáez, Claudia G; Pereira-Flores, Karla; Ebensperger, Roberto; Panes, Olga; Massardo, Teresa; Hidalgo, Patricia; Mezzano, Diego; Pereira, Jaime

    2014-11-01

    Cocaine consumption is a risk factor for vascular ischemic complications. Although endothelial dysfunction and accelerated atherosclerosis have been observed in cocaine consumers, the mechanisms underlying their pathogenesis are not fully understood. This study aimed at identifying the effects of atorvastatin in relation to a proadhesive and prothrombotic phenotype induced by cocaine and plasma from chronic cocaine users on endothelial cells. Human umbilical vein endothelial cells were exposed to either cocaine or platelet-free plasma (PFP) from chronic cocaine consumers in the presence or absence of 10 μmol/L of atorvastatin. Atorvastatin significantly reduced the enhanced platelet adhesion that was induced by cocaine and PFP from chronic cocaine consumers, as well as the release of the von Willebrand factor. Atorvastatin also avoided striking alterations on cell monolayer structure triggered by both stimuli and enhanced NO reduction because of cocaine stimulation through disrupting interactions between endothelial nitric oxide synthase (eNOS) and caveolin-1, thus increasing eNOS bioavailability. Cocaine-increased tissue factor-dependent procoagulant activity and reactive oxygen species generation were not counteracted by atorvastatin. Although monocyte chemoattractant protein-1 levels were not significantly higher than controls either under cocaine or PFP stimulation, atorvastatin completely avoided monocyte chemoattractant protein-1 release in both conditions. Platelets stimulated with cocaine or PFP did not express P-selectin, glycoprotein IIb/IIIa, or CD40L and failed to adhere to resting human umbilical vein endothelial cell. Cocaine and patient plasma equally induced a proadhesive and prothrombotic phenotype in endothelial cells, except for von Willebrand Factor release, which was only induced by PFP from chronic cocaine consumers. Atorvastatin improved endothelial cell function by reducing cocaine-induced and PFP from chronic cocaine consumer

  2. [Interaction of FABP4 with plasma membrane proteins of endothelial cells].

    PubMed

    Saavedra, Paula; Girona, Josefa; Aragonès, Gemma; Cabré, Anna; Guaita, Sandra; Heras, Mercedes; Masana, Lluís

    2015-01-01

    Fatty acid binding protein (FABP4) is an adipose tissue-secreted adipokine implicated in the regulation of the energetic metabolism and inflammation. High levels of circulating FABP4 have been described in people with obesity, atherogenic dyslipidemia, diabetes and metabolic syndrome. Recent studies have demonstrated that FABP4 could have a direct effect on peripheral tissues and, specifically, on vascular function. It is still unknown how the interaction between FABP4 and the endothelial cells is produced to prompt these effects on vascular function. The objective of this work is studying the interaction between FABP4 and the plasma membrane proteins of endothelial cells. HUVEC cells were incubated with and without FABP4 (100 ng/ml) for 5 minutes. Immunolocalization of FABP4 was studied by confocal microscopy. The results showed that FABP4 colocalizates with CD31, a membrane protein marker. A strategy which combines 6XHistidine-tag FABP4 (FABP4-His), incubations with or without FABP4-His (100 ng/ml), formaldehyde cross-linking, cellular membrane protein extraction and western blot, was designed to study the FABP4 interactions with membrane proteins of HUVECs. The results showed different western blot profiles depending of the incubation with or without FABP4-His. The immunoblot revelead three covalent protein complexes of about 108, 77 and 33 kDa containing FAPB4 and its putative receptor. The existence of a specific binding protein complex able to bind FABP4 to endothelial cells is supported by these results. The obtained results will permit us advance in the molecular knowledge of FABP4 effects as well as use this protein and its receptor as therapeutic target to prevent cardiovascular. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  3. Plasma Endothelial Microparticles in Multiple Sclerosis: A Novel Metric Assay of Disease Activity and Response to Treatment

    DTIC Science & Technology

    2011-09-01

    direct link to a source of increased tissue iron deposition which is characteristic for multiple sclerosis . The results of these data and their... Multiple Sclerosis : A Novel Metric Assay of Disease Activity and Response to Treatment PRINCIPAL INVESTIGATOR: Jonathan Steven...SUBTITLE 5a. CONTRACT NUMBER Plasma Endothelial Microparticles in Multiple Sclerosis : A Novel Metric Assay of Disease Activity and Response to

  4. Clinically important factors influencing endothelial function.

    PubMed

    Vapaatalo, H; Mervaala, E

    2001-01-01

    The endothelium, a continuous cellular monolayer lining the blood vessels, has an enormous range of important homeostatic roles. It serves and participates in highly active metabolic and regulatory functions including control of primary hemostasis, blood coagulation and fibrinolysis, platelet and leukocyte interactions with the vessel wall, interaction with lipoprotein metabolism, presentation of histocompatibility antigens, regulation of vascular tone and growth and further of blood pressure. Many crucial vasoactive endogenous compounds like prostacyclin, thromboxane, nitric oxide, endothelin, angiotensin, endothelium derived hyperpolarizing factor, free radicals and bradykinin are formed in the endothelial cells to control the functions of vascular smooth muscle cells and of circulating blood cells. These versatile and complex systems and cellular interactions are extremely vulnerable. The balances may be disturbed by numerous endogenous and exogenous factors including psychological and physical stress, disease states characterized by vasospasm, inflammation, leukocyte and platelet adhesion and aggregation, thrombosis, abnormal vascular proliferation, atherosclerosis and hypertension. The endothelial cells are also the site of action of many drugs and exogenous toxic substances (e.g. smoking, alcohol). As markers and assays for endothelial dysfunction, direct measurement of nitric oxide, its metabolites from plasma and urine, functional measurement of vascular nitric oxide dependent responses and assay of different circulating markers have been used. In numerous pathological conditions (e.g. atherosclerosis, hypertension, congestive heart failure, hyperhomocysteinemia, diabetes, renal failure, transplantation, liver cirrhosis) endothelial dysfunction has been described to exist. Some of them, as well as hormonal and nutritional factors and drug treatment will be discussed in this short review.

  5. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients

    PubMed Central

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm). PMID:26989513

  6. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients.

    PubMed

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm).

  7. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    PubMed Central

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  8. Major Abdominal Surgery Increases Plasma Levels of Vascular Endothelial Growth Factor

    PubMed Central

    Belizon, Avraham; Balik, Emre; Feingold, Daniel L.; Bessler, Marc; Arnell, Tracey D.; Forde, Kenneth A.; Horst, Patrick K.; Jain, Suvinit; Cekic, Vesna; Kirman, Irena; Whelan, Richard L.

    2006-01-01

    Introduction: Vascular endothelial growth factor (VEGF) is a potent inducer of angiogenesis that is necessary for wound healing and also promotes tumor growth. It is anticipated that plasma levels would increase after major surgery and that such elevations may facilitate tumor growth. This study's purpose was to determine plasma VEGF levels before and early after major open and minimally invasive abdominal surgery. Methods: Colorectal resection for cancer (n = 139) or benign pathology (n = 48) and gastric bypass for morbid obesity (n = 40) were assessed. Similar numbers of open and laparoscopic patients were studied for each indication. Plasma samples were obtained preoperatively and on postoperative days (POD) 1 and 3. VEGF levels were determined via ELISA. The following statistical methods were used: Fisher exact test, unmatched Student t test, Wilcoxon's matched pairs test, and the Mann Whitney U Test with P < 0.05 considered significant. Results: The mean preoperative VEGF level of the cancer patients was significantly higher than baseline level of benign colon patients. Regardless of indication or surgical method, on POD3, significantly elevated mean VEGF levels were noted for each subgroup. In addition, on POD1, open surgery patients for all 3 indications had significantly elevated VEGF levels; no POD1 differences were noted for the closed surgery patients. At each postoperative time point for each procedure and indication, the open group's VEGF levels were significantly higher than that of the matching laparoscopic group. VEGF elevations correlated with incision length for each indication. Conclusion: As a group colon cancer patients prior to surgery have significantly higher mean VEGF levels than patients without tumors. Also, both open and closed colorectal resection and gastric bypass are associated with significantly elevated plasma VEGF levels early after surgery. This elevation is significantly greater and occurs earlier in open surgery patients. The

  9. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells.

    PubMed

    Yin, Wei; Venkitachalam, Subramaniam M; Jarrett, Ellen; Staggs, Sarah; Leventis, Nicholas; Lu, Hongbing; Rubenstein, David A

    2010-03-15

    The recently synthesized polyurea-nanoencapsulated surfactant-templated aerogels (X-aerogels) are porous materials with significantly improved mechanical strengths. Surface-wise they resemble polyurethane, a common biocompatible material, but their biocompatibility has never been investigated. As lightweight and strong materials, if X-aerogels also have acceptable biocompatibility, they may be used in many implantable devices. The goal of this study was to investigate their biocompatibility toward platelets, blood plasma, and vascular endothelial cells, in terms of cell activation and inflammatory responses. Platelets were incubated with X-aerogel and platelet activation was measured through CD62P and phosphatidylserine expression. Platelet aggregation was also measured. Contact with X-aerogel did not induce platelet activation or impair aggregation. To determine X-aerogel-induced inflammation, plasma anaphylatoxin C3a level was measured after incubation with X-aerogel. Results showed that X-aerogel induced no changes in plasma C3a levels. SEM and SDS-PAGE were used to examine cellular/protein deposition on X-aerogel samples after plasma incubation. No structural change or organic deposition was detected. Furthermore, X-aerogel samples did not induce any significant changes in vascular endothelial cell culture parameters after 5 days of incubation. These observations suggest that X-aerogels have a suitable biocompatibility toward platelets, plasma, and vascular endothelial cells, and they have potential for use in blood implantable devices.

  10. Aspirin Triggered-Lipoxin A4 Reduces the Adhesion of Human Polymorphonuclear Neutrophils to Endothelial Cells Initiated by Preeclamptic Plasma

    PubMed Central

    Gil-Villa, AM; Norling, LV; Serhan, CN; Cordero, D; Rojas, M; Cadavid, A

    2012-01-01

    Introduction Preeclampsia is a disorder of pregnancy, characterized by hypertension and proteinuria after 20 weeks of gestation. Here, we evaluated the role of aspirin triggered-lipoxin A4 (ATL, 15-epi-LXA4) on the modulation of the adhesion of human polymorphonuclear neutrophils (PMN) to endothelial cells initiated by preeclamptic plasma. Materials and methods Plasma from preeclamptic, normotensive pregnant, and non-pregnant women were analysed for factors involved in regulating angiogenesis, inflammation and lipid peroxidation. Plasma from preeclamptic women was added to human umbilical vein endothelial cells, and the adhesion of PMN (incubated with or without ATL) to cells was evaluated. Results Preeclampsia was associated with some augmented anti-angiogenic, oxidative and pro-inflammatory markers, as well as increasing human PMN-endothelial cell adhesion. This cell adhesion was reduced when human PMN were incubated with ATL prior to addition to endothelial monolayers. Discussions and Conclusions Our results are the starting point for further research on the efficacy and rational use of aspirin in preeclampsia. PMID:22974760

  11. Propranolol for infantile hemangioma: Effect on plasma vascular endothelial growth factor.

    PubMed

    Ozeki, Michio; Nozawa, Akifumi; Hori, Tomohiro; Kanda, Kaori; Kimura, Takeshi; Kawamoto, Norio; Fukao, Toshiyuki

    2016-11-01

    Propranolol has recently been shown to be highly effective for infantile hemangioma (IH), but the mechanism of action of propranolol and the usefulness of measurement of vascular endothelial growth factor (VEGF) remain poorly understood. The aim of this study was therefore to determine the efficacy of propranolol treatment and to evaluate changes in plasma VEGF in IH patients who underwent propranolol treatment. The study group consisted of 35 children with IH. Oral propranolol was give at a dose of 2.0 mg/kg/day and was divided in three doses. Outcome was assessed using the visual analog scale (VAS) of size and color. Plasma VEGF concentration was analyzed on enzyme-linked immunoabsorbent assay, and compared between the groups. Improvement in VAS in patients who started propranolol before 6 months of age was superior to that in those who started propranolol after 6 months of age. VEGF concentration was significantly correlated with lesion size (P = 0.002), whereas no correlation was observed with age. VEGF concentration 4 weeks after treatment was significantly lower than that before treatment (P < 0.01). Measurement of VEGF may be a useful tool for predicting the course of IH and monitoring the effectiveness of treatment. © 2016 Japan Pediatric Society.

  12. Baroreflex buffering and susceptibility to vasoactive drugs

    NASA Technical Reports Server (NTRS)

    Jordan, Jens; Tank, Jens; Shannon, John R.; Diedrich, Andre; Lipp, Axel; Schroder, Christoph; Arnold, Guy; Sharma, Arya M.; Biaggioni, Italo; Robertson, David; hide

    2002-01-01

    BACKGROUND: The overall effect of vasoactive drugs on blood pressure is determined by a combination of the direct effect on vascular tone and an indirect baroreflex-mediated effect, a baroreflex buffering of blood pressure. Differences in baroreflex function affect the responsiveness to vasoactive medications, particularly baroreflex buffering of blood pressure; however, the magnitude is not known. METHODS AND RESULTS: We characterized baroreflex function and responses to vasoactive drugs in patients with idiopathic orthostatic intolerance, patients with essential hypertension, patients with monogenic hypertension and brachydactyly, patients with multiple system atrophy, and control subjects. We used phenylephrine sensitivity during ganglionic blockade as a measure of baroreflex buffering. Phenylephrine (25 microg) increased systolic blood pressure 6+/-1.6 mm Hg in control subjects, 6+/-1.1 mm Hg in orthostatic intolerance patients, 18+/-3.9 mm Hg in patients with essential hypertension, 31+/-3.4 mm Hg in patients with monogenic hypertension, and 25+/-3.4 mm Hg in patients with multiple system atrophy. Similar differences in sensitivities between groups were observed with nitroprusside. The sensitivity to vasoactive drugs was highly correlated with baroreflex buffering function and to a lesser degree with baroreflex control of heart rate. In control subjects, sensitivities to nitroprusside and phenylephrine infusions were correlated with baroreflex heart rate control and sympathetic nerve traffic. CONCLUSIONS: Our findings are consistent with an important effect of baroreflex blood pressure buffering on the sensitivity to vasoactive drugs. They suggest that even moderate changes in baroreflex function may have a substantial effect on the sensitivity to vasoactive medications.

  13. Baroreflex buffering and susceptibility to vasoactive drugs

    NASA Technical Reports Server (NTRS)

    Jordan, Jens; Tank, Jens; Shannon, John R.; Diedrich, Andre; Lipp, Axel; Schroder, Christoph; Arnold, Guy; Sharma, Arya M.; Biaggioni, Italo; Robertson, David; Luft, Friedrich C.

    2002-01-01

    BACKGROUND: The overall effect of vasoactive drugs on blood pressure is determined by a combination of the direct effect on vascular tone and an indirect baroreflex-mediated effect, a baroreflex buffering of blood pressure. Differences in baroreflex function affect the responsiveness to vasoactive medications, particularly baroreflex buffering of blood pressure; however, the magnitude is not known. METHODS AND RESULTS: We characterized baroreflex function and responses to vasoactive drugs in patients with idiopathic orthostatic intolerance, patients with essential hypertension, patients with monogenic hypertension and brachydactyly, patients with multiple system atrophy, and control subjects. We used phenylephrine sensitivity during ganglionic blockade as a measure of baroreflex buffering. Phenylephrine (25 microg) increased systolic blood pressure 6+/-1.6 mm Hg in control subjects, 6+/-1.1 mm Hg in orthostatic intolerance patients, 18+/-3.9 mm Hg in patients with essential hypertension, 31+/-3.4 mm Hg in patients with monogenic hypertension, and 25+/-3.4 mm Hg in patients with multiple system atrophy. Similar differences in sensitivities between groups were observed with nitroprusside. The sensitivity to vasoactive drugs was highly correlated with baroreflex buffering function and to a lesser degree with baroreflex control of heart rate. In control subjects, sensitivities to nitroprusside and phenylephrine infusions were correlated with baroreflex heart rate control and sympathetic nerve traffic. CONCLUSIONS: Our findings are consistent with an important effect of baroreflex blood pressure buffering on the sensitivity to vasoactive drugs. They suggest that even moderate changes in baroreflex function may have a substantial effect on the sensitivity to vasoactive medications.

  14. Interferon-β1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis

    PubMed Central

    Sheremata, William A; Jy, Wenche; Delgado, Sylvia; Minagar, Alireza; McLarty, Jerry; Ahn, Yeon

    2006-01-01

    Background A correlation between plasma CD31+ endothelial microparticles (CD31+EMP) levels and clinical, as well as brain MRI activity, in multiple sclerosis (MS) patients has been previously reported. However, the effect(s) of treatment with interferon-β1a (IFN-β1a) on plasma levels of CD31+EMP has not been assessed. In a prospective study, we measured plasma CD31+EMP levels in 30 patients with relapsing-remitting MS. Methods Using flow cytometry, in a blinded study, we measured plasma CD31+EMP in 30 consecutive patients with relapsing-remitting MS (RRMS) prior to and 4, 12, 24 and 52 weeks after initiation of intramuscular therapy with interferon-β1a (IFN-β1a), 30 micrograms weekly. At each visit, clinical examination was performed and expanded disability status scale (EDSS) scores were assessed. Results Plasma levels of CD31+EMP were significantly reduced from 24 through 52 weeks following initiation of treatment with IFN-β1a. Conclusion Our data suggest that serial measurement of plasma CD31+EMP levels may be used as a surrogate marker of response to therapy with INF-β1a. In addition, the decline in plasma levels of CD31+EMP further supports the concept that IFN-β1a exerts stabilizing effect on the cerebral endothelial cells in pathogenesis of MS. PMID:16952316

  15. Interferon-beta1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis.

    PubMed

    Sheremata, William A; Jy, Wenche; Delgado, Sylvia; Minagar, Alireza; McLarty, Jerry; Ahn, Yeon

    2006-09-04

    A correlation between plasma CD31+ endothelial microparticles (CD31+EMP) levels and clinical, as well as brain MRI activity, in multiple sclerosis (MS) patients has been previously reported. However, the effect(s) of treatment with interferon-beta1a (IFN-beta1a) on plasma levels of CD31+EMP has not been assessed. In a prospective study, we measured plasma CD31+EMP levels in 30 patients with relapsing-remitting MS. Using flow cytometry, in a blinded study, we measured plasma CD31+EMP in 30 consecutive patients with relapsing-remitting MS (RRMS) prior to and 4, 12, 24 and 52 weeks after initiation of intramuscular therapy with interferon-beta1a (IFN-beta1a), 30 micrograms weekly. At each visit, clinical examination was performed and expanded disability status scale (EDSS) scores were assessed. Plasma levels of CD31+EMP were significantly reduced from 24 through 52 weeks following initiation of treatment with IFN-beta1a. Our data suggest that serial measurement of plasma CD31+EMP levels may be used as a surrogate marker of response to therapy with INF-beta1a. In addition, the decline in plasma levels of CD31+EMP further supports the concept that IFN-beta1a exerts stabilizing effect on the cerebral endothelial cells in pathogenesis of MS.

  16. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.

    PubMed

    Park, Kyu-Sang; Jo, Inho; Pak, Kim; Bae, Sung-Won; Rhim, Hyewhon; Suh, Suk-Hyo; Park, Jin; Zhu, Hong; So, Insuk; Kim, Ki Whan

    2002-01-01

    We investigated the effects of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore and uncoupler of mitochondrial oxidative phosphorylation in mitochondria, on plasma membrane potential and ionic currents in bovine aortic endothelial cells (BAECs). The membrane potential and ionic currents of BAECs were recorded using the patch-clamp technique in current-clamp and voltage-clamp modes, respectively. FCCP activated ionic currents and depolarized the plasma membrane potential in a dose-dependent manner. Neither the removal of extracellular Ca2+ nor pretreatment with BAPTA/AM affected the FCCP-induced currents, implying that the currents are not associated with the FCCP-induced intracellular [Ca2+]i increase. FCCP-induced currents were significantly influenced by the changes in extracellular or intracellular pH; the increased proton gradient produced by lowering the extracellular pH or intracellular alkalinization augmented the changes in membrane potential and ionic currents caused by FCCP. FCCP-induced currents were significantly reduced under extracellular Na+-free conditions. The reversal potentials of FCCP-induced currents under Na+-free conditions were well fitted to the calculated equilibrium potential for protons. Interestingly, FCCP-induced Na+ transport (subtracted currents, I(control)- I(Na+-free) was closely dependent on extracellular pH, whereas FCCP-induced H+transport was not significantly affected by the absence of Na+. These results suggest that the FCCP-induced ionic currents and depolarization, which are strongly dependent on the plasmalemmal proton gradient, are likely to be mediated by both H+ and Na+ currents across the plasma membrane. The relationship between H+ and Na+ transport still needs to be determined.

  17. Piperine Decreases Binding of Drugs to Human Plasma and Increases Uptake by Brain Microvascular Endothelial Cells.

    PubMed

    Dubey, Raghvendra K; Leeners, Brigitte; Imthurn, Bruno; Merki-Feld, Gabriele Susanne; Rosselli, Marinella

    2017-09-26

    We previously reported that piperine, an active alkaloidal principal of black and long peppers, enhances drug bioavailability by inhibiting drug metabolism. Another mechanism influencing drug availability/uptake is its free fraction. Since piperine is highly lipophilic, we hypothesize that it could also interact with drugs through binding displacement and influence their bioavailability. Accordingly, using equilibrium dialysis, we investigated whether piperine alters the binding of model drug ligands, that is flunitrazepam, diazepam, warfarin, salicylic acid, propranolol, lidocaine, and disopyramide to human plasma (n = 4). Since alterations in binding influence drug disposition, we also studied the effects of piperine on the uptake of plasma bound (3) H-propranolol and (14) C-warfarin by cultured bovine brain microvascular endothelial cells (BMECs). Piperine (1-1000 μM) increased the free fraction (fu) of both albumin and alpha-acid glycoprotein bound drugs in a concentration-dependent manner (p < 0.01). Moreover, piperine (10 μM) increased the uptake of (3) H-propranolol and (14) C-warfarin by BMECs (p < 0.01). In conclusion, our findings provide the first evidence that piperine displaces plasma bound drugs from both albumin and alpha-acid glycoprotein and facilitates drug uptake across biological membranes (e.g. BMEC). Moreover, it is feasible that piperine may similarly facilitate the transport of drugs into tissues, in vivo, and alter both pharmacokinetics and pharmacodynamics of administered drugs. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves.

  19. Colorectal resection is associated with persistent proangiogenic plasma protein changes: postoperative plasma stimulates in vitro endothelial cell growth, migration, and invasion.

    PubMed

    Kumara, H M C Shantha; Shantha Kumara, H M C; Feingold, Daniel; Kalady, Matthew; Dujovny, Nadav; Senagore, Anthony; Hyman, Neil; Cekic, Vesna; Whelan, Richard L

    2009-06-01

    Plasma vascular endothelial growth factor (VEGF) levels are elevated for weeks after minimally invasive colorectal resection (MICR). Decreased plasma angiopoietin-(Ang) 1 and increased Ang-2 levels have been noted on postoperative days (POD) 1 and 3. These proangiogenic changes may stimulate tumor growth postoperatively (postop). This study's purpose was to track plasma VEGF, Ang-1, and Ang-2 levels for 4 to 8 weeks after MICR for cancer and to assess the impact of preoperative (preop) and postop plasma on in vitro endothelial cell (EC) behavior. Blood samples from 105 MICR patients were taken preop, on POD 5 and at varying time points for 2 months. Samples from 7 day time blocks after POD 5 were bundled to permit statistical analysis. Plasma protein levels were measured via enzyme-linked immunosorbent assay. In vitro EC branch point formation, EC invasion, and EC migration assays were carried out with preop, POD 7 to 13 and 14 to 20 plasma. The t test and Bonferonni correction was used. VEGF levels were significantly elevated on POD 5 and 7 to 13; lesser increases were noted on POD 14 to 20 and 21 to 27. Ang-2 levels were significantly increased at all time points postop. No significant Ang-1 changes were noted. When compared to preop EC culture results, there was significantly more EC branch point formation, EC invasion, and EC migration assays noted with POD 7 to 13 and POD 14 to 20 plasma. MICR is associated with proangiogenic plasma changes for 2 to 4 weeks and plasma from POD 7 to 13 and 14 to 20 stimulated EC growth, invasion, and migration. Postop plasma may stimulate the growth of residual tumor.

  20. Effect of CPAP treatment on endothelial function and plasma CRP levels in patients with sleep apnea

    PubMed Central

    Panoutsopoulos, Athanasios; Kallianos, Anastasios; Kostopoulos, Konstantinos; Seretis, Charalampos; Koufogiorga, Eleni; Protogerou, Athanasios; Trakada, Georgia; Kostopoulos, Charalampos; Zakopoulos, Nikolaos; Nikolopoulos, Ioannis

    2012-01-01

    Summary Background Continuous positive airway pressure (CPAP) is the most effective method for treating obstructive sleep apnea syndrome (OSAS) and alleviating symptoms. Improved sleep quality with effective CPAP therapy might also contribute to attenuated systemic inflammation and improved endothelial function, with subsequent reduction of cardiovascular risk. The aim of this study was to assess the effect of 3-month CPAP therapy on brachial artery flow-mediated dilation (FMD) and plasma C-reactive protein (CRP) levels in patients with OSAS. Material/Methods Our study group consisted of 38 male patients with no prior history of cardiovascular disease. Twenty patients with an Apnea-Hypopnea Index (AHI) ≥15 were assigned to receive CPAP treatment and 18 subjects with an AHI<5 were included in the control group. Six patients failed to comply with the CPAP treatment. Measurement of FMD and blood analysis was performed at baseline and 3 months after CPAP therapy. Results Baseline FMD values were negatively correlated with age, BMI, AHI, DSI,% of time <90% Sa02, and CRP (p<0.05). Plasma CRP values were positively correlated with BMI, AHI, DSI and% of time <90% Sa02 (p<0.05). In the group of patients who complied with the CPAP treatment, there was a significant increase in the FMD values (9.18±0.55 vs. 6.27±0.50) and a decrease in the levels of CRP (0.67±0.15 vs. 0.84±0.18) (p<0.05). Conclusions Appropriate CPAP therapy improved both CRP and FMD values, suggesting its potentially beneficial role in reducing cardiovascular risk in OSAS patients. PMID:23197238

  1. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways.

    PubMed Central

    Baluk, P.; Bolton, P.; Hirata, A.; Thurston, G.; McDonald, D. M.

    1998-01-01

    Exposure of sensitized individuals to antigen can induce allergic responses in the respiratory tract, manifested by early and late phases of vasodilatation, plasma leakage, leukocyte influx, and bronchoconstriction. Similar responses can occur in the skin, eye, and gastrointestinal tract. The early-phase response involves mast cell mediators and the late-phase response is leukocyte dependent, but the mechanism of leakage is not understood. We sought to identify the leaky blood vessels, to determine whether these vessels contained endothelial gaps, and to analyze the relationship of the gaps to adherent leukocytes, using biotinylated lectins or silver nitrate to stain the cells in situ and Monastral blue as a tracer to quantify plasma leakage. Most of the leakage occurred in postcapillary venules (< 40-microns diameter), whereas most of the leukocyte migration (predominantly neutrophils) occurred in collecting venules. Capillaries and arterioles did not leak. Endothelial gaps were found in the leaky venules, both by silver nitrate staining and by scanning electron microscopy, and 94% of the gaps were distinct from sites of leukocyte adhesion or migration. We conclude that endothelial gaps contribute to both early and late phases of plasma leakage induced by antigen, but most leakage occurs upstream to sites of leukocyte adhesion. Images Figure 3 Figure 5 Figure 6 Figure 7 PMID:9626051

  2. Addition of in-vitro generated endothelial microparticles to von-Willebrand plasma improves primary and secondary hemostasis.

    PubMed

    Trummer, Arne; Werwitzke, Sonja; Wermes, Cornelia; Ganser, Arnold; Birschmann, Ingvild; Budde, Ulrich; Tiede, Andreas

    2014-03-01

    Increased endothelial microparticles (EMP) as markers for endothelial activation have been associated with worse outcomes in clinical prothrombotic situations. The procoagulant properties of EMP can be attributed to the expression of phospholipids, tissue factor and von-Willebrand factor on their surface. We therefore investigated whether addition of in-vitro generated EMP modifies hemostasis in plasma from patients with severe von-Willebrand disease (VWD). A large EMP pool was obtained from stimulated endothelial cell lines and EMP concentration was quantified by flow cytometry. The influence of EMP on primary and secondary hemostasis in VWD plasma was assessed using ristocetin-induced platelet aggregation (RIPA) and thrombin generation in a calibrated automated thrombogram (CAT), respectively. After addition of EMP, there was a significant increase in the maximal aggregation level in RIPA as well as a significant shortening of lag time and time-to-peak in CAT in comparison to control buffer. In summary, in vitro-generated EMP have the potential to improve hemostasis in severe VWD plasma and these results warrant further clinical reseach regarding their contribution to the clinical bleeding phenotype as well as their potential to improve replacement therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Plasma activity of endothelial lipase impacts high-density lipoprotein metabolism and coronary risk factors in humans.

    PubMed

    Sun, Li; Ishida, Tatsuro; Miyashita, Kazuya; Kinoshita, Noriaki; Mori, Kenta; Yasuda, Tomoyuki; Toh, Ryuji; Nakajima, Katsuyuki; Imamura, Shigeyuki; Hirata, Ken-ichi

    2014-01-01

    Endothelial lipase (EL) is a determinant of plasma levels of high-density lipoprotein cholesterol (HDL-C). However, little is known about the impact of EL activity on plasma lipid profile. We aimed to establish a new method to evaluate EL-specific phospholipase activity in humans. Plasma samples were obtained from 115 patients with coronary artery disease (CAD) and 154 patients without CAD. Plasma EL protein was immunoprecipitated using an anti-EL monoclonal antibody after plasma non-specific immunoglobulins were removed by incubation with ProteinA. The phospholipase activity of the immunoprecipitated samples was measured using a fluorogenic phospholipase substrate, Bis-BODIPY FL C11-PC. The EL-specific phospholipase assay revealed that plasma EL activity was inversely correlated with HDL-C levels (R = -0.3088, p<0.0001). In addition, the EL activity was associated with cigarette smoking. Furthermore, EL activity in CAD patients was significantly higher than that in nonCAD patients. Concomitantly, the HDL-C level in CAD patients were significantly lower than that in non-CAD patients. We have established a method for human plasma EL-specific phospholipase activity by combination of EL immunoprecipitation and a fluorogenic phospholipid substrate. Plasma EL activity was associated with not only plasma HDL-C levels but also the risks for CAD.

  4. Endothelial microparticles (EMP) for the assessment of endothelial function: an in vitro and in vivo study on possible interference of plasma lipids.

    PubMed

    van Ierssel, Sabrina H; Hoymans, Vicky Y; Van Craenenbroeck, Emeline M; Van Tendeloo, Viggo F; Vrints, Christiaan J; Jorens, Philippe G; Conraads, Viviane M

    2012-01-01

    Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b-) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = -0.707 and -0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = -0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP.

  5. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients.

    PubMed

    Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana

    2016-01-01

    This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (P<0.05) attenuated by both the 50 and 100 ppm treatments of T. cacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  6. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

    PubMed

    Weber, Nina C; Riedemann, Isabelle; Smit, Kirsten F; Zitta, Karina; van de Vondervoort, Djai; Zuurbier, Coert J; Hollmann, Markus W; Preckel, Benedikt; Albrecht, Martin

    2015-03-01

    Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.

  7. Characterization of autoantibodies to vasoactive intestinal peptide in asthma.

    PubMed

    Paul, S; Said, S I; Thompson, A B; Volle, D J; Agrawal, D K; Foda, H; de la Rocha, S

    1989-07-01

    Vasoactive intestinal peptide (VIP) is a potent relaxant of the airway smooth muscle. In this study, VIP-binding autoantibodies were observed in the plasma of 18% asthma patients and 16% healthy subjects. Immunoprecipitation studies and chromatography on DEAE-cellulose and immobilized protein G indicated that the plasma VIP-binding activity was largely due to IgG antibodies. Saturation analysis of VIP binding by the plasmas suggested the presence of one or two classes of autoantibodies, distinguished by their apparent equilibrium affinity constants (Ka). The autoantibodies from asthma patients exhibited a larger VIP-binding affinity compared to those from healthy subjects (Ka 7.8 x 10(9) M-1 and 0.13 x 10(9) M-1, respectively; P less than 0.005). The antibodies were specific for VIP, judged by their poor reaction with peptides bearing partial sequence homology with VIP (peptide histidine isoleucine, growth hormone releasing factor and secretin). IgG prepared from the plasma of an antibody-positive asthma patient inhibited the saturable binding of 125I-VIP by receptors in guinea pig lung membranes (by 39-59%; P less than 0.001). These observations are consistent with a role for the VIP autoantibodies in the airway hyperresponsiveness of asthma.

  8. Increased plasma YKL-40/chitinase-3-like-protein-1 is associated with endothelial dysfunction in obstructive sleep apnea.

    PubMed

    Jafari, Behrouz; Elias, Jack A; Mohsenin, Vahid

    2014-01-01

    Obstructive sleep apnea (OSA) is a common disorder affecting 15-24% of the adults and is associated with increased risk of hypertension and atherosclerosis. The exact mechanisms underlying hypertension in OSA are not entirely clear. YKL-40/Chitinase-3-like protein-1 is a circulating moiety with roles in injury, repair and angiogenesis that is dysregulated in atherosclerosis and a number of other diseases. We sought to determine the role of YKL-40 in endothelial dysfunction and hypertension in OSA. We studies 23 normotensive OSA (N-OSA) and 14 hypertensive OSA (H-OSA) without diabetes and apparent cardiovascular disease. Endothelial-dependent nitric oxide-mediated vasodilatory capacity was assessed by flow-mediated vasodilation (FMD). YKL-40, vascular endothelial growth factor (VEGF) and the soluble form of VEGF receptor-1 or sFlt-1 were measured in plasma using ELISA methodology. N-OSA subjects aged 49.1 ± 2.3 years and H-OSA aged 51.3 ± 1.9 years with BMI 36.1 ± 1.6 and 37.6 ± 1.9 kg/m(2), respectively. The apnea-hypopnea index (AHI) was 41 ± 5 events/hr in N-OSA and 46 ± 6 in H-OSA with comparable degree of oxygen desaturations during sleep. FMD was markedly impaired in H-OSA (8.3% ± 0.8) compared to N-OSA (13.2% ± 0.6, P<0.0001). Plasma YKL-40 was significantly elevated in H-OSA (55.2 ± 7.9 ng/ml vs. 35.6 ± 4.2 ng/ml in N-OSA, P = 0.02) and had an inverse relationship with FMD (r = -0.52, P = 0.013). There was a significant positive correlation between sFlt-1/VEGF, a measure of decreased VEGF availability, and YKL-40 (r = 0.42, P = 0.04). The levels of plasma YKL-40 were elevated in H-OSA group and inversely correlated with the endothelial-dependent vasodilatory capacity whereas there was a positive correlation between sFlt-1/VEGF and YKL-40. These findings suggest that YKL-40 is dysregulated, in part, due to perturbation of VEGF signaling, and may contribute to endothelial dysfunction and hypertension in OSA.

  9. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization.

    PubMed

    Yang, Zhilu; Xiong, Kaiqin; Qi, Pengkai; Yang, Ying; Tu, Qiufen; Wang, Jin; Huang, Nan

    2014-02-26

    The creation of a platform for enhanced vascular endothelia cell (VEC) growth while suppressing vascular smooth muscle cell (VSMC) proliferation offers possibility for advanced coatings of vascular stents. Gallic acid (GA), a chemically unique phenolic acid with important biological functions, presents benefits to the cardiovascular disease therapy because of its superior antioxidant effect and a selectivity to support the growth of ECs more than SMCs. In this study, GA was explored to tailor such a multifunctional stent surface combined with plasma polymerization technique. On the basis of the chemical coupling reaction, GA was bound to an amine-group-rich plasma-polymerized allylamine (PPAam) coating. The GA-functionalized PPAam (GA-PPAam) surface created a favorable microenvironment to obtain high ECs and SMCs selectivity. The GA-PPAam coating showed remarkable enhancement in the adhesion, viability, proliferation, migration, and release of nitric oxide (NO) of human umbilical vein endothelial cells (HUVECs). The GA-PPAam coating also resulted in remarkable inhibition effect on human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation. These striking findings may provide a guide for designing the new generation of multifunctional vascular devices.

  10. Binding of human coronary artery endothelial cells to plasma-treated titanium dioxide nanotubes of different diameters.

    PubMed

    Flašker, Ajda; Kulkarni, Mukta; Mrak-Poljšak, Katjuša; Junkar, Ita; Čučnik, Saša; Žigon, Polona; Mazare, Anca; Schmuki, Patrik; Iglič, Aleš; Sodin-Semrl, Snezna

    2016-05-01

    Nanoscale topography in improving vascular response in vitro was established previously on various titanium surfaces. In the present study different surface nanotopographies that is different diameters of titanium dioxide (TiO2 ) nanotubes (NTs) were fabricated by electrochemical anodization and conditioned with highly reactive gaseous oxygen plasma. The morphology of different diameter NTs was studied by scanning electron microscopy and atomic force microscopy, while changes in chemical composition on the surface before and after plasma treatment were determined by X-ray photoelectron spectroscopy. Performance of human coronary artery endothelial cells (HCAEC) on those conditioned surfaces was studied in regard to cell proliferation, released IL-6 protein and immunofluorescence microscopy (IFM). We show that HCAEC function is dependent on the diameter of the TiO2 NTs, functioning far less optimally when bound to 100 nm TiO2 NTs as compared to Ti foil, 15 nm NTs or 50 nm NTs. There were improved, morphological cell shape changes, observed with IFM, between HCAEC growing on oxygen-rich plasma-treated versus nontreated 100 nm NTs. These endothelialized conditioned Ti nanosurfaces could elucidate optimization conditions necessary for vascular implants in coronary arteries.

  11. Plasma vascular endothelial growth factor A and placental growth factor: novel biomarkers of pulmonary hypertension in congenital diaphragmatic hernia.

    PubMed

    Patel, Neil; Moenkemeyer, Florian; Germano, Susie; Cheung, Michael M H

    2015-02-15

    Pulmonary hypertension (PH) due to abnormal pulmonary vascular development is an important determinant of illness severity in congenital diaphragmatic hernia (CDH). Vascular endothelial growth factor A (VEGFA) and placental growth factor (PLGF) may be important mediators of pulmonary vascular development in health and disease. This prospective study investigated the relationship between plasma VEGFA and PLGF and measures of pulmonary artery pressure, oxygenation, and cardiac function in CDH. A cohort of 10 infants with CDH consecutively admitted to a surgical neonatal intensive care unit (NICU) was recruited. Eighty serial plasma samples were obtained and analyzed by multiplex immunoassay to quantify VEGFA and PLGF. Concurrent assessment of pulmonary artery pressure (PAP) and cardiac function were made by echocardiography. Plasma VEGFA was higher and PLGF was lower in CDH compared with existing normative data. Combined plasma VEGFA:PLGF ratio correlated positively with measures of PAP, diastolic ventricular dysfunction, and oxygenation index. Nonsurvivors had higher VEGFA:PLGF ratio than survivors at days 3-4 of life and in the second week of life. These findings suggest that increased plasma VEGFA and reduced PLGF correlate with clinical severity of pulmonary vascular disease and may be associated with adverse outcome in CDH. This potential role for combined plasma VEGFA and PLGF in CDH as disease biomarkers, pathogenic mediators, and therapeutic targets merits further investigation.

  12. Plasma-derived and synthetic high-density lipoprotein inhibit tissue factor in endothelial cells and monocytes.

    PubMed

    Ossoli, Alice; Remaley, Alan T; Vaisman, Boris; Calabresi, Laura; Gomaraschi, Monica

    2016-01-15

    HDL (high-density lipoproteins) exert anti-thrombotic activities by preventing platelet adhesion and activation and by stimulating the protein C pathway and fibrinolysis. The aim of the present study was to assess the effect of plasma-derived and synthetic HDL on endothelial and monocyte expression of TF (tissue factor), the primary initiator of coagulation. HDL inhibited TF expression and activity in stimulated endothelial cells and monocytes in a dose-dependent way. Synthetic HDL fully retain the ability to inhibit TF expression in a dose-dependent manner; lipid-free apoA-I (apolipoprotein A-I) was not effective and neither was sphingosine 1-phosphate involved. HDL-mediated TF inhibition was due to a modulation of cellular cholesterol content through the interaction with SR-BI (scavenger receptor BI); downstream, HDL inhibited the activation of p38 MAPK (mitogen-activated protein kinase) and the repression of the PI3K (phosphoinositide 3-kinase) pathway responsible for TF expression. In vivo, human apoA-I-transgenic mice displayed a reduced aortic TF expression compared with wild-type animals and TF plasma levels were increased in subjects with low HDL-C (HDL-cholesterol) levels compared with high HDL-C subjects. Thus the anti-thrombotic activity of HDL could also be mediated by the inhibition of TF expression and activity in endothelial cells and monocytes; synthetic HDL retain the inhibitory activity of plasma-derived HDL, supporting the hypothesis that synthetic HDL infusion may be beneficial in the setting of acute coronary syndrome. © 2016 Authors; published by Portland Press Limited.

  13. Endothelial dysfunction correlates with plasma fibrinogen and HDL cholesterol in type 2 diabetic patients with coronary artery disease.

    PubMed

    Bosevski, M; Borozanov, V; Peovska, I; Georgievska-Ismail, L

    2007-01-01

    Assessment of endothelial dysfunction (ED) in type 2 diabetic patients with coronary artery disease (CAD) and estimation of correlation of ED with metabolic parameters: low HDL, hypertriglyceridemia, obesity, systolic blood pressure and with inflammatory-hemostatic parameters: CRP and fibrinogen. 42 patients (age 60.0 +/- 8.5 years) with diagnosed type 2 diabetes and CAD were randomly included in a cross sectional study. B-mode ultrasound system with a linear transducer 7.5 MHz was used for evaluation of flow mediated vasodilation in brachial artery (FMV). FMV was presented as the percentage increase in brachial artery diameter, within 30 s after limb ischemia, previously provoked by cuff inflation. Percentage value up to 10% was defined as ED. Bivariate linear correlation model presented significant correlation between plasma fibrinogen and FMV percentage, with r -0.47, p < 0.01. Presence of ED correlates linearly with plasma level of HDL < 1.03 mmol/L (r -0.35, p < 0.03). Multivariate analysis using Backward Wald model presented fibrinogen (OR 3.14, 95% CI 0.87-11.28) and low HDL (OR 5.16, 95% CI 0.53-60.39) as factors correlated with the presence of endothelial dysfunction. These results presented plasma fibrinogen level and low HDL < 1.03 mmol/L as factors, independently correlated to the presence of endothelial dysfunction in type 2 diabetic patients with coronary artery disease (Tab. 8, Fig. 1, Ref. 25). Full Text (Free, PDF) www.bmj.sk.

  14. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis.

    PubMed

    Liu, X F; Yu, J Q; Dalan, R; Liu, A Q; Luo, K Q

    2014-05-01

    People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients

  15. Infection-Mediated Vasoactive Peptides Modulate Cochlear Uptake of Fluorescent Gentamicin

    PubMed Central

    Koo, Ja-Won; Wang, Qi; Steyger, Peter S.

    2011-01-01

    Inflammatory mediators released during bacterial infection include vasoactive peptides such as histamine and serotonin, and their serum levels are frequently elevated. These peptides also modulate the vascular permeability of endothelial cells lining the blood-brain and blood-labyrinth barriers (BLB). These peptides may also modulate the permeability of the BLB to ototoxic aminoglycoside antibiotics prescribed to resolve bacterial sepsis. To test this hypothesis, we compared the effect of histamine and serotonin on the cochlear distribution of fluorescently conjugated gentamicin (GTTR) in control animals at 0.5, 1 and 3 h after injection of GTTR. The intensity of GTTR fluorescence was attenuated at 1 h in the histamine group compared to control mice, and more intense 3 h after injection (p < 0.05). In the serotonin group, the intensity of GTTR fluorescence was attenuated at 0.5 and 1 h (p < 0.05) and was increased at 3 h compared to control animals, where GTTR intensities peaked at 1 h and then plateaued or was slightly decreased at 3 h. This biphasic pattern of modulation was statistically significant in the apical turn of the cochlea. No difference in the intensity of GTTR fluorescence was observed in kidney proximal tubules. Systemic increases in serum levels of vasoactive peptides can modulate cochlear uptake of gentamicin, likely via permeability changes in the BLB. Conditions that influence serum levels of vasoactive peptides may potentiate aminoglycoside ototoxicity. PMID:21196726

  16. SEROTONIN AND OTHER VASOACTIVE AGENTS IN EXPERIMENTAL DECOMPRESSION SICKNESS,

    DTIC Science & Technology

    SEROTONIN, DECOMPRESSION SICKNESS), (*VASOACTIVE AGENTS, DECOMPRESSION SICKNESS), RATS, EXERCISE(PHYSIOLOGY), DOSAGE, CHEMOTHERAPEUTIC AGENTS, BLOOD ANALYSIS, TOXICITY, BLOOD CIRCULATION, MORTALITY RATES , CANADA

  17. Endothelial Microparticles (EMP) for the Assessment of Endothelial Function: An In Vitro and In Vivo Study on Possible Interference of Plasma Lipids

    PubMed Central

    van Ierssel, Sabrina H.; Hoymans, Vicky Y.; Van Craenenbroeck, Emeline M.; Van Tendeloo, Viggo F.; Vrints, Christiaan J.; Jorens, Philippe G.; Conraads, Viviane M.

    2012-01-01

    Background Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. Methods For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b−) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Results Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = −0.707 and −0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = −0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. Conclusion The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP. PMID:22359595

  18. Vertebrate phylogeny of hydrogen sulfide vasoactivity.

    PubMed

    Dombkowski, Ryan A; Russell, Michael J; Schulman, Alexis A; Doellman, Meredith M; Olson, Kenneth R

    2005-01-01

    Hydrogen sulfide (H(2)S) is a recently identified endogenous vasodilator in mammals. In steelhead/rainbow trout (Oncorhynchus mykiss, Osteichthyes), H(2)S produces both dose-dependent dilation and a unique dose-dependent constriction. In this study, we examined H(2)S vasoactivity in all vertebrate classes to determine whether H(2)S is universally vasoactive and to identify phylogenetic and/or environmental trends. H(2)S was generated from NaHS and examined in unstimulated and precontracted systemic and, when applicable, pulmonary arteries (PA) from Pacific hagfish (Eptatretus stouti, Agnatha), sea lamprey (Petromyzon marinus, Agnatha), sandbar shark (Carcharhinus milberti, Chondrichthyes), marine toad (Bufo marinus, Amphibia), American alligator (Alligator mississippiensis, Reptilia), Pekin duck (Anas platyrhynchos domesticus, Aves), and white rat (Rattus rattus, Mammalia). In otherwise unstimulated vessels, NaHS produced 1) a dose-dependent relaxation in Pacific hagfish dorsal aorta; 2) a dose-dependent contraction in sea lamprey dorsal aorta, marine toad aorta, alligator aorta and PA, duck aorta, and rat thoracic aorta; 3) a threshold relaxation in shark ventral aorta, dorsal aorta, and afferent branchial artery; and 4) a multiphasic contraction-relaxation-contraction in the marine toad PA, duck PA, and rat PA. Precontraction of these vessels with another agonist did not affect the general pattern of NaHS vasoactivity with the exception of the rat aorta, where relaxation was now dominant. These results show that H(2)S is a phylogenetically ancient and versatile vasoregulatory molecule that appears to have been opportunistically engaged to suit both organ-specific and species-specific homeostatic requirements.

  19. Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-06-01

    The aim of this study was to evaluate the expression of adhesion molecules on the surface of human endothelial cells in response to the systematic variation in materials properties by the ammonia plasma modification of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE). These adhesion molecules act as mediators of cell adhesion, play a role in the modulation of cell adhesion on biomaterials and therefore condition the response of tissues to implants. First and second passage human umbilical vein endothelial cells (HUVECs) were cultured on plasma treated and untreated PET and PTFE. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. After 1 day and 7 days, the expression of adhesion molecules platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), Integrin alphavbeta3, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin and L-selectin were evaluated using flow cytometry and immunohistochemistry. There was a slight increase in positive cell numbers expressing the adhesion molecules ICAM-1 and VCAM-1 on plasma treated PET and PTFE. A significant increase in E-selectin positive cells on untreated PTFE was demonstrated after 7 days. Stimulation with TNF-alpha demonstrated a significant increase in the proportion of ICAM-1. VCAM-1 and E-selectin positive cells. Almost all cells expressed PECAM-1 and integrin alphavbeta3, on both materials and controls but did not express P- and L-selectin on any surface. When second passage cells were used, the expression of the adhesion molecules ICAM-1 and VCAM-1 was markedly increased on all surfaces but not with TNF-alpha. These significant differences were not observed in other adhesion molecules. These results were supported by immunohistochemical studies. The effects of plasma treated PET and PTFE on cell adhesion and proliferation was also studied. There was a 1.3-fold

  20. Quantitative single-cell motility analysis of platelet-rich plasma-treated endothelial cells in vitro.

    PubMed

    Kawase, Tomoyuki; Tanaka, Takaaki; Okuda, Kazuhiro; Tsuchimochi, Makoto; Oda, Masafumi; Hara, Toshiaki

    2015-05-01

    Platelet-rich plasma (PRP) has been widely applied in regenerative therapy due to its high concentration of growth factors. Previous in vitro and in vivo studies have provided evidence supporting the angiogenic activity of PRP. To more directly demonstrate how PRP acts on endothelial cells, we examined the PRP-induced changes in the motility of human umbilical vein endothelial cells by examining the involvement of VEGF. Time-lapse quantitative imaging demonstrated that in the initial phase (∼2 h) of treatment, PRP substantially stimulated cell migration in a wound-healing assay. However, this effect of PRP was not sustained at significant levels beyond the initial phase. The average net distance of cell migration at 10 h was 0.45 ± 0.16 mm and 0.82 ± 0.23 mm in control and PRP-stimulated cells, respectively. This effect was also demonstrated with recombinant human VEGF and was significantly attenuated by a neutralizing anti-VEGF antibody. Immunofluorescent examination of paxillin and actin fibers demonstrated that PRP concomitantly up-regulated focal adhesion and cytoskeletal formation. Western blotting analysis of phosphorylated VEGFR2 demonstrated that PRP mainly stimulated the phosphorylation of immature VEGFR2 in a dose- and time-dependent manner, an action that was completely blocked by the neutralizing antibody. Taken together, these data suggest that PRP acts directly on endothelial cells via the activation of VEGFR2 to transiently up-regulate their motility. Thus, the possibility that PRP desensitizes target endothelial cells for a relatively long period of time after short-term activation should be considered when the controlled release system of PRP components is designed.

  1. Plasma from pre-pubertal obese children impairs insulin stimulated Nitric Oxide (NO) bioavailability in endothelial cells: Role of ER stress.

    PubMed

    Di Pietro, Natalia; Marcovecchio, M Loredana; Di Silvestre, Sara; de Giorgis, Tommaso; Cordone, Vincenzo Giuseppe Pio; Lanuti, Paola; Chiarelli, Francesco; Bologna, Giuseppina; Mohn, Angelika; Pandolfi, Assunta

    2017-03-05

    Childhood obesity is commonly associated with early signs of endothelial dysfunction, characterized by impairment of insulin signaling and vascular Nitric Oxide (NO) availability. However, the underlying mechanisms remain to be established. Hence, we tested the hypothesis that endothelial insulin-stimulated NO production and availability was impaired and related to Endoplasmic Reticulum (ER) in human umbilical vein endothelial cells (HUVECs) cultured with plasma obtained from pre-pubertal obese (OB) children. OB children (N = 28, age: 8.8 ± 2.2; BMI z-score: 2.15 ± 0.39) showed impaired fasting glucose, insulin and HOMA-IR than normal weight children (CTRL; N = 28, age: 8.8 ± 1.7; BMI z-score: 0.17 ± 0.96). The in vitro experiments showed that OB-plasma significantly impaired endothelial insulin-stimulated NO production and bioavailability compared to CTRL-plasma. In parallel, in HUVECs OB-plasma increased GRP78 and activated PERK, eIF2α, IkBα and ATF6 (all ER stress markers). Moreover, OB-plasma increased NF-κB activation and its nuclear translocation. Notably, all these effects proved to be significantly restored by using PBA and TUDCA, known ER stress inhibitors. Our study demonstrate for the first time that plasma from obese children is able to induce in vitro endothelial insulin resistance, which is characterized by reduced insulin-stimulated NO production and bioavailability, endothelial ER stress and increased NF-κB activation.

  2. Ammonia plasma treatment of polystyrene surfaces enhances proliferation of primary human mesenchymal stem cells and human endothelial cells.

    PubMed

    Kleinhans, Claudia; Barz, Jakob; Wurster, Simone; Willig, Marleen; Oehr, Christian; Müller, Michael; Walles, Heike; Hirth, Thomas; Kluger, Petra J

    2013-03-01

    The control of surface properties is a substantial step in the development and improvement of biomaterials for clinical applications as well as for their use in tissue engineering. Interaction of the substrate surface with the biochemical or biological environment is crucial for the outcome of the applied biomaterial and therefore should meet specific requirements regarding the chemical composition, wettability, elasticity, and charge. In this study, we examined the effect of chemical groups introduced by low pressure plasma treatments of polystyrene surfaces on the cell behavior of primary human mesenchymal stem cells (hMSCs) and dermal microvascular endothelial cells (hDMECs). X-ray photoelectron spectroscopy analysis and contact angle measurements were employed to evaluate ammonia-, carbon dioxide-, and acrylic acid-plasma modifications to substrate surfaces. HMSCs and hDMECs were analyzed simultaneously to identify the most suitable surface functionalization for each cell type. Significantly higher cell proliferation was detected on ammonia plasma-treated surfaces. Cell-material interaction could be shown on all created interfaces as well as the expression of typical cell markers. Hence, the applied plasma treatment presents a suitable tool to improve culture condition on polystyrene for two important cell types (hMSCs and hDMECs) in the field of tissue engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidative properties.

    PubMed

    Nakao, Tomoko; Morita, Hiroyuki; Maemura, Koji; Amiya, Eisuke; Inajima, Tsukasa; Saito, Yuichiro; Watanabe, Masafumi; Manabe, Ichiro; Kurabayashi, Masahiko; Nagai, Ryozo; Komuro, Issei

    2013-10-01

    Melatonin is well known to have a beneficial effect on the cardiovascular system, but it remains to be elucidated whether melatonin has a therapeutic effect on the vascular damage induced by the potential vasoactive substance angiotensin II (Ang II). In this study, the effects of melatonin on Ang II-induced vascular endothelial damage were investigated. In cultured vascular endothelial cells, Ang II stimulation increased ROS generation and inhibited eNOS phosphorylation (Ser1177), both of which were clearly restored by pretreatment with melatonin. The translocation of p47(phox) subunit of NADPH oxidase from the cytosol to plasma membrane was promoted in Ang II-treated vascular endothelial cells, which was canceled by melatonin pretreatment. In Ang II-infused rats, increased ROS generation in the aortic wall and impaired endothelial function of the aortic ring were observed, which were rescued by coadministration of melatonin. In vasculature, melatonin receptor agonist ramelteon had the antioxidative effect in the same manner as melatonin by itself. These findings suggest that melatonin directly ameliorates Ang II-induced vascular endothelial damage partly via its antioxidative properties, providing with us the potential rationale for clinical application of melatonin to the prevention from cardiovascular diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Prolonged treatment with transcutaneous electrical nerve stimulation (TENS) modulates neuro-gastric motility and plasma levels of vasoactive intestinal peptide (VIP), motilin and interleukin-6 (IL-6) in systemic sclerosis.

    PubMed

    McNearney, Terry A; Sallam, Hanaa S; Hunnicutt, Sonya E; Doshi, Dipti; Chen, Jiande D Z

    2013-01-01

    We assessed the effects of transcutaneous electrical nerve stimulation (TENS) on neurogastric functioning in scleroderma patients. Seventeen SSc patients underwent 30 min TENS treatment >10Hz at GI acupuncture points PC6 and ST36, once (acute TENS) and then after two weeks of TENS sessions for 30 min twice daily (prolonged TENS). Data collected at Visits 1 and 2 included gastric myoelectrical activity (GMA) by surface electrogastrography (EGG), heart rate variability (HRV) by surface electrocardiography (EKG), GI specific symptoms and health related SF-36 questionnaires. Plasma VIP, motilin and IL-6 levels were determined. Statistical analyses were performed by Student's t-test, Spearman Rank and p-values <0.05 were considered significant. 1. Only after prolonged TENS, the percentages of normal slow waves and average slow wave coupling (especially channels 1, 2 reflecting gastric pacemaker and corpus regions) were significantly increased; 2. the percentage of normal slow waves was significantly correlated to sympathovagal balance; 3. Mean plasma VIP and motilin levels were significantly decreased after acute TENS, (vs. baseline), generally maintained in the prolonged TENS intervals. Compared to baseline, mean plasma IL-6 levels were significantly increased after acute TENS, but significantly decreased after prolonged TENS. 4. After prolonged TENS, the frequency of awakening due to abdominal pain and abdominal bloating were significantly and modestly decreased, respectively. In SSc patients, two weeks of daily TENS improved patient GMA scores, lowered plasma VIP, motilin and IL-6 levels and improved association between GMA and sympathovagal balance. This supports the therapeutic potential of prolonged TENS to enhance gastric myoelectrical functioning in SSc.

  5. Evaluation of osteoinductive and endothelial differentiation potential of Platelet-Rich Plasma incorporated Gelatin-Nanohydroxyapatite Fibrous Matrix.

    PubMed

    J, Anjana; Kuttappan, Shruthy; Keyan, Kripa S; Nair, Manitha B

    2016-05-01

    In this study, platelet-rich plasma (PRP) was incorporated into gelatin-nanohydroxyapatite fibrous scaffold in two forms (PRP gel as coating on the scaffold [PCSC] and PRP powder within the scaffold [PCSL] and investigated for (a) growth factor release; (b) stability of scaffold at different temperature; (c) stability of scaffold before and after ETO sterilization; and (d) osteogenic and endothelial differentiation potential using mesenchymal stem cells (MSCs). PCSC demonstrated a high and burst growth factor release initially followed by a gradual reduction in its concentration, while PCSL showed a steady state release pattern for 30 days. The stability of growth factors released from PCSL was not altered either through ETO sterilization or through its storage at different temperature. PRP-loaded scaffolds induced the differentiation of MSCs into osteogenic and endothelial lineage without providing any induction factors in the cell culture medium and the differentiation rate was significantly higher when compared to the scaffolds devoid of PRP. PCSC performed better than PCSL. In general, PRP in combination with composite fibrous scaffold could be a promising candidate for bone tissue engineering applications.

  6. A role for plasma kallikrein-kinin system activation in the synovial recruitment of endothelial progenitor cells in arthritis

    PubMed Central

    Dai, Jihong; Agelan, Alexis; Yang, Aizhen; Zuluaga, Viviana; Sexton, Daniel; Colman, Robert W.; Wu, Yi

    2012-01-01

    Objective To examine whether the activation of plasma kallikrein-kinin system (KKS) mediates synovial recruitment of endothelial progenitor cells (EPCs) in arthritis. Methods EPCs were isolated from Lewis rat bone marrow and characterized by the expression of progenitor cell lineage markers and functional property. EPCs were intravenously injected into Lewis rats bearing arthritis, their recruitment and formation of de novo blood vessels in inflamed synovium were evaluated. The role of plasma KKS was examined using a plasma kallikrein inhibitor EPI-KAL2 and an anti-kallikrein antibody 13G11. Transendothelial migration (TEM) assay was used to determine the role of bradykinin and its receptor in EPC mobilization. Results Lewis rat EPCs exhibited strong capacities to form tubes and vacuoles, and expressed higher level of bradykinin type 2 receptor (B2R) and progenitor cell markers CD34 and Sca-1. In Lewis rats bearing arthritis, EPCs were recruited into inflamed synovium at acute phase and formed de novo blood vessels. Inhibition of plasma kallikrein by EPI-KAL2 and 13G11 significantly suppressed synovial recruitment of EPCs and hyperproliferation of synovial cells. Bradykinin concentration-dependently stimulated TEM of EPCs, which was mediated by B2R, as the knockdown of B2R by silencing RNA completely blocked bradykinin-stimulated TEM. Moreover, bradykinin selectively upregulated the expression of homing receptor C-X-C chemokine receptor type 4 (CXCR-4) in EPCs. Conclusion These observations demonstrate a novel role for plasma KKS activation in the synovial recruitment of EPCs in arthritis, acting via kallirein activation and B2R-dependent mechanisms. B2R might be involved in the mobilization of EPCs via upregulation of CXCR-4. PMID:22739815

  7. Plasma myeloperoxidase in patients with erectile dysfunction of arteriogenic- and non-arteriogenic origin: association with markers of endothelial dysfunction.

    PubMed

    Dozio, E; Barassi, A; Marazzi, M G; Vianello, E; Colpi, G M; Solimene, U; Melzi D'Eril, G L; Corsi Romanelli, M M

    2013-01-01

    Endothelial dysfunction and the disruption of the nitric oxide-cyclic guanosine monophosphate (cGMP) pathway have been considered the early mechanisms for the development of erectile dysfunction (ED). Myeloperoxidase (MPO), a heme-containing enzyme mainly released by activated neutrophils and monocytes, may contribute to endothelial dysfunction by promoting oxidation of different substrates and thus may play a role in ED. MPO level and its correlation with different plasma biomarkers of endothelial dysfunction were studied in patient with ED of arteriogenic (A-ED) and non-arteriogenic (NA-ED) to assess potential differences between the two ED subgroups. Diagnosis of ED was based on the International Index of Erectile Function Score. Its etiology was classified with penile echo-color Doppler at baseline and after intracavernous injection of prostaglandin E1. MPO, soluble (s) cGMP, sICAM-1, sVCAM-1 and sP-Selectin were measured by enzyme-linked immunosorbent assay. MPO concentration in A-ED was significantly higher compared to control subjects and NA-ED patients. Plasmatic cGMP level resulted lower both in A-ED and in NA-ED patients, whereas no difference has been observed between the two ED groups. sICAM-1 concentration resulted higher in A-ED compared both to controls and NA-ED. sVCAM-1 level was the same in controls, A-ED and NA-ED patients. sP-Selectin concentration resulted higher both in A-ED and in NA-ED patients than in controls, whereas no difference has been observed between the two ED groups. Correlation analysis indicated a positive correlation between plasmatic MPO, sICAM-1 and sP-Selectin levels. MPO may represent an important link between oxidation, inflammation and cardiovascular diseases and may also represent a potential marker to distinguish between the two subgroups of ED patients. Moreover, in ED subjects circulating cGMP may reflect the local signaling dysfunction. The use cGMP as a potential marker for monitoring the disease needs further

  8. Effect of topical propranolol gel on plasma renin, angiotensin II and vascular endothelial growth factor in superficial infantile hemangiomas.

    PubMed

    Tang, Yu-juan; Zhang, Zai-zhong; Chen, Shao-quan; Chen, Shu-ming; Li, Cheng-jin; Chen, Jian-wei; Yuan, Bo; Xia, Yin; Wang, Lie

    2015-10-01

    The effect of topical propranolol gel on the levels of plasma renin, angiotensin II (ATII) and vascular endothelial growth factor (VEGF) in superficial infantile hemangiomas (IHs) was investigated. Thirty-three consecutive children with superficial IHs were observed pre-treatment, 1 and 3 months after application of topical propranolol gel for the levels of plasma renin, ATII and VEGF in Department of General Surgery of Dongfang Hospital from February 2013 to February 2014. The plasma results of IHs were compared with those of 30 healthy infants of the same age from out-patient department. The clinical efficiency of topical propranolol gel at 1st, and 3rd month after application was 45%, and 82% respectively. The levels of plasma renin, ATII and VEGF in patients pre-treatment were higher than those in healthy infants (565.86 ± 49.66 vs. 18.19 ± 3.56, 3.20 ± 0.39 vs 0.30 ± 0.03, and 362.16 ± 27.29 vs. 85.63 ± 8.14, P < 0.05). The concentrations of VEGF and renin at 1st and 3rd month after treatment were decreased obviously as compared with those pre-treatment (271.51 ± 18.59 vs. 362.16 ± 27.29, and 405.18 ± 42.52 vs. 565.86 ± 49.66 P < 0.05; 240.80 ± 19.89 vs. 362.16 ± 27.29, and 325.90 ± 35.78 vs. 565.86 ± 49.66, P < 0.05, respectively), but the levels of plasma ATII declined slightly (2.96 ± 0.37 vs. 3.20 ± 0.39, and 2.47 ± 0.27 vs. 3.20 ± 0.39, P > 0.05). It was indicated that the increased renin, ATII and VEGF might play a role in the onset or development of IHs. Propranolol gel may suppress the proliferation of IHs by reducing VEGF.

  9. Alkylglycerols reduce serum complement and plasma vascular endothelial growth factor in obese individuals.

    PubMed

    Parri, A; Fitó, Montserrat; Torres, C F; Muñoz-Aguayo, D; Schröder, H; Cano, J F; Vázquez, L; Reglero, G; Covas, María-Isabel

    2016-06-01

    Alkylglycerols (AKGs), isolated or present in shark liver oil have anti-inflammatory properties. Complement 3 (C3) and 4 (C4) participate in lipid metabolism and in obesity, contributing to the metabolic syndrome and to the low-grade inflammation associated with obesity. In a randomized, controlled, crossover study, 26 non-diabetes obese individuals were assigned two preparations with low (LAC, 10 mg AKGs) and high (HAC, 20 mg AKGs) AKG content. Intervention periods were of 3 weeks preceded by 2-week washout periods in which shark liver oil was avoided. Cholesterol, C3, C4, and vascular endothelial growth factor (VEGF) decreased in a linear trend (P < 0.01) from baseline (control) to LAC and HAC. Values after HAC were significantly lower (P < 0.05) versus both baseline and after LAC. No adverse effects were observed or reported. Data from this pilot study open a promising field for the study of the beneficial effects of AKGs on cardiovascular risk factors in obese individuals.

  10. Proliferation of endothelial cells on the plasma-treated segmented-polyurethane surface: attempt of construction of a small caliber hybrid vascular graft and antithrombogenicity.

    PubMed

    Kaibara; Takahashi; Kurotobi; Suzuki

    2000-12-30

    To prepare a porous segmented-polyurethane (SPU) tube, a solution of SPU containing different concentrations of NaCl was coated on a glass rod and the coated SPU was immediately immersed in water. When the surface of the porous SPU, where bovine aortic endothelial cells are not normally capable of adhering and proliferating, was modified by plasma treatment, the proliferation of endothelial cells could be drastically improved. The cells proliferated confluently on the porous SPU surface prepared at low concentrations of NaCl below 10 g per 100 ml, but poorly on the porous surface prepared at high concentrations of NaCl. The construction of a hybrid vascular graft consisting of a porous SPU tube (2 mm in inner diameter, 5 cm in length) and endothelial cells was attempted. The cells cultured on the inner surface of the tube proliferated to confluency everywhere. From an in vitro antithrombogenic evaluation test, which involved the use of human blood, the present hybrid graft can be considered to provide an inert surface against thrombus formation and blood coagulation. Negligible changes in shape of human leukocytes in contact with bovine aortic endothelial cell surface occurred, suggesting that the bovine aortic endothelial cells used are immunologically less active against human blood.

  11. Nitrogen-rich plasma-polymerized coatings on PET and PTFE surfaces improve endothelial cell attachment and resistance to shear flow.

    PubMed

    Gigout, Anne; Ruiz, Juan-Carlos; Wertheimer, Michael R; Jolicoeur, Mario; Lerouge, Sophie

    2011-08-11

    Low seeding efficiency and poor cell retention under flow-induced shear stress limit the effectiveness of in vitro endothelialization strategies for small-diameter vascular grafts. Primary-amine-rich plasma-polymerized coatings (PPE:N) deposited using low- and atmospheric-pressure plasma discharges on PET and PTFE are evaluated for their ability to improve endothelial cells' kinetics and strength of attachment. PPE:N coatings increase cell adhesion and adhesion rate, spreading, focal adhesion, and resistance to flow-induced shear compared with bare and gelatin-coated PET and PTFE. In particular, about 90% of the cells remain on coated surfaces after 1 h exposure to shear. These coatings, therefore, appear as a promising versatile approach to improve cell seeding strategies for vascular grafts.

  12. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders

    PubMed Central

    Walz, Johanna M.; Boehringer, Daniel; Deissler, Heidrun L.; Faerber, Lothar; Goepfert, Jens C.; Heiduschka, Peter; Kleeberger, Susannah M.; Klettner, Alexa; Krohne, Tim U.; Schneiderhan-Marra, Nicole; Ziemssen, Focke; Stahl, Andreas

    2016-01-01

    Background Vascular endothelial growth factor-A (VEGF-A) is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements. Methods Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center) twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD), cannula (butterfly vs. neonatal), type of centrifuge (swing-out vs. fixed-angle), time before and after centrifugation, filling level (completely filled vs. half-filled tubes) and analyzing method (ELISA vs. multiplex bead array). Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model. Results The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes. Conclusion VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples. PMID:26730574

  13. Circulating plasma vascular endothelial growth factor and microvascular complications of type 1 diabetes mellitus: the influence of ACE inhibition.

    PubMed

    Chaturvedi, N; Fuller, J H; Pokras, F; Rottiers, R; Papazoglou, N; Aiello, L P

    2001-04-01

    To determine whether circulating plasma vascular endothelial growth factor (VEGF) is elevated in the presence of diabetic microvascular complications, and whether the impact of angiotensin-converting enzyme (ACE) inhibitors on these complications can be accounted for by changes in circulating VEGF. Samples (299/354 of those with retinal photographs) from the EUCLID placebo-controlled clinical trial of the ACE inhibitor lisinopril in mainly normoalbuminuric non-hypertensive Type 1 diabetic patients were used. Albumin excretion rate (AER) was measured 6 monthly. Geometric mean VEGF levels by baseline retinopathy status, change in retinopathy over 2 years, and by treatment with lisinopril were calculated. No significant correlation was observed between VEGF at baseline and age, diabetes duration, glycaemic control, blood pressure, smoking, fibrinogen and von Willebrand factor. Mean VEGF concentration at baseline was 11.5 (95% confidence interval 6.0--27.9) pg/ml in those without retinopathy, 12.9 (6.0--38.9) pg/ml in those with non-proliferative retinopathy, and 16.1 (8.1--33.5) pg/ml in those with proliferative retinopathy (P = 0.06 for trend). Baseline VEGF was 15.2 pg/ml in those who progressed by at least one level of retinopathy by 2 years compared to 11.8 pg/ml in those who did not (P = 0.3). VEGF levels were not altered by lisinopril treatment. Results were similar for AER. Circulating plasma VEGF concentration is not strongly correlated with risk factor status or microvascular disease in Type 1 diabetes, nor is it affected by ACE inhibition. Changes in circulating VEGF cannot account for the beneficial effect of ACE inhibition on retinopathy.

  14. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes

    PubMed Central

    Gan, Zhuohui; Audi, Said H.; Bongard, Robert D.; Gauthier, Kathryn M.

    2011-01-01

    Our goal was to quantify mitochondrial and plasma potential (Δψm and Δψp) based on the disposition of rhodamine 123 (R123) or tetramethylrhodamine ethyl ester (TMRE) in the medium surrounding pulmonary endothelial cells. Dyes were added to the medium, and their concentrations in extracellular medium ([Re]) were measured over time. R123 [Re] fell from 10 nM to 6.6 ± 0.1 (SE) nM over 120 min. TMRE [Re] fell from 20 nM to a steady state of 4.9 ± 0.4 nM after ∼30 min. Protonophore or high K+ concentration ([K+]), used to manipulate contributions of membrane potentials, attenuated decreases in [Re], and P-glycoprotein (Pgp) inhibition had the opposite effect, demonstrating the qualitative impact of these processes on [Re]. A kinetic model incorporating a modified Goldman-Hodgkin-Katz model was fit to [Re] vs. time data for R123 and TMRE, respectively, under various conditions to obtain (means ± 95% confidence intervals) Δψm (−130 ± 7 and −133 ± 4 mV), Δψp (−36 ± 4 and −49 ± 4 mV), and a Pgp activity parameter (KPgp, 25 ± 5 and 51 ± 11 μl/min). The higher membrane permeability of TMRE also allowed application of steady-state analysis to obtain Δψm (−124 ± 6 mV). The consistency of kinetic parameter values obtained from R123 and TMRE data demonstrates the utility of this experimental and theoretical approach for quantifying intact cell Δψm and Δψp. Finally, steady-state analysis revealed that although room air- and hyperoxia-exposed (95% O2 for 48 h) cells have equivalent resting Δψm, hyperoxic cell Δψm was more sensitive to depolarization with protonophore, consistent with previous observations of pulmonary endothelial hyperoxia-induced mitochondrial dysfunction. PMID:21239539

  15. Association of Urinary N-Domain Angiotensin I-Converting Enzyme with Plasma Inflammatory Markers and Endothelial Function

    PubMed Central

    Fernandes, Fernanda B; Plavnik, Frida L; Teixeira, Andressa MS; Christofalo, Dejaldo MJ; Ajzen, Sergio A; Higa, Elisa MS; Ronchi, Fernanda A; Sesso, Ricardo CC; Casarini, Dulce E

    2008-01-01

    The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90–) of the 90 kDa ACE, the presence (FH+) or absence (FH–) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH–/ACE90–. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% ± 5.3% in ACE90+ compared with 17.6% ± 7.1% in ACE90– group and 12.4% ± 5.6% in FH+/ACE90+ compared with 17.7% ± 6.2% in FH–/ACE90– group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH–/ACE90– group, as follows: 10.0 ± 2.3 μM compared with 12.7 ± 1.5 μM, and 1.3 ± 1.8 mg/L compared with 3.6 ± 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia. PMID:18475311

  16. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Elevated Lipoprotein-Associated Phospholipase A2 Plasma Activity Levels.

    PubMed

    Kheirandish-Gozal, Leila; Philby, Mona F; Qiao, Zhuanghong; Khalyfa, Abdelnaby; Gozal, David

    2017-02-09

    Obstructive sleep apnea (OSA) is a highly prevalent condition, especially in obese children, and has been associated with increased risk for endothelial dysfunction and dislipidemia, which are precursors of atherosclerosis. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is recognized as an independent risk factor for cardiovascular risk and atheromatous plaque activity. We hypothesized that Lp-PLA2 levels would be elevated in children with OSA, particularly among obese children who also manifest evidence of endothelial dysfunction. One hundred sixty children (mean age 7.1±2.3 years), either nonobese with (n=40) and without OSA (n=40) or obese with (n=40) and without OSA (n=40) underwent overnight polysomnographic and postocclusive reperfusion evaluation and a fasting blood draw the morning after the sleep study. In addition to lipid profile, Lp-PLA2 plasma activity was assessed using a commercial kit. Obese children and OSA children had significantly elevated plasma Lp-PLA2 activity levels compared to controls. Furthermore, when both obesity and OSA were concurrently present or when endothelial function was present, Lp-PLA2 activity was higher. Treatment of OSA by adenotonsillectomy resulted in reductions of Lp-PLA2 activity (n=37; P<0.001). Lp-PLA2 plasma activity is increased in pediatric OSA and obesity, particularly when endothelial dysfunction is present, and exhibits decreases on OSA treatment. The short-term and long-term significance of these findings in relation to cardiovascular risk remain undefined. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret

    SciTech Connect

    Peatfield, A.C.; Barnes, P.J.; Bratcher, C.; Nadel, J.A.; Davis, B.

    1983-07-01

    We studied the effect of vasoactive intestinal peptide (VIP) on the output of 35S-labeled macromolecules from ferret tracheal explants either placed in beakers or suspended in modified Ussing chambers. In Ussing chamber experiments, the radiolabel precursor, sodium (35S)sulfate, and all drugs were placed on the submucosal side of the tissue. Washings were collected at 30-min intervals from the luminal side and were dialyzed to remove unbound 35S, leaving radiolabeled macromolecules. Vasoactive intestinal peptide at 3 X 10(-7) M stimulated bound 35S output by a mean of + 252.6% (n . 14). The VIP response was dose-dependent with a near maximal response and a half maximal response at approximately 10(-6) M and 10(-8), M, respectively. The VIP effect was not inhibited by a mixture of tetrodotoxin, atropine, I-propranolol, and phentolamine. Vasoactive intestinal peptide had no effect on the electrical properties of the of the tissues. We conclude that VIP stimulates output of sulfated-macromolecules from ferret tracheal submucosal glands without stimulating ion transport. Our studies also suggest that VIP acts on submucosal glands via specific VIP receptors. Vasoactive intestinal peptide has been shown to increase intracellular levels of cyclic AMP, and we suggest that this may be the mechanism for its effect on the output of macromolecules. This mechanism may be important in the neural regulation of submucosal gland secretion.

  18. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells.

    PubMed

    Burger, Dylan; Touyz, Rhian M

    2012-01-01

    Endothelial dysfunction, the shift from a healthy endothelium to a damaged pro-coagulative, pro-inflammatory, and pro-vasoconstrictive phenotype, is an early event in many chronic diseases that frequently precedes cardiovascular complications. Functional assessment of the endothelium can identify endothelial damage and predict cardiovascular risk; however, this assessment provides little information as to the mechanisms underlying development of endothelial dysfunction. Changes in plasma asymmetric dimethyl arginine levels, markers of lipid peroxidation, circulating levels of inflammatory mediators, indices of coagulation and cellular surrogates such as microparticles, circulating endothelial cells, and endothelial progenitor cells may reflect alterations in endothelial status and as such have been defined as "biomarkers" of endothelial function. Biomarkers may be chemical or cellular. This review examines some markers of endothelial dysfunction, with a particular focus on cellular biomarkers of endothelial dysfunction and their diagnostic potential. Copyright © 2012 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  19. Inflammatory and Vasoactive Effects of Serum Following Inhalation of Varied Complex Mixtures

    PubMed Central

    Aragon, Mario; Chrobak, Izabela; Brower, Jeremy; Roldan, Luis; Fredenburgh, Laura E.; McDonald, Jacob D.; Campen, Matthew

    2015-01-01

    Chronic cardiovascular disease is associated with air pollution exposure in epidemiology and toxicology studies. Inhaled toxicants can induce changes in serum bioactivity that impact endothelial inflammatory gene expression in vitro and impair vasorelaxation ex vivo, which are common precursors to atherosclerosis. Comparisons between single pollutants and common combustion mixtures, in terms of driving such serum inflammatory and vasoactive effects, have not been characterized. Healthy C57BL/6 mice were exposed to a single 6h period of contrasting pollutant atmospheres: road dust, mixed vehicle emissions (MVE; a combination of gasoline and diesel engine emissions) particulate matter (MVE-PM), mixed vehicle emissions gases (MVE-G), road dust plus ozone, road dust plus MVE, and hardwood smoke. Serum obtained from mice 24h after these exposures was used as a stimulus to assess inflammatory potential in two assays: incubated with primary murine cerebrovascular endothelial cells for 4h to measure inflammatory gene expression, or applied to naïve aortic rings in an ex vivo myographic preparation. Road dust and wood smoke exposures were most potent at inducing inflammatory gene expression, while MVE atmospheres and wood smoke were most potent at impairing vasorelaxation to acetylcholine. Responses are consistent with recent reports on MVE toxicity, but reveal novel serum bioactivity related to wood smoke and road dust. These studies suggest that the compositional changes in serum and resultant bioactivity following inhalation exposure to pollutants may be highly dependent on the composition of mixtures. PMID:25900702

  20. Vasoactive mediators and pulmonary hypertension after cigarette smoke exposure in the guinea pig.

    PubMed

    Wright, Joanne L; Tai, Hsin; Churg, Andrew

    2006-02-01

    The pathogenesis of pulmonary hypertension in patients with chronic obstructive pulmonary disease is not understood. We have previously shown increased levels of mediators that control vasoconstriction (endothelin-1), vascular cell proliferation (endothelin-1 and vascular endothelial growth factor), and vasodilation (endothelial nitric oxide synthase) in the intrapulmonary arteries of animals exposed to cigarette smoke. To determine whether these mediators could be implicated in the structural remodeling of the arterial vasculature and increased pulmonary arterial pressure caused by chronic cigarette smoke exposure, guinea pigs were exposed to daily cigarette smoke for 6 mo. Pulmonary arterial pressures were measured. Intrapulmonary artery structure was analyzed by morphometry, artery mediator protein expression by immunohistochemistry, and artery mediator gene expression by laser capture microdissection and real-time RT-PCR. We found that the smoke-exposed animals developed increases in pulmonary arterial pressure and increased muscularization of the small pulmonary arteries. Gene expression and protein levels of all three mediators were increased, and pulmonary arterial pressure correlated both with the levels of mediator production and with the degree of arterial muscularization. We conclude that chronic smoke exposure produces increased vasoactive mediator expression in the small intrapulmonary arteries and that these mediators are associated with vascular remodeling as well as increased pulmonary arterial pressure. These findings support the idea that hypertension in chronic obstructive pulmonary disease is a result of direct cigarette smoke-mediated effects on the vasculature and suggest that interference with endothelin and VEGF production and activity or augmentation of nitric oxide levels may be beneficial.

  1. Inflammatory and Vasoactive Effects of Serum Following Inhalation of Varied Complex Mixtures.

    PubMed

    Aragon, Mario J; Chrobak, Izabela; Brower, Jeremy; Roldan, Luis; Fredenburgh, Laura E; McDonald, Jacob D; Campen, Matthew J

    2016-04-01

    Chronic cardiovascular disease is associated with air pollution exposure in epidemiology and toxicology studies. Inhaled toxicants can induce changes in serum bioactivity that impact endothelial inflammatory gene expression in vitro and impair vasorelaxation ex vivo, which are common precursors to atherosclerosis. Comparisons between single pollutants and common combustion mixtures, in terms of driving such serum inflammatory and vasoactive effects, have not been characterized. Healthy C57BL/6 mice were exposed to a single 6-h period of contrasting pollutant atmospheres: road dust, mixed vehicle emissions (MVE; a combination of gasoline and diesel engine emissions) particulate matter, mixed vehicle emissions gases, road dust plus ozone, road dust plus MVE, and hardwood smoke. Serum obtained from mice 24 h after these exposures was used as a stimulus to assess inflammatory potential in two assays: incubated with primary murine cerebrovascular endothelial cells for 4 h to measure inflammatory gene expression or applied to naïve aortic rings in an ex vivo myographic preparation. Road dust and wood smoke exposures were most potent at inducing inflammatory gene expression, while MVE atmospheres and wood smoke were most potent at impairing vasorelaxation to acetylcholine. Responses are consistent with recent reports on MVE toxicity, but reveal novel serum bioactivity related to wood smoke and road dust. These studies suggest that the compositional changes in serum and resultant bioactivity following inhalation exposure to pollutants may be highly dependent on the composition of mixtures.

  2. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress.

    PubMed

    Marechal, Xavier; Favory, Raphael; Joulin, Olivier; Montaigne, David; Hassoun, Sidi; Decoster, Brigitte; Zerimech, Farid; Neviere, Remi

    2008-05-01

    The glycocalyx constitutes the first line of the blood tissue interface and is thus involved in many physiological processes, deregulation of which may lead to microvascular dysfunction. Because administration of LPS is accompanied by severe microvascular dysfunction, the purpose of the study was to investigate microvascular glycocalyx function during endotoxemia. Bolus infusion of LPS (10 mg kg(-1)) to male Sprague-Dawley rats elicited the development of hyporeactivity to vasoactive agents and microvascular derangements, including decreased capillary density and significant increases in intermittent and stopped flow capillaries in the small intestine muscularis layer compared with controls. LPS elicited plasma hyluronan release and reduction in endothelial surface thickness, indicative of glycocalyx degradation. Because endothelial glycocalyx is extremely sensitive to free radicals, oxidative stress was evaluated by oxidation of dihydrorhodamine in microvascular beds and levels of heart malondialdehyde and plasma carbonyl proteins, which were all increased in LPS-treated rats. Activated protein C (240 microg kg(-1) h(-1)) enhanced systemic arterial pressure response to norepinephrine in LPS-treated rats. Activated protein C (240 microg kg(-1) h(-1)) prevented capillary perfusion deficit in the septic microvasculature that were associated with reduced oxidative stress and preservation of glycocalyx. Our findings support the conclusion that LPS induces major microcirculation dysfunction accompanied by microvascular oxidative stress and glycocalyx degradation that may be limited by activated protein C treatment.

  3. Vascular risk factors, endothelial function, and carotid thickness in patients with migraine: relationship to atherosclerosis.

    PubMed

    Hamed, Sherifa A; Hamed, Enas A; Ezz Eldin, Azza M; Mahmoud, Nagia M

    2010-03-01

    Recent studies indicated that migraine is associated with specific vascular risk profile. However, the functional and structural vascular abnormalities in migraine are rarely addressed. We evaluated the vascular risk factors, endothelial function, and carotid artery (CA)-intima-media thickness (IMT), segregators of preclinical atherosclerosis, in migraineurs. This preliminary study included 63 adults with headache (migraine with aura [n=14], migraine without aura [n=24], transformed migraine [n=6], and tension headache [n=19]) and 35 matched healthy subjects. The following vascular risks were assessed: body mass index (BMI), systolic blood pressure (SBP) and diastolic blood pressures (DBP), serum levels of C-reactive protein, fasting glucose, fasting insulin, total cholesterol, and triglycerides. Plasma endothelin (ET)-1, a vasoactive peptide produced by vascular smooth muscle cells and marker for endothelial injury and atherosclerosis, was measured. Endothelial-dependent vasoreactivity was assessed using brachial artery flow-mediated dilatation (FMD) in response to hyperemia. CA-IMT, structural marker of early atherosclerosis, was measured. Compared with control subjects, SBP, DBP, glucose, insulin, ET-1, and CA-IMT were elevated with migraine. FMD% was inversely correlated with SBP (P < .001), DBP (P < .01), glucose (P < .001), and insulin levels (P < .01). CA-IMT was correlated with BMI (P < .05), SBP (P < .01), total cholesterol (P < .01), triglycerides (P < .001), glucose (P < .001), insulin (P < .01), and FMD% (P < .05). In multivariate analysis, ET-1 was correlated with duration of illness, SBP, DBP, glucose, insulin, IMT, and FMD%. We conclude that endothelial injury, impaired endothelial vasoreactivity, and increased CA-IMT occur with migraine and are associated with vascular risk factors that strongly suggest that migraine could be a risk for atherosclerosis.

  4. Protective Effects of Fresh Frozen Plasma on Vascular Endothelial Permeability, Coagulation, and Resuscitation After Hemorrhagic Shock Are Time Dependent and Diminish Between Days 0 and 5 After Thaw

    PubMed Central

    Pati, Shibani; Matijevic, Nena; Doursout, Marie-Françoise; Ko, Tien; Cao, Yanna; Deng, Xiyun; Kozar, Rosemary A.; Hartwell, Elizabeth; Conyers, Jodie; Holcomb, John B.

    2011-01-01

    Background Clinical studies have shown that resuscitation with fresh frozen plasma (FFP) is associated with improved outcome after severe hemorrhagic shock (HS). We hypothesized that in addition to its effects on hemostasis, FFP has protective and stabilizing effects on the endothelium that translate into diminished endothelial cell (EC) permeability and improved resuscitation in vivo after HS. We further hypothesized that the beneficial effects of FFP would diminish over 5 days of routine storage at 4°C. Methods EC permeability was induced by hypoxia and assessed by the passage of 70-kDa Dextran between monolayers. Thrombin generation time and coagulation factor levels or activity were assessed in FFP. An in vivo rat model of HS and resuscitation was used to determine the effects of FFP on hemodynamic stability. Results Thawed FFP inhibits EC permeability in vitro by 10.2-fold. Protective effects diminish (to 2.5-fold) by day 5. Thrombin generation time is increased in plasma that has been stored between days 0 and 5. In vivo data show that day 0 FFP is superior to day 5 FFP in maintaining mean arterial pressure in rats undergoing HS with resuscitation. Conclusion Both in vitro and in vivo studies show that FFP has beneficial effects on endothelial permeability, vascular stability, and resuscitation in rats after HS. The benefits are independent of hemostasis and diminish between days 0 and 5 of storage. PMID:20622621

  5. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  6. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways.

    PubMed

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-02-07

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO(x):H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO(x):H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.

  7. Vasoactive drugs inhibit oxygen radical production of neutrophils.

    PubMed

    Weiss, M; Schneider, E M; Liebert, S; Mettler, S; Lemoine, H

    1997-05-01

    A concentration response study was performed to clarify whether vasoactive drugs, routinely used in intensive care patients, inhibit oxygen radical production of neutrophils. Moreover, in a cell-free system, it was investigated whether these drugs exert free radical scavenging properties. Vasoactive agents were incubated with neutrophils from healthy human volunteers, which were stimulated by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and by opsonized zymosan to produce oxygen radicals, detected by chemiluminescence measurements. Sympathomimetics (epinephrine greater than norepinephrine, dopamine and dobutamine) as well as phosphodiesterase-inhibitors (amrinone and enoximone) inhibited FMLP-induced and zymosan-induced oxygen radical production of neutrophils in a concentration-dependent and drug-specific fashion. With the exception of amrinone, FMLP-induced chemiluminescence of neutrophils was impaired nearly 10-fold more markedly than zymosan-induced chemiluminescence. Glyceryl trinitrate, nifedipine and prostacyclin had no effect on oxygen radical production of neutrophils. In the cell-free system, epinephrine, norepinephrine, dopamine, amrinone and enoximone demonstrated oxygen free radical scavenging properties. This study shows that vasoactive drugs, frequently used in the clinical setting, may suppress oxidative burst after FMLP-receptor stimulation. As demonstrated in the cell-free system, this suppression was, at least in part, due to oxygen radical scavenging.

  8. Effects of vasoactive drugs on crystalloid fluid kinetics in septic sheep.

    PubMed

    Li, Yuhong; Xiaozhu, Zheng; Guomei, Ru; Qiannan, Ding; Hahn, Robert G

    2017-01-01

    Crystalloid fluid and vasoactive drugs are used in the early treatment of sepsis. The purpose of the present study was to examine how these drugs alter plasma volume expansion, peripheral edema, and urinary excretion. Twenty-five anesthetized sheep were made septic by cecal puncture and a short infusion of lipopolysaccharide. After 50 min, a slow infusion of isotonic saline was initiated: the saline either contained no drug, norepinephrine (1 μg/kg/min), phenylephrine (3 μg/kg/min), dopamine (50 μg/kg/min), or esmolol (50 μg/kg/min). Ten min later, 20 mL/kg Ringer´s lactate solution was given over 30 min. Central hemodynamics, acid-base balance, and the urinary excretion were monitored. Frequent measurements of the blood hemoglobin concentration were used as input in a kinetic analysis, using a mixed effects modeling software. The fluid kinetic analysis showed slow distribution and elimination of Ringer´s lactate, although phenylephrine and dopamine accelerated the distribution. Once distributed, the fluid remained in the peripheral tissues and did not equilibrate adequately with the plasma. Overall, stimulation of adrenergic alpha1-receptors accelerated, while beta1-receptors retarded, the distribution and elimination of fluid. A pharmacodynamic Emax model showed that Ringer´s lactate increased stroke volume by 13 ml/beat. Alpha1-receptors, but not beta1-receptors, further increased stroke volume, while both raised the mean arterial pressure. Modulation of the beta1-receptors limited the acidosis. Stimulation of adrenergic alpha1-receptors with vasoactive drugs accelerated, while beta1-receptors retarded, the distribution and elimination of fluid. The tendency for peripheral accumulation of fluid was pronounced, in particular when phenylephrine was given.

  9. Effects of vasoactive drugs on crystalloid fluid kinetics in septic sheep

    PubMed Central

    Guomei, Ru; Qiannan, Ding

    2017-01-01

    Purpose Crystalloid fluid and vasoactive drugs are used in the early treatment of sepsis. The purpose of the present study was to examine how these drugs alter plasma volume expansion, peripheral edema, and urinary excretion. Methods Twenty-five anesthetized sheep were made septic by cecal puncture and a short infusion of lipopolysaccharide. After 50 min, a slow infusion of isotonic saline was initiated: the saline either contained no drug, norepinephrine (1 μg/kg/min), phenylephrine (3 μg/kg/min), dopamine (50 μg/kg/min), or esmolol (50 μg/kg/min). Ten min later, 20 mL/kg Ringer´s lactate solution was given over 30 min. Central hemodynamics, acid-base balance, and the urinary excretion were monitored. Frequent measurements of the blood hemoglobin concentration were used as input in a kinetic analysis, using a mixed effects modeling software. Results The fluid kinetic analysis showed slow distribution and elimination of Ringer´s lactate, although phenylephrine and dopamine accelerated the distribution. Once distributed, the fluid remained in the peripheral tissues and did not equilibrate adequately with the plasma. Overall, stimulation of adrenergic alpha1-receptors accelerated, while beta1-receptors retarded, the distribution and elimination of fluid. A pharmacodynamic Emax model showed that Ringer´s lactate increased stroke volume by 13 ml/beat. Alpha1-receptors, but not beta1-receptors, further increased stroke volume, while both raised the mean arterial pressure. Modulation of the beta1-receptors limited the acidosis. Conclusions Stimulation of adrenergic alpha1-receptors with vasoactive drugs accelerated, while beta1-receptors retarded, the distribution and elimination of fluid. The tendency for peripheral accumulation of fluid was pronounced, in particular when phenylephrine was given. PMID:28231305

  10. The effect of parachlorophenylalanine and active immunization against vasoactive intestinal peptide on reproductive activities of broiler breeder hens photostimulated with green light.

    PubMed

    Mobarkey, Nader; Avital, Natalie; Heiblum, Rachel; Rozenboim, Israel

    2013-04-01

    Photostimulation of retinal photoreceptors appears to inhibit reproductive activity in birds. In the present study, the involvement of serotonin and vasoactive intestinal peptide was investigated in relation to reproductive failure associated with retinal photostimulation. Hens at 23 wk of age were divided into six rooms equipped with individual cages. At 24 wk of age, three rooms were photostimulated (14L:10D) with white light (control). Three rooms had two parallel lighting systems, red (660 nm) and green (560 nm), which were both on during 6 h of the 14-h light period. Upon photostimulation, the red light was turned off after 6 h, and the green light was left on for a total of 14 h (Green). Five hens from each room served as controls, five hens were immunized against vasoactive intestinal peptide, and five hens received parachlorophenylalanine, an inhibitor of serotonin biosynthesis. Parachlorophenylalanine treatment increased reproductive performance and mRNA expression of GnRH-I, LH-beta and FSH-beta (P < 0.05) in the Green group to levels which did not differ from those of the White (control) group. Immunization against vasoactive intestinal peptide reduced plasma concentration and pituitary mRNA expression of prolactin but did not affect expression of gonadal axis genes. Collectively, the results suggest that retinal photostimulation inhibits the reproductive axis through serotonin and not through vasoactive intestinal peptide.

  11. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2.

    PubMed

    Cho, Kwang-Jin; Casteel, Darren E; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A; Kim, Choel; Capon, Robert J; Lacey, Ernest; Cunha, Shane R; Gorfe, Alemayehu A; Hancock, John F

    2016-12-15

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function.

  12. Vasoactive Intestinal Peptide: A Possible Transmitter of Nonadrenergic Relaxation of Guinea Pig Airways

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yoshikazu; Hamasaki, Yuhei; Said, Sami I.

    1980-12-01

    Vasoactive intestinal peptide, a smooth-muscle relaxant neuropeptide with neurotransmitter properties, was released during electrical field stimulation of guinea pig trachea. The amount released correlated with the degree of relaxation, and the release was blocked by tetrodotoxin. Prior incubation of the trachea with antiserum to vasoactive intestinal peptide reduced the relaxation. Thus vasoactive intestinal peptide may mediate the nonadrenergic relaxation of tracheal smooth muscle.

  13. Distribution of substance P and vasoactive intestinal peptide in the human liver: light and electron immunoperoxidase methods of observation.

    PubMed

    Ueno, T; Inuzuka, S; Torimura, T; Sakata, R; Sakamoto, M; Gondo, K; Aoki, T; Tanikawa, K; Tsutsumi, V

    1991-11-01

    The localization of substance P (SP) and vasoactive intestinal peptide (VIP) in 12 normal human liver tissues was examined by light and electron immunohistochemistry using immunoperoxidase methods. SP and VIP immunoreactive nerve fibers were observed around portal veins, bile ducts, and hepatic arteries in portal areas, along sinusoids and hepatocytes in hepatic lobules, and around central veins. More SP and VIP immunoreactive nerve fibers were present in the portal areas than in other regions. Moreover, SP and VIP containing nerve endings were localized close to myofibroblasts, Ito cells, fibroblasts and endothelial cells of blood vessels, and sinusoids. The results suggested that part of the innervation of the human liver may be related to the contraction and relaxation of the cells close to nerve endings, and to the regulation of hemodynamic processes by the neurotransmitters such as SP and VIP at the hepatic lobular level.

  14. Do vasoactive neuropeptide autoimmune disorders explain pyridostigmine's association with Gulf War syndrome?

    PubMed

    Staines, Donald

    2005-01-01

    myasthenia gravis (MG). While evidence associating these conditions is thin, vasoactive neuropeptide neurotransmitters of the VIP/PACAP family have acetylcholine co-transmission functions via specific GPCRs. Autoimmune reactions to these receptors may have parallels with muscarinic (e.g., Sjogren's syndrome) and nicotinic (e.g., MG) acetylcholine neurotransmission. Hence theoretically, treatment options such as thymectomy, corticosteroids, plasma exchange, anti-idiotype antibodies and receptor genomic expression reactivation/suppression may be considered. Paradoxically pyridostigmine may prove to have a role in therapy although VN treatment/replacement may be associated with tachyphylaxis.

  15. Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart.

    PubMed

    Arjunan, Selvam; Reinartz, Michael; Emde, Barbara; Zanger, Klaus; Schrader, Jürgen

    2009-01-01

    The endothelial cell (EC) membrane is an important interface, which plays a crucial role in signal transduction. Our aim was to selectively purify luminal EC membrane proteins from the coronary vasculature of the isolated perfused mouse heart and analyze its composition with mass spectrometry (MS). To specifically label coronary ECs in the intact heart, the colloidal silica method was applied, which is based on the binding of positively charged colloidal silica to the surface of EC membranes. Transmission electron microscopy revealed the specific labeling of ECs of macro and microvessels. Two different methods of tissue homogenization (Teflon pestle and ultra blade) together with density centrifugation were used for membrane protein enrichment. Enrichment and purity was controlled by Western blot analysis using the EC-specific protein caveolin 1 and various intracellular marker proteins. The ultra blade method resulted in a tenfold enrichment of caveolin 1, while there was negligible contamination as judged by Western blot. However, protein yield was low and required pooling of ten hearts for MS. When enriched endothelial membrane proteins were digested with trypsin and analyzed by LC-MS, a total of 56 proteins could be identified, of which only 12 were membrane proteins. We conclude that coronary endothelial membranes can be conveniently labeled with colloidal silica. However, due to the ionic nature of interaction of colloidal silica with the EC membrane the shear rate required for cardiac homogenization resulted in a substantial loss of specificity.

  16. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose.

    PubMed

    Salheen, Salheen M; Panchapakesan, Usha; Pollock, Carol A; Woodman, Owen L

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1 μM TRAM-34, 1 μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.

  17. Plasma endothelial protein C receptor influences innate immune response in ovarian cancer by decreasing the population of natural killer and TH17 helper cells

    PubMed Central

    AZZAZENE, DALEL; THAWADI, HAMDA AL; FARSI, HALEMA AL; BESBES, SAMAHER; GEYL, CAROLINE; MIRSHAHI, SHAHSOLTAN; PARDO, JULIA; FAUSSAT, ANNE MARIE; JEANNETTE, SORIA; THERWATH, AMU; PUJADE-LAURAINE, ERIC; MIRSHAHI, MASSOUD

    In spite of the growing importance of endothelial protein C receptor/active protein C (EPCR/aPC) in tumor biology, their impact on immunological homeostasis remains largely unexplored. The objective of this study was to assess whether soluble plasma endothelial protein C receptor (sEPCR), which is a regulator of circulating aPC, is involved in innate immune response in cancer patients. In the Ovcar-3 ovarian cancer line, the role of aPC in secretion of cytokines was analyzed. In parallel, in 33 patients, with a diagnosis of ovarian epithelial cancer, sEPCR was quantified, blood immune cell phenotypes were determined by flow cytometry and plasma cytokines were evaluated using a protein array. Spearman’s rank correlation coefficients (r) and coefficient significance was determined by a statistical hypothesis test (α=0.05). Our results show that i) aPC induced the secretion of several cytokines in Ovcar-3 cells; ii) 61% of patients exhibited a concentration of plasma sEPCR well above the baseline (normal plasma level, 100±28 ng/ml); iii) comparing immune cell phenotypes in patients having a normal level of sEPCR with those having a high level of sEPCR, it was found that sEPCR levels were correlated with high intensity of cells expressing CD45ra, CD3, CD8, CD25 and low intensity of cells expressing CD56 (NK cells), CD294 (TH2 cells), IL-2, IL-10, IL-17a (TH17 cells), IL-21 (TH21 cells) and CD29 markers (r ≥0.60); and iv) high levels of sEPCR correlate with high levels of plasma bioactive proteins such as insulin-like growth factor-2 (IGFII), IL-13rα, macrophage inflammatory protein (MIP1α) and matrix metalloproteinase-7 (MMP-7) that have already been proposed as biomarkers for ovarian cancer and particularly those with poor prognosis. In conclusion, sEPCR produced by ovarian cancer cells, by modulating circulating aPC, influences the secretory behavior of tumor cells (cytokines and interleukins). Consequently, sEPCR in turn acts on the innate immune response by

  18. Malignant pheochromocytoma secreting vasoactive intestinal peptide and response to sunitinib: a case report and literature review.

    PubMed

    Leibowitz-Amit, Raya; Lebowitz-Amit, Raya; Mete, Ozgur; Asa, Sylvia L; Ezzat, Shereen; Joshua, Anthony M

    2014-08-01

    Malignant pheochromocytoma is rare and may be sporadic or have a genetic basis. Vasoactive intestinal peptide (VIP)-secreting pheochromocytoma has rarely been described in the literature, and treatment remains challenging in the absence of well-controlled randomized trials. The hypoxia-inducible factor-vascular endothelial growth factor axis has been implicated in pheochromocytoma when associated with germline Von-Hippel-Lindau (VHL) or succinate dehydrogenase (SDH) mutations, suggesting potential clinical activity of sunitinib in this setting. We present a case report of a patient with a VIP-secreting malignant pheochromocytoma manifested as severe watery diarrhea, with an exquisite clinical response to sunitinib. We review this rare clinical entity and the potential role of sunitinib in this context. A 51-year-old male initially presented with a pheochromocytoma causing symptoms related to norepinephrine excess. He underwent adrenalectomy, which resulted in complete resolution of his symptoms. Three years later, he developed multifocal metastatic disease from his primary tumor, showing immunohistochemical evidence of VIP production accompanied by severe watery diarrhea and hypokalemia. The patient had a rapid, complete, and durable clinical response to sunitinib, but with only a minor radiological response and without significant toxicity. Genetic testing was negative for germline mutations in VHL, SDHB, SDHC, SDHD, transmembrane protein 127 (TMEM127) and for neurofibromatosis type 1 (NF-1). To the best of our knowledge, this is the first report of a case of malignant VIP-producing pheochromocytoma that was responsive to sunitinib.

  19. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    PubMed

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  20. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium

    PubMed Central

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890

  1. Metabolism of glycosylated human salivary amylase: in vivo plasma clearance by rat hepatic endothelial cells and in vitro receptor mediated pinocytosis by rat macrophages

    SciTech Connect

    Niesen, T.E.; Alpers, D.H.; Stahl, P.D.; Rosenblum, J.L.

    1984-09-01

    Salivary-type amylase normally comprises about 60% of the amylase activity in human serum, but only a small fraction is a glycosylated isoenzyme (amylase A). In contrast, 1/3 of amylase in human saliva is glycosylated. Since glycosylation can affect circulatory clearance, we studied the clearance of amylase A in rats and its uptake by rat alveolar macrophages. Following intravenous injection, /sup 125/I-labeled amylase A disappeared rapidly from plasma (t 1/2 . 9 min) and accumulated in the liver. Simultaneous injection of mannose-albumin slowed its clearance to a rate comparable to that of /sup 125/I-labeled nonglycosylated salivary amylase (t 1/2 . 45 min). In contrast, galactose-albumin had no effect. Electron microscope autoradiography of the liver following injection of /sup 125/I-labeled amylase A revealed a localization of grains over the hepatic endothelial cells. In vitro studies indicated that amylase A is taken up by alveolar macrophages via receptor-mediated pinocytosis. Uptake was linear over time, saturable, and inhibited by mannan and mannose-albumin, but not by galactose-albumin. We conclude that amylase A, which is a naturally occurring human glycoprotein with at most three terminal L-fucose residues per molecule, is recognized in rats by a mannose receptor located on hepatic endothelial cells. We speculate that this receptor, by rapidly clearing circulating amylase A, may be responsible for the low level of amylase A in human serum.

  2. Predictive role of plasma vascular endothelial growth factor for the effect of celecoxib in advanced non-small cell lung cancer treated with chemotherapy.

    PubMed

    Sörenson, Sverre; Fohlin, Helena; Lindgren, Andrea; Lindskog, Magnus; Bergman, Bengt; Sederholm, Christer; Ek, Lars; Lamberg, Kristina; Clinchy, Birgitta

    2013-01-01

    The primary purpose of this study is to investigate if pretreatment plasma levels of vascular endothelial growth factor (VEGF) are predictive of the effect of celecoxib on survival in advanced non-small cell lung cancer (NSCLC) treated with palliative chemotherapy. A secondary objective is to describe the course of plasma VEGF levels during and after treatment with cytotoxic chemotherapy combined with celecoxib or placebo. In a previously published double-blind multicenter phase III trial, 316 patients with NSCLC stage IIIB or IV and World Health Organisation (WHO) performance status 0-2 were randomised to receive celecoxib 400mg b.i.d. or placebo in combination with two-drug platinum-based chemotherapy. Chemotherapy cycle length was three weeks and planned duration of chemotherapy was four cycles. Celecoxib was given for a maximum of one year but was stopped earlier in case of disease progression or prohibitive toxicity. In a subset of patients, plasma VEGF levels were examined at onset of treatment and at 6, 12 and 20 weeks. VEGF levels at start of treatment were obtained in 107 patients at four study sites. The median value was 70 pg/ml. Mean values declined during the first 12 weeks and then increased at 20 weeks. A subpopulation treatment effect pattern plot (STEPP) analysis showed an inverse relationship between initial plasma VEGF and the impact of celecoxib on survival with zero effect at 200 pg/ml. The effect on survival by celecoxib in the whole subset of patients was positive (hazard ratio (HR)=0.64 [confidence interval (CI) 0.43-0.95], p=0.028). Low pretreatment plasma levels of VEGF appear to be predictive of a positive effect of celecoxib on survival. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Plasma Vascular Endothelial Growth Factor Concentration and Alveolar Nitric Oxide as Potential Predictors of Disease Progression and Mortality in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Kotecha, Jalpa; Shulgina, Ludmila; Sexton, Darren W.; Atkins, Christopher P.; Wilson, Andrew M.

    2016-01-01

    Background: Declining lung function signifies disease progression in idiopathic pulmonary fibrosis (IPF). Vascular endothelial growth factor (VEGF) concentration is associated with declining lung function in 6 and 12-month studies. Alveolar nitric oxide concentration (CANO) is increased in patients with IPF, however its significance is unclear. This study investigated whether baseline plasma VEGF concentration and CANO are associated with disease progression or mortality in IPF. Methods: 27 IPF patients were studied (maximum follow-up 65 months). Baseline plasma VEGF concentration, CANO and pulmonary function tests (PFTs) were measured. PFTs were performed the preceding year and subsequent PFTs and data regarding mortality were collected. Disease progression was defined as one of: death, relative decrease of ≥10% in baseline forced vital capacity (FVC) % predicted, or relative decrease of ≥15% in baseline single breath diffusion capacity of carbon monoxide (TLCO-SB) % predicted. Results: Plasma VEGF concentration was not associated with progression-free survival or mortality. There was a trend towards shorter time to disease progression and death with higher CANO. CANO was significantly higher in patients with previous declining versus stable lung function. Conclusion: The role of VEGF in IPF remains uncertain. It may be of value to further investigate CANO in IPF. PMID:27618114

  4. Plasma from the second and third weeks after open colorectal resection for cancer stimulates in vitro endothelial cell growth, migration, and invasion.

    PubMed

    Shantha Kumara, H M C; Kirchoff, Daniel; Naffouje, Samer; Grieco, Michael; Herath, Sonali A C; Dujovny, Nadav; Kalady, Matthew F; Hyman, Neil; Njoh, Linda; Whelan, Richard L

    2012-03-01

    Angiogenesis is central to wound healing and tumor growth. Postoperative (postop) plasma from weeks 2 and 3 after minimally invasive colorectal resection (MICR) stimulates endothelial cell (EC) migration (MIG), invasion (INV), and proliferation (all vital to angiogenesis) compared with preoperative (preop) plasma results and may promote postop tumor growth. The purpose of this study was to determine whether plasma from open colorectal resection (OCR) patients has similar proangiogenic EC effects in vitro. OCR cancer patient plasma from institutional review board-approved banks was used; patients with preop and one postop sample from postoperative days (POD) 7-33 were eligible. Samples were bundled into 7- to 13-day periods and considered as single time points. In vitro cultures of human umbilical venous ECs were used for the EC proliferation (BPF, Branch Point Formation), INV, and MIG assays performed with preop, POD 7-13, POD 14-20, and POD 21-33 plasma. Data were analyzed by paired t test and were reported as mean ± standard deviation (significance, P < 0.05). Plasma from 53 cancer patients (25 rectal and 28 colon) was used. Because of limited postop samples, the number for each time point varies: POD 7-13, n = 30; POD 14-20, n = 26; and POD 21-33, n = 17. In vitro EC BPF was significantly greater at the POD 7-13 (P < 0.0001) and POD 14-20 (P < 0.0001) time points versus preop results. Significantly greater EC INV and MIG were noted on POD 7-13 and POD 14-20 versus the preop plasma results (P < 0.0001). In regards to POD 21-33, a significantly greater result was noted only for the INV assay versus preop. Plasma from weeks 2 and 3 after OCR stimulates in vitro EC BPF, INV, and MIG. A significant difference from preop baseline was noted only for the INV assay in week 4. The OCR and previous MICR results were largely similar. Tumor angiogenesis may be stimulated after OCR and MICR for 3 weeks. Further studies are warranted.

  5. Effect of propionylcarnitine on changes in endothelial function and plasma levels of adhesion molecules induced by acute exercise in patients with intermittent claudication.

    PubMed

    Silvestro, Antonio; Schiano, Vittorio; Bucur, Roxana; Brevetti, Gregorio; Scopacasa, Francesco; Chiariello, Massimo

    2006-01-01

    In patients with intermittent claudication, treadmill exercise may cause acute deterioration of endothelial function and increase in plasma concentrations of adhesion molecules. The authors evaluated the efficacy of intravenously administered propionylcarnitine (PLC)in preventing these phenomena. Thirty-six claudicants with postexercise decrease in brachial artery flow-mediated dilation (FMD)were randomized to either placebo or PLC (600 mg as a single bolus followed by 1 mg/kg/min for 60 minutes).In the 18 patients randomized to placebo, FMD markedly decreased with exercise before (from 6.8 +/-0.4% to 4.0 +/-0.4%; p < 0.001) and after treatment (from 6.5 +/-0.4% to 4.4 +/-0.5%; p < 0.001). By contrast, in the PLC group, FMD significantly decreased with exercise before treatment (from 8.0 +/-0.7% to 4.4 +/-0.4%; p < 0.001), but not after active drug administration (from 7.1 +/-0.7% to 6.0 +/-0.6%; p = 0.067). The difference between treatments was not significant (p = 0.099; ANOVA). However, in the PLC group, the authors found that the greater the exercise-induced deterioration in endothelial function before treatment, the greater the capacity of PLC to prevent a postexercise decrease in FMD (r = -0.50, p = 0.034). Accordingly, they analyzed data in the 19 patients with a baseline exercise-induced decrease in FMD >or=45% (ie, the median FMD reduction in the entire group of 36 patients), and found that the exercise-induced FMD decrease was less after PLC than after placebo (p = 0.046, ANOVA). In the same subgroup, the exercise-induced increase in plasma concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) was significantly higher before than after treatment in patients randomized to PLC (23.4 +/-5% vs 15.3 +/-7%, p = 0.007). In conclusion, in patients with intermittent claudication suffering from a greater endothelial derangement after treadmill, PLC administration provided a protective effect against deterioration of FMD and increase of sVCAM-1

  6. Effects of vasoactive stimuli on blood flow to choroid plexus

    SciTech Connect

    Faraci, F.M.; Mayhan, W.G.; Williams, J.K.; Heistad, D.D. )

    1988-02-01

    The goal of this study was to examine effects of vasoactive stimuli on blood flow to choroid plexus. The authors used microspheres to measure blood flow to choroid plexus and cerebrum in anesthetized dogs and rabbits. A critical assumption of the microsphere method is that microspheres do not pass through arteriovenous shunts. Blood flow values obtained with simultaneous injection of 15- and 50-{mu}m microspheres were similar, which suggest that shunting of 15-{mu}m microspheres was minimal. Blood flow to choroid plexus under control conditions was 287 {plus minus} 26 (means {plus minus} SE) ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} in dogs and 385 {plus minus} 73 ml {center dot} min{sup {minus}1} 100 g{sup {minus}1} in rabbits. Consecutive measurements under control conditions indicated that values for blood flow are reproducible. Adenosine did not alter blood flow to cerebrum but increased blood flow to choroid plexus two- to threefold in dogs and rabbits. Norepinephrine and phenylephrine did not affect blood flow to choroid plexus and cerebrum but decreased blood flow to choroid plexus by {approx} 50%. The authors suggest that (1) the microsphere method provides reproducible valid measurements of blood flow to the choroid plexus in dogs and rabbits and (2) vasoactive stimuli may have profoundly different effects on blood flow to choroid plexus and cerebrum.

  7. A potent vasoactive cytolysin isolated from Scorpaena plumieri scorpionfish venom.

    PubMed

    Andrich, F; Carnielli, J B T; Cassoli, J S; Lautner, R Q; Santos, R A S; Pimenta, A M C; de Lima, M E; Figueiredo, S G

    2010-09-15

    A new vasoactive cytolytic toxin, referred to as Sp-CTx, has been purified from the venom of the scorpionfish Scorpaena plumieri by a combination of gel filtration and anion exchange chromatographies. An estimation of Sp-CTx native molecular mass, performed by size exclusion chromatography, demonstrated that it is a 121 kDa protein. Further physicochemical studies revealed its glycoproteic nature and dimeric constitution, comprising subunits of approximately 65 kDa (MALDI-TOF-MS). Such protein has proved to possess a potent hemolytic activity on washed rabbit erythrocytes (EC(50) 0.46 nM), whose effect was strongly reduced after treatment with antivenom raised against stonefish venom -Synanceja trachynis (SFAV). This cross-reactivity has been confirmed by western blotting. Like S. plumieri whole venom (100 microg/mL), Sp-CTx (1-50 nM) caused a biphasic response on phenylephrine pre-contracted rat aortic rings, characterized by an endothelium- and dose-dependent relaxation phase followed by a contractile phase. The vasorelaxant activity has been abolished by l-NAME, demonstrating the involvement of nitric oxide on the response. We report here the first isolation of a cytolytic/vasoactive protein from scorpionfish venom and the data provided suggest structural and functional similarities between Sp-CTx and previously published stonefish hemolytic toxins. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Evaluation of von Willebrand Factor and von Willebrand Factor Propeptide in Models of Vascular Endothelial Cell Activation, Perturbation, and/or Injury

    PubMed Central

    Brott, David A.; Katein, Anne; Thomas, Heath; Lawton, Michael; Montgomery, Robert R.; Richardson, Rudy J.; Louden, Calvert S.

    2014-01-01

    Pharmacologically, vasoactive agents targeting endothelial and/or smooth muscle cells (SMC) are known to cause acute drug-induced vascular injury (DIVI) and the resulting pathology is due to endothelial cell (EC) perturbation, activation, and/or injury. Alteration in EC structure and/or function may be a critical event in vascular injury and, therefore, evaluation of the circulatory kinetic profile and secretory pattern of EC-specific proteins such as VWF and VWFpp could serve as acute vascular injury biomarkers. In rat and dog models of DIVI, this profile was determined using pharmacologically diverse agents associated with functional stimulation/perturbation (DDAVP), pathological activation (lipopolysaccharide [LPS]/endotoxin), and structural damage (fenoldopam [FD], dopamine [DA], and potassium channel opener (PCO) ZD6169). In rats, FD caused moderate DIVI and time-related increase in plasma VWF levels ∼33% while in control rats VWF increased ∼5%. In dogs, VWF levels transiently increased ∼30% when there was morphologic evidence of DIVI by DA or ZD6169. However, in dogs, VWFpp increased >60-fold (LPS) and >6-fold (DDAVP), respectively. This was in comparison to smaller dynamic 1.38-fold (LPS) and 0.54-fold (DDAVP) increases seen in plasma VWF. Furthermore, DA was associated with a dose-dependent increase in plasma VWFpp. In summary, VWF and VWFpp can discriminate between physiological and pathological perturbation, activation, and injury to ECs. PMID:24499802

  9. Vasoactive neuroendocrine responses associated with tolerance to lower body negative pressure in humans

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sather, T. M.

    2000-01-01

    The purpose of this investigation was to test the hypothesis that peripheral vasoconstriction and orthostatic tolerance are associated with increased circulating plasma concentrations of noradrenaline, vasopressin and renin-angiotensin. Sixteen men were categorized as having high (HT, n=9) or low (LT, n=7) tolerance to lower body negative pressure (LBNP) based on whether the endpoint of their pre-syncopal-limited LBNP (peak LBNP) exposure exceeded -60 mmHg. The two groups were matched for age, height, weight, leg volume, blood volume and maximal oxygen uptake, as well as baseline blood volume and plasma concentrations of vasoactive hormones. Peak LBNP induced similar reductions in mean arterial pressure in both groups. The reduction in leg arterial pulse volume (measured by impedance rheography), an index of peripheral vascular constriction, from baseline to peak LBNP was greater (P<0.05) in the HT group (-0.041 +/- 0.005 ml 100 ml-1) compared to the reduction in the LT group (-0. 025 +/- 0.003 ml 100 ml-1). Greater peak LBNP in the HT group was associated with higher (P<0.05) average elevations in plasma concentrations of vasopressin (pVP, Delta=+7.2 +/- 2.0 pg ml-1) and plasma renin-angiotensin (PRA, Delta=+2.9 +/- 1.3 ng Ang II ml-1 h-1) compared to average elevations of pVP (+2.2 +/- 1.0 pg ml-1) and PRA (+0.1 +/- 0.1 ng Ang II ml-1 h-1) in the LT group. Plasma noradrenaline concentrations were increased (P<0.05) from baseline to peak LBNP in both HT and LT groups, with no statistically distinguishable difference between groups. These data suggest that the renin-angiotensin and vasopressin systems may contribute to sustaining arterial pressure and orthostatic tolerance by their vasoconstrictive actions.

  10. Vasoactive neuroendocrine responses associated with tolerance to lower body negative pressure in humans

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sather, T. M.

    2000-01-01

    The purpose of this investigation was to test the hypothesis that peripheral vasoconstriction and orthostatic tolerance are associated with increased circulating plasma concentrations of noradrenaline, vasopressin and renin-angiotensin. Sixteen men were categorized as having high (HT, n=9) or low (LT, n=7) tolerance to lower body negative pressure (LBNP) based on whether the endpoint of their pre-syncopal-limited LBNP (peak LBNP) exposure exceeded -60 mmHg. The two groups were matched for age, height, weight, leg volume, blood volume and maximal oxygen uptake, as well as baseline blood volume and plasma concentrations of vasoactive hormones. Peak LBNP induced similar reductions in mean arterial pressure in both groups. The reduction in leg arterial pulse volume (measured by impedance rheography), an index of peripheral vascular constriction, from baseline to peak LBNP was greater (P<0.05) in the HT group (-0.041 +/- 0.005 ml 100 ml-1) compared to the reduction in the LT group (-0. 025 +/- 0.003 ml 100 ml-1). Greater peak LBNP in the HT group was associated with higher (P<0.05) average elevations in plasma concentrations of vasopressin (pVP, Delta=+7.2 +/- 2.0 pg ml-1) and plasma renin-angiotensin (PRA, Delta=+2.9 +/- 1.3 ng Ang II ml-1 h-1) compared to average elevations of pVP (+2.2 +/- 1.0 pg ml-1) and PRA (+0.1 +/- 0.1 ng Ang II ml-1 h-1) in the LT group. Plasma noradrenaline concentrations were increased (P<0.05) from baseline to peak LBNP in both HT and LT groups, with no statistically distinguishable difference between groups. These data suggest that the renin-angiotensin and vasopressin systems may contribute to sustaining arterial pressure and orthostatic tolerance by their vasoconstrictive actions.

  11. Insulin resistance and vessel endothelial function.

    PubMed Central

    van Oostrom, A J H H M; Cabezas, M Castro; Rabelink, T J

    2002-01-01

    IRS is a complex disease consisting of a clustering of metabolic disorders, of which hyperglycaemia, hyper-insulinaemia and dyslipidaemia are the most important. Endothelial dysfunction plays an important role in the pathogenesis of atherosclerosis. The effects of hyperinsulinaemia seem to depend on lipidaemia and glycaemia. Hyperglycaemia and hyperlipidaemia have detrimental effects on endothelial function in the fasting as well as the postprandial states. In both situations, the generation of ROS and vasoactive molecules plays a major role in interfering with the atheroprotective endothelium-dependent NO system. Treatment of IRS in regard to endothelial function should be focused initially on lifestyle improvement, such as stopping smoking and eating a balanced diet containing antioxidant vitamins, folic-acid, L-arginine and long-chain omega-3 unsaturated FA. Strict glucose control has shown to improve endothelial function and decrease microvascular complications. However, macrovascular complications, in line with endothelial functional improvement, have so far been reduced only when treatment was focused on other characteristics of the IRS syndrome, in particular dyslipidaemia. Other relevant treatments include ACE inhibitors and thiazolidinediones, and probably tetrahydrobiopterin and folic acid supplementation. Future studies should address the effects of therapeutic neovascularization on endothelial dysfunction. PMID:12216328

  12. [Insulin, renin-angiotensin system, aldosterone and endothelial dysfunction].

    PubMed

    Rubio-Guerra, Alberto Francisco; Durán-Salgado, Montserrat Berenice

    2011-01-01

    Beyond its metabolic effects, insulin has several actions on the vasculature. Under normal conditions, insulin maintains normal endothelial function, but in the presence of insulin resistance, insulin leads to endothelial dysfunction. Insulin releases nitric oxide, which promotes an antiatherosclerotic, antiinflamatory and vasodilated state. However, in presence of high levels of angiotensin II, insulin activates pathways that lead to atherosclerosis, vasoconstriction and inflammation. We will review the actions of insulin on the vascular system, and its interactions with other vasoactive mediators, such as angiotensin II and endothelin-1.

  13. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    PubMed Central

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  14. Plasma vascular endothelial growth Factor-A (VEGF-A) and VEGF-A gene polymorphism are associated with hydrocele development in lymphatic filariasis.

    PubMed

    Debrah, Alexander Yaw; Mand, Sabine; Toliat, Mohammad Reza; Marfo-Debrekyei, Yeboah; Batsa, Linda; Nürnberg, Peter; Lawson, Bernard; Adjei, Ohene; Hoerauf, Achim; Pfarr, Kenneth

    2007-10-01

    Hydrocele is a build-up of fluid in the scrotal regions of a proportion of men infected with the filarial nematode Wuchereria bancrofti. Vascular endothelial growth factors (VEGF) are major mediators of vascular permeability and angiogenesis in the development and progression of many diseases, making them candidates in hydrocele development. We assessed the role of VEGF-A genetic polymorphisms in hydrocele development in a cohort of lymphatic filariasis patients from Ghana. Three VEGF-A promoter polymorphisms were examined. The C/C genotype at -460 was significantly higher in hydrocele patients ([P = 0.0007], OR = 3.8 [95% CI = 1.9-8.2]) than in non-hydrocele patients. Furthermore, plasma levels of VEGF-A were significantly higher in subjects with the C/C genotype than in those with other genotypes. Also, a positive correlation (R(2) = 0.412, P = 0.026) was observed between plasma VEGF-A and stage of hydrocele. The data suggest that the C polymorphism at -460 is a genetic risk factor for hydrocele development in lymphatic filariasis.

  15. Short-Term Peripheral Vasoactive Infusions in Pediatrics: Where Is the Harm?

    PubMed

    Patregnani, Jason T; Sochet, Anthony A; Klugman, Darren

    2017-08-01

    Pediatric shock represents a major cause of morbidity and mortality in the United States. Standardization of treatment such as volume resuscitation and vasoactive administration has resulted in improved patient outcomes. Vasoactives have been anecdotally associated with peripheral IV infiltration and extravasation. There is a paucity of evidence in pediatrics to determine the ideal route of vasoactive infusions and what, if any, risk factors and harm are associated with peripheral IV infiltration and extravasation. We aim to assess the frequency of and risk factors for peripheral IV infiltration and extravasation during peripheral IV vasoactive infusions in children admitted to the PICU. A retrospective, cohort study of all children admitted to a PICU from January 2012 to June 2014. Forty-four-bed PICU at Children's National Health System. All children 0-18 years old receiving a vasoactive infusion through a peripheral IV for a minimum of 1 hour. None. The primary outcomes of this study were incidence of peripheral IV infiltration and extravasation and resultant tissue injury. Secondary outcomes were peripheral IV characteristics and vasoactive infusion data. One hundred two patients met inclusion criteria. Sixty-two percent (63/102) were admitted with the diagnosis of septic shock. The most commonly used vasoactive agent was dopamine. The median peak Vasoactive Infusion Score was 10 (6-14). Peripheral IV infiltration and extravasation incidence was 2% (2/102) and neither event resulted in injury requiring medical or surgical intervention. Vasoactive infusions through peripheral IV in children admitted to the PICU with shock were observed to have a low incidence of peripheral IV infiltration and extravasation and resultant tissue injury. Short-term delivery of vasoactives via peripheral IV catheter in a highly monitored PICU setting appears to be safe.

  16. Effects of Transport Temperature on the Stability of Inflammatory, Hemostasis, Endothelial Function, and Oxidative Stress Plasma Biomarker Concentrations.

    PubMed

    Palmer, Octavia M Peck; Carter, Melinda; Chang, Chung-Chou H; Lucko, Nicole; Jackson, Vanessa M; Sun, Qian; Xie, Xinyan; Scott, Melanie; Kellum, John A; Venkat, Arvind; Yende, Sachin

    2017-06-01

    A number of studies in critically ill patients are conducted outside the hospital. Specimens should ideally be transported from out-of-hospital setting to a laboratory using dry ice, but this approach is expensive and may not be feasible in some circumstances. We, therefore, examined the impact of temperature during transport of specimens on the precision of biomarker concentrations. To determine the effects of transport temperature conditions on biomarker concentrations in specimens processed within 1 h of collection. We simulated transport by storing specimens at four temperature conditions: packaged at -80°C (control), on dry ice (-79°C), on cold gel packs (4°C), and at room temperature (RT, 21°C). We examined eight biomarkers spanning four signaling domains- inflammation, hemostasis, endothelial dysfunction, and oxidative stress. We calculated mean, median, and percent difference for each biomarker concentration compared with the control transport temperature at -80°C in 26 subjects (16 hospitalized with severe sepsis and 10 non-hospitalized volunteers). Patients with severe sepsis had log-fold higher median concentrations of IL-6, hs-CRP, D-dimer, E-selectin, sICAM-1, and sVCAM-1 compared with non-hospitalized volunteers (P <0.05). When specimens were combined, we observed a ≤7% difference in the mean and median IL-6, hs-CRP, D-dimer, PAI-1, E-selectin, s-ICAM, s-VCAM, and nitrite concentrations for dry ice and cold gel packs transport compared with transport at -80°C (P>0.05). Larger differences (up to 12%) were observed when biomarker concentrations for PAI-1 and s-VCAM at room temperature were compared with transport at -80°C (P >0.05). Select inflammatory, coagulation, endothelial dysfunction, and oxidative stress biomarkers can be transported at 4°C on gel packs for 24 h with minimal effects on precision.

  17. Higher vascular endothelial growth factor-C concentration in plasma is associated with increased forearm capillary filtration capacity in breast cancer-related lymphedema

    PubMed Central

    Jensen, Mads Radmer; Simonsen, Lene; Karlsmark, Tonny; Lanng, Charlotte; Bülow, Jens

    2015-01-01

    Breast cancer-related lymphedema (BCRL) is a frequent, chronic and debilitating swelling that mainly affects the ipsilateral arm and develops as a complication to breast cancer treatment. The pathophysiology is elusive opposing development of means for prediction and treatment. We have earlier shown that the forearm capillary filtration coefficient (CFC) is increased bilaterally in BCRL. In this study, we aimed to elucidate if increased CFC is associated with low-grade inflammation and/or vascular endothelial growth factor-c (VEGF-C) signaling. Fourteen patients with unilateral BCRL and nine matched breast cancer controls without BCRL participated. Forearm CFC was measured by venous congestion strain gauge plethysmography, and suction blisters were induced medially on the upper arms. Concentrations of 17 selected cytokines, VEGF-C, and total protein were measured in blister fluid and in plasma. Forearm CFC was higher bilaterally in BCRL subjects (P ≤ 0.036). No differences between forearms were found in either group. Plasma VEGF-C concentrations were significantly higher in the BCRL subjects (P < 0.001). In BCRL subjects, monocyte chemotactic protein 1 (MCP-1) (P = 0.009) and total protein (P = 0.035) concentrations were higher in blister fluid from edematous arms compared with nonedematous arms. No differences were found in interstitial cytokine or total protein concentrations between arms in control subjects. Higher plasma concentration of VEGF-C is a possible cause of bilaterally increased forearm CFC in BCRL subjects. Interstitially increased MCP-1 levels may augment local microvascular protein permeability in BCRL. PMID:26059032

  18. Vascular endothelial growth factor polymorphisms and a synchronized examination of plasma and tissue expression in epithelial ovarian cancers.

    PubMed

    Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2016-01-01

    In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.

  19. Hippocampal asymmetry in exploratory behavior to vasoactive intestinal polypeptide.

    PubMed

    Ivanova, Margarita; Ternianov, Alexandar; Belcheva, Stiliana; Tashev, Roman; Negrev, Negrin; Belcheva, Iren

    2008-06-01

    The effects of vasoactive intestinal polypeptide (VIP) microinjected uni- or bilaterally into the CA1 hippocampal area of male Wistar rats at a dose of 10, 50 and 100 ng on exploratory behavior were examined. VIP microinjected bilaterally at a high dose (100 ng) significantly decreased the horizontal movements, while at low doses (10 and 50 ng) had no effect on the exploratory activity. Microinjections of VIP into the left hippocampal CA1 area at doses 50 and 100 ng suppressed the exploratory activity, while right-side VIP administration at a dose 100 ng significantly increased horizontal movements compared to the respective controls. Vertical activity was stimulated only by VIP administered into the right hippocampal CA1 area at the three doses used. Neither bilateral nor left injections of VIP induced changes in the vertical movements. The main finding was the presence of hippocampal asymmetry in exploratory behavior to unilateral microinjections of VIP depending on the dose and the microinjected hemisphere.

  20. Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract

    SciTech Connect

    Zimmerman, R.P.; Gates, T.S.; Mantyh, C.R.; Vigna, S.R.; Boehmer, C.G.; Mantyh, P.W.

    1988-11-01

    Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of /sup 125/I-VIP receptor binding sites in the canine gastrointestinal tract. While the distribution of VIP binding sites was different for each segment examined, specific VIP binding sites were localized to the mucosa, the muscularis mucosa, the smooth muscle of submucosal arterioles, lymph nodules, and the circular and longitudinal smooth muscle of the muscularis externa. These results identify putative target tissues of VIP action in the canine gastrointestinal tract. In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility.

  1. Plasma fibronectin (opsonic glycoprotein): its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function.

    PubMed

    Saba, T M; Jaffe, E

    1980-04-01

    Progressive multiple organ failure in association with septic complications in the surgical, trauma and burn patient is of major clinical importance. Reticuloendothelial system host defense mechanisms are abnormal following severe trauma and burn. Failure in systemic host defense is, in part, mediated by a deficiency in a circulating opsonic alpha 2 surface binding (SB) glycoprotein. This opsonic deficiency and reticuloendothelial host defense failure appears etiologic in the genesis of organ failure with sepsis. Opsonic alpha 2SB glycoprotein is identical to cold-insoluble globulin or plasma fibronectin. Plasma fibronectin is antigenically related to cell surface fibronectin which appears to be synthesized by both fibroblasts and vascular endothelial cells. Although these two proteins are antigenically related, they may or may not be identical with respect to biochemical properties and function. Cell surface fibronectin appears to be an adhesive glycoprotein mediating cell-cell interaction and cell adhesion to a substratum. Plasma fibronectin is a more soluble form which mediates reticuloendothelial or macrophage clearance of particulates such as fibrin microaggregates, collagenous debris, perhaps other bacterial or nonbacterial particulates. Since opsonic glycoprotein is identical to cold-insoluble globulin which can be readily concentrated in plasma cryoprecipitate, it has been shown that cryoprecipitate infusion can reverse opsonic deficiency in the injured patient with sepsis. Reversal of opsonic deficiency by cryoprecipitate infusion results in a marked improvement in cardiopulmonary function which includes a decline in the pulmonary shunt, a decrease in the physiologic dead space, an increase in limb blood flow, an increase in reactive hyperemia of the peripheral circulation and an increase in limb oxygen consumption. This cardiopulmonary response is paralleled by a decline in the septic state and normalization of other hematologic parameters. These studies

  2. The role of vasoactive agents in shock therapy.

    PubMed

    Ogburn, P

    1976-05-01

    Vasoactive agents may have vasoconstrictor, vasodilator, cardiac stimulatory, or combined effects on the cardiovascular system. The intensity or degree of therapeutic effect differs with each agent. Table 1 provides a relative ranking of each discussed compound's effect regarding its ability to produce one or more of the listed effects. The effects of vasoconstrictor drugs such as methoxamine, phenylephrine, and norepinephrine have been generally unfavorable in shock because of the inhibition of tissue perfusion which results from their use. Debate still exists, however, and these agents have been shown to provide some benefit in selected cases. The rationale that shock results at least in part because of intense vasoconstriction has led to the usage of vasodilators in therapy. Currently isoproterenol, a beta adrenergic stimulating agent, is being used to elicit vasodilation in lieu of alpha blockage because the alpha blocking drugs phenoxybenzamine and chlorpromazine have longer, more irreversible effects. The merit of isoproterenol has to be evaluated in light light of its cardiac stimulatory effect. With the current antishock drugs, those which possess cardiac stimulatory effects seem to be most effective with the exception of those with alpha stimulatory properties. The importance of cardiac stimulation in treating shock is related to the fact that in many forms of shock a decrease in cardiac function is evident. Drugs which effect increases in cardiac performance will increase cardiac output and tissue perfusion. The increased excitability of the heart caused by many of the drugs is a drawback, but compounds such as dopamine seem to have less excitatory effect than does isoproterenol. It may be that vasoconstriction, vasodilation, and cardiac stimulation are all contributory to the alleviation of shock. However, it is important to remember that the use of vasoactive agents must be reserved for those deteriorating shock states in which primary and secondary

  3. Angiogenic tube formation of bovine aortic endothelial cells grown on patterns formed by H2/He plasma treatment of the plasma polymerized hexamethyldisiloxane film.

    PubMed

    Park, Jisoo; Ha, Myunghoon; Lee, Hye-Rim; Park, Heonyong; Yu, Jung-Hoon; Boo, Jin-Hyo; Jung, Donggeun

    2015-06-27

    Angiogenesis, the process to generate new vessels, is necessary for normal development in children as well as the wound healing and the tumor growth in adults. Therefore, it is physiologically and/or pathophysiologically significant to monitor angiogenesis. However, classical in vitro methods to evaluate angiogenesis take a long time and are expensive. Here, the authors developed a novel method to analyze the angiogenesis in a simple and economical way, using patterned films. In this study, the authors fabricated a plasma polymerized hexamethyldisiloxane (PPHMDSO) thin film deposited by capacitively coupled plasma chemical vapor deposition system with various plasma powers. The patterned PPHMDSO film was plasma treated by 10:90 H2/He mixture gas through a metal shadow mask. The films were characterized by water contact angle, atomic force microscopy, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses. Our results show that the PPHMDSO film suppresses the cell adhesion, whereas surface modified PPHMDSO film enhances the cell adhesion and proliferation. From cell culture experiments, the authors found that the patterned film with 300 μm line interval was most efficient to evaluate the tube formation, a sapient angiogenic indicator. This patterned film will provide an effective and promising method for evaluating angiogenesis.

  4. Vasoactive peptides during long-term follow-up of patients after cardiac transplantation.

    PubMed

    Kirchhoff, Wiebke Ch; Gradaus, Rainer; Stypmann, Joerg; Deng, Mario C; Tian, Tonny D T; Scheld, Hans H; Breithardt, Günter; Brisse, Betty

    2004-03-01

    Vasoactive peptides are accepted indicators of the degree of heart failure and its progression or improvement following medical therapy. Normalization of cardiac hemodynamics by cardiac transplantation (HTx) may lead to normalization of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) plasma levels shortly after the procedure. Long-term follow-up was done for 14 consecutive patients, 12 men and 2 women, 49 years of age (range 24 to 64 years). ANP and BNP were measured by radioimmunoassay (RIA) in central venous plasma samples (before breakfast, at steady state) at the following intervals after HTx: 7 to 30 (1), 31 to 60 (2), 61 to 90 (3), 120 to 180 (4) and 210 to 365 (5) days. During follow-up, ANP decreased significantly within 2 months after HTx and continued of this level, whereas BNP decreased continuously without reaching normal values. The mean ratio of ANP:BNP increased from 3.23 to 8.01 during follow-up. Whereas right atrial pressure (RAP), right ventricular pressure (RVP), right ventricular end-diastolic pressure (RVEDP) and pulmonary capillary wedge pressure (PCWP) did not change during follow-up, cardiac output (CO) improved slightly, but significantly from 5.21 liters/min to 5.9 liters/min (p = 0.035). Normalization of left ventricular function after orthotopic HTx does not induce an early diminution of ANP and BNP plasma levels to normal concentrations. Although elevated ANP concentrations showed only minimal changes within 1 year, BNP decreased significantly as early as 2 months after HTx, without reaching normal values during the year of follow-up. Also, the ratio of ANP and BNP increased significantly from 3.23 to 8.01. These results demonstrate the contribution of other factors beyond cardiac function that determine the levels of these peptides.

  5. Active immunization against vasoactive intestinal polypeptide decreases neuronal recruitment and inhibits reproduction in zebra finches.

    PubMed

    Vistoropsky, Yulia; Heiblum, Rachel; Smorodinsky, Nechama-Ina; Barnea, Anat

    2016-08-15

    Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Distribution of hypothalamic vasoactive intestinal peptide immunoreactive neurons in the male native Thai chicken.

    PubMed

    Kamkrathok, Boonyarit; Sartsoongnoen, Natagarn; Prakobsaeng, Nattiya; Rozenboim, Israel; Porter, Tom E; Chaiseha, Yupaporn

    2016-08-01

    Avian prolactin (PRL) secretion is under stimulatory control by the PRL-releasing factor (PRF), vasoactive intestinal peptide (VIP). The neuroendocrine regulation of the avian reproductive system has been extensively studied in females. However, there are limited data in males. The aim of this study was to elucidate the VIPergic system and its relationship to PRL and testosterone (T) in the male native Thai chicken. The distributions of VIP-immunoreactive (-ir) neurons and fibers were determined by immunohistochemistry. Changes in VIP-ir neurons within the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) areas were compared across the reproductive stages. Plasma levels of PRL and T were determined by enzyme-linked immunosorbent assay and then compared across the reproductive stages. The results revealed that the highest accumulations of VIP-ir neurons were concentrated only within the IH-IN, and VIP-ir neurons were not detected within other hypothalamic nuclei. Within the IH-IN, VIP-ir neurons were low in premature and aging males and markedly increased in mature males. Changes in VIP-ir neurons within the IH-IN were directly mirrored with changes in PRL and T levels across the reproductive stages. These results suggested that VIP neurons in the IH-IN play a regulatory role in year-round reproductive activity in males. The present study also provides additional evidence that VIP is the PRF in non-seasonal, continuously breeding equatorial species.

  7. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling*

    PubMed Central

    Zhao, Yingxin; Valbuena, Gustavo; Walker, David H.; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R.

    2016-01-01

    Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from

  8. Vasoactive Intestinal Polypeptide and Muscarinic Receptors: Supersensitivity Induced by Long-Term Atropine Treatment

    NASA Astrophysics Data System (ADS)

    Hedlund, Britta; Abens, Janis; Bartfai, Tamas

    1983-04-01

    Long-term treatment of rats with atropine induced large increases in the numbers of muscarinic receptors and receptors for vasoactive intestinal polypeptide in the salivary glands. Since receptors for vasoactive intestinal polypeptide coexist with muscarinic receptors on the same neurons in this preparation, the results suggest that a drug that alters the sensitivity of one receptor may also affect the sensitivity of the receptor for a costored transmitter and in this way contribute to the therapeutic or side effects of the drug.

  9. Learning to manage vasoactive drugs-A qualitative interview study with critical care nurses.

    PubMed

    Häggström, Marie; Bergsman, Ann-Christin; Månsson, Ulrika; Holmström, Malin Rising

    2017-04-01

    Being a nurse in an intensive care unit entails caring for seriously ill patients. Vasoactive drugs are one of the tools that are used to restore adequate circulation. Critical care nurses often manage and administer these potent drugs after medical advice from physicians. To describe the experiences of critical care nurses learning to manage vasoactive drugs, and to highlight the competence required to manage vasoactive drugs. Twelve critical care nurses from three hospitals in Sweden were interviewed. Qualitative content analysis was applied. The theme "becoming proficient requires accuracy, practice and precaution" illustrated how critical care nurses learn to manage vasoactive drugs. Learning included developing cognitive, psychomotor, and effective skills. Sources for knowledge refers to specialist education combined with practical exercises, collegial support, and accessible routine documents. The competence required to manage vasoactive drugs encompassed well-developed safety thinking that included being careful, in control, and communicating failures. Specific skills were required such as titrating doses, being able to analyse and evaluate the technological assessments, adapting to the situation, and staying calm. Learning to manage vasoactive drugs requires a supportive introduction for novices, collegial support, lifelong learning, and a culture of safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Actions of vasoactive intestinal peptide and secretin on chief cells prepared from guinea pig stomach

    SciTech Connect

    Sutliff, V.E.; Raufman, J.P.; Jensen, R.T.; Gardner, J.D.

    1986-07-01

    Vasoactive intestinal peptide and secretin increased cellular cAMP and pepsinogen secretion in dispersed chief cells from guinea pig gastric mucosa. With each peptide there was a close correlation between the dose-response curve for changes in cellular cAMP and that for changes in pepsinogen secretion. Vasoactive intestinal peptide- (10-28) and secretin- (5-27) had no agonist activity and antagonized the actions of vasoactive intestinal peptide and secretin on cellular cAMP and pepsinogen secretion. Studies of binding of SVI-vasoactive intestinal peptide and of SV-secretin indicated that gastric chief cells possess four classes of binding sites for vasoactive intestinal peptide and secretin and that occupation of two of these classes of binding sites correlates with the abilities of vasoactive intestinal peptide and secretin to increase cellular cAMP and pepsinogen secretion. What function, in any, is mediated by occupation by the other two classes of binding sites remains to be determined.

  11. Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes

    PubMed Central

    Marpegan, Luciano; Krall, Thomas J.; Herzog, Erik D.

    2009-01-01

    Many mammalian cell types show daily rhythms in gene expression driven by a circadian pacemaker. For example, cultured astrocytes display circadian rhythms in Period1 and Period2 expression. It is not known, however, how or which intercellular factors synchronize and sustain rhythmicity in astrocytes. Because astrocytes are highly sensitive to vasoactive intestinal polypeptide (VIP), a neuropeptide released by neurons and important for the coordination of daily cycling, we hypothesized that VIP entrains circadian rhythms in astrocytes. We used astrocyte cultures derived from knock-in mice containing a bioluminescent reporter of PERIOD2 (PER2) protein, to assess the effects of VIP on the rhythmic properties of astrocytes. VIP induced a dose-dependent increase in the peak-to-trough amplitude of the ensemble rhythms of PER2 expression with maximal effects near 100nM VIP and threshold values between 0.1 and 1 nM. VIP also induced dose- and phase-dependent shifts in PER2 rhythms and daily VIP administration entrained bioluminescence rhythms of astrocytes to a predicted phase angle. This is the first demonstration that a neuropeptide can entrain glial cells to a phase predicted by a phase response curve. We conclude that VIP potently entrains astrocytes in vitro and is a candidate for coordinating daily rhythms among glia in the brain. PMID:19346450

  12. Trigeminal ganglion cells cocultured with gut express vasoactive intestinal peptide.

    PubMed

    Davis, J P; Epstein, M L

    1987-12-01

    The plasticity of neural crest cells for the expression of adrenergic and cholinergic transmitter phenotypes has been well studied. The object of this study was to determine if cells of a sensory ganglion are capable of neuropeptide transmitter plasticity. We studied whether cells of the trigeminal ganglion, which do not express the neuropeptide vasoactive intestinal peptide (VIP) in vivo, would express this peptide when grown with a tissue the gut, that contains large numbers of VIP neurons. Embryonic aneural chick rectum was explanted with the embryonic quail trigeminal ganglion on the chorioallantoic membrane of chick hosts for 7-8 days. The explants were fixed, sectioned, and stained for VIP immunoreactivity (IR), for neurofilament protein immunoreactivity, and for the quail nucleolar marker. In sections of the explants we observed two populations of quail neurons: small (10-13 microns) VIP-IR cells and large (25-32 microns) cells lacking VIP-IR and resembling native trigeminal neurons. Trigeminal ganglia explanted with embryonic heart or trigeminal ganglia explanted alone lacked small VIP-IR cells but contained large VIP-negative neurons. These results show that cells of the trigeminal ganglion grown with the gut can express a neuropeptide they do not express in the absence of the gut or in vivo. Thus the embryonic trigeminal ganglion contains cells that are plastic with respect to neuropeptide expression.

  13. Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus

    SciTech Connect

    Kusunoki, M.; Tsai, L.H.; Taniyama, K.; Tanaka, C.

    1986-07-01

    Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatment with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.

  14. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    SciTech Connect

    Brenneman, D.E.; Eiden, L.E.

    1986-02-01

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and SVI-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides, PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated.

  15. Vasoactivity of hydrogen sulfide in normoxic and anoxic turtles (Trachemys scripta).

    PubMed

    Stecyk, Jonathan A W; Skovgaard, Nini; Nilsson, Göran E; Wang, Tobias

    2010-05-01

    Systemic vascular resistance (R(sys)) of freshwater turtles increases substantially during anoxia, but the underlying mechanisms are not fully understood. We investigated whether hydrogen sulfide (H(2)S), an endogenously produced metabolite believed to be an O(2) sensor/transducer of vasomotor tone, contributes to the increased R(sys) of anoxic red-eared slider turtles (Trachemys scripta). Vascular infusion of the H(2)S donor NaHS in anesthetized turtles at 21 degrees C and fully recovered normoxic turtles at 5 degrees C and 21 degrees C revealed H(2)S to be a potent vasoconstrictor of the systemic circulation. Likewise, wire myography of isolated turtle mesenteric and pulmonary arteries demonstrated H(2)S to mediate an anoxia-induced constriction. Intriguingly, however, NaHS did not exert vasoconstrictory effects during anoxia (6 h at 21 degrees C; 14 days at 5 degrees C) when plasma H(2)S concentration, estimated from the colorimetric measurement of plasma acid-labile sulfide concentration, likely increased by approximately 3- and 4-fold during anoxia at 21 degrees C, and 5 degrees C, respectively. Yet, blockade of endogenous H(2)S production by DL-propargylglycine or hydroxylamine (0.44 mmol/kg) partially reversed the decreased systemic conductance (G(sys)) exhibited by 5 degrees C anoxic turtles. These findings suggest that the signal transduction pathway of H(2)S-mediated vasoactivity is either maximally activated in the systemic circulation of anoxic turtles and/or that it is oxygen dependent.

  16. Endothelial dysfunction: the early predictor of atherosclerosis.

    PubMed

    Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans

    2012-05-01

    Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.

  17. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds.

    PubMed

    Vermeulen, Pieter; Dickens, Stijn; Degezelle, Karlien; Van den Berge, Stefaan; Hendrickx, Benoit; Vranckx, Jan Jeroen

    2009-07-01

    In search of an autologous vascularized skin substitute, we treated full-thickness wounds (FTWs) with autologous platelet-rich plasma gel (APG) in which we embedded endothelial progenitor cells (EPCs) and basal cell keratinocytes (KCs). We cultivated autologous KCs in low-serum conditions and expanded autologous EPCs from venous blood. FTWs (n = 55) were created on the backs of four pigs, covered with wound chambers, and randomly assigned to the following treatments: (1) APG, (2) APG + KCs, (3) APG + EPCs, (4) APG + KCs + EPCs, and (5) saline. All wounds were biopsied to measure neovascularization (lectin Bandeiraea Simplicifolia-1 (BS-1), alpha smooth muscle actin [alphaSMA], and membrane type 1 matrix metalloproteinase (MT1-MMP)), matrix deposition (fibronectin, collagen type I/III, and alphavbeta3), and reepithelialization. Wound fluids were analyzed for protein expression. All APG-treated wounds showed more vascular structures (p < 0.001), and the addition of EPCs further improved neovascularization, as confirmed by higher lectin, alphaSMA, and MT1-MMP. APG groups had higher collagen I/III (p < 0.05), alphavbeta3, and fibronectin content (p < 0.001), and they exhibited higher concentrations of platelet-derived growth factor subunit bb, basic fibroblast growth factor, hepatocyte growth factor, insulin growth factor-1, transforming growth factor-beta1 and -beta3, matrix metalloproteinase-1 and -z9, and tissue-inhibiting matrix metalloproteinase-1 and -2. Applying APG + KCs resulted in the highest reepithelialization rates (p < 0.001). No differences were found for wound contraction by planimetry. In this porcine FTW model, APG acts as a supportive biomatrix that, along with the embedded cells, improves extracellular matrix organization, promotes angiogenesis, and accelerates reepithelialization.

  18. The role of vasoactive intestinal peptide in scavenging singlet oxygen

    SciTech Connect

    Misra, B.R.; Misra, H.P. )

    1990-02-26

    The neuropeptide vasoactive intestinal peptide (VIP), a highly basic 28 amino acid peptide, has a widespread distribution in the body. The functional specificity of this peptide not only includes its potent vasodilatory activity, but also its role in protecting lungs against acute injury, in preventing T-lymphocyte proliferation and in modulating immune function. The purpose of this study was to examine the possible antioxidant properties of VIP. The authors found that VIP up to 50 {mu}g/ml had no inhibitory effect on its reduction of cytochrome C by xanthine and xanthine oxidase, indicating that the peptide does not have significant O{sub 2} scavenging ability. However, VIP was found to inhibit, in a dose-dependent manner, the {sup 1}O{sub 2} dependent 2, 2, 6, 6 tetramethyl piperidine oxide (TEMPO) formation. {sup 1}O{sub 2} was produced by rose benzal photosensitizing system and was detected as TEMP-{sup 1}O{sub 2} adduct (TEMPO) by electron paramagnetic resonance (EPR) spectroscopic technique. The formation of TEMPO signal was strongly inhibited by {beta}-carotene, histidine as well as azide, but not by superoxide dismutase (48 {mu}g/ml), catalase (20 {mu}g/ml) and mannitol (6mM), indicating that TEMPO signal was a TEMP-{sup 1}O{sub 2} adduct. These results indicate that VIP has potent antioxidant activity and may serve as a singlet O{sub 2} scavenger, thus it may modulate the oxidative tissue injury caused by this reactive oxygen species.

  19. Cloning and expression of the human vasoactive intestinal peptide receptor.

    PubMed Central

    Sreedharan, S P; Robichon, A; Peterson, K E; Goetzl, E J

    1991-01-01

    Vasoactive intestinal peptide (VIP) is a neuroendocrine mediator found in the central and peripheral nervous system. Distinct subsets of neural, respiratory, gastrointestinal, and immune cells bear specific high-affinity receptors for VIP, which are associated with a guanine nucleotide-binding (G) protein capable of activating adenylate cyclase. A cDNA clone (GPRN1) encoding the human VIP receptor was identified in libraries prepared from the Nalm 6 line of leukemic pre-B lymphoblasts and the HT-29 line of colon carcinoma cells. The deduced 362-amino acid polypeptide sequence encoded by GPRN1 shares a seven-transmembrane-segment hydropathicity profile with other G protein-coupled receptors. Northern blot analyses identified a 2.7-kilobase transcript of the VIP receptor in Nalm 6 and HT-29 cells as well as in tissues from rat brain, colon, heart, lung, kidney, spleen, and small intestine. COS-6 cells transfected with GPRN1 bound 125I-labeled VIP specifically with a dissociation constant (Kd) of 2.5 nM. VIP--and less effectively secretin, peptide histidine isoleucine (PHI), and glucagon competitively displaced bound 125I-VIP from transfected COS-6 cells, with potencies in the order VIP greater than secretin = PHI much greater than glucagon. VIP stimulated adenylate cyclase activity in stably transfected Chinese hamster ovary K1 cells, inducing a 3-fold increase in the intracellular level of cAMP. When the antisense orientation of the VIP receptor clone was introduced into HT-29 cells, there was a 50% suppression of the specific binding of 125I-VIP and of the VIP-induced increase in cAMP level, relative to untransfected cells. The VIP receptor cloned exhibits less than or equal to 24% homology with other receptors in the same superfamily and thus represents a subset of G protein-coupled receptors for peptide ligands. Images PMID:1675791

  20. Down-Regulation of GABAA Receptor via Promiscuity with the Vasoactive Peptide Urotensin II Receptor. Potential Involvement in Astrocyte Plasticity

    PubMed Central

    Lecointre, Céline; Schouft, Marie-Thérèse; Leprince, Jérôme; Compère, Vincent; Morin, Fabrice; Proust, François; Gandolfo, Pierrick; Tonon, Marie-Christine; Castel, Hélène

    2012-01-01

    GABAA receptor (GABAAR) expression level is inversely correlated with the proliferation rate of astrocytes after stroke or during malignancy of astrocytoma, leading to the hypothesis that GABAAR expression/activation may work as a cell proliferation repressor. A number of vasoactive peptides exhibit the potential to modulate astrocyte proliferation, and the question whether these mechanisms may imply alteration in GABAAR-mediated functions and/or plasma membrane densities is open. The peptide urotensin II (UII) activates a G protein-coupled receptor named UT, and mediates potent vasoconstriction or vasodilation in mammalian vasculature. We have previously demonstrated that UII activates a PLC/PIPs/Ca2+ transduction pathway, via both Gq and Gi/o proteins and stimulates astrocyte proliferation in culture. It was also shown that UT/Gq/IP3 coupling is regulated by the GABAAR in rat cultured astrocytes. Here we report that UT and GABAAR are co-expressed in cerebellar glial cells from rat brain slices, in human native astrocytes and in glioma cell line, and that UII inhibited the GABAergic activity in rat cultured astrocytes. In CHO cell line co-expressing human UT and combinations of GABAAR subunits, UII markedly depressed the GABA current (β3γ2>α2β3γ2>α2β1γ2). This effect, characterized by a fast short-term inhibition followed by drastic and irreversible run-down, is not relayed by G proteins. The run-down partially involves Ca2+ and phosphorylation processes, requires dynamin, and results from GABAAR internalization. Thus, activation of the vasoactive G protein-coupled receptor UT triggers functional inhibition and endocytosis of GABAAR in CHO and human astrocytes, via its receptor C-terminus. This UII-induced disappearance of the repressor activity of GABAAR, may play a key role in the initiation of astrocyte proliferation. PMID:22563490

  1. Single automated donor plateletpheresis increases the plasma level of proinflammatory cytokine tumor necrosis factor-alpha which does not associate with endothelial release markers von Willebrand factor and fibronectin.

    PubMed

    Karadoğan, I; Ozdoğan, M; Undar, L

    2000-12-01

    The effect of plateletpheresis on endothelium, which has strong effects on blood coagulation, fibrinolysis and platelet function, is not known. Activation of leukocytes and subsequent generation of proinflammatory cytokines during the extracorporeal circulation may activate the endothelium. To test this hypothesis we measured plasma levels of tumor necrosis factor (TNF)-alpha as a prototype of the proinflammatory cytokines, and von Willebrand factor (vWF) and fibronectin as endothelial release/damage markers before and after a single plateletpheresis procedure on an intermittent-flow machine Haemonetics MCS 3p in 17 healthy donors. We found a significant increase in median plasma level of TNF-alpha following plateletpheresis (3.5 vs 26.5 pg/ml, P=0.02). Such increases in vWF and fibronectin were not observed. The increase in plasma TNF-alpha indicates that a single plateletpheresis procedure causes leukocyte activation which does not seemingly impair endothelial cell function. The relation of plateletpheresis-induced proinflammatory cytokine release to some adverse effects observed in both donors and recipients, and the effect of repeated plateletpheresis on endothelium deserve further studies.

  2. Cosecretion of peptide histidine methionine (PHM) and vasoactive intestinal peptide (VIP) in patients with VIP-producing tumors.

    PubMed

    Fahrenkrug, J; Pedersen, J H

    1986-01-01

    Regional specific antibodies and chromatography were used to analyze the concentration and molecular forms of vasoactive intestinal peptide (VIP) and peptide histidine methionine (PHM) in plasma from 39 patients with VIP-producing tumors. Plasma VIP concentrations ranged from 29 to 2550 pmol/l and the corresponding PHM immunoreactive values measured with C-terminally directed antibody were 42 to 2100 pmol/l which correlated closely with the VIP concentrations. N-terminal PHM concentrations were significantly higher than the C-terminal values ranging from 92 to 5850 pmol/l and correlated poorly with the corresponding VIP concentrations. Infusion experiments with PHM disclosed that the higher levels of N-terminal immunoreactivity could not be explained by slower metabolic clearance or by degradation to smaller N-terminal immunoreactive forms. N-terminally directed PHM antibody revealed, in addition to intact PHM, a larger immunoreactive form in patient plasma which constituted the major proportion of the total immunoreactivity. In conclusion, VIP and PHM are cosecreted from VIPomas and measurement of PHM, especially N-terminal immunoreactivity, may be useful in this condition.

  3. Measurement of vasoactive intestinal peptide using a competitive fluorescent microsphere immunoassay or ELISA in human blood samples.

    PubMed

    Song, Eun Young; VanDunk, Cassandra; Kuddo, Thea; Nelson, Phillip G

    2005-05-01

    The concentration of Vasoactive Intestinal Peptide (VIP) as measured by recycling immunoaffinity chromatography (RIC) has been reported to be elevated in the blood of patients with autism as compared with normal subjects. In this study, we have developed a "Competitive Fluorescent Microsphere Immunoassay" (cFMI) in which VIP competes with biotinylated VIP in binding to polyclonal antibodies on microspheres. The results were obtained using the Luminex100 system. We measured VIP in serum, plasma, and material eluted from dried blood spots on filter paper with both the cFMI and an ELISA procedure. We found that a purification procedure was necessary for obtaining useful results from plasma and serum, however, a preincubation step was required with the blood eluates. This newly developed cFMI was more sensitive (2.5 vs. 20.0 pg/ml), and more reproducible than the ELISA. To get accurate measurements of VIP in eluted material high sensitivity is especially important. Thus, the cFMI using the Luminex system has definite advantages over a conventional ELISA including the possibility that samples can be assayed at higher dilutions. We have determined that the VIP concentrations of serum, plasma, and dried blood spot eluate specimens as measured with the cFMI assay system were similar to those measured with ELISA. Thus, the new cFMI using Luminex system may be useful for detection of VIP in human blood samples.

  4. Vasoactive intestinal peptide, a promising agent for myopia?

    PubMed Central

    Cakmak, Ayse Idil; Basmak, Hikmet; Gursoy, Huseyin; Ozkurt, Mete; Yildirim, Nilgun; Erkasap, Nilufer; Bilgec, Mustafa Deger; Tuncel, Nese; Colak, Ertugrul

    2017-01-01

    AIM To investigate the role of vasoactive intestinal peptide (VIP) in form-deprivation myopia (FDM). METHODS FDM was created in three groups of eight chicks by placing a translucent diffuser on their right eyes. Intravitreal injections of saline and VIP were applied once a day into the occluded eyes of groups 2 and 3, respectively. Retinoscopy and axial length (AL) measurements were performed on the first and 8th days of diffuser wear. The retina mRNA levels of the VIP receptors and the ZENK protein in right eyes of the three groups and left eyes of the first group on day 8 were determined using real time polymerase chain reaction (PCR). RESULTS The median final refraction (D) in right eyes were -13.75 (-16.00, -12.00), -11.50 (-12.50, -7.50), and -1.50 (-4.75, -0.75) in groups 1, 2, and 3, respectively (P<0.001). The median AL (mm) in right eyes were 10.65 (10.00, 11.10), 9.90 (9.70, 10.00), and 9.20 (9.15, 9.25) in groups 1, 2, and 3, respectively (P<0.001). The median delta-delta cycle threshold (CT) values for the VIP2 receptors were 1.07 (0.82, 1.43), 1.22 (0.98, 1.65), 0.29 (0.22, 0.45) in right eyes of groups 1, 2, and 3, and 1.18 (0.90, 1.37) in left eyes of group 1, respectively (P=0.001). The median delta-delta CT values for the ZENK protein were 1.07 (0.63, 5.03), 3.55 (2.20, 5.55), undetectable in right eyes of groups 1, 2, and 3 and 1.89 (0.21, 4.73) in left eyes of group 1, respectively (P=0.001). CONCLUSION VIP has potential inhibitory effects in the development of FDM. PMID:28251078

  5. Extensive Variability in Vasoactive Agent Therapy: A Nationwide Survey in Chinese Intensive Care Units

    PubMed Central

    Pei, Xian-Bo; Ma, Peng-Lin; Li, Jian-Guo; Du, Zhao-Hui; Zhou, Qing; Lu, Zhang-Hong; Yun, Luo; Hu, Bo

    2015-01-01

    Background: Inconsistencies in the use of the vasoactive agent therapy to treat shock are found in previous studies. A descriptive study was proposed to investigate current use of vasoactive agents for patients with shock in Chinese intensive care settings. Methods: A nationwide survey of physicians was conducted from August 17 to December 30, 2012. Physicians were asked to complete a questionnaire which focused on the selection of vasoactive agents, management in the use of vasopressor/inotropic therapy, monitoring protocols when using these agents, and demographic characteristics. Results: The response rate was 65.1% with physicians returning 586 valid questionnaires. Norepinephrine was the first choice of a vasopressor used to treat septic shock by 70.8% of respondents; 73.4% of respondents favored dopamine for hypovolemic shock; and 68.3% of respondents preferred dopamine for cardiogenic shock. Dobutamine was selected by 84.1%, 64.5%, and 60.6% of respondents for septic, hypovolemic, and cardiogenic shock, respectively. Vasodilator agents were prescribed by physicians in the management of cardiogenic shock (67.1%) rather than for septic (32.3%) and hypovolemic shock (6.5%). A significant number of physicians working in teaching hospitals were using vasoactive agents in an appropriate manner when compared to physicians in nonteaching hospitals. Conclusions: Vasoactive agent use for treatment of shock is inconsistent according to self-report by Chinese intensive care physicians; however, the variation in use depends upon the form of shock being treated and the type of hospital; thus, corresponding educational programs about vasoactive agent use for shock management should be considered. PMID:25881592

  6. Medial septal and median raphe innervation of vasoactive intestinal polypeptide-containing interneurons in the hippocampus.

    PubMed

    Papp, E C; Hajos, N; Acsády, L; Freund, T F

    1999-05-01

    Vasoactive intestinal polypeptide-immunoreactive interneurons are known to form three anatomically and neurochemically well-characterized neuron populations in the hippocampus. Two of these establish synaptic contacts selectively with other GABAergic cells (interneuron-selective cells), whereas the third type innervates pyramidal cell bodies and proximal dendrites like a conventional basket cell. Our aim was to examine which of the vasoactive intestinal polypeptide-containing interneuron populations are among the targets of GABAergic septohippocampal and serotonergic raphe-hippocampal pathways. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with double immunocytochemistry for vasoactive intestinal polypeptide was used at the light and electron microscopic levels. Our results show that both interneuron-selective cells and vasoactive intestinal polypeptide-containing basket cells receive synaptic input from the medial septum and median raphe nucleus. The GABAergic component of the septohippocampal pathway establishes multiple contacts on both cell types. In the case of the raphe-hippocampal projection, single or double contacts were more frequent on vasoactive intestinal polypeptide-positive interneuron selective cells (76%), whereas multiple contacts predominated on basket cells (83%). The extrinsic GABAergic innervation of interneuron-selective cells in the hippocampus indicates a complex interaction among GABAergic systems, which might ensure the timing and rhythmic synchronization of inhibitory processes in the hippocampus. On the other hand, our results suggest that the serotonergic effect on perisomatic inhibition is exerted via vasoactive intestinal polypeptide-containing basket cells that are functionally distinct from their parvalbumin-positive relatives, which appear to escape control of serotonergic as well as local interneuron-selective cells.

  7. Pancreatic vasoactive intestinal polypeptide-oma as a cause of secretory diarrhoea.

    PubMed

    Masel, S L; Brennan, B A; Turner, J H; Cullingford, G L; Cullen, D J

    2000-04-01

    A 42-year-old woman presented with a 4-year history of worsening diarrhoea that was watery, profuse and confirmed to be secretory in nature. She had tested positive for phenolphthalein on urinary laxative screening but continued to deny laxative usage. Her vasoactive intestinal polypeptide (VIP) level was subsequently found to be markedly elevated. Despite a normal abdominal ultrasound, a computed tomography scan revealed a 5-cm pancreatic tail mass. Octreotide scanning was used to exclude metastatic disease and she went on to have surgical removal of a localized pancreatic vasoactive intestinal polypeptide-oma which resulted in the complete resolution of her diarrhoea.

  8. Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis.

    PubMed

    Barton, Matthias

    2010-10-01

    Endothelial cells are both the source and target of factors contributing to atherosclerosis. After the discovery of the endothelium-derived relaxing factor (EDRF) by Robert F. Furchgott in 1980 it soon became clear that endothelial cells also release vasoactive factors distinct from nitric oxide (NO) namely, endothelium-derived contracting factors (EDCF) as well as hyperpolarizing factors (EDHF). Vasoactive factors derived from endothelial cells include NO/EDRF, reactive oxygen species, endothelins and angiotensins which have either EDRF or EDCF functions, cyclooxygenase-derived EDCFs and EDRFs, and EDHFs. Endothelial factors are formed by enzymes such as NO synthase, cyclooxygenase, converting enyzmes, NADPH oxidases, and epoxigenases, among others, and participate in the regulation of vascular homeostasis under physiological conditions; however, their abnormal regulation due to endothelial cell dysfunction contributes to disease processes such as atherosclerosis, arterial hypertension, and renal disease. Because of recent changes in world demographics and the declining health status of the world's population, both aging and obesity as independent risk factors for atherosclerosis-related diseases such as coronary artery disease and stroke, will continue to increase in the years to come. Obesity and associated conditions such as arterial hypertension and diabetes are now also some of the primary health concerns among children and adolescents. The similarities of pathomechanisms activated in obesity and aging suggest that obesity--at least in the vasculature--can be considered to have effects consistent with accelerated, "premature" aging. Pathomechanisms as well as the clinical issues of obesity- and aging-associated vascular changes important for atherosclerosis development and prevention are discussed.

  9. Secondary endothelial dysfunction: hypertension and heart failure.

    PubMed

    Boulanger, C M

    1999-01-01

    The endothelium is a major regulator of vascular tone, releasing vasoactive substances such as endothelium-derived nitric oxide (EDRF), endothelium-derived hyperpolarizing factor(s), cycloxygenase metabolites, endothelin and other endothelium-derived contracting factors (EDCF). In a number of cardiovascular pathologies, such as hypertension or heart failure, the balance in the endothelial production of vasodilating and vasoconstricting mediators is altered. The resulting apparent decrease in endothelium-dependent relaxations is termed 'endothelial dysfunction'. In hypertensive patients and in animal models of hypertension, endothelium-dependent relaxations are impaired. However, this endothelial dysfunction presents different characteristics depending on the model studied. In Dahl-salt-sensitive rats, the decrease in endothelium-dependent relaxations is associated with impaired constitutive nitric oxide synthase activity. The presence of an endogenous nitric oxide synthase inhibitor and a decreased response of vascular smooth muscle to the mediator may contribute also to the dysfunction observed in this model. In other animal models of hypertension (such as spontaneous hypertension). the contribution of the L-arginine nitric oxide pathway to endothelium-dependent responses appears normal or impaired despite reports of increased nitric oxide synthase activity or expression. In large arteries from SHR, endothelium-dependent relaxations are impaired mainly because of the concomitant augmented release of endoperoxides activating thromboxane-endoperoxide receptors. Superoxide anions may also play a role in some models, but only in the early phase of the disease: whether or not these species contribute to further development of endothelial dysfunction or to increases in blood pressure remains to be examined. The endothelial dysfunction observed in hypertension is likely to be a consequence of high blood pressure. but it could facilitate the maintenance of elevated

  10. Is plasma urotensin II concentration an indicator of myocardial damage in patients with acute coronary syndrome?

    PubMed Central

    Babińska, Magdalena; Holecki, Michał; Prochaczek, Fryderyk; Owczarek, Aleksander; Kokocińska, Danuta; Więcek, Andrzej

    2012-01-01

    Introduction Urotensin II (UII) is a vasoactive peptide secreted by endothelial cells. Increased plasma UII concentration was observed in patients with heart failure, liver cirrhosis, diabetic nephropathy and renal insufficiency. In patients with myocardial infarction both increased and decreased plasma UII concentrations were demonstrated. The aim of this study was to analyze whether plasma UII concentration reflects the severity of acute coronary syndrome (ACS). Material and methods One hundred and forty-nine consecutive patients with ACS, without age limit, were enrolled in the study. In all patients plasma concentration of creatinine, creatine kinase isoenzyme MB (CK-MB), troponin C, N-terminal prohormone of brain natriuretic peptide (NT-pro BNP), and UII were assessed, and echocardiography was performed in order to assess the degree of left ventricular hypertrophy, ejection fraction (EF) and mass (LVM). Results In patients with the highest risk (TIMI 5-7) plasma UII concentration was significantly lower than in those with low risk (TIMI 1-2): 2.61±1.47 ng/ml vs. 3.60±2.20 ng/ml. Significantly lower plasma UII concentration was found in patients with increased concentration of troponin C (2.60±1.52 ng/ml vs. 3.41±2.09 ng/ml). There was a significant negative correlation between plasma UII concentration and TIMI score or concentration of troponin C, but not CK-MB. Borderline correlation between plasma UII and ejection fraction (R = 0.157; p=0.063) or NT-proBNP (R = − 0.156; p=0.058) was found. Conclusions Decreased plasma urotensin II concentration in patients with ACS could be associated with more severe injury of myocardium. PMID:22851999

  11. A comparison of the ventilatory, cardiovascular and metabolic effects of salbutamol, aminophylline and vasoactive intestinal peptide in normal subjects.

    PubMed Central

    Morice, A H; Schofield, P; Keal, E E; Sever, P S

    1986-01-01

    Intravenous infusion of placebo for 30 min followed by either salbutamol 10 micrograms min-1, aminophylline 0.2 mg kg-1 min-1 or vasoactive intestinal peptide (VIP) 6 pmol kg-1 min-1 for 30 min was performed in a single blind fashion in six normal volunteers. Both salbutamol and aminophylline increased minute ventilation, (P less than 0.05) the mean increase being 26% and 19% respectively. Aminophylline also increased the ventilatory response to carbon dioxide by 47% (P less than 0.05) when measured by hyperoxic rebreathing, whereas salbutamol and VIP were without significant effect. All three drugs caused a tachycardia, mean increase in the pulse being 16, 8 and 2 beats min-1 for salbutamol, aminophylline and VIP respectively, and aminophylline also increased both systolic and diastolic blood pressure, mean arterial pressure increasing by 14 mmHg. VIP caused haemoconcentration and salbutamol the expected changes in plasma biochemistry. Plasma catecholamines increased slightly during drug infusion, although this effect is unlikely to be important. PMID:3756064

  12. Vasoactive Intestinal Peptide–Null Mice Demonstrate Enhanced Sweet Taste Preference, Dysglycemia, and Reduced Taste Bud Leptin Receptor Expression

    PubMed Central

    Martin, Bronwen; Shin, Yu-Kyong; White, Caitlin M.; Ji, Sunggoan; Kim, Wook; Carlson, Olga D.; Napora, Joshua K.; Chadwick, Wayne; Chapter, Megan; Waschek, James A.; Mattson, Mark P.; Maudsley, Stuart; Egan, Josephine M.

    2010-01-01

    OBJECTIVE It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. RESEARCH DESIGN AND METHODS Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. RESULTS VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet β-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. CONCLUSIONS This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself. PMID:20150284

  13. Differences and significance of motilin, vasoactive intestinal peptide and gastrin in blood and gallbladder tissues of patients with gallstones.

    PubMed

    Zhang, Zhen-Hai; Wu, Shuo-Dong; Su, Yang; Jin, Jun-Zhe; Fan, Ying; Yu, Hong; Zhang, Li-Kui

    2008-02-01

    The disorders of gallbladder motility may play an important role in the formation of gallstones. Many neural and hormonal factors and their interactions regulate gallbladder motility and bile flow into the duodenum. Further study in these factors may help to reveal the etiology of gallbladder diseases. This study was undertaken to assess the relationship of the levels of motilin, vasoactive intestinal peptide (VIP) and gastrin in blood and gallbladder tissues with the formation of cholelithiasis. The levels of motilin, gastrin and VIP in blood and gallbladder tissues of 36 patients with gallbladder stones, 14 patients with gallbladder polyps, 10 healthy volunteers and 10 patients with common bile duct stones were measured by radioimmunoassay. The level of motilin in plasma and gallbladder tissues of the gallbladder stone group was higher than that of the control and gallbladder polyp groups (P<0.05). The levels of plasma VIP and serum gastrin were much higher than those of the other three groups (P<0.01). The level of VIP in gallbladder tissues was higher than that of the control and gallbladder polyp groups (P<0.01). The abnormal excretion of hormonal factors is closely related to gallstone formation. The high level of VIP in gallbladder tissues may be an important cause of gallbladder hypomotility. The abnormal level of serum gastrin may be related to the gastrointestinal symptoms of patients with gallstones.

  14. Aspirate from human stented saphenous vein grafts induces epicardial coronary vasoconstriction and impairs perfusion and left ventricular function in rat bioassay hearts with pharmacologically induced endothelial dysfunction.

    PubMed

    Lieder, Helmut R; Baars, Theodor; Kahlert, Philipp; Kleinbongard, Petra

    2016-08-01

    Stent implantation into aortocoronary saphenous vein grafts (SVG) releases particulate debris and soluble vasoactive mediators, for example, serotonin. We now analyzed effects of the soluble mediators released into the coronary arterial blood during stent implantation on vasomotion of isolated rat epicardial coronary artery segments and on coronary flow and left ventricular developed pressure in isolated perfused rat hearts. Coronary blood was retrieved during percutaneous SVG intervention using a distal occlusion/aspiration protection device in nine symptomatic patients with stable angina pectoris and a flow-limiting SVG stenosis. The blood was separated into particulate debris and plasma. Responses to coronary plasma were determined in isolated rat epicardial coronary arteries and in isolated, constant pressure-perfused rat hearts (±nitric oxide synthase [NOS] inhibition and ±serotonin receptor blockade, respectively). Coronary aspirate plasma taken after stent implantation induced a stronger vasoconstriction of rat epicardial coronary arteries (52 ± 8% of maximal potassium chloride induced vasoconstriction [% KClmax = 100%]) than plasma taken before stent implantation (12 ± 8% of KClmax); NOS inhibition augmented this vasoconstrictor response (to 110 ± 15% and 24 ± 9% of KClmax). Coronary aspirate plasma taken after stent implantation reduced in isolated perfused rat hearts only under NOS inhibition coronary flow by 17 ± 3% and left ventricular developed pressure by 25 ± 4%. Blockade of serotonin receptors abrogated these effects. Coronary aspirate plasma taken after stent implantation induces vasoconstriction in isolated rat epicardial coronary arteries and reduces coronary flow and left ventricular developed pressure in isolated perfused rat hearts with pharmacologically induced endothelial dysfunction. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The

  15. Effect of grazing seedhead-suppressed tall fescue pasture on the vasoactivity of serotonin receptors

    USDA-ARS?s Scientific Manuscript database

    Previous research has demonstrated that exposure to ergot alkaloids reduces vasoactivity of serotonin (5HT) receptors. Chemical suppression of tall fescue seedhead production is a tool to reduce the level of exposure to ergot alkaloids by a grazing animal. Therefore, the objective was to evaluate co...

  16. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus.

    PubMed

    Acsády, L; Görcs, T J; Freund, T F

    1996-07-01

    The postsynaptic targets of three vasoactive intestinal polypeptide-containing GABAergic interneuron types were examined in the rat hippocampus. Two of them showed remarkable target selectivity for other GABAergic neurons, while the third contacted the somata and proximal dendrites of pyramidal cells. Vasoactive intestinal polypeptide-positive interneurons innervating the stratum oriens/alveus border in the CA1 region were shown to establish multiple contacts with horizontal GABAergic interneurons immunoreactive for type 1 metabotropic glutamate receptor. Similarly, identified axons of vasoactive intestinal polypeptide-positive interneurons projecting to stratum radiatum were found to establish symmetrical synapses largely on GABAergic dendrites. The majority of these postsynaptic GABAergic neurons were shown to contain calbindin or vasoactive intestinal polypeptide. In contrast to the first two vasoactive intestinal polypeptide-containing cell populations, vasoactive intestinal polypeptide-positive interneurons arborizing in stratum pyramidale formed baskets around pyramidal cells. These results revealed a new element in cortical microcircuits, interneurons which are specialized to innervate other GABAergic interneurons. The role of this new component may be the synchronization of dendritic inhibition, or an input-specific disinhibition of pyramidal cells in various dendritic domains. In contrast, vasoactive intestinal polypeptide-containing basket cells are likely to be involved in perisomatic inhibition of pyramidal neurons, and represents a new basket cell type different from that containing parvalbumin.

  17. REGULATION OF APPETITE, BODY COMPOSITION AND METABOLIC HORMONES BY VASOACTIVE INTESTINAL POLYPEPTIDE (VIP)

    PubMed Central

    Vu, John; Larauche, Muriel; Flores, Martin; Luong, Leon; Norris, Joshua; Oh, Suwan; Li-Jung, Liang; Waschek, James; Pisegna, Joseph; Germano, Patrizia

    2015-01-01

    Introduction Vasoactive Intestinal Peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68% homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken, and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety together with feeding behavior, metabolic hormone release, body mass composition and energy balance. Aims To elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones and body mass composition. Methods VIP deficient (VIP −/−) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. Results The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP−/− mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP−/− mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. Conclusions Our data show that endogenous VIP is involved in the

  18. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP).

    PubMed

    Vu, John P; Larauche, Muriel; Flores, Martin; Luong, Leon; Norris, Joshua; Oh, Suwan; Liang, Li-Jung; Waschek, James; Pisegna, Joseph R; Germano, Patrizia M

    2015-06-01

    Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety, feeding behavior, metabolic hormones, body mass composition and energy balance. The aim of the study was to elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones, and body mass composition. VIP deficient (VIP -/-) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP-/- mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP-/- mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. VIP plays a key role in the regulation of body phenotype by significantly enhancing body weight and fat

  19. Effects of platelet-rich plasma-containing fragmin/protamine microparticles in enhancing endothelial and smooth muscle cell growth and inducing collateral vessels in a rabbit model of hindlimb ischemia.

    PubMed

    Fujita, Masanori; Horio, Takuya; Kishimoto, Satoko; Nakamura, Shingo; Takikawa, Megumi; Nakayama, Takefumi; Yamamoto, Yoritsuna; Shimizu, Masafumi; Hattori, Hidemi; Tachibana, Shoichi; Ishihara, Masayuki

    2013-01-01

    The purpose of the study was to evaluate the effects of isogenous platelet-rich plasma (PRP)-containing fragmin/protamine microparticles (F/P MPs) as a delivery system for proteins in PRP on growth of endothelial and smooth muscle cells (SMCs) in vitro and as an alternative treatment for peripheral arterial disease (PAD) and critical limb ischemia. Frozen and thawed PRP contains high concentrations of growth factors that are adsorbed by F/P MPs. Human aorta endothelial cells (AECs) and SMCs were grown in a medium with PRP. Addition of F/P MPs significantly enhanced the proliferative effects of PRP on AECs and SMCs at 37 °C for >10 days. Intramuscular administration of phosphate-buffered saline (PBS; 2 mL, control), F/P MPs (12 mg in 2 mL PBS), PRP (2 mL), or PRP (2 mL) containing F/P MPs (12 mg) was then performed in a rabbit model of hindlimb ischemia prepared by resection of the left femoral artery. Blood flow and pressure were measured on days 0, 14, and 28, and angiography to assess arteriogenesis was performed on day 28. PRP-containing F/P MPs strongly induced functional collateral vessels in the rabbit model of hindlimb ischemia, indicating possible use of these microparticles in therapy for PAD. Copyright © 2012 Wiley Periodicals, Inc.

  20. Vasoactive intestinal peptide-induced neuritogenesis in neuroblastoma SH-SY5Y cells involves SNAP-25.

    PubMed

    Héraud, Céline; Chevrier, Lucie; Meunier, Annie Claire; Muller, Jean-Marc; Chadéneau, Corinne

    2008-01-01

    Vasoactive intestinal peptide (VIP) is a neuropeptide known to regulate proliferation and differentiation in normal and tumoral cells. We previously reported that VIP induced neuritogenesis in human neuroblastoma SH-SY5Y cells cultured in serum-free medium. This neuritogenesis was associated with a regulated expression of neuronal cytoskeleton markers. To further characterize the neuroblastic cell differentiation induced by VIP in human SH-SY5Y cells, we investigated expression of synaptosomal-associated protein of 25 kDa (SNAP-25), a protein implicated in exocytosis associated with different processes, including neurite outgrowth. Western immunoblotting and real-time RT-PCR analyses revealed that VIP increased expression of the SNAP-25 protein and the level of both SNAP-25a and SNAP-25b mRNA isoforms. Immunofluorescence experiments indicated that SNAP-25 was mainly located in neurites and at the plasma membrane in SH-SY5Y cells treated with VIP. RNA interference experiments demonstrated that SNAP-25 was involved in VIP-induced neuritogenesis. In conclusion, SNAP-25 is up-regulated and implicated in neuritogenesis in human neuroblastoma SH-SY5Y cells treated with the neuropeptide VIP.

  1. Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Del Valle-Pinero, Arseima Y; Sherwin, LeeAnne B; Anderson, Ethan M; Caudle, Robert M; Henderson, Wendy A

    2015-01-07

    To investigate the vasoactive intestinal peptides (VIP) expression in irritable bowel syndrome (IBS) and trinitrobenzene sulfonic acid (TNBS) induced colitis. The VIP gene expression and protein plasma levels were measured in adult participants (45.8% male) who met Rome III criteria for IBS for longer than 6 mo and in a rat model of colitis as induced by TNBS. Plasma and colons were collected from naïve and inflamed rats. Markers assessing inflammation (i.e., weight changes and myeloperoxidase levels) were assessed on days 2, 7, 14 and 28 and compared to controls. Visceral hypersensitivity of the rats was assessed with colo-rectal distension and mechanical threshold testing on hind paws. IBS patients (n = 12) were age, gender, race, and BMI-matched with healthy controls (n = 12). Peripheral whole blood and plasma from fasting participants was collected and VIP plasma levels were assayed using a VIP peptide-enzyme immunoassay. Human gene expression of VIP was analyzed using a custom PCR array. TNBS induced colitis in the rats was confirmed with weight loss (13.7 ± 3.2 g) and increased myeloperoxidase activity. Visceral hypersensitivity to colo-rectal distension was increased in TNBS treated rats up to 21 d and resolved by day 28. Somatic hypersensitivity was also increased up to 14 d post TNBS induction of colitis. The expression of an inflammatory marker myeloperoxidase was significantly elevated in the intracellular granules of neutrophils in rat models following TNBS treatment compared to naïve rats. This confirmed the induction of inflammation in rats following TNBS treatment. VIP plasma concentration was significantly increased in rats following TNBS treatment as compared to naïve animals (P < 0.05). Likewise, the VIP gene expression from peripheral whole blood was significantly upregulated by 2.91-fold in IBS patients when compared to controls (P < 0.00001; 95%CI). VIP plasma protein was not significantly different when compared with controls (P = 0

  2. Isolation and amino acid sequences of opossum vasoactive intestinal polypeptide and cholecystokinin octapeptide.

    PubMed Central

    Eng, J; Yu, J; Rattan, S; Yalow, R S

    1992-01-01

    Evolutionary history suggests that the marsupials entered South America from North America about 75 million years ago and subsequently dispersed into Australia before the separation between South America and Antarctica-Australia. A question of interest is whether marsupial peptides resemble the corresponding peptides of Old or New World mammals. Previous studies had shown that "little" gastrin of the North American marsupial, the opossum, is identical in length to that of the New World mammals, the guinea pig and chinchilla. In this report, we demonstrate that opossum cholecystokinin octapeptide, like that of the Australian marsupials, the Eastern quoll and the Tamar wallaby, is identical to the cholecystokinin octapeptide of Old World mammals and differs from that of the guinea pig and chinchilla. However, opossum vasoactive intestinal polypeptide differs from the usual Old World mammalian vasoactive intestinal polypeptide in five sites: [sequence; see text]. PMID:1542675

  3. Stapled Vasoactive Intestinal Peptide (VIP) Derivatives Improve VPAC2 Agonism and Glucose-Dependent Insulin Secretion.

    PubMed

    Giordanetto, Fabrizio; Revell, Jefferson D; Knerr, Laurent; Hostettler, Marie; Paunovic, Amalia; Priest, Claire; Janefeldt, Annika; Gill, Adrian

    2013-12-12

    Agonists of vasoactive intestinal peptide receptor 2 (VPAC2) stimulate glucose-dependent insulin secretion, making them attractive candidates for the treatment of hyperglycaemia and type-II diabetes. Vasoactive intestinal peptide (VIP) is an endogenous peptide hormone that potently agonizes VPAC2. However, VIP has a short serum half-life and poor pharmacokinetics in vivo and is susceptible to proteolytic degradation, making its development as a therapeutic agent challenging. Here, we investigated two peptide cyclization strategies, lactamisation and olefin-metathesis stapling, and their effects on VPAC2 agonism, peptide secondary structure, protease stability, and cell membrane permeability. VIP analogues showing significantly enhanced VPAC2 agonist potency, glucose-dependent insulin secretion activity, and increased helical content were discovered; however, neither cyclization strategy appeared to effect proteolytic stability or cell permeability of the resulting peptides.

  4. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  5. Vasoactive intestinal peptide may participate in the vasodilation of the dog hepatic artery

    SciTech Connect

    Varga, G.; Kiss, J.Z.; Papp, M.; Vizi, E.S.

    1986-08-01

    The possible direct action of vasoactive intestinal peptide (VIP) on dog hepatic arterial wall or on the noradrenergic innervation of the artery was investigated in vitro. In addition, VIP-containing nerve fibers and terminals were located in the wall of the artery with immunochemical staining. Direct evidence showed that VIP did not affect the release of (TH)norepinephrine but reduced the response of the isolated hepatic artery to electrical field stimulation and exogenous norepinephrine. This suggest that the effect of VIP is postjunctional on the smooth muscle of the artery. VIP-containing nerve fibers and varicosities were observed in the adventitial and medial layer of the arterial wall. These findings strongly support the hypothesis that vasoactive intestinal peptide is a physiological mediator of vasodilation in the hepatic artery.

  6. Mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines

    SciTech Connect

    Mitsuhashi, M.; Payan, D.G.

    1987-03-02

    In order to investigate the relationship between the biochemical pathways that characterize contraction and cell growth, the authors have studied both contraction, mitogenesis and protein synthesis induced by the vasoactive neuropeptides, substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) on four different established vascular and non-vascular smooth muscle cell lines. Contraction in vitro was evaluated by light microscopy and recorded photographically. Mitogenesis and protein synthesis were evaluated by (/sup 3/H)-thymidine incorporation into cells and (/sup 3/H)-amino acid incorporation into trichloroacetic acid precipitated materials, respectively. SP stimulated mitogenesis of A7r5 cells (embryonic rat aorta), but failed to induce significant contraction of these cells, whereas, SP induced contraction of cultured adult rat vascular smooth muscle cells (VSMC), but failed to stimulate mitogenesis. CGRP and VIP stimulated mitogenesis and protein synthesis, respectively, of DDT/sub 1/MF-2 cells (hamster vas deferens), but neither induced contraction of this cell line. All three neuropeptides showed no effect on BC/sub 3/H1 (mouse smooth muscle-like) cells. These results suggest that neuropeptides with vasoactive properties modulate different stages of cellular mitogenic responses which may be regulated by the degree of maturation of smooth muscle cell. 22 references, 5 figures.

  7. Insulin Plays a Permissive Role for the Vasoactive Effect of GIP Regulating Adipose Tissue Metabolism in Humans.

    PubMed

    Asmar, Meena; Simonsen, Lene; Asmar, Ali; Holst, Jens Juul; Dela, Flemming; Bülow, Jens

    2016-08-01

    Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increases blood flow and triglyceride (TAG) clearance in subcutaneous (sc) abdominal adipose tissue in lean humans. The present experiments were performed to further investigate the role of insulin for the vasoactive effect of GIP in adipose tissue metabolism and whether the vasodilatory effect of GIP is dependent on C-peptide. Six lean healthy subjects were studied. The sc abdominal adipose tissue metabolism was assessed by Fick's principle during GIP infusion (1.5 pmol/kg/min) in combination with 1) euglycemic-high insulinemic clamp (Eugluc-Hiinsu), raising plasma insulin concentrations to postprandial levels, 2) hyperglycemic-euinsulinemic clamp (Hygluc-Euinsu), and 3) hyperglycemic-hyperinsulinemic clamp, raising plasma insulin concentrations to supraphysiological levels. During the hyperglycemic clamps, endogenous insulin and C-peptide secretion were inhibited by infusion of the somatostatin analogue octreotide. During GIP infusion, Eugluc-Hiinsu, and hyperglycemic-hyperinsulinemic clamps, sc abdominal adipose tissue blood flow (ATBF) was similar and increased from 2.1 ± 0.2 and 2.2 ± 0.4 ml min(-1) (100 g tissue)(-1) to 7.1 ± 0.6 and 7.6 ± 0.1 ml min(-1) (100 g tissue)(-1), respectively (P < .01). ATBF remained virtually constant (2.7 ± 0.4 ml min(-1) [100 g tissue](-1)) during Hygluc-Euinsu and GIP infusion. In addition, adipose tissue TAG clearance increased significantly (P = .03), whereas free fatty acid output (P = .01), glycerol output (P = .02) and free fatty acid/glycerol release ratio (P = .04) decreased during the Eugluc-Hiinsu clamp compared to Hygluc-Euinsu clamp with GIP. In healthy lean humans, insulin is permissive for GIP to induce an increase in blood flow and TAG clearance in sc abdominal adipose tissue. This effect is independent of C-peptide.

  8. Effect of short-term lycopene supplementation and postprandial dyslipidemia on plasma antioxidants and biomarkers of endothelial health in young, healthy individuals

    PubMed Central

    Denniss, Steven G; Haffner, Thomas D; Kroetsch, Jeffrey T; Davidson, Sara R; Rush, James WE; Hughson, Richard L

    2008-01-01

    The objective of this study was to test the hypothesis that the effect of a high-fat meal (HFm) on plasma lipid-soluble antioxidants and biomarkers of vascular oxidative stress and inflammation would be attenuated by short-term lycopene supplementation in young healthy subjects. Following restriction of lycopene-containing foods for 1-wk (LYr), blood was collected in a fasting state and 3 h after a HFm and a low-fat meal (LFm) in N = 18 men aged 23 ± 2 years, and after a HFm only in N = 9 women aged 23 ± 1 years. Blood was also sampled pre- and post-meals following 1-wk of 80 mg/day lycopene supplementation (LYs) under continued dietary LYr. In the fasting state, LYs compared with LYr not only evoked a >2-fold increase in plasma lycopene but also increased plasma β-carotene and α-tocopherol (p < 0.01), though LYs did not affect plasma nitrate/nitrite (biomarker of nitric oxide), malondialdehyde (biomarker of lipid oxidative stress), vascular- and intercellular-adhesion molecules or C-reactive protein (biomarkers of inflammation). Contrary to the hypothesis, the HFm-induced dyslipidemic state did not affect plasma malondialdehyde, C-reactive protein, or adhesion molecules in either LYr or LYs. Both the HFm and LFm were associated with decreases in the nitric oxide metabolites nitrate/nitrite and lipid-soluble antioxidants (p < 0.05). The data revealed that 1-wk of LYs increased plasma lycopene, β-carotene, and α-tocopherol yet despite these marked changes to the plasma lipid-soluble antioxidant pool, biomarkers of vascular oxidative stress and inflammation were unaffected in the fasted state as well as during dyslipidemia induced by a HFm in young healthy subjects. PMID:18629373

  9. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure

    PubMed Central

    Laleman, Wim; Wilmer, Alexander; Evenepoel, Pieter; Elst, Ingrid Vander; Zeegers, Marcel; Zaman, Zahur; Verslype, Chris; Fevery, Johan; Nevens, Frederik

    2006-01-01

    Introduction Patients with acute-on-chronic liver failure show an aggravated hyperdynamic circulation. We evaluated, in a controlled manner, potential changes in systemic haemodynamics induced by the molecular adsorbent recirculating system (MARS) and the Prometheus system liver detoxification devices in a group of patients with acute-on-chronic liver failure. Methods Eighteen patients (51.2 ± 2.3 years old; Child–Pugh score, 12.5 ± 0.2; Maddrey score, 63.1 ± 5.0; hepatic venous pressure gradient, 17.6 ± 0.9 mmHg) with biopsy-proven alcoholic cirrhosis and superimposed alcoholic hepatitis were either treated with standard medical therapy (SMT) combined with MARS (n = 6) or Prometheus (n = 6) or were treated with SMT alone (n = 6) on three consecutive days (6 hours/session). Liver tests, systemic haemodynamics and vasoactive substances were determined before and after each session. Results Groups were comparable for baseline haemodynamics and levels of vasoactive substances. Both MARS and Prometheus decreased serum bilirubin levels (P < 0.005 versus SMT), the Prometheus device being more effective than MARS (P = 0.002). Only MARS showed significant improvement in the mean arterial pressure (Δchange, +9 ± 2.4 mmHg versus -0.3 ± 2.4 mmHg with Prometheus and -5.2 ± 2.1 mmHg with SMT, P < 0.05) and in the systemic vascular resistance index (Δchange, +131.5 ± 46.2 dyne.s/cm5/m2 versus -92.8 ± 85.2 dyne.s/cm5/m2with Prometheus and -30.7 ± 32.5 dyne.s/cm5/m2 with SMT; P < 0.05), while the cardiac index and central filling remained constant. This circulatory improvement in the MARS group was paralleled by a decrease in plasma renin activity (P < 0.05), aldosterone (P < 0.03), norepinephrine (P < 0.05), vasopressin (P = 0.005) and nitrate/nitrite levels (P < 0.02). Conclusion The MARS device, and not the Prometheus device, significantly attenuates the hyperdynamic circulation in acute-on-chronic liver failure, presumably by a difference in removal rate of

  10. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure.

    PubMed

    Laleman, Wim; Wilmer, Alexander; Evenepoel, Pieter; Elst, Ingrid Vander; Zeegers, Marcel; Zaman, Zahur; Verslype, Chris; Fevery, Johan; Nevens, Frederik

    2006-01-01

    Patients with acute-on-chronic liver failure show an aggravated hyperdynamic circulation. We evaluated, in a controlled manner, potential changes in systemic haemodynamics induced by the molecular adsorbent recirculating system (MARS) and the Prometheus system liver detoxification devices in a group of patients with acute-on-chronic liver failure. Eighteen patients (51.2 +/- 2.3 years old; Child-Pugh score, 12.5 +/- 0.2; Maddrey score, 63.1 +/- 5.0; hepatic venous pressure gradient, 17.6 +/- 0.9 mmHg) with biopsy-proven alcoholic cirrhosis and superimposed alcoholic hepatitis were either treated with standard medical therapy (SMT) combined with MARS (n = 6) or Prometheus (n = 6) or were treated with SMT alone (n = 6) on three consecutive days (6 hours/session). Liver tests, systemic haemodynamics and vasoactive substances were determined before and after each session. Groups were comparable for baseline haemodynamics and levels of vasoactive substances. Both MARS and Prometheus decreased serum bilirubin levels (P < 0.005 versus SMT), the Prometheus device being more effective than MARS (P = 0.002). Only MARS showed significant improvement in the mean arterial pressure (Deltachange, +9 +/- 2.4 mmHg versus -0.3 +/- 2.4 mmHg with Prometheus and -5.2 +/- 2.1 mmHg with SMT, P < 0.05) and in the systemic vascular resistance index (Deltachange, +131.5 +/- 46.2 dyne x s/cm5/m2 versus -92.8 +/- 85.2 dyne x s/cm5/m2 with Prometheus and -30.7 +/- 32.5 dyne x s/cm5/m2 with SMT; P < 0.05), while the cardiac index and central filling remained constant. This circulatory improvement in the MARS group was paralleled by a decrease in plasma renin activity (P < 0.05), aldosterone (P < 0.03), norepinephrine (P < 0.05), vasopressin (P = 0.005) and nitrate/nitrite levels (P < 0.02). The MARS device, and not the Prometheus device, significantly attenuates the hyperdynamic circulation in acute-on-chronic liver failure, presumably by a difference in removal rate of certain vasoactive

  11. Effect of Sclerovit on endothelial dysfunction, hemorheological parameters, platelet aggregation, plasma concentration of homocysteine and progression of atherosclerosis in patients with vascular diseases.

    PubMed

    Horvath, Beata; Szapary, Laszlo; Debreceni, Laszlo; Feher, Gergely; Kenyeres, Peter; Fulop, Adrienn; Battyani, Istvan; Toth, Kalman

    2009-01-01

    In our prospective study the effect of Sclerovit (0.8 mg folic acid, 20 mug vitamin B12,5 mg vitamin B6,100 mg vitamin E) on inflammatory markers, hemorheological parameters, platelet aggregation, von Willebrand factor activity as a marker of endothelium dysfunction, plasma lipids, plasma levels of folic acid, vitamin B12 and homocysteine (hcy), flow mediated vasodilatation (FMD) and thickness of carotis intima-media after 1 and 6 months of treatment in patients with vascular diseases (10 patients took 1 capsule, 10 patients 2 capsules of Sclerovit and 10 patients placebo) was determined.Plasma level of vitamin B12, folic acid and elongation index of red blood cells (RBC) increased significantly (p<0.05-0.001), hcy and triglyceride concentrations decreased significantly (p<0.05-0.001) in patients taking Sclerovit. HDL-cholesterol, RBC count, hematocrit, plasma and whole blood viscosity increased significantly (p<0.05-0.001) both in patients taking placebo or vitamins. Fibrinogen and CRP showed a significant (p<0.05-0.01) increase in patients on placebo, but did not change in patients on Sclerovit therapy. FMD showed a significant (p<0.05) amelioration in patients on 1 capsule of Sclerovit.Beside the favorable effects of Sclerovit on some of the measured parameters, the observed deterioration in hemorheological parameters can correlate with the contradictory results of large prospective studies with vitamins.

  12. Endothelial (NOS3 E298D) and inducible (NOS2 exon 22) nitric oxide synthase polymorphisms, as well as plasma NOx, influence sepsis development.

    PubMed

    Martin, Guadalupe; Asensi, Víctor; Montes, A Hugo; Collazos, Julio; Alvarez, Victoria; Pérez-Is, Laura; Carton, José A; Taboada, Francisco; Valle-Garay, Eulalia

    2014-11-15

    Nitric oxide (NO) influences susceptibility to infection and hemodynamic failure (HF) in sepsis. NOS3 and NOS2 SNPs might modify plasma nitrite/nitrate (NOx) levels, sepsis development, hemodynamics and survival. 90 severely septic and 91 non-infected ICU patients were prospectively studied. NOS3 (E298D), NOS3 (-786 T/C), NOS3 (27 bp-VNTR), and NOS2A (exon 22) SNPs and plasma NOx levels were assessed. 21 patients (11.6%) died, 7 with sepsis. TT homozygotes and T allele carriers of NOS3 (E298D) and AG carriers of the NOS2A (exon 22) SNPs were more frequent among septic compared to non-infected ICU patients (p < 0.05). Plasma NOx was higher in septic, especially in septic with hemodynamic failure (HF) or fatal outcome (p < 0.006). Plasma NOx was higher in carriers of the T allele of the NOS3 (E298D) SNP (p = 0.006). Sepsis independently associated with HF, increased NOx, peripheral neutrophils, and fibrinogen levels, decreased prothrombin and the presence of the NOS3 (E298D) and NOS2A (exon 22) SNPs. A low APACHE II score was the only variable associated with sepsis survival. NOx was independently associated with sepsis, HF, decreased neutrophils and higher APACHE. NOS3 (E298D) and NOS2A (exon 22) SNPs, individually and in combination, and plasma NOx, associated with sepsis development. NOx associated with HF and fatal outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  14. An imbalance between substance P and vasoactive intestinal polypeptide might contribute to the immunopathology of megaesophagus after Trypanosoma cruzi infection.

    PubMed

    Nascimento, Rodolfo Duarte; Martins, Patrícia Rocha; de Souza Lisboa, André; Adad, Sheila Jorge; Morais da Silveira, Alexandre Barcelos; Reis, Débora d'Ávila

    2013-02-01

    Megaesophagus is one of the major causes of morbidity in chronic Chagas disease, and extensive denervation, associated with an inflammatory process, is recognized as the key factor for alterations in motility and disease development. Here, we analyzed esophagus samples from necropsied, infected individuals--6 cases with megaesophagus and 6 cases without megaesophagus--for the relative areas of expression of 2 neuromediators, substance P and vasoactive intestinal peptide, which are known to activate or inhibit, respectively, local immune cells. Samples from 6 noninfected individuals were used as controls. Esophageal sections were immunohistochemically stained for protein gene product 9.5, vasoactive intestinal peptide, and substance P, and the relative areas of expression of the latter 2 were calculated. Morphometric analyses revealed increased substance P and decreased vasoactive intestinal peptide relative areas in esophageal sections from patients with megaesophagus. Furthermore, in the group of patients without megaesophagus, the loss of vasoactive intestinal peptide positively correlated with the denervation process. We suggest that an imbalance between vasoactive intestinal peptide and substance P production results in the reestablishment and maintenance of the inflammatory process, leading to denervation and, consequently, promoting the development of megaesophagus. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Variable responses of regional renal oxygenation and perfusion to vasoactive agents in awake sheep.

    PubMed

    Calzavacca, Paolo; Evans, Roger G; Bailey, Michael; Bellomo, Rinaldo; May, Clive N

    2015-11-15

    Vasoactive agents are used in critical care to optimize circulatory function, but their effects on renal tissue oxygenation in the absence of anesthesia remain largely unknown. Therefore, we assessed the effects of multiple vasoactive agents on regional kidney oxygenation in awake sheep. Sheep were surgically instrumented with pulmonary and renal artery flow probes, and combination fiber-optic probes, in the renal cortex and medulla, comprising a fluorescence optode to measure tissue Po2 and a laser-Doppler probe to assess tissue perfusion. Carotid arterial and renal venous cannulas enabled measurement of arterial pressure and total renal oxygen delivery and consumption. Norepinephrine (0.1 or 0.8 μg·kg(-1)·min(-1)) dose-dependently reduced cortical and medullary laser Doppler flux (LDF) and Po2 without significantly altering renal blood flow (RBF), or renal oxygen delivery or consumption. Angiotensin II (9.8 ± 2.1 μg/h) reduced RBF by 21%, renal oxygen delivery by 28%, oxygen consumption by 18%, and medullary Po2 by 38%, but did not significantly alter cortical Po2 or cortical or medullary LDF. Arginine vasopressin (3.3 ± 0.5 μg/h) caused similar decreases in RBF and renal oxygen delivery, but did not significantly alter renal oxygen consumption or cortical or medullary LDF or Po2. Captopril had no observable effects on cortical or medullary LDF or Po2, at a dose that increased renal oxygen delivery by 24%, but did not significantly alter renal oxygen consumption. We conclude that vasoactive agents have diverse effects on regional kidney oxygenation in awake sheep that are not predictable from their effects on LDF, RBF, or total renal oxygen delivery and consumption.

  16. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  17. Time-Dependent Changes of Plasma Concentrations of Angiopoietins, Vascular Endothelial Growth Factor, and Soluble Forms of Their Receptors in Nonsmall Cell Lung Cancer Patients Following Surgical Resection

    PubMed Central

    Kopczyńska, Ewa; Dancewicz, Maciej; Kowalewski, Janusz; Makarewicz, Roman; Kardymowicz, Hanna; Kaczmarczyk, Agnieszka; Tyrakowski, Tomasz

    2012-01-01

    Even when patients with nonsmall cell lung cancer undergo surgical resection at an early stage, recurrent disease often impairs the clinical outcome. There are numerous causes potentially responsible for a relapse of the disease, one of them being extensive angiogenesis. The balance of at least two systems, VEGF VEGFR and Ang Tie, regulates vessel formation. The aim of this study was to determine the impact of surgery on the plasma levels of the main angiogenic factors during the first month after surgery in nonsmall cell lung cancer patients. The study group consisted of 37 patients with stage I nonsmall cell lung cancer. Plasma concentrations of Ang1, Ang2, sTie2, VEGF, and sVEGF R1 were evaluated by ELISA three times: before surgical resection and on postoperative days 7 and 30. The median of Ang2 and VEGF concentrations increased on postoperative day 7 and decreased on day 30. On the other hand, the concentration of sTie2 decreased on the 7th day after resection and did not change statistically later on. The concentrations of Ang1 and sVEGF R1 did not change after the surgery. Lung cancer resection results in proangiogenic plasma protein changes that may stimulate tumor recurrences and metastases after early resection. PMID:22550599

  18. Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women.

    PubMed

    Ballard, Kevin D; Kupchak, Brian R; Volk, Brittanie M; Mah, Eunice; Shkreta, Aida; Liptak, Cary; Ptolemy, Adam S; Kellogg, Mark S; Bruno, Richard S; Seip, Richard L; Maresh, Carl M; Kraemer, William J; Volek, Jeff S

    2013-03-14

    Whey protein intake reduces CVD risk, but little is known whether whey-derived bioactive peptides regulate vascular endothelial function (VEF). We determined the impact of a whey-derived extract (NOP-47) on VEF in individuals with an increased cardiovascular risk profile. Men and women with impaired brachial artery flow-mediated dilation (FMD) (n 21, age 55 (sem 1·3) years, BMI 27·8 (sem 0·6) kg/m2, FMD 3·7 (sem 0·4) %) completed a randomised, cross-over study to examine whether ingestion of NOP-47 (5 g) improves postprandial VEF. Brachial artery FMD, plasma amino acids, insulin, and endothelium-derived vasodilators and vasoconstrictors were measured for 2 h after ingestion of NOP-47 or placebo. Acute NOP-47 ingestion increased FMD at 30 min (4·6 (sem 0·5) %) and 120 min (5·1 (sem 0·5) %) post-ingestion (P< 0·05, time × trial interaction), and FMD responses at 120 min were significantly greater in the NOP-47 trial compared with placebo (4·3 (sem 0·5) %). Plasma amino acids increased at 30 min following NOP-47 ingestion (P< 0·05). Serum insulin increased at 15, 30 and 60 min (P< 0·001) following NOP-47 ingestion. No changes were observed between the trials for plasma NO∙ and prostacyclin metabolites or endothelin-1. Ingestion of a rapidly absorbed extract derived from whey protein improved endothelium-dependent dilation in older adults by a mechanism independent of changes in circulating vasoactive compounds. Future investigation is warranted in individuals at an increased CVD risk to further elucidate potential health benefits and the underlying mechanisms of extracts derived from whey.

  19. The impact of microgravity and hypergravity on endothelial cells.

    PubMed

    Maier, Jeanette A M; Cialdai, Francesca; Monici, Monica; Morbidelli, Lucia

    2015-01-01

    The endothelial cells (ECs), which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity. In particular microgravity leads to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. This review summarizes the state of the art on how microgravity and hypergravity affect cultured ECs functions and discusses some controversial issues reported in the literature.

  20. The Impact of Microgravity and Hypergravity on Endothelial Cells

    PubMed Central

    Maier, Jeanette A. M.

    2015-01-01

    The endothelial cells (ECs), which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity. In particular microgravity leads to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. This review summarizes the state of the art on how microgravity and hypergravity affect cultured ECs functions and discusses some controversial issues reported in the literature. PMID:25654101

  1. [Need for rheologically active, vasoactive and metabolically active substances in the initial treatment of acute acoustic trauma].

    PubMed

    Pilgramm, M; Schumann, K

    1986-10-01

    Two rheologically active and 8 vasoactive and metabolically active substances were compared in eight independent studies, some of which were randomised and double blind, on 400 patients who had suffered acute acoustic trauma. The control group was given saline. Spontaneous recovery was excluded as far as possible. The following substances were tested: Dextran 40, hydroxyethyl starch 40/0.5, naftidrofurylhydrogenoxalate, Vinpocetin, betahistine, pentoxifylline, flunaricine, Regeneresen AU 4 and 0.9% saline. All groups showed superior results to the control group in both long-term and short-term tests with respect to hearing gain and tinnitis improvement. The rheologically effective substances showed no statistically significant variations. None of the vasoactive or metabolically active substances used as adjunctive therapy improved the results achieved with rheologically effective substances alone. These results demonstrate that acute acoustic trauma can be most effectively treated by rheologically active substances; vasoactive and metabolically active substances are unnecessary. Hyperbaric oxygenation is advantageous as an adjunctive therapy.

  2. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  3. Interaction of recombinant octameric hemoglobin with endothelial cells.

    PubMed

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.

  4. Vasoactive Drugs and Hemodynamic Monitoring in Pediatric Cardiac Intensive Care: An Italian Survey.

    PubMed

    Rizza, Alessandra; Bignami, Elena; Belletti, Alessandro; Polito, Angelo; Ricci, Zaccaria; Isgrò, Giuseppe; Locatelli, Alessandro; Cogo, Paola

    2016-01-01

    Little is known about practitioner preference, the availability of technology, and variability in practice with respect to hemodynamic monitoring and vasoactive drug use after congenital heart surgery. The aim of this study was to characterize current hospital practices related to the management of low cardiac output syndrome (LCOS) across Italy. We issued a 22-item questionnaire to 14 Italian hospitals performing pediatric cardiac surgery. Electrocardiogram, invasive blood pressure, central venous pressure, pulse oximetry, diuresis, body temperature, arterial lactate, and blood gas analysis were identified as routine in hemodynamic monitoring. With regard to advanced hemodynamic monitoring, pulmonary arterial catheter and transpulmonary thermodilution were available in 43% of the centers, uncalibrated pulse contour methods in 29% of the centers, and transesophageal/transthoracic echocardiograms in all of the centers. Dopamine added to milrinone was the most frequent drug regimen for LCOS prevention after cardiopulmonary bypass. Overall, 86% of centers used milrinone alone as the initial treatment for LCOS with elevated systemic vascular resistances and levosimendan, the second preferred choice. In cases of LCOS with low vascular resistance, epinephrine was the first choice (10 centers), dopamine was the second choice (4 centers), followed by vasopressin and norepinephrine (3 centers). For treatment of LCOS with elevated pulmonary resistances, milrinone was the first choice (eight centers), followed by inhaled nitric oxide (five centers). The survey shows that advanced hemodynamic monitoring is rarely performed. The most commonly used vasoactive drugs are milrinone, levosimendan, dopamine, epinephrine, vasopressin, and norepinephrine. Guidelines on the topic are warranted. © The Author(s) 2015.

  5. Surgical resection of vasoactive intestinal peptideoma with hepatic metastasis aids symptom palliation: A case report

    PubMed Central

    ZHANG, XIAOMEI; ZHOU, LINGLI; LIU, YING; LI, WEI; GAO, HONGKAI; WANG, YUNAN; YAO, BAOTING; JIANG, DAMING; HU, PEIJUN

    2016-01-01

    Vasoactive intestinal peptideoma (VIPoma) is a rare pancreatic endocrine tumor associated with a well-defined clinical syndrome characterized by watery diarrhea, hypokalemia and metabolic acidosis. In adults, VIPoma is most commonly found in the pancreas, with 80% of the tumors occurring in the body and tail and 20% occurring in the pancreatic head. VIPomas can represent a significant diagnostic challenge due to their nonspecific clinical presentation, which can result in the misdiagnosis of a VIPoma as another condition, such as laxative overdose or a carcinoid secreting tumor. Surgical clearance of the tumor is the first-line treatment, even in cases with metastasis. The present study describes the case of a patient who presented with chronic watery diarrhea and hypokalemia due to a tumor in the pancreatic head, which was confirmed to contain immunoreactive vasoactive intestinal polypeptide via immunohistochemistry. A hepatic metastasis lesion was diagnosed following computed tomography. Stable control of symptoms was achieved after surgery and drug treatment. The study additionally reviews the clinical, histological, radiological and diagnostic features of the condition, as well as the therapeutic modalities that can be used to treat VIPoma in the pancreatic head with hepatic metastasis. PMID:26997993

  6. Robust linear parameter-varying control of blood pressure using vasoactive drugs

    NASA Astrophysics Data System (ADS)

    Luspay, Tamas; Grigoriadis, Karolos

    2015-10-01

    Resuscitation of emergency care patients requires fast restoration of blood pressure to a target value to achieve hemodynamic stability and vital organ perfusion. A robust control design methodology is presented in this paper for regulating the blood pressure of hypotensive patients by means of the closed-loop administration of vasoactive drugs. To this end, a dynamic first-order delay model is utilised to describe the vasoactive drug response with varying parameters that represent intra-patient and inter-patient variability. The proposed framework consists of two components: first, an online model parameter estimation is carried out using a multiple-model extended Kalman-filter. Second, the estimated model parameters are used for continuously scheduling a robust linear parameter-varying (LPV) controller. The closed-loop behaviour is characterised by parameter-varying dynamic weights designed to regulate the mean arterial pressure to a target value. Experimental data of blood pressure response of anesthetised pigs to phenylephrine injection are used for validating the LPV blood pressure models. Simulation studies are provided to validate the online model estimation and the LPV blood pressure control using phenylephrine drug injection models representing patients showing sensitive, nominal and insensitive response to the drug.

  7. Response of the forelimb vasculature to vasoactive agents: effects of ouabain.

    PubMed

    Dobbins, D E; Swindall, B T; Haddy, F J; Dabney, J M

    1985-01-01

    The effect of the local intra-arterial infusion of ouabain (11.8 micrograms/min.) on the response of the forelimb to vasoactive agents was examined. In seven dogs, bolus injections of CaCl2, MgSO4, KCl, norepinephrine, adenosine, acetylcholine, PGE1 and saline were made into the forelimb perfused at constant flow before and three times during ouabain infusion. Ouabain blocked potassium vasodilation and changed the response to CaCl2 from vasoconstriction to vasodilation. The response of the forelimb to the other vasoactive agents was initially unaffected by ouabain but with time the forelimb vasculature became less sensitive to all agents studied. These changes were not seen in a series of 5 saline infused control animals. In a third series of animals steady-state dose responses to CaCl2, Ca-gluconate and KCl were explored by infusing solutions intrabrachially at three dosages. Before ouabain, forelimb resistance increased as a function of Ca++ and decreased as a function of K+. Ouabain completely blocked potassium vasodilation and on the average blocked Ca++ vasoconstriction although a number of animals evidenced vasodilation to Ca++ during ouabain infusion. These data indicate that K+ vasodilation is Na+, K+-ATPase dependent and that Na+, K+-ATPase inhibition unmasks a vasodilatory action of locally applied Ca++.

  8. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  9. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary.

    PubMed Central

    Onali, P; Schwartz, J P; Costa, E

    1981-01-01

    The activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by vasoactive intestinal peptide (VIP) was used as a model to investigate the molecular mechanisms triggered by the occupancy of dopamine recognition sites in rat anterior pituitary. Dopamine failed to change the basal enzyme activity, but it inhibited the stimulation of adenylate cyclase elicited by VIP. Apomorphine, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, and 2-bromo-alpha-ergocryptine mimicked the effect of dopamine, whereas (-)-sulpiride and and classical neuroleptics antagonized it. Dopamine failed to modulate the activation of pituitary adenylate cyclase by prostaglandin E1, which does not increase prolactin secretion. From these results we infer that stimulation of D-2 (dopamine) receptors may affect pituitary secretion by inhibiting the activation of anterior pituitary adenylate cyclase by VIP or other secretagogues. PMID:6171819

  10. New perspectives on vasoactive intestinal polypeptide as a widespread modulator of social behavior

    PubMed Central

    Kingsbury, Marcy A.

    2015-01-01

    In terms of reproductive and social functions, vasoactive intestinal polypeptide (VIP) is best known as a major regulator of prolactin secretion in vertebrates and hence, as an essential contributor to parental care. However, VIP and its cognate VPAC receptors are distributed throughout the social behavior network in the brain, suggesting that VIP circuits may play important roles in a variety of behaviors. With the exception of VIP neuronal populations in the suprachiasmatic nucleus and tuberal hypothalamus (which regulate circadian rhythms and prolactin secretion, respectively), we have known very little about the functional properties of VIP circuits until recently. The present review highlights new roles for VIP signaling in avian social behaviors such as affiliation, gregariousness, pair bonding and aggression, and discusses recent advances in VIP’s role as a regulator of biological rhythms, including the potential timing of ovulation, photoperiodic response and seasonal migration. PMID:26858968

  11. Vasoactivity and Vasoconstriction Changes in Cattle Related to Time off Toxic Endophyte-Infected Tall Fescue

    PubMed Central

    Klotz, James L.; Aiken, Glen E.; Bussard, Jessica R.; Foote, Andrew P.; Harmon, David L.; Goff, Ben M.; Schrick, F. Neal; Strickland, James R.

    2016-01-01

    Previous research has indicated that serotonergic and α-adrenergic receptors in peripheral vasculature are affected by exposure of cattle grazing toxic endophyte-infected (E+; Epichlöe coenophialia) tall fescue (Lolium arundinaceum). The objective of this experiment was to determine the period of time necessary for the vascular effects of ergot alkaloids to subside. Two experiments were conducted to investigate changes in vascular contractile response and vasoconstriction over time relative to removal from an ergot alkaloid-containing E+ tall fescue pasture. In Experiment 1, lateral saphenous vein biopsies were conducted on 21 predominantly Angus steers (357 ± 3 kg body weight) at 0 (n = 6), 7 (n = 6), 14 (n = 5), or 28 days (n = 4) after removal from grazing pasture (3.0 ha; endpoint ergovaline + ergovalinine = 1.35 mg/kg DM) for 126 days. In Experiment 2, lateral saphenous veins were biopsied from 24 Angus-cross steers (361 ± 4 kg body weight) at 0, 21, 42, and 63 days (n = 6 per time point) following removal from grazing tall fescue pastures (3.0 ha; first 88 days endpoint ergovaline + ergovalinine = 0.15 mg/kg DM; last 18 days endpoint ergovaline + ergovalinine = 0.57 mg/kg DM) for 106 total days. Six steers (370 ± 18 kg body weight) off of bermudagrass pasture for the same time interval were also biopsied on Day 0 and Day 63 (n = 3 per time point). Additionally, in Experiment 2, cross-sectional ultrasound scans of caudal artery at the fourth coccygeal vertebra were taken on Days 0, 8, 15, 21, 29, 36, 42, and 45 to determine mean artery luminal area to evaluate vasoconstriction. In both experiments, steers were removed from pasture and housed in a dry lot and fed a corn silage diet for the duration of biopsies and ultrasound scans. Biopsied vessels used to evaluate vasoactivity were cleaned, incubated in a multimyograph, and exposed to increasing concentrations of 4-Bromo-3,6-dimethoxybenzocyclobuten-1-yl) methylamine hydrobromide (TCB2; 5HT2A agonist

  12. The effects of vasoactive intestinal peptide on adrenal steroid hormone secretion

    SciTech Connect

    Cunningham, L.A.

    1988-01-01

    Vasoactive intestinal peptide (VIP)-immunoreactive nerve fibers have been demonstrated in the rat adrenal cortex in close association with zona glomerulosa cells. We have studied the effects of VIP on steroid hormone secretion from the outer zones of the normal rat adrenal cortex. Intact capsule-glomerulosa preparations, consisting of the capsule, zona glomerulosa, and a small portion of the zona fasciculata were perifused in vitro. The secretory responsiveness was assessed by measuring aldosterone and corticosterone release following stimulation with the physiological secretagogues ACTH and angiotensin II. The distribution of adrenal VIP receptors was assessed by in vitro autoradiography of {sup 125}I-VIP binding. {sup 125}I-VIP (0.75 and 2.0 nM) binding was concentrated in the capsule and zone glomerulosa, coincident with the distribution of VIP nerve fibers which aborize extensively in this region. The specificity of this binding was demonstrated using unlabelled VIP, ACTH and angiotensin II.

  13. Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells

    PubMed Central

    Walker, F.; Möck, M.; Feyerabend, M.; Guy, J.; Wagener, R. J.; Schubert, D.; Staiger, J. F.; Witte, M.

    2016-01-01

    Disinhibition of cortical excitatory cell gate information flow through and between cortical columns. The major contribution of Martinotti cells (MC) is providing dendritic inhibition to excitatory neurons and therefore they are a main component of disinhibitory connections. Here we show by means of optogenetics that MC in layers II/III of the mouse primary somatosensory cortex are inhibited by both parvalbumin (PV)- and vasoactive intestinal polypeptide (VIP)-expressing cells. Paired recordings revealed stronger synaptic input onto MC from PV cells than from VIP cells. Moreover, PV cell input showed frequency-independent depression, whereas VIP cell input facilitated at high frequencies. These differences in the properties of the two unitary connections enable disinhibition with distinct temporal features. PMID:27897179

  14. Carbon monoxide mediates vasoactive intestinal polypeptide-associated nonadrenergic/noncholinergic neurotransmission

    PubMed Central

    Watkins, Crystal C.; Boehning, Darren; Kaplin, Adam I.; Rao, Mahil; Ferris, Christopher D.; Snyder, Solomon H.

    2004-01-01

    Carbon monoxide (CO) synthesized by heme oxygenase 2 (HO2) and nitric oxide (NO) produced by neuronal NO synthase (nNOS) mediate nonadrenergic/noncholinergic (NANC) intestinal relaxation. In many areas of the gastrointestinal tract, NO and CO function as coneurotransmitters. In the internal anal sphincter (IAS), NANC relaxation is mediated primarily by CO. Vasoactive intestinal polypeptide (VIP) has also been shown to participate in NANC relaxation throughout the intestine, including the IAS. By using a combination of pharmacology and genetic knockout of the biosynthetic enzymes for CO and NO, we show that the physiologic effects of exogenous and endogenous VIP in the IAS are mediated by HO2-synthesized CO. PMID:14983060

  15. Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells.

    PubMed

    Walker, F; Möck, M; Feyerabend, M; Guy, J; Wagener, R J; Schubert, D; Staiger, J F; Witte, M

    2016-11-29

    Disinhibition of cortical excitatory cell gate information flow through and between cortical columns. The major contribution of Martinotti cells (MC) is providing dendritic inhibition to excitatory neurons and therefore they are a main component of disinhibitory connections. Here we show by means of optogenetics that MC in layers II/III of the mouse primary somatosensory cortex are inhibited by both parvalbumin (PV)- and vasoactive intestinal polypeptide (VIP)-expressing cells. Paired recordings revealed stronger synaptic input onto MC from PV cells than from VIP cells. Moreover, PV cell input showed frequency-independent depression, whereas VIP cell input facilitated at high frequencies. These differences in the properties of the two unitary connections enable disinhibition with distinct temporal features.

  16. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility.

    PubMed

    Nassif, A; Longo, W E; Sexe, R; Stratton, M; Standeven, J; Vernava, A M; Kaminski, D L

    1995-01-01

    We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10(-8) M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E(2) and thromboxane B(2). Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation.

  17. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility

    PubMed Central

    Nassif, A.; Sexe, R.; Stratton, M.; Standeven, J.; Vernava, A. M.; Kaminski, D. L.

    1995-01-01

    We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10−8 M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E2 and thromboxane B2. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation. PMID:18475679

  18. Increased egg production in juvenile turkey hens after active immunization with vasoactive intestinal peptide.

    PubMed

    Caldwell, S R; Johnson, A F; Yule, T D; Grimes, J L; Ficken, M; Christensen, V L

    1999-06-01

    Juvenile turkey hens were actively immunized against vasoactive intestinal peptide (VIP) prior to photostimulation to evaluate its effect on enhancing egg production. VIP antibody titers were generated in the VIP immunized hens and a greater rate of egg production per hen was observed compared to controls. In addition, the first egg laying cycle was extended for an additional 7 wk without a significant decline in egg production. Over a 27-wk period, 116 settable eggs per hen were produced from the VIP immunized hens as compared to 102 and 90 eggs for the keyhole limpet hemocyanin and saline control groups, respectively. Based on the increased egg production and the extension of the first egg laying cycle, this experiment demonstrates that VIP immunization of turkey hens is potentially economically relevant.

  19. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.

    PubMed

    Fernández-Martínez, Ana B; Bajo, Ana M; Isabel Arenas, M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2010-12-18

    The carcinogenic potential of vasoactive intestinal peptide (VIP) was analyzed in non-tumor human prostate epithelial cells (RWPE-1) and in vivo xenografts. VIP induced morphological changes and a migratory phenotype consistent with stimulation of expression/activity of metalloproteinases MMP-2 and MMP-9, decreased E-cadherin-mediated cell-cell adhesion, and increased cell motility. VIP increased cyclin D1 expression and cell proliferation that was blocked after VPAC(1)-receptor siRNA transfection. Similar effects were seen in RWPE-1 tumors developed by subcutaneous injection of VIP-treated cells in athymic nude mice. VIP acts as a cytokine in RWPE-1 cell transformation conceivably through epithelial-mesenchymal transition (EMT), reinforcing VIP role in prostate tumorigenesis.

  20. Vasoactive properties of antihypertensive lactoferrin-derived peptides in resistance vessels: Effects in small mesenteric arteries from SHR rats.

    PubMed

    García-Tejedor, Aurora; Manzanares, Paloma; Castelló-Ruiz, María; Moscardó, Antonio; Marcos, José F; Salom, Juan B

    2017-10-01

    Bovine lactoferrin (LF) hydrolysates and peptides identified thereof have shown antihypertensive effects in rat models, mainly but not exclusively by angiotensin-converting enzyme inhibition. In this study we aimed to assess the vasoactive effects and mechanisms of an ultrafiltered (<3kDa) pepsin LF hydrolysate (LFH) and a heptapeptide identified in a LF hydrolysate produced by yeast proteolysis (DPYKLRP) in peripheral resistance arteries from spontaneously hypertensive rats (SHRs). We used a myograph system for isometric tension recording in isolated small mesenteric arteries from SHRs. Direct vasoactive effects of LFH (30-100μg/mL) and DPYKLRP (30-100μM) were assessed in arteries precontracted with phenylephrine (PE, 10μM) or KCl (120mM), and in PE-precontracted arteries preincubated (10min) with the NO synthase inhibitor L-NAME (0.1mM) or the cyclooxygenase inhibitor indomethacin (10μM). Indirect vasoactive effects of LFH (30-100μg/mL) or DPYKLRP (30-100μM) preincubation (10min) on the relaxant responses to the NO donor sodium nitroprusside (SNP, 0.01-10μM) or acetylcholine (Ach, 1-100μM) were also studied in PE-precontracted arteries. Both LHF and DPYKLRP elicited direct relaxation of mesenteric arteries, by a mechanism involving NO release, counteracting modulation by prostanoids and K(+) efflux. Moreover, LF-derived peptides also showed indirect vasoactive effects by enhancing endothelium-dependent relaxation to Ach and endothelium-independent relaxation to SNP. In conclusion, LF-derived peptides show ex vivodirect and indirect relaxing effects in small mesenteric arteries from SHRs. These vasoactive effects would reduce vascular peripheral resistance in vivo, and thus contribute to their antihypertensive effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling. © The Author(s), 2015.

  2. Genetic, Immune, and Vasoactive Factors in the Vascular Dysfunction Associated with Hypertension in Pregnancy

    PubMed Central

    Ali, Sajjadh M. J.; Khalil, Raouf A.

    2015-01-01

    Introduction Preeclampsia (PE) is a major complication of pregnancy that could lead to maternal and fetal morbidity and mortality. The pathophysiological mechanisms of PE are not completely understood, but recent research has begun to unravel some of the potential mechanisms. Areas covered Genetic polymorphisms and altered maternal immune response may cause impaired remodeling of the spiral arteries; a potential early defect in PE. Inadequate invasion of cytotrophoblasts into the decidua leads to reduced uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia. Placental ischemia causes the release of biologically active factors such as anti-angiogenic factors, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and angiotensin II receptor autoantibodies. These vasoactive factors could cause systemic vascular endotheliosis and consequent increase in vascular resistance and blood pressure, glomerular endotheliosis causing proteinuria, cerebrovascular endotheliosis causing cerebral edema, seizures and visual disturbances, and hepatic endotheliosis which may contribute to the manifestations of HELLP syndrome. PE-associated vascular endotheliosis causes a decrease in vasodilator mediators such as nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor, an increase in vasoconstrictors such as endothelin-1, angiotensin II and thromboxane A2, and enhanced mechanisms of vascular smooth muscle contraction such as intracellular Ca2+, protein kinase C and Rho-kinase. Changes in matrix metalloproteinase activity and extracellular matrix cause vascular remodeling and further vasoconstriction. Expert opinion Some of the genetic, immune and vasoactive factors involved in vascular endotheliosis could be used as biomarkers for early detection, and as potential targets for prevention and treatment of PE. PMID:26294111

  3. Changeovers of vasoactive drug infusion pumps: impact of a quality improvement program.

    PubMed

    Argaud, Laurent; Cour, Martin; Martin, Olivier; Saint-Denis, Marc; Ferry, Tristan; Goyatton, Agnes; Robert, Dominique

    2007-01-01

    Hemodynamic instability following the changeover of vasoactive infusion pump (CVIP) is a common problem in the intensive care unit. Several empiric methods are used to achieve CVIP. We hypothesized that the variation in these procedures could generate some morbidity. We sought to assess the effects of the standardization of practice, as a quality improvement program, on the CVIP-induced incidents. We performed a prospective before-and-after intervention study including all adult patients with a diagnosis of cardiovascular failure who received a continuous infusion of vasoactive drugs or inotropic drugs. After a baseline preimplementation period (phase 1), a standardized 'quick change method' of CVIP using two syringe drivers was implemented in our intensive care unit (phase 2). Endpoints (rate and distribution of incidents: variations of systolic blood pressure >20 mmHg or heart rate >20 beats/min, and arrhythmias) were registered in both 3-month phases. We studied a total of 913 CVIP events (phase 1, 435 events; phase 2, 478 events) from 43 patients. Patient characteristics were not significantly different among phases, with a majority of the patients having septic shock. The frequency of incidents was significantly (P < 0.0001) reduced in phase 2 (5.9%, n = 28) versus phase 1 (17.8%, n = 78). This effect was observed whichever catecholamine was used. More than 98% of incidents were blood pressure variations, with a similar distribution of the nature of incidents in both phases. The present study illustrates that adverse events are common following CVIP, and illustrates the positive impact of a quality improvement program to enhance inpatient safety related to this current process of care.

  4. Changeovers of vasoactive drug infusion pumps: impact of a quality improvement program

    PubMed Central

    Argaud, Laurent; Cour, Martin; Martin, Olivier; Saint-Denis, Marc; Ferry, Tristan; Goyatton, Agnes; Robert, Dominique

    2007-01-01

    Background Hemodynamic instability following the changeover of vasoactive infusion pump (CVIP) is a common problem in the intensive care unit. Several empiric methods are used to achieve CVIP. We hypothesized that the variation in these procedures could generate some morbidity. We sought to assess the effects of the standardization of practice, as a quality improvement program, on the CVIP-induced incidents. Materials and methods We performed a prospective before-and-after intervention study including all adult patients with a diagnosis of cardiovascular failure who received a continuous infusion of vasoactive drugs or inotropic drugs. After a baseline preimplementation period (phase 1), a standardized 'quick change method' of CVIP using two syringe drivers was implemented in our intensive care unit (phase 2). Endpoints (rate and distribution of incidents: variations of systolic blood pressure >20 mmHg or heart rate >20 beats/min, and arrhythmias) were registered in both 3-month phases. Results We studied a total of 913 CVIP events (phase 1, 435 events; phase 2, 478 events) from 43 patients. Patient characteristics were not significantly different among phases, with a majority of the patients having septic shock. The frequency of incidents was significantly (P < 0.0001) reduced in phase 2 (5.9%, n = 28) versus phase 1 (17.8%, n = 78). This effect was observed whichever catecholamine was used. More than 98% of incidents were blood pressure variations, with a similar distribution of the nature of incidents in both phases. Conclusion The present study illustrates that adverse events are common following CVIP, and illustrates the positive impact of a quality improvement program to enhance inpatient safety related to this current process of care. PMID:18163908

  5. Effect of severe acidosis on vasoactive effects of epinephrine and norepinephrine in human distal mammary artery.

    PubMed

    Vidal, Charles; Grassin-Delyle, Stanislas; Devillier, Philippe; Naline, Emmanuel; Lansac, Emmanuel; Ménasché, Philippe; Faisy, Christophe

    2014-05-01

    Acidosis is a very common pathologic process in perioperative management. However, how to correct severe acidosis to improve the efficacy of vasoconstrictors in hemodynamically unstable patients is still debated. The present study investigated whether severe extracellular acidosis influences the vasoactive properties of vasoconstrictors on human isolated arteries. Segments of intact distal internal mammary arteries were removed from 41 patients undergoing artery bypass grafting. The arterial rings were washed in Krebs-Henseleit solution and suspended in an organ bath. The rings were set at a pretension equivalent of 100 mm Hg, and the relaxation response to 10 μM acetylcholine was verified. Concentration-response curves for epinephrine, norepinephrine, methoxamine (α1A/D-adrenoceptor agonist), phenylephrine (equipotent agonist of α1A/B-adrenoceptors), and clonidine (α2-adrenoceptor agonist) were achieved under control conditions (pH 7.40) and under acidic conditions by substitution of the Krebs-Henseleit solution with a modified solution. Decreasing the pH from 7.40 to 7.20, 7.0, or 6.80 did not significantly alter the potency and efficacy of epinephrine and norepinephrine, although the standardized effect size was sometimes large. Severe acidosis (pH 6.80) did not significantly change the potency and efficacy of phenylephrine and clonidine, although it increased the efficacy and potency of methoxamine (P < .001 and P = .04 vs paired control conditions, respectively). Extracellular acidosis did not impair the vasoactive properties of epinephrine and norepinephrine in human medium-size arteries until pH 6.80. The results of the present study also suggest that acidosis might potentiate arterial responsiveness to vasoconstrictors, mostly by way of the α1D-adrenoceptor. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  6. Emerging roles for vasoactive peptides in diagnostic and therapeutic strategies against atherosclerotic cardiovascular diseases.

    PubMed

    Watanabe, Takuya; Sato, Kengo; Itoh, Fumiko; Noguchi, Yuri; Fujimoto, Kazumi; Koyama, Takatoshi; Shichiri, Masayoshi

    2013-09-01

    Coronary artery disease (CAD) arising from atherosclerosis remains the most common cause of death and morbidity worldwide, although its risk factors, such as hypertension, dyslipidemia, and diabetes, have been individually treated with increasingly improved outcomes. Therefore, it is important to develop diagnostic and therapeutic windows for CAD. Many classical vasoactive hormones, inflammatory cytokines, and oxidative products have been implicated as potential biomarkers. Our recent studies have shown that high levels of the pro-atherogenic vasoactive agents, serotonin and urotensin II, which are potent vasoconstrictors, can be used as biomarkers for CAD. In subsequent trials, we unraveled anti- and pro-atherogenic roles for more recently identified peptides. Anti-atherogenic peptides include the adipocytokine adiponectin, the neuronal growth factor heregulin-β₁ (neuregulin-1 type I), the incretin hormone, glucagon-like peptide-1 (GLP-1), and a peptide recently identified by an in silico approach, salusin-α. Atherogenic roles have been demonstrated by cellular, animal, and clinical experiments, which indicate that human adiponectin, heregulin-β₁, GLP-1, and salusin-α attenuate the development of atherosclerotic lesions by suppressing macrophage foam cell formation via down-regulation of acyl-CoA:cholesterol acyltransferase-1. Circulating levels of these peptides in the blood are markedly decreased in CAD patients compared with those in non-CAD patients. Receiver operating characteristic curve analyses have shown that salusin-α is the most useful biomarker for detecting CAD among the four peptides examined. Therefore, salusin-α, alone or in various combinations with heregulin-β₁, adiponectin, and/or GLP-1, is a candidate biomarker for predicting CAD. Further, anti-atherogenic peptides could potentially serve as useful therapeutic targets for atherosclerotic cardiovascular diseases.

  7. Elevated endothelial HIF-1α contributes to glomerular injury and promotes hypertensive chronic kidney disease

    PubMed Central

    Luo, Renna; Zhang, Weiru; Zhao, Cheng; Zhang, Yujin; Wu, Hongyu; Jin, Jianping; Zhang, Wenzheng; Grenz, Almut; Eltzschig, Holger K.; Tao, Lijian; Kellems, Rodney E; Xia, Yang

    2016-01-01

    Hypertensive chronic kidney disease is one of the most prevalent medical conditions with high morbidity and mortality in the United States and worldwide. However, early events initiating the progression to hypertensive chronic kidney disease are poorly understood. We hypothesized that elevated endothelial hypoxia-inducible factor-1alpha is a common early insult triggering initial glomerular injury leading to hypertensive chronic kidney disease. To test our hypothesis we used an angiotensin II infusion model of hypertensive chronic kidney disease to determine the specific cell type and mechanisms responsible for elevation of HIF-1α and its role in the progression of hypertensive chronic kidney disease. Genetic studies coupled with RT-PCR profiling revealed that elevated endothelial HIF-1α is essential to initiate glomerular injury and progression to renal fibrosis by the transcriptional activation of genes encoding multiple vasoactive proteins. Mechanistically, we found that endothelial HIF-1α gene expression was induced by Ang II in a nuclear factor-κB-dependent manner. Finally, we discovered reciprocal positive transcriptional regulation of endothelial Hif-1α and Nf-κb genes is a key driving force for their persistent activation and disease progression. Overall, our findings revealed that the stimulation of HIF-1α gene expression in endothelial cells is detrimental to induce kidney injury, hypertension and disease progression. Our findings highlight early diagnostic opportunities and therapeutic approaches for hypertensive chronic kidney disease. PMID:25987665

  8. A comparison of the effect of ramipril, felodipine and placebo on glomerular filtration rate, albuminuria, blood pressure and vasoactive hormones in chronic glomerulonephritis. A randomized, prospective, double-blind, placebo-controlled study over two years.

    PubMed

    Pedersen, E B; Bech, J N; Nielsen, C B; Kornerup, H J; Hansen, H E; Spencer, E S; Sølling, J; Jensen, K T

    1997-12-01

    The effects of an ACE-inhibitor (ramipril), a calcium antagonist (felodipine) and placebo on glomerular filtration rate (GFR), urinary albumin/creatinine ratio, blood pressure (BP) and vasoactive hormones were investigated in a randomized, prospective, double-blind, placebo-controlled study of patients with chronic glomerulonephritis and hypertension, with measurements at entrance and after 12 and 24 months. In total, 33 patients were included: 21 completed the study with 7 patients in each group. GFR was measured as 51Cr-EDTA clearance and the vasoactive hormones with radioimmunoassays. The reduction in GFR was significantly more pronounced in the felodipine group (-7 ml/min) than in the ramipril group (0 ml/min) but the same as in the placebo group (-6 ml/min). The urinary albumin/creatinine ratio was significantly more reduced in the ramipril group (-74 mg/mmol) than in the placebo group (-11 mg/mmol), which did not deviate from the felodipine group (-10 mg/mmol). BP was significantly reduced by ramipril and felodipine, but not by placebo. Angiotensin II and aldosterone in plasma increased or tended to increase in the felodipine and placebo groups, but were unchanged in the ramipril group. Endothelin increased only in the placebo group, and vasopressin, atrial natriuretic peptide, and brain natriuretic peptide were not significantly changed in any of the groups. It is concluded that ramipril seems to be superior to felodipine in chronic glomerulonephritis owing to better preservation of GFR.

  9. Endothelial heterogeneity in the umbilico-placental unit: DNA methylation as an innuendo of epigenetic diversity

    PubMed Central

    Casanello, Paola; Schneider, Daniela; Herrera, Emilio A.; Uauy, Ricardo; Krause, Bernardo J.

    2014-01-01

    The endothelium is a multifunctional heterogeneous tissue playing a key role in the physiology of every organ. To accomplish this role the endothelium presents a phenotypic diversity that is early prompted during vascular development, allowing it to cope with specific requirements in a time- and site-specific manner. During the last decade several reports show that endothelial diversity is also present in the umbilico-placental vasculature, with differences between macro- and microvascular vessels as well as arterial and venous endothelium. This diversity is evidenced in vitro as a higher angiogenic capacity in the microcirculation; or disparity in the levels of several molecules that control endothelial function (i.e., receptor for growth factors, vasoactive mediators, and adhesion molecules) which frequently are differentially expressed between arterial and venous endothelium. Emerging evidence suggests that endothelial diversity would be prominently driven by epigenetic mechanisms which also control the basal expression of endothelial-specific genes. This review outlines evidence for endothelial diversity since early stages of vascular development and how this heterogeneity is expressed in the umbilico-placental vasculature. Furthermore a brief picture of epigenetic mechanisms and their role on endothelial physiology emphasizing new data on umbilical and placental endothelial cells is presented. Unraveling the role of epigenetic mechanisms on long term endothelial physiology and its functional diversity would contribute to develop more accurate therapeutic interventions. Altogether these data show that micro- versus macro-vascular, or artery versus vein comparisons are an oversimplification of the complexity occurring in the endothelium at different levels, and the necessity for the future research to establish the precise source of cells which are under study. PMID:24723887

  10. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells

    PubMed Central

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R.; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  11. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  12. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    SciTech Connect

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  13. Role of free fatty acids in endothelial dysfunction.

    PubMed

    Ghosh, Arijit; Gao, Lei; Thakur, Abhimanyu; Siu, Parco M; Lai, Christopher W K

    2017-07-27

    Plasma free fatty acids levels are increased in subjects with obesity and type 2 diabetes, playing detrimental roles in the pathogenesis of atherosclerosis and cardiovascular diseases. Increasing evidence showing that dysfunction of the vascular endothelium, the inner lining of the blood vessels, is the key player in the pathogenesis of atherosclerosis. In this review, we aimed to summarize the roles and the underlying mechanisms using the evidence collected from clinical and experimental studies about free fatty acid-mediated endothelial dysfunction. Because of the multifaceted roles of plasma free fatty acids in mediating endothelial dysfunction, elevated free fatty acid level is now considered as an important link in the onset of endothelial dysfunction due to metabolic syndromes such as diabetes and obesity. Free fatty acid-mediated endothelial dysfunction involves several mechanisms including impaired insulin signaling and nitric oxide production, oxidative stress, inflammation and the activation of the renin-angiotensin system and apoptosis in the endothelial cells. Therefore, targeting the signaling pathways involved in free fatty acid-induced endothelial dysfunction could serve as a preventive approach to protect against the occurrence of endothelial dysfunction and the subsequent complications such as atherosclerosis.

  14. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity

    PubMed Central

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.

    2013-01-01

    Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population

  15. Validation of an instrument regarding nursing intervention in patients in vasoactive therapy.

    PubMed

    Paim, Ane Elisa; Nascimento, Eliane Regina Pereira do; Bertoncello, Kátia Cilene Godinho; Sifroni, Karla Gomes; Salum, Nadia Chiodelli; Nascimento, Keyla Cristiane do

    2017-01-01

    to validate the content of a Standard Operational Procedure, regarding nursing interventions in emergency patients treated with vasoactive drugs. methodological study, carried out from December 2015 to January 2016. Content validity was determined by 16 experts (13 nurses, 2 pharmacists and one biomedical scientist), who judged it through a four-point Likert scale. The items were evaluated in terms of: feasibility, objectivity, simplicity, clearness, pertinence and accuracy. The Content Validity Index was applied, accepting the value ≥ 0.90. two rounds of evaluation were required to achieve the minimum index. The items were reviewed regarding writing, dilution, indication and replacement interval. The instrument was validated with 33 items and with total Content Validity Index of 0.99. the instrument was considered appropriate, fractionally and globally, for nursing care for the patient treated with vasoactive drugs in emergency, in a safe and reliable way. validar o conteúdo do Procedimento Operacional Padrão, para intervenção de enfermagem ao paciente em uso de fármacos vasoativos na emergência. estudo metodológico, realizado de dezembro de 2015 a janeiro de 2016. A validação de conteúdo deu-se por 16 juízes, sendo 13 enfermeiros, dois farmacêuticos e um biomédico, que o julgaram por meio da escala tipo Likert de quatro pontos. Os itens foram avaliados em: exequibilidade, objetividade, simplicidade, clareza, pertinência e precisão. Aplicou-se o Índice de Validade de Conteúdo, aceitando-se o valor ≥ 0,90. foram necessárias duas rodadas de validação para atingir o índice. Os itens foram alterados: na redação, diluição, indicação, intervalo de troca. O instrumento foi validado com 33 itens e com Índice de Validade de Conteúdo total de 0,99. considerou-se adequado, separadamente, e de maneira global, para que o enfermeiro possa cuidar do paciente em uso de fármacos vasoativos na emergência, de forma segura e confiável.

  16. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces.

    PubMed

    Busse, Rudi; Fleming, Ingrid

    2003-01-01

    Endothelial cells, which are situated at the interface between blood and the vessel wall, have a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro-atherosclerotic and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of endothelium-derived autacoids [from the Greek autos (self) and akos (remedy)], which are generally short-lived and locally acting. In vivo, endothelial cells are constantly subjected to mechanical stimulation, which in turn determines the acute production of autacoids and the levels of autacoid-producing enzymes.

  17. The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients

    PubMed Central

    Ince, Can

    2010-01-01

    Purpose The clinical use of vasoactive drugs is not only intended to improve systemic hemodynamic variables, but ultimately to attenuate derangements in organ perfusion and oxygenation during shock. This review aims (1) to discuss basic physiology with respect to manipulating vascular tone and its effect on the microcirculation, and (2) to provide an overview of available clinical data on the relation between vasoactive drugs and organ perfusion, with specific attention paid to recent developments that have enabled direct in vivo observation of the microcirculation and concepts that have originated from it. Methods A MedLine search was conducted for clinical articles in the English language over the last 15 years pertainig to shock, sepsis, organ failure, or critically ill patients in combination with vasoactive drugs and specific variables of organ perfusion/oxygenation (e.g., tonometry, indocyanine clearance, laser Doppler, and sidestream dark field imaging). Results Eighty original papers evaluating the specific relationship between organ perfusion/oxygenation and the use of vasoactive drugs were identified and are discussed in light of physiological theory of vasomotor tone. Conclusions Solid clinical data in support of the idea that increasing blood pressure in shock improves microcirculatory perfusion/oxygenation seem to be lacking, and such a concept might not be in line with physiological theory of microcirculation as a low-pressure vascular compartment. In septic shock no beneficial effect on microcirculatory perfusion above a mean arterial pressure of 65 mmHg has been reported, but a wide range in inter-individual effect seems to exist. Whether improvement of microcirculatory perfusion is associated with better patient outcome remains to be elucidated. PMID:20811874

  18. HDL and endothelial protection

    PubMed Central

    Tran-Dinh, A; Diallo, D; Delbosc, S; Varela-Perez, L Maria; Dang, QB; Lapergue, B; Burillo, E; Michel, JB; Levoye, A; Martin-Ventura, JL; Meilhac, O

    2013-01-01

    High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity. PMID:23488589

  19. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    SciTech Connect

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-05-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues.

  20. Vasoactive intestinal polypeptide/phentolamine for intracavernosal injection in erectile dysfunction.

    PubMed

    Dinsmore, W Wallace; Wyllie, Michael G

    2008-09-01

    Erectile dysfunction (ED) is becoming an increasingly common problem and although oral therapies offer first-line treatment for many men, they are contraindicated or ineffective in substantial groups of patients. Intracavernosal injection (ICI) therapy is the most effective nonsurgical treatment for ED and offers an effective alternative to oral therapy. Sufficient arterial blood supply and a functional veno-occlusive mechanism are prerequisites in the attainment and maintenance of a functional erection. Invicorp (Plethora Solutions, London, UK) is a combination of vasoactive intestinal polypeptide (VIP) 25 microg and phentolamine mesylate 1 or 2 mg for ICI in the management of moderate to severe ED. The two active components have complementary modes of action; VIP has a potent effect on the veno-occlusive mechanism, but little effect on arterial inflow, whereas phentolamine increases arterial blood flow with no effect on the veno-occlusive mechanism. Clinical studies showed that Invicorp is effective in >or=80% of men with ED, including those who have failed to respond to other therapies and, unlike existing intracavernosal therapies, is associated with a very low incidence of penile pain and virtually negligible risk of priapism. We estimate that there are >5.9 million men in the USA alone for whom oral ED drugs are not a viable treatment option, and for whom Invicorp might offer a safe and effective alternative.

  1. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.

    PubMed

    Miller, Jae-Eun Kang; Granados-Fuentes, Daniel; Wang, Thomas; Marpegan, Luciano; Holy, Timothy E; Herzog, Erik D

    2014-04-23

    Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.

  2. Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide.

    PubMed

    Loh, D H; Kuljis, D A; Azuma, L; Wu, Y; Truong, D; Wang, H B; Colwell, C S

    2014-10-01

    The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP)-expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle, but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produce about half the offspring of their wild-type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle; that is, ovulation occurs less frequently and results in the release of fewer oocytes compared with controls. Circadian rhythms of wheel-running activity are disrupted in the female mutant mice, as is the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibits lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator, which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success. © 2014 The Author(s).

  3. Urinary Bladder Function and Somatic Sensitivity in Vasoactive Intestinal Polypeptide (VIP)-/- Mice

    PubMed Central

    Studeny, Simon; Cheppudira, Bopaiah B.; Meyers, Susan; Balestreire, Elena M.; Apodaca, Gerard; Birder, Lori A.; Braas, Karen M.; Waschek, James A.; May, Victor; Vizzard, Margaret A.

    2009-01-01

    Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide widely distributed in neural pathways that regulate micturition. VIP is also an endogenous anti-inflammatory agent that has been suggested for the development of therapies for inflammatory disorders. In the present study, we examined urinary bladder function, hindpaw and pelvic sensitivity in VIP-/- and littermate wildtype controls. We demonstrated increased bladder mass and fewer but larger urine spots on filter paper in VIP-/- mice. Using cystometry in conscious, unrestrained mice, VIP-/- mice exhibited increased void volumes and shorter intercontraction intervals with continuous intravesical infusion of saline. No differences in transepithelial resistance or water permeability were demonstrated between VIP-/- and WT mice; however, an increase in urea permeability was demonstrated in VIP-/- mice. With the induction of bladder inflammation by acute administration of cyclophosphamide (CYP), an exaggerated or prolonged bladder hyperreflexia, hindpaw and pelvic sensitivity were demonstrated in VIP-/- mice. The changes in bladder hyperreflexia and somatic sensitivity in VIP-/- mice may reflect increased expression of neurotrophins and/or or proinflammatory cytokines in the urinary bladder. Thus, these changes may further regulate the neural control of micturition. PMID:18561033

  4. Novel Association between Vasoactive Intestinal Peptide and CRTH2 Receptor in Recruiting Eosinophils

    PubMed Central

    El-Shazly, Amr E.; Begon, Dominique Y.; Kustermans, Gaelle; Arafa, Mohammad; Dortu, Estelle; Henket, Monique; Lefebvre, Philippe P.; Louis, Renaud; Delvenne, Philippe

    2013-01-01

    We explored the relation between vasoactive intestinal peptide (VIP), CRTH2, and eosinophil recruitment. It is shown that CRTH2 expression by eosinophils from allergic rhinitis (AR) patients and eosinophil cell line (Eol-1 cells) was up-regulated by VIP treatment. This was functional and resulted in exaggerated migratory response of cells against PGD2. Nasal challenge of AR patients resulted in a significant increase of VIP contents in nasal secretion (ELISA), and the immunohistochemical studies of allergic nasal tissues showed significant expression of VIP in association with intense eosinophil recruitment. Biochemical assays showed that VIP-induced eosinophil chemotaxis from AR patients and Eol-1 cells was mediated through the CRTH2 receptor. Cell migration against VIP was sensitive to protein kinase C (PKC) and protein kinase A (PKA) inhibition but not to tyrosine kinase or p38 MAPK inhibition or calcium chelation. Western blot demonstrated a novel CRTH2-mediated cytosol-to-membrane translocation of PKC-ϵ, PKC-δ, and PKA-α, -γ, and -IIαreg in Eol-1 cells upon stimulation with VIP. Confocal images and FACS demonstrated a strong association and co-localization between VIP peptide and CRTH2 molecules. Further, VIP induced PGD2 secretion from eosinophils. Our results demonstrate the first evidence of association between VIP and CRTH2 in recruiting eosinophils. PMID:23168411

  5. Sexual function assessment and the role of vasoactive drugs in female sexual dysfunction.

    PubMed

    Rosen, Raymond C

    2002-10-01

    Despite the high prevalence of sexual problems in women, relatively few clinical trials have been conducted to date of either vasoactive drugs (e.g., sildenafil, apomorphine) or hormone replacement therapy or a combination of the two on sexual function problems in women. This article addresses the key conceptual and methodological issues to be addressed in clinical trials, particularly in the area of response outcomes or efficacy assessment. In particular, the use of self-report questionnaires and event-log or diary-based responses as primary outcome variables or endpoints in clinical trials is considered. Physiological measures, such as the vaginal photoplethysmograph probe, are being used in early proof of concept studies. There may be some value in the use of these measures for proof-of-concept and early dose-finding studies. Physiological measures are not used in large-scale, multicenter clinical trials, where patient-based or diary measures are clearly preferable. Clinical trials in this area should also make use of the new consensus classification system for female sexual dysfunction in determining inclusion and exclusion criteria for the trial.

  6. Distribution of vasoactive intestinal polypeptide and substance P receptors in human colon and small intestine

    SciTech Connect

    Korman, L.Y.; Sayadi, H.; Bass, B.; Moody, T.W.; Harmon, J.W.

    1989-07-01

    Vasoactive intestinal polypeptide (VIP) and substance P are found in neurons in the lamina propria and submucosa and muscularis propria of human small intestine and colon. VIP receptors coupled to adenylate cyclase are present on epithelial, smooth muscle, and mononuclear cells. This study analyzes the distribution of (/sup 125/I)VIP binding and (/sup 125/I)substance P in human colon and small intestine using autoradiographic techniques. (/sup 125/I)VIP binding was present in high density in the mucosal layer of colon and small intestine. (/sup 125/I)VIP binding was not significantly greater than nonspecific binding in smooth muscle layers or the lymphoid follicles. In contrast, (/sup 125/I)substance P binding was present in high density over the colonic muscle but was not present over the mucosal layer. In human colon cancer, (/sup 125/I)VIP grain density over the malignant tissue was only slightly higher than background. These autoradiographic studies of (/sup 125/I)VIP binding indicate that the highest density of VIP receptors was found in the small intestine and superficial colonic mucosa, whereas the density of substance P receptors was highest over the smooth muscle layers. These findings suggest a mismatch between immunochemical content of the peptide and autoradiographic density of the receptor.

  7. Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia.

    PubMed

    Cruise, Bethany A; Xu, Pin; Hall, Alison K

    2004-07-01

    Successful healing of skin wounds requires sensory innervation and the release of vasoactive neuropeptides that dilate blood vessels and deliver serum proteins to the wound, and that cause pain that protects from further injury. Activin has been proposed as a target-derived regulator of sensory neuropeptides during development, but its role in the mature nervous system is unknown. While adult skin contains a low level of activin, protein levels in skin adjacent to a wound increase rapidly after an excision. Neurons containing the neuropeptide calcitonin gene-related peptide (CGRP) increased in sensory ganglia that projected to the wounded skin, but not in ganglia that projected to unwounded skin, suggesting that neurons respond to a local skin signal. Indeed, many adult sensory neurons respond with increased CGRP expression to the application of activin in vitro and utilize a smad-mediated signal transduction pathway in this response. A second skin-derived factor nerve growth factor (NGF) also increased in wounded skin and increased CGRP in cultured adult dorsal root ganglia (DRG) neurons but with lower efficacy. Together, these data support the hypothesis that activin made by skin cells regulates changes in sensory neuropeptides following skin injury, thereby promoting vasodilation and wound healing.

  8. Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase.

    PubMed

    Berisha, H; Foda, H; Sakakibara, H; Trotz, M; Pakbaz, H; Said, S I

    1990-08-01

    Reactive oxygen species mediate injury and inflammation in many tissues. The addition of xanthine and xanthine oxidase to perfused rat lungs led to increases in peak airway pressure and perfusion pressure, pulmonary edema, and increased protein content in bronchoalveolar lavage fluid. Treatment with 1-10 micrograms.kg-1.min-1 of vasoactive intestinal peptide (VIP), a widely distributed neuropeptide, markedly reduced or totally prevented all signs of injury. Simultaneously, VIP also diminished or abolished the associated generation of arachidonate products. Similar protection was provided by catalase (100 micrograms/ml) but not by the VIP-related peptides secretin or glucagon. The pulmonary vasodilator papaverine (0.15 mg/ml) was also ineffective. Injured lungs that were not treated with VIP released large amounts of this peptide in the perfusate. The results indicate that VIP has potent protective activity against injury triggered by xanthine/xanthine oxidase and may be a physiological modulator of inflammatory tissue damage associated with toxic oxygen metabolites.

  9. Anatomical distribution of vasoactive intestinal peptide binding sites in peripheral tissues investigated by in vitro autoradiography.

    PubMed

    Power, R F; Bishop, A E; Wharton, J; Inyama, C O; Jackson, R H; Bloom, S R; Polak, J M

    1988-01-01

    Vasoactive intestinal polypeptide has a widespread distribution in the body, occurring in both the central and peripheral nervous systems and considerable information is available on its distribution, physiology, and pharmacological actions. Receptors for VIP have been demonstrated previously in peripheral tissues by conventional binding techniques using isolated membrane preparations. However, information on their precise localization is limited. We therefore localized binding sites in a variety of guinea pig and rat tissues by in vitro autoradiography and made a parallel study of the distribution of VIP nerves in these tissues using immunocytochemistry. [125I]VIP was prepared by the chloramine T method and shown to be pharmacologically active. After a preincubation procedure to remove endogenously bound VIP, unfixed cryostat sections were incubated with 1 nM [125I]VIP. To determine specific binding, sections were incubated in the presence or absence of 1 microM unlabeled VIP. Autoradiograms were generated by exposing the sections to LKB-Ultrofilm or emulsion-coated coverslips. Dense binding occurred in discrete locations within the gastrointestinal, respiratory, and genital tracts, correlating with known actions of VIP and, to various extents, with the distribution of VIP nerves. For example, there was precise localization to respiratory epithelium, smooth muscle of airways and blood vessels, and alveolar walls, in keeping with the effects of VIP on vascular and airway smooth muscle and mucus secretion.

  10. Excess LIGHT contributes to placental impairment, increased secretion of vasoactive factors, hypertension, and proteinuria in preeclampsia.

    PubMed

    Wang, Wei; Parchim, Nicholas F; Iriyama, Takayuki; Luo, Renna; Zhao, Cheng; Liu, Chen; Irani, Roxanna A; Zhang, Weiru; Ning, Chen; Zhang, Yujin; Blackwell, Sean C; Chen, Lieping; Tao, Lijian; Hicks, M John; Kellems, Rodney E; Xia, Yang

    2014-03-01

    Preeclampsia, a prevalent hypertensive disorder of pregnancy, is believed to be secondary to uteroplacental ischemia. Accumulating evidence indicates that hypoxia-independent mediators, including inflammatory cytokines and growth factors, are associated with preeclampsia, but it is unclear whether these signals directly contribute to placental damage and disease development in vivo. We report that LIGHT, a novel tumor necrosis factor superfamily member, is significantly elevated in the circulation and placentas of preeclamptic women compared with normotensive pregnant women. Injection of LIGHT into pregnant mice induced placental apoptosis, small fetuses, and key features of preeclampsia, hypertension and proteinuria. Mechanistically, using neutralizing antibodies specific for LIGHT receptors, we found that LIGHT receptors herpes virus entry mediator and lymphotoxin β receptor are required for LIGHT-induced placental impairment, small fetuses, and preeclampsia features in pregnant mice. Accordingly, we further revealed that LIGHT functions through these 2 receptors to induce secretion of soluble fms-like tyrosine kinase-1 and endothelin-1, 2 well-accepted pathogenic factors in preeclampsia, and thereby plays an important role in hypertension and proteinuria in pregnant mice. Lastly, we extended our animal findings to human studies and demonstrated that activation of LIGHT receptors resulted in increased apoptosis and elevation of soluble fms-like tyrosine kinase-1 secretion in human placental villous explants. Overall, our human and mouse studies show that LIGHT signaling is a previously unrecognized pathway responsible for placental apoptosis, elevated secretion of vasoactive factors, and subsequent maternal features of preeclampsia, and reveal new therapeutic opportunities for the management of the disease.

  11. Evidence against vasoactive intestinal polypeptide as the relaxant neurotransmitter in human cavernosal smooth muscle.

    PubMed Central

    Pickard, R. S.; Powell, P. H.; Zar, M. A.

    1993-01-01

    1. The putative role of vasoactive intestinal polypeptide (VIP) as the relaxant neurotransmitter in human cavernosal smooth muscle has been studied in isolated tissue preparations. 2. Consistent neurogenic relaxations were evoked by electrical field stimulation (EFS; 2-64 pulses/train, 0.8 ms pulse duration, 10 Hz). VIP (0.1-3 microM) relaxed cavernosal smooth muscle in a dose-dependent fashion. Relaxant responses to both EFS and VIP were reduced in tissue from impotent men. 3. Neurogenic relaxant responses were not diminished in the presence of the VIP-inactivating peptidase, alpha-chymotrypsin (alpha-CT, 2 units ml-1). In contrast VIP-induced relaxations were completely abolished. 4. Inhibition of nitric oxide synthase by NG-nitro-L-arginine (30 microM), and of guanylate cyclase by methylene blue (50 microM) caused highly significant reductions of neurogenic relaxant responses whereas VIP-evoked relaxations were unaffected. 5. It is concluded that VIP-evoked relaxations are not mediated by the NO-guanosine 3':5'-cyclic monophosphate (cyclic GMP) pathway and that VIP release is not essential for neurogenic relaxation of human cavernosal smooth muscle. VIP does not therefore act as the major relaxant neurotransmitter in this tissue. PMID:8095418

  12. Motion corrected Cadence CPS ultrasound for quantifying response to vasoactive drugs in a rat kidney model

    PubMed Central

    Pollard, Rachel E.; Dayton, Paul A.; Watson, Katherine D.; Hu, Xiaowen; Guracar, Ismayil M.; Ferrara, Katherine W.

    2009-01-01

    Objective: To establish the ability of contrast enhanced motion corrected Cadence Pulse Sequencing (CPS) to detect changes in renal blood flow induced by vasoactive substances in rats. Methods: Ultrasound contrast media was administered as a constant rate infusion into a phantom at a known rate and CPS data acquired. Rats were anesthetized and pre-drug CPS estimates of replenishment rate were made for the right kidney. Real-time motion correction was applied and parametric images were generated from the CPS data. Group 1 rats (n=7) were administered a vasodilator and Group 2 rats (n=3) were given a vasoconstrictor. CPS imaging of the kidney was repeated following ample time for drug effects to occur. Results: Contrast CPS accurately estimated flow velocity in the phantom model. In addition, CPS defined statistically significant differences between pre and post drug blood flow in the renal medulla (vasodilator, p<0.01; vasoconstrictor, p<0.0001) and cortex (vasoconstrictor, p<0.0001). Conclusions: We conclude that motion corrected CPS ultrasound provides real time quantification of renal blood flow alterations and may prove useful for the assessment of blood flow in transplanted kidneys. PMID:19589583

  13. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review).

    PubMed

    Tang, Bo; Yong, Xin; Xie, Rui; Li, Qian-Wei; Yang, Shi-Ming

    2014-04-01

    Vasoactive intestinal peptide receptors (VIPRs) are members of the G-protein-coupled receptor superfamily. These receptors are overexpressed in many common malignant tumors and play a major role in the progression and angiogenesis of a number of malignancies. Therefore, VIPRs may be a valuable target for the molecular imaging of tumors and therapeutic interventions. The specific natural ligand or its analogs can be labeled with a radionuclide and used for tumor receptor imaging, which could be used to visualize VIPR-related surface protein expression in vivo and to monitor the in vivo effects of molecular drugs on tumors. Moreover, the involvement of VIPRs in malignant transformation and angiogenesis renders them potential therapeutic targets for cancer treatment. A variety of VIP antagonists and cytotoxic VIP conjugates have been synthesized and evaluated for VIPR-targeted molecular therapy. The importance of VIPRs in tumor biology and the ability to predict responses to targeted therapy and monitor drug interventions suggest that VIP receptor-based imaging and treatment will be critical for the early diagnosis and management of cancer. Here, we review the current literature regarding VIPRs and their natural ligands and the involvement of VIPRs in tumor growth and angiogenesis, with an emphasis on the present use of VIPRs for the molecular imaging of tumors and therapies targeting VIPRs.

  14. Presence of vasoactive intestinal polypeptide-like immunoreactivity in the cholinergic electromotor system of Torpedo marmorata.

    PubMed

    Agoston, D V; Conlon, J M

    1986-08-01

    Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was detected in the cholinergic electro-motor system of Torpedo marmorata using a combination of immunohistochemical assays, radioimmunoassay, and HPLC. The immunohistochemical assays revealed that the distribution of VIP-like immunoreactivity in the electric lobes, electromotor nerves, and electric organ is comparable to that of the stable cholinergic synaptic vesicle marker vesicle-specific proteoglycan. Ligation of the electromotor nerves caused a marked accumulation of VIP-like immunoreactivity in the lobes (180%) and the proximal portions of the electromotor nerves (130%) and a decrease in the electric organ (-50%), when measured by radioimmunoassay using synthetic VIP (porcine sequence) as the standard. VIP-like immunoreactivity in extracts of electric lobes electromotor nerves, and electric organ was eluted from a semipreparative reverse-phase HPLC column as a single peak with a retention time similar to that of porcine VIP. Rechromatography at higher resolution on an analytical column indicated diversity between the molecular forms of VIP-like immunoreactivity extracted from electric lobe and electric organ, suggesting the possibility of posttranslational processing.

  15. Vasotab, a vasoactive peptide from horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary glands.

    PubMed

    Takác, Peter; Nunn, Miles A; Mészáros, János; Pechánová, Olga; Vrbjar, Norbert; Vlasáková, Petra; Kozánek, Milan; Kazimírová, Mária; Hart, George; Nuttall, Patricia A; Labuda, Milan

    2006-01-01

    Horse flies feed from superficial haematomas and probably rely heavily on the pharmacological properties of their saliva to find blood. Here we describe the first evidence of vasodilators in horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary gland extract and clone and express one of the active peptides (termed vasotab). Physiological tests using crude salivary gland extracts and reverse-phase HPLC fractions demonstrated positive inotropism in isolated rat hearts, vasodilatation of coronary and peripheral vessels, and Na, K-ATPase inhibition. One of the vasoactive fractions was analysed by N-terminal Edman degradation and a 47-amino-acid sequence obtained. A full-length cDNA encoding the peptide was cloned from a phage library using degenerate primer PCR and the peptide expressed in insect cells. A 20-amino-acid signal sequence precedes the mature 56-amino-acid vasotab peptide, which is a member of the Kazal-type protease inhibitor family. The peptide has a unique 7-amino-acid insertion between the third and fourth cysteine residues. The recombinant peptide prolonged the action potential and caused positive inotropism of isolated rat heart myocytes, and may be an ion channel modulator.

  16. Vasoactive intestinal peptide inhibits fMLP-induced respiratory burst in human lymphocytes.

    PubMed

    Bellido, L; López-González, M A; Pedrera, C; Lucas, M

    1994-01-01

    N-Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) induced in lymphocytes the production of reactive oxygen intermediates in a process which was inhibited by the presence of Vasoactive Intestinal Peptide (VIP) in a dose-dependent response at VIP concentrations in the range 10(-10)-10(-7) M. The dissociation constant for the high-affinity receptors of VIP agrees with the ID50 of the activation of adenylate cyclase which are close to 0.2 nM VIP, whereas the ID50 for the inhibition by VIP of fMLP-induced chemiluminescence approaches to 5 nM VIP. Both IBMX and Forskolin produced in lymphocytes an inhibition of fMLP-induced chemiluminescence. The degree of inhibition was ascertained to be additive in the presence of the above indicated agents and suboptimal concentrations of VIP. The saturation by cAMP of its putative target, the regulatory subunit of protein kinase A, appears to be required for the onset of the inhibitory effect of VIP. This study provides evidence of the molecular signal, namely cAMP, which provokes an inhibitory effect on chemoatractant-stimulated human lymphocytes and further support a role for VIP as a mediator in the neuroimmune system.

  17. Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia

    SciTech Connect

    Bouder, T.G.; Huffman, L.J.; Hedge, G.A. )

    1988-12-01

    In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injections ({sup 141}Ce-MS/{sup 85}Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP.

  18. Vasoactive intestinal peptide can promote the development of neonatal rat primordial follicles during in vitro culture.

    PubMed

    Chen, Niannian; Li, Yu; Wang, Wenjun; Ma, Yun; Yang, Dongzi; Zhang, Qingxue

    2013-01-01

    Recruitment of primordial follicles is essential for female fertility. Some of the intraovarian growth factors involved in the initiation of primordial follicle growth have been identified, but the exact mechanisms regulating follicle activation are poorly understood. Strong evidence indicates that vasoactive intestinal peptide (VIP), a neuropeptide found in ovarian nerves, plays a role in the physiology of follicle development and function. The aim of the present study was to determine whether VIP might regulate the activation and growth of neonatal rat primordial follicles in an in vitro culture system. Ovaries from 4-day-old rats were cultured for 14 days in medium containing 10(-7) M VIP. At the end of the culture, the developmental stages and viability of the follicles were evaluated using histological sections. Immunohistochemistry studies for proliferating cell nuclear antigen (PCNA) were performed to assess the mitotic activity of granulosa cells. In addition, the expression level of kit ligand (KL) mRNA was examined after culture. Histology showed that primordial follicles could survive and start to grow in vitro. The proportion of primordial follicles was decreased and the proportion of early primary follicles increased after in vitro culture with VIP. Immunolocalization of PCNA showed that follicle growth was initiated after VIP treatment. The expression level of KL mRNA was increased in the VIP treatment group. Thus, VIP can promote primordial follicle development, possibly mediated in part through upregulating the expression of KL.

  19. Cytokine release and endothelial dysfunction: a perfect storm in orbivirus pathogenesis.

    PubMed

    Howerth, Elizabeth W

    2015-01-01

    Although bluetongue viruses (BTV) and epizootic haemorrhagic disease viruses (EHDV) are closely related, there are differences in susceptibility to these viruses both between and within a species. White‑tailed deer are susceptible to disease by both BTV and EHDV, sheep are susceptible to BTV, but resistant to EHDV, and cattle can be infected with both viruses but disease is usually subclinical. Host genetics probably play a role in the disease outcome, but cytokine and endothelial responses are likely to determine if subclinical or clinical disease develops. Dendritic macrophages deliver virus to lymph nodes following the bite of an infected Culicoides. The virus then disseminates to many organs replicating in mononuclear phagocytes and endothelium. Initially, an interferon‑1 response probably determines if the disease develops. Replication in mononuclear cells and endothelium results in the release of cytokines and vasoactive mediators, and may result in endothelial cell death leading to the clinical features of fever, hyperaemia, exudation of fluid, and haemorrhage. Disease outcome may also be linked to virus binding Toll‑like receptor‑3 and upregulation of endothelial surface receptors potentiating cytokine release and allowing transmigration of inflammatory cells, respectively. Despite a wealth of information, host genetics involved in resistance to BTV and EHDV and how variations in cytokines and endothelial responses determine clinical outcome still need further elucidation.

  20. Impact of olmesartan on blood pressure, endothelial function, and cardiovascular outcomes

    PubMed Central

    Pimenta, Eduardo; Oparil, Suzanne

    2010-01-01

    The vascular endothelium, the largest “organ” in the body, synthesizes and releases a wide spectrum of vasoactive substances into the circulation. Endothelial dysfunction links hypertension and other cardiovascular (CV) risk factors that promote the development of atherosclerotic plaque, CV disease, and fatal and nonfatal CV events. Blood pressure (BP) reduction is the most effective way to reduce CV risk in patients with hypertension, but it is unknown whether endothelial dysfunction is a cause or consequence of hypertension. Renin–angiotensin–aldosterone system blockers improve endothelial function and have favorable vascular, metabolic, cardiac, and renoprotective effects that are independent of BP reduction. Olmesartan effectively reduces BP and also has vasoprotective properties, including reductions in endothelial dysfunction and inflammation, prevention of microalbuminuria, and reversal of vascular remodeling. Large-scale, long-term studies are needed to confirm that olmesartan has vasoprotective effects that are independent of BP control and to determine whether these pleiotropic effects translate into improved CV disease outcomes. PMID:21949627

  1. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors.

    PubMed Central

    Marrero, M B; Venema, V J; Ju, H; He, H; Liang, H; Caldwell, R B; Venema, R C

    1999-01-01

    The endothelial nitric oxide synthase (eNOS) is activated in response to stimulation of endothelial cells by a number of vasoactive substances including, bradykinin (BK), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP. In the present study we have used in vitro activity assays of purified eNOS and in vitro binding assays with glutathione S-transferase fusion proteins to show that the capacity to bind and inhibit eNOS is a common feature of membrane-proximal regions of intracellular domain 4 of the BK B2, the Ang II AT1 and the ET-1 ETB receptors, but not of the ATP P2Y2 receptor. Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the B2 receptor results in a loss of eNOS inhibition due to a decrease in the binding affinity of the receptor domain for the eNOS enzyme. Furthermore, the B2 receptor is transiently phosphorylated on tyrosine residues in cultured endothelial cells in response to BK stimulation. Phosphorylation occurs during the time in which eNOS transiently dissociates from the receptor accompanied by a transient increase in nitric oxide production. Taken together, these data support the hypotheses that eNOS is regulated in endothelial cells by reversible and inhibitory interactions with G-protein-coupled receptors and that these interactions can be modulated by receptor phosphorylation. PMID:10510297

  2. Extended acclimatization is required to eliminate stress effects of periodic blood-sampling procedures on vasoactive hormones and blood volume in beagle dogs.

    PubMed

    Slaughter, M R; Birmingham, J M; Patel, B; Whelan, G A; Krebs-Brown, A J; Hockings, P D; Osborne, J A

    2002-10-01

    Important in all experimental animal studies is the need to control stress stimuli associated with environmental change and experimental procedures. As the stress response involves alterations in levels of vasoactive hormones, ensuing changes in cardiovascular parameters may confound experimental outcomes. Accordingly, we evaluated the duration required for dogs (n = 4) to acclimatized to frequent blood sampling that involved different procedures. On each sampling occasion during a 6-week period, dogs were removed from their pen to a laboratory area and blood was collected either by venepuncture (days 2, 15, 34, 41) for plasma renin activity (PRA), epinephrine (EPI), norepinephrine, aldosterone, insulin, and atrial natriuretic peptide, or by cannulation (dogs restrained in slings; days 1, 8, 14, 22, 30, 33, 37, 40) for determination of haematocrit (HCT) alone (days 1 to 22) or HCT with plasma volume (PV; days 30 to 40). PRA was higher on days 2 and 15 compared with days 34 and 41 and had decreased by up to 48% by the end of the study (day 41 vs day 15; mean/SEM: 1.18/0.27 vs 2.88/0.79 ng ANG I/ml/h, respectively). EPI showed a time-related decrease from days 2 to 34, during which mean values had decreased by 51% (mean/SEM: 279/29 vs 134/20.9 pg/ml for days 2 and 34, respectively), but appeared stable from then on. None of the other hormones showed any significant variability throughout the course of the study. HCT was relatively variable between days 1 to 22 but stabilized from day 30, after which all mean values were approximately 6% lower than those between days 1 and 8. We conclude that an acclimatization period of at least 4 weeks is required to eliminate stress-related effects in dogs associated with periodic blood sampling.

  3. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  4. Enteric vascular endothelial response to bacterial endotoxin.

    PubMed Central

    Koshi, R.; Mathan, V. I.; David, S.; Mathan, M. M.

    1993-01-01

    The response of enteric vasculature to endotoxin was examined at the ultrastructural level using a murine model of endotoxin-induced acute diarrhoea. Morphological changes indicative of endothelial damage were evident as early as 15 minutes following endotoxin challenge. These changes, characterized by widening of intercellular spaces, increased microvillous projections and the appearance of stress fibres, preceded the leucocytic response. Endothelial damage increased with time, being associated with progressive degenerative changes in the plasma membrane, cytoplasm and organelles, ultimately leading to desquamation. These latter changes were temporally associated with margination of neutrophils and platelet adhesion to the denuded subendothelium. The venules were the primary site of these changes while the capillaries were the least affected. The arterioles were markedly constricted with minimal endothelial damage. These changes suggest that the enteric vascular endothelium may be an important target organ, and the resultant endothelial injury may have implications in host responses to endotoxin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8292557

  5. Podosomes as novel players in endothelial biology.

    PubMed

    Seano, Giorgio; Daubon, Thomas; Génot, Elisabeth; Primo, Luca

    2014-10-01

    Podosomes and invadopodia, collectively known as invadosomes, are specialized cell-matrix contacts with an inherent ability to degrade extracellular matrix. Their occurrence in either normal (podosomes) or cancer cells (invadopodia) is thus traditionally associated with cell invasiveness and tissue remodelling. These specialized micro-domains of the plasma membrane are characterized by enrichment of F-actin, cortactin and metalloproteases. Recent developments in the field show that, under some circumstances, vascular endothelial cells (ECs) can be induced to form this kind of peculiar structures. Cultured ECs contain either 0.5-1-μm-wide individual podosomes or 5 to 10 μm wide ring-like clusters of podosomes (podosome rosettes). The formation of individual podosomes or podosome rosettes in ECs can be induced by soluble factors, such as TGFβ, VEGF, TNFα or pharmacological agents, such as phorbol esters. Recently, the evidence of the existence of such structures in vascular endothelium has been provided by ex vivo observation. Endothelial podosome rosettes have recently been functionally linked to arterial remodelling and sprouting angiogenesis. Concerted efforts aim now at confirming the relevance of endothelial podosomes in these patho-physiological processes in vivo. In the current review, we will introduce some general considerations regarding ECs in the vascular system. From there on, we will review the various EC types where podosomes have been described and the state-of-art knowledge hitherto generated regarding endothelial podosome features.

  6. Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function.

    PubMed

    Yan, Zhibo; Wang, Zhen-Guo; Segev, Nava; Hu, Sanyuan; Minshall, Richard D; Dull, Randal O; Zhang, Meihong; Malik, Asrar B; Hu, Guochang

    2016-02-01

    Vascular endothelial (VE)-cadherin is the predominant component of endothelial adherens junctions essential for cell-cell adhesion and formation of the vascular barrier. Endocytic recycling is an important mechanism for maintaining the expression of cell surface membrane proteins. However, little is known about the molecular mechanism of VE-cadherin recycling and its role in maintenance of vascular integrity. Using calcium-switch assay, confocal imaging, cell surface biotinylation, and flow cytometry, we showed that VE-cadherin recycling required Ras-related proteins in brain (Rab)11a and Rab11 family-interacting protein 2. Yeast 2-hybrid assay and coimmunoprecipitation demonstrated that direct interaction of VE-cadherin with family-interacting protein 2 (at aa 453-484) formed a ternary complex with Rab11a in human endothelial cells. Silencing of Rab11a or Rab11 family-interacting protein 2 in endothelial cells prevented VE-cadherin recycling and VE-cadherin expression at endothelial plasma membrane. Furthermore, inactivation of Rab11a signaling blocked junctional reannealing after vascular inflammation. Selective knockdown of Rab11a in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide or polymicrobial sepsis. Rab11a/Rab11 family-interacting protein 2-mediated VE-cadherin recycling is required for formation of adherens junctions and restoration of VE barrier integrity and hence a potential target for clinical intervention in inflammatory disease. © 2015 American Heart Association, Inc.

  7. Obstructive sleep apnea syndrome, vascular pathology, endothelial function and endothelial cells and circulating microparticles.

    PubMed

    Stiefel, Pablo; Sánchez-Armengol, Maria Angeles; Villar, José; Vallejo-Vaz, Antonio; Moreno-Luna, Rafael; Capote, Francisco

    2013-08-01

    Accelerated atherosclerosis and increased cardiovascular risk are frequently reported in patients with obstructive sleep apnea (OSA) syndrome. In this article the authors attempt a review of the current understanding of the relationship between vascular risk and OSA syndrome based on large cohort studies that related the disease to several cardiovascular risk factors and vascular pathologies. We also discuss the pathophysiological mechanisms that may be involved in this relationship, starting with endothelial dysfunction and its mediators. These include an increased oxidative stress and inflammation as well as several disorders of coagulation and lipid metabolism. Moreover, circulating microparticles from activated leukocytes (CD62L_MPs) are higher in patients with OSA and there is a positive correlation between circulating levels of CD62L_MPs and nocturnal hypoxemia severity. Finally, circulating level of endothelial microparticles and circulating endothelial cells seem to be increased in patients with OSA. Also, endothelial progenitor cells are reduced and plasma levels of the vascular endothelial growth factor are increased.

  8. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis.

    PubMed

    Tuleta, I; França, C N; Wenzel, D; Fleischmann, B; Nickenig, G; Werner, N; Skowasch, D

    2015-01-01

    Intermittent hypoxia seems to be a major pathomechanism of obstructive sleep apnea-associated progression of atherosclerosis. The goal of the present study was to assess the influence of hypoxia on endothelial function depending on the initial stage of vasculopathy. We used 16 ApoE-/- mice were exposed to a 6-week-intermittent hypoxia either immediately (early preatherosclerosis) or after 5 weeks of high-cholesterol diet (advanced preatherosclerosis). Another 16 ApoE-/- mice under normoxia served as corresponding controls. Endothelial function was measured by an organ bath technique. Blood plasma CD31+/annexin V+ endothelial microparticles as well as sca1/flk1+ endothelial progenitor cells in blood and bone marrow were analyzed by flow cytometry. The findings were that intermittent hypoxia impaired endothelial function (56.6±6.2% of maximal phenylephrine-induced vasoconstriction vs. 35.2±4.1% in control) and integrity (increased percentage of endothelial microparticles: 0.28±0.05% vs. 0.15±0.02% in control) in early preatherosclerosis. Peripheral repair capacity expressed as the number of endothelial progenitor cells in blood was attenuated under hypoxia (2.0±0.5% vs. 5.3±1.9% in control), despite the elevated number of these cells in the bone marrow (2.0±0.4% vs. 1.1±0.2% in control). In contrast, endothelial function, as well as microparticle and endothelial progenitor cell levels were similar under hypoxia vs. control in advanced preatherosclerosis. We conclude that hypoxia aggravates endothelial dysfunction and destruction in early preatherosclerosis.

  9. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  10. Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells.

    PubMed

    Conklin, Brian S; Zhao, Weidong; Zhong, Dian-Sheng; Chen, Changyi

    2002-02-01

    Cigarette smoking is an important risk factor for both vascular disease and various forms of cancer. Vascular endothelial growth factor (VEGF) is an endothelial-specific mitogen that is normally expressed only in low levels in normal arteries but may be involved in the progression of both vascular disease and cancer. Some clinical evidence suggests that cigarette smoking may increase plasma VEGF levels, but there is a lack of basic science studies investigating this possibility. We show here, using an intact porcine common carotid artery perfusion culture model, that nicotine and cotinine, the major product of nicotine metabolism, cause a significant increase in endothelial cell VEGF expression. VEGF mRNA levels were compared between groups using reverse transcriptase-polymerase chain reaction, whereas protein level changes were demonstrated with Western blotting and immunohistochemistry. Our results showed significant increases in endothelial cell VEGF mRNA and protein levels because of nicotine and cotinine at concentrations representative of plasma concentrations seen in habitual smokers. VEGF immunostaining also paralleled these results. These findings may give a clue as to the mechanisms by which nicotine and cotinine from cigarette smoking increase vascular disease progression and tumor growth and metastasis.

  11. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells.

    PubMed Central

    Hernández-Perera, O; Pérez-Sala, D; Navarro-Antolín, J; Sánchez-Pascuala, R; Hernández, G; Díaz, C; Lamas, S

    1998-01-01

    Endothelial dysfunction associated with atherosclerosis has been attributed to alterations in the L-arginine-nitric oxide (NO)-cGMP pathway or to an excess of endothelin-1 (ET-1). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to ameliorate endothelial function. However, the physiological basis of this observation is largely unknown. We investigated the effects of Atorvastatin and Simvastatin on the pre-proET-1 mRNA expression and ET-1 synthesis and on the endothelial NO synthase (eNOS) transcript and protein levels in bovine aortic endothelial cells. These agents inhibited pre-proET-1 mRNA expression in a concentration- and time-dependent fashion (60-70% maximum inhibition) and reduced immunoreactive ET-1 levels (25-50%). This inhibitory effect was maintained in the presence of oxidized LDL (1-50 microg/ml). No significant modification of pre-proET-1 mRNA half-life was observed. In addition, mevalonate, but not cholesterol, reversed the statin-mediated decrease of pre-proET-1 mRNA levels. eNOS mRNA expression was reduced by oxidized LDL in a dose-dependent fashion (up to 57% inhibition), whereas native LDL had no effect. Statins were able to prevent the inhibitory action exerted by oxidized LDL on eNOS mRNA and protein levels. Hence, these drugs might influence vascular tone by modulating the expression of endothelial vasoactive factors. PMID:9637705

  12. Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells

    PubMed Central

    Goligorsky, M.S.; Hirschi, K.

    2016-01-01

    This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review. PMID:27451101

  13. VEGF-induced relaxation of pulmonary arteries is mediated by endothelial cytochrome P-450 hydroxylase.

    PubMed

    Jacobs, Elizabeth R; Zhu, Daling; Gruenloh, Stephanie; Lopez, Bernardo; Medhora, Meetha

    2006-09-01

    The cytochrome P-450 metabolite 20-HETE induces calcium-, endothelial-, and nitric oxide (NO)-dependent relaxation of bovine pulmonary arteries (PA). VEGF is an NO-dependent dilator of systemic arteries and plays a key role in maintaining the integrity of the pulmonary vasculature. We tested the effect of VEGF on PA diameter and tone and the contribution of cytochrome P-450 family 4 (CYP4) to vasoactive effects of VEGF. Bovine PA rings (1 mm in diameter) relaxed with VEGF (0.1-10 nM) in an endothelial- and eNOS-dependent manner. This response was blunted by pretreatment with the CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) as well as a mechanistically different CYP4 inhibitor N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine. PAs also increased in diameter by 6-12% in the presence of VEGF (10 nM), and this increase was attenuated by DDMS. In contrast to that shown in PAs, 20-HETE constricted bovine renal arteries and did not increase intracellular Ca(2+) in renal artery endothelial cells as observed in bovine pulmonary artery endothelial cells (BPAECs). VEGF-evoked increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in BPAECs were blunted by treatment with DDMS. Both VEGF (10 nM) and 20-HETE (1-5 microM) stimulated NO release from cultured BPAECs, and once again VEGF-induced increases were attenuated by pretreating the cells with DDMS. We conclude that CYP4/20-HETE contributes to VEGF-stimulated NO release and vasodilation in bovine PAs. Given the unique expression of 20-HETE-forming CYP4 in BPAECs vs. systemic arterial endothelial cells, CYP4 may be an important mediator of endothelial-dependent vasoreactivity in PAs.

  14. Polyphenol-enriched diet prevents coronary endothelial dysfunction by activating the Akt/eNOS pathway.

    PubMed

    Vilahur, Gemma; Padró, Teresa; Casaní, Laura; Mendieta, Guiomar; López, José A; Streitenberger, Sergio; Badimon, Lina

    2015-03-01

    The Mediterranean diet, rich in polyphenols, has shown to be cardioprotective. However the mechanisms involved remain unknown. We investigated whether supplementation with a pomegranate extract rich in polyphenols renders beneficial effects on coronary function in a clinically relevant experimental model and characterized the underlying mechanisms. Pigs were fed a 10-day normocholesterolemic or hypercholesterolemic diet. Half of the animals were given a supplement of 625 mg/day of a pomegranate extract (Pomanox; 200 mg punicalagins/day). Coronary responses to escalating doses of vasoactive drugs (acetylcholine, calcium ionophore, and sodium nitroprusside) and L-NG-monomethylarginine (endothelial nitric oxide-synthase inhibitor) were measured using flow Doppler. Akt/endothelial nitric oxide-synthase axis activation, monocyte chemoattractant protein-1 expression, oxidative deoxyribonucleic acid damage in the coronary artery, and lipoprotein resistance to oxidation were evaluated. In dyslipidemic animals, Pomanox supplementation prevented diet-induced impairment of endothelial relaxation, reaching vasodilatory values comparable to normocholesterolemic animals upon stimulation with acetylcholine and/or calcium ionophore. These beneficial effects were associated with vascular Akt/endothelial nitric oxide-synthase activation and lower monocyte chemoattractant protein-1 expression. Pomanox supplementation reduced systemic oxidative stress (higher high-density lipoprotein-antioxidant capacity and higher low-density lipoprotein resistance to oxidation) and coronary deoxyribonucleic acid damage. Normocholesterolemic animals elicited similar drug-related vasodilation regardless of Pomanox supplementation. All animals displayed a similar vasodilatory response to sodium nitroprusside and L-NG-monomethylarginine blunted all vasorelaxation responses except for sodium nitroprusside. Pomanox supplementation hinders hyperlipemia-induced coronary endothelial dysfunction by activating

  15. Endothelial Function in the Time of the Giants: Paul M. Vanhoutte Lecture

    PubMed Central

    Heistad, Donald D.

    2010-01-01

    Paul Vanhoutte is one of the fathers of vascular biology. Among his great contributions, he demonstrated that endothelium modulates vasomotor response to vasoactive products (including serotonin) that are released when platelets aggregate in an artery. He found in arteries ex vivo that when endothelium is dysfunctional, in atherosclerosis or hypertension, normal relaxation to aggregation of platelets is impaired, and vessels may contract. He proposed that this mechanism may predispose to vasospasm. Our experiments in vivo indicated that atherosclerosis greatly potentiates vasoconstrictor responses to serotonin in the limb, brain, and eye of monkeys. We proposed that transient ischemic attacks may be mediated by platelet-induced vasospasm. We observed endothelial dysfunction in atherosclerotic monkeys, with improvement of endothelial function when hypercholesterolemia was corrected. Recently, we have studied the aortic valve (which has unique endothelium) in hypercholesterolemic mice, to examine the pathophysiology of aortic valvular stenosis. Oxidative stress is increased in stenotic valves, and severe aortic stenosis develops in about one-third of old, hypercholesterolemic mice. In stenotic aortic valves from humans, there is increased oxidative stress near calcified regions of the valves. Oxidative stress may trigger expression of pro-calcific genes in the aortic valve. Finally, we have used gene transfer of extracellular superoxide dismutase (ecSOD) to study endothelial effects of oxidative stress. Gene transfer of normal ecSOD improves endothelial dysfunction in several disease states, but gene transfer of ecSODR213G, a gene variant of ecSOD that is common in humans, fails to improve endothelial function. Gene transfer approaches may be useful to study mechanisms by which gene variants predispose to endothelial dysfunction and vascular disease. PMID:19033817

  16. Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease.

    PubMed

    Luo, Renna; Zhang, Weiru; Zhao, Cheng; Zhang, Yujin; Wu, Hongyu; Jin, Jianping; Zhang, Wenzheng; Grenz, Almut; Eltzschig, Holger K; Tao, Lijian; Kellems, Rodney E; Xia, Yang

    2015-07-01

    Hypertensive chronic kidney disease is one of the most prevalent medical conditions with high morbidity and mortality in the United States and worldwide. However, early events initiating the progression to hypertensive chronic kidney disease are poorly understood. We hypothesized that elevated endothelial hypoxia-inducible factor-1α (HIF-1α) is a common early insult triggering initial glomerular injury leading to hypertensive chronic kidney disease. To test our hypothesis, we used an angiotensin II infusion model of hypertensive chronic kidney disease to determine the specific cell type and mechanisms responsible for elevation of HIF-1α and its role in the progression of hypertensive chronic kidney disease. Genetic studies coupled with reverse transcription polymerase chain reaction profiling revealed that elevated endothelial HIF-1α is essential to initiate glomerular injury and progression to renal fibrosis by the transcriptional activation of genes encoding multiple vasoactive proteins. Mechanistically, we found that endothelial HIF-1α gene expression was induced by angiotensin II in a nuclear factor-κB-dependent manner. Finally, we discovered reciprocal positive transcriptional regulation of endothelial Hif-1α and Nf-κb genes is a key driving force for their persistent activation and disease progression. Overall, our findings revealed that the stimulation of HIF-1α gene expression in endothelial cells is detrimental to induce kidney injury, hypertension, and disease progression. Our findings highlight early diagnostic opportunities and therapeutic approaches for hypertensive chronic kidney disease.

  17. The influence of prophylactic vasoactive treatment on cochlear and facial nerve functions after vestibular schwannoma surgery: a prospective and open-label randomized pilot study.

    PubMed

    Scheller, Christian; Richter, Hans-Peter; Engelhardt, Martin; Köenig, Ralph; Antoniadis, Gregor

    2007-07-01

    Facial nerve paresis and hearing loss are common complications after vestibular schwannoma surgery. Experiments with facial nerves of the rat and retrospectively analyzed clinical studies showed a beneficial effect of vasoactive treatment on the preservation of facial and cochlear nerve functions. This prospective and open-label randomized pilot study is the first study of a prophylactic vasoactive treatment in vestibular schwannoma surgery. Thirty patients were randomized before surgery. One group (n = 14) received a vasoactive prophylaxis consisting of nimodipine and hydroxyethylstarch which was started the day before surgery and was continued until the seventh postoperative day. The other group (n = 16) did not receive preoperative medication. Intraoperative monitoring, including acoustic evoked potentials and continuous facial electromyelograms, was applied to all patients. However, when electrophysiological signs of a deterioration of facial or cochlear nerve function were detected in the group of patients without medication, vasoactive treatment was started immediately. Cochlear and facial nerve function were documented preoperatively, during the first 7 days postoperatively, and again after long-term observation. Despite the limited number of patients, our results were significant using the Fisher's exact test (small no. of patients) for a better outcome after vestibular schwannoma surgery for both hearing (P = 0.041) and facial nerve (P = 0.045) preservation in the group of patients who received a prophylactic vasoactive treatment. Prophylactic vasoactive treatment consisting of nimodipine and hydroxyethylstarch shows significantly better results concerning preservation of the facial and cochlear nerve function in vestibular schwannoma surgery. The prophylactic use is also superior to intraoperative vasoactive treatment.

  18. Brain-derived neurotrophic factor regulates expression of vasoactive intestinal polypeptide in retinal amacrine cells.

    PubMed

    Cellerino, Alessandro; Arango-González, Blanca; Pinzón-Duarte, Germán; Kohler, Konrad

    2003-12-01

    Brain-derived neurotrophic-factor (BDNF) is expressed in the retina and controls the development of subtypes of amacrine cells. In the present study we investigated the effects of BDNF on amacrine cells expressing vasoactive intestinal polypeptide (VIP). Rats received three intraocular injections of BDNF on postnatal days (P) 16, 18, and 20. The animals were sacrificed on P22, P40, P60, P80, and P120, and VIP expression in their retinas was detected by immunohistochemistry (P22, P40) and by radioimmunoassay (RIA; P22, P40, P60, P80, P120) to assess the time course of BDNF effects on VIP. A significant increase in the density of VIP-positive amacrine cells was detected in BDNF-treated retinas, and VIP concentration was up-regulated by 150% both at P22 and at P40 with respect to untreated controls. VIP concentration then slowly declined in the treated retinas over a period of 3 months; however, a statistically significant increase of 50% was still detectable on P120. The impact of endogenous BDNF on the regulation of VIP expression in the retina was analyzed in mice homozygous for a targeted deletion of the BDNF gene locus (bdnf-/-). VIP immunohistochemistry revealed a marked reduction of VIP-positive amacrine cells and of VIP-immunopositive processes in the inner plexiform layer of the BDNF knockout mice. Mice lacking BDNF expressed only 5% of the VIP protein in their retinas compared with the retinas of wild-type mice as measured by RIA. Our data show that BDNF is a major regulator of VIP expression in retinal amacrine cells and exerts long-lasting effects on VIP content.

  19. Vasoactive intestinal polypeptide immunoreactivity in the human cerebellum: qualitative and quantitative analyses

    PubMed Central

    Benagiano, Vincenzo; Flace, Paolo; Lorusso, Loredana; Rizzi, Anna; Bosco, Lorenzo; Cagiano, Raffaele; Ambrosi, Glauco

    2009-01-01

    Although autoradiographic, reverse transcription-polymerase chain reaction and immunohistochemical studies have demonstrated receptors for vasoactive intestinal polypeptide (VIP) in the cerebellum of various species, immunohistochemistry has never shown immunoreactivity for VIP within cerebellar neuronal bodies and processes. The present study aimed to ascertain whether VIP immunoreactivity really does exist in the human cerebellum by making a systematic analysis of samples removed post-mortem from all of the cerebellar lobes. The study was carried out using light microscopy immunohistochemical techniques based on a set of four different antibodies (three polyclonal and one monoclonal) against VIP, carefully selected on the basis of control tests performed on human colon. All of the antibodies used showed VIP-immunoreactive neuronal bodies and processes distributed in the cerebellar cortex and subjacent white matter of all of the cerebellum lobes, having similar qualitative patterns of distribution. Immunoreactive neurons included subpopulations of the main neuron types of the cortex. Statistical analysis of the quantitative data on the VIP immunoreactivity revealed by the different antibodies in the different cerebellar lobes did not demonstrate any significant differences. In conclusion, using four different anti-VIP antibodies, the first evidence of VIP immunoreactivity is herein supplied in the human post-mortem cerebellum, with similar qualitative/quantitative patterns of distribution among the different cerebellum lobes. Owing to the function performed by VIP as a neurotransmitter/neuromodulator, it is a candidate for a role in intrinsic and extrinsic (projective) circuits of the cerebellum, in agreement with previous demonstrations of receptors for VIP in the cerebellar cortex and nuclei. As VIP signalling pathways are implicated in the regulation of cognitive and psychic functions, cerebral blood flow and metabolism, processes of histomorphogenesis

  20. Roles of sphincter of Oddi motility and serum vasoactive intestinal peptide, gastrin and cholecystokinin octapeptide

    PubMed Central

    Zhang, Zhen-Hai; Qin, Cheng-Kun; Wu, Shuo-Dong; Xu, Jian; Cui, Xian-Ping; Wang, Zhi-Yi; Xian, Guo-Zhe

    2014-01-01

    AIM: To investigate roles of sphincter of Oddi (SO) motility played in pigment gallbladder stone formation in model of guinea pigs. METHODS: Thirty-four adult male Hartley guinea pigs were divided randomly into two groups: the control group and pigment stone group. The pigment stone group was divided into 4 subgroups with 6 guinea pigs each according to time of sacrifice, and were fed a pigment lithogenic diet and sacrificed after 3, 6, 9 and 12 wk. SO manometry and recording of myoelectric activity of the guinea pigs were obtained by multifunctional physiograph at each stage. Serum vasoactive intestinal peptide (VIP), gastrin and cholecystokinin octapeptide (CCK-8) were detected at each stage in the process of pigment gallbladder stone formation by enzyme-linked immunosorbent assay. RESULTS: The incidence of pigment gallstone formation was 0%, 0%, 16.7% and 66.7% in the 3-, 6-, 9- and 12-wk group, respectively. The frequency of myoelectric activity decreased in the 3-wk group. The amplitude of myoelectric activity had a tendency to decrease but not significantly. The frequency of the SO decreased significantly in the 9-wk group. The SO basal pressure and common bile duct pressure increased in the 12-wk group (25.19 ± 7.77 mmHg vs 40.56 ± 11.81 mmHg, 22.35 ± 7.60 mmHg vs 38.51 ± 11.57 mmHg, P < 0.05). Serum VIP was significantly elevated in the 6- and 12-wk groups and serum CCK-8 was decreased significantly in the 12-wk group. CONCLUSION: Pigment gallstone-causing diet may induce SO dysfunction. The tension of the SO increased. The disturbance in SO motility may play a role in pigment gallstone formation, and changes in serum VIP and CCK-8 may be important causes of SO dysfunction. PMID:24782626

  1. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    SciTech Connect

    Wanke, I.E.; Rorstad, O.P. )

    1990-04-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.

  2. Activation of CFTR trafficking and gating by vasoactive intestinal peptide in human bronchial epithelial cells.

    PubMed

    Qu, Fei; Liu, Hui-Jun; Xiang, Yang; Tan, Yu-Rong; Liu, Chi; Zhu, Xiao-Lin; Qin, Xiao-Qun

    2011-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane chloride channel critical to the regulation of fluid, chloride, and bicarbonate transport in epithelia and other cell types. The most common cause of cystic fibrosis (CF) is the abnormal trafficking of CFTR mutants. Therefore, understanding the cellular machineries that transit CFTR from the endoplasmic reticulum to the cell surface is important. Vasoactive intestinal polypeptide (VIP) plays an important role in CFTR-dependent chloride transport. The present study was designed to observe the affection of VIP on the trafficking of CFTR, and channel gating in human bronchial epithelium cells (HBEC). Confocal microscopy revealed CFTR immunofluorescence extending from the apical membrane deeply into the cell cytoplasm. After VIP treatment, apical extension of CFTR immunofluorescence into the cell was reduced and the peak intensity of CFTR fluorescence shifted towards the apical membrane. Western blot showed VIP increased cell surface and total CFTR. Compared with the augmented level of total CFTR, the surface CFTR increased more markedly. Immunoprecipitation founded that the mature form of CFTR had a marked increase in HBEC treated with VIP. VIP led to a threefold increase in Cl(-) efflux in HBEC. Glibenclamide-sensitive and DIDS-insensitive CFTR Cl(-) currents were consistently observed after stimulation with VIP (10(-8) mol/L). The augmentation of CFTR Cl(-) currents enhanced by VIP (10(-8) mol/L) was reversed, at least in part, by the protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, H-7, suggesting PKA and PKC participate in the VIP-promoted CFTR Cl(-) currents.

  3. Cytoprotective effect of neuropeptides on cancer stem cells: vasoactive intestinal peptide-induced antiapoptotic signaling.

    PubMed

    Sastry, Konduru S; Chouchane, Aouatef Ismail; Wang, Ena; Kulik, George; Marincola, Francesco M; Chouchane, Lotfi

    2017-06-01

    Cancer stem cells (CSCs) are increasingly considered to be responsible for tumor initiation, metastasis and drug resistance. The drug resistance mechanisms activated in CSCs have not been thoroughly investigated. Although neuropeptides such as vasoactive intestinal peptide (VIP) can promote tumor growth and activate antiapoptotic signaling in differentiated cancer cells, it is not known whether they can activate antiapoptotic mechanisms in CSCs. The objectives of this study are to unravel the cytoprotective effects of neuropeptides and identify antiapoptotic mechanisms activated by neuropeptides in response to anticancer drug treatment in CSCs. We enriched and purified CSCs (CD44(+/high)/CD24(-/low) or CD133(+) population) from breast and prostate cancer cell lines, and demonstrated their stemness phenotype. Of the several neuropeptides tested, only VIP could protect CSCs from drug-induced apoptosis. A functional correlation was found between drug-induced apoptosis and dephosphorylation of proapoptotic Bcl2 family protein BAD. Similarly, VIP-induced cytoprotection correlated with BAD phosphorylation at Ser112 in CSCs. Using pharmacological inhibitors and dominant-negative proteins, we showed that VIP-induced cytoprotection and BAD phosphorylation are mediated via both Ras/MAPK and PKA pathways in CSCs of prostate cancer LNCaP and C4-2 cells, but only PKA signaling was involved in CSCs of DUVIPR (DU145 prostate cancer cells ectopically expressing VIP receptor) and breast cancer MCF7 cells. As each of these pathways partially control BAD phosphorylation at Ser112, both have to be inhibited to block the cytoprotective effects of VIP. Furthermore, VIP is unable to protect CSCs that express phosphorylation-deficient mutant-BAD, suggesting that BAD phosphorylation is essential. Thus, antiapoptotic signaling by VIP could be one of the drug resistance mechanisms by which CSCs escape from anticancer therapies. Our findings suggest the potential usefulness of VIP receptor

  4. Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis

    PubMed Central

    Martínez, Carmen; Ortiz, Ana M.; Juarranz, Yasmina; Lamana, Amalia; Seoane, Iria V.; Leceta, Javier; García-Vicuña, Rosario

    2014-01-01

    Objective Suitable biomarkers are essential for the design of therapeutic strategies in personalized medicine. Vasoactive intestinal peptide (VIP) has demonstrated immunomodulatory properties in autoimmune murine and ex vivo human models. Our aim was to study serum levels of VIP during the follow-up of an early arthritis (EA) cohort and to analyze its value as a biomarker predicting severity and therapeutic requirements. Methods Data from 91 patients on an EA register were analyzed (76% rheumatoid arthritis (RA), 24% undifferentiated arthritis, 73% women, and median age 54 years; median disease duration at entry, 5.4 months). We collected per protocol sociodemographic, clinical, and therapeutic data. VIP levels were determined by enzyme immunoassay in sera harvested from the 91 patients (353 visits; 3.9 visit/patient) and from 100 healthy controls. VIP values below the 25th percentile of those assessed in healthy population were considered low. To determine the effect of independent variables on VIP levels, we performed a longitudinal multivariate analysis nested by patient and visit. A multivariate ordered logistic regression was modeled to determine the effect of low VIP serum levels on disease activity at the end of follow-up. Results VIP concentrations varied considerably across EA patients. Those fulfilling the criteria for RA had the lowest values in the whole sample, although no significant differences were observed compared with healthy donors. Disease activity, which was assessed using DAS28, inversely correlated with VIP levels. After a two-year follow-up, those patients with low baseline levels of VIP displayed higher disease activity and received more intensive treatment. Conclusion Patients who are unable to up-regulate VIP seem to have a worse clinical course despite receiving more intense treatment. Therefore, measurement of VIP levels may be suitable as a prognostic biomarker. PMID:24409325

  5. Regulation of cGMP synthesis in cultured podocytes by vasoactive hormones.

    PubMed

    Lewko, B; Gołos, M; Latawiec, E; Angielski, S; Stepinski, J

    2006-12-01

    The podocytes are highly differentiated cells playing a key role in glomerular filtration. Vasoactive factors including angiotensin II (Ang II) and cyclic guanosine 5' monophosphate (cGMP) are synthesized by these cells upon stimulation as well as in the basal state. In this study we have tested whether angiotensin II affects the total synthesis of cGMP in primary culture of rat podocytes. The cells were stimulated with atrial natriuretic peptide (ANP) and/or a nitric oxide (NO) donor, S-nitroso-N-acetyl penicillamine (SNAP), in the absence or presence of Ang II. The cGMP synthesis was determined by radioimmunoassay (RIA). ANP or SNAP alone increased the cGMP synthesis in podocytes although the effects were not additive unless Ang II was present in the medium. Ang II suppressed the ANP-dependent cGMP synthesis whereas SNAP-dependent cGMP production remained unaffected. These effects were prevented by a non-specific antagonist of Ang II receptors (AT), saralasin. Adversely, PD123319, a specific inhibitor of AT2 receptors, augmented inhibition of ANP-dependent and enhanced the NO-dependent cGMP production. Probenecid, an inhibitor of cGMP extrusion from the cells, suppressed the cGMP generation by both ANP and SNAP. We conclude that cGMP synthesis in cultured podocytes is modulated by angiotensin II and that two adversely acting receptors, AT1 and AT2 are involved in this effect. Additionally, production of cGMP might be intrinsically inhibited by cGMP accumulating inside the cells.

  6. Neuronally released vasoactive intestinal polypeptide alters atrial electrophysiological properties and may promote atrial fibrillation

    PubMed Central

    Xi, Yutao; Chao, Zhi-Yang James; Yan, Wen; Abbasi, Shahrzad; Yin, Xiaomeng; Mathuria, Nilesh; Patel, Mehul; Fan, Christopher; Sun, Junping; Wu, Geru; Wang, Suwei; Elayda, MacArthur; Gao, Lianjun; Wehrens, Xander H.T.; Lin, Shien-Fong; Cheng, Jie

    2015-01-01

    BACKGROUND Vagal hyperactivity promotes atrial fibrillation (AF), which has been almost exclusively attributed to acetylcholine. Vasoactive intestinal polypeptide (VIP) and acetylcholine are neurotransmitters co-released during vagal stimulation. Exogenous VIP has been shown to promote AF by shortening action potential duration (APD), increasing APD spatial heterogeneity, and causing intra-atrial conduction block. OBJECTIVE The purpose of this study was to investigate the effects of neuronally released VIP on atrial electrophysiologic properties during vagal stimulation. METHODS We used a specific VIP antagonist (H9935) to uncover the effects of endogenous VIP released during vagal stimulation in canine hearts. RESULTS H9935 significantly attenuated (1) the vagally induced shortening of atrial effective refractory period and widening of atrial vulnerability window during stimulation of cervical vagosym-pathetic trunks (VCNS) and (2) vagal effects on APD during stimulation through fat-pad ganglion plexus (VGPS). Atropine completely abolished these vagal effects during VCNS and VGPS. In contrast, VGPS-induced slowing of local conduction velocity was completely abolished by either VIP antagonist or atropine. In pacing-induced AF during VGPS, maximal dominant frequencies and their spatial gradients were reduced significantly by H9935 and, more pronouncedly, by atropine. Furthermore, VIP release in the atria during vagal stimulation was inhibited by atropine, which may account for the concealment of VIP effects with muscarinic blockade. CONCLUSION Neuronally released VIP contributes to vagal effects on atrial electrophysiologic properties and affects the pathophysiology of vagally induced AF. Neuronal release of VIP in the atria is inhibited by muscarinic blockade, a novel mechanism by which VIP effects are concealed by atropine during vagal stimulation. PMID:25748673

  7. The role of sulfur dioxide as an endogenous gaseous vasoactive factor in synergy with nitric oxide.

    PubMed

    Li, Junling; Meng, Ziqiang

    2009-05-01

    To explore the physiological role of endogenous gaseous sulfur dioxide (SO(2)) on vascular contractility and its underlying cellular and molecular mechanisms, vasodilation experiment of isolated rat thoracic aortic rings by gaseous SO(2) was carried out and the signal transduction pathways involved in the vascular effects of SO(2) were investigated. In the present study, SO(2) gas and SO(2) gas-bubbled solution (SO(2) stock solution) were first used to relax vascular tissues. The results show: (1) Gaseous SO(2) relaxed rat thoracic aortic rings in a dose-dependent manner (from 1 to 2000microM). The vasorelaxant effect of SO(2) at physiological relevant and low concentrations (<450microM) was endothelium-dependent, and at high concentrations (>500microM) was endothelium-independent. (2) The vasorelaxation by addition of SO(2) stock solution (final concentrations 2mM) was actually caused by SO(2) molecules, not by sulfite or bisulfite, and the characteristic of vasorelaxation by SO(2) was different from that of sulfite and bisulfite. (3) The vasorelaxant effect of SO(2) was not due to the altered neurotransmitter release from the autonomous or nonadrenergic and noncholinergic (NANC) nerve endings, also not due to superoxide and hydrogen peroxide produced in the vascular tissues, also disapproving the involvement of prostaglandin, PKC, beta-adrenoceptor and cAMP pathways. (4) The vasorelaxant effect of SO(2) at the physiological relevant and low concentrations was mediated by the cGMP pathway. (5) There was the synergistic effect on smooth muscle relaxation between much lower concentrations of SO(2) (3microM) and NO (3 or 5nM). These findings led to the conclusions: endogenous gaseous SO(2) was a vasoactive factor, which might regulate vascular smooth muscle tone in synergy with NO.

  8. Effect of vasoactive intestinal peptide on the wound healing of alkali-burned corneas

    PubMed Central

    Tuncel, Nese; Yildirim, Nilgun; Gurer, Firdevs; Basmak, Hikmet; Uzuner, Kubilay; Sahinturk, Varol; Gursoy, Huseyin

    2016-01-01

    AIM To study the effect of vasoactive intestinal peptide (VIP) on wound healing in experimental alkali burns of the cornea. METHODS Twenty-seven albino rabbits, weighing 3.2±0.75 kg were used. Alkali burns were induced on corneas by applying 10 mm Whatman paper No:50 soaked in 1 mol/L NaOH. They have further classified into 5 groups as follows: 1) control group given no treatment (n=5); 2) VIP given subconjunctivally (n=6); 3) VIP injected into anterior chamber (n=6); 4) NaCl 0.9% given subconjunctivally (n=5); 5) NaCl 0.9% given into the anterior chamber (n=5). All treatment protocols except control group were followed by topical eye drops composed of VIP at two hourly intervals for one week from 8 a.m. to 6 p.m. RESULTS VIP treated groups of rabbits with alkali burns were found to have better wound healing findings histo-pathologically when compared to those of control group who have received no treatment on day 30. No differences were observed between groups in respect to degree of polymorphonuclear leukocytes (PMNL) infiltration and degree of loss of amorphous substrate on day 15. However, PMNL infiltration and degree of loss of amorphous substrate were lower in Groups 2 and 3 when compared to that of control group on day 30 (P<0.05). CONCLUSION We have shown that VIP has positive effects on alkali induced corneal burns. VIP may inhibit PMNL migration to cornea through an immunomodulatory effect. Inhibition of PMNL migration might reduce the release of collagenases and this might prevent the extracellular amorphous substance loss. PMID:26949636

  9. Chronic stimulation of the hypothalamic vasoactive intestinal peptide receptor lengthens circadian period in mice and hamsters

    PubMed Central

    Pantazopoulos, Harry; Dolatshad, Hamid

    2010-01-01

    Evidence suggests that circadian rhythms are regulated through diffusible signals generated by the suprachiasmatic nucleus (SCN). Vasoactive intestinal peptide (VIP) is located in SCN neurons positioned to receive photic input from the retinohypothalamic tract and transmit information to other SCN cells and adjacent hypothalamic areas. Studies using knockout mice indicate that VIP is essential for synchrony among SCN cells and for the expression of normal circadian rhythms. To test the hypothesis that VIP is also an SCN output signal, we recorded wheel-running activity rhythms in hamsters and continuously infused the VIP receptor agonist BAY 55-9837 in the third ventricle for 28 days. Unlike other candidate output signals, infusion of BAY 55-9837 did not affect activity levels. Instead, BAY 55-9837 lengthened the circadian period by 0.69 ± 0.04 h (P < 0.0002 compared with controls). Period returned to baseline after infusions. We analyzed the effect of BAY 55-9837 on cultured SCN from PER2::LUC mice to determine if lengthening of the period by BAY 55-9837 is a direct effect on the SCN. Application of 10 μM BAY 55-9837 to SCN in culture lengthened the period of PER2 luciferase expression (24.73 ± 0.24 h) compared with control SCN (23.57 ± 0.26, P = 0.01). In addition, rhythm amplitude was significantly increased, consistent with increased synchronization of SCN neurons. The effect of BAY 55-9837 in vivo on period is similar to the effect of constant light. The present results suggest that VIP-VPAC2 signaling in the SCN may play two roles, synchronizing SCN neurons and setting the period of the SCN as a whole. PMID:20463182

  10. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    PubMed

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry.

  11. Chemical synthesis and characterization of silver-protected vasoactive intestinal peptide nanoparticles.

    PubMed

    Fernandez-Montesinos, Rafael; Castillo, Paula M; Klippstein, Rebecca; Gonzalez-Rey, Elena; Mejias, Jose A; Zaderenko, Ana P; Pozo, David

    2009-12-01

    We characterized a method to conjugate functional silver nanoparticles with vasoactive intestinal peptide (VIP), which could be used as a working model for further tailor-made applications based on VIP surface functionality. Despite sustained interest in the therapeutic applications of VIP, and the fact that its drugability could be largely improved by the attachament to functionalized metal nanoparticles, no methods have been described so far to obtain them. VIP was conjugated to tiopronin-capped silver nanoparticles of a narrow size distribution, by means of proper linkers, to obtain VIP functionalized silver nanoparticles with two different VIP orientations (Ag-tiopronin-PEG-succinic-[His]VIP and Ag-tiopronin-PEG-VIP[His]). VIP intermediate nanoparticles were characterized by transmission-electron microscopy and Fourier transform infrared spectroscopy. VIP functionalized silver nanoparticles cytotoxicity was determined by lactate dehydrogenase release from mixed glial cultures prepared from cerebral cortices of 1-3 days-old C57/Bl mice. Cells were used for lipopolysaccharide stimulation at day 18-22 of culture. Two different types of VIP-functionalized silver nanoparticles were obtained; both expose the C-terminal part of the neuropeptide, but in the first type VIP is attached to silver nanoparticle through its free amine terminus (Ag-tiopronin-PEG-succinic-[His]VIP), while in the second type, VIP N-terminus remains free (Ag-tiopronin-PEG-VIP[His]). VIP-functionalized silver nanoparticles did not compromise cellular viability and inhibited microglia-induced stimulation under inflammatory conditions. The chemical synthesis procedure developed to obtain VIP-functionalized silver nanoparticles rendered functional products, in terms of biological activity. The two alternative orientations designed, reduced the constraints for chemical synthesis that depends on the nanosurface to be functionalized. Our study provides, for the first time, a proof of principle to

  12. High affinity receptors for vasoactive intestinal peptide on a human glioma cell line

    SciTech Connect

    Nielsen, F.C.; Gammeltoft, S.; Westermark, B.; Fahrenkrug, J. )

    1990-11-01

    Vasoactive intestinal peptide (VIP) bound with high affinity (Kd 0.13 nmol/l) to receptors on the human glioma cell line U-343 MG Cl 2:6. The receptors bound the related peptides helodermin, PHM and secretin with 10, 400 and 5000 times lower affinity, respectively. Deamidated VIP (VIP-COOH) and (des-His1)VIP bound with 10 and 100 times lower affinity. The fragment VIP(7-28) displaced 25% of the receptor-bound {sup 125}I-VIP whereas VIP(16-28) and VIP(1-22-NH2) were inactive. The binding of {sup 125}I-VIP could be completely inhibited by 10 mumol/l of the antagonists (N-Ac-Tyr1,D-Phe2)GRF(1-29)-NH2, (pCl-D-Phe6,Leu17)VIP and VIP(10-28); in contrast, the antagonist L-8-K was inactive. Affinity labeling showed that VIP bound to proteins with Mr's of 75 kDa, 66 kDa and 50 kDa, respectively. Following binding, the peptide was rapidly internalized, and at steady-state only 20% of cell-associated {sup 125}I-VIP was bound to receptors on the cell surface. The internalized {sup 125}I-VIP was completely degraded to {sup 125}I-tyrosine which was released from the cells. Degradation of internalized {sup 125}I-VIP was significantly reduced by chloroquine phenanthroline and pepstatin-A. Surface binding and internalization of {sup 125}I-VIP was increased 3 times by phenanthroline, and pepstatin-A caused a 5 times increase in surface binding. Chloroquine reduced surface-bound {sup 125}I-VIP, but caused retention of internalized {sup 125}I-VIP.

  13. Vasoactive intestinal peptide reduces the inflammatory profile in mice infected with Trypanosoma cruzi.

    PubMed

    Higyno, Pulchéria Maria Silva; Mendes, Priscila Fagundes; Miranda, Marina Barcelos de; Pereira, Dario Elias; Mota, Ana Paula Lucas; Nogueira, Katiane de Oliveira Pinto Coelho; Caldas, Ivo Santana; Moura, Sandra Aparecida de Lima; Menezes, Cristiane Alves da Silva

    2015-12-01

    Vasoactive intestinal peptide (VIP) has gained great prominence because of its therapeutic potential, which is ascribed to its ability to regulate innate immunity, inhibit antigen-specific Th1 cell responses, and generate T regulatory cells. Additionally, VIP may act as a natural antimicrobial peptide, killing bacteria, fungi, and infective forms of Trypanosoma brucei. Despite the possible relevance of VIP during the course of Chagas disease, studies regarding this in human and experimental Trypanosoma cruzi infections remain poorly characterized. In this work, we evaluated the effects of VIP on systemic and cardiac immune responses during experimental acute infection. C57BL/6 mice were infected with 5000 trypomastigotes of the VL-10 strain of T. cruzi and treated with intraperitoneal VIP injection every other day for one month. After 30 days, we observed no reduction in parasitemia levels. However, we observed a reduction in serum levels of IFN-gamma and IL-2 and an increase in that of IL-4. These data suggest that VIP treatment modified immune responses to favor the Th2 response, which had no impact on parasitemia levels although the serum level of IFN-gamma was reduced. However, this change in immune balance reduced heart damage, as noted by the smaller cardiac volume and the moderate inflammatory infiltrate observed in VIP-treated mice. Our results indicate that VIP treatment reduced the inflammatory response at the cardiac site of mice that were experimentally infected with T. cruzi. These data suggest a protective role for VIP in the heart of infected mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis.

    PubMed

    Henricson, Joakim; Nilsson, Anders; Tesselaar, Erik; Nilsson, Gert; Sjöberg, Folke

    2009-09-01

    When one is studying the physiology of the cutaneous microcirculation there is a need for relevant non-invasive and versatile techniques. In this study we used a new optical device, the tissue viability imager (TiVi), to map changes in cutaneous microvascular concentrations of red blood cells during iontophoresis of vasoactive substances (noradrenaline (NA) and phenylephrine (Phe) for vasoconstriction and acetylcholine (ACh) and sodium nitroprusside (SNP) for vasodilatation). We aimed to present data both individually and pooled, using a four-variable logistic dose response model that is commonly used in similar in vitro vascular studies. The accuracy of the TiVi was also investigated by calculating the coefficient of variation and comparing it with similar tests previously done using laser Doppler imaging. Tests were also performed using the TiVi and LDPI simultaneously to further compare the two methods. Results showed that the TiVi is capable of quantifying vascular responses to iontophorised noradrenaline and phenylephrine without the need to increase background flow first. Fitting the TiVi data to the dose response model resulted in ED(50)-values with narrow confidence intervals and acceptable r(2) values. Mean ED(50)-values for the TiVi did not differ significantly from similar values obtained using laser Doppler. Results further seem to suggest that when the blood perfusion increases during vasodilatation in skin the initial phase relies mainly on an increase in red blood cell concentration whereas the further perfusion increase is due to an increase in red blood cell velocity.

  15. Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Elhalis, Hussain; Azizi, Behrooz; Jurkunas, Ula V.

    2011-01-01

    Fuchs endothelial corneal dystrophy (FECD) is characterized by progressive loss of corneal endothelial cells, thickening of Descement’s membrane and deposition of extracellular matrix in the form of guttae. When the number of endothelial cells becomes critically low, the cornea swells and causes loss of vision. The clinical course of FECD usually spans 10–20 years. Corneal transplantation is currently the only modality used to restore vision. Over the last several decades genetic studies have detected several genes, as well as areas of chromosomal loci associated with the disease. Proteomic studies have given rise to several hypotheses regarding the pathogenesis of FECD. This review expands upon the recent findings from proteomic and genetic studies and builds upon recent advances in understanding the causes of this common corneal disorder. PMID:20964980

  16. Biomarkers of endothelial activation/dysfunction in infectious diseases

    PubMed Central

    Page, Andrea V; Liles, W Conrad

    2013-01-01

    Endothelial dysfunction contributes to the pathogenesis of a variety of potentially serious infectious diseases and syndromes, including sepsis and septic shock, hemolytic-uremic syndrome, severe malaria, and dengue hemorrhagic fever. Because endothelial activation often precedes overt endothelial dysfunction, biomarkers of the activated endothelium in serum and/or plasma may be detectable before classically recognized markers of disease, and therefore, may be clinically useful as biomarkers of disease severity or prognosis in systemic infectious diseases. In this review, the current status of mediators of endothelial cell function (angiopoietins-1 and -2), components of the coagulation pathway (von Willebrand Factor, ADAMTS13, and thrombomodulin), soluble cell-surface adhesion molecules (soluble E-selectin, sICAM-1, and sVCAM-1), and regulators of vascular tone and permeability (VEGF and sFlt-1) as biomarkers in severe infectious diseases is discussed in the context of sepsis, E. coli O157:H7 infection, malaria, and dengue virus infection. PMID:23669075

  17. Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers.

    PubMed

    Navasiolava, Nastassia M; Dignat-George, Françoise; Sabatier, Florence; Larina, Irina M; Demiot, Claire; Fortrat, Jacques-Olivier; Gauquelin-Koch, Guillemette; Kozlovskaya, Inesa B; Custaud, Marc-Antoine

    2010-08-01

    A sedentary lifestyle has adverse effects on the cardiovascular system, including impaired endothelial functions. Subjecting healthy men to 7 days of dry immersion (DI) presented a unique opportunity to analyze the specific effects of enhanced inactivity on the endothelium. We investigated endothelial properties before, during, and after 7 days of DI involving eight subjects. Microcirculatory functions were assessed with laser Doppler in the skin of the calf. We studied basal blood flow and endothelium-dependent and -independent vasodilation. We also measured plasma levels of microparticles, a sign of cellular dysfunction, and soluble endothelial factors, reflecting the endothelial state. Basal flow and endothelium-dependent vasodilation were reduced by DI (22 + or - 4 vs. 15 + or - 2 arbitrary units and 29 + or - 6% vs. 12 + or - 6%, respectively, P < 0.05), and this was accompanied by an increase in circulating endothelial microparticles (EMPs), which was significant on day 3 (42 + or - 8 vs. 65 + or - 10 EMPs/microl, P < 0.05), whereas microparticles from other cell origins remained unchanged. Plasma soluble VEGF decreased significantly during DI, whereas VEGF receptor 1 and soluble CD62E were unchanged, indicating that the increase in EMPs was associated with a change in antiapoptotic tone rather than endothelial activation. Our study showed that extreme physical inactivity in humans induced by 7 days of DI causes microvascular impairment with a disturbance of endothelial functions, associated with a selective increase in EMPs. Microcirculatory endothelial dysfunction might contribute to cardiovascular deconditioning as well as to hypodynamia-associated pathologies. In conclusion, the endothelium should be the focus of special care in situations of acute limitation of physical activity.

  18. Impedance in isolated mouse lungs for the determination of site of action of vasoactive agents and disease.

    PubMed

    Vanderpool, Rebecca R; Naeije, Robert; Chesler, Naomi C

    2010-05-01

    Hypoxic pulmonary hypertension is a disease of the lung vasculature that is usually quantified by pulmonary vascular resistance (PVR). However, a more complete description of lung vascular function and right ventricular afterload is provided by pulmonary vascular impedance (PVZ) from spectral analysis of pulsatile pressure-flow relationships. We studied pulsatile pressure-flow relationships in isolated, perfused lungs of mice in normoxia, after induction of hypoxic pulmonary hypertension by 10 days of hypoxic exposure, and after the administration of the vasoactive agents sodium nitroprusside and serotonin in order to gain insight into the effects of disease and vasoactive agents on afterload. Chronic hypoxia exposure increased 0 Hz impedance (Z(0)) from 2.0 +/- 0.2 to 3.3 +/- 0.2 mmHg min/mL but decreased characteristic impedance (Z(C)) from 0.21 +/- 0.02 to 0.18 +/- 0.01 mmHg min/mL (both p < 0.05). Sodium nitroprusside only slightly decreased Z(0) but increased Z(C) in normal lungs (p < 0.05) and did not affect Z(C) and decreased Z(0) in hypertensive lungs (p < 0.05). Serotonin increased Z(C) in normal and hypertensive lungs but decreased Z(0) in hypertensive lungs (p < 0.05). There was an inverse correlation between mean pulmonary artery pressure and Z(C) in all circumstances. These findings demonstrate that vasoactive interventions can have different sites of action (i.e., proximal vs. distal segments) in the normal and chronically hypoxic pulmonary vasculature, and the pressure-dependency of Z(C) and R(W). The measurement of PVZ in isolated lungs allows for an improved understanding of the modes of action of drugs and hypoxia on the pulmonary circulation.

  19. The endothelin-2/vasoactive intestinal contractor gene: expression and promoter activity in PC12 rat pheochromocytoma cells.

    PubMed

    Saida, K; Uchide, T; Usui, A; Gao, X D; Tomizuka, N; Oka, S; Masuda, H

    2000-11-01

    In order to understand the physiological roles of vasoactive intestinal contractor (VIC)/endothelin-2 (ET-2), we examined the expression of this peptide by specific reverse transcriptase polymerase chain reaction (RT-PCR) analysis and found that PC12 rat pheochromocytoma cells express the VIC gene. The 5'-flanking 1.0 kilo base pair (kb) region of the mouse VIC gene is sufficient to express a secreted alkaline phosphatase (SEAP) reporter gene in transiently transfected PC12 cells. The 1.0 kb promoter region may contain cis-acting elements that determine the rate of the VIC gene transcription in PC12 cells.

  20. Expression and localization of VPAC1, the major receptor of vasoactive intestinal peptide along the length of the intestine.

    PubMed

    Jayawardena, Dulari; Guzman, Grace; Gill, Ravinder K; Alrefai, Waddah A; Onyuksel, Hayat; Dudeja, Pradeep K

    2017-07-01

    Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide with a broad array of physiological functions in many organs including the intestine. Its actions are mediated via G protein-coupled receptors, and vasoactive intestinal peptide receptor 1 (VPAC1) is the key receptor responsible for majority of VIP's biological activity. The distribution of VPAC1 along the length of the gastrointestinal tract and its subcellular localization in intestinal epithelial cells have not been fully characterized. The current studies were undertaken to determine VPAC1 distribution and localization so that VIP-based therapies can be targeted to specific regions of the intestine. The results indicated that the mRNA levels of VPAC1 showed an abundance pattern of colon > ileum > jejunum in the mouse intestine. In parallel, the VPAC1 protein levels were higher in the mouse colon, followed by the ileum and jejunum. Immunofluorescence studies in mouse colon demonstrated that the receptor was specifically localized to the luminal surface, as was evident by colocalization with the apical marker villin but not with the basolateral marker Na(+)/K(+)-ATPase. In the human intestine, VPAC1 mRNA expression exhibited a distribution similar to that in mouse intestine and was highest in the sigmoid colon. Furthermore, in the human colon, VPAC1 also showed predominantly apical localization. The physiological relevance of the expression and apical localization of VPAC1 remains elusive. We speculate that apical VPAC1 in intestinal epithelial cells may have relevance in recognizing secreted peptides in the intestinal lumen and therefore supports the feasibility of potential therapeutic and targeting use of VIP formulations via oral route to treat gastrointestinal diseases.NEW & NOTEWORTHY These studies for the first time present comprehensive data on the relative characterization of vasoactive intestinal peptide (VIP) receptors in the intestinal mucosa. Vasoactive intestinal peptide receptor 1

  1. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice

    PubMed Central

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T.; Lee-Rueckert, Miriam

    2015-01-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [3H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [3H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds. PMID:25473102

  2. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.

  3. Sensitivity to food additives, vaso-active amines and salicylates: a review of the evidence.

    PubMed

    Skypala, Isabel J; Williams, M; Reeves, L; Meyer, R; Venter, C

    2015-01-01

    Although there is considerable literature pertaining to IgE and non IgE-mediated food allergy, there is a paucity of information on non-immune mediated reactions to foods, other than metabolic disorders such as lactose intolerance. Food additives and naturally occurring 'food chemicals' have long been reported as having the potential to provoke symptoms in those who are more sensitive to their effects. Diets low in 'food chemicals' gained prominence in the 1970s and 1980s, and their popularity remains, although the evidence of their efficacy is very limited. This review focuses on the available evidence for the role and likely adverse effects of both added and natural 'food chemicals' including benzoate, sulphite, monosodium glutamate, vaso-active or biogenic amines and salicylate. Studies assessing the efficacy of the restriction of these substances in the diet have mainly been undertaken in adults, but the paper will also touch on the use of such diets in children. The difficulty of reviewing the available evidence is that few of the studies have been controlled and, for many, considerable time has elapsed since their publication. Meanwhile dietary patterns and habits have changed hugely in the interim, so the conclusions may not be relevant for our current dietary norms. The conclusion of the review is that there may be some benefit in the removal of an additive or a group of foods high in natural food chemicals from the diet for a limited period for certain individuals, providing the diagnostic pathway is followed and the foods are reintroduced back into the diet to assess for the efficacy of removal. However diets involving the removal of multiple additives and food chemicals have the very great potential to lead to nutritional deficiency especially in the paediatric population. Any dietary intervention, whether for the purposes of diagnosis or management of food allergy or food intolerance, should be adapted to the individual's dietary habits and a suitably

  4. Distinct Firing Properties of Vasoactive Intestinal Peptide-Expressing Neurons in the Suprachiasmatic Nucleus

    PubMed Central

    Hermanstyne, Tracey O.; Simms, Carrie L.; Carrasquillo, Yarimar; Herzog, Erik D.; Nerbonne, Jeanne M.

    2016-01-01

    The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD50) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, after hyper polarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD50 and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN. PMID:26712166

  5. Vasoactive Inotropic Score (VIS) as Biomarker of Short-Term Outcomes in Adolescents after Cardiothoracic Surgery.

    PubMed

    Garcia, Richard U; Walters, Henry L; Delius, Ralph E; Aggarwal, Sanjeev

    2016-02-01

    Our aim was to evaluate the Vasoactive Inotropic Score (VIS) as a prognostic marker in adolescents following surgery for congenital heart disease. This single-center retrospective chart review included patients 10-18 years of age, who underwent cardiac surgery from 2009 to 2014. Hourly VIS was calculated for the initial 48 postoperative hours using standard formulae and incorporating doses of six pressors. The composite adverse outcome was defined as any one of death, resuscitation or mechanical support, arrhythmia, infection requiring antibacterial therapy, acute kidney injury or neurologic injury. Surgeries were risk-stratified by the type of surgical repair using the validated STAT score. Statistical analysis (SPSS 19.0) included Mann-Whitney U test, Chi-square test, ROC curves, and binary regression analysis. Our cohort (n = 149) had a mean (SD) age of 13.9 (2.4) years and included 97 (65.1 %) males. Maximal VIS at 24 and 48 h following surgery was significantly higher in subjects (n = 27) who suffered an adverse outcome. Subjects with adverse outcome had longer bypass and cross-clamp times, durations of stay in the hospital, and a higher rate of acute kidney injury, compared to those (n = 122) without postoperative adverse outcomes. The area under the ROC for maximum VIS at 24-48 h after surgery was 0.76, with sensitivity, specificity, and positive and negative predictive values with 95 % CI of 67 (48-82) %, 74 (70-77) %, and 36 (26-44) % and 91 (86-95) %, respectively, at a cutoff >4.75. On binary logistic regression, maximum VIS on second postoperative day remained significantly associated with adverse outcome (OR 1.35; 95 % CI> 1.12-1.64, p = 0.002). Maximal VIS at 24 and 48 h correlated significantly with length of stay and time to extubation. Maximal VIS on the second postoperative day predicts adverse outcome in adolescents following cardiac surgery. This simple yet robust prognostic indicator may aid in risk stratification and targeted interventions in

  6. Vasoactive effects of different fractions from two Panamanians plants used in Amerindian traditional medicine.

    PubMed

    Guerrero, Estela I; Morán-Pinzón, Juan A; Ortíz, Luis Gabriel; Olmedo, Dionisio; del Olmo, Esther; López-Pérez, José L; San Feliciano, Arturo; Gupta, Mahabir P

    2010-09-15

    Cecropia obtusifolia (Cecropiaceae) and Psychotria poeppigiana (Synonym: Cephaelis elata, Rubiaceae) are two Latin American plants broadly used in traditional Amerindian medicine. The former, together with many other species of the genus Cecropia, share the folk reputation of curing heart failure, cough, asthma and bronchitis. The latter is used in Panama by Kuna and Ngäbe Buglé (Guaymies) native Indians for the treatment of dyspnea. Based on screening of selected medicinal Panamanian plants by radioligand-binding techniques by Caballero-George et al. (2001), the present study was carried out in order to investigate the vasoactive effects of different fractions from both P. poeppigiana and C. obtusifolia on rat thoracic aorta and identify active fractions and their chemical constituents. Both acid and neutral methanol fractions (P-AMeOH and P-NMeOH) and acid and neutral dichlorometane fractions (P-ADCM and P-NDCM) were obtained from P. poeppigiana crude methanolic and dichlorometane extracts, respectively. Identical fractionation was carried out for C. obtusifolia (C-AMeOH, C-NMeOH, C-ADCM and C-NDCM. Vasorelaxant effect of all fractions, and their inhibition of contractile responses to angiotensin II were evaluated in isolated aortic rings. P-AMeOH, P-NMeOH and P-ADCM fractions induced a concentration-dependent relaxation (43.9+/-1.8%, 35.3+/-4.7% and 52.9+/-3.5%, respectively) in the endothelium-intact aorta precontracted by phenylephrine (PE, 10(-6)M). The relaxation produced by C-AMeOH and C-NMeOH (57.3+/-2.5% and 53.3+/-3.3%, respectively) was greater than the effect produced by C-ADCM and C-NDCM (42.2+/-3.4% and 21.8+/-0.8%, respectively). Only the incubation of the aortic rings with P-AMeOH reduced the maximum contraction induced by angiotensin II at 20.08+/-0.55%. The direct vasorelaxation effect observed could explain in part the ethnomedical use of these plants in Amerindian traditional medicine. The most active fractions contain phenolic and aromatic

  7. Vasoactive intestinal peptide downregulates proinflammatory TLRs while upregulating anti-inflammatory TLRs in the infected cornea.

    PubMed

    Jiang, Xiaoyu; McClellan, Sharon A; Barrett, Ronald P; Zhang, Yunfan; Hazlett, Linda D

    2012-07-01

    TLRs recognize microbial pathogens and trigger an immune response, but their regulation by neuropeptides, such as vasoactive intestinal peptide (VIP), during Pseudomonas aeruginosa corneal infection remains unexplored. Therefore, C57BL/6 (B6) mice were injected i.p. with VIP, and mRNA, protein, and immunostaining assays were performed. After VIP treatment, PCR array and real-time RT-PCR demonstrated that proinflammatory TLRs (conserved helix-loop-helix ubiquitous kinase, IRAK1, TLR1, TLR4, TLR6, TLR8, TLR9, and TNFR-associated factor 6) were downregulated, whereas anti-inflammatory TLRs (single Ig IL-1-related receptor [SIGIRR] and ST2) were upregulated. ELISA showed that VIP modestly downregulated phosphorylated inhibitor of NF-κB kinase subunit α but upregulated ST2 ~2-fold. SIGIRR was also upregulated, whereas TLR4 immunostaining was reduced in cornea; all confirmed the mRNA data. To determine whether VIP effects were cAMP dependent, mice were injected with small interfering RNA for type 7 adenylate cyclase (AC7), with or without VIP treatment. After silencing AC7, changes in mRNA levels of TLR1, TNFR-associated factor 6, and ST2 were seen and unchanged with addition of VIP, indicating that their regulation was cAMP dependent. In contrast, changes were seen in mRNA levels of conserved helix-loop-helix ubiquitous kinase, IRAK1, 2, TLR4, 9 and SIGIRR following AC7 silencing alone; these were modified by VIP addition, indicating their cAMP independence. In vitro studies assessed the effects of VIP on TLR regulation in macrophages and Langerhans cells. VIP downregulated mRNA expression of proinflammatory TLRs while upregulating anti-inflammatory TLRs in both cell types. Collectively, the data provide evidence that VIP downregulates proinflammatory TLRs and upregulates anti-inflammatory TLRs and that this regulation is both cAMP dependent and independent and involves immune cell types found in the infected cornea.

  8. Endothelin-1 inhibits endothelin-converting enzyme-1 expression in cultured rat pulmonary endothelial cells.

    PubMed

    Naomi, S; Iwaoka, T; Disashi, T; Inoue, J; Kanesaka, Y; Tokunaga, H; Tomita, K

    1998-01-27

    The lung expresses large amounts of endothelin-converting enzyme-1 (ECE-1), which catalyzes a step in the biosynthesis of potent vasoactive endothelin-1 (ET-1) from the inactive intermediate big ET-1. Because there has been no report concerning a possible relationship between ET-1 and ECE-1, we investigated the effects of ET-1 on ECE-1 expression in cultured rat pulmonary endothelial cells. ECE-1 messenger RNA (mRNA) and protein expression in cultured endothelial cells were assayed by Northern and Western blotting, respectively. Incubation with ET-1 for 6 hours caused a significant decrease in ECE-1 mRNA expression. The action of ET-1 on ECE-1 mRNA expression was antagonized by pretreatment with BQ788, a specific ETB receptor antagonist, but not by pretreatment with BQ123, a specific ETA receptor antagonist. The expression of ECE-1 protein was also inhibited at 6 hours after incubation with ET-1. The effects of ET-1 on ECE-1 mRNA and protein expression were shown to be mimicked by ionomycin, a calcium ionophore, but not by 12-O-tetradecanoylphorbol 13-acetate, a protein kinase C activator. The present results demonstrate that ET-1 suppressed ECE-1 protein levels by inhibiting ECE-1 mRNA expression through the ETB receptor, suggesting the existence of a feedback action of ET-1 on ECE-1 in pulmonary endothelial cells.

  9. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  10. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  11. Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase

    PubMed Central

    Stobart, Jillian L. LeMaistre; Lu, Lingling; Mori, Hisashi; Anderson, Christopher M.

    2013-01-01

    Astrocytes play a critical role in neurovascular coupling by providing a physical linkage from synapses to arterioles and releasing vaso-active gliotransmitters. We identified a gliotransmitter pathway by which astrocytes influence arteriole lumen diameter. Astrocytes synthesize and release NMDA receptor coagonist, D-serine, in response to neurotransmitter input. Mouse cortical slice astrocyte activation by metabotropic glutamate receptors or photolysis of caged Ca2+ produced dilation of penetrating arterioles in a manner attenuated by scavenging D-serine with D-amino acid oxidase, deleting the enzyme responsible for D-serine synthesis (serine racemase) or blocking NMDA receptor glycine coagonist sites with 5,7-dichlorokynurenic acid. We also found that dilatory responses were dramatically reduced by inhibition or elimination of endothelial nitric oxide synthase and that the vasodilatory effect of endothelial nitric oxide synthase is likely mediated by suppressing levels of the vasoconstrictor arachidonic acid metabolite, 20-hydroxy arachidonic acid. Our results provide evidence that D-serine coactivation of NMDA receptors and endothelial nitric oxide synthase is involved in astrocyte-mediated neurovascular coupling. PMID:23386721

  12. Adrenomedullin and arterial stiffness: integrative approach combining monocyte ADM expression, plasma MR-Pro-ADM, and genome-wide association study.

    PubMed

    Beygui, Farzin; Wild, Philipp S; Zeller, Tanja; Germain, Marine; Castagné, Raphaele; Lackner, Karl J; Münzel, Thomas; Montalescot, Gilles; Mitchell, Gary F; Verwoert, Germaine C; Tarasov, Kirill V; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2014-10-01

    Adrenomedullin (ADM) is a circulating vasoactive peptide involved in vascular homeostasis and endothelial function. Single nucleotide polymorphisms of the ADM gene are associated with blood pressure variability, and elevated levels of plasma midregional proadrenomedullin (MR-pro-ADM) are associated with cardiovascular diseases. We investigated the sources of variability of ADM gene expression and plasma MR-pro-ADM concentrations in the general population, and their relationship with markers of atherosclerosis. MR-pro-ADM levels were assessed in 4155 individuals who underwent evaluation of carotid intima-media thickness and arterial rigidity (reflection index and stiffness index). In a subsample of 1372 individuals, ADM gene expression was assessed as part of a transcriptomic study of circulating monocytes. Nongenetic factors explained 45.8% and 7.5% of MR-pro-ADM and ADM expression variability, respectively. ADM expression correlated with plasma C-reactive protein, interleukin-receptor 1A, and myeloperoxidase, whereas MR-pro-ADM levels correlated with C-terminal proendothelin-1, creatinine, and N-terminal pro-B-type natriuretic peptide. Genome-wide association study of ADM expression and MR-pro-ADM levels both identified a single locus encompassing the ADM gene. ADM expression was associated with 1 single nucleotide polymorphism rs11042717 (P=2.36×10(-12)), whereas MR-pro-ADM was associated with 2 single nucleotide polymorphisms with additive effects, rs2957692 (P=1.54×10(-13)) and rs2957717 (P=4.24×10(-8)). Reflection index was independently associated with rs11042717 (P<10(-4)) and ADM expression (P=0.0002) but not with MR-pro-ADM. Weaker associations were observed for stiffness index. Intima-media thickness was not related to ADM single nucleotide polymorphisms or expression. These results support an involvement of the ADM gene in the modulation of peripheral vascular tone. © 2014 American Heart Association, Inc.

  13. Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis.

    PubMed

    Korte, Stefanie; Wiesinger, Anne; Straeter, Alexandra S; Peters, Wladimir; Oberleithner, Hans; Kusche-Vihrog, Kristina

    2012-02-01

    Plasma sodium, slightly above normal and in presence of aldosterone, stiffens vascular endothelium and reduces nitric oxide release with the consequence of endothelial dysfunction. This process is mediated by epithelial sodium channels (ENaC) and, most likely, the endothelial Na(+)/K(+)-ATPase. Both, ENaC and Na(+)/K(+)-ATPase, are located in the plasma membrane of endothelial cells and embedded in the endothelial glycocalyx (eGC). This negatively charged biopolymer is directly exposed to the blood stream and selectively buffers sodium ions. We hypothesize that the glycocalyx could interfere with endothelial sodium transport when extracellular sodium varies in the physiological range. Therefore, we modeled the endothelial cell as a pump-leak system measuring changes of intracellular sodium in cultured human endothelial cells. Experiments were performed under low/high extracellular sodium conditions before and after enzymatic eGC removal, and with inhibition of Na(+)/K(+)-ATPase and ENaC, respectively. Three major observations were made: (1) eGC removal by heparinase treatment facilitates sodium to enter/exit the endothelial cells. (2) The direction of net sodium movement across the endothelial plasma membrane depends on the concentration of extracellular sodium which regulates both the Na(+)/K(+)-ATPase and ENaC activity. (3) Removal of eGC and inhibition of sodium transport modify the electrical resistance of endothelial cells. We conclude that the eGC serves as a potential "firewall" preventing uncontrolled access of sodium to the pump-leak system of the endothelial cell. After eGC removal, sodium access to the system is facilitated. Thus the pump-leak system could be regulated by ambient sodium and control vascular permeability in pathophysiological conditions.

  14. Gemcitabine kills proliferating endothelial cells exclusively via acid sphingomyelinase activation.

    PubMed

    van Hell, Albert J; Haimovitz-Friedman, Adriana; Fuks, Zvi; Tap, William D; Kolesnick, Richard

    2017-06-01

    Gemcitabine is a widely-used anti-cancer drug with a well-defined mechanism of action in normal and transformed epithelial cells. However, its effect on endothelial cells is largely unknown. Acid sphingomyelinase (ASMase) is highly expressed in endothelial cells, converting plasma membrane sphingomyelin to pro-apoptotic ceramide upon activation by diverse stresses. In the current study, we investigated gemcitabine impact in primary cultures of endothelial cells. We find baseline ASMase increases markedly in bovine aortic endothelial cells (BAEC) as they transit from a proliferative to a confluent growth-arrested state. Further, gemcitabine activates ASMase and induces release of a secretory ASMase form into the media only in proliferating endothelial cells. Additionally, proliferative, but not growth-arrested BAEC, are sensitive to gemcitabine-induced apoptotic death, an effect blocked by inhibiting ASMase with imipramine or by binding ceramide on the cell surface with an anti-ceramide Ab. Confluent growth-arrested BAEC can be re-sensitized to gemcitabine-induced apoptosis by provision of exogenous sphingomyelinase. A highly similar phenotype was observed in primary cultures of human coronary artery endothelial cells. These findings reveal a previously-unrecognized mechanism of gemcitabine cytotoxicity in endothelium that may well contribute to its clinical benefit, and suggest the potential for further improvement of its clinical efficacy via pharmacologic modulation of ASMase/ceramide signaling in proliferative tumor endothelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment

    PubMed Central

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) can replace the lungs’ gas exchange capacity in refractory lung failure. However, its limited hemocompatibility, the activation of the coagulation and complement system as well as plasma leakage and protein deposition hamper mid- to long-term use and have constrained the development of an implantable lung assist device. In a tissue engineering approach, lining the blood contact surfaces of the ECMO device with endothelial cells might overcome these limitations. As a first step towards this aim, we hypothesized that coating the oxygenator’s gas exchange membrane with proteins might positively influence the attachment and proliferation of arterial endothelial cells. Methods Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue culture treated well plates served as controls. Endothelial cell attachment and proliferation were analyzed for a period of 4 days by microscopic examination and computer assisted cell counting. Results Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibronectin treated surfaces only. Uncoated membranes as well as all other coatings lead to lower cell attachment. A confluent endothelial cell layer develops on fibronectin coated PDMS and the control surface only. Conclusions Fibronectin increases endothelial cells’ seeding efficiency on different oxygenator membrane material. PDMS coated with fibronectin shows sustained cell attachment for a period of four days in static culture conditions. PMID:23356939

  16. Viscoelastic response of a model endothelial glycocalyx

    NASA Astrophysics Data System (ADS)

    Nijenhuis, Nadja; Mizuno, Daisuke; Spaan, Jos A. E.; Schmidt, Christoph F.

    2009-06-01

    Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite.

  17. Endothelial microparticles carrying hedgehog-interacting protein induce continuous endothelial damage in the pathogenesis of acute graft-versus-host disease.

    PubMed

    Nie, Di-Min; Wu, Qiu-Ling; Zheng, Peng; Chen, Ping; Zhang, Ran; Li, Bei-Bei; Fang, Jun; Xia, Ling-Hui; Hong, Mei

    2016-05-15

    Accumulating evidence suggests that endothelial microparticles (EMPs), a marker of endothelial damage, are elevated in acute graft-versus-host disease (aGVHD), and that endothelial damage is implicated in the pathogenesis of aGVHD, but the mechanisms remain elusive. In this study, we detected the plasma EMP levels and endothelial damage in patients and mice with aGVHD in vivo and then examined the effects of EMPs derived from injured endothelial cells (ECs) on endothelial damage and the role of hedgehog-interacting protein (HHIP) carried by EMPs in these effects in vitro. Our results showed that EMPs were persistently increased in the early posttransplantation phase in patients and mice with aGVHD. Meanwhile, endothelial damage was continuous in aGVHD mice, but was temporary in non-aGVHD mice after transplantation. In vitro, EMPs induced endothelial damage, including increased EC apoptosis, enhanced reactive oxygen species, decreased nitric oxide production and impaired angiogenic activity. Enhanced expression of HHIP, an antagonist for the Sonic hedgehog (SHH) signaling pathway, was observed in patients and mice with aGVHD and EMPs from injured ECs. The endothelial damage induced by EMPs was reversed when the HHIP incorporated into EMPs was silenced with an HHIP small interfering RNA or inhibited with the SHH pathway agonist, Smoothened agonist. This work supports a feasible vicious cycle in which EMPs generated during endothelial injury, in turn, aggravate endothelial damage by carrying HHIP into target ECs, contributing to the continuously deteriorating endothelial damage in the development of aGVHD. EMPs harboring HHIP would represent a potential therapeutic target for aGVHD. Copyright © 2016 the American Physiological Society.

  18. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia

    PubMed Central

    McCarthy, Cathal; Kenny, Louise C.

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  19. Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells.

    PubMed

    Into, Takeshi; Kanno, Yosuke; Dohkan, Jun-ichi; Nakashima, Misako; Inomata, Megumi; Shibata, Ken-ichiro; Lowenstein, Charles J; Matsushita, Kenji

    2007-03-16

    The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.

  20. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  1. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  2. The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction.

    PubMed

    Corder, Roger; Warburton, Richard C; Khan, Noorafza Q; Brown, Ruth E; Wood, Elizabeth G; Lees, Delphine M

    2004-11-01

    Reduced endothelium-dependent vasodilator responses with increased synthesis of ET-1 (endothelin-1) are characteristics of endothelial dysfunction in heart failure and are predictive of mortality. Identification of treatments that correct these abnormalities may have particular benefit for patients who become refractory to current regimens. Hawthorn preparations have a long history in the treatment of heart failure. Therefore we tested their inhibitory effects on ET-1 synthesis by cultured endothelial cells. These actions were compared with that of GSE (grape seed extract), as the vasoactive components of both these herbal remedies are mainly oligomeric flavan-3-ols called procyanidins. This showed extracts of hawthorn and grape seed were equipotent as inhibitors of ET-1 synthesis. GSE also produced a potent endothelium-dependent vasodilator response on preparations of isolated aorta. Suppression of ET-1 synthesis at the same time as induction of endothelium-dependent vasodilation is a similar response to that triggered by laminar shear stress. Based on these results and previous findings, we hypothesize that through their pharmacological properties procyanidins stimulate a pseudo laminar shear stress response in endothelial cells, which helps restore endothelial function and underlies the benefit from treatment with hawthorn extract in heart failure.

  3. Differential responses of mesenteric arterial bed to vasoactive substances in L-NAME-induced preeclampsia: Role of oxidative stress and endothelial dysfunction.

    PubMed

    Amaral, Taline A S; Ognibene, Dayane T; Carvalho, Lenize C R M; Rocha, Ana Paula M; Costa, Cristiane A; Moura, Roberto S; Resende, Angela C

    2017-07-20

    To investigate the systemic and placental oxidant status as well as vascular function in experimental preeclampsia (PE) induced by nitro-L-arginine methyl ester (L-NAME). Fetal parameters and maternal blood pressure, proteinuria, mesenteric arterial bed (MAB) reactivity, and systemic and placental oxidative stress were compared between four groups: pregnant rats receiving L-NAME (60 mg/kg/day, orally) (P + L-NAME) or vehicle (P) from days 13 to 20 of pregnancy and nonpregnant rats receiving L-NAME (NP + L-NAME) or vehicle (NP) during 7 days. L-NAME administration during pregnancy induced some hallmarks of PE, such as hypertension and proteinuria. The P + L-NAME group presented lower weight gain and placental mass as well as reduced number and weight of live fetuses than P group. The vasodilator effect induced by acetylcholine (ACh) and angiotensin II (Ang II) was lower in the perfused MAB from NP + L-NAME and P + L-NAME than in control groups. Otherwise, the nitroglycerine-induced vasodilation and the phenylephrine- and Ang II-induced vasoconstriction were higher in MAB from NP + L-NAME and P + L-NAME groups than in the respective controls. Systemic and placental oxidative damage, assessed by malondialdehyde and carbonyl levels, was increased and activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase were reduced in P + L-NAME and NP + L-NAME groups compared to controls. The present data suggest that the oxidative stress and reduced bioavailability of nitric oxide may contribute to attenuation of vasodilator responses to ACh and Ang II, and hyperreactivity to Ang II in the mesentery of preeclamptic rat, which may contribute to the increased peripheral vascular resistance and BP, as well as intrauterine growth restriction in L-NAME-induced PE.

  4. Measurement and analysis of traction force dynamics in response to vasoactive agonists.

    PubMed

    Yang, Michael T; Reich, Daniel H; Chen, Christopher S

    2011-06-01

    Mechanical traction forces exerted by adherent cells on their surroundings serve an important role in a multitude of cellular and physiological processes including cell motility and multicellular rearrangements. For endothelial cells, contraction also provides a means to disrupt cell-cell junctions during inflammation to increase permeability between blood and interstitial tissue compartments. The degree of contractility exhibited by endothelial cells is influenced by numerous soluble factors, such as thrombin, histamine, lysophosphatidic acid, sphingosine-1-phosphate, and vascular endothelial growth factor (VEGF). Upon binding to cell surface receptors, these agents trigger changes in cytoskeletal organization, adhesion and myosin II activity to varying degrees. While conventional antibody-based biochemical assays are suitable for detecting relatively large changes in biomarkers of contractility in an end-point format, they cannot resolve subtle or rapid changes in contractility and cannot do so noninvasively. To overcome these limitations, we developed an approach to measure the contractile response of single cells exposed to contractility agonists with high spatiotemporal resolution. A previously developed traction force sensor, comprised of dense arrays of elastomeric microposts on which cells are cultured, was combined with custom, semi-automated software developed here to extract strain energy measurements from thousands of time-lapse images of micropost arrays deformed by adherent cells. Using this approach we corroborated the differential effects of known agonists of contractility and characterized the dynamics of their effects. All of these agonists produced a characteristic first-order rise and plateau in forces, except VEGF, which stimulated an early transient spike in strain energy followed by a sustained increase. This novel, two-phase contractile response was present in a subpopulation of cells, was mediated through both VEGFR2 and ROCK activation

  5. Circulating humanin levels are associated with preserved coronary endothelial function

    PubMed Central

    Widmer, R. J.; Flammer, A. J.; Herrmann, J.; Rodriguez-Porcel, M.; Wan, J.; Cohen, P.; Lerman, L. O.

    2013-01-01

    Humanin is a small endogenous antiapoptotic peptide, originally identified as protective against Alzheimer's disease, but subsequently also found on human endothelium as well as carotid artery plaques. Endothelial dysfunction is a precursor to the development of atherosclerotic plaques, which are characterized by a highly proinflammatory, reactive oxygen species, and apoptotic milieu. Previous animal studies demonstrated that humanin administration may improve endothelial function. Thus the aim of this study was to test the hypothesis that patients with coronary endothelial dysfunction have reduced systemic levels of humanin. Forty patients undergoing coronary angiography and endothelial function testing were included and subsequently divided into two groups based on coronary blood flow (CBF) response to intracoronary acetylcholine (normal ≥ 50% increase from baseline, n = 20 each). Aortic plasma samples were obtained at the time of catheterization for the analysis of humanin levels and traditional biomarkers of atherosclerosis including C-reactive protein, Lp-Pla2, and homocysteine. Baseline characteristics were similar in both groups. Patients with coronary endothelial dysfunction (change in CBF = −33 ± 25%) had significantly lower humanin levels (1.3 ± 1.1 vs. 2.2 ± 1.5 ng/ml, P = 0.03) compared with those with normal coronary endothelial function (change in CBF = 194 ± 157%). There was a significant and positive correlation between improved CBF and humanin levels (P = 0.0091) not seen with changes in coronary flow reserve (P = 0.76). C-reactive protein, Lp-Pla2, and homocysteine were not associated with humanin levels. Thus we observed that preserved human coronary endothelial function is uniquely associated with higher systemic humanin levels, introducing a potential diagnostic and/or therapeutic target for patients with coronary endothelial function. PMID:23220334

  6. ATP and vasoactive intestinal polypeptide relaxant responses in hamster isolated proximal urethra

    PubMed Central

    Pinna, Christian; Puglisi, Lina; Burnstock, Geoffrey

    1998-01-01

    Nitric oxide (NO) is known from previous studies to be the principle transmitter in NANC inhibitory nerves supplying the hamster urethra. However, the identity of the cotransmitter(s) responsible for the responses remaining following block with L-NG-nitroarginine methyl ester (L-NAME) is not known. Electrical field stimulation (EFS) of circular strips of hamster proximal urethra precontracted with arginine vasopressin (AVP 10−8 M), and in the presence of phentolamine (10−6 M), propranolol (10−6 M) and atropine (10−6 M), caused frequency-dependent relaxation, which was attenuated by suramin (10−4 M) and reactive blue 2 (RB2; 2×10−4 M), but not by pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS; 10−4 M), α-chymotrypsin (10–50 u ml−1) or by the vasoactive intestinal polypeptide (VIP) antagonist, [Lys1, Pro2,5, Arg3,4, Tyr6]-VIP, (5×10−7–10−6 M). In the presence of indomethacin (10−6 M) frequency-dependent relaxations to EFS were enhanced, particularly at the lower frequencies of stimulation. EFS-induced relaxation was blocked by tetrodotoxin (10−6 M), indicating its neurogenic origin. Exogenous ATP (10−7–10−3 M) produced concentration-related relaxations which were attenuated by the P2-purinoceptor antagonists suramin (10−4 M) and RB2 (2×10−4 M) but not by PPADS (10−4 M). ATP-induced relaxations were also reduced significantly by indomethacin (10−6 M). The inhibitory responses to ATP were urothelium- and NO-independent, since they were not affected by either removal of urothelium or by L-NAME (10−4 M). Exogenous VIP (10−9–10−7 M) induced concentration-related relaxations which were not affected by urothelium removal, L-NAME (10−4 M), α-chymotrypsin (10–50 u ml−1) or by [Lys1, Pro2,5, Arg3,4, Tyr6]-VIP (3×10−7–10−6 M). Nevertheless, suramin (10−4 M) and RB2 (2×10−4 M) but not PPADS (10−4 M) antagonized the VIP-induced relaxant

  7. Endothelial RIG-I activation impairs endothelial function

    SciTech Connect

    Asdonk, Tobias; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  8. Changes in nitric oxide release in vivo in response to vasoactive substances.

    PubMed Central

    Nava, E.; Wiklund, N. P.; Salazar, F. J.

    1996-01-01

    1. Changes in the release of nitric oxide (NO) in vivo were studied in rats following the administration of endothelium-dependent and -independent vasodilators as well as the NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO production was assessed by measuring variations of nitrate in plasma by capillary ion analysis. 2. Intravenous administration of the endothelium-dependent vasodilators, bradykinin (2 and 10 micrograms kg-1 min-1) or substance P (0.3-3 micrograms kg-1 min-1) caused a transient dose-dependent hypotension followed by an increase in plasma nitrate concentration (maximal increments: 33 +/- 5% and 38 +/- 6%, for bradykinin and substance P, respectively). Prior administration of L-NAME (10 mg kg-1 min-1) inhibited the hypotension and increase in plasma nitrate caused by these substances. Intravenous administration of sodium nitrate (200 micrograms kg-1) also produced a transitory elevation in plasma nitrate which was similar in magnitude as that caused by the vasodilators. A rapid and transitory increment in plasma nitrate was observed after i.v. administration of authentic NO (400 micrograms kg-1). 3. Rats receiving the endothelium-dependent vasodilators, prostacyclin (0.6 micrograms kg-1 min-1) or adenosine (3 mg kg-1 min-1) intravenously showed a drop in blood pressure paralleled by a decrease in plasma nitrate (maximal decreases: 34 +/- 5% and 24 +/- 4%, for prostacyclin and adenosine, respectively). A similar effect on the plasmatic concentration of nitrate was observed when L-NAME (10 mg kg-1 min-1, i.v.) was administered to the animals. 4. This study demonstrates that (i) changes in plasma nitrate can be detected in vivo after stimulation or inhibition of NO synthase, (ii) an increased production of NO, measured as plasma nitrate, is related to the hypotension caused by bradykinin and substance P and (iii) a diminished concentration of plasmatic nitrate is associated to the hypotension induced by adenosine or prostacyclin

  9. Epigallocatechin gallate inhibits endothelial exocytosis.

    PubMed

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J

    2008-07-01

    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  10. New methods to evaluate endothelial function: A search for a marker of nitric oxide (NO) in vivo: re-evaluation of NOx in plasma and red blood cells and a trial to detect nitrosothiols.

    PubMed

    Ishibashi, Takaharu; Yoshida, Junko; Nishio, Matomo

    2003-12-01

    Although plasma NOx (NO(2)(-) and NO(3)(-)) has been used as an index of nitric oxide (NO) formation in vivo, many unreasonable results appeared even after active elimination of NOx contamination from laboratory ware. For example, plasma NOx concentrations did not increase during vasodilation mediated by the NO/cGMP pathway or after organ perfusion. A possible shift of NOx from plasma to erythrocytes (RBCs) as a cause of these phenomena has been excluded, leaving the destination of NOx (after leaving plasma) unknown. Kinetic analyses have revealed that steady state NOx concentrations in plasma and whole blood did not correlate with the NOx formation rate, but rather with the NOx elimination rate. Therefore, the supposition that the NO status is directly reflected by plasma NOx concentrations appears untenable. As nitrosothiols (R-SNOs), possible carriers of NO bioactivity, have been flagged as alternative indices of NO status in vivo, efforts have been made to detect these substances. When interference by ultrafiltration was eliminated, low molecular weight R-SNOs such as nitrosocystein and nitrosogluthathione were undetectable. However, a high-molecular weight R-SNO, nitrosoalbumin, was detected in human blood. Further research is required into the significance and practical use of nitrosoalbumin as a marker of NO in vivo.

  11. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction.

    PubMed

    Giannotti, Giovanna; Doerries, Carola; Mocharla, Pavani S; Mueller, Maja F; Bahlmann, Ferdinand H; Horvàth, Tibor; Jiang, Hong; Sorrentino, Sajoscha A; Steenken, Nora; Manes, Costantina; Marzilli, Mario; Rudolph, K Lenhard; Lüscher, Thomas F; Drexler, Helmut; Landmesser, Ulf

    2010-06-01

    Prehypertension is a highly frequent condition associated with an increased cardiovascular risk. Endothelial dysfunction is thought to promote the development of hypertension and vascular disease; however, underlying mechanisms remain to be further determined. The present study characterizes for the first time the in vivo endothelial repair capacity of early endothelial progenitor cells (EPCs) in patients with prehypertension/hypertension and examines its relation with endothelial function. Early EPCs were isolated from healthy subjects and newly diagnosed prehypertensive and hypertensive patients (n=52). In vivo endothelial repair capacity of EPCs was examined by transplantation into a nude mouse carotid injury model. EPC senescence was determined (RT-PCR of telomere length). NO and superoxide production of EPCs were measured using electron spin resonance spectroscopy analysis. CD34(+)/KDR(+) mononuclear cells and circulating endothelial microparticles were examined by fluorescence-activated cell sorter analysis. Endothelium-dependent and -independent vasodilations were determined by high-resolution ultrasound. In vivo endothelial repair capacity of EPCs was substantially impaired in prehypertensive/hypertensive patients as compared with healthy subjects (re-endothelialized area: 15+/-3%/13+/-2% versus 28+/-3%; P<0.05 versus healthy subjects). Senescence of EPCs in prehypertension/hypertension was substantially increased, and NO production was markedly reduced. Moreover, reduced endothelial repair capacity of early EPCs was significantly related to an accelerated senescence of early EPCs and impaired endothelial function. The present study demonstrates for the first time that in vivo endothelial repair capacity of early EPCs is reduced in patients with prehypertension and hypertension, is related to EPC senescence and impaired endothelial function, and likely represents an early event in the development of hypertension.

  12. Origins of circulating endothelial cells and endothelial outgrowth from blood

    PubMed Central

    Lin, Yi; Weisdorf, Daniel J.; Solovey, Anna; Hebbel, Robert P.

    2000-01-01

    Normal adults have a small number of circulating endothelial cells (CEC) in peripheral blood, and endothelial outgrowth has been observed from cultures of blood. In this study we seek insight into the origins of CEC and endothelial outgrowth from cultures of blood. Fluorescence in situ hybridization analysis of blood samples from bone marrow transplant recipients who had received gender-mismatched transplants 5–20 months earlier showed that most CEC in fresh blood had recipient genotype. Endothelial outgrowth from the same blood samples after 9 days in culture (5-fold expansion) was still predominantly of the recipient genotype. In contrast, endothelial outgrowth after ∼1 month (102-fold expansion) was mostly of donor genotype. Thus, recipient-genotype endothelial cells expanded only ∼20-fold over this period, whereas donor-genotype endothelial cells expanded ∼1000-fold. These data suggest that most CEC in fresh blood originate from vessel walls and have limited growth capability. Conversely, the data indicate that outgrowth of endothelial cells from cultures of blood is mostly derived from transplantable marrow-derived cells. Because these cells have more delayed outgrowth but a greater proliferative rate, our data suggest that they are derived from circulating angioblasts. PMID:10619863

  13. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  14. Excessive stimulation of poly(ADP-ribosyl)ation contributes to endothelial dysfunction in pre-eclampsia

    PubMed Central

    Crocker, Ian P; Kenny, Louise C; Thornton, Wayne A; Szabo, Csaba; Baker, Philip N

    2004-01-01

    Pre-eclampsia is a serious pregnancy disorder associated with widespread activation of the maternal vascular endothelium. Recent evidence implicates a role for oxidative stress in the aetiology of this condition. Reactive oxygen species, particularly superoxide anions, invokes endothelial cell activation through many pathways. Oxidant-induced cell injury triggers the activation of nuclear enzyme poly(ADP-ribose) polymerase (PARP) leading to endothelial dysfunction in various pathophysiological conditions (reperfusion, shock, diabetes). We have studied whether the loss of endothelial function in pre-eclampsia is dependent on PARP activity. Endothelium-dependent responses of myometrial arteries were tested following exposure to either plasma from women with pre-eclampsia or normal pregnant women in the presence and absence of a novel potent inhibitor of PARP, PJ34. Additional effects of plasma and PJ34 inhibition were identified in microvascular endothelial cell cultures. In myometrial arteries, PARP inhibition blocked the attenuation of endothelium-dependent responses following exposure to plasma from women with pre-eclampsia. In endothelial cell cultures, plasma from pre-eclamptics induced measurable oxidative stress and a concomitant increase in PARP activity and reduction in cellular ATP. Again, these biochemical changes were reversed by PJ34. These results suggest that PARP activity plays a pathogenic role in the development of endothelial dysfunction in pre-eclampsia and promotes PARP inhibition as a potential therapy in this condition. PMID:15778700

  15. Direct demonstration of guanine nucleotide sensitive receptors for vasoactive intestinal peptide in the anterior lobe of the rat pituitary gland

    SciTech Connect

    Agui, T.; Matsumoto, K. )

    1990-05-01

    The vasoactive intestinal peptide (VIP) receptors were identified on the membranes from the rat anterior pituitary gland with ({sup 125}I)VIP. The dissociation constant (Kd) and the maximal binding capacity (Bmax) values were estimated from the competitive inhibition data. The Kd and Bmax values were 1.05 +/- 0.75 nM and 103 +/- 11 fmol/mg protein, respectively. The order of molar potency of related peptides to inhibit ({sup 125}I)VIP binding was VIP greater than peptide histidine isoleucine (PHI) greater than secretin greater than glucagon. Glucagon was not effective to inhibit the binding. ({sup 125}I)VIP binding was effectively inhibited by the addition of guanine nucleotides. The order of molar potency to inhibit the binding was Gpp(NH)p greater than GTP greater than GDP greater than GMP greater than ATP. These results directly suggest the coupling of VIP receptors with guanine nucleotide binding proteins in the anterior pituitary gland.

  16. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    SciTech Connect

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitory hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.

  17. A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging

    PubMed Central

    Valentín, A.; Humphrey, J.D.; Holzapfel, G.A.

    2011-01-01

    Arterial responses to diverse pathologies and insults likely occur via similar mechanisms. For example, many studies suggest that the natural process of aging and isolated systolic hypertension share many characteristics in arteries, including loss of functional elastin, decreased smooth muscle tone, and altered rates of deposition and/or cross-linking of fibrillar collagen. Our aim is to show computationally how these coupled effects can impact evolving aortic geometry and mechanical behavior. Employing a thick-walled, multi-layered constrained mixture model, we suggest that a coupled loss of elastin and vasoactive function are fundamental mechanisms by which aortic aging occurs. Moreover, it is suggested that collagenous stiffening, although itself generally an undesirable process, can play a key role in attenuating excessive dilatation, perhaps including the enlargement of abdominal aortic aneurysms. PMID:21380570

  18. Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    PubMed Central

    Buddeberg, Felix; Schuppli, Caroline; Roth Z'graggen, Birgit; Hasler, Melanie; Schanz, Urs; Mehr, Manuela; Spahn, Donat R.; Beck Schimmer, Beatrice

    2012-01-01

    Background Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. Methods The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. Results Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. Conclusion Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells. PMID:22438924

  19. Nanomechanics of the endothelial glycocalyx contribute to Na+-induced vascular inflammation

    PubMed Central

    Schierke, Florian; Wyrwoll, Margot J.; Wisdorf, Martin; Niedzielski, Leon; Maase, Martina; Ruck, Tobias; Meuth, Sven G.; Kusche-Vihrog, Kristina

    2017-01-01

    High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na+ concentrations (high Na+) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic high Na+ damages the endothelial glycocalyx (eGC), induces release of inflammatory cytokines from the endothelium and promotes monocyte adhesion. Single cell force spectroscopy reveals that high Na+ enhances vascular adhesion protein-1 (VCAM-1)-dependent adhesion forces between monocytes and endothelial surface, giving rise to increased numbers of adherent monocytes on the endothelial surface. Mineralocorticoid receptor antagonism with spironolactone prevents high Na+-induced eGC deterioration, decreases monocyte-endothelium interactions, and restores endothelial function, indicated by increased release of NO. Whereas high Na+ decreases NO release, it induces endothelial release of the pro-inflammatory cytokines IL-1ß and TNFα. However, in contrast to chronic salt load (hours), in vivo and in vitro, an acute salt challenge (minutes) does not impair eGC function. This study identifies the eGC as important mediator of inflammatory processes and might further explain how dietary salt contributes to endothelialitis and cardiovascular pathologies by linking endothelial nanomechanics with vascular inflammation. PMID:28406245

  20. Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury

    PubMed Central

    2014-01-01

    Background The sympathetic nervous system is considered to modulate the endotoxin-induced activation of immune cells. Here we investigate whether thoracic epidural anesthesia with its regional symapathetic blocking effect alters endotoxin-induced leukocyte-endothelium activation and interaction with subsequent endothelial injury. Methods Sprague Dawley rats were anesthetized, cannulated and hemodynamically monitored. E. coli lipopolysaccharide (Serotype 0127:B8, 1.5 mg x kg-1 x h-1) or isotonic saline (controls) was infused for 300 minutes. An epidural catheter was inserted for continuous application of lidocaine or normal saline in endotoxemic animals and saline in controls. After 300 minutes we measured catecholamine and cytokine plasma concentrations, adhesion molecule expression, leukocyte adhesion, and intestinal tissue edema. Results In endotoxemic animals with epidural saline, LPS significantly increased the interleukin-1β plasma concentration (48%), the expression of endothelial adhesion molecules E-selectin (34%) and ICAM-1 (42%), and the number of adherent leukocytes (40%) with an increase in intestinal myeloperoxidase activity (26%) and tissue edema (75%) when compared to healthy controls. In endotoxemic animals with epidural infusion of lidocaine the values were similar to those in control animals, while epinephrine plasma concentration was 32% lower compared to endotoxemic animals with epidural saline. Conclusions Thoracic epidural anesthesia attenuated the endotoxin-induced increase of IL-1β concentration, adhesion molecule expression and leukocyte-adhesion with subsequent endothelial injury. A potential mechanism is the reduction in the plasma concentration of epinephrine. PMID:24708631

  1. Hemodynamics and vasoactive substance levels during renal congestion that occurs in the anhepatic phase of liver transplantation

    PubMed Central

    Li, Zhong-Xin; Wang, Man-Cai; Zhang, You-Cheng; Mao, Jie; Chen, Mo; Ni, Rui; Wei, Feng-Xian; Wang, Gen-Nian; Zhang, Ling-Yi

    2015-01-01

    AIM: To explore hemodynamics and vasoactive substance levels during renal vein congestion that occurs in the anhepatic phase of liver transplantation. METHODS: New Zealand rabbits received ligation of the hepatic pedicle, supra-hepatic vena cava and infra-hepatic vena cava [anhepatic phase group (APH); n = 8], the renal veins (RVL; n = 8), renal veins and hepatic pedicle [with the inferior vena cava left open) (RVHP; n = 8)], or a sham operation (SOP; n = 8). Hemodynamic parameters (systolic, diastolic, and mean arterial blood pressures) and the levels of serum bradykinin (BK) and angiotensin II (ANGII) were measured at baseline (0 min), and 10 min, 20 min, 30 min, and 45 min after the surgery. Correlation analyses were performed to evaluate the associations between hemodynamic parameters and levels of vasoactive substances. RESULTS: All experimental groups (APH, RVL, and RVHP) showed significant decreases in hemodynamic parameters (systolic, diastolic, and mean arterial blood pressures) compared to baseline levels, as well as compared to the SOP controls (P < 0.05 for all). In contrast, BK levels were significantly increased compared to baseline in the APH, RVL, and RVHP groups at all time points measured (P < 0.05 for all), whereas no change was observed in the SOP controls. There were no significant differences among the experimental groups for any measure at any time point. Further analyses revealed that systolic, diastolic, and mean arterial blood pressures were all negatively correlated with BK levels, and positively correlated with ANGII levels in the APH, RVL, and RVHP groups (P < 0.05 for all). CONCLUSION: In the anhepatic phase of orthotopic liver transplantation, renal vein congestion significantly impacts hemodynamic parameters, which correlate with serum BK and ANGII levels. PMID:25987770

  2. Endothelial cells and human cerebral small vessel disease.

    PubMed

    Hainsworth, Atticus H; Oommen, Asho T; Bridges, Leslie R

    2015-01-01

    Brain endothelial cells have unique properties in terms of barrier function, local molecular signaling, regulation of local cerebral blood flow (CBF) and interactions with other members of the neurovascular unit. In cerebral small vessel disease (arteriolosclerosis; SVD), the endothelial cells in small arteries survive, even when mural pathology is advanced and myocytes are severely depleted. Here, we review aspects of altered endothelial functions that have been implicated in SVD: local CBF dysregulation, endothelial activation and blood-brain barrier (BBB) dysfunction. Reduced CBF is reported in the diffuse white matter lesions that are a neuroradiological signature of SVD. This may reflect an underlying deficit in local CBF regulation (possibly via the nitric oxide/cGMP signaling pathway). While many laboratories have observed an association of symptomatic SVD with serum markers of endothelial activation, it is apparent that the origin of these circulating markers need not be brain endothelium. Our own neuropathology studies did not confirm local endothelial activation in small vessels exhibiting SVD. Local BBB failure has been proposed as a cause of SVD and associated parenchymal lesions. Some groups find that computational analyses of magnetic resonance imaging (MRI) scans, following systemic injection of a gadolinium-based contrast agent, suggest that extravasation into brain parenchyma is heightened in people with SVD. Our recent histochemical studies of donated brain tissue, using immunolabeling for large plasma proteins [fibrinogen, immunoglobulin G (IgG)], do not support an association of SVD with recent plasma protein extravasation. It is possible that a trigger leakage episode, or a size-selective loosening of the BBB, participates in SVD pathology.

  3. STUDIES ON ENDOTHELIAL REACTIONS

    PubMed Central

    Foot, Nathan Chandler

    1920-01-01

    1. The injection of a colloidal suspension, or sol, of carbon into the veins of a living animal, as recommended by McJunkin, furnishes an apparently reliable means of tracing the so called epithelioid cell of the pulmonary tubercle from its origin in the vascular endothelium to the lesion. 2. Experimental tubercles are formed in the lung, as in the liver, primarily by cells originating in the capillary endothelium. These cells are probably present in small numbers in the normal lung, lying free both in the alveolar wall and the air vesicles. In response to infection they proliferate in the capillary walls in the vicinity of the invading organisms, migrate in steadily increasing numbers, and, arriving at the site of the infection, further multiply and to some extent fuse to form the syncytia known as giant cells. 3. The epithelial cell takes no active part in the process; its proliferation tends to repair denuded surfaces and is regenerative rather than combative or phagocytic in nature. This cell is free from carbon and stains only diffusely with carmine, in contradistinction to the endothelial cell which readily takes up both pigments in granular form. 4. The cells of endothelial origin not only phagocytose tubercle bacilli, but carry them into the tissues, for example into lymph nodes, by way of the lymphatics, or into other lung lobules by way of the air passages, in which they are readily demonstrable. PMID:19868459

  4. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  5. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  6. Elevated circulating endothelial cell-derived microparticle levels in patients with liver cirrhosis: a preliminary report

    PubMed Central

    Simon, Krzysztof Adam; Pazgan-Simon, Monika

    2015-01-01

    Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256

  7. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    PubMed

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.

  8. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    SciTech Connect

    Lotkov, Aleksandr I. Kashin, Oleg A.; Kudryavtseva, Yuliya A. Antonova, Larisa V. Matveeva, Vera G. Sergeeva, Evgeniya A.; Kudryashov, Andrey N.

    2015-10-27

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  9. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Antonova, Larisa V.; Kudryashov, Andrey N.; Matveeva, Vera G.; Sergeeva, Evgeniya A.

    2015-10-01

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  10. Expression, localization and control of activin A release from human umbilical vein endothelial cells.

    PubMed

    Borges, Lavinia E; Bloise, Enrrico; Dela Cruz, Cynthia; Massai, Lauretta; Ciarmela, Pasquapina; Apa, Rosanna; Luisi, Stefano; Severi, Filiberto M; Petraglia, Felice; Reis, Fernando M

    2015-01-01

    Activin-A is a member of the TGFβ superfamily found in maternal and umbilical cord blood throughout gestation. We investigated whether human umbilical vein endothelial cells (HUVEC) express activin-A in vivo and tested the effects of vasoactive (endothelin-1), pro-inflammatory (interferon-γ, interleukin-8) and anti-inflammatory (dexamethasone, urocortin) factors on activin-A release by isolated HUVEC in vitro. Activin βA subunit protein and mRNA were strongly localized in the endothelial cells of umbilical veins and were also detectable in scattered cells of the cord connective tissue. Dimeric activin-A was detected in the HUVEC culture medium at picomolar concentrations. Activin-A release by HUVEC decreased after cell incubation with urocortin (p < 0.01), whereas no effect was observed with interleukin-8, interferon-γ, endothelin-1 or dexamethasone. In summary, activin-A is present in the human umbilical vein endothelium in vivo and is produced and released by isolated HUVEC. Activin-A secretion is inhibited in vitro by urocortin, a neuropeptide with predominantly anti-inflammatory action.

  11. Protection effect of endomorphins on advanced glycation end products induced injury in endothelial cells.

    PubMed

    Liu, Jing; Yan, Liping; Niu, Ruilan; Tian, Limin; Zhang, Qi; Quan, Jinxing; Liu, Hua; Wei, Suhong; Guo, Qian

    2013-01-01

    Endomorphins (EMs) have a very important bridge-function in cardiovascular, endocrinological, and neurological systems. This study is to investigate the effects of EMs on the synthesis and secretion of vasoactive substances induced by advanced glycation end products in primary cultured human umbilical vein endothelial cells (HUVECs). Firstly, HUVECs were stimulated with AGEs-bovine serum albumin (AGEs-BSA), bovine serum albumin (BSA), or both AGEs-BSA and EMs together, respectively. Then, HUVEC survival rate was calculated by MTT assay, the levels of NO, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were detected by colorimetric analysis, and the contents of endothelin-1 (ET-1) were detected by ELISA. The mRNA levels of eNOS and ET-1 were measured by RT-PCR. The expression of p38 mitogen-activated protein kinase (p38 MAPK) was detected by immunofluorescence assay. The results showed that the mRNA expression and secretion of eNOS were significantly enhanced after incubation with EMs compared to those with AGEs-BSA, while the secretion of NO and iNOS, mRNA expression, and secretion of ET-1 had opposite changes. The fluorescence intensity of p38MAPK in nuclear was decreased after pretreatment with EMs compared to incubation with AGEs-BSA. Conclusion. The present study suggests that EMs have certain protection effect on AGEs-BSA-induced injury in HUVEC.

  12. Endothelial dysfunction in morbid obesity.

    PubMed

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María

    2013-01-01

    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  13. Direct Vasoactive Effects of the Chromogranin A (CHGA) Peptide Catestatin in Humans In Vivo

    PubMed Central

    Fung, Maple M.; Salem, Rany M.; Mehtani, Parag; Thomas, Brenda; Lu, Christine F.; Perez, Brandon; Rao, Fangwen; Stridsberg, Mats; Ziegler, Michael G.; Mahata, Sushil K.; O’Connor, Daniel T.

    2011-01-01

    Catestatin is a bioactive peptide of chromogranin A (CHGA) that is co-released with catecholamines from secretory vesicles. Catestatin may function as a vasodilator and is diminished in hypertension. To evaluate this potential vasodilator in vivo without systemic counterregulation, we infused catestatin to target concentrations of ~ 50, ~ 500, ~5000 nM into dorsal hand veins of 18 normotensive men and women, after pharmacologic venoconstriction with phenylephrine. Pancreastatin, another CHGA peptide, was infused as a negative control. After preconstriction to ~ 69%, increasing concentrations of catestatin resulted in dose-dependent vasodilation (P = 0.019), in female subjects (to ~ 44%) predominantly. The EC50 (~ 30 nM) for vasodilation induced by catestatin was the same order of magnitude to circulating endogenous catestatin (4.4 nM). No vasodilation occurred during the control infusion with pancreastatin. Plasma CHGA, catestatin, and CHGA-to-catestatin processing were then determined in 622 healthy subjects without hypertension. Female subjects had higher plasma catestatin levels than males (P = 0.001), yet lower CHGA precursor concentrations (P = 0.006), reflecting increased processing of CHGA-to-catestatin (P < 0.001). Our results demonstrate that catestatin dilates human blood vessels in vivo, especially in females. Catestatin may contribute to sex differences in endogenous vascular tone, thereby influencing the complex predisposition to hypertension. PMID:20662728

  14. Caveolae protect endothelial cells from membrane rupture during increased cardiac output

    PubMed Central

    Cheng, Jade P.X.; Mendoza-Topaz, Carolina; Howard, Gillian; Chadwick, Jessica; Shvets, Elena; Cowburn, Andrew S.; Dunmore, Benjamin J.; Crosby, Alexi; Morrell, Nicholas W.

    2015-01-01

    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo. PMID:26459598

  15. C1-Inhibitor Decreases the Release of Vasculitis-Like Chemotactic Endothelial Microvesicles.

    PubMed

    Mossberg, Maria; Ståhl, Anne-Lie; Kahn, Robin; Kristoffersson, Ann-Charlotte; Tati, Ramesh; Heijl, Caroline; Segelmark, Mårten; Leeb-Lundberg, L M Fredrik; Karpman, Diana

    2017-08-01

    The kinin system is activated during vasculitis and may contribute to chronic inflammation. C1-inhibitor is the main inhibitor of the kinin system. In this study, we investigated the presence of the kinin B1 receptor on endothelial microvesicles and its contribution to the inflammatory process. Compared with controls (n=15), patients with acute vasculitis (n=12) had markedly higher levels of circulating endothelial microvesicles, identified by flow cytometry analysis, and significantly more microvesicles that were positive for the kinin B1 receptor (P<0.001). Compared with microvesicles from wild-type cells, B1 receptor-positive microvesicles derived from transfected human embryonic kidney cells induced a significant neutrophil chemotactic effect, and a B1 receptor antagonist blocked this effect. Likewise, patient plasma induced neutrophil chemotaxis, an effect decreased by reduction of microvesicle levels and by blocking the B1 receptor. We used a perfusion system to study the effect of patient plasma (n=6) and control plasma (n=6) on the release of microvesicles from glomerular endothelial cells. Patient samples induced the release of significantly more B1 receptor-positive endothelial microvesicles than control samples, an effect abrogated by reduction of the microvesicles in the perfused samples. Perfusion of C1-inhibitor-depleted plasma over glomerular endothelial cells promoted excessive release of B1 receptor-positive endothelial microvesicles compared with normal plasma, an effect significantly decreased by addition of C1-inhibitor or B1 receptor-antagonist. Thus, B1 receptor-positive endothelial microvesicles may contribute to chronic inflammation by inducing neutrophil chemotaxis, and the reduction of these microvesicles by C1-inhibitor should be explored as a potential treatment for neutrophil-induced inflammation. Copyright © 2017 by the American Society of Nephrology.

  16. Genistein attenuates vascular endothelial impairment in ovariectomized hyperhomocysteinemic rats.

    PubMed

    Zhen, Panpan; Zhao, Qian; Hou, Dandan; Liu, Teng; Jiang, Dongqiao; Duan, Jinhong; Lu, Lingqiao; Wang, Wen

    2012-01-01

    Hyperhomocysteinemia (HHcy) is a well-known independent risk factor for vascular diseases in the general population. This study was to explore the effect of genistein (GST), a natural bioactive compound derived from legumes, on HHcy-induced vascular endothelial impairment in ovariectomized rats in vivo. Thirty-two adult female Wistar rats were assigned randomly into four groups (n = 8): (a) Con: control; (b) Met: 2.5% methionine diet; (c) OVX + Met: ovariectomy + 2.5% methionine diet; (d) OVX + Met + GST: ovariectomy + 2.5% methionine diet + supplementation with genistein. After 12 wk of different treatment, the rats' blood, toracic aortas and liver samples were collected for analysis. Results showed that high-methionine diet induced both elevation of plasma Hcy and endothelial dysfunction, and ovariectomy deteriorated these injuries. Significant improvement of both functional and morphological changes of vascular endothelium was observed in OVX + Met + GST group; meanwhile the plasma Hcy levels decreased remarkably. There were significant elevations of plasma ET-1 and liver MDA levels in ovariectomized HHcy rats, and supplementation with genistein could attenuate these changes. These results implied that genistein could lower the elevated Hcy levels, and prevent the development of endothelial impairment in ovariectomized HHcy rats. This finding may shed a novel light on the anti-atherogenic activities of genistein in HHcy patients.

  17. Evidence of endothelial cell migration after descemet membrane endothelial keratoplasty.

    PubMed

    Jacobi, Christina; Zhivov, Andrey; Korbmacher, Judit; Falke, Karen; Guthoff, Rudolf; Schlötzer-Schrehardt, Ursula; Cursiefen, Claus; Kruse, Friedrich E

    2011-10-01

    To investigate the hypothesis that adult corneal endothelial cells can migrate after Descemet membrane endothelial keratoplasty (DMEK). Prospective observational study. Five patients with Fuchs endothelial dystrophy were examined 1 year after uneventful DMEK. These patients had been selected on the basis of slightly decentered grafts and/or large descemetorrhexis showing areas of denuded corneal stroma, which were covered by neither the patients' Descemet membrane (DM) nor the graft. These areas were investigated by in vivo confocal laser scanning microscopy using a specially designed Heidelberg Retina Tomograph II and Rostock cornea module equipped with custom-made software. Source data (frame rate 30 Hz, 384 × 384 pixels, 400 × 400 μm) were used to create large-scale maps of the scanned area in automatic real-time composite mode. In each case an on-line mapping with maximum size up to 3.2 × 3.2 mm (3072 × 3072 pixels) was performed. Corneal stroma overlying areas devoid of DM was transparent. In vivo confocal laser scanning microscopy of stroma devoid of DM revealed a monolayer of endothelial cells in all patients observed. The morphologic pattern of these cells was similar to that of endothelial cells on DM grafts but different from the morphology of the patients' own endothelium, suggesting migration of donor endothelial cells from DMEK grafts. The results strongly support the hypothesis that adult corneal endothelial cells are able to migrate in the human eye. Furthermore, we provide evidence to support the hypothesis that grafted endothelium migrates onto the host tissue, repopulating the corneal stroma with a regular endothelial phenotype. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Role of endothelial cells in bovine mammary gland health and disease.

    PubMed

    Ryman, Valerie E; Packiriswamy, Nandakumar; Sordillo, Lorraine M

    2015-12-01

    The bovine mammary gland is a dynamic and complex organ composed of various cell types that work together for the purpose of milk synthesis and secretion. A layer of endothelial cells establishes the blood-milk barrier, which exists to facilitate the exchange of solutes and macromolecules necessary for optimal milk production. During bacterial challenge, however, endothelial cells divert some of their lactation function to protect the underlying tissue from damage by initiating inflammation. At the onset of inflammation, endothelial cells tightly regulate the movement of plasma components and leukocytes into affected tissue. Unfortunately, endothelial dysfunction as a result of exacerbated or sustained inflammation can negatively affect both barrier integrity and the health of surrounding extravascular tissue. The objective of this review is to highlight the role of endothelial cells in supporting milk production and regulating optimal inflammatory responses. The consequences of endothelial dysfunction and sustained inflammation on milk synthesis and secretion are discussed. Given the important role of endothelial cells in orchestrating the inflammatory response, a better understanding of endothelial function during mastitis may support development of targeted therapies to protect bovine mammary tissue and mammary endothelium.

  19. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    NASA Astrophysics Data System (ADS)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  20. Endothelial cell permeability to water and antipyrine

    SciTech Connect

    Garrick, R.A.

    1986-03-05

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  1. Genetic susceptibility to refractive error: association of vasoactive intestinal peptide receptor 2 (VIPR2) with high myopia in Chinese.

    PubMed

    Yiu, Wai Chi; Yap, Maurice K H; Fung, Wai Yan; Ng, Po Wah; Yip, Shea Ping

    2013-01-01

    Myopia is the most common ocular disease worldwide. We investigated the association of high myopia with the common single nucleotide polymorphisms (SNPs) of five candidate genes - early growth response 1 (EGR1), v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), jun oncogene (JUN), vasoactive intestinal peptide (VIP), and vasoactive intestinal peptide receptor 2 (VIPR2). We recruited 1200 unrelated Chinese subjects with 600 cases (spherical equivalent ≤-8.00 diopters) and 600 controls (spherical equivalent within ±1.00 diopter). A discovery sample set was formed from 300 cases and 300 controls, and a replication sample set from the remaining samples. Tag SNPs were genotyped for the discovery sample set, and the most significant haplotypes and their constituent SNPs were followed up with the replication sample set. The allele and haplotype frequencies in cases and controls were compared by logistic regression adjusted for sex and age to give P a values, and multiple comparisons were corrected by permutation test to give P aemp values. Odd ratios (OR) were calculated accordingly. In the discovery phase, EGR1, JUN and VIP did not show any significant association while FOS and VIPR2 demonstrated significant haplotype association with high myopia. In the replication phase, the haplotype association for VIPR2 was successfully replicated, but not FOS. In analysis combining both sample sets, the most significant association signals of VIPR2 were the single marker rs2071625 (P a = 0.0008, P aemp = 0.0046 and OR = 0.75) and the 4-SNP haplotype window rs2071623-rs2071625-rs2730220-rs885863 (omnibus test, P a = 9.10e-10 and P aemp = 0.0001) with one protective haplotype (GGGG: P aemp = 0.0002 and OR = 0.52) and one high-risk haplotype (GAGA: P aemp = 0.0027 and OR = 4.68). This 4-SNP haplotype window was the most significant in all sample sets examined. This is the first study to suggest a role of VIPR2 in the genetic

  2. Genetic Susceptibility to Refractive Error: Association of Vasoactive Intestinal Peptide Receptor 2 (VIPR2) with High Myopia in Chinese

    PubMed Central

    Yiu, Wai Chi; Yap, Maurice K. H.; Fung, Wai Yan; Ng, Po Wah; Yip, Shea Ping

    2013-01-01

    Myopia is the most common ocular disease worldwide. We investigated the association of high myopia with the common single nucleotide polymorphisms (SNPs) of five candidate genes – early growth response 1 (EGR1), v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), jun oncogene (JUN), vasoactive intestinal peptide (VIP), and vasoactive intestinal peptide receptor 2 (VIPR2). We recruited 1200 unrelated Chinese subjects with 600 cases (spherical equivalent ≤−8.00 diopters) and 600 controls (spherical equivalent within ±1.00 diopter). A discovery sample set was formed from 300 cases and 300 controls, and a replication sample set from the remaining samples. Tag SNPs were genotyped for the discovery sample set, and the most significant haplotypes and their constituent SNPs were followed up with the replication sample set. The allele and haplotype frequencies in cases and controls were compared by logistic regression adjusted for sex and age to give Pa values, and multiple comparisons were corrected by permutation test to give Paemp values. Odd ratios (OR) were calculated accordingly. In the discovery phase, EGR1, JUN and VIP did not show any significant association while FOS and VIPR2 demonstrated significant haplotype association with high myopia. In the replication phase, the haplotype association for VIPR2 was successfully replicated, but not FOS. In analysis combining both sample sets, the most significant association signals of VIPR2 were the single marker rs2071625 (Pa = 0.0008, Paemp = 0.0046 and OR = 0.75) and the 4-SNP haplotype window rs2071623-rs2071625-rs2730220-rs885863 (omnibus test, Pa = 9.10e-10 and Paemp = 0.0001) with one protective haplotype (GGGG: Paemp = 0.0002 and OR = 0.52) and one high-risk haplotype (GAGA: Paemp = 0.0027 and OR = 4.68). This 4-SNP haplotype window was the most significant in all sample sets examined. This is the first study to suggest a role of VIPR2 in the genetic susceptibility

  3. [Field 6. Safety practices for haemodynamic procedures (administration of vasoactive drugs, vascular and cardiac catheterization). French-speaking Society of Intensive Care. French Society of Anesthesia and Resuscitation].

    PubMed

    Monnet, X; Lefrant, J-Y; Teboul, J-L

    2008-10-01

    Arterial and central venous catheterizations and their use for continuous infusion of vasoactive drugs could lead to serious adverses events that could be life threatening. The incidence of human errors related patient adverses events could be decreased by the uses of algorithms and procedures. Concerning the continuous infusion of vasoactive drugs, the name of drug and its concentration should be clearly notified. The use of modern pump and noncompliant pipe could reduce the frequency bolus infusion and their related haemodynamic alterations. Reasonable procedure could reduce the arterial and central venous catheters related complications. Subclavian and radial sites should be preferred for central venous and arterial catheter insertion, respectively. The use of real time echographic guidance could facilitate the catheter insertion. These catheters should be removed when they are not indicated. Concerning the pulmonary artery catheter, the balloon tip should be inflated with visual control of the pulmonary artery pressure. Its removal is recommended within the first five days.

  4. Apoptosis and calcification of vascular endothelial cell under hyperhomocysteinemia.

    PubMed

    Fang, Kuaifa; Chen, Zhujun; Liu, Meng; Peng, Jian; Wu, Pingsheng

    2015-01-01

    In recent years, it is found that increase in Hcy level in blood can directly or indirectly cause vascular endothelial cell injury and induce vascular calcification. However, the mechanism of vascular endothelial cell injury and vascular calcification has not been studied thoroughly. This paper carried out experiment for research aiming at discussing the effect and action mechanism of Hhcy on endothelial cells and vascular calcification. Firstly, human umbilical vein endothelial cells (HUVECs) were cultured and then intervened by Hcy of different concentrations (0, 0.01, 0.1, 1.0, 3.0, 5.0 mmol/L) and at different action time (3, 6, 12, 24 h). Then apoptosis rate and reactive oxygen were detected by flow cytometry. At the same time, the model for the culture of rat vascular calcification was set up and induced into Hhcy so as to detect the total plasma Hcy level and judge vascular calcification degree. The results showed that with the increase in Hcy concentration and extension of action period, the apoptosis rate and generation of reactive oxygen of HUVECs all significantly increased, and the differences were all statistically significant (P < 0.01). In animal calcification model, mass of black particle deposition was seen after Von Kossa staining of rat vessels in calcification group. Compared with the control group, the vascular calcium content, alkaline phosphatase activity and osteocalcin content in calcification group all increased (P < 0.01). The content of plasma lipid conjugated olefine from highest to lowest wasas follows: calcification plus homoetheionin, homoetheionin, and calcification group. There was no significant difference between the calcification group and control group. All these findings suggested that Hcy could induce the apoptosis of endothelial cells and its effect degree depended on its concentration and action period; Hhcy could promote the calcification of blood vessels, and its mechanism might relate with the strengthening of

  5. Preoperative echocardiographic measures of left ventricular mechanics are associated with postoperative vasoactive support in preterm infants undergoing patent ductus arteriosus ligation.

    PubMed

    Gray, Margaret A; Graham, Eric M; Atz, Andrew M; Bradley, Scott M; Kavarana, Minoo N; Chowdhury, Shahryar M

    2017-07-05

    Preoperative risk factors associated with poor outcomes after patent ductus arteriosus ligation in preterm infants have not been well defined. The aim of this study was to determine the association between preoperative echocardiographic measures of left ventricular mechanics and postoperative clinical outcomes after patent ductus arteriosus ligation. Preterm infants less than 90 days of age with no other significant congenital anomalies who underwent patent ductus arteriosus ligation between 2007 and 2015 were considered for retrospective analysis. The primary outcome was peak postoperative vasoactive inotropic score. Conventional echocardiographic measures of ventricular size, function, and patent ductus arteriosus size were performed. Echocardiographic single-beat, pressure-volume loop analysis estimates of contractility (end-systolic elastance) and afterload (arterial elastance) were calculated. Ventriculoarterial coupling was assessed using the arterial elastance/end-systolic elastance ratio. Multivariable linear regression was performed using clinical and echocardiographic data. Echocardiograms from 101 patients (42.5% male) were analyzed. We found a statistically significant association between vasoactive inotropic score and both end-systolic elastance and arterial elastance. No patient with arterial elastance/end-systolic elastance greater than 0.78 (n = 32) had a vasoactive inotropic score 20 or greater. Analysis of our secondary outcomes found associations between preoperative end-systolic elastance and postoperative urine output less than 1 mL/kg/h at 24 hours, creatinine change greater than 0.5 mg/dL, and time to first extubation. End-systolic elastance and arterial elastance were the only predictors of postoperative vasoactive inotropic score after patent ductus arteriosus ligation in preterm infants. Those neonates with increased contractility and low afterload were at highest risk for elevated inotropic support. These findings suggest a role

  6. Involvement of glutathione, sulfhydryl compounds, nitric oxide, vasoactive intestinal peptide, and heat-shock protein-70 in the gastroprotective mechanism of Croton cajucara Benth. (Euphorbiaceae) essential oil.

    PubMed

    Rozza, Ariane Leite; de Mello Moraes, Thiago; Kushima, Hélio; Nunes, Domingos Sávio; Hiruma-Lima, Clélia Akiko; Pellizzon, Cláudia Helena

    2011-09-01

    This study aimed to evaluate the gastroprotective mechanism of action of the essential oil of Croton cajucara Benth. (Euphorbiaceae) stem bark in ethanol-induced gastric ulcers and its in vitro anti-Helicobacter pylori activity. The involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, nitric oxide, and nonprotein sulfhydryl compounds in the gastroprotective effect was determined in male Wistar rats. The minimum inhibitory concentration against H. pylori was determined in vitro. The results were analyzed by analysis of variance followed by the Dunnett test, and a P value less than 0.05 was considered to represent a statistically significant difference. C. cajucara decreased ethanol-induced ulcer area in 100% of ulcers and decreased the histologic lesions. In the C. cajucara group, the area marked by heat-shock protein-70 was significantly higher than the area in the control group; this finding was not seen for vasoactive intestinal peptide. C. cajucara could not maintain glutathione levels close to those in the sham group. The gastric ulcer area of rats treated with the sulfhydryl compound blocker was decreased, but the ulcer area of rats treated with nitric oxide synthase inhibitor showed no alteration. The minimum inhibitory concentration obtained for C. cajucara was 125 μg/mL. These findings suggest that sulfhydryl compounds and heat-shock protein-70, but not nitric oxide, glutathione, or vasoactive intestinal peptide, are involved in the C. cajucara gastroprotective effect against ethanol-induced gastric ulcers.

  7. Thromboxane and isoprostanes as inflammatory and vasoactive mediators in black walnut heartwood extract induced equine laminitis.

    PubMed

    Noschka, Erik; Moore, James N; Peroni, John F; Lewis, Stephen J; Morrow, Jason D; Robertson, Tom P

    2009-06-15

    Inflammation and vascular dysfunction occur concurrently during the prodromal stages of equine laminitis. The aim of this study was to provide insights into the role that thromboxane and isoprostanes may play in the development of black walnut heartwood extract (BWHE)-induced laminitis. Horses were divided into two groups, either control or BWHE-administered horses. Plasma concentrations of thromboxane increased transiently after administration of BWHE and coincided with the nadir in white blood cell counts, whereas plasma concentrations of iso-prostaglandin PGF(2alpha) (iso-PGF(2alpha)) did not change in either group. At 12h (for the control group) or Obel grade 1 laminitis (for the BWHE group) the horses were euthanized and laminar tissue collected. Laminar arteries and veins were used in functional studies with vasoconstrictor substances and tissue samples were used for the determination of laminar iso-PGF(2alpha) concentrations. Laminar tissue concentrations of iso-PGF(2alpha) were significantly greater in BWHE horses when compared to control horses. In parallel studies concentrations of iso-PGF(2alpha) in laminar tissue samples obtained 1.5 and 3h after administration of BWHE were indistinguishable from those for control horses at 3 or 12h after administration of an equal volume of water. Laminar vessel constrictor responses to either a thromboxane mimetic (U46619), iso-prostaglandin PGE(2) (iso-PGE(2)) or iso-PGF(2alpha) were determined using small vessel myographs. In some vessels, the effects of putative prostanoid and thromboxane receptor antagonists, SQ 29,548, SC-19220 and AH 6809, upon contractile responses were determined. In control horses, U46619, iso-PGF(2alpha) and iso-PGE(2) more potently and efficaciously constricted laminar veins when compared to laminar arteries. Responses of laminar veins from BWHE horses to iso-PGE(2) were similar to those of laminar veins from control horses, whereas iso-PGF(2alpha) elicited significantly greater responses

  8. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice

    PubMed Central

    Liu, Yuxia; Shen, Hua; Pang, Lifang; Yin, Duanzhi; Wang, Yongxian; Li, Shanqun; Shi, Hongcheng

    2013-01-01

    As large amount of vasoactive intestinal peptide (VIP) receptors are expressed in various tumors and VIP-related diseases, radiolabeled VIP provides a potential PET imaging agent for VIP receptor. However, structural modification of VIP is required before being radiolabeled and used for VIP receptor imaging due to its poor in vivo stability. As a VIP analogue, [R8, 15, 21, L17]-VIP exhibited improved stability and receptor specificity in preliminary studies. In this study, F-18 labeled [R8,15,21, L17]-VIP was produced with the radiochemical yield being as high as 33.6% ± 3% (decay-for-corrected, n = 5) achieved within 100 min, a specific activity of 255 GBq/μmol, and a radiochemical purity as high as 99% as characterized by radioactive HPLC, TLC, and SDS-Page radioautography. A biodistribution study in normal mice also demonstrated fast elimination of F-18 labeled [R8,15,21, L17]-VIP in the blood, liver, and gastrointestinal tracts. A further micro-PET imaging study in C26 colon carcinoma bearing mice confirmed the high tumor specificity, with the tumor/muscle radioactivity uptake ratio being as high as 3.03 at 60 min following injection, and no apparent radioactivity concentration in the intestinal tracts. In addition, blocking experiment and Western Blot test further confirmed its potential in PET imaging of VIP receptor-positive tumor. PMID:24459669

  9. Influence of renovascular hypertension on the distribution of vasoactive intestinal peptide in the stomach and heart of rats.

    PubMed

    Kasacka, Irena; Piotrowska, Żaneta; Janiuk, Izabela

    2015-11-01

    Arterial hypertension is associated with serious dysfunction of the cardiovascular system and digestive system. Given the relevant role of vasoactive intestinal peptide (VIP) in the regulation of digestion process, control of blood pressure and heart rate as well as cardio- and gastro-protective character of the peptide, it appeared worthwhile to undertake the research aimed at immunohistochemical identification and evaluation of VIP-positive structures in the pylorus and heart of hypertensive rats. Up to now, this issue has not been investigated. The experimental model of hypertension in rats according to Goldblatt (two-kidney one clip model of hypertension) was used in the study. The experimental material (pylorus and heart) was collected in the sixth week of the study. VIP-containing structures were evaluated using immunohistochemical and morphometric methods. The analysis of the results showed a significant increase in the number of immunoreactive VIP structures and in the intensity of immunohistochemical staining in the stomach and in the heart of hypertensive rats. Our findings indicate that VIP is an important regulator of cardiovascular and digestive system in physiological and pathological conditions. However, to better understand the exact role of VIP in hypertension further studies need to be carried out.

  10. Enhanced Mortality to Metastatic Bladder Cancer Cell Line MB49 in Vasoactive Intestinal Peptide Gene Knockout Mice

    PubMed Central

    Mirsaidi, Niely; Burns, Matthew P.; McClain, Steve A.; Forsyth, Edward; Li, Jonathan; Dukes, Brittany; Lin, David; Nahvi, Roxanna; Giraldo, Jheison; Patton, Megan; Wang, Ping; Lin, Ke; Miller, Edmund; Ratliff, Timothy; Hamidi, Sayyed; Crist, Scott; Takemaru, Ken-Ichi; Szema, Anthony

    2017-01-01

    To identify if the absence of the vasoactive intestinal peptide (VIP) gene enhances susceptibility to death from metastatic bladder cancer, two strains of mice were injected with MB49 murine bladder cancer cells. The growth and spread of the cancer was measured over a period of 4 weeks in C57BL/6 mice and 5 weeks in VIP knockout (KO) mice. A Kaplan–Meier plot was constructed to compare control C57BL/6 mice and C57BL/6 mice with MB49 vs. VIP KO controls and VIP KO mice with MB49. The wild-type (WT) strain (C57BL/6) contained the VIP gene, while the other strain, VIP knockout backcrossed to C57BL/6 (VIP KO) did not and was thus unable to endogenously produce VIP. VIP KO mice had increased mortality compared to C57BL/6 mice at 4 weeks. The number of ulcers between both groups was not statistically significant. In vitro studies indicated that the presence VIP in high doses reduced MB49 cell growth, as well as macrophage inhibitory factor (MIF), a growth factor in bladder cancer cells. These findings support the concept that VIP may attenuate susceptibility to death from bladder cancer, and that it exerts its effect via downregulation of MIF. PMID:28824540

  11. Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor.

    PubMed

    Kotake-Nara, Eiichi; Takizawa, Satoshi; Quan, Jiexia; Wang, Hongyu; Saida, Kaname

    2005-08-15

    We investigated whether endothelin-2/vasoactive intestinal contractor (ET-2/VIC) gene expression, upregulated by hypoxia in cancer cells, was associated with differentiation in neuronal cells. RT-PCR analysis, morphological observations, and immunostaining revealed that CoCl2, a hypoxic mimetic agent, at 200 microM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced neurite outgrowth in PC-12 rat pheochromocytoma cells. These effects induced by 200 microM CoCl2 were completely inhibited by the antioxidant N-acetyl cysteine at 20 mM. In addition, CoCl2 increased the level of intracellular reactive oxygen species (ROS) at an early stage. Furthermore, interleukin (IL)-6 gene expression was upregulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by ROS may be associated with neuronal differentiation through the regulation of IL-6. When the cells were treated with 500 microM CoCl2 for 24 hr, however, ET-2/VIC gene expression disappeared, IL-6 gene expression was downregulated, and necrosis was subsequently induced in the PC-12 cells.

  12. Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis

    PubMed Central

    Choi, Jae Young; Joo, Nam Soo; Krouse, Mauri E.; Wu, Jin V.; Robbins, Robert C.; Ianowski, Juan P.; Hanrahan, John W.; Wine, Jeffrey J.

    2007-01-01

    Cystic fibrosis (CF) is caused by dysfunction of the CF transmembrane conductance regulator (CFTR), an anion channel whose dysfunction leads to chronic bacterial and fungal airway infections via a pathophysiological cascade that is incompletely understood. Airway glands, which produce most airway mucus, do so in response to both acetylcholine (ACh) and vasoactive intestinal peptide (VIP). CF glands fail to secrete mucus in response to VIP, but do so in response to ACh. Because vagal cholinergic pathways still elicit strong gland mucus secretion in CF subjects, it is unclear whether VIP-stimulated, CFTR-dependent gland secretion participates in innate defense. It was recently hypothesized that airway intrinsic neurons, which express abundant VIP and ACh, are normally active and stimulate low-level gland mucus secretion that is a component of innate mucosal defenses. Here we show that low levels of VIP and ACh produced significant mucus secretion in human glands via strong synergistic interactions; synergy was lost in glands of CF patients. VIP/ACh synergy also existed in pig glands, where it was CFTR dependent, mediated by both Cl– and HCO3–, and clotrimazole sensitive. Loss of “housekeeping” gland mucus secretion in CF, in combination with demonstrated defects in surface epithelia, may play a role in the vulnerability of CF airways to bacterial infections. PMID:17853942

  13. The disodium salt of EDTA inhibits the binding of vasoactive intestinal peptide to macrophage membranes: endodontic implications.

    PubMed

    Segura, J J; Calvo, J R; Guerrero, J M; Sampedro, C; Jimenez, A; Llamas, R

    1996-07-01

    The purpose of this study was to investigate the effect of the disodium salt of ethylenediamine tetraacetate (EDTA), a calcium ion chelator used in the root canal therapy, on vasoactive intestinal peptide (VIP) binding to macrophage membranes (MM's). Binding assays were conducted at 15 degrees C in 0.5 ml of 50 mM Tris-HCl buffer (pH 7.5) containing 1.6% (w/v) bovine serum albumin, 1.2 mg/ml of bacitracin, and different EDTA concentrations, using 45 pM of [125I]VIP as tracer. Results showed that EDTA inhibits VIP binding to MM's in a dose-dependent manner, with an IC50 value of 5.4 mM (p < 0.01). EDTA concentrations equal or higher than 100 mM of abolished VIP-MM interaction. Taking into account that the macrophage plays an essential role in inflammatory reactions and the immune response, we conclude that the apical extrusion of EDTA during root canal therapy could modify VIP-macrophage interaction modulating the inflammatory mechanisms involved in periapical lesions.

  14. Distribution of vasopressin, oxytocin and vasoactive intestinal polypeptide in the hypothalamus and extrahypothalamic regions of tree shrews.

    PubMed

    Ni, R-J; Shu, Y-M; Wang, J; Yin, J-C; Xu, L; Zhou, J-N

    2014-04-18

    Vasopressin (VP), oxytocin (OXT) and vasoactive intestinal polypeptide (VIP) in the brain modulate physiological and behavioral processes in many vertebrates. Day-active tree shrews, the closest relatives of primates, live singly or in pairs in territories that they defend vigorously against intruding conspecifics. However, anatomy concerning peptidergic neuron distribution in the tree shrew brain is less clear. Here, we examined the distribution of VP, OXT and VIP immunoreactivity in the hypothalamus and extrahypothalamic regions of tree shrews (Tupaia belangeri chinensis) using the immunohistochemical techniques. Most of VP and OXT immunoreactive (-ir) neurons were found in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. In addition, VP-ir or OXT-ir neurons were scattered in the preoptic area, anterior hypothalamic areas, dorsomedial hypothalamic nucleus, stria terminalis, bed nucleus of the stria terminalis and medial amygdala. Interestingly, a high density of VP-ir fibers within the ventral lateral septum was observed in males but not in females. Both VP-ir and VIP-ir neurons were found in different subdivisions of the suprachiasmatic nucleus (SCN) with partial overlap. VIP-ir cells and fibers were also scattered in the cerebral cortex, anterior olfactory nucleus, amygdala and dentate gyrus of the hippocampus. These findings provide a comprehensive description of VIP and a detailed mapping of VP and OXT in the hypothalamus and extrahypothalamic regions of tree shrews, which is an anatomical basis for the participation of these neuropeptides in the regulation of circadian behavior and social behavior.

  15. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus)

    PubMed Central

    Montagnese, Catherine M.; Székely, Tamás; Csillag, András; Zachar, Gergely

    2015-01-01

    Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species. PMID:26236200

  16. The effect of vasoactive intestinal peptide on development of form deprivation myopia in the chick: a pharmacological and immunocytochemical study.

    PubMed

    Seltner, R L; Stell, W K

    1995-05-01

    The role of vasoactive intestinal peptide (VIP) in the development of form deprivation myopia (FDM) was examined. Daily intravitreal injection of porcine VIP reduced, but did not eliminate FDM at a maximal daily dose of 1 x 10(-5) mol/injection. A VIP analogue reported to be relatively hydrolysis-resistant in vivo, had no effect on development of FDM at any dose tested. Two VIP antagonists completely abolished FDM. The one reported to be selective for central nervous system VIP receptors was 100 times more potent than one reported to be selective for peripheral nervous system receptors (ED50 = 2 x 10(-10) and 2 x 10(-8) mol/injection respectively). By immunofluorescence using antiserum to porcine VIP, VIP-like immunoreactivity was localized to a subset of amacrine cells (AC) and in three parallel layers in the inner plexiform layer (IPL) (10%, 40% and 70% of IPL thickness from the AC layer). Immunoreactive nerve fibres were also seen in the choroid, the ciliary body and the iris. These results suggest that VIP may play a role in both normal development of the refractive properties of the eye, and in the development of FDM.

  17. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase

    PubMed Central

    An, Sungwon; Irwin, Robert P.; Allen, Charles N.; Tsai, Connie

    2011-01-01

    Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in the synchronization to environmental light cycles. It is not known, however, if or how VIP entrains circadian gene expression or behavior. Here, we tested candidate signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous antagonism of adenylate cyclase and phospholipase C activities was required to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment entrained PER2 rhythms to a predicted phase angle within several days, depending on the concentration of VIP and the interval between VIP applications. We conclude that VIP entrains circadian timing among SCN neurons through rapid and parallel changes in adenylate cyclase and phospholipase C activities. PMID:21389307

  18. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

    PubMed Central

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2011-01-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462

  19. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice.

    PubMed

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M; Metz, Martin; Guzzetta, Andrew; Abrink, Magnus; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J

    2011-10-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell-derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell-deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function.

  20. Immunoreactive vasoactive intestinal polypeptide and vasopressin cells after a protein malnutrition diet in the suprachiasmatic nucleus of the rat.

    PubMed

    Rojas-Castañeda, J; Vigueras-Villaseñor, R M; Rojas, P; Rojas, C; Cintra, L

    2008-07-01

    The aim of the present study was to evaluate the effects of prenatal and postnatal protein deprivation on the morphology and density of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) immunoreactive neurons in the suprachiasmatic nucleus (SCN) of young rats. Female Wistar rats were fed either 6% (malnourished group) or 25% (control group) casein diet five weeks before conception, during gestation and lactation. After weaning, the pups were maintained on the same diet until sacrificed at 30 days of age. The major and minor axes, somatic area and the density of VP- and VIP-immunoreactive neurons were evaluated in the middle sections of the SCN. The present study shows that chronic protein malnutrition (ChPM) in VP neurons induces a significant decrease in number of cells (-31%,) and a significant increase in major and minor axes and somatic area (+12.2%, +21.1% and +15.0%, respectively). The VIP cells showed a significant decrease in cellular density (-41.5%) and a significant increase in minor axis (+13.5%) and somatic area (+10.1%). Our findings suggest that ChPM induces abnormalities in the density and morphology of the soma of VP and VIP neurons. These alterations may be a morphological substrate underlying circadian alterations previously observed in malnourished rats.

  1. Isolation and characterization of secretory granules storing a vasoactive intestinal polypeptide-like peptide in Torpedo cholinergic electromotor neurones.

    PubMed

    Agoston, D V; Dowe, G H; Whittaker, V P

    1989-06-01

    Previous immunocytochemical work showed that the cholinergic electromotor neurones of Torpedo marmorata contain a vasoactive intestinal polypeptide-like immunoreactivity (VIPLI) that is conveyed to the terminals by axonal transport from the cell bodies where it is presumably synthesized. In extension of this work, we have now succeeded in isolating the VIPLI storage granules from both the terminals and the axons of these neurones and characterizing them morphologically and biochemically. They were readily separated from synaptic vesicles but contained several components in common that had previously been regarded as specific for synaptic vesicles. Among these were a heparan sulphate type of proteoglycan, synaptophysin, and a Mg2+-dependent ATPase. The VIPLI concentration in lobe tissue and the amount of tissue available were both insufficient to permit the isolation of granules from the electromotor cell bodies by the same technique but it was possible to establish the presence of such granules by particle-exclusion chromatography, using the stable markers mentioned above. In contrast to the VIPLI-containing granules, axonal synaptic vesicles differed from their terminal counterparts in having a very low acetylcholine content relative to stable vesicle markers: they presumably fill up on reaching the terminal where they are exposed to higher concentrations of cytoplasmic acetylcholine.

  2. Effects of endopeptidase inhibition on the relaxation response of isolated human penile erectile tissue to vasoactive peptides.

    PubMed

    Rahardjo, H E; Reichelt, K; Sonnenberg, J E; Sohn, M; Kuczyk, M A; Ückert, S

    2016-12-01

    Peptides, such as CNP, CGRP and VIP, are involved in the function of male penile erectile tissue. Tissue levels of said peptides are controlled by the endopeptidase enzymes. Theoretically, the inhibition of the degradation of CNP, CGRP and/or VIP should result in an enhancement in penile smooth muscle relaxation. The effects were investigated of CNP or VIP (0.1 nm-1 μm), without and following pre-exposure of the tissue to a threshold concentration of the endopeptidase inhibitor KC 12615 (10 μm, for 20 min), on the reversion of tension induced by means of electrical field stimulation. Drug effects on the production of cyclic AMP/GMP were also evaluated. Neither KC 12615, CNP and VIP nor the combination of CNP plus KC 12615 or VIP plus KC 12615 increased the response of the tissue to EFS. While no effects were observed of a pre-exposure of the tissue to KC 12615 on the production of cyclic AMP in the presence of VIP, an enhancement was registered in the accumulation of cyclic AMP in the presence of CNP plus KC 12615. Further studies are indicated to investigate whether endopeptidase inhibitors might tend to be more effective in tissues affected by a decreased local production of vasoactive peptides. © 2016 Blackwell Verlag GmbH.

  3. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  4. Endothelin system in intestinal villi: A possible role of endothelin-2/vasoactive intestinal contractor in the maintenance of intestinal architecture.

    PubMed

    Bianchi, Mariana; Adur, Javier; Takizawa, Satoshi; Saida, Kaname; Casco, Víctor H

    2012-01-27

    The endothelin system consists of three ligands (ET-1, ET-2 and ET-3) and at least two receptors (ETA and ETB). In mice ET-2 counterpart is a peptide originally called "vasoactive intestinal contractor" (VIC) for this reason, this peptide is frequently named ET-2/VIC. In intestinal villi, fibroblasts-like cells express endothelin's receptors and response to ET-1 and ET-3 peptides, changing their cellular shape. Several functions have been attributed to these peptides in the "architecture" maintenance of intestinal villi acting over sub-epithelial fibroblasts. Despite this, ET-2/VIC has not been analyzed in depth. In this work we show the intestine gene expression and immunolocalization of ET-1, ET-2 and the ETA and ETB receptors from duodenum to rectus and in the villus-crypt axis in mice, allowing a complete analysis of their functions. While ET-1 is expressed uniformly, ET-2 had a particular distribution, being higher at the bottom of the villi of duodenum, ileum and jejunum and reverting this pattern in the crypts of colon and rectus, where the higher expression was at the top. We postulated that ET-2 would act in a cooperative manner with ET-1, giving to the villus the straight enough to withstand mechanical stress.

  5. The chick chorioallantoic membrane imaging method as a platform to evaluate vasoactivity and assess irritancy of compounds.

    PubMed

    Tay, Stephanie L M; Heng, Paul W S; Chan, Lai Wah

    2012-08-01

    To determine if the chick chorioallantoic membrane (CAM) is a potential alternative that is capable of screening test substances for vasoactivity in terms of vessel diameter changes. The CAM was also evaluated as a tool for irritancy screening. Visual assessment of the CAM for irritancy after the application of the test substance or solvent to its surface was made. An imaging based-in-vivo CAM model was developed by imaging CAM blood vessels in a pre-defined area using a semi-automatic image processing and analysis technique to measure blood vessel diameters. Solvents and drugs such as 70% v/v ethanol, normal saline, 5% w/v glucose monohydrate, glycerin, glucagon, N-methylpyrrolidone, nicotine, glyceryl trinitrate, glucagon, propranolol and caffeine were tested on the CAM. Propranolol, nicotine and glycerin were irritants on CAM. Changes in the diameters of fine blood vessels were accurately measured by high resolution image analysis. Vasoconstriction was seen with 70% v/v ethanol while vasodilation was displayed with glucagon and caffeine. The results reflected expected trends with evidence of feedback mechanisms ensuring homeostasis. The CAM model can be applied to assess pharmaceutical and cosmetic formulations in early development work to gain useful insights to potential irritancy and biological effects of components and formulations. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  6. Vasoactive intestinal peptide antagonist treatment during mouse embryogenesis impairs social behavior and cognitive function of adult male offspring.

    PubMed

    Hill, Joanna M; Cuasay, Katrina; Abebe, Daniel T

    2007-07-01

    Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.

  7. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    SciTech Connect

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J. )

    1991-03-15

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.

  8. Detection of early endothelial damage in patients with Raynaud's phenomenon.

    PubMed

    Gualtierotti, Roberta; Ingegnoli, Francesca; Griffini, Samantha; Grovetti, Elena; Borghi, Maria Orietta; Bucciarelli, Paolo; Meroni, Pier Luigi; Cugno, Massimo

    2017-09-01

    Raynaud's phenomenon (RP) can be the first manifestation of systemic sclerosis (SSc) or other connective tissue diseases (CTDs), often preceding an overt disease by years. It is not known if markers of endothelial damage are detectable in those RP patients who subsequently develop a CTD. We studied 82 RP patients at their first evaluation to correlate the levels of endothelial markers with the subsequent development of an overt disease 36months later. We measured plasma levels of tissue-type plasminogen activator (t-PA) and von Willebrand factor (vWF), two markers of endothelial damage, and interleukin-6 (IL-6), a pro-inflammatory cytokine. Thirty sex- and age-matched healthy subjects (HS) served as controls. At baseline, 67 patients showed capillaroscopic normal pattern (CNP) and 15 patients, of which 11 were very early SSc, had capillaroscopic scleroderma pattern (CSP). Plasma levels of t-PA, vWF and IL-6 were higher in patients with CNP (p=0.0001) than in HS and even much higher in patients with CSP (p=0.0001). In patients with CNP and RP of recent onset (<18months), vWF plasma levels were higher when autoantibodies were present (p=0.020). After 36months, among 48 RP patients with CNP who remained in follow-up, 24 were diagnosed as primary and 24 as secondary RP. In secondary RP, basal levels of t-PA, IL-6 and particularly vWF were higher than in primary RP (p=0.005, p=0.004, p=0.0001 respectively) and HS (p=0.0001 for all). Our findings indicate that markers of endothelial damage are elevated in RP patients who subsequently develop SSc or other CTDs, even in the absence of capillaroscopic abnormalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  10. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells.

    PubMed

    Bhatwadekar, Ashay D; Glenn, Josephine V; Curtis, Tim M; Grant, Maria B; Stitt, Alan W; Gardiner, Tom A

    2009-10-01

    Bone marrow-derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05-0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-alpha when compared to control medium; SDF-1 remained unchanged. The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.

  11. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling.

    PubMed

    Heemskerk, Niels; Schimmel, Lilian; Oort, Chantal; van Rijssel, Jos; Yin, Taofei; Ma, Bin; van Unen, Jakobus; Pitter, Bettina; Huveneers, Stephan; Goedhart, Joachim; Wu, Yi; Montanez, Eloi; Woodfin, Abigail; van Buul, Jaap D

    2016-01-27

    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation.

  12. Caveolae, Caveolins, Cavins, and Endothelial Cell Function: New Insights

    PubMed Central

    Sowa, Grzegorz

    2012-01-01

    Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the plasma membrane which are particularly abundant in vascular endothelium and present in all other cell types of the cardiovascular system, including vascular smooth-muscle cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently discovered cavins are the major protein components of caveolae. When caveolae were discovered, their functional role was believed to be limited to transport across the endothelial cell barrier. Since then, however, a large body of evidence has accumulated, suggesting that these microdomains are very important in regulating many other important endothelial cell functions, mostly due to their ability to concentrate and compartmentalize various signaling molecules. Over the course of several years, multiple studies involving knockout mouse and small interfering RNA approaches have considerably enhanced our understanding of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New findings have been reported implicating other caveolar protein components in endothelial cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin proteins. The aim of this review is to focus primarily on molecular and cellular aspects of the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addition, where appropriate, the possible implications for the cardiovascular and pulmonary physiology and pathophysiology will be discussed. PMID:22232608

  13. Microvesicles: potential markers and mediators of endothelial dysfunction.

    PubMed

    Liu, Ming-Lin; Williams, Kevin Jon

    2012-04-01

    Microvesicles (also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates microvesicles as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Advances in the detection of microvesicles and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific microvesicles with major types of endothelial dysfunction - namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, for example, during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well characterized molecular pathways. Clinical and basic studies indicate that microvesicles may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunities and obstacles to clinical applications are discussed.

  14. Plasmodium falciparum Histones Induce Endothelial Proinflammatory Response and Barrier Dysfunction

    PubMed Central

    Gillrie, Mark R.; Lee, Kristine; Gowda, D. Channe; Davis, Shevaun P.; Monestier, Marc; Cui, Liwang; Hien, Tran Tinh; Day, Nicholas P.J.; Ho, May

    2012-01-01

    Plasmodium falciparum is a protozoan parasite of human erythrocytes that causes the most severe form of malaria. Severe P. falciparum infection is associated with endothelial activation and permeability, which are important determinants of the outcome of the infection. How endothelial cells become activated is not fully understood, particularly with regard to the effects of parasite subcomponents. We demonstrated that P. falciparum histones extracted from merozoites (HeH) directly stimulated the production of IL-8 and other inflammatory mediators by primary human dermal microvascular endothelial cells through a signaling pathway that involves Src family kinases and p38 MAPK. The stimulatory effect of HeH and recombinant P. falciparum H3 (PfH3) was abrogated by histone-specific antibodies. The release of nuclear contents on rupture of infected erythrocytes was captured by live cell imaging and confirmed by detecting nucleosomes in the supernatants of parasite cultures. HeH and recombinant parasite histones also induced endothelial permeability through a charge-dependent mechanism that resulted in disruption of junctional protein expression and cell death. Recombinant human activated protein C cleaved HeH and PfH3 and abrogated their proinflammatory effects. Circulating nucleosomes of both human and parasite origin were detected in the plasma of patients with falciparum malaria and correlated positively with disease severity. These results support a pathogenic role for both host- and pathogen-derived histones in P. falciparum-caused malaria. PMID:22260922

  15. Cerebral hemodynamics and endothelial function in patients with Fabry disease.

    PubMed

    Segura, Tomás; Ayo-Martín, Oscar; Gómez-Fernandez, Isabel; Andrés, Carolina; Barba, Miguel A; Vivancos, José

    2013-11-11

    Cerebral vasculopathy have been described in Fabry disease, in which altered cerebral blood flow, vascular remodelling or impairment of endothelial function could be involved. Our study aims to evaluate these three possibilities in a group of Fabry patients, and compare it to healthy controls. Cerebral hemodynamics, vascular remodelling and systemic endothelial function were investigated in 10 Fabry patients and compared to data from 17 healthy controls. Transcranial Doppler was used to study blood flow velocity of intracranial arteries and cerebral vasomotor reactivity. For the study of vascular remodelling and endothelial function, intima-media thickness of common carotid arteries, flow-mediated dilation in brachial artery and serum levels of soluble VCAM-1, TNF-α, high-sensitive CRP and IL-6 were measured. Differences between groups were evaluated using appropriate tests. No relevant differences were observed in cerebral hemodynamic parameters, intima-media thickness or flow-mediated dilation. There was a trend for low serum levels of IL-6 and high serum levels of TNF-α and high-sensitive CRP in Fabry patients; plasma concentrations of soluble VCAM-1 were significantly higher in Fabry disease patients than in healthy volunteers (p = 0.02). In our sample, we did not find relevant alterations of cerebral hemodynamics in Fabry disease patients. Increased levels of plasmatic endothelial biomarkers seem to be the most important feature indicative of possible vascular dysfunction in Fabry disease patients.

  16. Cerebral hemodynamics and endothelial function in patients with Fabry disease

    PubMed Central

    2013-01-01

    Background Cerebral vasculopathy have been described in Fabry disease, in which altered cerebral blood flow, vascular remodelling or impairment of endothelial function could be involved. Our study aims to evaluate these three possibilities in a group of Fabry patients, and compare it to healthy controls. Methods Cerebral hemodynamics, vascular remodelling and systemic endothelial function were investigated in 10 Fabry patients and compared to data from 17 healthy controls. Transcranial Doppler was used to study blood flow velocity of intracranial arteries and cerebral vasomotor reactivity. For the study of vascular remodelling and endothelial function, intima-media thickness of common carotid arteries, flow-mediated dilation in brachial artery and serum levels of soluble VCAM-1, TNF-α, high-sensitive CRP and IL-6 were measured. Differences between groups were evaluated using appropriate tests. Results No relevant differences were observed in cerebral hemodynamic parameters, intima-media thickness or flow-mediated dilation. There was a trend for low serum levels of IL-6 and high serum levels of TNF-α and high-sensitive CRP in Fabry patients; plasma concentrations of soluble VCAM-1 were significantly higher in Fabry disease patients than in healthy volunteers (p = 0.02). Conclusions In our sample, we did not find relevant alterations of cerebral hemodynamics in Fabry disease patients. Increased levels of plasmatic endothelial biomarkers seem to be the most important feature indicative of possible vascular dysfunction in Fabry disease patients. PMID:24207059

  17. Laser-induced endothelial cell activation supports fibrin formation

    PubMed Central

    Atkinson, Ben T.; Jasuja, Reema; Chen, Vivien M.; Nandivada, Prathima; Furie, Bruce

    2010-01-01

    Laser-induced vessel wall injury leads to rapid thrombus formation in an animal thrombosis model. The target of laser injury is the endothelium. We monitored calcium mobilization to assess activation of the laser-targeted cells. Infusion of Fluo-4 AM, a calcium-sensitive fluorochrome, into the mouse circulation resulted in dye uptake in the endothelium and circulating hematopoietic cells. Laser injury in mice treated with eptifibatide to inhibit platelet accumulation resulted in rapid calcium mobilization within the endothelium. Calcium mobilization correlated with the secretion of lysosomal-associated membrane protein 1, a marker of endothelium activation. In the absence of eptifibatide, endothelium activation preceded platelet accumu-lation. Laser activation of human umbilical vein endothelial cells loaded with Fluo-4 resulted in a rapid increase in calcium mobilization associated cell fluorescence similar to that induced by adenosine diphosphate (10μM) or thrombin (1 U/mL). Laser activation of human umbilical vein endothelial cells in the presence of corn trypsin inhibitor treated human plasma devoid of platelets and cell microparticles led to fibrin for-mation that was inhibited by an inhibitory monoclonal anti–tissue factor antibody. Thus laser injury leads to rapid endothelial cell activation. The laser activated endothelial cells can support formation of tenase and prothrombinase and may be a source of activated tissue factor as well. PMID:20675401

  18. Zinc and dexamethasone induce metallothionein accumulation by endothelial cells

    SciTech Connect

    Briske-Anderson, M.; Bobilya, D.J.; Reeves, P.G. )

    1991-03-11

    Several tissues increase their metallothionein (MT) concentration when exposed to elevated amounts of plasma Zn. Endothelial cells form the blood vessels that supply all tissues and constitute a barrier between cells of tissues and the blood. This study examined the ability of endothelial cells to synthesize MT and accumulate Zn in response to high amounts of Zn and dexamethasone. Bovine pulmonary endothelial cells were grown to confluence in Minimum Essential Medium with Earle's salts and 10% fetal calf serum. The monolayer was maintained for 2 d prior to use in medium containing EDTA-dialyzed serum. This low Zn medium was replaced with one containing 1, 6, 25, 50, 100, 150, or 200 {mu}M Zn and incubated for 24 hr before harvesting the cells. MT was quantified by the cadmium binding assay. Cellular Zn concentrations were analyzed by atomic absorption after a nitric acid digestion. The MT concentration was elevated in response to Zn concentrations of 100 {mu}M or more. Cellular Zn concentration was elevated when media Zn was 25 {mu}M or more. MT and cellular Zn concentrations were positively correlated. In another study, inclusion of 0.1 {mu}M dexamethasone in the media increased concentration at all Zn concentrations studied. However, the inclusion of 0.3 {mu}M cis-platinum had no effect. In conclusion, endothelial cells in culture respond to elevated amounts of Zn and dexamethasone in the media by accumulating Zn and MT.

  19. Mechanically Induced Intercellular Calcium Communication in Confined Endothelial Structures

    PubMed Central

    Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A.; Hoying, James B.; Wong, Pak Kin

    2012-01-01

    Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. PMID:23267827

  20. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study.

    PubMed

    Korzeniewski, Steven J; Romero, Roberto; Chaiworapongsa, Tinnakorn; Chaemsaithong, Piya; Kim, Chong Jai; Kim, Yeon Mee; Kim, Jung-Sun; Yoon, Bo Hyun; Hassan, Sonia S; Yeo, Lami

    2016-05-01

    Placental lesions consistent with maternal vascular underperfusion (MVU) are thought to be pathogenically linked to preeclampsia, small-for-gestational-age newborns, fetal death, and spontaneous preterm labor and delivery; yet, these lesions cannot be diagnosed antenatally. We previously reported that patients with such conditions and lesions have an abnormal profile of the angiogenic placental growth factor (PlGF) and antiangiogenic factors (eg, soluble vascular endothelial growth factor receptor [sVEGFR]-1). The objectives of this study were to: (1) examine the relationship between the maternal plasma PlGF/sVEGFR-1 concentration ratio (referred to herein as angiogenic index-1) and the burden of histologic placental features consistent with MVU; and (2) test the hypothesis that angiogenic index-1 can identify patients in the midtrimester who are destined to deliver before 34 weeks of gestation with multiple (ie, ≥3) histologic placental features consistent with MVU. A 2-stage case-cohort sampling strategy was used to select participants from among 4006 women with singleton gestations enrolled from 2006 through 2010 in a longitudinal study. Maternal plasma angiogenic index-1 ratios were determined using enzyme-linked immunosorbent assays. Placentas underwent histologic examination according to standardized protocols by experienced pediatric pathologists who were blinded to clinical diagnoses and pregnancy outcomes. The diagnosis of lesions consistent with MVU was made using criteria proposed by the Perinatal Section of the Society for Pediatric Pathology. Weighted analyses were performed to reflect the parent cohort; "n*" is used to reflect weighted frequencies. (1) Angiogenic index-1 (PlGF/sVEGFR-1) concentration ratios were determined in 7560 plasma samples collected from 1499 study participants; (2) the prevalence of lesions consistent with MVU was 21% (n* = 833.9/3904) and 27% (n* = 11.4/42.7) of women with ≥3 MVU lesions delivered before 34 weeks of

  1. Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion

    PubMed Central

    Zhu, Qiuyu; Yamakuchi, Munekazu; Ture, Sara; de la Luz Garcia-Hernandez, Maria; Ko, Kyung Ae; Modjeski, Kristina L.; LoMonaco, Michael B.; Johnson, Andrew D.; O’Donnell, Christopher J.; Takai, Yoshimi; Morrell, Craig N.; Lowenstein, Charles J.

    2014-01-01

    In humans, vWF levels predict the risk of myocardial infarction and thrombosis; however, the factors that influence vWF levels are not completely understood. Recent genome-wide association studies (GWAS) have identified syntaxin-binding protein 5 (STXBP5) as a candidate gene linked to changes in vWF plasma levels, though the functional relationship between STXBP5 and vWF is unknown. We hypothesized that STXBP5 inhibits endothelial cell exocytosis. We found that STXBP5 is expressed in human endothelial cells and colocalizes with and interacts with syntaxin 4. In human endothelial cells reduction of STXBP5 increased exocytosis of vWF and P-selectin. Mice lacking Stxbp5 had higher levels of vWF in the plasma, increased P-selectin translocation, and more platelet-endothelial interactions, which suggests that STXBP5 inhibits endothelial exocytosis. However, Stxbp5 KO mice also displayed hemostasis defects, including prolonged tail bleeding times and impaired mesenteric arteriole and carotid artery thrombosis. Furthermore, platelets from Stxbp5 KO mice had defects in platelet secretion and activation; thus, STXBP5 inhibits endothelial exocytosis but promotes platelet secretion. Our study reveals a vascular function for STXBP5, validates the functional relevance of a candidate gene identified by GWAS, and suggests that variation within STXBP5 is a genetic risk for venous thromboembolic disease. PMID:25244095

  2. TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance

    PubMed Central

    Li, Wenjing; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wu, Yaogong; Bian, Fang; Wu, Guangjie; Li, Ye; Li, Juyi; Bai, Xiangli; Wu, Dan; Jia, Xiong; Wang, Ling; Zhu, Lin; Jin, Si

    2017-01-01

    Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance. PMID:28304381

  3. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction

    PubMed Central

    Huang, Guoyang; Zhang, Kun; Qing, Long; Liu, Wenwu; Xu, Weigang

    2017-01-01

    Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs) are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs) were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects of bubble

  4. Mitochondrial mechanisms of endothelial dysfunction.

    PubMed

    Szewczyk, Adam; Jarmuszkiewicz, Wieslawa; Koziel, Agnieszka; Sobieraj, Izabela; Nobik, Wioletta; Lukasiak, Agnieszka; Skup, Agata; Bednarczyk, Piotr; Drabarek, Beata; Dymkowska, Dorota; Wrzosek, Antoni; Zablocki, Krzysztof

    2015-08-01

    Endothelial cells play an important physiological role in vascular homeostasis. They are also the first barrier that separates blood from deeper layers of blood vessels and extravascular tissues. Thus, they are exposed to various physiological blood components as well as challenged by pathological stimuli, which may exert harmful effects on the vascular system by stimulation of excessive generation of reactive oxygen species (ROS). The major sources of ROS are NADPH oxidase and mitochondrial respiratory chain complexes. Modulation of mitochondrial energy metabolism in endothelial cells is thought to be a promising target for therapy in various cardiovascular diseases. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial ROS generation and can antagonise oxidative stress-induced endothelial dysfunction. Several studies have revealed the important role of UCP2 in hyperglycaemia-induced modifications of mitochondrial function in endothelial cells. Additionally, potassium fluxes through the inner mitochondrial membrane, which are involved in ROS synthesis, affect the mitochondrial volume and change