Science.gov

Sample records for plasma engineering studies

  1. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  2. Plasma engineering for MARS

    SciTech Connect

    Carlson, G.A.; Baldwin, D.E.; Barr, W.L.

    1983-03-24

    The two-year Mirror Advanced Reactor Study (MARS) has resulted in the conceptual design of a commercial, electricity-producing fusion reactor based on tandem mirror confinement. The physics basis for the MARS reactor was developed through work in two highly coupled areas of plasma engineering: magnetics and plasma performance.

  3. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  4. Magnetic Lens For Plasma Engine

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1992-01-01

    Low-field electromagnet coils placed downstream of plasma engine, polarized oppositely to higher-field but smaller radius coil in nozzle of engine, reduces divergence of plasma jet, thereby increasing efficiency of engine. Concept tested by computer simulation based on simplified mathematical model of plasma, engine, and coils.

  5. Experimental Study of Plasma Cooling and Laser Beam Interaction in Gas Filled ICF Engines

    NASA Astrophysics Data System (ADS)

    Rhodes, Mark; Kane, Jave; Loosmore, Gwendolen; Demuth, James; Latkowski, Jeffery

    2010-11-01

    ICF power plants, such as the LIFE scheme under development at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. This gas-fill is heated and ionized by this energy release. It must cool and recombine before the next shot (at nominally 70-ms intervals) to a temperature where the next target and laser pulse can propagate to chamber center with minimal degradation. While we expect rapid cooling to 2eV by radiation, our modeling of cooling below 2 eV has a high degree of uncertainty. We have developed a plasma source to study the cooling rates and laser propagation in high-Z gaseous plasmas. The source is a theta discharge configuration driven by a low-inductance, 5-kJ, 100-ns pulsed power system. This configuration delivers high peak power levels, has an electrode-less discharge, and has unobstructed axial access for diagnostics and beam propagation studies. Our diagnostics include Thompson scattering, time resolved spectroscopy, and plasma probes. We will report on the system design, operation, and initial results.

  6. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  7. Plasma heat pump and heat engine

    SciTech Connect

    Avinash, K.

    2010-08-15

    A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}<studied. Charged particles mutually repel via a shielded repulsion which is like an effective pressure, i.e., electrostatic pressure P{sub E}. The law of thermodynamics involving P{sub E} and an equation of state for P{sub E} are obtained. It is shown that the expansion/compression of electrostatic fields associated with charged particles is a new mechanism that converts mechanical work into plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

  8. Plasma engineering analysis of Tennessee Tokamak

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Shannon, T.E.; Uckan, N.A.

    1983-01-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses dueterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. Detailed analyses are performed in the areas of (1) transport simulation using the 1-1/2-D WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control sytems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  9. Tribological Study on Plasma Electrolytic Oxidation Treatment in Al-Si Alloys for Engine Application

    NASA Astrophysics Data System (ADS)

    Eiliat, Hoda

    Automotive industry strives to reach an optimum level of fuel economy. This can be achieved by overcoming two impacting factors on fuel consumption: weight and friction force. This research contributes to reduce both. The proposed surface treatment can replace cylinder liners of hypoeutectic aluminum silicon alloy engine blocks with a thin layer of ceramic oxide composed of alpha and gamma phases of Al2O3 and mullite. The coatings are achieved in an aqueous electrolytic bath with current densities of 0.1 to 0.2 A/cm2. Coatings produced in silicate based solutions have shown good adaptability to the counter surface with an average 0.12 coefficient of friction. Coatings produced in phosphate and aluminate solution have shown signs of delamination, and excessive porosity and roughness respectively. Coatings produced under Bipolar Pulsed Direct Current mode has up to 12% higher hardness values compared to unipolar coatings. For each increment of 0.2 A/cm2 current density, there is a 30% of increase in coating growth rate. Higher pH values of the solution creates faster growth rate up to 1.5 mu/min. These coatings are 20% more susceptible to wear. Samples treated in MoS2 solution showed 22% lower average roughness values and 37% of reduction in coefficient of friction. Mild wear scars on the piston rings were detected for the optimized coatings.

  10. Plasma igniter for internal combustion engine

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  11. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  12. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, 'Laboratory and Space Plasma Studies,' Contract Number N00014-93-C-2178, SAIC Project Number 01-0157-03-6984, encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by subcontracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  13. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  14. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  15. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  16. Plasma engineered surfaces for orthopedic devices.

    PubMed

    Farhat, Susan; Gilliam, Mary; Samaniego, Cheryl; Dwarshuis, Nate; Carson, Julia; Peterson, Benjamin; Zand, Ali

    2016-06-01

    Atmospheric pressure plasma was used to graft various biocompatible polymers to the surface of ultra-high molecular weight polyethylene (UHMWPE). Polymers used as grafts in this study were poly(2-hydroxyethylmethacrylate) (PHEMA) and polyethylene glycol (PEG). A significant decrease in contact angle was noted for grafted surfaces, indicating increased hydrophilicity. Surface functionalities were verified using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wear properties of the coatings were determined by weight loss under conditions of a random motion pin-on-plate apparatus with the coated polyethylene plaques immersed in DI water. Based on these tests, the grafted surfaces exhibited an improved resistance to wear, compared to UHMWPE. Cell viability studies were used to confirm that the plasma treatment had no negative effects on the surface bio-toxicity. Based on the results, it is anticipated that the incorporation of these biocompatible polymer-grafted UHMWPE surfaces in metal-on-plastic orthopedic implants should improve their performance and longevity. PMID:26999407

  17. Plasma deposition of thin film multilayers for surface engineering

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Kumar, Sushil

    2012-06-01

    Plasma surface Engineering for enhancing optical and tribological behaviour of a surface is discussed. Specifically, it is shown how optimized PECVD processing can produce sophisticated Rugate filters and AR coatings on plastic lenses. It is found that multilayer Diamond Like Carbon coatings (DLC), in a functionally graded geometry, obtained by a combination of plasma intensive processing, not only can impart high value of hardness to a surface but also wear protection at high contact loads.

  18. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  19. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study.

    PubMed

    Yamada, Yoichi; Ueda, Minoru; Hibi, Hideharu; Nagasaka, Tetsuro

    2004-01-01

    Translational research involves application of basic scientific discoveries into clinically germane findings and, simultaneously, the generation of scientific questions based on clinical observations. At first, as basic research we investigated tissue-engineered bone regeneration using mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) in a dog mandible model. We also confirmed the correlation between osseointegration in dental implants and the injectable bone. Bone defects made with a trephine bar were implanted with graft materials as follows: PRP, dog MSCs (dMSCs) and PRP, autogenous particulate cancellous bone and marrow (PCBM), and control (defect only). Two months later, dental implants were installed. According to the histological and histomorphometric observations at 2 months after implants, the amount of bone-implant contact at the bone-implant interface was significantly different between the PRP, PCBM, dMSCs/ PRP, native bone, and control groups. Significant differences were also found between the dMSCs/PRP, native bone, and control groups in bone density. These findings indicate that the use of a mixture of dMSCs/ PRP will provide good results in implant treatment compared with that achieved by autogenous PCBM. We then applied this injectable tissue-engineered bone to onlay plasty in the posterior maxilla or mandible in three human patients. Injectable tissue-engineered bone was grafted and, simultaneously, 2-3 threaded titanium implants were inserted into the defect area. The results of this investigation indicated that injectable tissue-engineered bone used for the plasty area with simultaneous implant placement provided stable and predictable results in terms of implant success. We regenerated bone with minimal invasiveness and good plasticity, which could provide a clinical alternative to autogenous bone grafts. This might be a good case of translational research from basic research to clinical application. PMID:15468676

  20. Clustered engine study

    NASA Technical Reports Server (NTRS)

    Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob

    1993-01-01

    Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.

  1. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1977-01-01

    Work conducted was devoted to three main tasks. Thermochemical equilibrium performance data were assembled to establish the expected performance calculations of the mode 1 engine propellant combinations and thermodynamic and transport data for the products of combustion. Turbine drive gas characteristics were also established. Thrust chamber and nozzle cooling studies were devoted to the evaluation of H2, C3H8, CH4, and RP-1 as coolants in the existing SSME cooling circuit geometry. It was found that all these candidate coolants are feasible without limiting the desired operating conditions with the exception of RP-1, which would limit the maximum P(c) to 2000 psia. RP-1 could be used, however, to cool the nozzle only without imposing the chamber pressure limit. A total of 15 candidate engine system cycles were selected and a preliminary engine system balance was conducted for 12 of these systems to establish component operating flowrates, pressures and temperatures. It was found that the staged combustion cycles employing fuel rich LOX/hydrocarbon turbine drive gases are power limited.

  2. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.

  3. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  4. Stirling engine application study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  5. Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor

    2007-01-01

    This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.

  6. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  7. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  8. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Goldstein, D. N.; Hirschkron, R.; Smith, C. E.

    1983-01-01

    Convertible propulsion systems for advanced rotorcraft are evaluated in terms of their impact on aircraft operating economics and fuel consumption. A variety of propulsion system concepts, including separate thrust and power producing engines, convertible fan/shaft engines, and auxiliary propeller configurations are presented. The merits of each are evaluated in two different rotorcraft missions: an intercity, commercial transport of the ABC(TM) type, and an offshore oil ring supply ship of the X-wing type. The variable inlet guide vane fan/shaft converting engine and auxiliary propeller configurations are shown to offer significant advantages over all the other systems evaluated, in terms of both direct operating cost and fuel consumption.

  9. T55-L-712 turbine engine compressor housing refurbishment-plasma spray project

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1988-01-01

    A study was conducted to assess the feasibility of reclaiming T55-L-712 turbine engine compressor housings with an 88 wt percent aluminum to 12 wt percent silicon alloy applied by a plasma spray process. Tensile strength testing was conducted on as-sprayed and thermally cycled test specimens which were plasma sprayed with 0.020 to 0.100 in. coating thicknesses. Satisfactory tensile strength values were observed in the as-sprayed tensile specimens. There was essentially no decrease in tensile strength after thermally cycling the tensile specimens. Furthermore, compressor housings were plasma sprayed and thermally cycled in a 150-hr engine test and a 200-hr actual flight test during which the turbine engine was operated at a variety of loads, speeds and torques. The plasma sprayed coating system showed no evidence of degradation or delamination from the compressor housings. As a result of these tests, a procedure was designed and developed for the application of an aluminum-silicon alloy in order to reclaim T55-L-712 turbine engine compressor housings.

  10. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  11. A Study of Engineering and Engineering Technology Education in Florida.

    ERIC Educational Resources Information Center

    Terman, F. E.; Higdon, Archie

    This study reviews engineering education in Florida and investigates programs and plans for engineering technology. A questionnaire was prepared to obtain statistical data on the engineering activities at individual institutions. Deans of engineering schools responded to the questionnaires and site visits were made by consultants to each school.…

  12. Magneto-plasma sail: An engineering satellite concept and its application for outer planet missions

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Nakayama, Yoshinori; Fujita, Kazuhisa; Ogawa, Hiroyuki; Nonaka, Satoshi; Kuninaka, Hitoshi; Sawai, Shujiro; Nishida, Hiroyuki; Asahi, Ryusuke; Otsu, Hirotaka; Nakashima, Hideki

    2006-10-01

    The magneto-plasma sail (mini-magnetospheric plasma propulsion) produces the propulsive force due to the interaction between the artificial magnetic field around the spacecraft inflated by the plasma and the solar wind erupted from the Sun with a speed of 300 800 km/s. The principle of the magneto-plasma sail is based on the magnetic sail whose original concept requires a huge mechanical coil structure, which produces a large magnetic field to capture the energy of the solar wind. Meanwhile in the case of the magneto-plasma sail, the magnetic field will be expanded by the inertia of plasma flow to a few tens of kilometer in diameter, resulting in a thrust of a few Newton R. Winglee's group of the University of Washington originally proposed the idea of magnetic field inflation by the plasma. This paper investigates the characteristics of the magneto-plasma sail by comparing it with the other low-thrust propulsion systems (i.e., electric propulsion and solar sail), and the potential of its application to near future outer planet missions is studied. Furthermore, an engineering validation satellite concept is proposed in order to confirm the propulsion system specification and operation methodology. The main features are summarized as: (1) The satellite mass is around 180 kg assuming the H-IIA piggyback launch. (2) Since the magnetopause of the Earth magnetosphere is about 10 Re at Sun side and the bow shock is located at about 13 Re from the Earth, the satellite is injected into an orbit with 250 km perigee altitude and 20 Re apogee distance where apogee is located at the Sun side. (3) The magneto-plasma sail is turned on only in the vicinity of apogee outside the Earth's magnetosphere. (4) The thrust is estimated by the orbit determination result, and the plasma wind monitor is installed on the satellite to establish the relationship between the solar wind and the thrust.

  13. Magneto plasma sail: an engineering satellite concept and its application for outer planet missions

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Nakayama, Yoshinori; Fujita, Kazuhisa; Ogawa, Hiroyuki; Nonaka, Satoshi; Kuninaka, Hitoshi; Sawai, Shujiro; Nishida, Hiroyuki; Asahi, Ryusuke; Otsu, Hirotaka; Nakashima, Hideki

    2003-11-01

    The magneto-plasma sail (mini-magnetospheric plasma propulsion) produces the propulsive force due to the interaction between the artificial magnetic field around the spacecraft inflated by the plasma and the solar wind erupted from the Sun with a speed of 300~800 km/s. The principle of the magneto-plasma sail is based on the magnetic sail whose original concept requires a huge mechanical coil structure, which produces a large magnetic field to capture the energy of the solar wind. Meanwhile in the case of the magneto-plasma sail, the magnetic field will be expanded by the inertia of plasma flow to a few tens of km in diameter, resulting in a thrust of a few N. R. Winglee's group of the University of Washington originally proposed the idea of magnetic field inflation by the plasma. This paper investigates the characteristics of the magneto-plasma sail by comparing it with the other low-thrust propulsion systems (i.e., electric propulsion and solar sail), and the potential of its application to near future outer planet missions is studied. Furthermore, an engineering validation satellite concept is proposed in order to confirm the propulsion system specification and operation methodology. The main features are summarized as: 1) The satellite mass is around 180kg assuming the H-IIA piggyback launch. 2) Since the magnetopause of the Earth magnetosphere is about 10Re at Sun side and the bow shock is located at about 13Re from the Earth, the satellite is injected into an orbit with 250km perigee altitude and 20Re apogee distance where apogee is located at the Sun side. 3) The magneto-plasma sail is turned on only in the vicinity of apogee outside the Earth's magnetosphere. 4) The thrust is estimated by the orbit determination result, and the plasma wind monitor is installed on the satellite to establish the relationship between the solar wind and the thrust.

  14. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Bertolissi, G.; Chazelas, C.; Bolelli, G.; Lusvarghi, L.; Vardelle, M.; Vardelle, A.

    2012-12-01

    This study examines the fundamental reactions that occur in-flight during the solution precursor plasma spraying (SPPS) of solutions containing Zr- and Y-based salts in water or ethanol solvent. The effect of plasma jet composition (pure Ar, Ar-H2 and Ar-He-H2 mixtures) on the mechanical break-up and thermal treatment of the solution, mechanically injected in the form of a liquid stream, was investigated. Observation of the size evolution of the solution droplets in the plasma flow by means of a laser shadowgraphy technique, showed that droplet break-up was more effective and solvent evaporation was faster when the ethanol-based solution was injected into binary or ternary plasma gas mixtures. In contrast with water-based solutions, residual liquid droplets were always detected at the substrate location. The morphology and structure of the material deposited onto stainless steel substrates during single-scan experiments were characterised by SEM, XRD and micro-Raman spectroscopy and were shown to be closely related to in-flight droplet behaviour. In-flight pyrolysis and melting of the precursor led to well-flattened splats, whereas residual liquid droplets at the substrate location turned into non pyrolysed inclusions. The latter, although subsequently pyrolysed by the plasma heat during the deposition of entire coatings, resulted in porous "sponge-like" structures in the deposit.

  15. Plasma-assisted interface engineering of boron nitride nanostructure films.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-10-28

    Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.

  16. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions.

  17. An overview of the VASIMR engine: High power space propulsion with RF plasma generation and heating

    NASA Astrophysics Data System (ADS)

    Díaz, F. R. Chang

    2001-10-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH). Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. However, other complementary techniques are also being studied. Operational and performance considerations favor the light gases. The physics and engineering of this device have been under study since the late 1970s. A NASA-led, research effort, involving several terms in the United States, continues to explore the scientific and technological foundations of this concept. The research involves theory, experiment, engineering design, mission analysis, and technology development. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen and Deuterium, as well as mixtures of these gases. Key issues involve the optimization of the helicon discharge for high-density operation and the efficient coupling of ICRH to the plasma, prior to acceleration by the magnetic nozzle. Theoretically, the dynamics of the magnetized plasma are being studied from kinetic and fluid perspectives. Plasma acceleration by the magnetic nozzle and subsequent detachment has been demonstrated in numerical simulations. These results are presently undergoing experimental verification. A brisk technology development effort for space-qualified, compact, solid-state RF equipment, and high temperature superconducting magnets is under way in support of this project. A conceptual point design for an early space demonstrator on the International Space Station has been defined

  18. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  19. A Study of Engineering Students.

    ERIC Educational Resources Information Center

    Rolf, Carol; Strenglein, Denise

    The undergraduate student body in the College of Engineering at the University of South Florida was studied to determine if there were significant differences in the grade-point ratios (GPRs), withdrawals, and forgivenesses of students in several categories. (The foregiveness policy permits a student to repeat a course and have that grade computed…

  20. The study of helicon plasma source

    SciTech Connect

    Miao Tingting; Shang Yong; Zhao Hongwei; Liu Zhanwen; Sun Liangting; Zhang Xuezhen; Zhao Huanyu

    2010-02-15

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10{sup 13} cm{sup -3} have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10{sup -3} Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  1. Automated Plasma Spray (APS) process feasibility study

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1981-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.

  2. Novel 3D Tissue Engineered Bone Model, Biomimetic Nanomaterials, and Cold Atmospheric Plasma Technique for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Mian

    This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.

  3. Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage.

    PubMed

    Kim, Hyun Ok; Baek, Eun Jung

    2012-01-01

    In vitro generation of artificial red blood cells (RBCs) is very important to overcome insufficient and unsafe blood supply. Despite recent progresses in RBCs engineering from several stem cell sources, none of them could succeed in generation of functional RBCs in the absence of serum/plasma and feeder cells. Without the elimination of serum and plasma, human RBC engineering in a large scale is impossible, especially for the future bioreactor system. Using an appropriate combination of cost-effective and safe reagents, the present study demonstrated the terminal maturation of hematopoietic stem cells into enucleated RBCs, which were functional comparable to donated human RBCs. Surprisingly, the viability of erythroid cells was higher in our serum- and feeder-free culture condition than in the previous serum-added condition. This was possible by supplementation with vitamin C in media and hypothermic conditions. Also, our report firstly presents the storability of artificial RBCs, which possibility is essential for clinical application. In summary, our report demonstrates engineering of human applicable RBCs with a dramatically enhanced viability and shelf-life in both serum- and stroma-free conditions. This innovative culture technology could contribute to the realization of the large-scale pharming of human RBCs using bioreactor systems.

  4. Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage.

    PubMed

    Kim, Hyun Ok; Baek, Eun Jung

    2012-01-01

    In vitro generation of artificial red blood cells (RBCs) is very important to overcome insufficient and unsafe blood supply. Despite recent progresses in RBCs engineering from several stem cell sources, none of them could succeed in generation of functional RBCs in the absence of serum/plasma and feeder cells. Without the elimination of serum and plasma, human RBC engineering in a large scale is impossible, especially for the future bioreactor system. Using an appropriate combination of cost-effective and safe reagents, the present study demonstrated the terminal maturation of hematopoietic stem cells into enucleated RBCs, which were functional comparable to donated human RBCs. Surprisingly, the viability of erythroid cells was higher in our serum- and feeder-free culture condition than in the previous serum-added condition. This was possible by supplementation with vitamin C in media and hypothermic conditions. Also, our report firstly presents the storability of artificial RBCs, which possibility is essential for clinical application. In summary, our report demonstrates engineering of human applicable RBCs with a dramatically enhanced viability and shelf-life in both serum- and stroma-free conditions. This innovative culture technology could contribute to the realization of the large-scale pharming of human RBCs using bioreactor systems. PMID:21902543

  5. Plasma chemistry study of PLAD processes

    NASA Astrophysics Data System (ADS)

    Qin, Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang, Maoying

    2012-11-01

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B2H6, BF3, AsH3, and PH3, and two non-dopant plasmas including CH4 and GeH4 are studied and demonstrated.

  6. Protein Engineering: Case Studies of Commercialized Engineered Products

    ERIC Educational Resources Information Center

    Walsh, Gary

    2007-01-01

    Programs in biochemistry invariably encompass the principles of protein engineering. Students often display increased understanding and enthusiasm when theoretical concepts are underpinned by practical example. Herein are presented five case studies, each focusing upon a commercial protein product engineered to enhance its application-relevant…

  7. Engineered sorbent barrier screening studies

    SciTech Connect

    Freeman, H.D.; Buelt, J.L.

    1985-08-01

    The objective of the Engineered Sorbent Barrier Program is to identify new and cost-effective technology for restricting the migration of radionuclides from low-level waste sites. The primary emphasis is to identify and evaluate sorbent materials as engineered barriers that will prevent radionuclide migration and yet allow moisture to pass. Screening studies have been completed to identify sorbent materials for cesium, cobalt, and strontium. The sorbent materials were selected based on criteria developed for this program and the empirical results of screening studies. The results of the study made it apparent that no single sorbent materials is effective for all radionuclides considered. Therefore, four composite sorbent barriers were identified for further evaluation in 0.6-m diameter columns. The large columns more accurately represent field conditions, generate permeability data, and enhance detectability of radionuclides in the leachate passing through the sorbent barriers. The four sorbent barriers include composites of activated charcoal, greensand, A-51 zeolite, and red pottery clay. Future studies will concentrate on completing the effectiveness evaluations with the large columns and identifying a more cost-effective sorbent material for strontium. 6 refs., 4 figs., 4 tabs.

  8. Plasma engineering design of a Compact Reversed-Field Pinch Reactor (CRFPR)

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Embrechts, M. J.; Hagenson, R. L.; Krakowski, R. A.; Miller, R. L.

    1983-11-01

    The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given.

  9. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  10. Study of fueling requirements for the Engineering Test Reactor

    SciTech Connect

    Ho, S.K.; Perkins, L.J.

    1987-10-16

    An assessment of the fueling requirement for the TIBER Engineering Test Reactor is studied. The neutral shielding pellet ablation model with the inclusion of the effects of the alpha particles is used for our study. The high electron temperature in a reactor-grade plasma makes pellet penetration very difficult. The launch length has to be very large (several tens of meters) in order to avoid pellet breakage due to the low inertial strength of DT ''ice.'' The minimum repetition rate corresponding to the largest allowable pellet, is found to be about 1 Hz. A brief survey is done on the various operational and conceptual pellet injection schemes for plasma fueling. The underlying conclusion is that an alternative fueling scheme of coaxial compact-toroid plasma gun is very likely needed for effective central fueling of reactor-grade plasmas. 16 refs.

  11. Study of Photoemissive Dusty Plasma

    SciTech Connect

    Gavrikov, A. V.; Fortov, V. E.; Petrov, O. F.; Babichev, V. N.; Filippov, A. V.; Pal', A. F.; Starostin, A. N.

    2008-09-07

    The present work deals with the experimental and theoretical investigation of photoemissive charging of polydisperse dust particles. The characteristic size of dust particles under consideration was 0.1-25 mkm. The experimental part of this work was devoted to the study of positive charging of macroparticles under UV-radiation that acted on dusty formations. Investigations were carried out in argon at normal pressure with particles of different materials. Dust structure was subjected to radiation. The power and frequency spectrum of this radiation was close to corresponding parameters of sun radiation near the top layers of Earth atmosphere. Owing to electron photoemission the macroparticles became positively charged. On the basis of experimental data the estimation of this charge was performed. It was about 500 elementary charges for micron particles. The theoretical part of present work included the numerical simulation of photoemissive dusty plasma decay in a drift-diffusion approximation. The model included equilibrium equation for positively charged macroparticles (in experiment, the percent of these particles was about 90), negatively charged dust particles (about 10%), positive ions (those were born by electron strike of buffered gas atoms) and electrons. Also the model included the Poisson equation for determination of potential distribution in the discharge region. The results of numerical calculations were in a satisfactory correspondence with experimental data both for time dependences of positively and negatively charged macroparticles concentrations and for their velocities.

  12. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  13. Study of supersonic plasma technology jets

    NASA Astrophysics Data System (ADS)

    Selezneva, Svetlana; Gravelle, Denis; Boulos, Maher; van de Sanden, Richard; Schram, Dc

    2001-10-01

    Recently some new techniques using remote thermal plasma for thin film deposition and plasma chemistry processes were developed. These techniques include PECVD of diamonds, diamond-like and polymer films; a-C:H and a-Si:H films. The latter are of especial interest because of their applications for solar cell production industry. In remote plasma deposition, thermal plasma is formed by means of one of traditional plasma sources. The chamber pressure is reduced with the help of continuous pumping. In that way the flow is accelerated up to the supersonic speed. The plasma expansion is controlled using a specific torch nozzle design. To optimize the deposition process detailed knowledge about the gas dynamic structure of the jet and chemical kinetics mechanisms is required. In the paper, we show how the flow pattern and the character of the deviations from local thermodynamic equilibrium differs in plasmas generated by different plasma sources, such as induction plasma torch, traditional direct current arc and cascaded arc. We study the effects of the chamber pressure, nozzle design and carrier gas on the resulting plasma properties. The analysis is performed by means of numerical modeling using commercially available FLUENT program with incorporated user-defined subroutines for two-temperature model. The results of continuum mechanics approach are compared with that of the kinetic Monte Carlo method and with the experimental data.

  14. Bodies in flowing plasmas - Laboratory studies

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, U.

    1981-01-01

    A brief review of early rudimentary laboratory studies of bodies in flowing, rarefied plasmas is presented (e.g., Birkeland, 1908), along with a discussion of more recent parametric studies conducted in steady plasma wind tunnels, which includes the study by Hall et al. (1964), in which a strong ion density enhancement in the center of the ion void created downstream from the body was observed. Good agreement was found between the experimental results and theoretical calculations which omit ion thermal motion. Examples in which in situ data on the interaction between satellites and the ionospheric plasma have been elucidated by the laboratory results are presented, and include evidence for a midwake axial ion peak, and ion current density in the near-wake region. The application of the ionospheric laboratory to basic space plasma physics is discussed, and its application to some types of solar system plasma phenomena is illustrated.

  15. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  16. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  17. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications.

    PubMed

    Korurer, Esra; Kenar, Halime; Doger, Emek; Karaoz, Erdal

    2014-07-01

    Standard approaches to soft-tissue reconstruction include autologous adipose tissue transplantation, but most of the transferred adipose tissue is generally reabsorbed in a short time. To overcome this problem, long lasting implantable hydrogel materials that can support tissue regeneration must be produced. The purpose of this study was to evaluate the suitability of composite 3D natural origin scaffolds for reconstructive surgery applications through in vitro tests. The Young's modulus of the glutaraldehyde crosslinked hyaluronic acid/gelatin (HA/G) plasma gels, composed of human platelet-poor plasma, gelatin and human umbilical cord hyaluronic acid, was determined as 3.5 kPa, close to that of soft tissues. The composite HA/G plasma gels had higher porosity than plain plasma gels (72.5% vs. 63.86%). Human adipose tissue derived stem cells (AD-MSCs) were isolated from human lipoaspirates and characterized with flow cytometry, and osteogenic and adipogenic differentiation. Cell proliferation assay of AD-MSCs on the HA/G plasma gels revealed the nontoxic nature of these constructs. Adipogenic differentiation was distinctly better on HA/G plasma gels than on plain plasma gels. The results showed that the HA/G plasma gel with its suitable pore size, mechanical properties and excellent cell growth and adipogenesis supporting properties can serve as a useful scaffold for adipose tissue engineering applications.

  18. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  19. Space Transportation Booster Engine (STBE) configuration study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.

  20. Orbital transfer rocket engine technology: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  1. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  2. Microwave imaging diagnostics for plasma fluctuation studies

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    Electron Cyclotron Emission Imaging (ECEI) and Microwave Imaging Reflectometry (MIR) combined systems are being investigated by the UC Davis Plasma Diagnostic Group (PDG), in collaboration with Princeton Plasma Physics Laboratory (PPPL) researchers, Drs. E. Mazzucato, H.K. Park and T. Munsat, as well as researchers from the FOM-Instituut voor Plasmafysica Rijnhuizen,the Netherlands. The goal is to develop the plasma diagnostic systems based on the imaging technology developed in the UC Davis PDG group, for the study of plasma micro-turbulence, which is extremely important for the understanding of anomalous transport behavior of magnetically confined plasmas such as in tokamaks. This dissertation work provides the design of the optical systems, the design of the electronics, the testing of the antenna array and the data analysis of TEXTOR ECEI/MIR combined systems.

  3. System Study for Axial Vane Engine Technology

    NASA Technical Reports Server (NTRS)

    Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.

    2008-01-01

    The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.

  4. Reusable Rocket Engine Maintenance Study

    NASA Technical Reports Server (NTRS)

    Macgregor, C. A.

    1982-01-01

    Approximately 85,000 liquid rocket engine failure reports, obtained from 30 years of developing and delivering major pump feed engines, were reviewed and screened and reduced to 1771. These were categorized into 16 different failure modes. Failure propagation diagrams were established. The state of the art of engine condition monitoring for in-flight sensors and between flight inspection technology was determined. For the 16 failure modes, the potential measurands and diagnostic requirements were identified, assessed and ranked. Eight areas are identified requiring advanced technology development.

  5. Ion Dynamics and ICRH Heating in the Exhaust Plasma of The VASIMR Engine

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Chang-Díaz, F. R.; Squire, J. P.; Jacobson, V.; Ilin, A.; Winter, D. S.; Bengtson, R. D.; Gibson, J. N.; Glober, T. W.; Brukardt, M.; Rodriguez, W.

    2002-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by an integrated helicon discharge. However, the bulk of the plasma energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. A laboratory simulation of the 25 kW proof of concept VASIMIR engine has been under development and test at NASA-JSC for several years. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen, Deuterium, Argon and Xenon. This paper will review the plasma diagnostic results obtained in 2000-2002 in a continuing series of performance optimization and design development studies. Available plasma diagnostics include a triple probe, a Mach probe, a bolometer, a television monitor, an H- photometer, a spectrometer, neutral gas pressure and flow measurements, several gridded energy analyzers (retarding potential analyzer or RPA), a surface recombination probe system, an emission probe, a directional, steerable RPA and other diagnostics. Reciprocating Langmuir and Mach probes are the primary plasma diagnostics. The Langmuir probe measures electron density and temperature profiles while the Mach probe measures flow profiles. Together this gives total plasma particle flux. An array of thermocouples provides a temperature map of the system. Ion flow velocities are estimated through three techniques: Mach probes, retarding potential analyzer, and spectroscopic measurements. During 2000-2002, we have performed a series of experiments on the VASIMR apparatus with several objectives, to explore the parameter space that

  6. Secondary Engineering Competencies: A Delphi Study of Engineering Faculty

    ERIC Educational Resources Information Center

    Harris, Kara S.; Rogers, George E.

    2008-01-01

    The central purpose of this study was to expand upon previous research in relation to competencies that are desired by university engineering faculty in their incoming freshman. This study used a Delphi technique as noted by Paige, Dugger, and Wolansky (1996) and Wicklein (1993) to identify and analyze what secondary education competencies should…

  7. Developing Tomorrows Engineers: A Case Study in Instrument Engineering

    ERIC Educational Resources Information Center

    McDonnell, Liam; O'Neill, Donal

    2009-01-01

    Purpose: The purpose of this case study is to outline the challenges facing industry and educational institutions in educating and training instrument engineers against a backdrop of declining interest by secondary school students in mathematics and physics. This case study cites the experience and strategies of the Kentz Group and Cork Institute…

  8. Surface studies of plasma processed Nb samples

    SciTech Connect

    Tyagi, Puneet V; Doleans, Marc; Hannah, Brian S; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  9. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  10. General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Furst, D. G.

    1979-01-01

    The feasibility of turbine engines for the smaller general aviation aircraft was investigated and a technology program for developing the necessary technology was identified. Major results included the definition of the 1988 general aviation market, the identification of turboprop and turboshaft engines that meet the requirements of the aircraft studies, a benefit analysis showing the superiority of gas turbine engines for portions of the market studied, and detailed plans for the development of the necessary technology.

  11. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Larkin, T. R.

    1986-01-01

    The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.

  12. Theoretical Study of a Spherical Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  13. Characterization of the human plasma phosphoproteome using linear ion trap mass spectrometry and multiple search engines.

    PubMed

    Carrascal, Montserrat; Gay, Marina; Ovelleiro, David; Casas, Vanessa; Gelpí, Emilio; Abian, Joaquin

    2010-02-01

    Major plasma protein families play different roles in blood physiology and hemostasis and in immunodefense. Other proteins in plasma can be involved in signaling as chemical messengers or constitute biological markers of the status of distant tissues. In this respect, the plasma phosphoproteome holds potentially relevant information on the mechanisms modulating these processes through the regulation of protein activity. In this work we describe for the first time a collection of phosphopeptides identified in human plasma using immunoaffinity separation of the seven major serum protein families from other plasma proteins, SCX fractionation, and TiO(2) purification prior to LC-MS/MS analysis. One-hundred and twenty-seven phosphosites in 138 phosphopeptides mapping 70 phosphoproteins were identified with FDR < 1%. A high-confidence collection of phosphosites was obtained using a combined search with the OMSSA, SEQUEST, and Phenyx search engines.

  14. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  15. Engineering study of the rotary-vee engine concept

    NASA Technical Reports Server (NTRS)

    Willis, Edward A.; Bartrand, Timothy A.; Beard, John E.

    1989-01-01

    The applicable thermodynamic cycle and performance considerations when the rotary-vee mechanism is used as an internal combustion (I.C.) heat engine are reviewed. Included is a simplified kinematic analysis and studies of the effects of design parameters on the critical pressures, torques and parasitic losses. A discussion of the principal findings is presented.

  16. Artemis: Results of the engineering feasibility study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information is given in viewgraph form for the Engineering Feasibility Study of the Artemis Project, a plan to establish a permanent base on the Moon. Topics covered include the Common Lunar Lander (CLL), lunar lander engineering study results, lunar lander trajectory analysis, lunar lander conceptual design and mass properties, the lunar lander communication subsystem design, and product assurance.

  17. Special Gender Studies for Engineering?

    ERIC Educational Resources Information Center

    Ihsen, Susanne

    2005-01-01

    Today we are confronted with a new challenge in product development: "Diversity" needs to be implemented in the engineering design and development teams. Such diversity means to "mirror" within the teams the characteristics of different customer groups: the two genders, the different age groups, and the different cultural background corresponding…

  18. Fundamental studies of fusion plasmas

    SciTech Connect

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1992-05-26

    The major portion of this program is devoted to critical ICH phenomena. The topics include edge physics, fast wave propagation, ICH induced high frequency instabilities, and a preliminary antenna design for Ignitor. This research was strongly coordinated with the world's experimental and design teams at JET, Culham, ORNL, and Ignitor. The results have been widely publicized at both general scientific meetings and topical workshops including the speciality workshop on ICRF design and physics sponsored by Lodestar in April 1992. The combination of theory, empirical modeling, and engineering design in this program makes this research particularly important for the design of future devices and for the understanding and performance projections of present tokamak devices. Additionally, the development of a diagnostic of runaway electrons on TEXT has proven particularly useful for the fundamental understanding of energetic electron confinement. This work has led to a better quantitative basis for quasilinear theory and the role of magnetic vs. electrostatic field fluctuations on electron transport. An APS invited talk was given on this subject and collaboration with PPPL personnel was also initiated. Ongoing research on these topics will continue for the remainder fo the contract period and the strong collaborations are expected to continue, enhancing both the relevance of the work and its immediate impact on areas needing critical understanding.

  19. Computational study of nonlinear plasma waves. [plasma simulation model applied to electrostatic waves in collisionless plasma

    NASA Technical Reports Server (NTRS)

    Matsuda, Y.

    1974-01-01

    A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.

  20. Plasma technology for increase of operating high pressure fuel pump diesel engines

    NASA Astrophysics Data System (ADS)

    Solovev, R. Y.; Sharifullin, S. N.; Adigamov, N. R.

    2016-01-01

    This paper presents the results of a change in the service life of high pressure fuel pumps of diesel engines on the working surface of the plunger which a wear resistant dielectric plasma coatings based on silicon oxycarbonitride. Such coatings possess high wear resistance, chemical inertness and low friction.

  1. Plasma source ion implantation technology for engineering surfaces of materials

    NASA Astrophysics Data System (ADS)

    Wilson, E. H.; Lawrence, D. F.; Sridharan, K.; Sandstrom, P. W.

    2001-07-01

    Plasma Source Ion Implantation* (PSII) is a non-line-of-sight technique for energetic ion surface modification of materials. At the University of Wisconsin there are presently three PSII systems two of which measure about 1 m3 and a third that measures 0.1 m3. Plasma generation is achieved in vacuum through filamentary, RF, DC-pulsed, or glow discharge. High voltage pulsing is achieved using a tetrode modulator that pulses at up to 60kV or by a solid-state pulser that can supply 20kV. Recently, a crossatron modulator capable of 40kV and 1kA peak anode current was built in-house. Surface properties of a wide range of materials have been beneficially modified using PSII in ion implantation, film deposition, energetic ion mixing, and sputtering modes. Industrial field testing of PSII-treated parts has yielded promising results but successful commercialization requires judicious selection of applications which effectively exploit the unique aspects of PSII as a surface modification tool.*J.R. Conrad U.S. Patent#4764394, 1988

  2. Ultra-High Bypass Engine Aeroacoustic Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Janardan, Bangalore A.

    2003-01-01

    A system study was carried out to identify potential advanced aircraft engine concepts and cycles which could be capable of achieving a 5 to 10 EPNdB reduction in community noise level relative to current FAR36 Stage 3 limits for a typical large-capacity commercial transport aircraft. The study was directed toward large twin-engine aircraft applications in the 400,000 to 500,000 pound take-off gross weight class. Four single rotation fan engine designs with fan pressure ratios from 1.3 to 1.75, and two counter-rotating fan engine configurations were studied. Several engine configurations were identified which, with further technology development, could achieve the objective of 5 to 10 EPNdB noise reduction. Optimum design fan pressure ratio is concluded to be in the range of 1.4 to 1.55 for best noise reduction with acceptable weight and Direct Operating Cost (DOC) penalties.

  3. Continuing Engineering Studies Series. Monograph No. 1.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    The purpose of this conference was to provide an opportunity for discussion between educators and representatives of the industrial world on the needs, programs, new developments, and other matters on which continuing engineering studies (CES) should be based. The first 2 papers examine the role of the engineer in a rapidly changing technological…

  4. A study of airplane engine tests

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1920-01-01

    This report is a study of the results obtained from a large number of test of an Hispano-Suiza airplane engine in the altitude laboratory of the Bureau of Standards. It was originally undertaken to determine the heat distribution in such an engine, but many other factors are also considered as bearing on this matter.

  5. Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Ruckle, D. L.

    1980-01-01

    As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

  6. Thrombin detection in murine plasma using engineered fluorescence resonance energy transfer aptadimers

    NASA Astrophysics Data System (ADS)

    Trapaidze, Ana; Brut, Marie; Mazères, Serge; Estève, Daniel; Gué, Anne-Marie; Bancaud, Aurélien

    2015-12-01

    Biodetection strategies, in which two sides of one target protein are targeted simultaneously, have been shown to increase specificity, selectivity, and affinity, and it has been suggested that they constitute excellent candidates for protein sensing in complex media. In this study we propose a method to engineer the sequence of a DNA construct dedicated to reversible thrombin detection. This construct, called Fluorescence Resonance Energy Transfer (FRET) aptadimer, is assembled with two aptamers, which target different epitopes of thrombin, interconnected with a DNA linker that contains a FRET couple and a reversible double helix stem. In the absence of target, the stem is stable maintaining a FRET couple in close proximity, and fluorescence is unquenched upon thrombin addition due to the dehybridization of the stem. We define design rules for the conception of FRET aptadimers, and develop a software to optimize their functionality. One engineered FRET aptadimer sequence is subsequently characterized experimentally by temperature scanning fluorimetry, demonstrating the relevance of our technology for thrombin sensing in bulk and diluted murine plasma.

  7. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  8. Engine system assessment study using Martian propellants

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John

    1992-01-01

    A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.

  9. Engine system assessment study using Martian propellants

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John

    1992-06-01

    A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.

  10. Plasma edge studies using carbon resistance probes

    SciTech Connect

    Wampler, W.R.; Manos, D.M.

    1983-04-01

    A new experimental technique, the resistance probe, was used to study the plasma edge in the PLT and PDX tokamaks. This technique involves measuring the change in resistance of a thin carbon film due to bombardment by energetic particles escaping the plasma. The probes have been calibrated by measuring the resistance change caused by implantation of various ions at different energies. A model has been developed which can be used to determine the flux and energy of the incident particles from the measured resistance changes. For probes exposed in PDX and PLT near the wall, resistance changes were observed due to charge exchange neutrals. Larger changes were observed in the ion scrape-off region closer to the plasma. In PLT the effect of ions at the plasma edge begins to dominate the neutral flux near the radius of the ring limiter. The energy of ions at the plasma edge was estimated to be low (< or approx. =100 eV) in PDX during neutral beam-heated discharges, but higher (> or approx. =300 eV) in PLT during ion cyclotron resonance heating.

  11. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  12. Impact of an Engineering Case Study in a High School Pre-Engineering Course

    ERIC Educational Resources Information Center

    Rutz, Eugene; Shafer, Michelle

    2011-01-01

    Students at an all-girls high school who were enrolled in an introduction to engineering course were presented an engineering case study to determine if the case study affected their attitudes toward engineering and their abilities to solve engineering problems. A case study on power plants was implemented during a unit on electrical engineering.…

  13. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented. PMID:25871044

  14. Plasma Science and Applications at the Intel International Science and Engineering Fair

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2005-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the Intel International Science and Engineering Fair (ISEF). This year's prize was awarded for projects in simulated ball lightning and plasma thrusters. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas that are received by the CPS e-mail or toll-free number. The success of these activities depend on the voluntary labor of CPS members and associates. These volunteers include the ISEF judges, whom the APS/DPP and the IEEE/PSAC helped identify. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  15. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Parametric data and preliminary designs on liquid rocket engines for low thrust cargo orbit-transfer-vehicles are described and those items where technology is required to enhance the designs are identified. The results of film cooling studies to establish the upper chamber pressure limit are given. The study showed that regen cooling with RP-1 was not feasible over the entire thrust and chamber pressure ranges. The thermal data showed that the RP-1 bulk temperature exceeded the study coking temperature limit of 1010 R. Based upon the results presented, O2/H2 and O2/CH4 regen engine systems and O2/H2 film cooled engines were selected for further study in the system analysis. Six engine design concepts are examined.

  16. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Ewen, R. L.

    1981-01-01

    This study identifies and evaluates promising LO2/HC rocket engine cycles, produces a consistent and reliable data base for vehicle optimization and design studies, demonstrates the significance of propulsion system improvements, and selects the critical technology areas necessary to realize an improved surface to orbit transportation system. Parametric LO2/HC engine data were generated over a range of thrust levels from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500 kN (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCH4, LC3H8, LO2, and LH2. LO2/RP-1 G.G. cycles were found to be not acceptable for advanced engines. The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2 as the coolant and incorporates an oxidizer rich preburner. The highest performing cycle for LO2/LCH4 and LO2/LC3H8 utilizes fuel cooling and incorporates both fuel and oxidizer rich preburners. LO2/HC engine cycles permitting the use of a third fluid LH2 coolant and an LH2 rich gas generator provide higher performance at significantly lower pump discharge pressures. The LO2/HC dual throat engine, because of its high altitude performance, delivers the highest payload for the vehicle configuration that was investigated.

  17. The plasma focus as a tool for plasma-wall-interaction studies

    NASA Astrophysics Data System (ADS)

    Ramos, G.; Martinez, M.; Herrera, J. J. E.; Castillo, F.

    2015-03-01

    The study of the interaction of magnetized plasmas with candidate materials for fusion reactors, as for example tungsten, is a main topic in fusion research. Many studies simulate the plasma wall interaction using ion beams, while only a few use plasma simulators. Plasma foci can produce dense magnetized plasmas of deuterium and helium among other species. We used the plasma focus Fuego-Nuevo II, to expose tungsten samples to deuterium and helium plasmas. The samples were analysed by means of SEM, RBS and NRA, evidencing surface erosion, surface melting and retention of deuterium in a shallow surface layer of 250 nm amounting 6.5·1016 D/cm2. The plasma temperature has been measured at the position of the samples using a triple Langmuir probe and compared to calculations of a snowplow model. The modelling of the electrode to reach desired plasma parameters is discussed.

  18. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  19. Depleted uranium plasma reduction system study

    SciTech Connect

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  20. Engine system assessment study using Martian propellants

    NASA Astrophysics Data System (ADS)

    Pelaccio, D.; Jacobs, M.; Collins, J.; Scheil, C.; Meyer, M.

    1992-07-01

    A feasibility study was performed that identified and characterized promising chemical propulsion system designs that utilize two or more of the propellant combinations: LOX/H2, LOX/CH4 and LOX/CO. The engine systems examined focused on the usage of common subsystem/component hardware where feasible. From the evaluation baseline employed, tripropellant MTV LOX cooled and bipropellant LEV and MEV engine systems are identified.

  1. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-01

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas. PMID:22233634

  2. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  3. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Chapman, I. T.; Coda, S.; Lennholm, M.; Albergante, M.; Jucker, M.

    2012-01-01

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  4. A Black-box Modelling Engine for Discharge Produced Plasma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Zakharov, V. S.; Zhang, Q.

    2006-01-01

    A Blackbox Modelling Engine (BME), is an instrument based on the adaptation of the RMHD code Z*, integrated into a specific computation environment to provide a turn key simulation instrument and to enable routine plasma modelling without specialist knowledge in numerical computation. Two different operating modes are provided: Detailed Physics mode & Fast Numerics mode. In the Detailed Physics mode, non-stationary, non-equilibrium radiation physics have been introduced to allow the modelling of transient plasmas in experimental geometry. In the Fast Numerics mode, the system architecture and the radiation transport is simplified to significantly accelerate the computation rate. The Fast Numerics mode allows the BME to be used realistically in parametric scanning to explore complex physical set up, before using the Detailed Physics mode. As an example of the results from the BME modelling, the EUV source plasma dynamics in the pulsed capillary discharge are presented.

  5. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  6. UHB Engine Fan Broadband Noise Reduction Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  7. UHB engine fan broadband noise reduction study

    NASA Astrophysics Data System (ADS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-06-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  8. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  9. Instabilities in fissioning plasmas as applied to the gas-core nuclear rocket-engine

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The compressional wave spectrum excited in a fissioning uranium plasma confined in a cavity such as a gas cored nuclear reactor, is studied. Computer results are presented that solve the fluid equations for this problem including the effects of spatial gradients, nonlinearities, and neutron density gradients in the reactor. Typically the asymptotic fluctuation level for the plasma pressure is of order 1 percent.

  10. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  11. FED baseline engineering studies report

    SciTech Connect

    Sager, P.H.

    1983-04-01

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.

  12. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  13. Numerical Study on Microwave Scattering by Various Plasma Objects

    NASA Astrophysics Data System (ADS)

    Wang, Guibin; Zhang, Lin; He, Feng; Ouyang, Jiting

    2016-08-01

    The scattering features of microwave (MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finite-difference time-domain (FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.

  14. Common Lunar Lander (CLL) Engineering Study Results

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette

    1991-01-01

    Information is given in viewgraph form on the Common Lunar Lander (CLL) engineering study results. The mission is to provide a delivery system to soft-land a 200 kg payload set at any given lunar latitude and longitude. Topics covered include the study schedule, mission goals and requirements, the CLL reference mission, costs, CLL options, and two stage performance analysis.

  15. Plasma Science and Applications at the Intel International Science and Engineering Fair

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2007-11-01

    Three years ago, the Coalition for Plasma Science (CPS) established a plasma prize at the Intel International Science and Engineering Fair. The APS/DPP and the IEEE/PSAC have helped make this effort a success by helping to identify judges. Each year since then, the number of plasma-related projects has increased. This year's prize was awarded for an instrument that, based on the ratio of spectral emission in two bands, detects when a high-pressure street light is about to fail. This allows time for an, efficient, scheduled replacement rather that an emergency service call. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. CPS activities include maintaining a website, http://www.plasmacoalition.org, developing educational literature, organizing educational luncheon presentations for Members of Congress and their staffs, and responding to questions about plasmas that are received by the CPS e-mail or toll-free number. The science fair prize and other CPS activities depend on the voluntary labor of CPS members and associates. New participants are needed to expand CPS activities and reach a larger audience. Send an e-mail to the CPS at CPS@plasmacoalition.org for information.

  16. Solar probe: an engineering study

    NASA Astrophysics Data System (ADS)

    Bedini, P.; Potocki, K.

    2003-04-01

    Solar Probe, a program to study the origins of the solar wind and the heating of the Sun’s corona, is currently a mission under study in NASA’s Sun-Earth Connection Theme. The availability of the Evolved Expendable Launch Vehicle (EELV) and Multi-Mission Radioisotope Thermoelectric Generators has enabled the development of an implementable Solar Probe mission concept that now offers substantial resources (55 kg and 47 W) for its science payload. The mission design assumes a launch on an EELV and uses a direct Jupiter Gravity Assist to reach a perihelion of 4 RS. The mission affords two polar solar passes with Earth in quadrature within 7.1 years from launch. A large (2.7-m diameter × 5.1-m), conical Carbon-Carbon thermal protection system harbors a complement of in situ and remote-sensing instruments (based on the 1999 Solar Probe Science Definition Team straw-man payload). A Ka-band telecommunications system allows uninterrupted real-time data downlink at perihelion (p) despite coronal scintillation effects, providing > 25 kbps even at closest approach. The 43.2 Gbits of data down-linked during each pass (p -- 10 days through p + 10 days) is augmented by as much as another 128 Gbits of data recorded on redundant solid-state recorders for post-perihelion playback. The capability exists to download cruise mode science as well. Fault tolerance is achieved using redundant avionics and a dedicated attitude control unit to assure that the proper orientation of the spacecraft is maintained throughout the passes. Viable opportunities begin with a 2010 launch, provided new start authority is obtained in FY-05.

  17. Wear Protection of AJ62 Mg Engine Blocks using Plasma Electrolytic Oxidation Process

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2011-12-01

    In order to reduce the fuel consumption and pollution, automotive companies are developing magnesium-intensive components. However, due to the low wear resistance of the magnesium (Mg) alloys, Mg cylinder bores are vulnerable to the sliding wear attack. In this thesis, two approaches were used to protect the cylinder bores, made of a new developed Mg engine alloy AJ62 (MgA16Mn0.34Sr2). The first one was to use a Plasma Electrolytic Oxidation (PEO) process to produce oxide coatings on the Mg bores. The wear properties of the PEO coatings were evaluated by sliding wear tests under the boundary lubrication condition at the room and elevated temperatures. It was found that due to the substrate softening and the vaporization loss of the lubricant, the tribological properties of the PEO coatings were deteriorated at the elevated temperature. In order to optimize the PEO process, a statistical method (Response surface method) was used to analyze the effects of the 4 main PEO process parameters with 2 levels for each and their interactions on the tribological properties of the PEO coatings at the room and elevated temperatures, individually. A cylinder liner made of an economical metal-matrix composite (MMC) was another approach to improve the wear resistance of the Mg cylinder bore. In this thesis, an A1383/SiO2 MMC was designed to replace the expensive Alusil alloy used in the BMW Mg/Al composite engine to build the cylinder liner. To further increase the wear resistance of the MMC, PEO process was also used to form an oxide coating on the MMC. The effects of the SiO 2 content and coating thickness on the tribological properties of the MMC were studied. To evaluate the wear properties of the optimal PEO coated Mg coupons and the MMC with the oxide coatings, Alusil and cast iron, currently used on the cylinder bores of the commercial aluminum engines, were used as reference materials. The optimal PEO coated Mg coupons and the oxidized MMC showed their advantages over the

  18. Photonic engineering for biological study

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    My dissertation focuses on designing and developing prototypes of optical tools in the laboratory that can facilitate practical medical therapies. More specifically, this dissertation examines two novel biophotonic techniques: (1) a frequency multiplexed confocal microscope with the potential to provide rational therapy of congestive heart failure (CHF), and (2) the "optical comb" with the potential to improve results of retina reattachment surgery and accelerate post surgical recovery. Next, I will discuss the background, design and initial experimental results of each study individually. Part I: The Frequency Multiplexed Confocal Microscope. To overcome the limitations of existing confocal microscope technology, this dissertation proposes a non-scanning, real-time, high resolution technique (a multi-point frequency multiplexed confocal microscope) to measure 3-D intracellular calcium ion concentration in a living cardiac myocyte. This method can be also applied to measure the intracellular sodium ion concentration, or other ions in which high quantum-yield fluorescent probes are available. The novelty of the proposed research lies in the introduction of carrier frequency multiplexing techniques which can differentiate fluorescence emitted at different spatial locations in cardiac myocyte by their modulated frequency. It therefore opens the possibility to visualize the transient dynamics of intracellular dynamics at multiple locations in cells simultaneously, which will shine a new light on our understanding of CHF. The procedure for frequency multiplexing proposed is described below. Multiple incident laser beams are focused onto different locations in an isolated rat cardiac myocyte with each beam modulated at a different carrier frequency. The fluorescence emission at each location therefore bears the same modulated frequency as the stimulation laser beam. Each fluorescence signal is sent to the photo multiplier tube (PMT) after being spatially filtered by a

  19. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salkeid, R.; Mueggenburg, H.; Ewen, R. L.

    1980-01-01

    Preliminary identification and evaluation of promising LO2/Hydrocarbon rocket engine cycles were used to produce a consistent and reliable data base for vehicle optimization and design studies. cycles G and C were chosen for design analysis. Preliminary design analysis of the heat transfer subsystem was performed to establish major technology requirements.

  20. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1980-01-01

    Preliminary identification and evaluation of promising liquid oxygen/ hydrocarbon (LO2/HC) rocket engine cycles is reported. A consistent and reliable data base for vehicle optimization and design studies, to demonstrate the significance of propulsion system improvements, and to select the critical technology areas necessary to realize such advances is presented.

  1. Development of super-clean diesel engine and combustor using nonthermal plasma hybrid aftertreatment

    NASA Astrophysics Data System (ADS)

    Okubo, Masaaki

    2015-10-01

    One of important and successful environmental applications of atmospheric-pressure corona discharge or plasma is electrostatic precipitator (ESP), which have been widely used for coal- or oil-fired boilers in electric power plants and particulate matter control emitted from industries such as glass melting furnace system, etc. In the ESPs, steady high voltage is usually applied to a pair of electrodes (at least, one of these has sharp edge). Unsteady pulsed high voltage is often applied for the collection of high-resistivity particulate matter (PM) to avoid reverse corona phenomena which reduce the collection efficiency of the ESPs. It was found that unsteady high voltage can treat hazardous gaseous components (NOx, SOx, hydrocarbon, and CO, etc.) in the exhaust gas, and researches were shifted from PM removal to hazardous gases aftertreatment with unsteady corona discharge induced plasmas. In the paper, recent results on diesel engine and industrial boiler emission controls are mainly reviewed among these our research topics.

  2. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    ERIC Educational Resources Information Center

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  3. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  4. Advanced General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  5. Status of Plasma Electron Hose Instability Studies in FACET

    SciTech Connect

    Adli, Erik; England, Robert Joel; Frederico, Joel; Hogan, Mark; Li, Selina Zhao; Litos, Michael Dennis; Nosochkov, Yuri; An, Weiming; Mori, Warren; /UCLA

    2011-12-13

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electron hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.

  6. Theoretical Study on Standing Wave Thermoacoustic Engine

    NASA Astrophysics Data System (ADS)

    Kalra, S.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    Applications of thermoacoustic engines are not limited to driving pulse tube cryocoolers. The performance of a thermoacoustic engine is governed by various design parameters like type of resonator, stack geometry, frequency, type of working gas etc. and various operating parameters like heat input, charging pressure etc. It is very important to arrive at an optimum configuration of the engine for which a theoretical model is required. In the present work, a theoretical analysis, based on linear acoustic theory of a standing wave type half wavelength thermoacoustic engine is carried out using DeltaEC software. The system dimensions like length of resonator, stack, hot and cold heat exchangers are fixed with a helium-argon mixture as the working gas and a parallel plate type stack. Later on, two plate spacings, corresponding to helium-argon mixture and nitrogen gas, are used for carrying out analysis with helium, argon, nitrogen, carbon dioxide and helium-argon mixture as working gases of the system. The effect of charging pressure on the performance of the system is studied in terms of resonating frequency, onset temperature, pressure amplitude, acoustic power and efficiency. The conclusions derived from the analysis are reported in the paper.

  7. Theoretical studies on plasma heating and confinement

    SciTech Connect

    Sudan, R.N.

    1993-01-01

    Three principal topics are covered in this final report: Stabilization of low frequency modes of an axisymmetric compact torus plasma confinement system, such as, spheromaks and FRC'S, by a population of large orbit axis encircling energetic ions. Employing an extension of the energy principle' which utilizes a Vlasov description for the energetic 'ion component, it has been demonstrated that short wavelength MHD type modes are stabilized while the long wavelength tilt and precessional modes are marginally stable. The deformation of the equilibrium configuration by the energetic ions results in the stabilization of the tilt mode for spheromaks. Formation of Ion Rings and their coalescence with spheromaks. A two dimensional electromagnetic PIC codes has been developed for the study of ion ring formation and its propagation, deformation and slowing down in a cold plasma. It has been shown that a ring moving at a speed less than the Alfven velocity can merge with a stationary spheromak. Anomalous transport from drift waves in a Tokomak. The Direct Interaction Approximation in used to obtain incremental transport coefficients for particles and heat for drift waves in a Tokomak. It is shown that the transport matrix does not obey Onsager's principle.

  8. Plasma simulation studies using multilevel physics models

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-19

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future.

  9. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    SciTech Connect

    Nirmol K. Podder

    2009-03-17

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1–20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas.

  10. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  11. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma.

    PubMed

    Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan

    2005-12-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.

  12. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  13. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salkeld, R.

    1980-01-01

    The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.

  14. Orbit Transfer Vehicle (OTV) engine phase A study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1978-01-01

    Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.

  15. Studies on plasma processing of blue dust

    NASA Astrophysics Data System (ADS)

    Samal, S. K.; P, Sindhoora L.; Mishra, S. C.; Mishra, B.

    2015-02-01

    Plasma smelting was carried out using blue dust and petroleum coke mixtures for five different compositions. By altering percentage of reductant and type of plasma forming gas, recovery rate and degree of metallization were calculated in order to examine the extent of reduction of blue dust. The products were characterized by XRD and optical microscopy techniques. The results of these investigations exhibited that highest degree of metallization and recovery rate of about 98% and 86% respectively, were achieved for nitrogen plasma smelted products.

  16. Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Nitin; Islam, Muhammad R.; Kang, Narae; Tetard, Laurene; Jung, Yeonwoong; Khondaker, Saiful I.

    2016-09-01

    The present study explores the structural, optical (photoluminescence (PL)), and electrical properties of lateral heterojunctions fabricated by selective exposure of mechanically exfoliated few layer two-dimensional (2D) molybdenum disulfide (MoS2) flakes under oxygen (O2)-plasma. Raman spectra of the plasma exposed MoS2 flakes show a significant loss in the structural quality due to lattice distortion and creation of oxygen-containing domains in comparison to the pristine part of the same flake. The PL mapping evidences the complete quenching of peak A and B consistent with a change in the exciton states of MoS2 after the plasma treatment, indicating a significant change in its band gap properties. The electrical transport measurements performed across the pristine and the plasma-exposed MoS2 flake exhibit a gate tunable current rectification behavior with a rectification ratio up to 1.3  ×  103 due to the band-offset at the pristine and plasma-exposed MoS2 interface. Our Raman, PL, and electrical transport data confirm the formation of an excellent lateral heterojunction in 2D MoS2 through its bandgap modulation via oxygen plasma.

  17. Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma.

    PubMed

    Choudhary, Nitin; Islam, Muhammad R; Kang, Narae; Tetard, Laurene; Jung, Yeonwoong; Khondaker, Saiful I

    2016-09-14

    The present study explores the structural, optical (photoluminescence (PL)), and electrical properties of lateral heterojunctions fabricated by selective exposure of mechanically exfoliated few layer two-dimensional (2D) molybdenum disulfide (MoS2) flakes under oxygen (O2)-plasma. Raman spectra of the plasma exposed MoS2 flakes show a significant loss in the structural quality due to lattice distortion and creation of oxygen-containing domains in comparison to the pristine part of the same flake. The PL mapping evidences the complete quenching of peak A and B consistent with a change in the exciton states of MoS2 after the plasma treatment, indicating a significant change in its band gap properties. The electrical transport measurements performed across the pristine and the plasma-exposed MoS2 flake exhibit a gate tunable current rectification behavior with a rectification ratio up to 1.3  ×  10(3) due to the band-offset at the pristine and plasma-exposed MoS2 interface. Our Raman, PL, and electrical transport data confirm the formation of an excellent lateral heterojunction in 2D MoS2 through its bandgap modulation via oxygen plasma.

  18. Theoretical and experimental study of thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Raspet, Richard; Bass, Henry E.; Arnott, W. P.

    1992-12-01

    A three year study of thermoacoustic engines operating as prime movers and refrigerators was completed. The major thrust of this effort was the use and theoretical description of ceramic honeycomb structures as the active element in thermoacoustic engines. An air-filled demonstration prime mover was constructed and demonstrated at Acoustical Society of America and IEE meetings. A helium-filled test prime mover was designed and built an is being employed in studies of the threshold of oscillation as a function of temperature difference and pressure. In addition, acoustically based theories of the thermoacoustic engine have been developed and tested for a parallel plate stack at the Naval Postgraduate School and for a honeycomb stack at the University of Mississippi. Most of this work is described in detail in the attached publications. In this report we will give an overview of the research completed to date and its relationship to work performed at the Naval Postgraduate School and to future work at the University of Mississippi.

  19. Center for the Study of Plasma Microturbulence

    SciTech Connect

    Parker, Scott E.

    2012-03-02

    We have discovered a possible "natural fueling" mechanism in tokamak fusion reactors using large scale gyrokinetic turbulence simulation. In the presence of a heat flux dominated tokamak plasma, cold ions naturally pinch radially inward. If cold DT fuel is introduced near the edge using shallow pellet injection, the cold fuel will pinch inward, at the expense of hot helium ash going radially outward. By adjusting the cold DT fuel concentration, the core DT density profiles can be maintained. We have also shown that cold source ions from edge recycling of cold neutrals are pinched radially inward. This mechanism may be important for fully understanding the edge pedestal buildup after an ELM crash. Work includes benchmarking the gyrokinetic turbulence codes in the electromagnetic regime. This includes cyclone base case parameters with an increasing plasma beta. The code comparisons include GEM, GYRO and GENE. There is good linear agreement between the codes using the Cyclone base case, but including electromagnetics and scanning the plasma beta. All the codes have difficulty achieving nonlinear saturation as the kinetic ballooning limit is approached. GEM does not saturate well when beta gets above about 1/2 of the ideal ballooning limit. We find that the lack of saturation is due to the long wavelength k{sub y} modes being nonlinearly pumped to high levels. If the fundamental k{sub y} mode is zeroed out, higher values of beta nonlinearly saturate well. Additionally, there have been studies to better understand CTEM nonlinear saturation and the importance of zonal flows. We have continued our investigation of trapped electron mode (TEM) turbulence. More recently, we have focused on the nonlinear saturation of TEM turbulence. An important feature of TEM is that in many parameter regimes, the zonal flow is unimportant. We find that when zonal flows are unimportant, zonal density is the dominant saturation mechanism. We developed a simple theory that agrees with the

  20. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    NASA Astrophysics Data System (ADS)

    Goodall, D. H. J.

    1982-12-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs.

  1. Experimental study of ceramic coated tip seals for turbojet engines

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Klann, G. A.; Lassow, E. S.; Mchenry, M.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond boat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface.

  2. Oregon Pre-Engineering Learning Outcomes Study: Final Report

    ERIC Educational Resources Information Center

    Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia

    2007-01-01

    The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…

  3. Space transportation booster engine configuration study. Addendum: Design definition document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.

  4. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; David Moyeda; Mark Sheldon

    2000-04-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

  5. Experimental Study on Revetec Engine Cam Performance

    NASA Astrophysics Data System (ADS)

    Mohyeldin Gasim, Maisara; Giok Chui, Lee; Anwar, Khirul Azhar bin

    2012-09-01

    In Revetec engine (three-lobed) cam replaces the crankshaft to convert the reciprocating motion of the engine piston, to a rotating motion in the drive line. Since the cam controls the piston movement, the cam profile has a great effect on engine performance. In this paper an experimental study was done to a (three- lobed) cam with Cycloidal motion profile but with different ratios between the base circle radius of the cam and the radius of the roller follower. DEWESoft was used to find the displacement and the vibration of the piston, and compare the actual results from the test with the theoretical results from the cam profile equation. The results showed that there is a periods of miss contact between the follower and the cam when the ratio between the base circle radius of the cam and the radius of the roller follower is less than a certain value, and also increasing of vibration. The suggested ratio between the cam and follower radius is to be more than 2:1.

  6. Nuclear thermal propulsion engine cost trade studies

    SciTech Connect

    Paschall, R.K. )

    1993-01-10

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp[gt]870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified.

  7. Studies on pressure-gain combustion engines

    NASA Astrophysics Data System (ADS)

    Matsutomi, Yu

    Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient

  8. Collisionless expansion of pulsed radio frequency plasmas. II. Parameter study

    NASA Astrophysics Data System (ADS)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The plasma parameter dependencies of the dynamics during the expansion of plasma are studied with the use of a versatile particle-in-cell simulation tailored to a plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47, 055207 (2014); Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The plasma expansion into a low-density ambient plasma features a propagating ion front that is preceding a density plateau. It has been shown that the front formation is entangled with a wave-breaking mechanism, i.e., an ion collapse [Sack and Schamel, Plasma Phys. Controlled Fusion 27, 717 (1985); Sack and Schamel, Phys. Lett. A 110, 206 (1985)], and the launch of an ion burst [Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The systematic parameter study presented in this paper focuses on the influence on this mechanism its effect on the maximum velocity of the ion front and burst. It is shown that, apart from the well known dependency of the front propagation on the ion sound velocity, it also depends sensitively on the density ratio between main and ambient plasma density. The maximum ion velocity depends further on the initial potential gradient, being mostly influenced by the plasma density ratio in the source and expansion regions. The results of the study are compared with independent numerical studies.

  9. The study of a plasma jet injected by an on-board plasma thruster

    NASA Astrophysics Data System (ADS)

    Grebnev, I. A.; Ivanov, G. V.; Khodnenko, V. P.; Morozov, A. I.; Perkov, I. A.; Pertsev, A. A.; Romanovskii, Iu. A.; Rylov, Iu. P.; Shishkin, G. G.; Trifonov, Iu. V.

    The injection of a steady plasma jet into the ionosphere results in interactions which were studied in experiments conducted onboard two Meteor satellites in 1977-1979. The jet parameters at the propulsion system output were as follows: propulsive mass: Xe; Xe (+) ion density at the nozzle section; 3 x 10 to the 11th per cu cm; plasma stream divergence: 20 degrees; jet velocity: 10-12 km/cm; ion energy: 130 eV; electron temperature: 1 + 3 eV. A Bennett-type modified radio-frequency mass-spectrometer and a two-channel electromagnetic wave analyzer were used for the measurements. It was found that (1) the injected plasma jet propagation depends on the jet injection pitch angle; (2) when the plasma jet was injected along the magnetic field, impactless jet spreading took place without considerable interaction with the ionospheric plasma; (3) when the plasma jet was injected across the magnetic field, considerable interaction was observed between the plasma jet/ionospheric plasma and the earth's magnetic field; and (4) electromagnetic fields were generated near the satellite by plasma jet interaction.

  10. Studies of the ablated plasma from experimental plasma gun disruption simulations

    NASA Astrophysics Data System (ADS)

    Rockett, P. D.; Hunter, J. A.; Bradley, J. T.; Gahl, J. M.; Litunovsky, V. N.; Ovchinnokov, I. B.; Ljublin, B. V.; Kuznetsov, B. E.; Titov, V. A.; Zhitlukhin, A.; Arkhipov, K.; Bakhtin, V.; Toporkov, D.

    1995-04-01

    Extensive simulations of tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense plasma shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1-40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 10-100 MJ/m 2. A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of ˜ 1 mm. Time-resolved data with 40-200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface.

  11. Template for Systems Engineering Tools Trade Study

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.

    2005-01-01

    A discussion of Systems Engineering tools brings out numerous preferences and reactions regarding tools of choice as well as the functions those tools are to perform. A recent study of Systems Engineering Tools for a new Program illustrated the need for a generic template for use by new Programs or Projects to determine the toolset appropriate for their use. This paper will provide the guidelines new initiatives can follow and tailor to their specific needs, to enable them to make their choice of tools in an efficient and informed manner. Clearly, those who perform purely technical functions will need different tools than those who perform purely systems engineering functions. And, everyone has tools they are comfortable with. That degree of comfort is frequently the deciding factor in tools choice rather than an objective study of all criteria and weighting factors. This paper strives to produce a comprehensive list of criteria for selection with suggestions for weighting factors based on a number of assumptions regarding the given Program or Project. In addition, any given Program will begin with assumptions for its toolset based on Program size, tool cost, user base and technical needs. In providing a template for tool selection, this paper will guide the reader through assumptions based on Program need; decision criteria; potential weighting factors; the need for a compilation of available tools; the importance of tool demonstrations; and finally a down selection of tools. While specific vendors cannot be mentioned in this work, it is expected that this template could serve other Programs in the formulation phase by alleviating the trade study process of some of its subjectivity.

  12. Spectroscopy Study of Ar + CO2 Plasmas in ASTRAL.

    NASA Astrophysics Data System (ADS)

    Munoz, Jorge; Boivin, Robert; Kamar, Ola; Loch, Stuart; Ballance, Connor

    2006-10-01

    A spectroscopy study of the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source running Ar + CO2 gas mix is presented. ASTRAL produces Ar plasmas: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A spectrometer which features a 0.33 m Criss-Cross monochromator and a CCD camera is used for this study. Very different plasmas are produced following the relative importance of CO2 in the gas mixture. At low CO2 concentration, the plasmas are similar to those obtained with pure Ar with weak CO2, CO2^+, CO and CO^+ bands. The usual blue plasma core associated with intense Ar II transitions is observed with however a significant white glow coming from the outer plasma regions. At higher CO2 concentration, the plasma becomes essentially molecular and can be described as an intense white plasma column. Molecular dissociative processes associated with the production of strong C and O atomic lines are observed under specific plasma conditions. The atomic spectral lines are compared with ADAS modeling results. This study indicates the possible advantages of using a helicon source to control the CO2 plasma chemistry for industrial applications.

  13. Use of a biological reactor and platelet-rich plasma for the construction of tissue-engineered bone to repair articular cartilage defects

    PubMed Central

    Li, Huibo; Sun, Shui; Liu, Haili; Chen, Hua; Rong, Xin; Lou, Jigang; Yang, Yunbei; Yang, Yi; Liu, Hao

    2016-01-01

    Articular cartilage defects are a major clinical burden worldwide. Current methods to repair bone defects include bone autografts, allografts and external fixation. In recent years, the repair of bone defects by tissue engineering has emerged as a promising approach. The present study aimed to assess a novel method using a biological reactor with platelet-rich plasma to construct tissue-engineered bone. Beagle bone marrow mesenchymal stem cells (BMSCs) were isolated and differentiated into osteoblasts and chondroblasts using platelet-rich plasma and tricalcium phosphate scaffolds cultured in a bioreactor for 3 weeks. The cell scaffold composites were examined by scanning electron microscopy (SEM) and implanted into beagles with articular cartilage defects. The expression of osteogenic markers, alkaline phosphatase and bone γ-carboxyglutamate protein (BGLAP) were assessed using polymerase chain reaction after 3 months. Articular cartilage specimens were observed histologically. Adhesion and distribution of BMSCs on the β-tricalcium phosphate (β-TCP) scaffold were confirmed by SEM. Histological examination revealed that in vivo bone defects were largely repaired 12 weeks following implantation. The expression levels of alkaline phosphatase (ALP) and BGLAP in the experimental groups were significantly elevated compared with the negative controls. BMSCs may be optimum seed cells for tissue engineering in bone repair. Platelet-rich plasma (PRP) provides a rich source of cytokines to promote BMSC function. The β-TCP scaffold is advantageous for tissue engineering due to its biocompatibility and 3D structure that promotes cell adhesion, growth and differentiation. The tissue-engineered bone was constructed in a bioreactor using BMSCs, β-TCP scaffolds and PRP and displayed appropriate morphology and biological function. The present study provides an efficient method for the generation of tissue-engineered bone for cartilage repair, compared with previously used

  14. Engineering aspects of seismological studies in Peru

    USGS Publications Warehouse

    Ocola, L.

    1982-01-01

    In retrospect, the Peruvian national long-range earthquake-study program began after the catastrophic earthquake of May 31, 1970. This earthquake triggered a large snow avalanche from Huascaran mountain, killing over 60,000 people, and covering with mud small cities and tens of villages in the Andean valley of Callejon de Huaylas, Huaraz. Since then, great efforts have been made to learn about the natural seismic environment and its engineering and social aspects. The Organization of American States (OAS)has been one of the most important agencies in the development of the program. 

  15. The space transportation main engine phase A' study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Transportation Main Engine Phase A prime study was conducted over a 7 month period as an extension to the Phase A study. The Phase A prime program was designed to expand the study effort completed in Phase A, focusing on the baseline engine configuration selected. Analysis and trade studies were conducted to further optimize some of the major engine subsystems. These changes resulted in improvements to the baseline engine. Several options were evaluated for consideration by vehicle contractors.

  16. Engineering Outcomes of Grades 10-12 Using Different Pre-Engineering Curriculums: A Case Study

    ERIC Educational Resources Information Center

    Wilhelmsen, Cheryl A.

    2013-01-01

    The purpose of this study is to identify the important constructs and their key indicators that are to be included on an instrument developed to measure the engineering design process and outcome of students in high schools that use the Project Lead the Way and Engineering by Design curriculums. Several pre-engineering curriculums are used in high…

  17. Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang

    2016-07-01

    Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  18. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    SciTech Connect

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  19. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  20. Development of Electrothermal Pulsed Plasma Thrusters for Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship

    SciTech Connect

    Ishii, Yushuke; Yamamoto, Tsuyoshi; Yamada, Minetsugu; Tahara, Hirokazu

    2008-12-31

    The Project of Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology. In PROITERES, a 10-kg small satellite with electrothermal pulsed plasma thrusters (PPTs), named JOSHO, will be launched in 2010. The main mission is powered flight of small satellite by electric thruster itself. Electrothermal PPTs were studied with both experiments and numerical simulations. An electrothermal PPT with a side-fed propellant feeding mechanism achieved a total impulse of 3.6 Ns with a repetitive 10000-shot operation. An unsteady numerical simulation showed the existence of considerable amount of ablation delaying to the discharge. However, it was also shown that this phenomenon should not be regarded as the 'late time ablation' for electrothermal PPTs.

  1. The discharge plasma in ion engine neutralizers: Numerical simulations and comparisons with laboratory data

    SciTech Connect

    Mikellides, Ioannis G.; Goebel, Dan M.; Snyder, John Steven; Katz, Ira; Herman, Daniel A.

    2010-12-01

    Numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes are presented. The simulations were performed using a two-dimensional axisymmetric model that solves numerically an extensive system of conservation laws for the partially ionized gas in these devices. The results for the plasma are compared directly with Langmuir probe measurements. The computed keeper voltages are also compared with the observed values. Whenever model inputs and/or specific physics of the cathode discharge were uncertain or unknown additional sensitivity calculations have been performed to quantify the uncertainties. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NASA's evolutionary xenon thruster. It is found that a likely cause of the observed keeper voltage drop in a long duration test of the engine is cathode orifice erosion.

  2. Radar studies of midlatitude ionospheric plasma drifts

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.

    2001-02-01

    We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional E×B drifts over these stations. We discuss, for the first time, the Saint Santin drift patterns during solar maximum. We have used these quiet time models to extract the geomagnetic perturbation drifts which were modeled as a function of the time history of the auroral electrojet indices. Our results illustrate the evolution of the disturbance drifts driven by the combined effects of prompt penetration and longer lasting perturbation electric fields. The meridional electrodynamic disturbance drifts have largest amplitudes in the midnight-noon sector. The zonal drifts are predominantly westward, with largest amplitudes in the dusk-midnight sector and, following a decrease in the high-latitude convection, they decay more slowly than the meridional drifts. The prompt penetration and steady state zonal disturbance drifts derived from radar measurements are in good agreement with results obtained from both the ion drift meter data on board the Dynamics Explorer 2 (DE 2) satellite and from the Rice Convection Model.

  3. Developments and Plasma Studies at the ATOMKI-ECRIS

    SciTech Connect

    Biri, S.; Valek, A.; Takacs, E.; Radics, B.; Palinkas, J.; Karacsony, J.; Kenez, L.; Kitagawa, A.; Muramatsu, M.

    2005-03-15

    The 14.5 GHz ECR ion source of the ATOMKI is a stand-alone device producing highly charged ion beams for ion-surface experiments and a variety of low charged plasmas and beams for plasma physics studies and for practical applications. In the past two years we performed plasma diagnostics measurements using Langmuir-probes and X-ray camera. Langmuir-probe results allowed estimating the plasma potential close to the resonance zone. The studying of X-ray pictures of Xe-Ar plasmas helps understanding the gas-mixing phenomena. A mixture plasma of fullerene and ferrocene was generated and FeC60 hybrid molecules were detected in the extracted beam.

  4. Studying Science and Engineering Learning in Practice

    ERIC Educational Resources Information Center

    Penuel, William R.

    2016-01-01

    A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those…

  5. Orbit transfer vehicle engine study. Phase A: Continuation (study results)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Studies included: selection of boost pump designs for low NPSH operation and generation of associated programmatic data; evaluation of OTV engine operation at intermediate thrust levels and impact on programmatics; and assessments of OTV engine operation at idle-mode thrusts under conditions experienced during aerobraking maneuvers of the ABOTV. As a result of the studies, it was recommended that the original OTV boost pump designs be used without change for low NPSH operation. Intermediate thrust operation is feasible for both the expander cycle and staged combustion cycles.

  6. Studies of Burning Plasma Physics in JET

    NASA Astrophysics Data System (ADS)

    Mayoral, Marie-Line

    2003-10-01

    In burning plasma experiments, the very energetic alpha particles resulting from Deuterium-Tritium fusion reactions will be the dominant heating mechanism. This type of heating is different in two aspects from the externally supplied heating dominant in present experiments. First, alpha particles heating depends on the local values of plasma density and temperature, but will also influence, in turn, these plasma parameters. We will consequently be faced with an intricate self-consistent plasma system, with less powerful outside actuators to control e.g. the fusion rate. Experiments have been performed at JET where a part of the external Radio Frequency (RF) heating, determined by the measured central density and temperature, has been used to simulate of the alpha heating and the abovementioned dependence. Secondly, the presence of very energetic particles with large orbits can influence the magneto-hydrodynamic stability of plasmas. Sawteeth, for example, can be temporarily stabilized, resulting in stronger sawtooth crashes when the higher stability limit is eventually crossed. Neo-classical tearing modes (NTMs), extremely damaging for the plasma confinement, are found to be associated with those large crashes. Energetic 4He ions injected at 120 keV and accelerated by RF power to over 2 MeV have provided the necessary energetic particles to investigate those effects. New scenarios have been used in order to control the stability of the sawteeth even in the presence of fast particles and prevent or delay the appearance of NTMs. Further results are expected from the planned trace tritium experiments foreseen on JET during October 2003. This will, together with state-of-the-art numerical simulations, deliver invaluable information for a better understanding and prediction of burning plasma behaviour.

  7. Studies of the ablated plasma from experimental plasma gun disruption simulations

    NASA Astrophysics Data System (ADS)

    Rockett, P. D.; Hunter, J. A.; Bradley, J. T., III; Gahl, J. M.; Zhitlukhin, A.; Arkhipov, K.; Bakhtin, V.; Toporkov, D.; Litunovsky, V. N.; Ovchinnokov, I. B.

    Extensive simulations of Tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1--40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 1--10 kJ/sq cm. A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of approximately 1 mm resolution. Time-resolved data with 40--200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface.

  8. Studies of the ablated plasma from experimental plasma gun disruption simulations

    SciTech Connect

    Rockett, P.D.; Hunter, J.A.; Bradley, J.T.

    1994-07-01

    Extensive simulations of Tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1--40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 1--10 kJ/cm{sup 2}. A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of {approximately}1 mm resolution. Time-resolved data with 40--200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface.

  9. An engineering journey: A transcendental phenomenological study of African-American female engineers' persistence

    NASA Astrophysics Data System (ADS)

    Somerville-Midgette, Kristy Nicole

    This transcendental phenomenological research study examined the perspectives and lived experiences of African-American female engineers related to the factors that led to their persistence to enter, persist through, and remain in the field. The study was guided by four research questions: (a) How do K-12 experiences shape African-American female engineers' decisions to enter the STEM field? (b) What persistence factors motivated African-American female engineers to enter the engineering profession? (c) What are the factors that shape African-American female engineers' persistence to progress through postsecondary engineering programs? (d) How do professional experiences shape African-American female engineers' persistence in the field? Cognitive interviewing techniques were used to validate data collection instruments. Interviews, focus groups, and timelines were used to collect data aimed at capturing the essence of the phenomenon of African-American engineers' persistence. The data was analyzed using Moustakas' (1994) phenomenological data analysis methods. The findings indicated that early academic experiences and achievement shaped participants' decision to enter the engineering field. Environmental factors, intrinsic motivation, support systems motivated participants to persist through postsecondary programs and to enter the engineering field. Further research is needed to examine the early academic experiences that encourage African-American females to enter engineering. In addition, research is needed to examine the barriers that lead to attrition of African-American females in engineering.

  10. Plasma characterization studies for materials processing

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  11. Development study of a precooled turbojet engine

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya; Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Fukiba, Katsuyoshi; Okai, Daisaku Masaki, Keiichi; Fujita, Kazuhisa; Hongo, Motoyuki; Sawai, Shujiro

    2010-04-01

    A precooled turbojet engine has been developed by JAXA used for the hypersonic airplane and spaceplane. The subscale engine named "S-engine" whose thrust and weight are about 1.2 kN and 100 kg was designed, fabricated and tested. The components and the system firing tests under the sea-level-static condition were successfully conducted.In the next phase, a flight test of the S-engine is planned using a stratospheric balloon in 2010 called balloon-based operation vehicle (BOV). The vehicle is dropped from an altitude of 40 km by a high altitude balloon. After 40 s free-fall, the vehicle is pulled up and the S-engine operates for 30 s at about Mach 2. High-altitude tests of the core-engine verified the performance and healthiness of the engine under the condition corresponding to the BOV flight trajectory.

  12. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  13. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  14. Experimental study of the plasma window

    NASA Astrophysics Data System (ADS)

    Shi, Ben-Liang; Huang, Sheng; Zhu, Kun; Lu, Yuan-Rong

    2014-01-01

    The plasma window is an advanced apparatus that can work as the interface between a vacuum and a high pressure region. It can be used in many applications that need atmosphere-vacuum interface, such as a gas target, electron beam welding, synchrotron radiation and a spallation neutron source. A test bench of the plasma window is constructed in Peking University. A series of experiments and the corresponding parameter measurements have been presented in this article. The experiment result indicates the feasibility of such a facility acting as an interface between a vacuum and a high pressure region.

  15. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  16. Study of Gas and Plasma Conditions in the High Isp VASIMR Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Molvig, K.

    2002-01-01

    Internal electrode-free VASIMR thruster [1-3] consists of three major sections: plasma production, plasma heating, and plasma exhaust. In our previous works [6-10] we have performed an extensive study of plasma dynamics in the plasma source. We have developed several models of helicon plasma discharge utilizing hydrogen (deuterium) gas, and analyzed its performance in the experimental set-up [4-5]. In the present work we are trying to expand and apply existing models to the helium gas propellant case. Though the specific impulse is somewhat lower with heavier helium atoms, but unlike hydrogenic species helium doesn't form molecules, and therefore shows less radiative losses. We extend 0-D plasma-chemistry, 1-D mixed-collisional and kinetic gas flow models [11] to characterize gas/plasma composition and condition in the helium helicon discharge. Recent experiments suggest that there is a strong dependence of both VASIMR 1st and 2nd stage performance on the magnetic field mirror ratio in the VX-10 experimental configuration. We study effects of the plasma particles trapping in a strong magnetic field and their acceleration by the combination of the mirror force and ambipolar potential for the typical VASIMR experiment conditions. We also discuss possibility for plasma instabilities and comment on the micro-scale plasma transport in the VASIMR thruster. [1] Chang Díaz F.R., "Research Status of The Variable Specific Impulse Magnetoplasma Rocket", Proc. 39th Annual Meeting of the Division of Plasma Physics (Pittsburgh, PA, 1997), Bulletin of APS, 42 (1997) 2057. [2] Chang Díaz, F. R., Squire, J. P., Carter, M., et al., `'Recent Progress on the VASIMR'', Proc. 41th Annual Meeting of the Division of Plasma Physics (Seattle, WA, 1999), Bulletin of APS, 44 (1999) 99. [3] Chang Díaz, F. R., Squire, J. P., Ilin, A. V., et al. "The Development of the VASIMR Engine", Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA99), Sept. 13

  17. Computational studies of plasma lipoprotein lipids.

    PubMed

    Pan, Lurong; Segrest, Jere P

    2016-10-01

    Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in

  18. Trade studies of plasma elongation for next-step tokamaks

    SciTech Connect

    Galambos, J.D.; Strickler, D.J.; Peng, Y.K.M.; Reid, R.L.

    1988-09-01

    The effect of elongation on minimum-cost devices is investigated for elongations ranging from 2 to 3. The analysis, carried out with the TETRA tokamak systems code, includes the effects of elongation on both physics (plasma beta limit) and engineering (poloidal field coil currents) issues. When ignition is required, the minimum cost occurs for elongations from 2.3 to 2.9, depending on the plasma energy confinement scaling used. Scalings that include favorable plasma current dependence and/or degradation with fusion power tend to have minimum cost at higher elongation (2.5-2.9); scalings that depend primarily on size result in lower elongation (/approximately/2.3) for minimum cost. For design concepts that include steady-state current-driven operation, minimum cost occurs at an elongation of 2.3. 12 refs., 13 figs.

  19. Studying surface glow discharge for application in plasma aerodynamics

    NASA Astrophysics Data System (ADS)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  20. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vitali V. Lissianski; Vladimir M. Zamansky

    1999-04-29

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

  1. A study of petrol engine dynamics

    SciTech Connect

    Winterbone, D.E.; Richards, P.

    1983-11-01

    A microprocessor controlled test bed was built for steady state mapping of petrol engines using a sweep mapping technique. The addition of an electric motor to the fast acting dynamometer allowed rapid load changes to be applied at nominally constant speed. This made it possible to consider the dynamic behaviour of the power generation sub-system of the engine. The engine was initially subjected to ramp changes of torque but these did not give consistent results. PRBS signals were then used for the same variable and a mathematical transfer function model developed for the engine power system. The engine was considered both as a continuous and sample data system. Results will be presented which show fuel management has an appreciable effect on the engine dynamic response.

  2. Confinement Studies in High Temperature Spheromak Plasmas

    SciTech Connect

    Hill, D N; Mclean, H S; Wood, R D; Casper, T A; Cohen, B I; Hooper, E B; LoDestro, L L; Pearlstein, L D; Romero-Talamas, C

    2006-10-23

    Recent results from the SSPX spheromak experiment demonstrate the potential for obtaining good energy confinement (Te > 350eV and radial electron thermal diffusivity comparable to tokamak L-mode values) in a completely self-organized toroidal plasma. A strong decrease in thermal conductivity with temperature is observed and at the highest temperatures, transport is well below that expected from the Rechester-Rosenbluth model. Addition of a new capacitor bank has produced 60% higher magnetic fields and almost tripled the pulse length to 11ms. For plasmas with T{sub e} > 300eV, it becomes feasible to use modest (1.8MW) neutral beam injection (NBI) heating to significantly change the power balance in the core plasma, making it an effective tool for improving transport analysis. We are now developing detailed designs for adding NBI to SSPX and have developed a new module for the CORSICA transport code to compute the correct fast-ion orbits in SSPX so that we can simulate the effect of adding NBI; initial results predict that such heating can raise the electron temperature and total plasma pressure in the core by a factor of two.

  3. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  4. Laboratory Studies of Supersonic Magnetized Plasma Jets and Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey

    2013-06-01

    In this talk I will focus on laboratory plasma experiments producing magnetically driven supersonic plasma jets and on the interaction of these jets with ambient media. The experiments are scalable to astrophysical flows in that the critical dimensionless numbers such as the plasma collisionality, the plasma beta, the Reynolds number and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes. In the experiments the jets are driven and collimated by the toroidal magnetic fields and it is found that the level of MHD instabilities in the jets strongly depends on the strength of the field represented by the ratio of the thermal to magnetic field pressures (plasma beta). The experiments show the possibility of formation of episodic outflows, with periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities [1,2]. We also found that it is possible to form quasi-laminar jets which are “indirectly” collimated by the toroidal magnetic fields, but this requires the presence of the lower density halo plasma surrounding the central jet [3]. Studies of the radiative shocks formed in the interaction of the supersonic magnetized plasma flows with ambient plasma will be also presented, and the development of cooling instabilities in the post-shock plasma will be discussed. This research was sponsored by EPSRC Grant No. EP/G001324/1 and by the OFES DOE under DOE Cooperative Agreement No. DE-SC-0001063. References 1. A. Ciardi, S.V. Lebedev, A. Frank et al., The Astrophysical Journal, 691: L147-L150 (2009) 2. F.A. Suzuki-Vidal, S.V. Lebedev, S.N. Bland et al., Physics of Plasmas, 17, 112708 (2010). 3. F.A. Suzuki-Vidal, M. Bocchi, S.V. Lebedev et al., Physics of Plasmas, 19, 022708 (2012).

  5. Opportunities for Utilizing the International Space Station for Studies of F2- Region Plasma Science and High Voltage Solar Array Interactions with the Plasma Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria; Wright, Kenneth; Craven, Paul; Koontz, Steven

    2010-01-01

    The near circular, 51.6deg inclination orbit of the International Space Station (ISS) is maintained within an altitude range of approximately 300 km to 400 km providing an ideal platform for conducting in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) is a suite of instruments installed on the ISS in August 2006 which includes a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). The primary purpose for deploying the FPMU is to characterize ambient plasma temperatures and densities in which the ISS operates and to obtain measurements of the ISS potential relative to the space plasma environment for use in characterizing and mitigating spacecraft charging hazards to the vehicle and crew. In addition to the engineering goals, data from the FPMU instrument package is available for collaborative multi-satellite and ground based instrument studies of the F-region ionosphere during both quiet and disturbed periods. Finally, the FPMU measurements supported by ISS engineering telemetry data provides a unique opportunity to investigate interactions of the ISS high voltage (160 volt) solar array system with the plasma environment. This presentation will provide examples of FPMU measurements along the ISS orbit including night-time equatorial plasma density depletions sampled near the peak electron density in the F2-region ionosphere, charging phenomenon due to interaction of the ISS solar arrays with the plasma environment, and modification of ISS charging due to visiting vehicles demonstrating the capabilities of the FPMU probes for monitoring mid and low latitude plasma processes as well as vehicle interactions with the plasma environment.

  6. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  7. Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma.

    PubMed

    Atyabi, Seyed Mohammad; Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Mivehchi, Houri; Nagheh, Zahra

    2016-06-01

    The field of tissue engineering is an emerging discipline which applies the basic principles of life sciences and engineering to repair and restore living tissues and organs. The purpose of this study was to investigate the effect of cold and non-thermal plasma surface modification of poly (ϵ-caprolactone) (PCL) scaffolds on fibroblast cell behavior. Nano-fiber PCL was fabricated through electrospinning technique, and some fibers were then treated by cold and non-thermal plasma. The cell-biomaterial interactions were studied by culturing the fibroblast cells on nano-fiber PCL. Scaffold biocompatibility test was assessed using an inverted microscope. The growth and proliferation of fibroblast cells on nano-fiber PCL were analyzed by MTT viability assay. Cellular attachment on the nano-fiber and their morphology were evaluated using scanning electron microscope. The result of cell culture showed that nano-fiber could support the cellular growth and proliferation by developing three-dimensional topography. The present study demonstrated that the nano-fiber surface modification with cold plasma sharply enhanced the fibroblast cell attachment. Thus, cold plasma surface modification greatly raised the bioactivity of scaffolds.

  8. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  9. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  10. Study plasma interactions in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Wolf, R. A.

    1983-01-01

    Analyzed data from rocket flight, 29.007UE is presented. In a discrete electron arc the measured upward moving electrons are well accounted for by secondaries produced in collisional scattering of the measured downcoming electrons. No collective mechanisms need to invoke. The low energy downcoming electrons are accounted for by thermal plasma accelerated through a potential drop of a few kV that specularly reflects upward-moving lower energy electrons. No low altitude collective effects need to invoke in the arc. Simultaneous measurements of electric field by double probes on 29.007 and the Chatanika Radar allow one to infer that there are upward drifting ions above the discrete electron arc, and there is a westward neutral wind in the discrete arc. Two rocket payloads were built to investigate plasma effects in the pulsating aurora.

  11. Helicon Plasma Source Optimization Studies for VASIMR

    NASA Technical Reports Server (NTRS)

    Goulding, R. H.; Baity, F. W.; Barber, G. C.; Carter, M. D.; ChangDiaz, F. R.; Pavarin, D.; Sparks, D. O.; Squire J. P.

    1999-01-01

    A helicon plasma source at Oak Ridge National Laboratory is being used to investigate operating scenarios relevant to the VASIMR (VAriable Specific Impulse Magnetoplasma Rocket). These include operation at high magnetic field (> = 0.4 T), high frequency (<= 30 MHz), high power (< = 3 kW), and with light ions (He+, H+). To date, He plasmas have been produced with n(sub e0) = 1.7 x 10(exp 19)/cu m (measured with an axially movable 4mm microwave interferometer), with Pin = I kW at f = 13.56 MHz and absolute value of B(sub 0) = 0.16 T. In the near future, diagnostics including a mass flow meter and a gridded energy analyzer array will be added to investigate fueling efficiency and the source power balance. The latest results, together with modeling results using the EMIR rf code, will be presented.

  12. Biomass Reburning: Modeling/Engineering Studies

    SciTech Connect

    Vladimir M. Zamansky

    1998-01-20

    Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

  13. Moisture monitoring and control system engineering study

    SciTech Connect

    Carpenter, K.E.; Fadeff, J.G.

    1995-05-16

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria.

  14. Numerical Studies of High-Z Plasma in the HyperV Plasma Guns

    NASA Astrophysics Data System (ADS)

    Wu, Linchun; Messer, Sarah; Witherspoon, F. Douglas; Welch, Dale; Thoma, Carsten; Phillips, Mike; Bogatu, I. Nick; Galkin, Sergei; Macfarlane, Joe; Golovkin, Igor

    2010-11-01

    Numerical studies of railguns and coaxial guns at HyperV Technologies Corp. include simulations of hypervelocity plasma transport in the gun, plasma expansion out of the nozzle, and two or more jets merging in vacuum. Plasma detachment, merging jets temperature and charge state evolution are examined in these processes. High-Z materials, such as argon and xenon, are used throughout these simulations. The plasma moves with an initial velocity of 0-10 km/s (80-100 km/s for jet merging), the initial number density ranges from 10^15cm-3 to 10^18cm-3, and the merging jets are several centimeters in radius. The LSP code is used to perform the simulations using improved fluid algorithms and equation-of-state models from Voss and atomic data from Prism.

  15. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  16. Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine During Beam Extraction

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.

  17. Anthem simulational studies of the plasma opening switch

    SciTech Connect

    Mason, R.J.

    1992-01-01

    For a deeper understanding of the physical processes governing the Plasma Opening Switch (POS) we use the ANTHEM 2D implicit simulation code to study: (1) ion dynamical effects on electrohydrodynamic (EHD) waves propagating along steep density interfaces in the switch plasmas. At radial interfaces where the density jumps toward the anode, these waves can drive a finger of magnetic field into the plasma toward the load. Ion dynamics can open the rear of such fingers into a wedge-like density gap. Then: (2) we examine ion effects in uniform switch plasmas. These first develop potential hill structures at the drive edge of the cathode from the competition between electron velocity advection and EHD magnetic exclusion waves. Magnetic pressure gradients at the hill periphery and EHD effects then establish a density gap propagating along the cathode with radial electron emission from its tip. Similar results are obtained under both multi-fluid and PIC modeling of the plasma components.

  18. Anthem simulational studies of the plasma opening switch

    SciTech Connect

    Mason, R.J.

    1992-07-01

    For a deeper understanding of the physical processes governing the Plasma Opening Switch (POS) we use the ANTHEM 2D implicit simulation code to study: (1) ion dynamical effects on electrohydrodynamic (EHD) waves propagating along steep density interfaces in the switch plasmas. At radial interfaces where the density jumps toward the anode, these waves can drive a finger of magnetic field into the plasma toward the load. Ion dynamics can open the rear of such fingers into a wedge-like density gap. Then: (2) we examine ion effects in uniform switch plasmas. These first develop potential hill structures at the drive edge of the cathode from the competition between electron velocity advection and EHD magnetic exclusion waves. Magnetic pressure gradients at the hill periphery and EHD effects then establish a density gap propagating along the cathode with radial electron emission from its tip. Similar results are obtained under both multi-fluid and PIC modeling of the plasma components.

  19. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  20. Studying science and engineering learning in practice

    NASA Astrophysics Data System (ADS)

    Penuel, William R.

    2016-03-01

    A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those of disciplinary experts. In this paper, I argue that education research is needed that focuses on how people use science and engineering in social practices as part of collective efforts to transform cultural and economic production. Drawing on social practice theory, I argue that learning inheres in such activities, not only because people access and make use of science knowledge and develop repertoires for participating in science and engineering practices, but also because participation in such activities transforms the ways that people imagine themselves and expands their possibilities for action. Research can inform and support these efforts, both directly and indirectly, by giving an account of the conditions for science and engineering learning and by diagnosing inequities in access to science and engineering for addressing pressing human needs.

  1. Guest investigator program study: Physics of equatorial plasma bubbles

    NASA Technical Reports Server (NTRS)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  2. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  3. A Thermodynamic Study of the Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Karp, Irvin M

    1947-01-01

    Charts are presented for computing thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of pressure losses in the inlet duct and the combustion chamber, of variation in physical properties of the gas as it passes through the system, of reheating of the gas due to turbine losses, and of change in mass flow by the addition of fuel are included. The principle performance chart shows the effects of primary variables and correction charts provide the effects of secondary variables and of turbine-loss reheat on the performance of the system. The influence of characteristics of a given compressor and turbine on performance of a turbojet engine containing a matched set of these given components is discussed for cases of an engine with a centrifugal-flow compressor and of an engine with an axial-flow compressor.

  4. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  5. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  6. Studies of cryogenic electron plasmas in magnetic mirror fields

    NASA Astrophysics Data System (ADS)

    Gopalan, Ramesh

    This thesis considers the properties of pure electron plasmas in Penning traps which have an axially varying magnetic field. Our theory of the thermal equilibrium of such plasmas in magnetic mirror fields indicates that their behavior may be characterized by the ratio of their temperature to their central density T/n. For cold, dense plasmas the density along the plasma axis scales linearly with the magnetic field, while for hot, tenuous plasmas, at the opposite limit of the parameter range, the density is constant along the axis, similar to the behavior of a neutral plasma in a magnetic mirror. We are able to conclude from this that the electrostatic potential varies along the field lines, in equilibrium. As the plasma charge and potential distribution must be consistent with the grounded potential on the trap walls, the plasma profile does not follow the geometry of the magnetic field lines; the plasma radius in the high-field region is smaller than would be obtained by mapping the field lines from the radial edge of the low-field region. Another interesting feature of these mirror equilibria is that there are trapped populations of particles both in the low-field and high-field regions. Our experiments on the Cryogenic Electron Trap have confirmed many of these theoretical results over a wide parameter range. We have been able to sample the volume charge density at various points on the axis. We have also measured the line-charge distribution of the plasma. Both these experiments are in general agreement with our theory of the global thermal equilibrium in the mirror- field. A surprising observation has been the unexpectedly long- life of the m = 1 diocotron mode in these traps where the magnetic field varies by ~100% across its length. We report these observations, along with plausible explanations for them. The trap we have constructed is intended for the eventual study of very cold electron plasmas in strong magnetic fields, where the plasma electrons are

  7. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    PubMed Central

    Rodriguez, Isaac A.; Growney Kalaf, Emily A.; Bowlin, Gary L.; Sell, Scott A.

    2014-01-01

    Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP). PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use. PMID:25050347

  8. Photon Physics and Plasma Research, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].

  9. Study of electrical resistivity and thermal conductivity into neutral plasma

    SciTech Connect

    Nath, G. Rout, R. K.

    2015-07-31

    The major portion of the bulk plasma in magnetospheric space, interplanetary plasma belts and the solar winds contain neutral particles. Evidently these neutral particles undergo binary collisions with the charged particles and among themselves so as to contribute significantly to the transport and diffusion process in a singly charged electron – ion magnetoplasma. The effects of the neutral particles collisions on various diffusion transport coefficients are studied for magnetised electron-ion plasma and appropriately modified coefficients are derived analytically. The results reveal that these coefficients increase significantly owing to the effect of the charge -neutral and neutral-neutral collisions.

  10. Molecular dynamic study of pressure fluctuations spectrum in plasma

    NASA Astrophysics Data System (ADS)

    Bystryi, R. G.

    2015-11-01

    Pressure of plasma is calculated by using classical molecular dynamics method. The formula based on virial theorem was used. Spectrum pressure's fluctuations of singly ionized non-ideal plasma are studied. 1/f-like spectrum behavior is observed. In other words, flicker noise is observed in fluctuations of pressure equilibrium non-ideal plasma. Relations between the obtained result and pressure fluctuations within the Gibbs and Einstein approaches are discussed. Special attention is paid to features of calculating the pressure in strongly coupled systems.

  11. Advanced general aviation comparative engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Huggins, G. L.; Ellis, D. R.

    1981-01-01

    The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.

  12. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  13. Probes for edge plasma studies of TFTR (invited)

    NASA Astrophysics Data System (ADS)

    Manos, D. M.; Budny, R. V.; Kilpatrick, S.; Stangeby, P.; Zweben, S.

    1986-08-01

    Tokamak fusion test reactor (TFTR) probes are designed to study the interaction of the plasma with material surfaces such as the wall and limiters, and to study the transport of particles and energy between the core and edge. Present probe heads have evolved from prototypes in Princeton large torus (PLT), poloidal divertor experiment (PDX) [Princeton BETA experiment (PBX)], and the initial phase of TFTR operation. The newest heads are capable of making several simultaneous measurements and include Langmuir probes, heat flux probes, magnetic coils, rotating calorimeter fast ion probes, and sample exposure specimens. This paper describes these probe heads and presents some of the data they and their prototypes have acquired. The paper emphasizes measurement of transient plasma effects such as fast ion loss during auxiliary heating, the evolution of the edge plasma during heating, compression, and free expansion, and fluctuations in the edge plasma.

  14. Final technical report on studies of plasma transport

    SciTech Connect

    O`Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-04-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes.

  15. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    SciTech Connect

    Ruzic, David N.

    2013-04-29

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o -normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas.

  16. Definition study for variable cycle engine testbed engine and associated test program

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  17. Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy.

    PubMed

    Ryssy, Joonas; Prioste-Amaral, Eloni; Assuncao, Daniela F N; Rogers, Nicholas; Kirby, Giles T S; Smith, Louise E; Michelmore, Andrew

    2016-02-14

    Surface engineering of functionalised polymer films is a rapidly expanding field of research with cross disciplinary implications and numerous applications. One method of generating functionalised polymer films is radio frequency induced plasma polymerisation which provides a substrate independent coating. However, there is currently limited understanding surrounding chemical interactions in the plasma phase and physical interactions at the plasma-surface interface, and their effect on functional group retention in the thin film. Here we investigate functionalised plasma polymer films generated from four precursors containing primary amines. Using XPS and fluorine tagging with 4-(trifluoromethyl)benzaldehyde, the primary amine content of plasma polymer films was measured as a function of applied power at constant precursor pressure. The results were then correlated with analysis of the plasma phase by mass spectrometry which showed loss of amine functionality for both neutral and ionic species. Surface interactions are also shown to decrease primary amine retention due to abstraction of hydrogen by high energy ion impacts. The stability of the plasma polymers in aqueous solution was also assessed and is shown to be precursor dependent. Increased understanding of the chemical and physical processes in the plasma phase and at the surface are therefore critical in designing improved plasma polymerisation processes. PMID:26791435

  18. Mechanistic Study of Plasma Damage of Low k Dielectric Surfaces

    SciTech Connect

    Bao Junjing; Shi Hualiang; Huang Huai; Ho, P. S.; Liu Junjun; Goodner, M. D.; Moinpour, M.; Kloster, G. M.

    2007-10-31

    Plasma damage to low k dielectric materials was investigated from a mechanistic point of view. Low k dielectric films were treated by plasma Ar, O{sub 2}, N{sub 2}/H{sub 2}, N{sub 2} and H{sub 2} in a standard RIE chamber and the damage was characterized by Angle Resolved X-ray Photoelectron Spectroscopy (ARXPS), X-Ray Reflectivity (XRR), Fourier Transform Infrared Spectroscopy (FTIR) and Contact Angle measurements. Both carbon depletion and surface densification were observed on the top surface of damaged low k materials while the bulk remained largely unaffected. Plasma damage was found to be a complicated phenomenon involving both chemical and physical effects, depending on chemical reactivity and the energy and mass of the plasma species. A downstream hybrid plasma source with separate ions and atomic radicals was employed to study their respective roles in the plasma damage process. Ions were found to play a more important role in the plasma damage process. The dielectric constant of low k materials can increase up to 20% due to plasma damage and we attributed this to the removal of the methyl group making the low k surface hydrophilic. Annealing was generally effective in mitigating moisture uptake to restore the k value but the recovery was less complete for higher energy plasmas. Quantum chemistry calculation confirmed that physisorbed water in low k materials induces the largest increase of dipole moments in comparison with changes of surface bonding configurations, and is primarily responsible for the dielectric constant increase.

  19. K Basin sludge dissolution engineering study

    SciTech Connect

    Westra, A.G.

    1998-08-28

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  20. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Frederick, Robert A., Jr.

    2010-01-01

    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  1. [Study progress of dental pulp stem cells in tissue engineering].

    PubMed

    Shiyu, Shi; Jiamin, Xie

    2015-12-01

    In recent years, modern tissue engineering is becoming emerging and developing rapidly, and the acquisition, cultivation and differentiation of seed cells is the premise and foundation of the construction of tissue engineering, so more and more scholars pay attention to stem cells as seed cells for tissue engineering construction. Dental pulp stem cells (DPSCs) is a kind of adult stem cells derived from dental pulp, and as a new kind of seed cells of tissue engineering, the study of DPSCs presents important significance in tissue and organ regeneration. In this review, we introduced the progress of studies on dental pulp stem cells and discussed their clinical application prospects. PMID:27051964

  2. Systems engineering studies of lunar base construction

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1991-01-01

    Many ingenious concepts have been proposed for lunar base construction, but few systematic studies exist which relate time-consistent lunar base construction technologies and the choice of lunar base approach with the long-term SEI objectives - i.e., lunar indigenous base construction and Mars Exploration equipment development. To fill this gap, CSC has taken a two-pronged approach. First, the Center undertook basic geotechnical investigations of lunar soil, fabrication of a scale prototype of a lunar construction crane, a multi-robot construction team laboratory experiment, and a preliminary design of lunar base structures. Second, during Jun. and Jul. 1991 two lunar base construction systems engineering studies were accomplished - a 'near term lunar base' study, and a 'far-term lunar base' study. The goals of these studies were to define the major lunar base construction research problems in consistent technology/construction frameworks, and to define design requirements for construction equipment such as a lunar crane and a regolith mover. The 'near-term lunar base' study examined three different construction concepts for a lunar base comprised of pre-fabricated, pre-tested, Space Station Freedom-type modules, which would be covered with regolith shielding. Concept A used a lunar crane for unloading and transportation; concept B, a winch and cart; and concept C, a walker to move the modules from the landing site to the base site and assemble them. To evaluate the merits of each approach, calculations were made of mass efficiency measure, source mass, reliability, far-term base mass, Mars base mass, and base assembly time. The model thus established was also used to define the requirements for crane speed and regolith mover m(sup 3)/sec rates. A major problem addressed is how to 'mine' the regolith and stack it over the habitats as shielding. To identify when the cost of using indigenous lunar materials to construct the base exceeds the cost of development and

  3. Systems engineering studies of lunar base construction

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.

    1991-11-01

    Many ingenious concepts have been proposed for lunar base construction, but few systematic studies exist which relate time-consistent lunar base construction technologies and the choice of lunar base approach with the long-term SEI objectives - i.e., lunar indigenous base construction and Mars Exploration equipment development. To fill this gap, CSC has taken a two-pronged approach. First, the Center undertook basic geotechnical investigations of lunar soil, fabrication of a scale prototype of a lunar construction crane, a multi-robot construction team laboratory experiment, and a preliminary design of lunar base structures. Second, during Jun. and Jul. 1991 two lunar base construction systems engineering studies were accomplished - a 'near term lunar base' study, and a 'far-term lunar base' study. The goals of these studies were to define the major lunar base construction research problems in consistent technology/construction frameworks, and to define design requirements for construction equipment such as a lunar crane and a regolith mover. The 'near-term lunar base' study examined three different construction concepts for a lunar base comprised of pre-fabricated, pre-tested, Space Station Freedom-type modules, which would be covered with regolith shielding. Concept A used a lunar crane for unloading and transportation; concept B, a winch and cart; and concept C, a walker to move the modules from the landing site to the base site and assemble them. To evaluate the merits of each approach, calculations were made of mass efficiency measure, source mass, reliability, far-term base mass, Mars base mass, and base assembly time. The model thus established was also used to define the requirements for crane speed and regolith mover m(sup 3)/sec rates. A major problem addressed is how to 'mine' the regolith and stack it over the habitats as shielding. To identify when the cost of using indigenous lunar materials to construct the base exceeds the cost of development and

  4. Quality engineering as a discipline of study.

    SciTech Connect

    Kolb, Rachel R.; Hoover, Marcey L.

    2012-12-01

    The current framework for quality scholarship in the United States ranges from the training and education of future quality engineers, managers, and professionals to focused and sustained research initiatives that, through academic institutions and other organizations, aim to improve the knowledge and application of quality across a variety of sectors. Numerous quality journals also provide a forum for professional dissemination of information.

  5. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  6. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  7. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  8. Confinement Studies of Auxiliary Heated NSTX Plasmas

    SciTech Connect

    B.P. LeBlanc; M.G. Bell; R.E. Bell; M.L. Bitter; C. Bourdelle; D.A. Gates; S.M. Kaye; R. Maingi; J.E. Menard; D. Mueller; S.F. Paul; A.L. Roquemore; A. Rosenberg1; S.A. Sabbagh; D. Stutman; E.J. Synakowski; V.A. Soukhanovskii; J.R.Wilson; the NSTX Research Team

    2003-05-06

    The confinement of auxiliary heated NSTX discharges is discussed. The energy confinement time in plasmas with either L-mode or H-mode edges is enhanced over the values given by the ITER97L and ITER98Pby(2) scalings, being up to 2-3 times L-mode and 1.5 times H-mode. TRANSP calculations based on the kinetic profile measurements reproduce the magnetics-based determination of stored energy and the measured neutron production rate. Power balance calculations reveal that, in a high power neutral beam heated H-mode discharge, the ion thermal transport is near neoclassical levels, and well below the electron thermal transport, which is the main loss channel. Perturbative impurity injection techniques indicate the particle diffusivity to be slightly above the neoclassical level in discharges with L-mode edge. High-harmonic fast-wave (HHFW) bulk electron heating is described and thermal transport is discussed. Thermal ion transport is found to be above neoclassical level, but thermal electron transport remains the main loss mechanism. Evidences of an electron thermal internal transport barrier obtained with HHFW heating are presented. A description of H-mode discharges obtained during HHFW heating is presented.

  9. Study of an advanced General Aviation Turbine Engine (GATE)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  10. Tribological behavior of plasma spray coatings for marine diesel engine piston ring and cylinder liner

    NASA Astrophysics Data System (ADS)

    Hwang, Jong-Hyun; Han, Myoung-Seoup; Kim, Dae-Young; Youn, Joong-Geun

    2006-06-01

    High-temperature wear characteristics between plasma spray coated piston rings and cylinder liners were investigated to find the optimum combination of coating materials using the disc-on-plate reciprocating wear test in dry conditions. The disc and plate represented the piston ring and the cylinder liner, respectively. Coating materials studied were Cr2O3-NiCr, Cr2O3-NiCr-Mo, and Cr3C2-NiCr-Mo. Plasma spray conditions for the coating materials were established adjusting stand-off distance to obtain a coating with a porosity content of ˜5%. It was found that a dissimilar coating combination of Cr2O3-NiCr-Mo and Cr3C2-NiCr-Mo provided the best antiwear performance. The addition of molybdenum was found to be beneficial to improve the wear resistance of the coating. Hardness differences between mating surfaces were also important factors in determining the wear characteristics, so that it should be controlled below 300 in Vickers hardness under dry conditions. Adhesive wear accompanying with metal transfer was a dominant wear mechanism for dry conditions.

  11. Basic Study on Engine with Scroll Compressor and Expander

    NASA Astrophysics Data System (ADS)

    Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro

    Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.

  12. Skin and plasma autofluorescence during hemodialysis: a pilot study.

    PubMed

    Graaff, Reindert; Arsov, Stefan; Ramsauer, Bernd; Koetsier, Marten; Sundvall, Nils; Engels, Gerwin E; Sikole, Aleksandar; Lundberg, Lennart; Rakhorst, Gerhard; Stegmayr, Bernd

    2014-06-01

    Skin autofluorescence (AF) is related to the accumulation of advanced glycation end products (AGEs) and is one of the strongest prognostic markers of mortality in hemodialysis (HD) patients. The aim of this pilot study was to investigate whether changes in skin AF appear after a single HD session and if they might be related to changes in plasma AF. Skin and plasma AF were measured before and after HD in 35 patients on maintenance HD therapy (nine women and 26 men, median age 68 years, range 33-83). Median dialysis time was 4 h (range 3-5.5). Skin AF was measured noninvasively with an AGE Reader, and plasma AF was measured before and after HD at 460 nm after excitation at 370 nm. The HD patients had on average a 65% higher skin AF value than age-matched healthy persons (P < 0.001). Plasma AF was reduced by 14% (P < 0.001), whereas skin AF was not changed after a single HD treatment. No significant influence of the reduced plasma AF on skin AF levels was found. This suggests that the measurement of skin AF can be performed during the whole dialysis period and is not directly influenced by the changes in plasma AF during HD.

  13. Skin and plasma autofluorescence during hemodialysis: a pilot study.

    PubMed

    Graaff, Reindert; Arsov, Stefan; Ramsauer, Bernd; Koetsier, Marten; Sundvall, Nils; Engels, Gerwin E; Sikole, Aleksandar; Lundberg, Lennart; Rakhorst, Gerhard; Stegmayr, Bernd

    2014-06-01

    Skin autofluorescence (AF) is related to the accumulation of advanced glycation end products (AGEs) and is one of the strongest prognostic markers of mortality in hemodialysis (HD) patients. The aim of this pilot study was to investigate whether changes in skin AF appear after a single HD session and if they might be related to changes in plasma AF. Skin and plasma AF were measured before and after HD in 35 patients on maintenance HD therapy (nine women and 26 men, median age 68 years, range 33-83). Median dialysis time was 4 h (range 3-5.5). Skin AF was measured noninvasively with an AGE Reader, and plasma AF was measured before and after HD at 460 nm after excitation at 370 nm. The HD patients had on average a 65% higher skin AF value than age-matched healthy persons (P < 0.001). Plasma AF was reduced by 14% (P < 0.001), whereas skin AF was not changed after a single HD treatment. No significant influence of the reduced plasma AF on skin AF levels was found. This suggests that the measurement of skin AF can be performed during the whole dialysis period and is not directly influenced by the changes in plasma AF during HD. PMID:24164288

  14. Biomass reburning - Modeling/engineering studies

    SciTech Connect

    Sheldon, M.; Marquez, A.; Zamansky, V.

    2000-07-27

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

  15. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  16. Orbit transfer vehicle engine study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The orbit transfer vehicle (OTV) engine study provided parametric performance, engine programmatic, and cost data on the complete propulsive spectrum that is available for a variety of high energy, space maneuvering missions. Candidate OTV engines from the near term RL 10 (and its derivatives) to advanced high performance expander and staged combustion cycle engines were examined. The RL 10/RL 10 derivative performance, cost and schedule data were updated and provisions defined which would be necessary to accommodate extended low thrust operation. Parametric performance, weight, envelope, and cost data were generated for advanced expander and staged combustion OTV engine concepts. A prepoint design study was conducted to optimize thrust chamber geometry and cooling, engine cycle variations, and controls for an advanced expander engine. Operation at low thrust was defined for the advanced expander engine and the feasibility and design impact of kitting was investigated. An analysis of crew safety and mission reliability was conducted for both the staged combustion and advanced expander OTV engine candidates.

  17. Understanding women's choices to enroll in engineering: A case study

    NASA Astrophysics Data System (ADS)

    Young, Eileen

    The underrepresentation of women in science, technology, engineering and mathematics (STEM) college programs is a troublesome local, national and global phenomenon. The topic of this doctoral thesis specifically focused on the underrepresentation of women in the field of engineering and more specifically on the factors that women may perceive as chiefly motivating them to choose engineering as a college major. By not choosing to major in engineering, women forego intellectual opportunities and the financial rewards that engineering careers can provide. Their absence means that the field of engineering also suffers from the lack of contributions from a diverse workforce. Women who graduated from a specific community college's engineering program in the United States were the focus of this qualitative study. Grounded in achievement motivation theory, and in particular expectancy-value theory of academic and career choice, this research was guided by two questions: How do women perceive their academic self-efficacies and expectations for success as influencing their decisions to enroll in engineering? How do women perceive their subjective task values as influencing their decisions to enroll in engineering? This single, holistic case study with one main unit of analysis incorporated a written questionnaire, individual interviews and a focus group meeting as the three instruments used to collect data. The qualitative data, cyclically coded, shed light on the complex mechanisms of academic and career choice.

  18. Study on the effect of target on plasma parameters of magnetron sputtering discharge plasma

    SciTech Connect

    Saikia, P.; Kakati, B.; Saikia, B. K.

    2013-10-15

    In this study, the effect of magnetron target on different plasma parameters of Argon/Hydrogen (Ar - H{sub 2}) direct current (DC) magnetron discharge is examined. Here, Copper (Cu) and Chromium (Cr) are used as magnetron targets. The value of plasma parameters such as electron temperature (kT{sub e}), electron density (N{sub e}), ion density (N{sub i}), degree of ionization of Ar, and degree of dissociation of H{sub 2} for both the target are studied as a function of input power and hydrogen content in the discharge. The plasma parameters are determined by using Langmuir probe and Optical emission spectroscopy. On the basis of the different reactions in the gas phase, the variation of plasma parameters and sputtering rate are explained. The obtained results show that electron and ion density decline with gradual addition of Hydrogen in the discharge and increase with rising input power. It brings significant changes on the degree of ionization of Ar and dissociation of H{sub 2}. The enhanced value of electron density (N{sub e}), ion density (N{sub i}), degree of Ionization of Ar, and degree of dissociation of H{sub 2} for Cr compared to Cu target is explained on the basis of it's higher Ion Induced Secondary Electron Emission Coefficient (ISEE) value.

  19. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    . A plasma instability is usually observed in its saturated state and appears as a single feature in the frequency spectrum with a single azimuthal and parallel wavenumbers. The physics of the non-zero spectral width was investigated in detail because the finite spectral width can cause "turbulent" transport. One aspect of the "turbulence" was investigated by obtaining the scaling of the linear growth rate of the instabilities with the fluctuation levels. The linear growth rates were measured with the established gated feedback technique. The research showed that the ExB instability evolves into a quasi-coherent state when the fluctuation level is high. The coherent aspects were studied with a bispectral analysis. Moreover, the single spectral feature was discovered to be actually composed of a few radial harmonics. The radial harmonics play a role in the nonlinear saturation of the instability via three-wave coupling.

  20. Use of Clotted Human Plasma and Aprotinin in Skin Tissue Engineering: A Novel Approach to Engineering Composite Skin on a Porous Scaffold.

    PubMed

    Paul, Michelle; Kaur, Pritinder; Herson, Marisa; Cheshire, Perdita; Cleland, Heather; Akbarzadeh, Shiva

    2015-10-01

    Tissue-engineered composite skin is a promising therapy for the treatment of chronic and acute wounds, including burns. Providing the wound bed with a dermal scaffold populated by autologous dermal and epidermal cellular components can further entice host cell infiltration and vascularization to achieve permanent wound closure in a single stage. However, the high porosity and the lack of a supportive basement membrane in most commercially available dermal scaffolds hinders organized keratinocyte proliferation and stratification in vitro and may delay re-epithelization in vivo. The objective of this study was to develop a method to enable the in vitro production of a human skin equivalent (HSE) that included a porous scaffold and dermal and epidermal cells expanded ex vivo, with the potential to be used for definitive treatment of skin defects in a single procedure. A collagen-glycosaminoglycan dermal scaffold (Integra(®)) was populated with adult fibroblasts. A near-normal skin architecture was achieved by the addition of coagulated human plasma to the fibroblast-populated scaffold before seeding cultured keratinocytes. This resulted in reducing scaffold pore size and improving contact surfaces. Skin architecture and basement membrane formation was further improved by the addition of aprotinin (a serine protease inhibitor) to the culture media to inhibit premature clot digestion. Histological assessment of the novel HSE revealed expression of keratin 14 and keratin 10 similar to native skin, with a multilayered neoepidermis morphologically comparable to human skin. Furthermore, deposition of collagen IV and laminin-511 were detected by immunofluorescence, indicating the formation of a continuous basement membrane at the dermal-epidermal junction. The proposed method was efficient in producing an in vitro near native HSE using the chosen off-the-shelf porous scaffold (Integra). The same principles and promising outcomes should be applicable to other biodegradable

  1. Wentworth Institute Mechanical Engineering Laboratory Manual. Laboratory Study Guide.

    ERIC Educational Resources Information Center

    Avakian, Harry; And Others

    This publication is a laboratory study guide designed for mechanical engineering students. All of the experiments (with the exception of experiment No. 1) contained in the Mechanical Engineering Laboratory Manual have been included in this guide. Brief theoretical backgrounds, examples and their solutions, charts, graphs, illustrations, and…

  2. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  3. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  4. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  5. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    SciTech Connect

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.; Wan, C.Z.; Rice, G.W.; Voss, K.E.

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  6. Experimental Studies of Self Organization with Electron Plasmas

    SciTech Connect

    Matthaeus, William H.

    2011-04-11

    During the period of this grant we had a very active research effort in our group on the topic of 2D electron plasmas, relaxation, 2D Navier Stokes turbulence, and related issues. The project also motivated other studies we carried out such as a study of 2D turbulence with two-species vorticity.

  7. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  8. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    SciTech Connect

    Hamann, S. Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  9. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Wallace, J.; Brookhart, M.; Clark, M.; Collins, C.; Ding, W. X.; Flanagan, K.; Khalzov, I.; Li, Y.; Milhone, J.; Nornberg, M.; Nonn, P.; Weisberg, D.; Whyte, D. G.; Zweibel, E.; Forest, C. B.

    2014-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ˜14 m3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (MA2=(v/vA)2>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  10. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen.

    PubMed

    Hamann, S; Börner, K; Burlacov, I; Spies, H-J; Strämke, M; Strämke, S; Röpcke, J

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined. PMID:26724023

  11. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  12. Theoretical and computational studies of plasma opening switches

    NASA Astrophysics Data System (ADS)

    Lindman, Erick L., Jr.; Kindel, Joseph M.

    1989-02-01

    Substantial progress has been made in understanding the operation of plasma opening switches (POS) in support of the Light-Ion Fusion Program at Sandia National Laboratories. Our efforts began with scoping studies using the particle-in-cell (PIC) code, MAGIC, which was written by Bruce Goplen and co-workers at MRC for pulsed-power applications. The version of MAGIC currently at Sandia National Laboratories is supported by Dave Seidel and Tim Pointon. MAGIC continues to play an important role as our studies moved into many different areas. Working closely with Cliff Mendel, we performed initial studies of switches using his fast B sub z concept. Working with Mary Ann Sweeney, Jeff Quintez and Cliff Mendel we performed studies of the effects of plasma density, cylindrical curvature, load impedance, rise time, and emission threshold on switch performance. In addition, we studied B-field penetration, turbulence, anomalous resistivity, and electron heating in plasma opening switches. This work has allowed us to identify the physical mechanisms that are important in the operation of plasma opening switches. Based on our knowledge of the physics we have established scaling relations for comparable switch performance under different experimental conditions. We studied the code requirements for POS simulation and numerical problems in MAGIC and in other PIC codes. And, more recently, we have begun to participate more strongly in the experimental program being carried out on PBFA II. Our conclusions based on these studies are summarized here.

  13. Theoretical and computational studies of plasma opening switches

    SciTech Connect

    Lindman, E.L. Jr.; Kindel, J.M.

    1989-02-01

    Substantial progress has been made in understanding the operation of plasma opening switches (POS) in support of the Light-Ion Fusion Program at Sandia National Laboratories. Our efforts began with scoping studies using the particle-in-cell (PIC) code, MAGIC, which was written by Bruce Goplen and co-workers at MRC for pulsed-power applications. The version of MAGIC currently at Sandia National Laboratories is supported by Dave Seidel and Tim Pointon. MAGIC continues to play an important role as our studies moved into many different areas. Working closely with Cliff Mendel, we performed initial studies of switches using his fast B/sub z/ concept. Working with Mary Ann Sweeney, Jeff Quintez and Cliff Mendel we performed studies of the effects of plasma density, cylindrical curvature, load impedance, rise time, and emission threshold on switch performance. In addition, we studied B-field penetration, turbulence, anomalous resistivity, and electron heating in plasma opening switches. This work has allowed us to identify the physical mechanisms that are important in the operation of plasma opening switches. Based on our knowledge of the physics we have established scaling relations for comparable switch performance under different experimental conditions. We studied the code requirements for POS simulation and numerical problems in MAGIC and in other PIC codes. And, more recently, we have begun to participate more strongly in the experimental program being carried out on PBFA II. Our conclusions based on these studies are summarized here. 42 refs., 104 figs., 3 tabs.

  14. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  15. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  16. Central heat engine cost and availability study

    SciTech Connect

    Not Available

    1987-11-01

    This report documents the performance and cost of commercially available heat engines for use at solar power plants. The scope of inquiry spans power ratings of 500 kW to 50 MW and peak cycle temperatures of 750 /sup 0/F to 1200 /sup 0/F. Data were collected by surveying manufacturers of steam turbines, organic Rankine (ORC) systems, and ancillary equipment (steam condensers, cooling towers, pumps, etc.). Methods were developed for estimating design-point and off-design efficiencies of steam Rankine cycle (SRC) and ORC systems. In the size-temperature range of interest, SRC systems were found to be the only heat engines requiring no additional development effort, and SRC capital and operating cost estimates were developed. Commercially available steam turbines limit peak cycle temperatures to about 1000 /sup 0/F in this size range, which in turn limits efficiency. Other systems were identified that could be prototyped using existing turbomachines. These systems include ORC, advanced SRC, and various configurations employing Brayton cycle equipment, i.e., gas turbines. The latter are limited to peak cycle temperatures of 1500 /sup 0/F in solar applications, based on existing heat-exchanger technology. The advanced systems were found to offer performance advantages over SRC in specific cases. 7 refs., 30 figs., 20 tabs.

  17. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it

  18. Laboratory studies of kinetic instabilities under double plasma resonance condition in a mirror-confined non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander; Zaitsev, Valery

    2016-04-01

    Plasma instabilities in magnetic traps on the Sun are the sources of powerful broadband radio emission (the so-called type IV bursts) which is interpreted as the excitation of plasma waves by fast electrons in the upper hybrid resonance frequency followed by transformation in electromagnetic waves. In the case of double plasma resonance condition when the frequency of the upper hybrid resonance coincides with one of the electron gyrofrequency harmonics the instability increment of plasma waves is greatly increased. This leads to the appearance of bright narrow-band radio emission near the harmonics of the electron gyrofrequency - the so-called zebra patterns. With the use of non-equilibrium mirror-confined plasma produced by the electron cyclotron resonance (ECR) discharge we provide the possibility to study plasma instabilities under double plasma resonance condition in the laboratory. In the experiment such conditions are fulfilled just after ECR heating switch-off, i.e. in the very beginning of a dense plasma decay phase. The observed instability is accompanied by a pulse-periodic generation of a powerful electromagnetic radiation at a frequency close to the upper hybrid resonance frequency and a second harmonic of the electron gyrofrequency, and synchronous precipitations of fast electrons from the trap ends. It is shown that the observed instability is due to the excitation of plasma waves at a double plasma resonance in decaying plasma of the ECR discharge. Possible manifestations of double plasma resonance effect are not rare in astrophysical plasmas. The phenomenon of zebra pattern is observed not only on the Sun, but in the decametric radiation of the Jupiter, kilometric radiation of the Earth and even in the radio emissions of pulsars. Thus, verification of the effect of double plasma resonance in a laboratory plasma experiments is a very relevant task.

  19. Electrical studies and plasma characterization of an atmospheric pressure plasma jet operated at low frequency

    SciTech Connect

    Giuliani, L.; Xaubet, M.; Grondona, D.; Minotti, F.; Kelly, H.

    2013-06-15

    Low-temperature, high-pressure plasma jets have an extensive use in medical and biological applications. Much work has been devoted to study these applications while comparatively fewer studies appear to be directed to the discharge itself. In this work, in order to better understand the kind of electrical discharge and the plasma states existing in those devices, a study of the electrical characteristics of a typical plasma jet, operated at atmospheric pressure, using either air or argon, is reported. It is found that the experimentally determined electrical characteristics are consistent with the model of a thermal arc discharge, with a highly collisional cathode sheet. The only exception is the case of argon at the smallest electrode separation studied, around 1 mm in which case the discharge is better modeled as either a non-thermal arc or a high-pressure glow. Also, variations of the electrical behavior at different gas flow rates are interpreted, consistently with the arc model, in terms of the development of fluid turbulence in the external jet.

  20. Transport studies in high-performance field reversed configuration plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Barnes, D. C.; Dettrick, S. A.; Trask, E.; Tuszewski, M.; Deng, B. H.; Gota, H.; Gupta, D.; Hubbard, K.; Korepanov, S.; Thompson, M. C.; Zhai, K.; Tajima, T.

    2016-05-01

    A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (but with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.

  1. Plasma Detachment Studies in the VASIMR Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.; Shebalin, John

    2004-11-01

    Two important issues related to the VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [1]) experiment are the plasma detachment and the collimation of the plume in the magnetic nozzle. These issues are being investigated both through theory/simulation studies and now also experimentally. A 3D, nonlinear MHD/2-fluid model of the magnetic nozzle has been implemented with the NIMROD code. The model has been run both with the actual VASIMR geometry and for an ideal De Laval nozzle configuration. The simulations indicate a distortion of the external field due to the plasma exhaust flow (carrying an azimuthal diamagnetic current) that may to lead to plasma detachment through the formation of magnetic islands. This is also being investigated experimentally. A Hall-effect, one-axis, gaussmeter has shown the local low-frequency magnetic field fluctuations during a plasma pulse. A 2D array of 3-axis "B-dot" probes is being developed for a fast mapping of the field perturbations in the nozzle (on the order of the Alfven time). Finally, a Rogowski coil probe is being designed to measure the azimuthal current profile in the exhaust plasma. [1] F. R. Chang-Diaz et al, Scientific American, p. 90, Nov. 2000

  2. Plasma-edge studies using carbon resistance probes

    NASA Astrophysics Data System (ADS)

    Wampler, W. R.; Manos, D. M.

    1982-09-01

    The plasma edge in the PLT and PDX Tokamaks was studied using a technique which involves measuring the change in resistance of a thin carbon film due to bombardment by energetic particles escaping the plasma. The probes were calibrated by measuring the resistance change caused by implantation of various ions at different energies. A model was developed which can be used to determine the flux and energy of the incident particles from the measured resistance changes. For probes exposed in PDX and PLT, near the wall resistance changes were observed due to charge exchange neutrals. Larger changes were observed in the ion scrape-off region closer to the plasma. In PLT the effect of ions at the plasma edge begins to dominate the neutral flux near the radius of the ring limiter. The energy of ions at the plasma edge was estimated to be low ( or 100 eV) in PDX during neutral beam heated discharges, but higher ( 300 eV) in PLT during ion cyclotron resonance heating.

  3. Plasma-edge studies using carbon resistance probes

    SciTech Connect

    Wampler, W.R.; Manos, D.M.

    1982-01-01

    A new experimental technique, the resistance probe, was used to study the plasma edge in the PLT and PDX tokamaks. This technique involves measuring the change in resistance of a thin carbon film due to bombardment by energetic particles escaping the plasma. The probes have been calibrated by measuring the resistance change caused by implantation of various ions at different energies. A model has been developed which can be used to determine the flux and energy of the incident particles from the measured resistance changes. For probes exposed in PDX and PLT near the wall resistance changes were observed due to charge exchange neutrals. Larger changes were observed in the ion scrape-off region closer to the plasma. In PLT the effect of ions at the plasma edge begins to dominate the neutral flux near the radius of the ring limiter. The energy of ions at the plasma edge was estimated to be low (less than or equal to 100 eV) in PDX during neutral beam heated discharges, but higher (greater than or equal to 300 eV) in PLT during ion cyclotron resonance heating.

  4. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.

    PubMed

    Malik, Muhammad Arif; Kolb, Juergen F; Sun, Yaohong; Schoenbach, Karl H

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC(50) in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges.

  5. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    1998-10-20

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

  6. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    1999-01-28

    This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 � December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

  7. A hybrid simulation study of magnetic reconnection in anisotropic plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Li, Yi; Lu, Quan-ming; Wang, Shui

    2003-10-01

    The process of magnetic reconnection in anisotropic plasmas is studied numerically using a 2-dimensional, 3-component hybrid simulation. The results of the calculation show that, when the plasma pressure in the direction perpendicular to magnetic field is larger than that in the parallel direction (e.g. P ⊥/P ‖ = 1.5 ), instability may greatly increase, speeding up the rate of reconnection. When P⊥ is smaller than P‖, (e.g., when P ⊥/P ‖ = 0.6 ), fire hose instability appears, which will restrain the tearing mode instability and the process of magnetic reconnection.

  8. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  9. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  10. Ultra High Bypass Ratio Low Noise Engine Study

    NASA Technical Reports Server (NTRS)

    Dalton, W. N., III

    2003-01-01

    A study was conducted to identify engine cycle and technologies needed for a regional aircraft which could be capable of achieving a 10 EPNdB reduction in community noise level relative to current FAR36 Stage 3 limits. The study was directed toward 100-passenger regional aircraft with engine configurations in the 15,000 pound thrust class. The study focused on Ultra High Bypass Ratio (UHBR) cycles due to low exhaust jet velocities and reduced fan tip speeds. The baseline engine for this study employed a gear-driven, 1000 ft/sec tip speed fan and had a cruise bypass ratio of 14:1. A revised engine configuration employing fan and turbine design improvements are predicted to be 9.2 dB below current takeoff limits and 12.8 dB below current approach limits. An economic analysis was also done by estimating Direct Operating Cost (DOC).

  11. Laboratory of plasma studies. Papers on high power particle beams

    SciTech Connect

    Not Available

    1990-01-01

    This book contains paper on Exploding metal film active anode sources experiments on the Lion extractor Ion Diode; Long conductor time plasma opening switch experiments; and Focusing studies of an applied B{sub r} extraction diode on the Lion accelerator.

  12. Study of the anode plasma double layer: optogalvanic detectors

    SciTech Connect

    Gurlui, S.; Dimitriu, D.; Strat, M.; Strat, Georgeta

    2006-01-15

    The experimental and theoretical results show that the anode double layer (DL) is a very sensitive plasma formation suitable for fine optogalvanic studies. The obtained results demonstrate that the parameters of the oscillations sustained by a DL (frequency, amplitude) can be used as optogalvanic detectors.

  13. A simulation study of a controlled tokamak plasma

    NASA Astrophysics Data System (ADS)

    Fujii, N.; Niwa, Y.

    1980-03-01

    A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.

  14. Spectroscopic Study of Microwave Induced Plasma

    SciTech Connect

    Jovicevic, S.

    2004-12-01

    The results of the spatial distribution studies of electron densities, excitation and rotational temperatures and atomic line intensities of various elements in an atmospheric pressure mini-MIP torch with tangential argon flow. The electron number density, ne, is determined from the width of the hydrogen H{beta} 486.13 nm line while excitation temperature, Texc, is evaluated from the Boltzmann plot of relative line intensities either of carrier gas-argon or neutral iron that is introduced in the form of aerosols in MIP, The rotational temperatures, Trot, are determined from the relative intensities of OH (R2 and Q1 branch) electronic band A2{sigma} - X2{pi} (0,0) and to N{sub 2}{sup +} first negative system B{sup 2} {sigma}{sub u}{sup +} - X{sup 2} {sigma}{sub g}{sup +} (P branch). For the selected input power of 100 W, the influence of hydrogen in the wet and desolvated aerosols and support gas and the corresponding changes of the electron density, excitation and rotational temperature distributions are studied. The influence of potassium, low ionization potential element, to the spatial distribution of ne, Texc and Trot is studied also. Spatial intensity distributions and maximum intensities for investigate atomic line are determinate for the same conditions.

  15. Orbit transfer vehicle engine study, phase A extension. Volume 2A: Study results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Engine trade studies and systems analyses leading to a baseline engine selection for advanced expander cycle engine are discussed with emphasis on: (1) performance optimization of advanced expander cycle engines in the 10 to 20K pound thrust range; (2) selection of a recommended advanced expander engine configuration based on maximized performance and minimized mission risk, and definition of the components for this configuration; (3) characterization of the low thrust adaptation requirements and performance for the staged combustion engine; (4) generation of a suggested safety and reliability approach for OTV engines independent of engine cycle; (5) definition of program risk relationships between expander and staged combustion cycle engines; and (6) development of schedules and costs for the DDT&E, production, and operation phases of the 10K pound thrust expander engine program.

  16. Personal Study Planning in Doctoral Education in Industrial Engineering

    ERIC Educational Resources Information Center

    Lahenius, K.; Martinsuo, M.

    2010-01-01

    The duration of doctoral studies has increased in Europe. Personal study planning has been considered as one possible solution to help students in achieving shorter study times. This study investigates how doctoral students experience and use personal study plans in one university department of industrial engineering. The research material…

  17. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.

  18. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    SciTech Connect

    Megía-Macías, A.; Vizcaíno-de-Julián, A.; Cortázar, O. D.

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  19. Ethical considerations in tissue engineering research: Case studies in translation.

    PubMed

    Baker, Hannah B; McQuilling, John P; King, Nancy M P

    2016-04-15

    Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of "modest translational distance" and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. PMID:26282436

  20. Laboratory study of avalanches in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart

    2015-11-01

    Results of a basic heat transport experiment [] involving an off-axis heat source are presented. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. A ring-shaped electron beam source injects low energy electrons (below ionization energy) along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated electron temperature embedded in a colder plasma, and far from the machine walls. It is demonstrated that this heating configuration provides an ideal environment to study avalanche phenomena under controlled conditions. The avalanches are identified as sudden rearrangements of the pressure profile following the growth of fluctuations from ambient noise. The intermittent collapses of the plasma pressure profile are associated with unstable drift-Alfvén waves and exhibit both radial and azimuthal dynamics. After each collapse the plasma enters a quiescent phase in which the pressure profile slowly recovers and steepens until a threshold is exceeded, and the process repeats. The use of reference probes as time markers allows for the visualization of the 2D spatio-temporal evolution of the avalanche events. Avalanches are only observed for a limited combination of heating powers and magnetic fields. At higher heating powers the system transitions from the avalanche regime into a regime dominated by sustained drift-Alfvén wave activity. The pressure profile then transitions to a near steady-state in which anomalous transport balances the external pressure source. Performed at the Basic Plasma Science Facility at UCLA, supported jointly by DOE and NSF.

  1. Biomass Reburning - Modeling/Engineering Studies

    SciTech Connect

    Peter M. Maly; Vitali V. Lissianski; Vladimir M. Zamansky

    1998-04-30

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The second reporting period (January 1- March 31) included kinetic modeling of the reburning process while firing natural gas and biomass. Modeling was done with a kinetic mechanism that combined reactions relevant to reburning from GRI-Mech 2.11 with SNCR reactions. Experimental data obtained in a 1 MMBtu/h Boiler Simulator Facility (BSF) for reburning with natural gas and biomass were modeled using the ODF kinetic code. System was treated as a series of four one-dimensional reactors. Modeling of natural gas reburning qualitatively agrees with experimental data for a wide range of initial conditions. Modeling of furniture waste reburning does not qualitatively match experimental data due to a number of model simplifications. Future work will concentrate on improving the basic reburning model to give quantitative agreement with experiments and on search for better representation of biomass composition in kinetic modeling. Experimental data on biomass reburning are included in Appendix 3. These data were obtained during the reporting period in the scope of a coordinated program funded by the U.S. Department of Agriculture.

  2. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering.

    PubMed

    Ko, Yeong-Mu; Choi, Do-Young; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    Polycaprolactone (PCL) nanofibers (PCL-NF) with uniform fibrous structure were fabricated by electrospinning. However, PCL-NF has hydrophobic surface, lacks functional groups and hence it is not a good substrate for cell adhesion. To improve the cell adhesion, PCL-NF surfaces were modified by low pressure RF discharge plasma treatment using monomer such as acrylic acid or oxygen gas. The plasma treated PCL-NFs improved the wettability and cell proliferation. PMID:26328328

  3. Microwave engineering of plasma-assisted CVD reactors for diamond deposition

    NASA Astrophysics Data System (ADS)

    Silva, F.; Hassouni, K.; Bonnin, X.; Gicquel, A.

    2009-09-01

    The unique properties of CVD diamond make it a compelling choice for high power electronics. In order to achieve industrial use of CVD diamond, one must simultaneously obtain an excellent control of the film purity, very low defect content and a sufficiently rapid growth rate. Currently, only microwave plasma-assisted chemical vapour deposition (MPACVD) processes making use of resonant cavity systems provide enough atomic hydrogen to satisfy these requirements. We show in this paper that the use of high microwave power density (MWPD) plasmas is necessary to promote atomic hydrogen concentrations that are high enough to ensure the deposition of high purity diamond films at large growth rates. Moreover, the deposition of homogeneous films on large surfaces calls for the production of plasma with appropriate shapes and large volumes. The production of such plasmas needs generating a fairly high electric field over extended regions and requires a careful design of the MW coupling system, especially the cavity. As far as MW coupling efficiency is concerned, the presence of a plasma load represents a mismatching perturbation to the cavity. This perturbation is especially important at high MWPD where the reflected fraction of the input power may be quite high. This mismatch can lead to a pronounced heating of the reactor walls. It must therefore be taken into account from the very beginning of the reactor design. This requires the implementation of plasma modelling tools coupled to detailed electromagnetic simulations. This is discussed in section 3. We also briefly discuss the operating principles of the main commercial plasma reactors before introducing the reactor design methodology we have developed. Modelling results for a new generation of reactors developed at LIMHP, working at very high power density, will be presented. Lastly, we show that scaling up this type of reactor to lower frequencies (915 MHz) can result in high density plasmas allowing for fast and

  4. Statistical Study of the Lunar Plasma Wake Outer Boundary

    NASA Astrophysics Data System (ADS)

    Ames, W. F.; Brain, D. A.; Poppe, A.; Halekas, J. S.; McFadden, J. P.; Glassmeier, K.; Angelopoulos, V.

    2012-12-01

    The Moon does not have an intrinsic magnetic field and lacks the conductivity necessary to develop an induced magnetosphere. Therefore, the interaction of the Moon with the solar wind is dominated by impact absorption of solar wind particles on the day side and the generation of a plasma wake on the night side. A plasma density gradient forms between the flowing solar wind and the plasma wake, causing solar wind plasma to gradually refill the wake region. Electrons fill the wake first, pulling ions in after them via ambi-polar diffusion. Despite the existence of comprehensive new plasma measurements of the lunar wake region, relatively little attention has been devoted to the shape and variability in location of its outer boundary. Improved knowledge of this boundary condition for the physical processes associated with wake refilling would provide useful tests for simulations and theoretical models of the lunar plasma interaction. The ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft mission is a two-probe lunar mission derived from the THEMIS (Time History of Events and Macroscale Interactions During Substorms) mission, repurposed to study the lunar space and planetary environment. Over the course of the mission there have been numerous passes of the ARTEMIS spacecraft through the lunar wake, at distances of up to seven lunar radii from the Moon. They have occurred for a variety of external conditions. We present a statistical study of tens of selected wake-crossing events of the ARTEMIS probes in 2011, using data primarily from the ARTEMIS fluxgate magnetometers (FGMs) and electrostatic analyzers (ESAs) to identify when the spacecraft entered and exited the wake. We study the shape of the outer wake boundary and its response to external conditions using two different techniques: one defines the wake boundary by a sharp decrease in ion density, the other by a decrease in magnetic field magnitude

  5. Study of plasma heating induced by fast electrons

    NASA Astrophysics Data System (ADS)

    Morace, A.; Magunov, A.; Batani, D.; Redaelli, R.; Fourment, C.; Santos, J. J.; Malka, G.; Boscheron, A.; Casner, A.; Nazarov, W.; Vinci, T.; Okano, Y.; Inubushi, Y.; Nishimura, H.; Flacco, A.; Spindloe, C.; Tolley, M.

    2009-12-01

    We studied the induced plasma heating in three different kinds of targets: mass limited, foam targets, and large mass targets. The experiment was performed at Alisé Laser Facility of CEA/CESTA. The laser system emitted a ˜1 ps pulse with ˜10 J energy at a wavelength of ˜1 μm. Mass limited targets had three layers with thicknesses of 10 μm C8H8, 1 μm C8H7Cl, and 10 μm C8H8 with size of 100×100 μm2. Detailed spectroscopic analysis of x rays emitted from the Cl tracer showed that it was possible to heat up the plasma from mass limited targets to a temperature of ˜250 eV with density of ˜1021 cm-3. The plasma heating is only produced by fast electron transport in the target, being the 10 μm C8H8 overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the prepulse. These results demonstrate that with mass limited targets, it is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  6. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    SciTech Connect

    Cooper, C. M.; Brookhart, M.; Collins, C.; Khalzov, I.; Milhone, J.; Nornberg, M.; Weisberg, D.; Forest, C. B.; Wallace, J.; Clark, M.; Flanagan, K.; Li, Y.; Nonn, P.; Ding, W. X.; Whyte, D. G.; Zweibel, E.

    2014-01-15

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ∼14 m{sup 3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB{sub 6}) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB{sub 6} cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M{sub A}{sup 2}=(v/v{sub A}){sup 2}>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  7. Pursuing the plasma dynamo and MRI in the laboratory: Hydrodynamic studies of unmagnetized plasmas at large magnetic Reynolds number

    NASA Astrophysics Data System (ADS)

    Weisberg, David B.

    A new method for studying flow-driven MHD instabilities in the laboratory has been developed, using a highly conductive, low viscosity, spherical plasma. The confinement, heating, and stirring of this unmagnetized plasma has been demonstrated experimentally, laying the foundations for the laboratory studies of a diverse collection of astrophysically-relevant instabilities. Specifically, plasma flows conducive to studies of the dynamo effect and the magnetorotational instability (MRI) are measured using a wide array of plasma diagnostics, and compare favorably to hydrodynamic numerical models. The Madison plasma dynamo experiment (MPDX) uses a cylindrically symmetric spherical boundary ring cusp geometry built from strong permanent magnets to confine a large (R=1.5 m), warm (Te < 20eV), dense, unmagnetized plasma. Detailed probe measurements of plasma transport into the edge cusp have demonstrated that particle confinement follows an ambipolar diffusion model, wherein unmagnetized ions are the more mobile plasma species and total plasma transport is limited by the slow cross-field diffusion of magnetized electrons. Emissive discharge heating is shown to be an efficient method of plasma heating, but limitations caused by instabilities in the anode-plasma sheath are found to prohibit the desired access to the full dimensionless parameter space in Re and Rm. The plasma is stirred via J x B torques using current drawn from emissive LaB6 cathodes located at the magnetized plasma edge, which also ionize and heat the plasma via sizable discharge current injection. Combination Langmuir/Mach probes measure maximum velocities of 6 km/s and 3 km/s in helium and argon plasmas, respectively, and ion viscosity is shown to be an efficient mechanism for transporting momentum from the magnetized edge into the unmagnetized core. Momentum loss to neutral charge-exchange collisions serves as the main source of drag on the bulk plasma velocity, and ionization fraction (He ˜ 0.6, Ar

  8. Initial trade and design studies for the fusion engineering device

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description.

  9. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma

    NASA Astrophysics Data System (ADS)

    Islam, Muhammad R.; Kang, Narae; Bhanu, Udai; Paudel, Hari P.; Erementchouk, Mikhail; Tetard, Laurene; Leuenberger, Michael N.; Khondaker, Saiful I.

    2014-08-01

    We have demonstrated that the electrical property of single-layer molybdenum disulfide (MoS2) can be significantly tuned from the semiconducting to the insulating regime via controlled exposure to oxygen plasma. The mobility, on-current and resistance of single-layer MoS2 devices were varied by up to four orders of magnitude by controlling the plasma exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and density functional theory studies suggest that the significant variation of electronic properties is caused by the creation of insulating MoO3-rich disordered domains in the MoS2 sheet upon oxygen plasma exposure, leading to an exponential variation of resistance and mobility as a function of plasma exposure time. The resistance variation calculated using an effective medium model is in excellent agreement with the measurements. The simple approach described here can be used for the fabrication of tunable two-dimensional nanodevices based on MoS2 and other transition metal dichalcogenides.We have demonstrated that the electrical property of single-layer molybdenum disulfide (MoS2) can be significantly tuned from the semiconducting to the insulating regime via controlled exposure to oxygen plasma. The mobility, on-current and resistance of single-layer MoS2 devices were varied by up to four orders of magnitude by controlling the plasma exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and density functional theory studies suggest that the significant variation of electronic properties is caused by the creation of insulating MoO3-rich disordered domains in the MoS2 sheet upon oxygen plasma exposure, leading to an exponential variation of resistance and mobility as a function of plasma exposure time. The resistance variation calculated using an effective medium model is in excellent agreement with the measurements. The simple approach described here can be used for the fabrication of tunable two-dimensional nanodevices based on MoS2

  10. Genetically engineered humanized mouse models for preclinical antibody studies.

    PubMed

    Proetzel, Gabriele; Wiles, Michael V; Roopenian, Derry C

    2014-04-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies.

  11. Princeton Plasma Physics Laboratory

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  12. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    SciTech Connect

    Greenly, John B.; Seyler, Charles

    2014-03-30

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and

  13. XPS Study of Plasma- and Argon Ion-Sputtered Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Kliss, Mark (Technical Monitor)

    1997-01-01

    The similarity of plasma-polymerized tetrafluoroethylene (PPTFE) and the fluoropolymer film deposited by rf (radio frequency) plasma sputtering (SPTFE) of polytetrafluoroethylene (PTFE), noted earlier in the literature, has been reconfirmed. FT-IR (Fourier Transform Infrared), XPS (X ray Photoelectron Spectroscopy) and UV (ultraviolet) spectroscopy has been employed in apparently the first study to involve preparation of PPTFE and SPTFE in the same reactor and under comparable low-power plasma conditions. Most of the work concerned the use of He or Ar as sputtering gas, but some runs were also carried out with the other rare gases Ne, Kr and Xe. The C1s XPS spectra of SPTFE films displayed a relatively higher content of CF2 groups, and yielded higher F/C (fluorine / carbon) ratios, than PPTFE films, while the SPTFE films were somewhat more transparent in the UV than PPTFE. The F/C ratios for SPTFE were essentially independent of the rare gas used for sputtering. Increasing rf power from 10 to 50 W for Xe plasma-sputtering of PTFE resulted in successively lower F/C ratios (1.55 to 1.21), accompanied by sputtering of the glass reactor occurring at 40 W and above. Some limited XPS, FT-IR and UV data are presented on Ar ion-sputtered PTFE.

  14. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  15. Studies on laser-plasma interaction physics for shock ignition

    NASA Astrophysics Data System (ADS)

    Maheut, Y.; Batani, D.; Nicolai, Ph.; Antonelli, L.; Krousky, E.

    2015-04-01

    We realized a series of experiments to study the physics of laser-plasma interaction in an intensity regime of interest for the novel "Shock Ignition" approach to Inertial Fusion. Experiments were performed at the Prague Asterix Laser System laser in Prague using two laser beams: an "auxiliary" beam, for pre-plasma creation, with intensity around 7 × 1013 W/cm2 (250 ps, 1ω, λ = 1315 nm) and the "main" beam, up to 1016 W/cm (250 ps, 3ω, λ = 438 nm), to launch a shock. The main goal of these experiments is to study the process of the formation of a very strong shock and the influence of hot electrons in the generation of very high pressures. The shock produced by the ablation of the plastic layer is studied by shock breakout chronometry. The generation of hot electrons is analyzed by imaging Kα emission.

  16. Hybrid vehicle system studies and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  17. Regulating the antibiotic drug release from β-tricalcium phosphate ceramics by atmospheric plasma surface engineering.

    PubMed

    Canal, C; Modic, M; Cvelbar, U; Ginebra, M-P

    2016-10-20

    Calcium phosphate (CaP) ceramics are of interest in bone substitution due to their good biocompatibility and bioresorbability. Currently certain CaPs in the market are loaded with antibiotics in order to prevent infections but further control is needed over antibiotic release patterns. Cold plasmas have emerged as a useful means of modifying the interactions with drugs through surface modification of polymer materials. In this work we explore the possibility of using atmospheric pressure plasmas as a tool for the surface modification of these CaP materials with newly populated bonds and charges, with views on enabling higher loading and controlled drug release. Herein the surface modification of β-tricalcium phosphate ceramics is investigated using an atmospheric pressure helium plasma jet as a tool for tuning the controlled release of the antibiotic doxycycline hyclate, employed as a drug model. The surface chemistry is tailored mainly by plasma jet surface interaction with an increasing O/C ratio without changes in the topography as well as by build-up of surface charges. With this surface tailoring it is demonstrated that the atmospheric plasma jet is a new promising tool that leads to the design of a control for drug release from bioceramic matrices.

  18. Regulating the antibiotic drug release from β-tricalcium phosphate ceramics by atmospheric plasma surface engineering.

    PubMed

    Canal, C; Modic, M; Cvelbar, U; Ginebra, M-P

    2016-10-20

    Calcium phosphate (CaP) ceramics are of interest in bone substitution due to their good biocompatibility and bioresorbability. Currently certain CaPs in the market are loaded with antibiotics in order to prevent infections but further control is needed over antibiotic release patterns. Cold plasmas have emerged as a useful means of modifying the interactions with drugs through surface modification of polymer materials. In this work we explore the possibility of using atmospheric pressure plasmas as a tool for the surface modification of these CaP materials with newly populated bonds and charges, with views on enabling higher loading and controlled drug release. Herein the surface modification of β-tricalcium phosphate ceramics is investigated using an atmospheric pressure helium plasma jet as a tool for tuning the controlled release of the antibiotic doxycycline hyclate, employed as a drug model. The surface chemistry is tailored mainly by plasma jet surface interaction with an increasing O/C ratio without changes in the topography as well as by build-up of surface charges. With this surface tailoring it is demonstrated that the atmospheric plasma jet is a new promising tool that leads to the design of a control for drug release from bioceramic matrices. PMID:27528375

  19. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  20. A Case Study: Teaching Engineering Concepts in Science. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Stricker, David R.

    2010-01-01

    This study was conducted to describe a teacher developed high school engineering course, to identify teaching strategies used in the process of delivering math and science literacy through this course, to identify challenges and constraints that occurred during its development and delivery, and to describe the strategies that were used to overcome…

  1. A case study of technology transfer: Rehabilitative engineering at Rancho Los Amigos Hospital. [prosthetic devices engineering

    NASA Technical Reports Server (NTRS)

    Hildred, W.

    1973-01-01

    The transfer of NASA technolgy to rehabilitative applications of artificial limbs is studied. Human factors engineering activities range from orthotic manipulators to tiny dc motors and transducers to detect and transmit voluntary control signals. It is found that bicarbon implant devices are suitable for medical equipment and artificial limbs because of their biological compatibility with human body fluids and tissues.

  2. Development Education and Engineering: A Framework for Incorporating Reality of Developing Countries into Engineering Studies

    ERIC Educational Resources Information Center

    Perez-Foguet, A.; Oliete-Josa, S.; Saz-Carranza, A.

    2005-01-01

    Purpose: To show the key points of a development education program for engineering studies fitted within the framework of the human development paradigm. Design/methodology/approach: The bases of the concept of technology for human development are presented, and the relationship with development education analysed. Special attention is dedicated…

  3. Factors Related to Study Success in Engineering Education

    ERIC Educational Resources Information Center

    Tynjala, Paivi; Salminen, Risto T.; Sutela, Tuula; Nuutinen, Anita; Pitkanen, Seppo

    2005-01-01

    Recent studies on student learning in higher education have paid attention to the relationships between characteristics of the learning environment and students' study orientations and study success. The purpose of the present paper is to examine these relationships in university level engineering education. The data were collected from…

  4. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  5. Conceptual study of fusion-driven transmutation reactor with ITER physics and engineering constraints

    NASA Astrophysics Data System (ADS)

    Hong, Bong

    2011-10-01

    A conceptual study of fusion-driven transmutation reactor was performed based on ITER physics and engineering constraints. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor.

  6. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  7. Optimized robust plasma sampling for glomerular filtration rate studies.

    PubMed

    Murray, Anthony W; Gannon, Mark A; Barnfield, Mark C; Waller, Michael L

    2012-09-01

    In the presence of abnormal fluid collection (e.g. ascites), the measurement of glomerular filtration rate (GFR) based on a small number (1-4) of plasma samples fails. This study investigated how a few samples will allow adequate characterization of plasma clearance to give a robust and accurate GFR measurement. A total of 68 nine-sample GFR tests (from 45 oncology patients) with abnormal clearance of a glomerular tracer were audited to develop a Monte Carlo model. This was used to generate 20 000 synthetic but clinically realistic clearance curves, which were sampled at the 10 time points suggested by the British Nuclear Medicine Society. All combinations comprising between four and 10 samples were then used to estimate the area under the clearance curve by nonlinear regression. The audited clinical plasma curves were all well represented pragmatically as biexponential curves. The area under the curve can be well estimated using as few as five judiciously timed samples (5, 10, 15, 90 and 180 min). Several seven-sample schedules (e.g. 5, 10, 15, 60, 90, 180 and 240 min) are tolerant to any one sample being discounted without significant loss of accuracy or precision. A research tool has been developed that can be used to estimate the accuracy and precision of any pattern of plasma sampling in the presence of 'third-space' kinetics. This could also be used clinically to estimate the accuracy and precision of GFR calculated from mistimed or incomplete sets of samples. It has been used to identify optimized plasma sampling schedules for GFR measurement. PMID:22825040

  8. A Mendelian Randomization Study of Plasma Homocysteine and Multiple Myeloma

    PubMed Central

    Xuan, Yang; Li, Xiao-Hong; Hu, Zhong-Qian; Teng, Zhi-Mei; Hu, Dao-Jun

    2016-01-01

    Observational studies have demonstrated an association between elevated homocysteine (Hcy) level and risk of multiple myeloma (MM). However, it remains unclear whether this relationship is causal. We conducted a Mendelian randomization (MR) study to evaluate whether genetically increased Hcy level influences the risk of MM. We used the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism as an instrumental variable, which affects the plasma Hcy levels. Estimate of its effect on plasma Hcy level was based on a recent genome-wide meta-analysis of 44,147 individuals, while estimate of its effect on MM risk was obtained through meta-analysis of case-control studies with 2,092 cases and 4,954 controls. By combining these two estimates, we found that per one standard-deviation (SD) increase in natural log-transformed plasma Hcy levels conferred a 2.67-fold increase in risk for MM (95% confidence interval (CI): 1.12–6.38; P = 2.7 × 10−2). Our study suggests that elevated Hcy levels are causally associated with an increased risk of developing MM. Whether Hcy-lowering therapy can prevent MM merits further investigation in long-term randomized controlled trials (RCTs). PMID:27126524

  9. Study of breakdown in an ablative pulsed plasma thruster

    SciTech Connect

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  10. Structures, performance, benefit, cost study. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  11. The study of data collection method for the plasma properties collection and evaluation system from web

    NASA Astrophysics Data System (ADS)

    Park, Jun-Hyoung; Song, Mi-Young; Plasma Fundamental Technology Research Team

    2015-09-01

    Plasma databases are necessarily required to compute the plasma parameters and high reliable databases are closely related with accuracy enhancement of simulations. Therefore, a major concern of plasma properties collection and evaluation system is to create a sustainable and useful research environment for plasma data. The system has a commitment to provide not only numerical data but also bibliographic data (including DOI information). Originally, our collection data methods were done by manual data search. In some cases, it took a long time to find data. We will be find data more automatically and quickly than legacy methods by crawling or search engine such as Lucene.

  12. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  13. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  14. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard; Shim, Ja Soon; Kuznetsova, Maria M.; Pulkkinen, Antti, A.

    2013-01-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density (Ne) and temperature (Te) measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. Three near real time space weather tools under development for ISS applications are described here including: (a) Ne from ground based ionosonde measurements of foF2 (b) Ne from near real time satellite radio occultation measurements of electron density profiles (c) Ne, Te from a physics based ionosphere model These applications are used to characterize the ISS space plasma environment during EVA periods when FPMU data is not available, monitor for large changes in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the "persistence of conditions" forecast assumption. In addition, the tools are useful for providing space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  15. Probabilistic Study Conducted on Sensor-Based Engine Life Calculation

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2004-01-01

    Turbine engine life management is a very complicated process to ensure the safe operation of an engine subjected to complex usage. The challenge of life management is to find a reasonable compromise between the safe operation and the maximum usage of critical parts to reduce maintenance costs. The commonly used "cycle count" approach does not take the engine operation conditions into account, and it oversimplifies the calculation of the life usage. Because of the shortcomings, many engine components are regularly pulled for maintenance before their usable life is over. And, if an engine has been running regularly under more severe conditions, components might not be taken out of service before they exceed their designed risk of failure. The NASA Glenn Research Center and its industrial and academic partners have been using measurable parameters to improve engine life estimation. This study was based on the Monte Carlo simulation of 5000 typical flights under various operating conditions. First a closed-loop engine model was developed to simulate the engine operation across the mission profile and a thermomechanical fatigue (TMF) damage model was used to calculate the actual damage during takeoff, where the maximum TMF accumulates. Next, a Weibull distribution was used to estimate the implied probability of failure for a given accumulated cycle count. Monte Carlo simulations were then employed to find the profiles of the TMF damage under different operating assumptions including parameter uncertainties. Finally, probabilities of failure for different operating conditions were analyzed to demonstrate the importance of a sensor-based damage calculation in order to better manage the risk of failure and on-wing life.

  16. Motivational Factors of Professional Engineers and Non-Professional Engineers in Applying for License as Professional Engineer: A Comparative Study

    ERIC Educational Resources Information Center

    Khamis, Nor Kamaliana; Harun, Zambri; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Sabri, Mohd Anas Mohd

    2013-01-01

    All engineering faculties in Malaysia are required to have at least three academics who have engineering competency for each program. Having an engineering competency means academics has obtained the compulsory endorsements from the Boards of Engineers, Malaysia, BEM. Upon approval, academics seeking such competency could carry the suffix Ir. to…

  17. A Study of Engineering Freshmen Regarding Nanotechnology Understanding

    ERIC Educational Resources Information Center

    Lu, Kathy

    2009-01-01

    This study was conducted under the grand scheme of nanotechnology education and was focused on examining the nanotechnology readiness of first-year engineering students. The study found that most students learned the term "nano" from popular science magazines or as a measurement unit; less than 5% of the students learned "nano" through…

  18. Do Our Engineering Students Spend Enough Time Studying?

    ERIC Educational Resources Information Center

    Kolari, S.; Savander-Ranne, C.; Viskari, E.-L.

    2006-01-01

    In higher education one of the most important learning goals is deep understanding. Achieving this goal needs time and effort. The authors discuss their observations of student time use on the basis of several case studies which they have conducted in the field of engineering education in Finland. The time that the students spend studying is…

  19. Combat aircraft jet engine noise studies

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Fournier, G.; Pianko, M.

    Methods of noise prediction and attenuation, based on results obtained in civil applications are presented. Input data for directivity and radiation forecasts are given by measurements of vane and blade pressure fluctuations, and by modal analysis of the spinning waves propagating in the inlet duct. Attention is given to sound generation mechanisms for subsonic and supersonic single jets and bypass jets. Prediction methods, based on Lighthill's equation (tensor due to the turbulence), are discussed, and the various means of jet noise reduction are reviewed. The CEPRA 19 anechoic wind tunnel, which is primarily designed for studying the jet noise radiated in the far field with flight effects is described.

  20. Engineering study for ISSTRS design concept

    SciTech Connect

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  1. Feasibility study for analyzing plasma-aerodynamic effects

    SciTech Connect

    Penetrante, B; Sherohman, J

    1999-05-07

    The purpose of this feasibility study was to conduct preliminary modeling to elucidate the mechanisms responsible for the effects observed in the Air Force Research Laboratory (AFRL) shock tube experiment. It was assumed that the plasma is simply a region of gas in the shock tube that has a higher gas temperature. Computational fluid dynamics (CFD) calculations were performed to simulate the propagation of a shock wave through the tube, using the same parameters in the experiment. Both 1- D and 3-D CFD calculations were performed to determine which effects can be explained simply by axial temperature gradients and which effects require the presence of radial temperature gradients. Discharge plasma physics calculations of a longitudinal glow discharge were then used to establish if the electrical currents used in the experiment are consistent with the gas temperature distributions that are necessary to explain the observed effects.

  2. Preliminary Study of a Hybrid Helicon-ECR Plasma Source

    NASA Astrophysics Data System (ADS)

    M. Hala, A.; Oksuz, L.; Ximing, Zhu

    2016-08-01

    A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.

  3. Mined salt storage feasibility: Engineering study report

    SciTech Connect

    Not Available

    1987-07-01

    This study addresses a method of eliminating the surface storage of mined salt at the Deaf Smith repository site. It provides rough estimates of the logistics and costs of transporting 3.7 million tons of salt from the repository to the salt disposal site near Carlsbad, New Mexico and returning it to the repository for decommissioning backfill. The study assumes that a railcar/truck system will be installed and that the excavated salt will be transported from the repository to an existing potash mine located near Carlsbad, New Mexico approximately 300 miles from the repository. The 3.7 million tons of salt required for repository decommissioning backfill can be stored in the potash mines along with the excess salt, with no additional capital costs required for either a railcar or a truck transportation system. The capital cost for facilities to reclaim the 3.7 million tons of salt from the potash mine is estimated to be $4,400,000 with either a rail or truck transportation system. Segregating the 3.7 million tons of backfill salt in a surface storage area at the potash mine requires a capital cost of $13,900,000 with a rail system or $11,400,000 with a truck system. Transportation costs are estimated at $0.08/ton-mile for rail and $0.13/ton-mile for truck. 2 figs., 5 tabs.

  4. Results of Compact Stellarator Engineering Trade Studies

    SciTech Connect

    Tom Brown, L. Bromberg, M. Cole

    2009-05-27

    number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  5. Design study of RL10 derivatives. Volume 2: Engine design characteristics. [application of rocket engine to space tug propulsion

    NASA Technical Reports Server (NTRS)

    Adams, A.

    1973-01-01

    The design characteristics of the RL-10 rocket engine are discussed. The results from critical elements evaluation, baseline engine design, parametric and special study tasks are presented. Critical element evaluation established the feasibility of various engine features such as tank head idle, pumped idle, autogenous tank pressurization, and two-phase pumping. Three baseline engines, derived from the RL-10 were conceptually designed. Parametric life and performance data were generated. Special studies were conducted to establish the impact on the engine design of environment, safety, interchangeability, and maintenance.

  6. A Study of Creative Engineering Education by Making Musical Instruments

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kimihide; Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi

    A number of students, showing less interest in science and technology, are in current increasing in many advanced countries as well as in Japan. This trend results in lack of engineering design ability for lower grade student of engineering course. To improve this developing attractive teaching material is inevitable. In this study, a woodwork violin making project is newly proposed. Students can learn the concept of what manufacturing processes are. The advantageous points of this project is as follows; short time until project completion, evaluation of instrument sounds in terms of both sensual and technological methods, and studying modern evaluation method of sound by means of FFT.

  7. LONG TERM IN SITU DISPOSAL ENGINEERING STUDY

    SciTech Connect

    ADAMS; CARLSON; BROCKMAN

    2003-07-23

    Patent application pulled per Ken Norris (FH General Counsel). The objective of this study is to devise methods, produce conceptual designs, examine and select alternatives, and estimate costs for the demonstration of long-term (300-year) in situ disposal of an existing waste disposal site. The demonstration site selected is the 216-A-24 Crib near the 200 East Area. The site contains a fission product inventory and has experienced plant, animal, and inadvertent than intrusion. Of the potential intrusive events and transport pathways at the site, potential human intrusion has been given primary consideration in barrier design. Intrusion by wind, plants, and animals has been given secondary consideration. Groundwater modeling for a number of barrier configurations has been carried out to help select a barrier that will minimize water infiltration and waste/water contact time. The estimated effective lifetime and cost of 20 barrier schemes, using a variety of materials, have been evaluated. The schemes studied include single component surface barriers, multicomponent barriers, and massively injected grout barriers. Five barriers with high estimated effective lifetimes and relatively low costs have been selected for detailed evaluation. They are basalt riprap barriers, massive soil barriers, salt basin barriers, multi-component fine/coarse barriers, and cemented basalt barriers. A variety of materials and configurations for marking the site have also been considered. A decision analysis was completed to select a barrier scheme for demonstration. The analysis indicated that the basalt riprap alternative would be the preferred choice for a full-scale demonstration. The recommended approach is to demonstrate the basalt riprap barrier at the 216-A-24 Crib as soon as possible. Methods and costs of assessing effectiveness of the demonstration are also described. Preliminary design modifications and costs for applying the five selected barrier schemes to other site types are

  8. Study of plasma heating induced by fast electrons

    SciTech Connect

    Morace, A.; Batani, D.; Redaelli, R.; Magunov, A.; Fourment, C.; Santos, J. J.; Malka, G.; Boscheron, A.; Nazarov, W.; Vinci, T.; Okano, Y.; Inubushi, Y.; Nishimura, H.; Flacco, A.; Spindloe, C.; Tolley, M.

    2009-12-15

    We studied the induced plasma heating in three different kinds of targets: mass limited, foam targets, and large mass targets. The experiment was performed at Alise Laser Facility of CEA/CESTA. The laser system emitted a approx1 ps pulse with approx10 J energy at a wavelength of approx1 {mu}m. Mass limited targets had three layers with thicknesses of 10 {mu}m C{sub 8}H{sub 8}, 1 {mu}m C{sub 8}H{sub 7}Cl, and 10 {mu}m C{sub 8}H{sub 8} with size of 100x100 {mu}m{sup 2}. Detailed spectroscopic analysis of x rays emitted from the Cl tracer showed that it was possible to heat up the plasma from mass limited targets to a temperature of approx250 eV with density of approx10{sup 21} cm{sup -3}. The plasma heating is only produced by fast electron transport in the target, being the 10 {mu}m C{sub 8}H{sub 8} overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the prepulse. These results demonstrate that with mass limited targets, it is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  9. Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines

    NASA Technical Reports Server (NTRS)

    Halliwell, Ian

    2001-01-01

    The exoskeletal engine concept is one in which the shafts and disks are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Omission of the shafts and disks leads to an open channel at the engine centerline. This has immense potential for reduced jet noise and for the accommodation of an alternative form of thruster for use in a combined cycle. The use of ceramic composite materials has the potential for significantly reduced weight as well as higher working temperatures without cooling air. The exoskeletal configuration is also a natural stepping-stone to complete counter-rotating turbomachinery. Ultimately this will lead to reductions in weight, length, parts count and improved efficiency. The feasibility studies are in three parts. Part 1: Systems and Component Requirements addressed the mechanical aspects of components from a functionality perspective. This effort laid the groundwork for preliminary design studies. Although important, it is not felt to be particularly original, and has therefore not been included in the current overview. Part 2: Preliminary Design Studies turned to some of the cycle and performance issues inherent in an exoskeletal configuration and some initial attempts at preliminary design of turbomachinery were described. Twin-spoon and single-spool 25,800-lbf-thrust turbofans were used as reference vehicles in a mid-size commercial subsonic category in addition to a single-spool 5,000-lbf-thrust turbofan that represented a general aviation application. The exoskeletal engine, with its open centerline, has tremendous potential for noise suppression and some preliminary analysis was done which began to quantify the benefits. Part 3: Additional Preliminary Design Studies revisited the design of single-spool 25,800-lbf-thrust turbofan configurations, but in addition to the original FPR = 1.6 and BPR = 5.1 reference engine. two additional configurations used FPR = 2.4 and BPR = 3.0 and FPR = 3.2 and

  10. Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines

    NASA Technical Reports Server (NTRS)

    Halliwell, Ian

    2001-01-01

    The exoskeletal engine concept is one in which the shafts and disks are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Omission of the shafts and disks leads to an open channel at the engine centerline. This has immense potential for reduced jet noise and for the accomodation of an alternative form of thruster for use in a combined cycle. The use of ceramic composite materials has the potential for significantly reduced weight as well as higher working temperatures without cooling air. The exoskeletal configuration is also a natural stepping-stone to complete counter-rotating turbomachinery. Ultimately this will lead to reductions in weight, length, parts count and improved efficiency. The feasibility studies are in three parts. Part I-Systems and Component Requirements addressed the mechanical aspects of components from a functionality perspective. This effort laid the groundwork for preliminary design studies. Although important, it is not felt to be particularly original, and has therefore not been included in the current overview. Part 2-Preliminary Design Studies turned to some of the cycle and performance issues inherent in an exoskeletal configuration and some initial attempts at preliminary design of turbomachinery were described. Twin-spoon and single-spool 25.800-lbf-thrust turbofans were used as reference vehicles in a mid-size commercial subsonic category in addition to a single-spool 5,000-lbf-thrust turbofan that represented a general aviation application. The exoskeletal engine, with its open centerline, has tremendous potential for noise suppression and some preliminary analysis was done which began to quantify the benefits. Part 3-Additional Preliminary Design Studies revisited the design of single-spool 25,800-lbf-thrust turbofan configurations, but in addition to the original FPR = 1.6 and BPR = 5.1 reference engine, two additional configurations used FPR = 2.4 and BPR = 3.0 and FPR = 3.2 and BPR

  11. Engineering Lipid Bilayer Membranes for Protein Studies

    PubMed Central

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  12. Study of Turbofan Engines Designed for Low Enery Consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.

  13. An overview of the Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.; Wintucky, W. T.; Niedzwiecki, R. W.

    1986-01-01

    The objectives of the joint NASA/Army SECT Studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.

  14. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard; Shim, Ja Soon; Kuznetsova, Maria; Pulkkinen, Antti A.

    2013-01-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density and temperature measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. In addition to EVA support, information on ionospheric plasma densities is often needed for support of ISS science payloads and anomaly investigations during periods when the FPMU is not operating. This presentation describes the application of space weather tools developed by MSFC using data from near real time satellite radio occultation and ground based ionosonde measurements of ionospheric electron density and a first principle ionosphere model providing electron density and temperature run in a real time mode by GSFC. These applications are used to characterize the space environment during EVA periods when FPMU data is not available, monitor for large charges in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the assumption of "persistence of conditions" used in deriving the hazard forecast. In addition, the tools are used to provide space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  15. Analysis of apolipoprotein A5, C3 and plasma triglyceride concentrations in genetically engineered mice

    SciTech Connect

    Baroukh, Nadine; Bauge, Eric; Akiyama, Jennifer; Chang, Jessie; Afzal, Veena; Fruchart, Jean-Charles; Rubin, Edward M.; Fruchart, Jamila; Pennacchio, Len A.

    2004-03-11

    To address the relationship between the apolipoprotein A5 and C3 genes, we generated independent lines of mice that either over-expressed or completely lacked both genes. We report both lines display normal triglyceride concentrations compared to over-expression or deletion of either gene alone. Together, these data support that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.

  16. Studies of Plasma Flow Past Jupiters Satellite Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, and the interaction of Ganymede with the corotating Jovian plasma. With the successful insertion of the Galileo spacecraft into orbit around Jupiter, many new observations have been made of the Jovian magnetosphere. Some of the most exciting results thus far have been in regards to Jupiter's satellites, Io and Ganymede. In both cases the large perturbations to the background (Jovian) magnetic field have been consistent with the satellites' possession of an intrinsic magnetic field. The gravity measurements implying a differentiated core at both Io and Ganymede makes internal generation of a magnetic field by dynamo action in these satellites plausible, and, in the case of Ganymede, the identification of an intrinsic field is apparently unambiguous. For Io the situation is less clear, and further analysis is necessary to answer this important question. During the past year, we have used time-dependent three-dimensional magnetohydrodynamic (MHD) simulations to study these plasma-moon interactions. The results from these simulations have been used directly in the analysis of the Galileo magnetometer data. Our primary emphasis has been on the Io interaction, but we recently presented results on the Ganymede interaction as well. In this progress summary we describe our efforts on these problems to date.

  17. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  18. Analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma

    SciTech Connect

    Shukla, Arun; Jat, K. L.

    2015-07-31

    An analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma has been reported. In the present analytical investigation, the lattice displacement, acousto-optical polarization, susceptibility, acousto-optical gain constant arising due to the induced nonlinear current density and acousto-optical process are deduced in an acoustically perturbed Brillouin active magnetized semiconductor plasma using the hydrodynamical model of plasma and coupled mode scheme. The influence of wave number and magnetic field has been explored. The analysis has been applied to centrosymmetric crystal. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 µm CO{sub 2} laser. It is found that lattice displacement, susceptibility and acousto-optical gain increase linearly with incident wave number and applied dc magnetic field, while decrease with scattering angle. The gain also increases with electric amplitude of incident laser beam. Results are found to be well in agreement with available literature.

  19. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma.

    PubMed

    Ito, Kenji; Yamada, Yoichi; Naiki, Takahito; Ueda, Minoru

    2006-10-01

    This study was undertaken to evaluate the use of tissue-engineered bone as grafting material for alveolar augmentation with simultaneous implant placement. Twelve adult hybrid dogs were used in this study. One month after the extraction of teeth in the mandible region, bone defects on both sides of the mandible were induced using a trephine bar with a diameter of 10 mm. Dog mesenchymal stem cells (dMSCs) were obtained via iliac bone biopsy and cultured for 4 weeks before implantation. After installing the dental implants, the defects were simultaneously implanted with the following graft materials: (i) fibrin, (ii) dMSCs and fibrin (dMSCs/fibrin), (iii) dMSCs, platelet-rich plasma (PRP) and fibrin (dMSCs/PRP/fibrin) and (iv) control (defect only). The implants were assessed by histological and histomorphometric analysis, 2, 4 and 8 weeks after implantation. The implants exhibited varying degrees of bone-implant contact (BIC). The BIC was 17%, 19% and 29% (control), 20%, 22% and 25% (fibrin), 22%, 32% and 42% (dMSCs/fibrin) and 25%, 49% and 53% (dMSCs/PRP/fibrin) after 2, 4 and 8 weeks, respectively. This study suggests that tissue-engineered bone may be of sufficient quality for predictable enhancement of bone regeneration around dental implants when used simultaneous by with implant placement.

  20. Engine Power Turbine and Propulsion Pod Arrangement Study

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Zhang, Yiyi

    2014-01-01

    A study has been conducted for NASA Glenn Research Center under contract NNC10BA05B, Task NNC11TA80T to identify beneficial arrangements of the turboshaft engine, transmissions and related systems within the propulsion pod nacelle of NASA's Large Civil Tilt-Rotor 2nd iteration (LCTR2) vehicle. Propulsion pod layouts were used to investigate potential advantages, disadvantages, as well as constraints of various arrangements assuming front or aft shafted engines. Results from previous NASA LCTR2 propulsion system studies and tasks performed by Boeing under NASA contracts are used as the basis for this study. This configuration consists of two Fixed Geometry Variable Speed Power Turbine Engines and related drive and rotor systems (per nacelle) arranged in tilting nacelles near the wing tip. Entry-into-service (EIS) 2035 technology is assumed for both the engine and drive systems. The variable speed rotor system changes from 100 percent speed for hover to 54 percent speed for cruise by the means of a two speed gearbox concept developed under previous NASA contracts. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified in previous work and used here. Results reported in this study illustrate that a forward shafted engine has a slight weight benefit over an aft shafted engine for the LCTR2 vehicle. Although the aft shafted engines provide a more controlled and centered CG (between hover and cruise), the length of the long rotor shaft and complicated engine exhaust arrangement outweighed the potential benefits. A Multi-Disciplinary Analysis and Optimization (MDAO) approach for transmission sizing was also explored for this study. This tool offers quick analysis of gear loads, bearing lives, efficiencies, etc., through use of commercially available RomaxDESIGNER software. The goal was to create quick methods to explore various concept models. The output results from RomaxDESIGNER have been successfully linked to Boeing

  1. A Study of Experience Credit for Professional Engineering Licensure

    SciTech Connect

    Martin, M.A.

    2003-08-11

    Oak Ridge National Laboratory performed a study of experience credit for professional engineering licensure for the Department of Energy's Industrial Assessment Center (IAC) Program. One of the study's goals was to determine how state licensure boards grant experience credit for engineering licensure, particularly in regards to IAC experience and experience prior to graduation. Another goal involved passing IAC information to state licensure boards to allow the boards to become familiar with the program and determine if they would grant credit to IAC graduates. The National Council of Examiners for Engineers and Surveyors (NCEES) has adopted a document, the ''Model Law''. This document empowers states to create state engineering boards and oversee engineering licensure. The board can also interpret and adopt rules and regulations. The Model Law also gives a general ''process'' for engineering licensure, the ''Model Law Engineer''. The Model Law Engineer requires that an applicant for professional licensure, or professional engineering (PE) licensure, obtain a combination of formal education and professional experience and successfully complete the fundamentals of engineering (FE) and PE exams. The Model Law states that a PE applicant must obtain four years of ''acceptable'' engineering experience after graduation to be allowed to sit for the PE exam. Although the Model Law defines ''acceptable experience,'' it is somewhat open to interpretation, and state boards decide whether applicants have accumulated the necessary amount of experience. The Model Law also allows applicants one year of credit for postgraduate degrees as well as experience credit for teaching courses in engineering. The Model Law grants states the power to adopt and amend the bylaws and rules of the Model Law licensure process. It allows state boards the freedom to modify the experience requirements for professional licensure. This power has created variety in experience requirements, and

  2. Textual appropriation in engineering master's theses: a preliminary study.

    PubMed

    Eckel, Edward J

    2011-09-01

    In the thesis literature review, an engineering graduate student is expected to place original research in the context of previous work by other researchers. However, for some students, particularly those for whom English is a second language, the literature review may be a mixture of original writing and verbatim source text appropriated without quotations. Such problematic use of source material leaves students vulnerable to an accusation of plagiarism, which carries severe consequences. Is such textual appropriation common in engineering master's writing? Furthermore, what, if anything, can be concluded when two texts have been found to have textual material in common? Do existing definitions of plagiarism provide a sufficient framework for determining if an instance of copying is transgressive or not? In a preliminary attempt to answer these questions, text strings from a random sample of 100 engineering master's theses from the ProQuest Dissertations and Theses database were searched for appropriated verbatim source text using the Google search engine. The results suggest that textual borrowing may indeed be a common feature of the master's engineering literature review, raising questions about the ability of graduate students to synthesize the literature. The study also illustrates the difficulties of making a determination of plagiarism based on simple textual similarity. A context-specific approach is recommended when dealing with any instance of apparent copying.

  3. Energy efficient engine: Preliminary design and integration studies

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Hirschkron, R.; Koch, C. C.; Neitzel, R. E.; Vinson, P. W.

    1978-01-01

    Parametric design and mission evaluations of advanced turbofan configurations were conducted for future transport aircraft application. Economics, environmental suitability and fuel efficiency were investigated and compared with goals set by NASA. Of the candidate engines which included mixed- and separate-flow, direct-drive and geared configurations, an advanced mixed-flow direct-drive configuration was selected for further design and evaluation. All goals were judged to have been met except the acoustic goal. Also conducted was a performance risk analysis and a preliminary aerodynamic design of the 10 stage 23:1 pressure ratio compressor used in the study engines.

  4. A phenomenographic study of students' experiences with transition from pre-college engineering programs to first-year engineering

    NASA Astrophysics Data System (ADS)

    Salzman, Noah

    Recent national dialogues on the importance of preparing more students for careers in Science, Technology, Engineering, and Mathematics has driven the development of formal and informal learning opportunities for children and adolescents to explore engineering. Despite the growth of these programs, relatively little research exists on how participation in these programs affects students who choose to pursue further study in engineering. The present study addressed this gap through an exploration of the different ways that First-Year Engineering students experience the transition from pre-college engineering to undergraduate engineering studies. Given the focus of this research on students' experiences, phenomenography was chosen to explore the phenomenon of transition from pre-college to first-year engineering at a large, public Midwestern university. This facilitated understanding the range of variation in the ways that students experienced this transition. Twenty-two students with different amounts of participation in a variety of different engineering programs were selected to be interviewed using a purposeful maximum variation sampling strategy. The interviews were guided by a semi-structured interview protocol that encouraged the participants to reflect on their pre-college engineering experiences, their experiences in First-Year Engineering, and the transition between the two domains. The interviews were analyzed using phenomenographic methods to develop an outcome space consisting of five qualitatively different but related ways of experiencing the transition from pre-college to First-Year Engineering. These categories of description included Foreclosure, Frustration, Tedium, Connection, and Engaging Others. With the exception of the first category which was characterized by a lack of passion and commitment to engineering, the remaining four categories formed a hierarchical relationship representing increasing integration in First-Year Engineering. The

  5. Block or Day Release? A Comparative Study of Engineering Apprentices.

    ERIC Educational Resources Information Center

    Moore, B. M.

    The purpose of this report is to compare part-time day release and block release schemes available to apprentices and trainees in the engineering industry. (Block release provides for one or more periods of continuous attendance at college for study and workshop instruction; one session does not exceed 18 weeks.) The main focus is on educational…

  6. Workshop Summary: The Syndicate Study--Developing Engineering Competence.

    ERIC Educational Resources Information Center

    Williams, R. J.; Beaujean, D. A.

    1992-01-01

    Syndicate studies simulate industrial situations and have proved to be an effective and adaptable small-group teaching strategy in electrical and electronic engineering classes. Outlines a planning exercise for surface mounted technology: aim, execution, company management, and tasks; provides examples of a meeting agenda; workshop discussion…

  7. Engineering study for the phase 1 privatization facilities electrical power

    SciTech Connect

    Singh, G., Westinghouse Hanford

    1996-07-18

    This engineering study evaluates the availability of electric power from the existing 13.8 kV substation, BPA 115 kV system,and RL 230 kV transmission line; for supporting the Privatization Phase I Facilities. 230 kV system is a preferable alternative.

  8. Researching Primary Engineering Education: UK Perspectives, an Exploratory Study

    ERIC Educational Resources Information Center

    Clark, Robin; Andrews, Jane

    2010-01-01

    This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of…

  9. Engineering Study of 500 ML Sample Bottle Transportation Methods

    SciTech Connect

    BOGER, R.M.

    1999-08-25

    This engineering study reviews and evaluates all available methods for transportation of 500-mL grab sample bottles, reviews and evaluates transportation requirements and schedules and analyzes and recommends the most cost-effective method for transporting 500-mL grab sample bottles.

  10. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    ERIC Educational Resources Information Center

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  11. Evaluating Risk Awareness in Undergraduate Students Studying Mechanical Engineering

    ERIC Educational Resources Information Center

    Langdon, G. S.; Balchin, K.; Mufamadi, P.

    2010-01-01

    This paper examines the development of risk awareness among undergraduate students studying mechanical engineering at a South African university. A questionnaire developed at the University of Liverpool was modified and used on students from the first, second and third year cohorts to assess their awareness in the areas of professional…

  12. Environmental Study: Science and Engineering Buildings. ABS Publication No. 1.

    ERIC Educational Resources Information Center

    California Univ., Berkeley.

    This report is the first of a series which present the results of a systems analysis of the problem of providing science and engineering buildings at the university level conducted by the Academic Building Systems (ABS) program. The document includes (1) a user survey (data and conclusions from a series of studies involving a spectrum of…

  13. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  14. An exome array study of the plasma metabolome.

    PubMed

    Rhee, Eugene P; Yang, Qiong; Yu, Bing; Liu, Xuan; Cheng, Susan; Deik, Amy; Pierce, Kerry A; Bullock, Kevin; Ho, Jennifer E; Levy, Daniel; Florez, Jose C; Kathiresan, Sek; Larson, Martin G; Vasan, Ramachandran S; Clish, Clary B; Wang, Thomas J; Boerwinkle, Eric; O'Donnell, Christopher J; Gerszten, Robert E

    2016-01-01

    The study of rare variants may enhance our understanding of the genetic determinants of the metabolome. Here, we analyze the association between 217 plasma metabolites and exome variants on the Illumina HumanExome Beadchip in 2,076 participants in the Framingham Heart Study, with replication in 1,528 participants of the Atherosclerosis Risk in Communities Study. We identify an association between GMPS and xanthosine using single variant analysis and associations between HAL and histidine, PAH and phenylalanine, and UPB1 and ureidopropionate using gene-based tests (P<5 × 10(-8) in meta-analysis), highlighting novel coding variants that may underlie inborn errors of metabolism. Further, we show how an examination of variants across the spectrum of allele frequency highlights independent association signals at select loci and generates a more integrated view of metabolite heritability. These studies build on prior metabolomics genome wide association studies to provide a more complete picture of the genetic architecture of the plasma metabolome. PMID:27453504

  15. An exome array study of the plasma metabolome

    PubMed Central

    Rhee, Eugene P.; Yang, Qiong; Yu, Bing; Liu, Xuan; Cheng, Susan; Deik, Amy; Pierce, Kerry A.; Bullock, Kevin; Ho, Jennifer E.; Levy, Daniel; Florez, Jose C.; Kathiresan, Sek; Larson, Martin G.; Vasan, Ramachandran S.; Clish, Clary B.; Wang, Thomas J.; Boerwinkle, Eric; O'Donnell, Christopher J.; Gerszten, Robert E.

    2016-01-01

    The study of rare variants may enhance our understanding of the genetic determinants of the metabolome. Here, we analyze the association between 217 plasma metabolites and exome variants on the Illumina HumanExome Beadchip in 2,076 participants in the Framingham Heart Study, with replication in 1,528 participants of the Atherosclerosis Risk in Communities Study. We identify an association between GMPS and xanthosine using single variant analysis and associations between HAL and histidine, PAH and phenylalanine, and UPB1 and ureidopropionate using gene-based tests (P<5 × 10−8 in meta-analysis), highlighting novel coding variants that may underlie inborn errors of metabolism. Further, we show how an examination of variants across the spectrum of allele frequency highlights independent association signals at select loci and generates a more integrated view of metabolite heritability. These studies build on prior metabolomics genome wide association studies to provide a more complete picture of the genetic architecture of the plasma metabolome. PMID:27453504

  16. The experiences of women engineers who have completed one to five years of professional engineering employment: A phenomenological study

    NASA Astrophysics Data System (ADS)

    White, Susan M.

    Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.

  17. Ignition study of a petrol/CNG single cylinder engine

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.

  18. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  19. Stability study for matching in laser driven plasma acceleration

    NASA Astrophysics Data System (ADS)

    Rossi, A. R.; Anania, M. P.; Bacci, A.; Belleveglia, M.; Bisesto, F. G.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petrarca, M.; Pompili, R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Villa, F.

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  20. Experimental studies of ionospheric irregularities and related plasma processes

    NASA Technical Reports Server (NTRS)

    Baker, Kay D.

    1992-01-01

    Utah State University (USU) continued its program of measuring and interpreting electron density and its variations in a variety of ionospheric conditions with the Experimental Studies of Ionospheric Irregularities and Related Plasma Processes program. The program represented a nearly ten year effort to provide key measurements of electron density and its fluctuations using sounding rockets. The program also involved the joint interpretation of the results in terms of ionospheric processes. A complete campaign summary and a brief description of the major rocket campaigns are also included.

  1. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  2. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  3. Studies of plasma confinement in linear and RACETRACK mirror configurations

    SciTech Connect

    Kuthi, A.; Wong, A.Y.

    1986-06-30

    This report discusses research on the following magnetic mirror configurations: Racetrack; ECRH generated plasmas; RF generated plasmas; potential structures; surface multipole fields, and lamex; hot electron physics; axial loss processes; and RF induced effects.

  4. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma.

    PubMed

    Islam, Muhammad R; Kang, Narae; Bhanu, Udai; Paudel, Hari P; Erementchouk, Mikhail; Tetard, Laurene; Leuenberger, Michael N; Khondaker, Saiful I

    2014-09-01

    We have demonstrated that the electrical property of single-layer molybdenum disulfide (MoS2) can be significantly tuned from the semiconducting to the insulating regime via controlled exposure to oxygen plasma. The mobility, on-current and resistance of single-layer MoS2 devices were varied by up to four orders of magnitude by controlling the plasma exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and density functional theory studies suggest that the significant variation of electronic properties is caused by the creation of insulating MoO3-rich disordered domains in the MoS2 sheet upon oxygen plasma exposure, leading to an exponential variation of resistance and mobility as a function of plasma exposure time. The resistance variation calculated using an effective medium model is in excellent agreement with the measurements. The simple approach described here can be used for the fabrication of tunable two-dimensional nanodevices based on MoS2 and other transition metal dichalcogenides.

  5. Phenomenology of plasma engine cathodes at high current rates and low pressures

    NASA Technical Reports Server (NTRS)

    Huegel, H.; Kruelle, G.

    1984-01-01

    The effects of low surrounding pressures on cathodes of arc jet engines with electromagnetic acceleration are investigated for pressure and current energies of 20 to 100 Torr. and 400 to 1000 A. Experiments with 50 mm long and 8 mm diameter tungsten-thorium cathode in a coaxial gas flow show that pre-heating of the cathode reduces the duration of the instable arc discharge and thus material loss. The use of lighter gases also reduces instability effects, as well as the use of increased pressures and a massive gas influx.

  6. X-ray and optical studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Ellwi, Samir Shakir

    X-ray and optical investigations of dense plasmas and x- ray sources for laser-plasma studies are presented in this thesis. Short pulse laser interaction with solids is reviewed. The transport of laser energy into the bulk of the target by electron thermal conduction, radiation and shock waves is described. X-ray characterisation of different types of plasma are presented. The first experiment deals with the generation of a plasma cathode x-ray source. The experimental results are compared with a simulation made using a simple self consistent model. The x-ray source size depends upon the cone angle of the tip of the anode. A wide range of experimental data for different parameters (anode-cathode separation, anode positive voltages, anode material, cathode material and different laser energies) is collected and analysed. In chapter 5 the equation of state of gold is studied using the shock wave reflection method. Experimental measurements are done for the direct and indirect drives. The experimental data are compared to the SESAME tabular data. Indirect drive is found to give a more accurate measurement compared to direct drive using the Phase Zone Plate (PZP) method technique. Preheating effects in laser driven shock waves is presented in chapter 6. We used two different diagnostics: the colour temperature measurements deduced by recording the target rear side emissivity in two spectral bands and the target rear side reflectivity measurements. We use the MULTI hydrodynamic code to measure the temperature of the preheat and in coupling with the Fresnel reflectivity model in order to compare the theoretical calculations to the experimental observations. Qualitative results of energy transport by hot fast electrons in solid cold and compressed plastic are presented in chapter 7. K-alpha emission from chlorine fluor buried layers is used to measure the fast electron transport. These data are collected from time integrated spectrometers using k-alpha spectroscopy of the

  7. Small Engine Component Technology (SECT) study. Program report

    NASA Technical Reports Server (NTRS)

    Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.

    1986-01-01

    The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.

  8. Spectroscopy Study of the ASTRAL helicon plasma source

    NASA Astrophysics Data System (ADS)

    Branscomb, David

    2005-10-01

    A spectroscopy study of the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source is presented. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces Ar plasmas with the following parameters: ne = 10^12 to 10^13 cm-3 and Te = 2 to 15 eV. Ar I , Ar II and Ar III species are monitored as a function of rf power. In the 250 to 450 nm range, Ar II transitions dominate the spectrum and very few Ar I transitions are present. In the 300 to 400 nm range Ar III transitions are barely visible at low power and become intense at high power. In the 700-1000 nm range, Ar I transitions dominate the spectrum while very few Ar II transitions are observed. Ar II and Ar III intensity increases with rf power while Ar I intensity are independent of power. This constant Ar I intensity strongly suggests that neutral depletion occurs within the core as the power is raised. A discussion relative to the different observations is presented with links to theoretical excitation rate coefficients.

  9. Kinetic study of ion-acoustic plasma vortices

    SciTech Connect

    Khan, S. A.; Aman-ur-Rehman; Mendonca, J. T.

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  10. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Task 7: Engine data summary

    NASA Technical Reports Server (NTRS)

    Christensen, K. L.

    1980-01-01

    A performance optimized engine system design for a man-rated advanced LOX/hydrogen expander cycle engine was investigated. The data are presented in tables, figures, and drawings. The following categories of data for the advanced expander cycle engine are presented: engine operating specification and pressure schedule; engine system layout drawing; major component layout drawings, including thrust chamber and nozzle, extendible nozzle actuating mechanism and seal, LOX turbopump, LOX boost pump, hydrogen turbopump, hydrogen boost pump, and propellant control valves; engine performance and service life prediction; engine weight; and engine envelope. The data represent updates based upon current results from the design and analyses tasks performed under contract. Futher iterations in the designs and data can be expected as the advanced expander cycle engine design matures.

  11. Histological and immunohistochemical studies of tissue engineered odontogenesis.

    PubMed

    Honda, Masaki J; Sumita, Yoshinori; Kagami, Hideaki; Ueda, Minoru

    2005-06-01

    The successful regeneration of complex tooth structures based on tissue-engineering principles was recently reported. The process of this regeneration, however, remains poorly characterized. In this study, we have used histochemistry to examine the regeneration process of tissue engineered teeth in order to determine the cell types that give rise to these engineered tooth structures. Porcine third molar tooth buds were dissociated into single-cell suspensions and seeded onto a biodegradable polyglycolic acid polymer scaffold. Following varying periods of growth in rat hosts, the specimens were evaluated by histology and immunohistochemistry. Aggregates of epithelial cells were first observed 4-6 weeks after implantation. These aggregates assumed three different shapes: a natural tooth germ-like shape, a circular shape, or a bilayer-bundle. Based on the structure of the stellate reticulum in the dental epithelium, the circular and bilayer-bundle aggregates could be clearly classified into two types: one with extensively developed stellate reticulum, and the other with negligible stellate reticulum. The epithelial cells in the circular aggregates differentiated into ameloblasts. The continuous bilayer bundles eventually formed the epithelial sheath, and dentin tissue was evident at the apex of these bundles. Finally, enamel-covered dentin and cementum-covered dentin formed, a process most likely mediated by epithelial-mesenchymal interaction. These results suggest that the development of these engineered teeth closely parallels that of natural odontogenesis derived from the immature epithelial and mesenchymal cells.

  12. [Study of ignition characteristic of DC voltage plasma ignitor].

    PubMed

    Wang, Feng; He, Li-Ming; Lan, Yu-Dan; Du, Hong-Liang

    2011-09-01

    The changing law between interelectrode current, discharge characteristic and jet characteristic of plasma ignitor under different inlet Ar pressure and working current was researched by adopting self-made plasma ignitor. Still, four channels CCD spectrometer was adopted to measure the spectrum characteristic at the exit of ignitor and electron temperature of plasma was calculated according to the spectrum characteristic. The results show that the interelectrode current gradually reduced with rising inlet Ar pressure; The jet length of plasma ignitor firstly increased then reduced with rising inlet Ar flowrate, and also increased with rising working current; The working current of plasma ignitor reduced with rising inlet Ar flowrate, and increased with rising source output current; the electron temperature of plasma ignitor jet increased with rising working current and reduced with rising Ar flowrate. The research results are of certain guidance meanings and reference values for the practical application of plasma ignition system in aeroengine.

  13. Innovative HPC architectures for the study of planetary plasma environments

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Wolf, Anna; Lembège, Bertrand; Zitz, Anke; Alvarez, Damian; Lapenta, Giovanni

    2016-04-01

    DEEP-ER is an European Commission founded project that develops a new type of High Performance Computer architecture. The revolutionary system is currently used by KU Leuven to study the effects of the solar wind on the global environments of the Earth and Mercury. The new architecture combines the versatility of Intel Xeon computing nodes with the power of the upcoming Intel Xeon Phi accelerators. Contrary to classical heterogeneous HPC architectures, where it is customary to find CPU and accelerators in the same computing nodes, in the DEEP-ER system CPU nodes are grouped together (Cluster) and independently from the accelerator nodes (Booster). The system is equipped with a state of the art interconnection network, a highly scalable and fast I/O and a fail recovery resiliency system. The final objective of the project is to introduce a scalable system that can be used to create the next generation of exascale supercomputers. The code iPic3D from KU Leuven is being adapted to this new architecture. This particle-in-cell code can now perform the computation of the electromagnetic fields in the Cluster while the particles are moved in the Booster side. Using fast and scalable Xeon Phi accelerators in the Booster we can introduce many more particles per cell in the simulation than what is possible in the current generation of HPC systems, allowing to calculate fully kinetic plasmas with very low interpolation noise. The system will be used to perform fully kinetic, low noise, 3D simulations of the interaction of the solar wind with the magnetosphere of the Earth and Mercury. Preliminary simulations have been performed in other HPC centers in order to compare the results in different systems. In this presentation we show the complexity of the plasma flow around the planets, including the development of hydrodynamic instabilities at the flanks, the presence of the collision-less shock, the magnetosheath, the magnetopause, reconnection zones, the formation of the

  14. Novel anisotropic engineered cardiac tissues: studies of electrical propagation

    PubMed Central

    Bursac, Nenad; Loo, Yihua; Leong, Kam; Tung, Leslie

    2007-01-01

    The goal of this study was to engineer cardiac tissue constructs with uniformly anisotropic architecture, and to evaluate their electrical function using multi-site optical mapping of cell membrane potentials. Anisotropic polymer scaffolds made by leaching of aligned sucrose templates were seeded with neonatal rat cardiac cells and cultured in rotating bioreactors for 6-14 days. Cells aligned and interconnected inside the scaffolds and when stimulated by a point electrode, supported macroscopically continuous, anisotropic impulse propagation. By culture day 14, the ratio of conduction velocities along vs. across cardiac fibers reached a value of 2, similar to that in native neonatal ventricles, while action potential duration and maximum capture rate respectively decreased to 120 ms and increased to ~5 Hz. The shorter culture time and larger scaffold thickness were associated with increased incidence of sustained reentrant arrhythmias. In summary, this study is the first successful attempt to engineer a cm2-size, functional anisotropic cardiac tissue patch. PMID:17689494

  15. Engineering education research: Impacts of an international network of female engineers on the persistence of Liberian undergraduate women studying engineering

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Reddivari, Sahithya; Cotel, Aline

    2015-11-01

    As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.

  16. Three-electrode direct current argon plasma: studies in discrete sample introduction, mathematical correction of drifted plasma data, and organic solvent introduction effects in the plasma

    SciTech Connect

    Boyko, W.J.

    1985-01-01

    This thesis investigates three areas of research with the three-electrode direct-current argon plasma(DCP). The first area examines discrete sample introduction into the DCP. Discrete sampling, well known for its sample conservation advantage, has been used with flame atomic absorption and inductively coupled plasma emission spectroscopies but no work has been published on using this sampling mode with the DCP. Discrete sample introduction is compared here to the standard continuous sampling mode. An unique sample drop generator is described and characterized. Results are given for a variety of system effects and used to explain the effect of sample drop size on emission intensity. The second area of research involves the use of mathematical correction techniques for removing the effect of plasma emission drift from analytical data. The introduction of hydrophobic samples into the DCP is the last area examined in this thesis. Organic matrices are routinely run on the DCP but they can be prone to little understood matrix interferences effects. A modified sample introduction chimney was designed that largely eliminated the carbon buildup encountered with the standard chimney permitting extensive studies using organic solvent with the plasma. It was found that the analytical emission zone of the plasma appears to be spatially tied to the plasma core.

  17. Numerical studies of a plasma diode with external forcing

    SciTech Connect

    Rekaa, V. L.; Pecseli, H. L.; Trulsen, J. K.

    2012-08-15

    With reference to laboratory Q-machine studies we analyze the dynamics of a plasma diode under external forcing. Assuming a strong axial magnetic field, the problem is analyzed in one spatial dimension by a particle-in-cell code. The cathode is assumed to be operated in electron rich conditions, supplying an abundance of electrons. We compare different forcing schemes with the results obtained by solving the van der Pol equation. In one method of forcing we apply an oscillation in addition to the DC end plate bias and consider both amplitude and frequency variations. An alternative method of perturbation consists of modelling an absorbing grid at some internal position. Also in this case we can have a constant frequency with varying amplitude or alternatively an oscillation with chirped frequency but constant amplitude. We find that the overall features of the forced van der Pol equation are recovered, but the details in the plasma response need more attention to the harmonic responses, requiring extensions of the model equation. The analysis is extended by introducing collisional effects, where we emphasize charge exchange collisions of ions, since these processes usually have the largest cross sections and give significant modifications of the diode performance. In particular we find a reduction in oscillator frequency, although a linear scaling of the oscillation time with the system length remains also in this case.

  18. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  19. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  20. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  1. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    SciTech Connect

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong; Kim, Hyuk; Park, Wanjae

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  2. Analytical and experimental studies for thermal plasma processing of materials

    NASA Astrophysics Data System (ADS)

    Work continued on thermal plasma processing of materials. This quarter, ceramic powders of carbides, aluminum nitride, oxides, solids solutions, magnetic and non magnetic spinels, superconductors, and composites have been successfully synthesized in a Triple DC Torch Plasma Jet Reactor (TTPR) and in a single DC Plasma Jet Reactor. All the ceramic powders with the exception of AIN were synthesized using a novel injection method developed to overcome the problems associated with solid injection, in particular for the single DC plasma jet reactor, and to realize the benefits of gas phase reactions. Also, initial experiments have been performed for the deposition of diamond coatings on Si wafers using the TTPR with methane as the carbon source. Well faceted diamond crystallites were deposited on the surface of the wafers, forming a continuous one particle thick coating. For measuring temperature and velocity fields in plasma systems, enthalpy probes have been developed and tested. The validity has been checked by performing energy and mass flux balances in an argon plasma jet operated in argon atmosphere. Total Gibbs free energy minimization calculations using a quasi-equilibrium modification have been applied to simulate several chemical reactions. Plasma reactor modelling has been performed for the counter-flow liquid injection plasma synthesis experiment. Plasma diagnostics has been initiated to determine the pressure gradient in the coalesced part of the plasma jet. The pressure gradient drives the diffusion of chemical species which ultimately controls the chemical reactions.

  3. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  4. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  5. Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.

  6. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Štěpánka; Švorčík, Václav

    2014-04-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly- l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly- l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  7. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    PubMed Central

    2014-01-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly-l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly-l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation. PMID:24708858

  8. Studies of x-ray emission properties of photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feilu; Han, Bo; Jin, Rui; Salzmann, David; Liang, Guiyun; Wei, Huigang; Zhong, Jiayong; Zhao, Gang; Li, Jia-ming

    2016-03-01

    In this paper three aspects of photoionized plasmas are discussed in both laboratory and astrophysical contexts. First, the importance of accurate atomic/ionic data for the analysis of photoionized plasmas is shown. Second, an overview of present computer codes for the analysis of photoionized plasmas is given. We introduce our computer model, radiative-collisional code based on the flexible atomic code (RCF), for calculations of the properties of such plasmas. RCF uses database generated by the flexible atomic code. Using RCF it is shown that incorporating the satellite lines from doubly excited Li-like ions into the He{}α triplet lines is necessary for reliable analysis of observational spectra from astrophysical objects. Finally, we introduce a proposal to generate photoionized plasmas by x-ray free electron laser, which may facilitate the simulation in lab of astrophysical plasmas in photoionization equilibrium.

  9. Experimental study of plasma properties in the shadow of the T--10 mushroom limiter

    SciTech Connect

    Alferov, A.A.; Vershkov, V.A.; Grashin, S.A.; Chankin, A.V.

    1988-04-01

    The plasma properties in the shadow of a mushroom-shaped limiter installed in a lower port of the tokamak have been studied. A study of the asymmetry of the plasma streams on the ion and electron sides of the limiter leads to the conclusion that there are two mechanisms for the occurrence of the asymmetry: the toroidal rotation of the plasma and a predominant escape of plasma to the wall through the outer part of the torus. The asymmetry observed in the plasma floating potentials near the limiter leads to the flow of a current close to the Spitzer value j/sub S/ through the limiter. With increasing plasma density, the plasma density in the channels of the limiter increases, and the temperature of this plasma decreases, so the loss of charged particles to the limiter depends only weakly on the average density. This circumstance is related to the degradation of the plasma confinement with decreasing density. The total flux of charged particles to the limiter is comparable to the flux of these particles out of the plasma column. The plasma stream into the channels is approximately ambipolar, and the power levels drawn by the neutralization plate are on the order of 10j/sub S/T/sub e//e. The behavior of the neutral gas pressure in the volume near the limiter as a function of the plasma streams into the channels is nonlinear. The maximum pressure is 3x10/sup -2/ torr.

  10. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  11. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  12. Engine Concept Study for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  13. Cell bricks-enriched platelet-rich plasma gel for injectable cartilage engineering - an in vivo experiment in nude mice.

    PubMed

    Zhu, Jun; Cai, Bolei; Ma, Qin; Chen, Fulin; Wu, Wei

    2013-10-01

    Clinical application of platelet-rich plasma (PRP)-based injectable tissue engineering is limited by weak mechanical properties and a rapid fibrinolytic rate. We proposed a new strategy, a cell bricks-stabilized PRP injectable system, to engineer and regenerate cartilage with stable morphology and structure in vivo. Chondrocytes from the auricular cartilage of rabbits were isolated and cultured to form cell bricks (fragmented cell sheet) or cell expansions. Fifteen nude mice were divided evenly (n = 5) into cells-PRP (C-P), cell bricks-PRP (CB-P) and cell bricks-cells-PRP (CB-C-P) groups. Cells, cell bricks or a cell bricks/cells mixture were suspended in PRP and were injected subcutaneously in animals. After 8 weeks, all the constructs were replaced by white resilient tissue; however, specimens from the CB-P and CB-C-P groups were well maintained in shape, while the C-P group appeared distorted, with a compressed outline. Histologically, all groups presented lacuna-like structures, glycosaminoglycan-enriched matrices and positive immunostaining of collagen type II. Different from the uniform structure presented in CB-C-P samples, CB-P presented interrupted, island-like chondrogenesis and contracted structure; fibrous interruption was shown in the C-P group. The highest percentage of matrix was presented in CB-C-P samples. Collagen and sGAG quantification confirmed that the CB-C-P constructs had statistically higher amounts than the C-P and CB-P groups; statistical differences were also found among the groups in terms of biomechanical properties and gene expression. We concluded that cell bricks-enriched PRP gel sufficiently enhanced the morphological stability of the constructs, maintained chondrocyte phenotypes and favoured chondrogenesis in vivo, which suggests that such an injectable, completely biological system is a suitable cell carrier for cell-based cartilage repair.

  14. Consolidated View on Space Software Engineering Problems - An Empirical Study

    NASA Astrophysics Data System (ADS)

    Silva, N.; Vieira, M.; Ricci, D.; Cotroneo, D.

    2015-09-01

    Independent software verification and validation (ISVV) has been a key process for engineering quality assessment for decades, and is considered in several international standards. The “European Space Agency (ESA) ISVV Guide” is used for the European Space market to drive the ISVV tasks and plans, and to select applicable tasks and techniques. Software artefacts have room for improvement due to the amount if issues found during ISVV tasks. This article presents the analysis of the results of a large set of ISVV issues originated from three different ESA missions-amounting to more than 1000 issues. The study presents the main types, triggers and impacts related to the ISVV issues found and sets the path for a global software engineering improvement based on the most common deficiencies identified for space projects.

  15. Transverse effects in plasma wakefield acceleration at FACET - Simulation studies

    SciTech Connect

    Adli, E.; Hogan, M.; Frederico, J.; Litos, M. D.; An, W.; Mori, W.

    2012-12-21

    We investigate transverse effects in the plasma-wakefield acceleration experiments planned and ongoing at FACET. We use PIC simulation tools, mainly QuickPIC, to simulate the interaction of the drive electron beam and the plasma. In FACET a number of beam dynamics knobs, including dispersion and bunch length knobs, can be used to vary the beam transverse characteristics in the plasma. We present simulation results and the status of the FACET experimental searches.

  16. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  17. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  18. Study of the characteristics of reconfigurable plasma antenna array

    SciTech Connect

    Alias, Nur Salihah; Dagang, Ahmad Nazri; Ali, Mohd Tarmizi

    2015-04-24

    This paper presents a design and simulation of a reconfigurable array of plasma antenna. The plasma column is used as radiating elements instead of metal to create an antenna. The advantages of the plasma antenna over the conventional antenna are its possible to change the operating parameters, such as the working pressure, input power, radius of the discharge tube, resonant frequency, and length of the plasma column. In addition, plasma antenna can be reconfigurable with respect to shape, frequency and radiation parameters in a very short time. The plasma discharge tube was designed with a length of 200 mm, the radius of the plasma column was 2.5 mm and the coupling sleeve was connected to the SMA as the ground. This simulation was performed by using the simulation software Computer Simulation Technology (CST). The frequency is set in the range of 1 GHz to 10 GHz. The performance of the designed antenna was analyzed in term of return loss, gain and radiation pattern. For reconfigurable plasma antenna array, it shows that the gain is increase when the number of antenna element is increase. The combination of the discharge tube and metal rod as an antenna array has been done, and the result shows that an array with the plasma element can achieve higher gain.

  19. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  20. Experimental Studies of Quark Gluon Plasma at RHIC

    NASA Astrophysics Data System (ADS)

    Esumi, ShinIchi

    2010-05-01

    A new state of matter, Quark Gluon Plasma (QGP) is supposed to exist under extreme temperature and/or density conditions just as a beginning of this early universe after the Big Bang. High energy nucleus-nucleus collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has been used to form the QGP and to study the properties of QGP. The recent progress on the experimental research of QGP at RHIC experiments and the understanding of the properties are discussed. Major discoveries at RHIC experiments are very strong energy loss of high energy partons in central Au+Au collisions and very large elliptic and collective expansion given by the initial almond geometry in non-central Au+Au collisions. Those two finding and related physics explanations as well as future plans are presented.

  1. Experimental Studies of Quark Gluon Plasma at RHIC

    SciTech Connect

    Esumi, ShinIchi

    2010-05-12

    A new state of matter, Quark Gluon Plasma (QGP) is supposed to exist under extreme temperature and/or density conditions just as a beginning of this early universe after the Big Bang. High energy nucleus-nucleus collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has been used to form the QGP and to study the properties of QGP. The recent progress on the experimental research of QGP at RHIC experiments and the understanding of the properties are discussed. Major discoveries at RHIC experiments are very strong energy loss of high energy partons in central Au+Au collisions and very large elliptic and collective expansion given by the initial almond geometry in non-central Au+Au collisions. Those two finding and related physics explanations as well as future plans are presented.

  2. A Longitudinal Study of Engineering Students' Approaches to Their Studies

    ERIC Educational Resources Information Center

    Jungert, Tomas

    2008-01-01

    This longitudinal study draws on data from a larger project and examines how students' perceptions of their opportunities to influence their study environment may be enacted in approaches aimed at influencing their studies, and whether this changes during the course of their studies. Ten students from a 4.5-year Master's program in Engineering…

  3. The GATE studies - Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies have been completed that explore the opportunities for future General Aviation Turbine Engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Key technology areas were recommended for NASA support in order to realize proposed improvements.

  4. Continuous detonation wave engine studies for space application

    NASA Astrophysics Data System (ADS)

    Davidenko, D. M.; Jouot, F.; Kudryavtsev, A. N.; Dupré, G.; Gökalp, I.; Daniau, E.; Falempin, F.

    2009-09-01

    Continuous Detonation Wave Rocket Engine (CDWRE) for space application is considered in the framework of French R&D and scientific research. A CDWRE demonstrator and a dedicated test bench are designed by MBDA France. At ICARE-CNRS, theoretical and experimental studies on the CDWRE internal processes are under progress. Twodimensional (2D) Euler simulations of a CDWRE combustion chamber have been performed to investigate the effect of geometrical and injection parameters on the internal process and combustion chamber performance. An experimental study is prepared to investigate liquid oxygen breakup and vaporization in a helium flow as well as detonation initiation and propagation in a spray of liquid oxygen/gaseous hydrogen.

  5. Simplified simulation models for control studies of turbojet engines

    NASA Technical Reports Server (NTRS)

    Brennan, T. C.; Leake, R. J.

    1975-01-01

    The essential dynamical characteristics of a simple single spool turbojet engine were determined through simulation of low order system models on an analog computer. An accurate model was studied and system complexity was reduced through various linearizations and approximations. A derivation of a seventh order simplified simulation model is presented with a derivation of an even simpler third order model, and simulation results from each. The control problem studied is one of getting from zero fuel flow equilibrium to a high thrust equilibrium while taking into account surge margin and turbine inlet temperature constraints.

  6. Component Cost Reduction by Value Engineering: A Case Study

    NASA Astrophysics Data System (ADS)

    Kalluri, Vinayak; Kodali, Rambabu

    2016-06-01

    The concept value engineering (VE) acts to increase the value of a product through the improvement in existent functions without increasing their costs. In other words, VE is a function oriented, systematic team approach study to provide value in a product, system or service. The authors systematically explore VE through the six step framework proposed by SAVE and a case study is presented to address the concern of reduction in cost without compromising the function of a hydraulic steering cylinder through the aforementioned VE framework.

  7. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  8. Real cases study through computer applications for futures Agricultural Engineers

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Durán, J. M.; Tarquis, A. M.

    2010-05-01

    One of the huge concerns on the higher engineer education is the lag of real cases study that the future professionals need in the work and corporation market. This concern was reflected in Bologna higher education system including recommendations in this respect. The knowhow as why this or other methodology is one of the keys to resolve this problem. In the last courses given in Department of Crop Production, at the Agronomy Engineer School of Madrid (Escuela Técnica Superior de Ingenieros Agrónomos, UPM) we have developed more than one hundred applications in Microsoft Excel®. Our aim was to show different real scenarios which the future Agronomic Engineers can be found in their professional life and with items related to crop production field. In order to achieve our target, each application in Excel presents a file text in which is explained the theoretical concepts and the objectives, as well as some resources used from Excel syntax. In this way, the student can understand and use of such application, even they can modify and customize it for a real case presented in their context and/or master project. This electronic monograph gives an answer to the need to manage data in several real scenarios showed in lectures, calculus resolution, information analysis and manage worksheets in a professional and student level.

  9. Ion engine auxiliary propulsion applications and integration study

    NASA Technical Reports Server (NTRS)

    Zafran, S. (Editor)

    1977-01-01

    The benefits derived from application of the 8-cm mercury electron bombardment ion thruster were assessed. Two specific spacecraft missions were studied. A thruster was tested to provide additional needed information on its efflux characteristics and interactive effects. A Users Manual was then prepared describing how to integrate the thruster for auxiliary propulsion on geosynchronous satellites. By incorporating ion engines on an advanced communications mission, the weight available for added payload increases by about 82 kg (181 lb) for a 100 kg (2200 lb) satellite which otherwise uses electrothermal hydrazine. Ion engines can be integrated into a high performance propulsion module that is compatible with the multimission modular spacecraft and can be used for both geosynchronous and low earth orbit applications. The low disturbance torques introduced by the ion engines permit accurate spacecraft pointing with the payload in operation during thrusting periods. The feasibility of using the thruster's neutralizer assembly for neutralization of differentially charged spacecraft surfaces at geosynchronous altitude was demonstrated during the testing program.

  10. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  11. Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot

    SciTech Connect

    Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei

    2012-07-15

    Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.

  12. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  13. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study.

    PubMed

    Frediani, Jennifer K; Jones, Dean P; Tukvadze, Nestan; Uppal, Karan; Sanikidze, Eka; Kipiani, Maia; Tran, ViLinh T; Hebbar, Gautam; Walker, Douglas I; Kempker, Russell R; Kurani, Shaheen S; Colas, Romain A; Dalli, Jesmond; Tangpricha, Vin; Serhan, Charles N; Blumberg, Henry M; Ziegler, Thomas R

    2014-01-01

    We aimed to characterize metabolites during tuberculosis (TB) disease and identify new pathophysiologic pathways involved in infection as well as biomarkers of TB onset, progression and resolution. Such data may inform development of new anti-tuberculosis drugs. Plasma samples from adults with newly diagnosed pulmonary TB disease and their matched, asymptomatic, sputum culture-negative household contacts were analyzed using liquid chromatography high-resolution mass spectrometry (LC-MS) to identify metabolites. Statistical and bioinformatics methods were used to select accurate mass/charge (m/z) ions that were significantly different between the two groups at a false discovery rate (FDR) of q<0.05. Two-way hierarchical cluster analysis (HCA) was used to identify clusters of ions contributing to separation of cases and controls, and metabolomics databases were used to match these ions to known metabolites. Identity of specific D-series resolvins, glutamate and Mycobacterium tuberculosis (Mtb)-derived trehalose-6-mycolate was confirmed using LC-MS/MS analysis. Over 23,000 metabolites were detected in untargeted metabolomic analysis and 61 metabolites were significantly different between the two groups. HCA revealed 8 metabolite clusters containing metabolites largely upregulated in patients with TB disease, including anti-TB drugs, glutamate, choline derivatives, Mycobacterium tuberculosis-derived cell wall glycolipids (trehalose-6-mycolate and phosphatidylinositol) and pro-resolving lipid mediators of inflammation, known to stimulate resolution, efferocytosis and microbial killing. The resolvins were confirmed to be RvD1, aspirin-triggered RvD1, and RvD2. This study shows that high-resolution metabolomic analysis can differentiate patients with active TB disease from their asymptomatic household contacts. Specific metabolites upregulated in the plasma of patients with active TB disease, including Mtb-derived glycolipids and resolvins, have potential as biomarkers

  14. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  15. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  16. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  17. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  18. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  19. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  20. Subchronic (12-week) inhalation toxicity study of methanol-fueled engine exhaust in rats

    SciTech Connect

    Maejima, Kazuhito; Suzuki, Tadao ); Numata, Hiroaki ); Maekawa, Akihiko ); Nagase, Sumi ); Ishinishi, Noburu )

    1994-01-01

    To evaluate the inhalation toxicity to rats of exhaust at low concentration for longer periods, Fischer 344 rats were exposed to 3 concentrations of exhaust generated by an M85 methanol-fueled engine (methanol with 15% gasoline) without catalyst for 8 h/d, 6 d/wk for 4, 8, or 12 wk. Concentration- and time-dependent increase carboxyhemoglobin in the erythrocytes and decrease in cytochrome P-450 in the lungs were observed in all treated groups. Furthermore, significant increases in plasma formaldehyde were observed in the group exposed to the highest concentration of exhaust (carbon monoxide, 89.8 ppm; formaldehyde, 2.3 ppm; methanol, 8.1 ppm; nitrogen oxides, 22.9 ppm; nitrogen dioxide, 1.1 ppm) for 8 or 12 wk. No change of plasma folic acid was observed in any group, and no methanol or formic acid was detected in the plasma in any animals. Histopathologically, exposure-related changes were found only in the nasal cavity of the high-concentration group. Slight hyperplasia/squamous metaplasias of the respiratory epithelium lining the nasoturbinate and maxilloturbinate were observed after 4 wk of exposure, and the incidences and degrees of these lesions increased slightly with the exposure time. No changes were found in the olfactory epithelium of the nasal cavity. As judged by optical microscopy, the exhaust concentration with no effect on the nasal cavity under the experimental conditions was concluded to be the medium concentration level containing 0.55 ppm formaldehyde. In the present study, however, concentration- and time-dependent increase of carboxyhemoglobin in the erythrocytes and decrease of the lung P-450 level were observed. Therefore, further study on more long-term inhalation of lower concentrations of exhaust might be needed. 31 refs., 2 figs., 3 tabs.

  1. A Study on Aircraft Structure and Jet Engine

    NASA Astrophysics Data System (ADS)

    Park, Gil Moon; Park, Hwan Kyu; Kim, Jong Il; Kim, Jin Won; Kim, Jin Heung; Lee, Moo Seok; Chung, Nak Kyu

    1985-12-01

    The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operation temperature. The purpose of this study is to provide the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition.

  2. Reliability studies of integrated modular engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  3. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  4. Comparative studies on amniotic fluid and plasma fibronectins.

    PubMed Central

    Ruoslahti, E; Engvall, E; Hayman, E G; Spiro, R G

    1981-01-01

    Human fibronectin was isolated from second-trimester amniotic fluid, from amniotic fluid obtained at term and from adult plasma. The amniotic-fluid fibronectins had a slightly higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis than the plasma fibronectin. Early- and late-amniotic-fluid fibronectin had 9.5 and 9.6% carbohydrate respectively, whereas plasma fibronectin had 5.8%. The amniotic-fluid fibronectins had similar mannose and sialic acid contents to plasma fibronectin, but greater amounts of glucosamine, galactosamine, galactose and fucose. There were no detectable differences in the amino-acid composition of amniotic-fluid and plasma fibronectins, and the patterns of peptides obtained after tryptic digestion of fibronectin from the two sources showed extensive similarities. Fibronectins from plasma and amniotic fluid were equally active in promoting cell attachment and were immunologically indistinguishable. These results show that fibronectin from amniotic fluid is more heavily glycosylated than plasma fibronectin or previously analysed fibronectins from cultured fibroblasts. The observed differences in glycosylation may be related to cell type and/or stage of development. Images Fig. 2. PMID:7305927

  5. Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, Michael

    2013-10-01

    Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.

  6. Report on the TESLA engineering study/review

    SciTech Connect

    C. Boffo et al.

    2002-07-18

    A team from Argonne National Lab, Cornell, Fermilab, Jefferson Lab, and SLAC has studied the TESLA TDR and its associated cost and manpower estimates, concentrating on the five largest cost sub-systems (Main Linac Modules, Main Linac RF Systems, Civil Engineering, Machine Infrastructure, and XFEL Incremental). These elements were concerned mainly with providing energy reach. We did not study the lower cost, but still technically challenging elements providing luminosity and physics capability, namely damping rings, beam delivery system, beam injection system, positron production, polarized beams, etc. The study did not attempt to validate the TDR cost estimates, but rather its purpose was to understand the technology and status of the large cost items, and the methodology by which their estimated cost was determined. In addition, topics of project oversight were studied.

  7. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    SciTech Connect

    Shashurin, A.; Keidar, M.

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  8. 46 CFR 166.10 - Course of study for engineering students.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip...

  9. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  10. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  11. 46 CFR 166.10 - Course of study for engineering students.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip...

  12. 46 CFR 166.10 - Course of study for engineering students.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip...

  13. 46 CFR 166.10 - Course of study for engineering students.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip...

  14. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  15. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  16. 46 CFR 166.10 - Course of study for engineering students.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip...

  17. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  18. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  19. Application of nonlinear methods to the study of ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  20. Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits

    PubMed Central

    Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos

    2016-01-01

    Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.

  1. How Engineers Really Think About Risk: A Study of JPL Engineers

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Deb; Valerdi, Ricardo

    2011-01-01

    The objectives of this work are: To improve risk assessment practices as used during the mission design process by JPL's concurrent engineering teams. (1) Developing effective ways to identify and assess mission risks (2) Providing a process for more effective dialog between stakeholders about the existence and severity of mission risks (3) Enabling the analysis of interactions of risks across concurrent engineering roles.

  2. Fuel economy screening study of advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  3. Biological Studies in Childhood Schizophrenia: Plasma and RBC Cholinesterase Activity

    ERIC Educational Resources Information Center

    Lucas, Alexander R.; And Others

    1971-01-01

    A comparison of plasma (pseudo) cholinesterase and erythrocyte (true) cholinesterase activity in 16 male childhood schizophrenic patients and 16 male nonpsychotic hospitalized controls revealed no significant differences between the two groups. (Author)

  4. Working conditions in the engine department - A qualitative study among engine room personnel on board Swedish merchant ships.

    PubMed

    Lundh, Monica; Lützhöft, Margareta; Rydstedt, Leif; Dahlman, Joakim

    2011-01-01

    The specific problems associated with the work on board within the merchant fleet are well known and have over the years been a topic of discussion. The work conditions in the engine room (ER) are demanding due to, e.g. the thermal climate, noise and awkward working postures. The work in the engine control room (ECR) has over recent years undergone major changes, mainly due to the introduction of computers on board. In order to capture the impact these changes had implied, and also to investigate how the work situation has developed, a total of 20 engine officers and engine ratings were interviewed. The interviews were semi-structured and Grounded Theory was used for the data analysis. The aim of the present study was to describe how the engine crew perceive their work situation and working environment on board. Further, the aim was to identify areas for improvements which the engine crew consider especially important for a safe and effective work environment. The result of the study shows that the design of the ECR and ER is crucial for how different tasks are performed. Design which does not support operational procedures and how tasks are performed risk inducing inappropriate behaviour as the crew members' are compelled to find alternative ways to perform their tasks in order to get the job done. These types of behaviour can induce an increased risk of exposure to hazardous substances and the engine crew members becoming injured. PMID:20870214

  5. Plasma stress hormones in resting rats - Eighty four day study

    NASA Technical Reports Server (NTRS)

    Popovic, Vojin; Honeycutt, Clegg

    1989-01-01

    The effects of a repeated mild stress of handling and placing rats temporarily into unfamiliar cages on the blood-plasma concentration of the stress hormones (corticosterone, ACDH, and prolactin) were investigated in male Sprague-Dawley rats subjected to this type of stress once every week during a period of three months. Results showed that repeated mild stress of handling (as well as repeated blood sampling) did not affect the plasma stress-hormone concentrations in these animals.

  6. Ethambutol plasma and intracellular pharmacokinetics: A pharmacogenetic study.

    PubMed

    Fatiguso, Giovanna; Allegra, Sarah; Calcagno, Andrea; Baietto, Lorena; Motta, Ilaria; Favata, Fabio; Cusato, Jessica; Bonora, Stefano; Perri, Giovanni Di; D'Avolio, Antonio

    2016-01-30

    We evaluated ethambutol plasma and intracellular pharmacokinetic according to single nucleotide polymorphisms in ABCB1, OATP1B1, PXR, VDR, CYP24A1 and CYP27B1 genes. Mycobacterium tubercolosis infected patients were enrolled. Standard weight-adjusted antitubercular treatment was administered intravenously for 2 weeks and then orally. Allelic discrimination was performed by real-time PCR. Ethambutol plasma and intracellular concentrations were measured by UPLC-MS/MS methods. Twenty-four patients were included. Considering weeks 2 and 4, median plasma Ctrough were 73 ng/mL and 247 ng/mL, intracellular Ctrough were 16,863 ng/mL and 13,535 ng/mL, plasma Cmax were 5627 ng/mL and 2229 ng/mL, intracellular Cmax were 133,830 ng/mL and 78,544 ng/mL. At week 2, ABCB1 3435 CT/TT (p=0.023) and CYP24A1 8620 AG/GG (p=0.030) genotypes for plasma Ctrough, BsmI AA (p=0.036) for intracellular Ctrough and BsmI AA (p<0.001) and ApaI AA (p=0.048) for intracellular Cmax, remained in linear regression analysis as predictive factors. Concerning week 4 only ABCB1 3435 CT/TT (p=0.035) and Cdx2 AG/GG (p=0.004) genotypes for plasma Ctrough and BsmI AA (p=0.028) for plasma Cmax were retained in final regression model. We reveal, for the first time, the possible role of single nucleotide polymorphisms on ethambutol plasma and intracellular concentrations; this may further the potential use of pharmacogenetic for tailoring antitubercular treatment. PMID:26642947

  7. Study on Formation of Plasma Nanobubbles in Water

    NASA Astrophysics Data System (ADS)

    Sato, Takehiko; Nakatani, Tatsuyuki; Miyahara, Takashi; Ochiai, Shiroh; Oizumi, Masanobu; Fujita, Hidemasa; Miyazaki, Takamichi

    2015-12-01

    Nanobubbles of less than 400 nm in diameter were formed by plasma in pure water. Pre-breakdown plasma termed streamer discharges, generated gas channels shaped like fine dendritic coral leading to the formation of small bubbles. Nanobubbles were visualized by an optical microscope and measured by dynamic laser scattering. However, it is necessary to verify that these nanobubbles are gas bubbles, not solid, because contamination such as platinum particles and organic compounds from electrode and residue in ultrapure water were also observed.

  8. Software Engineering Laboratory Ada performance study: Results and implications

    NASA Technical Reports Server (NTRS)

    Booth, Eric W.; Stark, Michael E.

    1992-01-01

    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.

  9. Engineered Barrier System performance requirements systems study report. Revision 02

    SciTech Connect

    Balady, M.A.

    1997-01-14

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.

  10. Studies on the effect of finite geometrical asymmetry in dual capacitively coupled radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Bora, B.

    2015-10-01

    In recent years, dual capacitively coupled radio frequency (CCRF) glow discharge plasma has been widely studied in the laboratory because of its simpler design and high efficiency for different material processing applications such as thin-film deposition, plasma etching, sputtering of insulating materials etc. The main objective of studies on dual frequency CCRF plasma has been the independent control of ion energy and ion flux using an electrical asymmetry effect (EAE). Most studies have been reported in electrode configurations that are either geometrically symmetric (both electrodes are equal) or completely asymmetric (one electrode is infinitely bigger than the other). However, it seems that most of the laboratory CCRF plasmas have finite electrode geometry. In addition, plasma series resonance (PSR) and electron bounce resonance (EBR) heating also come into play as a result of geometrical asymmetry as well as EAE. In this study, a dual frequency CCRF plasma has been studied in which the dual frequency CCRF has been coupled to the lumped circuit model of the plasma and the time-independent fluid model of the plasma sheath, in order to study the effect of finite geometrical asymmetry on the generation of dc-self bias and plasma heating. The dc self-bias is found to strongly depend on the ratio of the area between the electrodes. The dc self-bias is found to depend on the phase angle between the two applied voltage waveforms. The EAE and geometrical asymmetry are found to work differently in controlling the dc self-bias. It can be concluded that the phase angle between the two voltage waveforms in dual CCRF plasmas has an important role in determining the dc self-bias and may be used for controlling the plasma properties in the dual frequency CCRF plasma.

  11. Case Study: Meeting the Demand for Skilled Precision Engineers

    ERIC Educational Resources Information Center

    Sansom, Chris; Shore, Paul

    2008-01-01

    Purpose: This paper aims to demonstrate how science and engineering graduates can be recruited and trained to Masters level in precision engineering as an aid to reducing the skills shortage of mechanical engineers in UK industry. Design/methodology/approach: The paper describes a partnership between three UK academic institutions and industry,…

  12. Effects of Ar-H2-N2 microwave plasma on chitosan and its nanoliposomes blend thin films designed for tissue engineering applications.

    PubMed

    Zhang, H Y; Cleymand, F; Noël, C; Kahn, C J F; Linder, M; Dahoun, A; Henrion, G; Arab-Tehrany, E

    2013-04-01

    This work addresses the functionalization of chitosan thin films and its nanoliposomes blend films by a microwave-excited Ar/N2/H2 surface-wave plasma treatment which was found an effective tool to modify surface properties. Changes in the film properties (wettability, chemical composition, morphology) induced by the plasma treatment are studied using water contact angle measurements, X-ray photoelectron spectroscopy and scanning probe microscopy. The results suggest that hydrophilicity of the films is improved by plasma treatment in a plasma condition dependency manner. Water contact angle of chitosan films before and after plasma treatment are, respectively, 101° and 27°. Besides chemical changes on the surface, the nanoliposomes incorporation and plasma treatment also induce morphological modifications. Moreover, a correlation is found between the nanoliposomes composition and size, and the effects of plasma treatment. It is shown that the plasma treatment significantly improves the chitosan film functionalization. The effect of N2 content (88% and 100%) in the plasma gas mixture on the film etching is also pointed out.

  13. Experimental study of cyclic action of plasma on tungsten

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Aleksandrov, A. E.; Ber, B. Ya.; Brunkov, P. N.; Bormatov, A. A.; Gusev, V. K.; Demina, E. V.; Novokhatskii, A. N.; Pavlov, S. I.; Prusakova, M. D.; Sotnikova, G. Yu.; Yagovkina, M. A.

    2016-03-01

    We report on experimental results on multiple action of hydrogen, deuterium, and helium plasmas produced by a plasma gun and the Globus-M tokamak on tungsten. The surface temperature in the course of irradiation is measured with a bichromatic pyrometer with a time resolution of ⩾1 μs. The morphology of the surface layer is investigated and X-ray structure analysis of tungsten exposed to multiple radiations by the plasma under various conditions is carried out. A slight decrease in the lattice parameter in the sample subjected to the maximal number of irradiation cycles is detected. It is shown that the morphology of the tungsten surface irradiated by the hydrogen plasma from the gun and by the deuterium plasma from the Globus-M tokamak changes (the structure becomes smoother). The characteristic depth of the layer in which impurities have been accumulated exceeds 0.5 μm. This depth was the largest for the sample exposed to 1000 shots from the gun and 2370 shots from the tokamak. It is shown that the helium jet from the plasma gun makes it possible to simulate the action of helium ions on the International Thermonuclear Experimental Reactor (ITER) diverter, producing a layer of submicrometer particles (bubbles).

  14. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  15. Laboratory Studies of the Lunar Surface Plasma Sheath and Methods for in situ Plasma Measurements

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Sternovsky, Z.; Robertson, S.; Morfill, G. E.

    2007-12-01

    Surfaces in space exposed to plasmas and UV radiation will become charged and develop a sheath region with an electric field normal to the surface. Typically, this electric field is on the order of a few V/m, too small to lift-off micron sized grains with an expected charge of a single electron on the lunar surface, for example. Much higher electric fields can be generated due to differential UV charging between neighboring lit and dark surface elements, a common situation during sunset or sunrise. The moving lit/dark boundary can also lead to an increased surface charge density, which in combination with the strong localized electric field could lead to the mobilization and transport of the lunar soil. Here we report on a series of ongoing experiments to investigate differential photoelectron charging, and the so- called 'super-charging' effect, related to the moving boundaries between illuminated and dark surfaces. We will also discuss new plasma diagnostic methods to characterize the spatial and energy distribution of electrons in the dilute plasma sheath formed by UV generated emission on the lunar surface.

  16. The gate studies: Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.

  17. Experimental study and numerical simulations of a plasma relativistic microwave amplifier

    SciTech Connect

    Bogdankevich, I. L.; Ivanov, I. E.; Strelkov, P. S.

    2010-09-15

    The dependences of the radiation parameters of a plasma relativistic microwave amplifier on the external factors have been studied both experimentally and numerically. The calculated dependences are found to agree qualitatively with the measured ones. In contrast to experimental studies, numerical simulations make it possible to examine physical processes occurring inside the plasma waveguide. Good agreement between the measured and calculated dependences of the radiation parameters on the external factors shows that information provided by numerical simulations of the processes occurring inside the plasma waveguide can be considered quite reliable. The electromagnetic field structure and electron beam dynamics inside the plasma waveguide have been investigated.

  18. Experimental study on the emission spectra of microwave plasma at atmospheric pressure

    SciTech Connect

    Zhang, Boya; Wang, Qiang; Zhang, Guixin; Liao, Shanshan

    2014-01-28

    An experimental study on microwave plasma at atmospheric pressure was conducted by employing optical emission spectroscopy. Based on a microwave plasma generation device developed for nanoparticle synthesis, we studied the influence of input microwave power and gas flow rate on the optical emission behaviors and electron temperature of plasma using Ar, He, and N{sub 2} as working gas, respectively. The physics behind these behaviors was discussed. The results are useful in characterizing microwave plasma at atmospheric pressure and can be used for improving nanoparticle synthesis system for commercial use in the future.

  19. Stability of spironolactone in rat plasma: strict temperature control of blood and plasma samples is required in rat pharmacokinetic studies.

    PubMed

    Tokumura, Tadakazu; Muraoka, Atsushi; Masutomi, Takashi; Machida, Yoshiharu

    2005-06-01

    The stability of spironolactone (SPN) in rat plasma was studied and its degradation was found to be an apparent first-order reaction. The apparent first-order rate constants (k(obs)) at 37, 23.5 and 0 degrees C were 3.543+/-0.261 (h-1, mean+/-S.D., n=3), 6.278+/-0.045 (x10(-1) h-1), and 7.336+/-0.843 (x10(-2) h-1), respectively. The half-lives were 0.20 h, 1.10 h, and 9.53 h. The degradation rate of SPN in rat plasma was markedly decreased when NaF, an esterase inhibitor, was added to the plasma, and the degradation was catalyzed by esterase in the plasma. These results indicated that not only plasma but also blood and serum samples in rat pharmacokinetic studies should be cooled to 0 degrees C, the temperature maintained, and treated as soon as possible. In pharmacokinetic studies reported previously, the temperature control of plasma, blood, and serum samples was not described. The pharmacokinetic study in rats after intravenous administration of SPN at 20 mg/kg was performed with strict temperature control of plasma and blood samples. The AUC, MRT, CL and Vd(ss) values (mean+/-S.E. of 4 rats) for SPN were 4100.8+/-212.9 ng h/ml, 0.29+/-0.01 h, 4915.7+/-248.0 ml/h/kg, and 1435.4+/-48.4 ml/kg, respectively. The AUC value was much larger than that previously reported. The AUC, MRT, Cmax and Tmax values (mean+/-S.E. of 4 rats) of canrenone, an active metabolite of SPN, after the administration of SPN were 4196.1+/-787.5 ng h/ml, 1.99+/-0.13 h, 1546.3+/-436.4 ng/ml and 1.0+/-0.0 h, respectively. This AUC value was almost identical to the value previously reported. PMID:15930762

  20. Basic Studies of Non-Diffusive Transport in Plasmas

    SciTech Connect

    Morales, George J.; Maggs, James E.

    2014-10-25

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events, i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.

  1. Experimental study of microwave transmission through a decaying plasma. Final report, January 1986-February 1988

    SciTech Connect

    Hendricks, K.J.

    1989-05-01

    The physics of pulsed-microwave, or radio-frequency (r-f), transmission through a decaying plasma column, is studied experimentally. A plasma column is formed in argon or nitrogen gases, to represent the neutral-gas breakdown due to an rf pulse. Initially, the electron frequency is greater than the microwave frequency. An r-f pulse capable of plasma reionization is applied across the plasma column at varying times in the plasma's decay phase (the plasma afterglow). Variation of the transmitted rf pulse characteristics, pulse width, and amplitude was studied as a function of the time into the afterglow. The ionization frequency of argon by a microwave pulse is found experimentally to be within 20% of the theoretical value. The comparison of ionization frequency is useful in establishing the applicability of earlier cavity measurements to present-day open-geometry systems used in transmission/propagation experiments.

  2. Variable Cycle Engine Technology Program Planning and Definition Study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  3. A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses

    ERIC Educational Resources Information Center

    Ahern, A. A.

    2010-01-01

    This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…

  4. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  5. An experimental study of the degradation of particles in complex plasma

    NASA Astrophysics Data System (ADS)

    Ermolenko, M. A.; Dzlieva, E. S.; Karasev, V. Yu.; Pavlov, S. I.; Polishchuk, V. A.; Gorbenko, A. P.

    2015-12-01

    Changes of melamine-formaldehyde resin (MF-R) particles occurring in complex dusty plasma have been investigated. Using a specially developed method, plasma-modified MF-R particles have been extracted from a dust trap after levitation for various periods of time and studied by electron microscopy techniques. Changes in the surface structure of MF-R particles are determined, and quantitative data on the variation in particle dimensions depending on the time of occurrence in plasma are obtained.

  6. Study of the modification of spherical melamine-formaldehyde particles levitating in complex plasma

    NASA Astrophysics Data System (ADS)

    Karasev, V. Yu.; Polishchyuk, V. A.; Gorbenko, A. P.; Dzlieva, E. S.; Ermolenko, M. A.; Makar, M. M.

    2016-05-01

    The surface modification of spherical melamine-formaldehyde particles during their levitation in a dusty plasma as a part of plasma-dust structures in a trap formed in strata in a neon glow discharge has been investigated using scanning electron microscopy. The dependence of the particle size on the time of plasma exposure has been found and measured, and the modification of the surface structure has been studied. The source of the observed modification has been interpreted.

  7. Liquid Methane/Oxygen Injector Study for Mars Ascent Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc

    1999-01-01

    As a part of the advancing technology of the cryogenic propulsion system for the Mars exploration mission, this effort aims at evaluating propellant injection concepts for liquid methane/liquid oxygen (LOX) rocket engines. Split-triplet and unlike impinging injectors were selected for this study. A total of four injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows, at MSFC. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure ranging from 320 to 510 and the mixture ratio from 1.5 to 3.5, were conducted. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability. Initial assessments of the test results showed that the injectors provided stable combustion and there were no injector face overheating problems under all operating conditions. The Raman scattering signal measurement method was successfully demonstrated for the hydrocarbon/oxygen reactive flow field. The near-injector face flow field was visually observed through the use of an infrared camera. Chamber wall temperature, high frequency chamber pressure, and average throat section heat flux were also recorded throughout the test series. Assessments of the injector performance are underway.

  8. Engineered heart slices for electrophysiological and contractile studies

    PubMed Central

    Blazeski, Adriana; Kostecki, Geran M.; Tung, Leslie

    2016-01-01

    A major consideration in the design of engineered cardiac tissues for the faithful representation of physiological behavior is the recapitulation of the complex topography and biochemistry of native tissue. In this study we present engineered heart slices (EHS), which seed neonatal rat ventricular cells (NRVCs) onto thin slices of decellularized cardiac tissue that retain important aspects of native extracellular matrix (ECM). To form EHS, rat or pig ventricular tissue was sectioned into 300 µm-thick, 5 to 16 mm-diameter disks, which were subsequently decellularized using detergents, spread on coverslips, and seeded with NRVCs. The organized fiber structure of the ECM remained after decellularization and promoted cell elongation and alignment, resulting in an anisotropic, functional tissue that could be electrically paced. Contraction decreased at higher pacing rates, and optical mapping revealed electrical conduction that was anisotropic with a ratio of approximately 2.0, rate-dependent shortening of the action potential and slowing of conduction, and lidocaine (sodium channel blocker)-induced slowing of conduction. Reentrant arrhythmias could also be pace-induced and terminated. EHS constitute an attractive in vitro cardiac tissue in which cardiac cells are cultured on thin slices of decellularized cardiac ECM that provide important biochemical, structural, and mechanical cues absent in traditional cell cultures. PMID:25934457

  9. An experimental and computational study of pulse detonation engines

    NASA Astrophysics Data System (ADS)

    Allgood, Daniel C.

    Research studies investigating the performance optimization and fundamental physics of pulse detonation engines (PDE) were performed. Experimental and computational methods were developed and used in these studies. Four primary research tasks were established. The first research task was to obtain detailed measurements of a PDE exhaust plume for a variety of operating conditions and engine geometries. Shadowgraph visualizations in conjunction with OH* and CH* chemiluminescence imaging were performed. The PDE plume visualizations provided a means of studying the flowfield behavior associated with PDE ejectors and exhaust nozzles as well as providing explanations for the observed acoustic behavior of the PDE. The second research task was to quantify the thrust augmentation of PDE-ejectors. Significant losses in the ejector entrainment were observed when the ejector inlet was not of an aerodynamic shape. Performance measurements of axisymmetric PDE-ejector systems showed the thrust augmentation to be a strong function of the ejector length-to-diameter ratio, ejector axial placement and PDE fill-fraction. Peak thrust augmentation levels were recorded to be approximately 20% for a straight-ejector and 65% for a diverging-ejector. An increase in thrust augmentation was obtained with a reduction in fill-fraction. Performance measurements of PDE converging and diverging exhaust nozzles were also obtained at various operating conditions of the engine. At low fill-fractions, both converging and diverging exhaust nozzles were observed to adversely affect the PDE performance. At fill-fractions close to and greater than 1, the converging nozzles showed the best performance due to increased PDE blow-down time (maintaining PDE chamber pressure) and acceleration of the primarily subsonic exhaust flow. The fourth research task was to perform a detailed far-field study of PDE acoustics. The acoustic energy of the PDE blast-wave was observed to be highly directional. Very good

  10. Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-rich plasma gel.

    PubMed

    Chatterjea, Anindita; Yuan, Huipin; Fennema, Eelco; Burer, Ruben; Chatterjea, Supriyo; Garritsen, Henk; Renard, Auke; van Blitterswijk, Clemens A; de Boer, Jan

    2013-02-01

    There is a rise in the popularity of arthroscopic procedures in orthopedics. However, the majority of cell-based bone tissue-engineered constructs (TECs) rely on solid preformed scaffolding materials, which require large incisions and extensive dissections for placement at the defect site. Thus, they are not suitable for minimally invasive techniques. The aim of this study was to develop a clinically relevant, easily moldable, bone TEC, amenable to minimally invasive techniques, using human mesenchymal stromal cells (hMSCs) and calcium phosphate microparticles in combination with an in situ forming platelet-rich plasma gel obtained from human platelets. Most conventional TECs rely on seeding and culturing single-cell suspensions of hMSCs on scaffolds. However, for generating TECs amenable to the minimally invasive approach, it was essential to aggregate the hMSCs in vitro before seeding them on the scaffolds as unaggregated MSCs did not generate any bone. Twenty four hours of in vitro aggregation was determined to be optimal for maintaining cell viability in vitro and bone formation in vivo. Moreover, no statistically significant difference was observed in the amount of bone formed when the TECs were implanted via an open approach or a minimally invasive route. TECs generated using MSCs from three different human donors generated new bone through the minimally invasive route in a reproducible manner, suggesting that these TECs could be a viable alternative to preformed scaffolds employed through an open surgery for treating bone defects.

  11. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  12. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  13. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

  14. Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma

    PubMed Central

    Pitek, Andrzej S.; O’Connell, David; Mahon, Eugene; Monopoli, Marco P.; Baldelli Bombelli, Francesca; Dawson, Kenneth A.

    2012-01-01

    It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience for understanding the impact of the nanoparticle-protein interactions on the biological response in vitro and in vivo. Here, we outline an integrated methodology to address the different aspects governing the formation and the function of the protein corona of polystyrene nanoparticles coated with Transferrin by different strategies. Protein-NP complexes are studied both in situ (in human plasma, full corona FC) and after washing (hard corona, HC) in terms of structural properties, composition and second-order interactions with protein microarrays. Human protein microarrays are used to effectively study NP-corona/proteins interactions addressing the growing demand to advance investigations of the extrinsic function of corona complexes. Our data highlight the importance of this methodology as an analysis to be used in advance of the application of engineered NPs in biological environments. PMID:22829881

  15. Open source projects in software engineering education: a mapping study

    NASA Astrophysics Data System (ADS)

    Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina

    2015-01-01

    Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study aims to summarize the literature on how OSP have been used to facilitate students' learning of SE. Method: A systematic mapping study was undertaken by identifying, filtering and classifying primary studies using a predefined strategy. Results: 72 papers were selected and classified. The main results were: (a) most studies focused on comprehensive SE courses, although some dealt with specific areas; (b) the most prevalent approach was the traditional project method; (c) studies' general goals were: learning SE concepts and principles by using OSP, learning open source software or both; (d) most studies tried out ideas in regular courses within the curriculum; (e) in general, students had to work with predefined projects; (f) there was a balance between approaches where instructors had either inside control or no control on the activities performed by students; (g) when learning was assessed, software artefacts, reports and presentations were the main instruments used by teachers, while surveys were widely used for students' self-assessment; (h) most studies were published in the last seven years. Conclusions: The resulting map gives an overview of the existing initiatives in this context and shows gaps where further research can be pursued.

  16. Non-thermal plasma for exhaust gases treatment

    NASA Astrophysics Data System (ADS)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-09-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  17. Study on Reaction Products in Plasma-Assisted Selective Catalytic Reduction of NOx

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Hayato; Tochikubo, Fumiyoshi; Uchida, Satoshi; Watanabe, Tsuneo

    Since the gas discharge plasma easily converts NO to NO2, which can be reduced more actively in selective catalytic reduction with hydrocarbons (HC-SCR), the plasma-assisted HC-SCR is an effective method for NOx reduction from diesel engine exhaust gases. In this work, the relation between NOx removal and reaction products is investigated in plasma-assisted HC-SCR in simulated flue gas as parameters of gas composition, plasma specific energy and catalyst temperature. C2H4 is used as a hydrocarbon and commercially available Al2O3 is used as a catalyst. After the plasma treatment of simulated flue gas, HCHO and HCOOH were generated as by-products, while NO was effectively converted to NO2. These by-products were confirmed to be reactive at lower catalyst temperature than C2H4 in HC-SCR. The relation between NOx removal and reaction products suggests that HCHO and HCOOH contribute the effective NOx reduction at low catalyst temperature in plasma-assisted HC-SCR.

  18. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  19. Studying astrophysical particle acceleration mechanisms with colliding magnetized laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Deng, W.; Bhattacharjee, A.; Fiksel, G.; Nilson, P.; Haberberger, D.; Chang, P.-Y.; Barnak, D.

    2015-11-01

    Significant particle energization is observed to occur in many astrophysical environments, and in the standard models this acceleration occurs as a part of the energy conversion processes associated with collisionless shocks or magnetic reconnection. A recent generation of laboratory experiments conducted using magnetized laser-produced plasmas has opened opportunities to study these particle acceleration processes in the laboratory. Ablated plasma plumes are externally magnetized using an externally-applied magnetic field in combination with a low-density background plasma. Colliding unmagnetized plasmas demonstrated ion-driven Weibel instability while colliding magnetized plasmas drive magnetic reconnection. Both magnetized and unmagnetized colliding plasma are modeled with electromagnetic particle-in-cell simulations which provide an end-to-end model of the experiments. Using particle-in-cell simulations, we provide predictions of particle acceleration driven by reconnection, resulting from both direct x-line acceleration and Fermi-like acceleration at contracting magnetic fields lines near magnetic islands.

  20. Numerical Studies of Electrode Plasma Formation and Expansion in High Power Charged Particle Beam Diodes

    NASA Astrophysics Data System (ADS)

    Rittersdorf, I. M.; Swanekamp, S. B.; Richardson, A. S.; Allen, R. J.; Schumer, J. W.

    2014-10-01

    High-power diodes that generate intense electron beams are useful in many applications, such as producing x-rays for flash radiography and nuclear weapon effects simulations. Desorption and ionization of gases from electrodes can form a plasma during operation. Expansion of this plasma into the gap leads to a short circuit, which limits the radiation production. It is difficult for particle-in-cell codes to model the surface physics or the subsequent expansion of the plasma. NRL is beginning a multi-year research effort to study such plasmas. This paper will summarize the relevant literature on plasma formation in high-power diodes with a goal of developing dynamic models that describe the formation and expansion of these plasmas that are suitable for PIC codes. This work was supported by the NRL Basic and Applied Research Program.

  1. Blood plasma coagulation studied by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Vikinge, Trine P.; Hansson, Kenny M.; Benesch, Johan; Johansen, Knut; Ranby, Mats; Lindahl, Tomas L.; Liedberg, Bo; Lundstoem, Ingemar; Tengvall, Pentti

    2000-01-01

    A surface plasmon resonance (SPR) apparatus was used to investigate blood plasma coagulation in real time as a function of thromboplastin and heparin concentrations. The response curves were analyzed by curve fitting to a sigmoid curve equation, followed by extraction of the time constant. Clotting activation by thromboplastin resulted in increased time constant, as compared to spontaneously clotted plasma, in a dose dependent way. Addition of heparin to the thromboplastin-activated plasma counteracted this effect. Atomic force microscopy (AFM) pictures of sensor surfaces dried after completed clotting, revealed differences in fibrin network structures as a function of thromboplastin concentration, and the fiber thickness increased with decreased thromboplastin concentration. The physical reason for the SPR signal observed is ambiguous and is therefore discussed. However, the results summarized in the plots and the fibrin network properties observed by AFM correlate well with present common methods used to analyze blood coagulation.

  2. Review of biased solar arraay. Plasma interaction studies

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1981-01-01

    The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.

  3. Studies on the nature of plasma growth hormone

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Grindeland, R. E.; Reilly, T. J.; Yang, S. H.

    1976-01-01

    The paper presents further evidence for the existence of two discrete forms of growth hormone in human plasma, one which is detectable by both radioimmunoassay and bioassay and is immunoreactive, and the other, termed 'bioactive', which is detected by tibial bioassay but shows little reactivity with currently available antisera to pituitary growth hormone. The same division of immunoactive and bioactive growth hormone occurs in rats, though with less disparity. Tests on rats indicated that the bioactive hormone is preferentially released into jugular vein plasma and that plasma concentrations of the bioactive hormone can be enhanced by insulin administration. The bioactive hormone was detectable by tibial assays in Cohn fractions IV, IV-1, and IV-4, and could be concentrated about 40-fold by fractionation with (NaPO3)6 and (NH4)2SO4.

  4. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    SciTech Connect

    Zhang, H.; Wu, S. Z.; Zhou, C. T.; He, X. T.; Zhu, S. P.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with established linear theory.

  5. Study Of The Gas Balance By Injection Of Hydrocarbons Into The Plasma Simulator PSI 2

    SciTech Connect

    Bohmeyer, Werner; Markin, Andrey; Koch, Bernd; Fussmann, Gerd; Krenz, Gordon

    2006-01-15

    The stationary plasma of the plasma generator PSI 2 is used to study the gas balance of hydrocarbons and hydro-gen by means of mass spectrometers. For this purpose H2, acetylene and ethylene are injected into argon and hydrogen plasmas. It is found that hydrogenation of the hydrocarbon layers is strongly influenced by the hydrocarbon species injected previously. Furthermore, time constants of more than 1000 s for achieving stationary conditions are identified in some cases. The H/C ratio of the hydrocarbon layers is found to vary from about 1 to 1.4 for argon and hydrogen plasmas, respectively.

  6. Studies of impact of plasma shaping on edge localized modes with a nonlinear code BOUT + +

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Xia, T. Y.

    2014-10-01

    The plasma shaping has important effects on the edge localized modes (ELMs). In this work, with the 3-field BOUT + + code, we study the impact of the plasma shaping on the ELMs. Three kinds of typical plasma shapes are studied: circular (cbm), elongated (dbm) and shaped with X-point (meudas). Our calculations show that the shaped plasma and the X-point geometry have stabilizing effect on the ELMs. For linear ideal MHD calculation we benchmark BOUT + + results with ELITE and GATO codes. Then we study the role of non-ideal effects such as resistivity on the ELMs for the X-point geometry. Also the nonlinear calculations are carried out to study the impact of plasma shape on the ELM size. Work supported by China National Magnetic Confinement Fusion Science Program under Grant Nos. 2014GB106001 and 2013GB111000. Also performed for USDOE by LLNL under DE-AC52-07NA27344. LLNL-ABS-656997.

  7. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  8. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  9. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  10. Photovoltaic concentrator pointing dynamics and plasma interaction study

    SciTech Connect

    Stern, T.G.

    1984-01-01

    The objectives of this experiment are to use the Space Technology Experiments Platform (STEP) system to demonstrate the viability of concentrator photovoltaic arrays by: (1) configuring a deployable mast on the STEP pallet with concentrator mass models and some active photovoltaic modules (2) measuring the array pointing dynamics under normal rotation as well as disturbance conditions (3) performing an array plasma interaction experiment to determine the steady-state plasma losses under various voltage conditions and (4) providing active distributed control of the support truss to determine the improvement in dynamic response. Experiment approach and test control and instrumentation are described.

  11. An MPP hydrocode to study laser-plasma interactions

    SciTech Connect

    Berger, R L; Langdon, A B; Langer, S H; Still, C H; Suter, L J; Williams E A

    1998-10-01

    Because of the increased size and power inherent in a laser-AGEX on NIF, laser-plasma interactions (LPI) observed in NOVA AGEX play an increasingly important role. The process by which filamentation and stimulated backscatter grow is complex. Furthermore, there is a competition among the instabilities so that lessening one can increase another. Therefore, simulating them is an integral part to successful experiments on NIF. In this paper, we present a massively parallel hydrocode to simulate laser-plasma interactions in NIF-relevant AGEX regimes.

  12. Communication Problems in Requirements Engineering: A Field Study

    NASA Technical Reports Server (NTRS)

    Al-Rawas, Amer; Easterbrook, Steve

    1996-01-01

    The requirements engineering phase of software development projects is characterized by the intensity and importance of communication activities. During this phase, the various stakeholders must be able to communicate their requirements to the analysts, and the analysts need to be able to communicate the specifications they generate back to the stakeholders for validation. This paper describes a field investigation into the problems of communication between disparate communities involved in the requirements specification activities. The results of this study are discussed in terms of their relation to three major communication barriers: (1) ineffectiveness of the current communication channels; (2) restrictions on expressiveness imposed by notations; and (3) social and organizational barriers. The results confirm that organizational and social issues have great influence on the effectiveness of communication. They also show that in general, end-users find the notations used by software practitioners to model their requirements difficult to understand and validate.

  13. Single-cylinder diesel engine study of four vegetable oils

    SciTech Connect

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.; Risby, T.M.; Taylor, W.D.

    1983-10-01

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermal efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.

  14. Value engineering awareness study for sustainable construction in Malaysia

    NASA Astrophysics Data System (ADS)

    U, Fathoni; M, Zakaria C.; O, Rohayu C.

    2013-06-01

    Construction process has often been described as a highly complex process because of the number of disciplines involved during the conceptual, design and construction stage. With the emergence of latest technology and concern for environment, increasing attention in construction industry is given on sustainability. Balance in quality and sustainability has become a major challenge to the construction industry. This paper presents a study that has conducted to determine the acceptance and application of Value Engineering (VE) and Life Cycle Cost Analysis (LCCA) in Malaysia construction industry. A set of questionnaire have distributed to different practitioners in construction industry and the result has reflect the fact that the application of VE and LCCA are still very low.

  15. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  16. Study of the turbulence in the central plasma sheet using the CLUSTER satellite data

    NASA Astrophysics Data System (ADS)

    Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.

    2008-05-01

    Recent studies are shown that the turbulent processes in the space plasmas are very important. It includes the behavior of the plasma sheet plasma during geomagnetic substorms and storms. Study of the plasma turbulence in the central plasma sheet was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the plasma bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the plasma sheet. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of plasma turbulence inside the sheet differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.

  17. Spectroscopic Study of a Pulsed High-Energy Plasma Deflagration Accelerator

    NASA Astrophysics Data System (ADS)

    Loebner, Keith; Underwood, Thomas; Mouratidis, Theodore; Cappelli, Mark

    2015-11-01

    Observations of broadened Balmer lines emitted by a highly-ionized transient plasma jet are presented. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged broadening data for a complete cross section of the plasma jet, and the data is Abel inverted to derive the radial plasma density distribution. This measurement is performed over narrow gate widths and at multiple axial positions to provide high spatial and temporal resolution. A streak camera coupled to a spectrometer is used to obtain continuous-time broadening data over the entire duration of the discharge event (10-50 microseconds). Analyses of discharge characteristics and comparisons with previous work are discussed. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program, as well as the National Defense Science Engineering Graduate Fellowship.

  18. Systems study on engineered barriers: barrier performance analysis

    SciTech Connect

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  19. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  20. Long-term decontamination engineering study. Volume 1

    SciTech Connect

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.