Science.gov

Sample records for plasma epoch theory

  1. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  2. Superposed Epoch Analysis of Ring Current Geoeffectiveness Related to Solar Wind and Plasma Sheet Drivers

    NASA Technical Reports Server (NTRS)

    Liemohm, M. W.; Kozyra, J. U.; Thomsen, M. F.; Borovsky, J. E.; Gahurthakurta, Madulika (Technical Monitor)

    2004-01-01

    The goal of that proposal was to examine the relationship between solar wind drivers and ring current dynamics through data analysis and numerical simulations. The data analysis study was a statistical examination (via superposed epoch analyses) of a solar cycle's worth of storm data. Solar wind data, geophysical indices, and geosynchronous plasma data were collected for every time period with Dst< -50 nT from 1989 through 2002, and the storm list now exceeds 400 entries. This work was first conducted by a summer undergraduate student, Mr. John Vann (University of Kansas), with funding from the NSF Research Experience for Undergraduates program. It was then continued by a University of Michigan graduate student, Mr. Jichun Zhang. Mr. Zhang is now in his fourth year at U-M and is progressing very well toward a PhD in space science. His dissertation will be based on his data analysis and modeling efforts using this geomagnetic storm database. The results of the data analysis study have been the focus of several conference presentations, and the first manuscript has just been published. Two additional papers are presently being prepared, one on average (superposed) solar wind features for various storm subsets (e.g., intense storms at solar maximum), and another on geosynchronous plasma features for these same storm subsets. The latter result was highlighted by the TR&T program director in his presentation at the COSPAR meeting this summer.

  3. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Kistler, L. M.; Baumjohann, W.; Nagai, T.; Mobius, E.

    1993-01-01

    Using data from 41 substorm events in the near-Earth magnetotail, we have combined plasma, energetic ion, and magnetic field data from the AMPTE/IRM spacecraft to perform a superposed epoch analysis of changes in the total pressure and in the magnetic field configuration as a function of time relative to substorm onset. Unloading is evident in the total pressure profile; the pressure decreases by about 20 percent. Pressure changes during the growth phase are not as uniform for the different substorms as the pressure changes during the expansion phase. To study changes in the magnetic field configuration, we have determined the development of the plasma pressure profiles in z for an average of data from 15 to 19 R(E). At substorm onset, the field line dipolarization begins on the innermost field lines and then progresses to the outer field lines. The field lines map the closest to the Earth about 45 min after substorm onset, and then begin to stretch out again during the recovery phase of the substorm.

  4. Theory of the unmagnetized plasma.

    NASA Technical Reports Server (NTRS)

    Montgomery, D. C.

    1971-01-01

    The Vlasov mathematical model of a plasma, which has come to be thought more useful than any other in describing the dynamical behavior of the majority of plasmas of interest, is first examined. Macroscopic variables and moment equations; linear electrostatics solutions; plasma oscillations, ion acoustic waves, and linear instabilities are treated, as well as external fields, 'test' charges, and nonlinear Vlasov phenomena. Plasmas are statistically described, and attention is given to the kinetic theory of the stable, uniform plasma and the Balescu-Lenard equation; two-time ensemble averages and fluctuation spectra in stable plasmas; the kinetic theory of the unstable plasma; and ensembles of Vlasov plasmas. Some illustrative experiments are described. Four appendixes deal with the electrostatic approximation and transverse waves; solution of the linearized Vlasov equation in a magnetic field; estimates of correlation functions from thermal equilibrium; and equivalence of spatially uniform BBGKY and Klimontovich correlations.

  5. Plasma theory and simulation research

    SciTech Connect

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  6. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  7. Theory of Space Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Mendis, A.

    2012-12-01

    Ionized gases, contaminated with fine (nanometer to micrometer-sized) charged dust, loosely referred to a dusty plasmas, occur in a wide variety of cosmic and laboratory environments. In this topical review I will discuss the underlying theory of such plasmas, with emphasis on the space environment. Central to the discussion is the electrostatic charging of the dust grains by the various currents that they experience in the plasma and radiative environment in which they are immersed. This charging could lead to both physical and dynamical consequences for the dust as well as for the plasma. Among the physical effects for the dust are electrostatic disruption and electrostatic levitation from charged surfaces. The dynamics of the charged dust is affected by the Lorentz force they experience, since space plasmas are generally magnetized. The physical effects for plasma result from the fact that the dust can act both as a sink and as a source of electrons in different space environments. The dynamical effects on the plasma arise from the fact that the charged dust can alter the phase velocity of normal wave modes (e.g., the Ion acoustic mode) by changing the charge equilibrium in the plasma. Additionally the charged dust can also participate in the wave dynamics, leading, for example, to the very low frequency, novel, "dust-acoustic" wave that has been observed in the laboratory. Finally the possibility that charged dust in a space plasma, may indirectly influence the propagation of electromagnetic radiation through it, will also be, briefly, discussed.

  8. Theory of beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1982-01-01

    The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.

  9. BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Porkolab, Miklos

    1998-11-01

    The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this

  10. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy.

  11. Stability theory of Knudsen plasma diodes

    SciTech Connect

    Kuznetsov, V. I. Ender, A. Ya.

    2015-11-15

    A stability theory is developed for a plasma diode in which an electron beam supplied from the emitter propagates without collisions in the self-consistent electric field against the immobile ion background. An integral equation for the amplitude of the perturbed field is deduced using the Q,G method for the regime without electron reflection from a potential barrier. Analytic solutions to this equation are obtained for a number of important particular cases, and the plasma dispersion properties are examined.

  12. Neutral Vlasov kinetic theory of magnetized plasmas

    SciTech Connect

    Tronci, Cesare; Camporeale, Enrico

    2015-02-15

    The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincaré reduction theory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the new model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime.

  13. Kinetic theory of relativistic plasmas

    SciTech Connect

    Gould, R.J.

    1981-01-01

    The thermalization of particle kinetic motion by binary collisions is considered for a plasma with kTapprox.(10--100) mc/sup 2/, where m is the electron mass. At this temperature, the principal mechanism for relaxation of electron motion is via radiationless electron-electron collisions (Moller scattering). Ions are nonrelativistic, but are energetic enough so that their Coulomb scattering can be treated in the Born approximation. Relaxation times are computed and Boltzmann-equation Fokker--Planck operators are derived for the various binary-collision processes. The expression for the rate of kinetic energy exchange between electron and ion gases is derived for the case where the gases are at different temperatures.

  14. Kinetic theory of relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1981-01-01

    The thermalization of particle kinetic motion by binary collisions is considered for a plasma with a Boltzmann constant-temperature product approximately equal to 10 to 100 times the product of the electron mass with the square of the speed of light. At this temperature, the principal mechanism for relaxation of electron motion is via radiationless electron-electron collisions (Moller scattering). Ions are nonrelativistic, but are energetic enough so that their Coulomb scattering can be treated in the Born approximation. Relaxation times are computed and Boltzmann-equation Fokker-Planck operators are derived for the various binary-collision processes. The expression for the rate of kinetic energy exchange between electron and ion gases is derived for the case where the gases are at different temperatures.

  15. Superposed epoch analysis of vertical plasma flow and its relationship with FACs as observed by DMSP and CHAMP: IMF By and Bx dependence

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2016-04-01

    This study presents results of a superposed epoch analysis (SEA) method applied to vertical plasma flow and large-scale field aligned currents (FACs) in the Northern Hemisphere cusp region. Our study is based on DMSP (F13 and F15) and CHAMP satellite observations during the years 2001-2005. Interplanetary magnetic field (IMF) data were taken from the NASA/GSFC's OMNI online database. The dependence on IMF By and Bx component orientation is investigated, while the absolute amplitude of IMF Bz is selected to be less than 2 nT. Seasonal variations are also investigated with seasons defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). The reference time and location for the SEA method are taken from the vertical ion velocity peaks (> 100 m/s for upflow and <-100 m/s for downflow) detected by DMSP in the northern cusp region. Our analyses were performed in the magnetic latitude (MLat) and local time (MLT) coordinate system. In general the vertical plasma downflow is weaker than the upflow. This product, ion density times velocity, shows no dependence on the IMF By orientation, while its value increases towards local summer. The ion density is low in winter and increases towards local summer, while the vertical velocity is much higher in local winter than during equinoxes or local summer. The event number distribution (in MLat-MLT frame) of vertical ion velocity peaks shows no significant dependence on the given conditions. In case of large-scale FACs a clear dependence on IMF By orientation and local season emerges from SEA analysis. Similarly to the vertical plasma upflow, the amplitude of large-scale FACs is also increasing towards local summer. Large-scale FACs show an IMF By dependent regular pattern for upflow cases and no regular pattern for downflow cases in all considered cases.

  16. Weak turbulence theory for collisional plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  17. Beyond the standard plasma transport theory

    NASA Astrophysics Data System (ADS)

    Bird, T. M.; Candy, J. M.

    2015-11-01

    The standard approach to transport in strongly magnetized plasmas, based upon an expansion in the gyro-radius over magnetic field scale length, has an illustrious, and successful history. It is however not a complete theory for plasma transport, and a number of phenomena which fall outside of its purview have recently attracted interest. The assumptions needed to derive the entire transport theory have only recently been explicitly laid out. Many of these assumptions are likely not widely appreciated, and the consequences of using the standard tools of transport theory to address phenomena which do not obey them are rather unclear. We discuss the consequences of these assumptions, and then turn our attention to the task of overcoming them. An avant-garde approach to modifying the standard theory to incorporate new physics will be introduced and applied to the loss of thermal ions in the edge. We study how the plasma remains quasi-neutral in the presence of this non-ambipolar transport, and consider the collisional re-filling of the loss cone. We will also briefly discuss other phenomena of interest that could be addressed using these techniques. Work supported in part by US DOE under grant number DE-FC02-06ER54873.

  18. Kinetic theory of electrical conductivity in plasmas

    SciTech Connect

    Boercker, D.B.

    1981-04-01

    A recently developed quantum kinetic theory for time-correlation functions is applied to the calculation of the electrical conductivity in dense, strongly coupled plasmas. In the weak-collision limit the theory generalizes the Ziman expression to finite temperatures while, for strong collisions, it generalizes the result of Gould and of Williams and DeWitt to include strong ion coupling. Numerical results which compare the effects that strong ion coupling, bound (core) electrons, and strong collisions have upon the collision frequency are also presented.

  19. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  20. Theory of plasma contractors for electrodynamic tethered satellite systems

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1986-01-01

    Recent data from ground and space experiments indicate that plasma releases from an object dramatically reduce the sheath impedance between the object and the ambient plasma surrounding it. Available data is in qualitative accord with the theory developed to quantify the flow of current in the sheath. Electron transport in the theory is based on a fluid model of a collisionless plasma with an effective collision frequency comparable to frequencies of plasma oscillations. The theory leads to low effective impedances varying inversely with the square root of the injected plasma density. To support such a low impedance mode of operation using an argon plasma source for example requires that only one argon ion be injected for each thirty electrons extracted from the ambient plasma. The required plasma flow rates are quite low; to extract one ampere of electron current requires a mass flow rate of about one gram of argon per day.

  1. Theory of correlation effects in dusty plasmas

    SciTech Connect

    Avinash, K.

    2015-03-15

    A theory of correlation effects in dusty plasmas based on a suitably augmented Debye Huckel approximation is proposed. A model which takes into account the confinement of the dust within the plasma (by external fields) is considered. The dispersion relation of compressional modes with correlation effects is obtained. Results show that strong coupling effects may be subdominant even when Γ ≫ 1. Thus, in the limit Γ→0 and/or κ → ∞, one obtains the weakly coupled dust thermal mode. In the range of values of Γ ≫ 1, the strong coupling effects scale with κ instead of Γ; increasing Γ increases the dust acoustic waves phase velocity C{sub DAW} in this regime. In the limit Γ≫1,κ≪1, one obtains the weakly coupled dust acoustic wave. Only in the limit Γ≫1,κ≥1, one obtains strong coupling effects, e.g., the dust lattice waves (κ=a/λ{sub d}, a is the mean particle distance and λ{sub d} is the Debye length). Observations from a number of experiments are explained.

  2. Plasma transport theory spanning weak to strong coupling

    SciTech Connect

    Daligault, Jérôme; Baalrud, Scott D.

    2015-06-29

    We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.

  3. Theory of edge plasma in a spheromak

    SciTech Connect

    Hooper, E.B., LLNL

    1998-05-01

    Properties of the edge plasma in the SSPX spheromak during the plasma formation and sustainment phases are discussed. For the breakdown and formation phase, the main emphasis is on the analysis of possible plasma contamination by impurities from the electrodes of the plasma gun (helicity injector). The issue of an azimuthally uniform breakdown initiation is also discussed. After the plasma settles down in the main vacuum chamber, one has to sustain the current between the electrodes, in order to continuously inject helicity. We discuss properties of the plasma on the field lines intersecting the electrodes. We conclude that the thermal balance of this plasma is maintained by Joule heating competing with parallel heat losses to the electrodes. The resulting plasma temperature is in the range of 15 - 30 eV. Under the expected operational conditions, the ``current`` velocity of the electrons is only slightly below their thermal velocity. Implications of this observation are briefly discussed.

  4. Dust in fusion plasmas: theory and modeling

    SciTech Connect

    Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.

    2008-09-07

    Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.

  5. Final Report on The Theory of Fusion Plasmas

    SciTech Connect

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  6. Experiments and Theory of Dusty Plasmas

    SciTech Connect

    Shukla, P. K.

    2011-11-29

    The purpose of this paper is to present the most important theoretical and experimental discoveries that have been made in the area of dusty plasma physics. We describe the physics and observations of the well celebrated dust acoustic wave (DAW) and the dust ion-acoustic wave (DIAW) in dusty plasmas with weakly coupled dust grains, as well as the dust Coulomb crystal and dust lattice oscillations (DLOs) in dusty plasmas with strongly coupled dust grains. In dusty plasmas, the dust charge fluctuation is a dynamical variable, which provides a novel collisionless damping of the DA and DIA waves. The latter and the DLOs are excited by external sources, which are here discussed. Besides the Debye-Hueckel short-range repulsive force between like charged dust grains, there are novel attractive forces (e.g. due to dipole-dipole dust particle interactions, overlapping Debye spheres, ion focusing and ion wakefields, dipole magnetic moments etc.), which provide unique possibilities for attracting charged dust particles of similar polarity. The dust particle attraction is responsible for the formation of dust Coulomb crystals in laboratory dusty plasmas, as well as for the formation of planets and large astrophysical bodies in the Milky Way galaxy and in interstellar media. Furthermore, the nonlinear DAW, DIAW, and DLOs also appear in the form of solitary and shock waves, the physics and observations of which are briefly discussed. Finally, we discuss possible applications of dust-in-plasmas and dusty plasmas in laboratory and space.

  7. The Gaussian radial basis function method for plasma kinetic theory

    NASA Astrophysics Data System (ADS)

    Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.

    2015-10-01

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.

  8. Testing THEMIS wave measurements against the cold plasma theory

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John

    2016-04-01

    The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.

  9. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations.

  10. Theory of dust voids in plasmas.

    PubMed

    Goree, J; Morfill, G E; Tsytovich, V N; Vladimirov, S V

    1999-06-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M=1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  11. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  12. Nonlinear theory of a plasma Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a plasma Cherenkov maser (PCM) propagating the intense relativistic electron beam through a circular waveguide partially filled with a dense annular plasma, is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the slow wave structure. We show that the saturation mechanism of a PCM instablity is a close correspondence in that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. And the optimal conditions in PCM operation are also obtained from performing our nonliear analysis together with computer simulations.

  13. Pliocene geomagnetic polarity epochs

    USGS Publications Warehouse

    Dalrymple, G.B.; Cox, A.; Doell, Richard R.; Gromme, C.S.

    1967-01-01

    A paleomagnetic and K-Ar dating study of 44 upper Miocene and Pliocene volcanic units from the western United States suggests that the frequency of reversals of the earth's magnetic field during Pliocene time may have been comparable with that of the last 3.6 m.y. Although the data are too limited to permit the formal naming of any new polarity epochs or events, four polarity transitions have been identified: the W10 R/N boundary at 3.7 ?? 0.1 m.y., the A12 N/R boundary at 4.9 ?? 0.1 m.y., the W32 N/R boundary at 9.0 ?? 0.2m.y., and the W36 R/N boundary at 10.8 ?? 0.3 - 1.0 m.y. The loss of absolute resolution of K-Ar dating in older rocks indicates that the use of well defined stratigraphic successions to identify and date polarity transitions will be important in the study of Pliocene and older reversals. ?? 1967.

  14. Observing the epoch of galaxy formation

    PubMed Central

    Steidel, Charles C.

    1999-01-01

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years. PMID:10200244

  15. An analytical theory of corona discharge plasmas

    SciTech Connect

    Uhm, H.S.; Lee, W.M.

    1997-09-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100{percent} energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R{sub c}p, plasma is generated for a high-voltage pulse satisfying u{gt}u{sub c}, where u{sub c} is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R{sub c} is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude.

  16. Microwave Plasma Window Theory and Experiments

    NASA Astrophysics Data System (ADS)

    McKelvey, Andrew; Zheng, Peng; Franzi, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Plasma, Pulsed Power,; Microwave Laboratory Team

    2011-10-01

    The microwave plasma window is an experiment designed to promote RF breakdown in a controlled vacuum-gas environment using a DC bias. Experimental data has shown that this DC bias will significantly reduce the RF power required to yield breakdown, a feature also shown in recent simulation. The cross-polarized conducting array is biased at (100's V) DC on the surface of a Lucite vacuum window. Microwave power is supplied to the window's surface by a single 1-kW magnetron operating at 2.45 GHz CW. The goal of this project is to establish controllable characteristics relating vacuum pressure, DC bias, RF power required for surface breakdown, as well as RF transmission after the formation of plasma. Experimental data will be compared with multipactor susceptibility curves generated using a Monte Carlo simulation which incorporates an applied DC bias and finite pressures of air and argon. Research supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharge, AFRL, L-3 Communications, and Northrop Grumman.

  17. Toward a Fully Kinetic Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Yoon, Peter H.

    2010-12-30

    This paper outlines the present status of the kinetic theory of turbulence in magnetized plasmas as being developed by the present author. The systematic program to formulate the theory of turbulence starting from the Vlasov-Klimontovich formalism began with the works by pioneers of modern plasma physics in the 1960s and 1970s. However, early efforts adopted the heuristic semi-classical method instead of the statistical mechanical formulation, which is necessary for a quantitative analysis. Recently, the present author picked up where the early pioneers left, and began to reformulate the kinetic turbulence theory of turbulence in magnetized plasmas from statistical mechanical formalism. This paper is a brief outline of the progress to date.

  18. Theory of a beam-driven plasma antenna

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.

    2016-08-01

    In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.

  19. Theory of current drive in plasmas

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.

    1987-01-01

    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuously the toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods have been proposed to provide continuous current, including methods that utilize particle beams or radio-frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide.

  20. Theory of current-drive in plasmas

    SciTech Connect

    Fisch, N.J.

    1986-12-01

    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuous toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods has been proposed to provide continuous current, including methods which utilize particle beams or radio frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide.

  1. Elements of Neoclassical Theory and Plasma Rotation in a Tokamak

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.

    2015-12-01

    The following sections are included: * Introduction * Quasineutrality condition * Diffusion in fully ionized magnetized plasma and automatic ambipolarity * Toroidal geometry and neoclassical diffusion * Diffusion and ambipolarity in toroidal plasmas * Ambipolarity and equilibrium poloidal rotation * Ambipolarity paradox and damping of poloidal rotation * Neoclassical plasma inertia * Oscillatory modes of poloidal plasma rotation * Dynamics of the toroidal momentum * Momentum diffusion in strongly collisional, short mean free path regime * Diffusion of toroidal momentum in the weak collision (banana) regime * Toroidal momentum diffusion and momentum damping from drift-kinetic theory and fluid moment equations * Comments on non-axisymmetric effects * Summary * Acknowledgments * Appendix: Trapped (banana) particles and collisionality regimes in a tokamak * Appendix: Hierarchy of moment equations * Appendix: Plasma viscosity tensor in the magnetic field: parallel viscosity, gyroviscosity, and perpendicular viscosity * Appendix: Closure relations for the flux surface averaged parallel viscosity in neoclassical (banana and plateau) regimes * References

  2. Quasi-neutral Vlasov theory of magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Tronci, Cesare; Camporeale, Enrico

    2015-11-01

    The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a quasi-neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincaré reduction theory is used to show that the quasi-neutral Vlasov theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the new model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the quasi-neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime. Financial support by the Leverhulme Trust Research Project Grant 2014-112 is greatly acknowledged.

  3. Modified Enskog kinetic theory for strongly coupled plasmas.

    PubMed

    Baalrud, Scott D; Daligault, Jérôme

    2015-06-01

    Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling (Γ≳30). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.

  4. Multispecies transport theory for axisymmetric rotating plasmas

    SciTech Connect

    Tessarotto, M.; White, R.B.

    1992-01-01

    A reduced gyrokinetic equation is derived for a multi-species toroidal axisymmetric plasma with arbitrary toroidal differential rotation speeds and in the presence of a finite induced electric field. The kinetic equation obtained, extending previous results obtained by Hinton and Wong and by Catto, Bernstein and Tessarotto, has a form suited for transport applications, via variational techniques; in particular it exhibits the feature that all source terms, including the Spitzer source term, carrying the contribution due to the inductive electric field, appear to be acted upon by the collision operator. Moreover, the equation displays a new contribution due to ``explicit`` velocity perturbations, here proven to be consistent with transport ordering, whose evaluation appears relevant for transport calculations. In addition, general expressions are obtained for the neoclassical fluxes in terms of a variational principle, as well as for the classical ones, retaining, in both cases, the contributions due to the Spitzer`s inductive terms.

  5. Multispecies transport theory for axisymmetric rotating plasmas

    SciTech Connect

    Tessarotto, M. . Dipt. di Scienze Matematiche); White, R.B. . Plasma Physics Lab.)

    1992-01-01

    A reduced gyrokinetic equation is derived for a multi-species toroidal axisymmetric plasma with arbitrary toroidal differential rotation speeds and in the presence of a finite induced electric field. The kinetic equation obtained, extending previous results obtained by Hinton and Wong and by Catto, Bernstein and Tessarotto, has a form suited for transport applications, via variational techniques; in particular it exhibits the feature that all source terms, including the Spitzer source term, carrying the contribution due to the inductive electric field, appear to be acted upon by the collision operator. Moreover, the equation displays a new contribution due to explicit'' velocity perturbations, here proven to be consistent with transport ordering, whose evaluation appears relevant for transport calculations. In addition, general expressions are obtained for the neoclassical fluxes in terms of a variational principle, as well as for the classical ones, retaining, in both cases, the contributions due to the Spitzer's inductive terms.

  6. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  7. Plasma confinement theory and transport simulation

    NASA Astrophysics Data System (ADS)

    Ross, D. W.

    1989-06-01

    An overview of the program has been given in the contract proposal. The principal objectives are: to provide theoretical interpretation and computer modelling for the TEXT tokamak, and to advance the simulation studies of tokamaks generally, functioning as a National Transport Center. We also carry out equilibrium and stability studies in support of the TEXT upgrade, and work has continued on Alfven waves and MFENET software development. The focus of the program is to lay the groundwork for detailed comparison with experiment of the various transport theories to improve physics understanding and confidence in predictions of future machine behavior. This involves: to collect, in retrievable form, the data from TEXT and other tokamaks; to make the data available through easy-to-use interfaces; to develop criteria for success in fitting models to the data; to maintain the Texas transport code CHAPO and make it available to users; to collect theoretical models and implement them in the transport code; and to carry out simulation studies and evaluate fits to the data. In the following we outline the progress made in fiscal year 1989. Of special note are the proposed participation of our data base project in the ITER program, and a proposed q-profile diagnostic based on our neutral transport studies.

  8. Nonlinear theory of slow dissipative layers in anisotropic plasmas

    SciTech Connect

    Ballai, I.; Ruderman, M.S.; Erdelyi, R.

    1998-01-01

    The solar coronal plasma is a well-known example of a plasma with strongly anisotropic dissipative coefficients. The main dissipative processes in the solar corona are strongly anisotropic thermal conductivity and viscosity. Ruderman and Goossens [Astrophys. J. {bold 471}, 1015 (1996)] developed a linear theory of driven slow resonant waves in plasmas with strongly anisotropic viscosity and thermal conductivity. Linear theory shows that in the slow dissipative layer the amplitudes of oscillations become very large for high Reynolds and Pecklet numbers, so that nonlinearity may be important. In the present paper the nonlinear behavior of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas with strongly anisotropic viscosity and thermal conductivity is studied. The nonlinear governing equation for wave variables in the dissipative layer is derived. The nonlinear connection formulae, which are extensions of the linear connection formulae first introduced in the theory of resonant magnetohydrodynamic waves by Sakurai, Goossens, and Hollweg [Solar Phys. {bold 133}, 127 (1991)], are derived. {copyright} {ital 1998 American Institute of Physics.}

  9. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    SciTech Connect

    Ramshaw, J.D.; Chang, C.H.

    1995-12-31

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.

  10. Kinetic theory of Jeans instability of a dusty plasma.

    PubMed

    Pandey, B P; Lakhina, G S; Krishan, V

    1999-12-01

    A kinetic theory of the Jeans instability of a dusty plasma has been developed in the present work. The effect of grain charge fluctuations due to the attachment of electrons and ions to the grain surface has been considered in the framework of Krook's collisional model. We demonstrate that the grain charge fluctuations alter the growth rate of the gravitational collapse of the dusty plasma. The Jeans length has been derived under limiting cases, and its dependence on the attachment frequency is shown. In the absence of gravity, we see that the damping rate of the dust acoustic mode is proportional to the electron-dust collision frequency. PMID:11970688

  11. Theory and Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, J. T.; Stanic, M. D.; Awe, T. J.; Hanna, D. S.; Davis, J. S.; Hsu, S. C.; Witherspoon, F. D.

    2010-11-01

    High pressures and temperatures may be generated at the center an imploding plasma liner. These phenomena are being studied on the Plasma Liner Experiment (PLX) in which a spherical liner is formed via the merging of plasma jets. The basic physical processes include pulsed plasma acceleration, plasma jet propagation in a vacuum, plasma jet merging, liner formation, liner implosion, stagnation, and rarefaction. Each of these processes is dominated by different physics, requiring different models. For example, λei at the jet merging radius may be ˜1 cm, so that liner formation is partially collisionless, while liner implosion is collision dominated. Further, the liner transitions from optically thin to gray during the implosion. An overview of the theory and modeling plan in support of PLX will be given, which includes 1D rad-hydro, 3D hydro, 3D MHD, 2D PIC, and 2D hybrid codes. We will emphasize our recent 3D hydro modeling, which provides insights into liner formation, implosion, and effects of initial jet parameters on scaling of peak pressure.

  12. Theory components of the VASIMR plasma propulsion concept

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey

    2003-10-01

    The talk presents a selection of theoretical problems all motivated by the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept [1]. The focus of the talk is on fundamental physics aspects of VASIMR operation, which are formulated as standalone physics problems. The VASIMR device has a magnetic mirror configuration and consists of three main components: a low energy helicon plasma source; an ion cyclotron-resonance heating (ICRH) section; and a magnetic nozzle, which forms a superalfvenic outgoing plasma flow. The ICRH conditions in VASIMR are fundamentally different from the conventional ICRH, because 1) each ion passes the resonance only once; 2) the ion motion is collisionless; 3) the ion energy gain in a single pass significantly exceeds ion energy in the incoming flow. A self-consistent nonlinear model for the rf-power deposition in the ion cyclotron frequency range into a steady-state plasma flow has been developed [3], which generalizes the linear magnetic beach problem solved by T. Stix. Despite the fact that helicon sources are routinely used for plasma production, the underlying physics mechanism is yet to be established. The talk presents a first-principle theory for light-gas helicon plasma sources with a self-consistent treatment of the particle balance [4], power balance, and rf-field structure [2]. A separation of scales among the particle confinement time, the energy confinement time, and the wave period allows one to consider all three constituents separately prior to combining them into an integrated description. The theory addresses the mystery of the high efficiency of helicon sources at frequencies below the typical helicon frequency. The magnetic nozzle transforms the ion rotational motion into the longitudinal motion and it also ensures plasma detachment from the rocket. The detachment occurs when the energy density of the magnetic field drops below the kinetic energy density of the plasma flow. Then the plasma breaks free

  13. Epochal trace elements and evolution.

    PubMed

    Pfeiffer, C C; Braverman, E R

    1982-07-01

    The use of some trace elements by plants and animals during the evolutionary process has resulted in epochal changes. Noteworthy is the fact that plants (but not animals) needed boron in order to grow stems and roots as they left the seas and became anchored on land. Iodine is plentiful in sea water but rare on land. Therefore, the iodination of tyrosine provided an iodine transport mechanism which allowed for the metamorphosis and the development of warm bloodedness--a great evolutionary advantage. Zinc from clay was needed for the formation of the first primitive nucleic acids and, later, the presence of zinc in the retina provide the enhanced night vision of the nocturnal predators--a natural advantage. Hence, boron, iodine and zinc can be termed epochal trace elements. Inquiry should be directed towards the possible roles of other trace elements, which may have been epochal in evolution. PMID:7136960

  14. Spin damping correction to electrostatic modes in kinetic plasma theory

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.

    2009-12-01

    The effect of spin of particles is studied using a semi-classical kinetic theory for a magnetized plasma. No other quantum effects are included. We focus in the simple damping effects for the electrostatic wave modes. Besides Landau damping, we show that spin produces two new different effects of damping or instability which are proportional to ℏ. These corrections depend on the electromagnetic part of the wave that is coupled with the spin vector.

  15. BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling

    NASA Astrophysics Data System (ADS)

    Yoshizawa, A.; Itoh, S. I.; Itoh, K.

    2003-03-01

    The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an

  16. A Quantitative Kinetic Theory of Meteor Plasma Formation

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers

    2014-10-01

    Every second millions of small meteoroids hit the Earth from space, the vast majority too small to observe visually. Radars easily detect the plasma they generate and use the data they gather to characterize the meteoroids and the atmosphere in which they disintegrate. These diagnostics requires a detailed quantitative understanding of the formation of the meteor plasma and how it interacts with the Earth's atmosphere. Meteors become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently that they begin to sublimate. The sublimated material then collides into atmospheric molecules and forms plasma around and behind the meteoroid. Reflection of radar pulses from the plasma around the descending meteoroid produces a localized signal called a head echo. This research applies kinetic theory to show that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. This analytical model will serve as a basis for quantitative interpretation of the head echo radar measurements, the ionization efficiency (called the Beta parameter), and should help us calculate meteoroid and atmosphere parameters from radar head-echo observations. Work supported by NSF Grant AGS-1244842.

  17. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    PubMed

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  18. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  19. Plasma mitigation of shock wave: experiments and theory

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2007-12-01

    Two types of plasma spikes, generated by on-board 60 Hz periodic and pulsed dc electric discharges in front of two slightly different wind tunnel models, were used to demonstrate the non-thermal plasma techniques for shock wave mitigation. The experiments were conducted in a Mach 2.5 wind tunnel. (1) In the periodic discharge case, the results show a transformation of the shock from a well-defined attached shock into a highly curved shock structure, which has increased shock angle and also appears in diffused form. As shown in a sequence with increasing discharge intensity, the shock in front of the model moves upstream to become detached with increasing standoff distance from the model and is eliminated near the peak of the discharge. The power measurements exclude the heating effect as a possible cause of the observed shock wave modification. A theory using a cone model as the shock wave generator is presented to explain the observed plasma effect on shock wave. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow; such a flow deflection modifies the structure of the shock wave generated by the cone model, as shown by the numerical results, from a conic shape to a curved one. The shock front moves upstream with a larger shock angle, matching well with that observed in the experiment. (2) In the pulsed dc discharge case, hollow cone-shaped plasma that envelops the physical spike of a truncated cone model is produced in the discharge; consequently, the original bow shock is modified to a conical shock, equivalent to reinstating the model into a perfect cone and to increase the body aspect ratio by 70%. A significant wave drag reduction in each discharge is inferred from the pressure measurements; at the discharge maximum, the pressure on the frontal surface of the body decreases by more than 30%, the pressure on the cone surface increases by about 5%, whereas the pressure on the cylinder surface remains

  20. A Plasma Instability Theory of Gamma-Ray Burst Emission

    NASA Technical Reports Server (NTRS)

    Brainerd, Jerome J.

    1999-01-01

    A plasma instability theory is presented for the prompt radiation from gamma-ray bursts. In the theory, a highly relativistic shell interacts with the interstellar medium through the filamentation and the two-stream instabilities to convert bulk kinetic energy into electron thermal energy and magnetic field energy. The processes are not efficient enough to satisfy the Rankine-Hugoniot conditions, so a shock cannot form through this mechanism. Instead, the interstellar medium passes through the shell, with the electrons radiating during this passage. Gamma-rays are produced by synchrotron self-Compton emission. Prompt optical emission is also produced through this mechanism, while prompt radio emission is produced through synchrotron emission. The model timescales are consistent with the shortest burst timescales. To emit gamma-rays, the shell's bulk Lorentz factor must be $\\simg 10(exp 3)$. For the radiative processes to be efficient, the interstellar medium density must satisfy a lower limit that is a function of the bulk Lorentz factor. Because the limits operate as selection effects, bursts that violate them constitute new classes. In particular, a class of optical and ultraviolet bursts with no gamma-ray emission should exist. The lower limit on the density of the interstellar medium is consistent with the requirements of the Compton attenuation theory, providing an explanation for why all burst spectra appear to be attenuated. Several tests of the theory are discussed, as are the next theoretical investigations that should be conducted.

  1. Some improvements in the theory of plasma relaxation

    SciTech Connect

    Hameiri, Eliezer

    2014-04-15

    Taylor's relaxation theory is extended to plasmas with mass flow by using the cross helicity as a conserved quantity, similar to the magnetic helicity. Indeed, it is shown that the conservation of the cross helicity in magnetohydrodynamics is the result of the conservation of two magnetic-like helicities in two-fluid plasmas. In addition, the usually ignored toroidal flux is also held to be conserved. We also view plasma relaxation as attaining a maximum entropy state rather than Taylor's minimum energy state, but prove that maximizing the entropy subject to a given amount of energy is equivalent to minimizing the energy subject to a given amount of entropy. The resulting relaxed state is similar to the one discussed by Finn and Antonsen [Phys. Fluids 26, 3540 (1983)], and involves flow parallel to the magnetic field and constant temperature, but non-constant pressure. We show how to construct an asymptotic solution to the relaxed state based on the smallness of the Alfven Mach number of the flow.

  2. Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Lemaire, J.; Burlaga, L. F.

    1976-01-01

    A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.

  3. Hyper-resistivity Theory in a Cylindrical Plasma

    SciTech Connect

    Berk, H L; Fowler, T K; LoDestro, L L; Pearlstein, L D

    2001-02-27

    A model is presented for determining the hyper-resistivity coefficient that arises due to the presence of magnetic structures that appear in plasma configurations such as the reversed field pinch and spheromak. Emphasis is placed on modeling cases where magnetic islands pass from non-overlap to overlap regimes. Earlier works have shown that a diffusion-based model can give realistic transport scalings when magnetic islands are isolated, and this formalism is extended to apply to the hyper-resistivity problem. In this case electrons may either be in long or short mean-free-path regimes and intuitively-based arguments are presented of how to extend previous theories to incorporate this feature in the presence of magnetic structures that pass from laminar to moderately chaotic regimes.

  4. Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation

    SciTech Connect

    Yoon, Peter H.

    2015-08-15

    The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.

  5. Wakes in complex plasmas: A self-consistent kinetic theory.

    PubMed

    Kompaneets, Roman; Morfill, Gregor E; Ivlev, Alexei V

    2016-06-01

    In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding potential.

  6. Wakes in complex plasmas: A self-consistent kinetic theory

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-06-01

    In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding potential.

  7. Wakes in complex plasmas: A self-consistent kinetic theory.

    PubMed

    Kompaneets, Roman; Morfill, Gregor E; Ivlev, Alexei V

    2016-06-01

    In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding potential. PMID:27415371

  8. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  9. Plasma stability theory including the resistive wall effects

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2015-12-01

    > Plasma stabilization due to a nearby conducting wall can provide access to better performance in some scenarios in tokamaks. This was proved by experiments with an essential gain in and demonstrated as a long-lasting effect at sufficiently fast plasma rotation in the DIII-D tokamak (see, for example, Strait et al., Nucl. Fusion, vol. 43, 2003, pp. 430-440). The rotational stabilization is the central topic of this review, though eventually the mode rotation gains significance. The analysis is based on the first-principle equations describing the energy balance with dissipation in the resistive wall. The method emphasizes derivation of the dispersion relations for the modes which are faster than the conventional resistive wall modes, but slower than the ideal magnetohydrodynamics modes. Both the standard thin wall and ideal-wall approximations are not valid in this range. Here, these are replaced by an approach incorporating the skin effect in the wall. This new element in the stability theory makes the energy sink a nonlinear function of the complex growth rate. An important consequence is that a mode rotating above a critical level can provide a damping effect sufficient for instability suppression. Estimates are given and applications are discussed.

  10. New approach to MHD spectral theory of stationary plasma flows

    NASA Astrophysics Data System (ADS)

    Goedbloed, Hans

    2009-11-01

    The basic equations of MHD spectral theory date back to 1958 for static plasmas (Bernstein et al.) and to 1960 for stationary plasma flows (Frieman and Rotenberg). The number of papers on the two subjects appears to be inversely proportional to their complexity, with the vast majority of contributions to MHD stability of tokamaks being restricted to static equilibria and stationary equilibrium flows mostly being discussed analytically for trivial equilibria or numerically for complicated geometries. The problem with the latter is not that numerical approaches are inaccurate, but that they suffer from lack of analytical guidance concerning the structure of the spectrum. One of the reasons is the usual misnomer of ``non-self adjointness'' of the stationary flow problem. In fact, self-adjointness of the two occurring operators was proved right away. Based on the two quadratic forms corresponding to these operators, (a) we constructed an effective method to compute the eigenvalues in the complex plane, (b) we found the counterpart of the oscillation theorem for eigenvalues of static equilibria (Goedbloed and Sakanaka, 1974) for the eigenvalues of stationary flows, enabling one to map out sequences of eigenvalues in the complex plane. Examples will be given for Rayleigh-Taylor, Kelvin-Helmholtz and magneto-rotational instabilities.

  11. New approach to magnetohydrodynamics spectral theory of stationary plasma flows

    NASA Astrophysics Data System (ADS)

    (Hans Goedbloed, J. P.

    2011-07-01

    While the basic equations of MHD spectral theory date back to 1958 for static plasmas (Bernstein et al 1958 Proc. R. Soc. A 244 17) and to 1960 for stationary plasma flows (Frieman and Rotenberg 1960 Rev. Mod. Phys. 32 898), progress on the latter subject has been slow since it suffers from lack of analytical insight concerning the structure of the spectrum. One of the reasons is the usual misnomer of 'non-self adjointness' of the stationary flow problem. Actually, self-adjointness of the occurring operators, namely the generalized force operator and the Doppler-Coriolis gradient operator -iρv·∇, was proved right away by Frieman and Rotenberg. Based on the reality of the two quadratic forms corresponding to these operators, we here construct (a) an effective method to compute the solution paths in the complex ω plane on which the eigenvalues are situated, (b) the counterpart of the oscillation theorem for eigenvalues of static equilibria (Goedbloed and Sakanaka 1974 Phys. Fluids 17 908) for the eigenvalues of stationary flows, based on the monotonicity of the alternating ratio, or alternator, of the boundary values of the displacement ξ and the total pressure perturbation Π. This enables one to map out the complete spectrum of eigenvalues in the complex ω-plane. The intricate topology of the solution paths is discussed for the fundamental examples of Rayleigh-Taylor, Kelvin-Helmholtz and combined instabilities.

  12. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  13. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    PubMed

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  14. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  15. Extended neoclassical transport theory for incompressible tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number UpM=[(V∥/vt)+(VEB/vtBp)] of the order of unity for incompressible tokamak plasmas. Here, V∥ is the parallel mass flow, vt is the ion thermal speed, VE is the poloidal E×B drift speed, B is the magnetic field strength, and Bp is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if UpM>1 and S>1. Here, S=[1+cI2Φ''/(Ω0B0)] is the orbit squeezing factor with c the speed of light, I=RBt, R the major radius, Φ the electrostatic potential, B0 the magnetic field strength on the axis, Ω0=eB0/Mc, M the ion mass, e the ion charge, Φ''=d2Φ/dψ2, and ψ the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch-Schlüter transport.

  16. Contributions to the theory of magnetorotational instability and waves in a rotating plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Tsypin, V. S.; Erokhin, N. N.; Erokhin, N. S.; Konovalov, S. V.; Pashitskii, E. A.; Stepanov, A. V.; Vladimirov, S. V.; Galvao, R. M. O.

    2008-01-15

    The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary {beta}, where {beta} is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary {beta}. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.

  17. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  18. On the theory of Langmuir waves in a quantum plasma

    SciTech Connect

    Kuzelev, M. V.

    2010-04-15

    Nonlinear quantum-mechanical equations are derived for Langmuir waves in an isotropic electron collisionless plasma. A general analysis of dispersion relations is carried out for complex spectra of Langmuir waves and van Kampen waves in a quantum plasma with an arbitrary electron momentum distribution. Quantum nonlinear collisionless Landau damping in Maxwellian and degenerate plasmas is studied. It is shown that collisionless damping of Langmuir waves (including zero sound) occurs in collisionless plasmas due to quantum correction in the Cherenkov absorption condition, which is a purely quantum effect. Solutions to the quantum dispersion equation are obtained for a degenerate plasma.

  19. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    SciTech Connect

    Zhang, H.; Wu, S. Z.; Zhou, C. T.; He, X. T.; Zhu, S. P.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with established linear theory.

  20. Extended neoclassical transport theory for incompressible tokamak plasmas

    SciTech Connect

    Shaing, K.C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number U{sub pM}=[(V{sub {parallel}}/v{sub t})+(V{sub E}B/v{sub t}B{sub p})] of the order of unity for incompressible tokamak plasmas. Here, V{sub {parallel}} is the parallel mass flow, v{sub t} is the ion thermal speed, V{sub E} is the poloidal {bold E{times}B} drift speed, B is the magnetic field strength, and B{sub p} is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if U{sub pM}{gt}1 and S{gt}1. Here, S=[1+cI{sup 2}{Phi}{sup {prime}{prime}}/({Omega}{sub 0}B{sub 0})] is the orbit squeezing factor with c the speed of light, I=RB{sub t}, R the major radius, {Phi} the electrostatic potential, B{sub 0} the magnetic field strength on the axis, {Omega}{sub 0}=eB{sub 0}/Mc, M the ion mass, e the ion charge, {Phi}{sup {prime}{prime}}=d{sup 2}{Phi}/d{psi}{sup 2}, and {psi} the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch{endash}Schl{umlt u}ter transport. {copyright} {ital 1997 American Institute of Physics.}

  1. Theory of semicollisional drift-interchange modes in cylindrical plasmas

    SciTech Connect

    Hahm, T.S.; Chen, L.

    1985-01-01

    Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime.

  2. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  3. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2012-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  4. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  5. Introduction to quantum chromo transport theory for quark-gluon plasmas

    SciTech Connect

    Gyulassy, M.; Elze, H.Th.; Iwazaki, A.; Vasak, D.

    1986-08-01

    Upcoming heavy ion experiments at the AGS and SPS are aimed at producing and diagnosing a primordial form of matter, the quark-gluon plasma. In these lectures some recent developments on formulating a quantum transport theory for quark-gluon plasmas are introduced. 46 refs.

  6. Plasma theory and simulation research. Final technical report, January 1, 1986--October 31, 1989

    SciTech Connect

    Birdsall, C.K.

    1989-12-31

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the ``sheath``), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  7. Orbital-motion-limited theory of dust charging and plasma response

    SciTech Connect

    Tang, Xian-Zhu Luca Delzanno, Gian

    2014-12-15

    The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma.

  8. Theory and modelling of helium enrichment in plasma experiments with pump limiters

    SciTech Connect

    Prinja, A.K.; Conn, R.W.

    1984-01-01

    Helium enrichment in the exhaust gas stream flowing from a hydrogen-helium plasma is studied using an analytical theory and Monte Carlo simulations. To provide a sensitive experimental test in a tokamak, an unusual configuration, inverted from traditional designs, is proposed for a pump limiter. The principle can be tested in other plasma devices as well. The theory suggests that for typical plasma edge conditions in a confinement device, namely, n = 10/sup 13/cm/sup -3/ and T/sub i/ = T/sub e/ approx. = 5-30eV, helium enrichment in the neutral gas exhaust stream can be very high, in the range 5 to 7, relative to the helium-hydrogen ratio in the plasma. Such high enrichment factors are achieved by exploiting the difference between the ionization rates of hydrogen and helium and the negligible helium charge exchange rate at these plasma conditions. A limiter arrangement is proposed in which the natural curvature of the toroidal magnetic field is used to isolate, using the plasma itself, the point of plasma neutralization from the location of the gas exhaust. The plasma region then acts to preferentially screen the recycling hydrogen by the processes of ionization and of charge-exchange-induced losses at open boundaries. The theory and analysis suggests that an experiment can provide a sensitive test of modules used to describe the plasma edge and of atomic and surface physics data used in these models.

  9. Similarity theory of nonlinear cold pair-plasma dynamics

    SciTech Connect

    Diver, D. A.; Laing, E. W.

    2009-09-15

    In this article the waves and dynamics of an inhomogeneous cold magnetized electron-positron plasma are investigated using similarity methods to study particular classes of plasma wave behavior. A cold two-fluid plasma model in a cylindrical geometry ({rho},{theta},z) and time t is assumed, but attention is restricted to ({rho},t) variations only. The application of similarity procedures reduces the set of partial differential equations which describe the spatial and temporal evolution of the plasma to a set of ordinary differential equations. This model has particular relevance to the description of the evolution of the electron-positron component of pulsar magnetospheres. Some typical solutions of these similarity equations are presented which characteristically have the property of blow-up phenomena.

  10. A theory of the plasma torch for waste-treatment

    SciTech Connect

    Uhm, H.S.; Hong, S.H.

    1997-12-31

    Arc-plasma technology has broad applications to waste treatment processing including the safe disposal of hazardous and low-level radioactive wastes. The plasma torch could be useful to the development of an efficient, compact, lightweight, clean burning incinerator for industrial and municipal waste disposal in an environmentally beneficial way. The authors therefore develop a simple theoretical model describing physics of the plasma torch plume in connection with its applications to the arc-plasma waste-treatment system. The theoretical analysis is carried out by making use of Bernoulli`s pressure-balance equation, which provides a stable equilibrium solution of the gas density in the plume ejected from the torch into a high-pressure reactor chamber with 4{var_epsilon} < 1. The pressure depression parameter {var_epsilon} is proportional to the gas temperature and inversely proportional to the square of the chamber pressure. In a low-pressure chamber, characterized by 4{var_epsilon} > 1, there is no stable equilibrium solution satisfying Bernoulli`s equation. Therefore, it is expected that the observable plasma data may change abruptly as the chamber pressure crosses the borderline defined by 4{var_epsilon} = 1. Indeed most of the plasma data measured in an experiment change abruptly at the pressure borderline of 4{var_epsilon} = 1.

  11. Energy branching in the Io plasma torus - The failure of neutral cloud theory

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.

    1988-01-01

    Model calculations are used to explore the energy source characteristics of the energy branching of the hot Io plasma torus. It is assumed that the energy is derived from the kinetic energy acquired by ions created in the rotating planetary magnetic field, and that Coulomb collisions with the electron gas control the flow of energy to the ionizing and radiative processes. The results show that neutral cloud theory is qualitatively inadequate. It is shown that neutral cloud theory can only support a dominantly singly ionized system (at the measured electron densities in the plasma torus) and that it fails to predict observed plasma properties relative to variations in number density.

  12. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  13. Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas

    SciTech Connect

    Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu

    2014-09-15

    The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.

  14. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Yoon, P. H.

    2015-07-01

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  15. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    SciTech Connect

    Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  16. Extending plasma transport theory to strong coupling through the concept of an effective interaction potential

    SciTech Connect

    Baalrud, Scott D.; Daligault, Jérôme

    2014-05-15

    A method for extending traditional plasma transport theories into the strong coupling regime is presented. Like traditional theories, this is based on a binary scattering approximation, but where physics associated with many body correlations is included through the use of an effective interaction potential. The latter is simply related to the pair-distribution function. Modeling many body effects in this manner can extend traditional plasma theory to orders of magnitude stronger coupling. Theoretical predictions are tested against molecular dynamics simulations for electron-ion temperature relaxation as well as diffusion in one component systems. Emphasis is placed on the connection with traditional plasma theory, where it is stressed that the effective potential concept has precedence through the manner in which screening is imposed. The extension to strong coupling requires accounting for correlations in addition to screening. Limitations of this approach in the presence of strong caging are also discussed.

  17. On the theory of dynamics of dust grain in plasma

    SciTech Connect

    Stepanenko, A. A.; Krasheninnikov, S. I.

    2013-03-15

    The dynamics of rotationally symmetric dust grains in plasma embedded in a magnetic field are of concern. The general expressions for forces and torques acting on dust are found. It is shown that dust spinning is determined by torques related to both the Lorentz force (dominant for relatively small grains) and the gyro-motion of plasma particles impinging the grain (which prevails for large grains). The stability of grain spinning is analyzed and it is shown that, for some cases (e.g., oblate spheroid), there is no stable dynamic equilibrium of grain spinning.

  18. Theory and application of maximum magnetic energy in toroidal plasmas

    SciTech Connect

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}`s.

  19. Theory and application of maximum magnetic energy in toroidal plasmas

    SciTech Connect

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}'s.

  20. Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity

    SciTech Connect

    Kim, Kihong; Lee, Dong-Hun

    2006-04-15

    A new version of the invariant imbedding theory for the propagation of coupled waves in inhomogeneous media is applied to the mode conversion of high frequency electromagnetic waves into electrostatic modes in cold, magnetized, and stratified plasmas. The cases where the external magnetic field is applied perpendicularly to the direction of inhomogeneity and the electron density profile is linear are considered. Extensive and numerically exact results for the mode conversion coefficients, the reflectances, and the wave electric and magnetic field profiles inside the inhomogeneous plasma are obtained. The dependencies of mode conversion phenomena on the magnitude of the external magnetic field, the incident angle, and the wave frequency are explored in detail.

  1. TOWARD A THEORY OF ASTROPHYSICAL PLASMA TURBULENCE AT SUBPROTON SCALES

    SciTech Connect

    Boldyrev, Stanislav; Horaites, Konstantinos; Xia, Qian; Perez, Jean Carlos

    2013-11-01

    We present an analytical study of subproton electromagnetic fluctuations in a collisionless plasma with a plasma beta of the order of unity. In the linear limit, a rigorous derivation from the kinetic equation is conducted focusing on the role and physical properties of kinetic-Alfvén and whistler waves. Then, nonlinear fluid-like equations for kinetic-Alfvén waves and whistler modes are derived, with special emphasis on the similarities and differences in the corresponding plasma dynamics. The kinetic-Alfvén modes exist in the lower-frequency region of phase space, ω << k v{sub Ti} , where they are described by the kinetic-Alfvén system. These modes exist both below and above the ion-cyclotron frequency. The whistler modes, which are qualitatively different from the kinetic-Alfvén modes, occupy a different region of phase space, k v{sub Ti} << ω << k{sub z}v{sub Te} , and they are described by the electron magnetohydrodynamics (MHD) system or the reduced electron MHD system if the propagation is oblique. Here, k{sub z} and k are the wavenumbers along and transverse to the background magnetic field, respectively, and v{sub Ti} and v{sub Te} are the ion and electron thermal velocities, respectively. The models of subproton plasma turbulence are discussed and the results of numerical simulations are presented. We also point out possible implications for solar-wind observations.

  2. Theory and observation of a dynamically evolviong negative ion plasma

    SciTech Connect

    Mendillo, M.; Forbes, J.

    1982-10-01

    As part of the Project Firefly ionospheric modification campaigns conducted during the early 1960's, sulfur hexafluoride (SF/sub 6/) was used to study the creation and consequences of artificially-induced electron depletion regions via the attachment process (SF/sub 6/+e..-->..SF/sub 6/). Since those early experiments, a great many advances have occurred in theoretical, laboratory, and diagnostic techniques related to negative ion plasmas. This study examines the full range of negative ion chemistry in the upper ionosphere by using current reaction rate data to investigate the many chemical paths SF/sub 6/ type injections might take in an F region environment. Particular attention is given to the conditions required to create heavy negative ions that persist long enough to affect the dynamical properties of the F region. The ambipolar diffusion characteristics of a three component plasma (O/sup +/, e/sup -/, SF/sub 6//sup -/) are described, and estimates of the incoherent scatter spectra obtained from such a plasma are presented. Model calculations using a first order chemical code are defined and tested to investigate the actual types of negative ion plasmas capable of being created under nighttime conditions. A versatile model for diffusion in an exponential atmosphere ws used to simulate the evolution of 10/sup 26/SF/sub 6/ molecules released at 222 km during a 1962 Firefly experiment. When examined in conjunction with the chemical model calculatins, the results suggest that the ionospheric perturbations recorded at the time probably resulted more from molecular and atomic ion neutralizations involving SF/sub 6//sup -/, SF/sub 5//sup +/, O/sup -/, O/sup +/, and epsilon/sup -/, rather than simple electron attachments, as had been expected. A similar use of SF/sub 6/ diffusion scenarios for high-altitude releases (h = 350-500 km) indicates that large-scale, long-lived negative ion plasmas could be produced by modest rocket or Shuttle-borne payloads to study

  3. Geomagnetic polarity epochs: Sierra Nevada II

    USGS Publications Warehouse

    Cox, A.; Doell, Richard R.; Brent, Dalrymple G.

    1963-01-01

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  4. Geomagnetic Polarity Epochs: Sierra Nevada II.

    PubMed

    Cox, A; Doell, R R; Dalrymple, G B

    1963-10-18

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer. PMID:17799480

  5. Gyrokinetic stability theory of electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Helander, P.; Connor, J. W.

    2016-06-01

    > The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, Phys. Rev. Lett., vol. 113, 2014a, 135003) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal magnetohydrodynamics. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.

  6. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  7. An effective field theory approach to the stabilization of 8Be in a QED plasma

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojun; Mehen, Thomas; Müller, Berndt

    2016-07-01

    We use effective field theory to study the α –α resonant scattering in a finite-temperature QED plasma. The static plasma screening effect causes the resonance state 8Be to live longer and eventually leads to the formation of a bound state when {m}{{D}}≳ 0.3 {{MeV}}. We speculate that this effect may have implications on the rates of cosmologically and astrophysically relevant nuclear reactions involving α particles.

  8. An effective field theory approach to the stabilization of 8Be in a QED plasma

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojun; Mehen, Thomas; Müller, Berndt

    2016-07-01

    We use effective field theory to study the α -α resonant scattering in a finite-temperature QED plasma. The static plasma screening effect causes the resonance state 8Be to live longer and eventually leads to the formation of a bound state when {m}{{D}}≳ 0.3 {{MeV}}. We speculate that this effect may have implications on the rates of cosmologically and astrophysically relevant nuclear reactions involving α particles.

  9. Kinetic Theory of Meteor Plasma in the Earth's atmosphere: Implications for Radar Head Echo

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.

    2015-12-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to be observed visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma and how it interacts with the Earth's atmosphere. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo often accompanied by a much longer non-specular trail (see the Figure). Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma responsible for the radar head echo. This theory produces analytic expressions describing the ion and neutral velocity distributions along with the detailed 3-D spatial structure of the near-meteoroid plasma. These expressions predict a number of unexpected features such as shell-like velocity distributions. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a strongly non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements, estimates of the ionization efficiency, and should help calculate meteoroid and atmosphere parameters from radar head-echo observations. This theory could also help clarify the physical nature of electromagnetic pulses observed during recent meteor showers and associated with the passage of fast-moving meteors through the

  10. Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma

    SciTech Connect

    Manheimer, Wallace; Colombant, Denis

    2015-09-15

    Various laser plasma instabilities, such as the two plasma decay instability and the stimulated Raman scatter instability, produce large quantities of energetic electrons. How these electrons are transported and heat the plasma are crucial questions for laser fusion. This paper works out a Fokker Planck and Krook theory for such transport and heating. The result is a set of equations, for which one can find a simple asymptotic approximation for the solution, for the Fokker Planck case, and an exact solution for the Krook case. These solutions are evaluated and compared with one another. They give rise to expressions for the spatially dependent heating of the background plasma, as a function of the instantaneous laser and plasma parameters, in either planar or spherical geometry. These formulas are simple, universal (depending weakly only on the single parameter Z, the charge state), and can be easily be incorporated into a fluid simulation.

  11. Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.

    NASA Technical Reports Server (NTRS)

    Vahala, G.

    1972-01-01

    The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.

  12. Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace; Colombant, Denis

    2015-09-01

    Various laser plasma instabilities, such as the two plasma decay instability and the stimulated Raman scatter instability, produce large quantities of energetic electrons. How these electrons are transported and heat the plasma are crucial questions for laser fusion. This paper works out a Fokker Planck and Krook theory for such transport and heating. The result is a set of equations, for which one can find a simple asymptotic approximation for the solution, for the Fokker Planck case, and an exact solution for the Krook case. These solutions are evaluated and compared with one another. They give rise to expressions for the spatially dependent heating of the background plasma, as a function of the instantaneous laser and plasma parameters, in either planar or spherical geometry. These formulas are simple, universal (depending weakly only on the single parameter Z, the charge state), and can be easily be incorporated into a fluid simulation.

  13. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  14. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  15. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  16. Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas

    NASA Astrophysics Data System (ADS)

    Shi, Tonghui; Zheng, L. J.; Wan, B. N.; Sun, Y.; Shen, B.; Qian, J. P.

    2016-08-01

    Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.

  17. Analysis of modern optimal control theory applied to plasma position and current control in TFTR

    SciTech Connect

    Firestone, M.A.

    1981-09-01

    The strong compression TFTR discharge has been segmented into regions where linear dynamics can approximate the plasma's interaction with the OH and EF power supply systems. The dynamic equations for these regions are utilized within the linear optimal control theory framework to provide active feedback gains to control the plasma position and current. Methods are developed to analyze and quantitatively evaluate the quality of control in a nonlinear, more realistic simulation. Tests are made of optimal control theory's assumptions and requirements, and the feasibility of this method for TFTR is assessed.

  18. Theory of self-organized critical transport in tokamak plasmas

    SciTech Connect

    Kishimoto, Y.; Tajima, T.; Horton, W.; LeBrun, M.J.; Kim, J.Y. |

    1995-07-01

    A theoretical and computational study of the ion temperature gradient and {eta}{sub i} instabilities in tokamak plasmas has been carried out. In toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose strong constraint on the drift mode fluctuations and the amciated transport, showing a self-organized characteristic. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result, the temperature relaxation is self-semilar and nonlocal, leading to a radially increasing heat diffusivity. The nonlocal transport leads to the Bohm-like diffusion scaling. The heat input regulates the deviation of the temperature gradient away from marginality. The obtained transport scalings and properties are globally consistent with experimental observations of L-mode charges.

  19. Scale-free transport in fusion plasmas: theory and applications

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Mier, J. A.; Newman, D. E.; Carreras, B. A.; Garcia, L.; Leboeuf, J. N.; Decyk, V.

    2008-11-01

    A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.

  20. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  1. Kinetic theory of a two-dimensional magnetized plasma.

    NASA Technical Reports Server (NTRS)

    Vahala, G.; Montgomery, D.

    1971-01-01

    Several features of the equilibrium and nonequilibrium statistical mechanics of a two-dimensional plasma in a uniform dc magnetic field are investigated. The charges are assumed to interact only through electrostatic potentials. The problem is considered both with and without the guiding-center approximation. With the guiding-center approximation, an appropriate Liouville equation and BBGKY hierarchy predict no approach to thermal equilibrium for the spatially uniform case. For the spatially nonuniform situation, a guiding-center Vlasov equation is discussed and solved in special cases. For the nonequilibrium, nonguiding-center case, a Boltzmann equation, and a Fokker-Planck equation are derived in the appropriate limits. The latter is more tractable than the former, and can be shown to obey conservation laws and an H-theorem, but contains a divergent integral which must be cut off on physical grounds. Several unsolved problems are posed.

  2. Theory of self-organized critical transport in tokamak plasmas

    SciTech Connect

    Kishimoto, Y.; Tajima, T.; Horton, W.; LeBrun, M.J.; Kim, J.Y.

    1996-04-01

    A theoretical and computational study of the ion temperature gradient (ITG) and {eta}{sub {ital i}} instabilities in tokamak plasmas has been carried out. In a toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose a strong constraint on the drift mode fluctuations and the associated transport, showing self-organized criticality. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result of this, the temperature relaxation is self-similar and nonlocal, leading to radially increasing heat diffusivity. The nonlocal transport leads to Bohm-like diffusion scaling. Heat input regulates the deviation of the temperature gradient away from marginality. We present a critical gradient transport model that describes such a self-organized relaxed state. Some of the important aspects in tokamak transport like Bohm diffusion, near marginal stability, radially increasing fluctuation energy and heat diffusivity, intermittency of the wave excitation, and resilient tendency of the plasma profile can be described by this model, and these prominent features are found to belong to one physical category that originates from the radially extended nonlocal drift modes. The obtained transport properties and scalings are globally consistent with experimental observations of low confinement mode (L-mode) discharges. The nonlocal modes can be disintegrated into smaller radial islands by a poloidal shear flow, suggesting that the transport changes from Bohm-like to near gyro-Bohm. {copyright} {ital 1996 American Institute of Physics.}

  3. Theory of plasma waves in the auroral E region

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.; Providakes, J.; Farley, D. T.

    1984-01-01

    A general theory is developed for both electrojet waves and ion cyclotron and current convective waves observed above 120 km altitude. Previously defined electrojet instability theories are extended to encompass the effects of the magnetic field on ions and the presence of field-aligned currents. The ion-cyclotron (E) waves are assumed produced by the two-stream instability in regions dominated by ion magnetization effects. Field-aligned and cross-field currents drive the E waves, which have displayed threshold drift velocities (TDV) sensitive to conditions at altitudes with effective electron/ion and anomalous electron collision frequencies. The electron density gradients in the region affect the magnitude of the TDV for waves on scales of tens of meters. Recombinational damping increases the TDV for marginal damping of two-stream E waves and establishes a TDV for excitation of large-scale gradient drift waves which propagate nearly perpendicularly to the magnetic field and may have only 10-20 m wavelengths.

  4. Theory of spatially non-symmetric kinetic equilibria for collisionless plasmas

    SciTech Connect

    Cremaschini, Claudio; Tessarotto, Massimo

    2013-01-15

    The problem posed by the possible existence/non-existence of spatially non-symmetric kinetic equilibria has remained unsolved in plasma theory. For collisionless magnetized plasmas, this involves the construction of stationary solutions of the Vlasov-Maxwell equations. In this paper, the issue is addressed for non-relativistic plasmas both in astrophysical and laboratory contexts. The treatment is based on a Lagrangian variational description of single-particle dynamics. Starting point is a non-perturbative formulation of gyrokinetic theory, which allows one to construct 'a posteriori' with prescribed order of accuracy an asymptotic representation for the magnetic moment. In terms of the relevant particle adiabatic invariants generalized bi-Maxwellian equilibria are proved to exist. These are shown to recover, under suitable assumptions, a Chapman-Enskog form which permits an analytical treatment of the corresponding fluid moments. In particular, the constrained posed by the Poisson and the Ampere equations are analyzed, both for quasi-neutral and non-neutral plasmas. The conditions of existence of the corresponding non-symmetric kinetic equilibria are investigated. As a notable feature, both astrophysical and laboratory plasmas are shown to exhibit, under suitable conditions, a kinetic dynamo, whereby the equilibrium magnetic field can be self-generated by the equilibrium plasma currents.

  5. Electronics Research Laboratory, Plasma Theory and Simulation Group annual progress report, January 1, 1989--December 31, 1989

    SciTech Connect

    Birdsall, C.K.

    1989-12-31

    This is a brief progress report, covering our research in general plasma theory and simulation, plasma-wall physics theory and simulation, and code development. Reports written in this period are included with this mailing. A publications list plus abstracts for two major meetings are included.

  6. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  7. Very high Mach number shocks - Theory. [in space plasmas

    NASA Technical Reports Server (NTRS)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  8. Theory and Fluid Simulations of Boundary Plasma Fluctuations

    SciTech Connect

    Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S

    2007-01-09

    Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.

  9. Geomagnetic reversal in brunhes normal polarity epoch.

    PubMed

    Smith, J D; Foster, J H

    1969-02-01

    The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent. PMID:17750890

  10. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev's Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2015-12-01

    > In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical

  11. Profile of a low-Mach-number shock in two-fluid plasma theory

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Kushinsky, Y.; Balikhin, M.

    2015-08-01

    Magnetic profiles of low-Mach-number collisionless shocks in space plasmas are studied within the two-fluid plasma theory. Particular attention is given to the upstream magnetic oscillations generated at the ramp. By including weak resistive dissipation in the equations of motion for electrons and protons, the dependence of the upstream wave train features on the ratio of the dispersion length to the dissipative length is established quantitatively. The dependence of the oscillation amplitude and spatial damping scale on the shock normal angle θ is found.

  12. Nonlinear theory of intense laser-plasma interactions modified by vacuum polarization effects

    SciTech Connect

    Chen, Wenbo; Bu, Zhigang; Li, Hehe; Luo, Yuee; Ji, Peiyong

    2013-07-15

    The classical nonlinear theory of laser-plasma interactions is corrected by taking account of the vacuum polarization effects. A set of wave equations are obtained by using the Heisenberg-Euler Lagrangian density and the derivative correction with the first-order quantum electrodynamic effects. A model more suitable to formulate the interactions of ultra-strong lasers and high-energy-density plasmas is developed. In the result, some environments in which the effects of vacuum polarization will be enhanced are discussed.

  13. Superposed Epoch Analysis of Current Systems During Intense Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.

    2013-05-01

    A statistical approach to investigating the intensity and timing of storm-time current systems is conducted and presented. The Hot Electron and Ion Drift Integrator (HEIDI) model was used to simulate all of the intense storms (Dstmin < -100 nT) from solar cycle 23 (1996-2005). Five different HEIDI input combinations were used to create a large collection of numerical results, varying the plasma outer boundary condition and electric field description in the model. The simulation results are then combined with a normalized superposed epoch analysis, where each phase of each storm is prorated to the average duration of that phase and then all of the storms are averaged together. The azimuthal currents in the HEIDI simulation domain are classified as westward and eastward symmetric ring current, partial ring current, banana current, and tail current. The average behavior of these current systems with respect to the HEIDI plasma and electric field boundary conditions are then presented and discussed. It is found that the Volland-Stern electric field produces an earlier increase in the inner magnetospheric current systems because of the usage of the 3-h Kp index. A self-consistent electric field develops the current systems a few hours later, but produces much stronger asymmetric current systems (partial, banana, and tail currents), especially in the main phase of the storm. Applying a nonuniform local time distribution for the plasma outer boundary condition slightly increases the magnitudes of the current systems, but this effect is smaller than the electric field influence.

  14. Experimental Measurements and Density Functional Theory Calculations of Continuum Lowering in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam

    2014-10-01

    An accurate description of the ionization potential depression (IPD) of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here I present the first experimental investigation of the IPD as a function of ionic charge state in a range of dense Mg, Al and Si plasmas, using the Linac Coherent Light Source X-ray free-electron laser. The measurements show significantly larger IPDs than are predicted by the most commonly used models, such as that of Stewart-Pyatt, or the ion-sphere model of Zimmerman-More. Instead, plasma simulations using finite-temperature density functional theory with excited-state projector augmented-wave potentials show excellent agreement with the experimental results and explain the stronger-than-expected continuum lowering through the electronic structure of the valence states in these strong-coupling conditions, which retain much of their atomic characteristics close to the ion core regions. These results have a profound impact on the understanding and modelling of plasmas over a wide range of warm- and hot-dense matter conditions.

  15. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  16. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  17. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  18. Application of linear response theory to magnetotransport properties of dense plasmas.

    PubMed

    Adams, J R; Reinholz, H; Redmer, R

    2010-03-01

    Linear response theory, as developed within the Zubarev formalism, is a quantum statistical approach for describing systems out of but close to equilibrium, which has been successfully applied to a wide variety of plasmas in an external electric field and/or containing a temperature gradient. We present here an extension of linear response theory to include the effects of an external magnetic field. General expressions for the complete set of relevant transport properties are given. In particular, the Hall effect and the influence of a magnetic field on the dc electrical conductivity are discussed. Low-density limits including electron-electron scattering are presented as well as results for arbitrary degeneracy.

  19. Application of linear response theory to magnetotransport properties of dense plasmas

    SciTech Connect

    Adams, J. R.; Redmer, R.; Reinholz, H.

    2010-03-15

    Linear response theory, as developed within the Zubarev formalism, is a quantum statistical approach for describing systems out of but close to equilibrium, which has been successfully applied to a wide variety of plasmas in an external electric field and/or containing a temperature gradient. We present here an extension of linear response theory to include the effects of an external magnetic field. General expressions for the complete set of relevant transport properties are given. In particular, the Hall effect and the influence of a magnetic field on the dc electrical conductivity are discussed. Low-density limits including electron-electron scattering are presented as well as results for arbitrary degeneracy.

  20. Theory of type 3b solar radio bursts. [plasma interaction and electron beams

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Delanoee, J.

    1975-01-01

    During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.

  1. Fast electron energy deposition in a magnetized plasma: Kinetic theory and particle-in-cell simulation

    SciTech Connect

    Robiche, J.; Rax, J.-M.; Bonnaud, G.; Gremillet, L.

    2010-03-15

    The collisional dynamics of a relativistic electron jet in a magnetized plasma are investigated within the framework of kinetic theory. The relativistic Fokker-Planck equation describing slowing down, pitch angle scattering, and cyclotron rotation is derived and solved. Based on the solution of this Fokker-Planck equation, an analytical formula for the root mean square spot size transverse to the magnetic field is derived and this result predicts a reduction in radial transport. Some comparisons with particle-in-cell simulation are made and confirm striking agreement between the theory and the simulation. For fast electron with 1 MeV typical kinetic energy interacting with a solid density hydrogen plasma, the energy deposition density in the transverse direction increases by a factor 2 for magnetic field of the order of 1 T. Along the magnetic field, the energy deposition profile is unaltered compared with the field-free case.

  2. Two-dimensional finite element multigroup diffusion theory for neutral atom transport in plasmas

    SciTech Connect

    Hasan, M.Z.; Conn, R.W.

    1986-02-01

    Solution of the energy dependent diffusion equation in two dimensions is formulated by multigroup approximation of the energy variable and general triangular mesh, finite element discretization of the spatial domain. Finite element formulation is done by Galerkin's method. Based on this formulation, a two-dimensional multigroup finite element diffusion theory code, FENAT, has been developed for the transport of neutral atoms in fusion plasmas. FENAT solves the multigroup diffusion equation in X-Y cartesian and R-Z cylindrical/toroidal geometries. Use of the finite element method allows solution of problems in which the plasma cross-section has an arbitrary shape. The accuracy of FENAT has been verified by comparing results to those obtained using the two-dimensional discrete ordinate transport theory code, DOT-4.3. Results of application of FENAT to the transport of limiter-originated neutral atoms in a tokamak fusion machine are presented.

  3. Kinetic Theory in Hot Plasmas and Neutral Gases Applications to the Computation of the transport coefficients

    SciTech Connect

    Bendib, A.

    2008-09-23

    The conference is devoted to the study of systems consisting of a large number of particles by using the kinetic theory. In a first part, we present a general overview of the kinetic theory. In particular, the role of the correlations between particles is shown and discussed through the main models reported in the literature. In a second part, we present three applications to the transport properties in plasmas and neutral gases. The first application is devoted to the transport in hot plasmas perturbed with respect to the global equilibrium. The quasi-static and collisionless distribution function and transport coefficients are established. The influence of relativistic effects is also discussed. The second application deals with strongly inhomogeneous magnetized plasmas. The transport coefficients of Braginskii are calculated numerically in the local and the weakly nonlocal approximations. New nonlocal transport coefficients are emphasized. Finally, we apply the kinetic theory to the neutral gases by calculating the semi-collisional dispersion relation of acoustic waves. In particular, the dispersion and the damping of these waves in rarefied gases are highlighted. The method used to solve the kinetic equations is compared with the conventional method of Chapman-Enskog.

  4. Neoclassical transport theory in a tokamak plasma with large spatial gradients

    SciTech Connect

    Chang, C.S.

    1996-12-31

    Usual neoclassical theories assumed that the spatical inhomogeneity of the plasma was weak. Specifically, this included the following two strong assumptions: banana width was negligible compared to the radial gradient scale length and variation of any physical quantity along the field line was small. This led to the simplification that the spatial inhomogeneity itself did not affect the fundamental transport processes. However, there have been many experimental suggestions that the spatial inhomogeneity may not be small. Firstly, both H-mode and ERS mode experiments have indicated that the finite banana width effect may be important to understand the plasma transport processes. Secondly, the RF and auxiliary heating processes may be sufficiently localized in space so that we may need to consider a strongly inhomogeneous heating effect along the field lines. In the present work we develop a modified neoclassical theory, in parallel with the old theories, which can include the finite banana width effect and the inhomogeneous heating effect. Several new and significant transport terms have been identified, which can play important roles in the understanding of the fundamental transport processes in a tokamak plasma.

  5. Geomagnetic polarity epochs: Nunivak Island, Alaska

    USGS Publications Warehouse

    Cox, A.; Dalrymple, G.B.

    1967-01-01

    New paleomagnetic and potassium-argon dating measurements have been made of basalt flows from Nunivak Island, Alaska, with the following results. (1) The best estimate of the age of the Brunhes/Matuyama polarity epoch boundary is found to be 0.694 m.y. (2) The best estimate of the age of the Gauss/Gilbert boundary is 3.32 m.y. (3) Three normally magnetized flows with ages from 0.93 to 0.88 m.y. are in accord with previous estimates of the age and duration of the Jaramillo normal event. (4) One normally magnetized flow with an age of 1.65 ?? 0.09 m.y. supplies additional evidence for the Gilsa?? normal event. (5) Two new normal events are identified within the Gilbert reversed epoch, the "Cochiti normal event" with an age of 3.7 m.y. and the "Nunivak normal event" with an age of 4.1 m.y. ?? 1967.

  6. Galaxies in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.

    2015-08-01

    The CANDELS survey has revolutionized the study of galaxies in the epoch of reionization, with the wide field and near-infrared coverage enabling the discovery of candidates for the brightest galaxies in the crucial redshift range 6 < z < 9. I will present results from spectroscopic followup of these candidates with Keck/MOSFIRE and DEIMOS, and will discuss the implications for reionization of the rapid drop-off in detection of Lyman alpha emission between z~6 and z~7.Complementing the results from CANDELS, the Hubble Frontier Fields open up the faint end of the luminosity function with their combination of deep HST imaging and magnification from gravitational lensing. I will discuss methods of removing the foreground galaxies and intracluster light through modelling and wavelet decomposition. This enables us to detect the faintest high-redshift galaxies in the fields, and provides insight into the faint-end slope of the luminosity function at 6 < z < 9, revealing the galaxies believed to be responsible for the bulk of the energy contributing to reionization in this epoch.

  7. The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Pavlos, George

    2015-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time

  8. Theory and computer simulation of a new type of plasma Cherenkov maser

    SciTech Connect

    Pointon, T.D.

    1986-01-01

    Theory and computer simulation of a new experimental high-power microwave generator is presented. In this device, a circular waveguide is partially filled with a dense annular plasma. When an intense relativistic electron-beam pulse passes through the central vacuum region, microwaves are emitted with high efficiency (less than or equal to 20%). The plasma creates slow (i.e., v/sub ph/ < c) TM modes in the waveguide. The radiation mechanism is stimulated Cherenkov emission of these slow TM waves by the beam electrons. The linear theory is analyzed first. A dispersion relation and field-structure equations are derived for the azimuthally symmetric TM modes of this system. Numerical solutions demonstrate the existence of the slow TM waves without the beam, and confirm that some are unstable in the presence of the beam. To analyze the nonlinear theory, a new particle-simulation code was developed. This code is described in detail, and results of simulations of the experimental device are presented. In these simulations, the system initially evolves in good quantitative agreement with linear theory, while the nonlinear saturation amplitudes are consistent with experimentally observed efficiencies. Saturation of linear instability is shown to be due to trapping of the beam electrons, and the saturation amplitudes agree quite well with a simple trapping model

  9. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    NASA Astrophysics Data System (ADS)

    Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander

    2016-05-01

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.

  10. PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Sauter, Olivier

    2012-12-01

    The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012

  11. Kinetic theory of quasi-stationary collisionless axisymmetric plasmas in the presence of strong rotation phenomena

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zdeněk; Tessarotto, Massimo

    2013-05-15

    The problem of formulating a kinetic treatment for quasi-stationary collisionless plasmas in axisymmetric systems subject to the possibly independent presence of local strong velocity-shear and supersonic rotation velocities is posed. The theory is developed in the framework of the Vlasov-Maxwell description for multi-species non-relativistic plasmas. Applications to astrophysical accretion discs arising around compact objects and to plasmas in laboratory devices are considered. Explicit solutions for the equilibrium kinetic distribution function (KDF) are constructed based on the identification of the relevant particle adiabatic invariants. These are shown to be expressed in terms of generalized non-isotropic Gaussian distributions. A suitable perturbative theory is then developed which allows for the treatment of non-uniform strong velocity-shear/supersonic plasmas. This yields a series representation for the equilibrium KDF in which the leading-order term depends on both a finite set of fluid fields as well as on the gradients of an appropriate rotational frequency. Constitutive equations for the fluid number density, flow velocity, and pressure tensor are explicitly calculated. As a notable outcome, the discovery of a new mechanism for generating temperature and pressure anisotropies is pointed out, which represents a characteristic feature of plasmas considered here. This is shown to arise as a consequence of the canonical momentum conservation and to contribute to the occurrence of temperature anisotropy in combination with the adiabatic conservation of the particle magnetic moment. The physical relevance of the result and the implications of the kinetic solution for the self-generation of quasi-stationary electrostatic and magnetic fields through a kinetic dynamo are discussed.

  12. Unification of Plasma Fluid and Kinetic Theory via Gaussian Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Candy, J. M.

    2015-11-01

    A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev. 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator contains friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, nonlinear (bilinear) operator. Numerical discretization of the operator, in particular for collisions of unlike species, is extremely challenging. In this work, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also have a deep physical interpretation in statistical mechanics and plasma physics as local thermodynamic equilibria. We outline the general theory, highlight the connection to plasma fluid theories, and also give 2D and 3D numerical solutions of the nonlinear Fokker-Planck equation. A broad spectrum of applications for the new method is anticipated in both astrophysical and laboratory plasmas. In particular, we believe that the RBF method may provide a new bridge between fluid and kinetic descriptions of magnetized plasma. Work supported in part by US DOE under DE-FG02-08ER54963.

  13. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  14. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Infrared VLT Observations Identify Hidden Galaxies in the Early Universe Working with the ESO Very Large Telescope (VLT) at the Paranal Observatory , a group of European astronomers [1] has just obtained one of the deepest looks into the distant Universe ever made by an optical telescope. These observations were carried out in the near-infrared spectral region and are part of an attempt to locate very distant galaxies that have so far escaped detection in the visual bands. The first results are very promising and some concentrations of galaxies at very large distances were uncovered. Some early galaxies may be in hiding Current theories hypothesize that more than 80% of all stars ever formed were assembled in galaxies during the latter half of the elapsed lifetime of the Universe, i.e., during the past 7-8 billion years. However, doubts have arisen about these ideas. There are now observational indications that a significant number of those galaxies that formed during the first 20% of the age of the Universe, i.e. within about 3 billion years after the Big Bang, may not be visible to optical telescopes. In some cases, we do not see them, because their light is obscured by dust. Other distant galaxies may escape detection by optical telescopes because star formation in them has ceased and their light is mainly emitted in the red and infrared spectral bands. This is because, while very young galaxies mostly contain hot and blue stars, older galaxies have substantial numbers of cool and red stars. They are then dominated by an older, "evolved" stellar population that is cooler and redder. The large cosmic velocities of these galaxies further enhance this effect by causing their light to be "redshifted" towards longer wavelengths, i.e. into the near-infrared spectral region. Observations in the infrared needed Within the present programme, long exposures in near-infrared wavebands were made with the Infrared Spectrometer And Array Camera (ISAAC) , mounted on ANTU , the

  15. Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  16. The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Pavlos, George

    2015-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time

  17. Mars - Epochal climate change and volatile history

    NASA Technical Reports Server (NTRS)

    Fanale, Fraser P.; Postawko, Susan E.; Pollack, James B.; Carr, Michael H.; Pepin, Robert O.

    1992-01-01

    The epochal climate change and volatile history of Mars are examined, with special attention given to evidence for and mechanisms of long-term climate change. Long-term climate change on Mars is indicated most directly by the presence, age, and distribution of the valley networks. They were almost certainly formed by running water, but it seems more likely that they were formed by groundwater sapping than by rainfall. It is argued to be physically plausible that a higher early intensity of surface insolation caused by a CO2 greenhouse effect could have overcompensated for an early weak sun and raised temperatures to the freezing point near the equator under favorable conditions of obliquity and eccentricity. This could account for the morphological changes.

  18. LEDDB: LOFAR Epoch of Reionization Diagnostic Database

    NASA Astrophysics Data System (ADS)

    Martinez-Rubi, O.; Veligatla, V. K.; de Bruyn, A. G.; Lampropoulos, P.; Offringa, A. R.; Jelic, V.; Yatawatta, S.; Koopmans, L. V. E.; Zaroubi, S.

    2013-10-01

    One of the key science projects of the Low-Frequency Array (LOFAR) is the detection of the cosmological signal coming from the Epoch of Reionization (EoR). Here we present the LOFAR EoR Diagnostic Database (LEDDB) that is used in the storage, management, processing and analysis of the LOFAR EoR observations. It stores referencing information of the observations and diagnostic parameters extracted from their calibration. These stored data are used to ease the pipeline processing, monitor the performance of the telescope, and visualize the diagnostic parameters which facilitates the analysis of the several contamination effects on the signals. It is implemented with PostgreSQL and accessed through the psycopg2 Python module. We have developed a very flexible query engine, which is used by a web user interface to access the database, and a very extensive set of tools for the visualization of the diagnostic parameters through all their multiple dimensions.

  19. Orion: The Final Epoch (OrionTFE)

    NASA Astrophysics Data System (ADS)

    Megeath, Tom; Allen, Tom; Arce, Hector; Booker, Joseph; Calvet, Nuria; Flaherty, Kevin; Furlan, Elise; Fischer, Will; Gonzales, Beatriz; Gutermuth, Rob; Hartman, Lee; Henning, Thomas; Hora, Joe; Karnath, Nicole; Kim, Kyoung Hee; Kounkel, Marina; Mazur, Brian; Offner, Stella; Osorio, Mayra; Pillitteri, Ignazio; Pipher, Judy; Prchlik, Jakub; Rebull, Luisa; Terebey, Susan; Tobin, John; Stanke, Thomas; Stutz, Amelia; Watson, Dan; Wolk, Scott

    2016-08-01

    The Orion molecular clouds are an essential laboratory for studying low mass star formation over the broad range of environments in which they form. Starting with the Spitzer survey of Orion in 2004, more than a decade of observations with Spitzer, WISE, HST and Herschel, have accumulated an unparalleled characterization of the young stellar object population in Orion. We propose a final epoch of observations divided into two separate, complementary observations: A repeat of the entire Orion molecular cloud survey to 1.) identify ejected stars from clusters, 2.) measure the bulk proper motions of groups and clusters of stars, 3.) constrain the rate of luminous, accretion driven outbursts from both protostars and pre-main sequence stars with disks and 4.) use proper motions of IR Herbig-Haro knots as a fossil record of previous accretion events. A high cadence variability survey of the L1641 cloud extending the YSOVAR variability survey of the Orion Nebula Cluster across the Orion A cloud with the goals of 1.) constraining the star formation history of Orion A, 2.) studying the evolution of mid-IR variability from the protostellar to pre-main sequence phase, 3.) searching for periodicities in (nearly) edge-on protostars and disks due to orbiting clumps and structures from orbiting planets, and 4.) assessing whether inner disk processes - as traced by variability - are affected by their birth environment. This program completes an unparalleled, > 12 year multi-epoch, mid-IR study of the nearest large molecular cloud complex with both a wide spatial coverage and a uniformity that will not be exceeded in the forseeable future. It will place unique constraints on the highly dynamic processes that control low mass star formation, serve as a pathfinder to molecular cloud surveys of WFIRST, and provide well characterized targets needed to study mass accretion and planet formation around young low mass stars with SOFIA and JWST.

  20. Application of diffusion theory to neutral atom transport in fusion plasmas

    SciTech Connect

    Hasan, M.Z.; Conn, R.W.; Pomraning, G.C.

    1986-05-01

    It is found that energy dependent diffusion theory provides excellent accuracy in the modelling of transport of neutral atoms in fusion plasmas. Two reasons in particular explain the good accuracy. First, while the plasma is optically thick for low energy neutrals, it is optically thin for high energy neutrals and diffusion theory with Marshak boundary conditions gives accurate results for an optically thin medium even for small values of 'c', the ratio of the scattering to the total cross section. Second, the effective value of 'c' at low energy becomes very close to one due to the down-scattering via collisions of high energy neutrals. The first reason is proven both computationally and theoretically by solving the transport equation in a power series in 'c' and the diffusion equation with 'general' Marshak boundary conditions. The second reason is established numerically by comparing the results from a one-dimensional, general geometry, multigroup diffusion theory code, written for this purpose, with the results obtained using the transport code ANISN.

  1. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    SciTech Connect

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  2. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  3. A theory of two-beam acceleration of charged particles in a plasma waveguide

    SciTech Connect

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

  4. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  5. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    SciTech Connect

    Purohit, Gunjan Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-05-15

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.

  6. Linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    SciTech Connect

    Lundin, J.; Brodin, G.

    2010-11-15

    We have considered linear kinetic theory, including the electron-spin properties in a magnetized plasma. The starting point is a mean-field Vlasov-like equation, derived from a fully quantum-mechanical treatment, where effects from the electron-spin precession and the magnetic dipole force are taken into account. The general conductivity tensor is derived, including both the free current contribution and the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.

  7. Theory of a laser-plasma method for detecting terahertz radiation

    SciTech Connect

    Frolov, A. A.; Borodin, A. V.; Esaulkov, M. N.; Kuritsyn, I. I.; Shkurinov, A. P.

    2012-06-15

    A theory is developed for calculating the spectrum and the shape of a terahertz wave packet from the temporal profile of the energy of the second harmonic of the laser field generated during nonlinear interaction of laser and terahertz pulses in an optical-breakdown plasma. The spectral and temporal characteristics of the second-harmonic envelope and a terahertz pulse are shown to coincide only for short laser pulses. For long laser pulses, the second-harmonic spectral line shifts to the red and its temporal profile is determined by the time integral of the electric field of terahertz radiation.

  8. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.

    PubMed

    Akbari-Moghanjoughi, M; Shukla, P K

    2012-12-01

    We present a generalized nonlinear theory for large-amplitude electrostatic (ES) ion shocks in collisional quantum plasmas composed of mildly coupled degenerate electron fluid of arbitrary degeneracy and nondegenerate strongly correlated ion fluid with arbitrary atomic number. For our purposes, we use the inertialess electron momentum equation including the electrostatic force, pressure gradient, and relevant quantum forces, as well as a generalized viscoelastic ion momentum (GVIM) equation for strongly correlated nondegenerate ions. The ion continuity equation, in the quasineutral approximation, then closes our nonlinear system of equations. When the electric field force is eliminated from the GVIM equation by using the inertialess electron momentum equation, we then obtain a GVIM and ion continuity equations, which exhibit nonlinear couplings between the ion number density and the ion fluid velocity. The pair of nonlinear equations is numerically solved to study the dynamics of arbitrarily-large-amplitude planar and nonplanar ES shocks arising from a balance between harmonic generation nonlinearities and the ion fluid viscosity for a wide range of plasma mass densities and ion atomic numbers that are relevant for the cores of giant planets (viz., Jupiter) and compact stars (viz., white dwarfs). Our numerical results reveal that the ES shock density profiles strongly depend on the plasma number density and composition (the atomic-number) parameters. Furthermore, ion density perturbations propagate with Mach numbers which significantly depend on the studied plasma fractional parameters. It is concluded that the dynamics of the ES shocks in the superdense degenerate plasma is quite different in the core of a white dwarf star from that in the lower density crust region. PMID:23368053

  9. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.

    PubMed

    Akbari-Moghanjoughi, M; Shukla, P K

    2012-12-01

    We present a generalized nonlinear theory for large-amplitude electrostatic (ES) ion shocks in collisional quantum plasmas composed of mildly coupled degenerate electron fluid of arbitrary degeneracy and nondegenerate strongly correlated ion fluid with arbitrary atomic number. For our purposes, we use the inertialess electron momentum equation including the electrostatic force, pressure gradient, and relevant quantum forces, as well as a generalized viscoelastic ion momentum (GVIM) equation for strongly correlated nondegenerate ions. The ion continuity equation, in the quasineutral approximation, then closes our nonlinear system of equations. When the electric field force is eliminated from the GVIM equation by using the inertialess electron momentum equation, we then obtain a GVIM and ion continuity equations, which exhibit nonlinear couplings between the ion number density and the ion fluid velocity. The pair of nonlinear equations is numerically solved to study the dynamics of arbitrarily-large-amplitude planar and nonplanar ES shocks arising from a balance between harmonic generation nonlinearities and the ion fluid viscosity for a wide range of plasma mass densities and ion atomic numbers that are relevant for the cores of giant planets (viz., Jupiter) and compact stars (viz., white dwarfs). Our numerical results reveal that the ES shock density profiles strongly depend on the plasma number density and composition (the atomic-number) parameters. Furthermore, ion density perturbations propagate with Mach numbers which significantly depend on the studied plasma fractional parameters. It is concluded that the dynamics of the ES shocks in the superdense degenerate plasma is quite different in the core of a white dwarf star from that in the lower density crust region.

  10. Theory of waves in pair-ion plasmas: Natural explanation of backward modes

    SciTech Connect

    Kono, M.; Vranjes, J.; Batool, N.

    2013-12-15

    Backward waves observed in the experiments by Oohara and Hatakeyama (Phys. Rev. Lett. 91, 205005 (2003)) are identified to be ion cyclotron harmonic waves inherent to the kinetic theory. The derived dispersion equation is based on exact solutions of the characteristic equations of the Vlasov equation in a bounded cylindrical coordinate system; it is different from its counterpart in unbounded plasmas, and it provides all the branches of the dispersion relations observed in the experiment. Positive and negative ions respond to a potential in the same time scale and cooperate to expose kinetic orbital behaviors to the macroscopic propagation characteristics. In addition, the experimental setting of the large Larmor radius makes higher harmonic ion cyclotron backward/forward waves observable. The large Larmor radius effects are naturally treated by a kinetic theory.

  11. Molecular hydrogen in the cosmic recombination epoch

    SciTech Connect

    Alizadeh, Esfandiar; Hirata, Christopher M.

    2011-10-15

    The advent of precise measurements of the CMB anisotropies has motivated correspondingly precise calculations of the cosmic recombination history. Cosmic recombination proceeds far out of equilibrium because of a ''bottleneck'' at the n=2 level of hydrogen: atoms can only reach the ground state via slow processes--two-photon decay or Lyman-{alpha} resonance escape. However, even a small primordial abundance of molecules could have a large effect on the interline opacity in the recombination epoch and lead to an additional route for hydrogen recombination. Therefore, this paper computes the abundance of the H{sub 2} molecule during the cosmic recombination epoch. Hydrogen molecules in the ground electronic levels X{sup 1}{Sigma}{sub g}{sup +} can either form from the excited H{sub 2} electronic levels B{sup 1}{Sigma}{sub u}{sup +} and C{sup 1}{Pi}{sub u} or through the charged particles H{sub 2}{sup +}, HeH{sup +}, and H{sup -}. We follow the transitions among all of these species, resolving the rotational and vibrational sublevels. Since the energies of the X{sup 1}{Sigma}{sub g}{sup +}-B{sup 1}{Sigma}{sub u}{sup +} (Lyman band) and X{sup 1}{Sigma}{sub g}{sup +}-C{sup 1}{Pi}{sub u} (Werner band) transitions are near the Lyman-{alpha} energy, the distortion of the CMB spectrum caused by escaped H Lyman-line photons accelerates both the formation and the destruction of H{sub 2} due to this channel relative to the thermal rates. This causes the populations of H{sub 2} molecules in X{sup 1}{Sigma}{sub g}{sup +} energy levels to deviate from their thermal equilibrium abundances. We find that the resulting H{sub 2} abundance is 10{sup -17} at z=1200 and 10{sup -13} at z=800, which is too small to have any significant influence on the recombination history.

  12. Theory of plasma contactors in ground-based experiments and low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.

    1990-01-01

    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.

  13. Theory of isolated, small-scale magnetic islands in a high temperature tokamak plasma

    SciTech Connect

    Connor, J.W.; Wilson, H.R.

    1995-12-01

    A theory for the existence of noninteracting small-scale, ``drift`` magnetic islands in a high temperature tokamak plasma is presented. This situation contrasts with that discussed by Rebut and Hugon [Plasma Phys. Controlled Fusion {bold 33}, 1085 (1991)] which involves a background ``sea`` of magnetic turbulence caused by island overlap. The islands are driven by the effect of finite ion Larmor radius on the particle drifts and they propagate with a velocity comparable to the diamagnetic velocity. In contrast with the work of Smolyakov [Plasma Phys. Controlled Fusion {bold 35}, 657 (1993)] collisions are assumed to be rare. Although the saturated island size is independent of the collision frequency in the model discussed here, collisions play a crucial role in determining the frequency of the magnetic islands. An estimate is made of the anomalous heat transport which results from the fluctuations in the electrostatic potential associated with these magnetic islands. The predicted thermal diffusivity has several, but not all, of the characteristics of the Rebut--Lallia--Watkins transport model. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Mean-field theory of the glass transition in the one-component classical plasma

    NASA Astrophysics Data System (ADS)

    Cardenas, M.; Tosi, M. P.

    2004-08-01

    We study the supercooled-fluid region and the transition to an amorphous glassy state in the one-component classical plasma, within the replica-symmetry-breaking scenario developed by Franz and Parisi. This approach implements the slowing down of jumps of the disordered system between the minima in a rugged free-energy landscape by examining its correlations with a quenched replica as a function of their coupling expressed through a suitable short-range attractive potential. We carry out these calculations within a mean-field theory for the structure of a quenched-annealed mixture, using both the hypernetted chain approximation and a refinement to include an account of the bridge function. In both formulations our theoretical results demonstrate the existence of a glassy state for the plasma and yield an estimate of the phase-transition line, which has the form T∝ Z2n1/3 where n is the particle number density, T the temperature and Z the valence, with a numerical coefficient which is about one eighth of that for equilibrium freezing. The consequences for various types of ionic fluids (simple molten salts, colloidal dispersions, and astrophysical plasmas) are illustrated.

  15. Parallax Results from Urat Epoch Data

    NASA Astrophysics Data System (ADS)

    Finch, Charlie T.; Zacharias, Norbert

    2016-06-01

    We present 1103 trigonometric parallaxes and proper motions from the United States Naval Observatory Robotic Astrometric Telescope (URAT) observations taken at the Naval Observatory Flagstaff Station (NOFS) over a three-year period from 2012 April to 2015 June covering the entire sky north of about -10^\\circ decl. We selected two samples: previously suspected nearby stars from known photometric distances and stars showing a large, significant parallax signature in URAT epoch data without any prior selection criteria. All systems presented in this paper have an observed parallax ≥40 mas with no previous published trigonometric parallax. The formal errors on these weighted parallax solutions are mostly between 4 and 10 mas. This sample gives a significant (of the order of 50%) increase to the number of known systems having a trigonometric parallax to be within 25 pc of the Sun (without applying Lutz-Kelker bias corrections). A few of these are found to be within 10 pc. Many of these new nearby stars display a total proper motion of less than 200 mas yr-1. URAT parallax results have been verified against Hipparcos and Yale data for stars in common. The publication of all signifigant parallax observations from URAT data is in preparation for CDS.

  16. Parallax Results from Urat Epoch Data

    NASA Astrophysics Data System (ADS)

    Finch, Charlie T.; Zacharias, Norbert

    2016-06-01

    We present 1103 trigonometric parallaxes and proper motions from the United States Naval Observatory Robotic Astrometric Telescope (URAT) observations taken at the Naval Observatory Flagstaff Station (NOFS) over a three-year period from 2012 April to 2015 June covering the entire sky north of about -10^\\circ decl. We selected two samples: previously suspected nearby stars from known photometric distances and stars showing a large, significant parallax signature in URAT epoch data without any prior selection criteria. All systems presented in this paper have an observed parallax ≥40 mas with no previous published trigonometric parallax. The formal errors on these weighted parallax solutions are mostly between 4 and 10 mas. This sample gives a significant (of the order of 50%) increase to the number of known systems having a trigonometric parallax to be within 25 pc of the Sun (without applying Lutz–Kelker bias corrections). A few of these are found to be within 10 pc. Many of these new nearby stars display a total proper motion of less than 200 mas yr‑1. URAT parallax results have been verified against Hipparcos and Yale data for stars in common. The publication of all signifigant parallax observations from URAT data is in preparation for CDS.

  17. Variational theory of average-atom and superconfigurations in quantum plasmas.

    PubMed

    Blenski, T; Cichocki, B

    2007-05-01

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed-all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0 = Z* ni occupying the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside. The first-order contribution to free energy per ion is the difference between the free energy of the system "central ion+infinite plasma" and the free energy of the system "infinite plasma." An important part of the approach is an "ionization model" (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure. The correct IM in the TF case

  18. Variational theory of average-atom and superconfigurations in quantum plasmas.

    PubMed

    Blenski, T; Cichocki, B

    2007-05-01

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed-all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0 = Z* ni occupying the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside. The first-order contribution to free energy per ion is the difference between the free energy of the system "central ion+infinite plasma" and the free energy of the system "infinite plasma." An important part of the approach is an "ionization model" (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure. The correct IM in the TF case

  19. Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas

    SciTech Connect

    Kim, Kihong; Lee, Dong-Hun

    2005-06-15

    This is the first of a series of papers devoted to the development of the invariant imbedding theory of mode conversion in inhomogeneous plasmas. A new version of the invariant imbedding theory of wave propagation in inhomogeneous media allows one to solve a wide variety of coupled wave equations exactly and efficiently, even in the cases where the material parameters change discontinuously at the boundaries and inside the inhomogeneous medium. In this paper, the invariant imbedding method is applied to the mode conversion of the simplest kind, that is, the conversion of p-polarized electromagnetic waves into electrostatic modes in cold, unmagnetized plasmas. The mode conversion coefficient and the field distribution are calculated exactly for linear and parabolic plasma density profiles and compared quantitatively with previous results.

  20. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    SciTech Connect

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the {rvec B} field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field {delta}B{sub {parallel}} and electrostatic potential {Phi} along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric {delta}B{sub {parallel}}, and {Phi} structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta ({beta}{sub {parallel}} {ge} O(1)) and pressure anisotropy (P{sub {perpendicular}}/P{sub {parallel}} > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values.

  1. Refinement of the semiclassical theory of the Stark broadening of hydrogen spectral lines in plasmas

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-02-01

    Stark broadening (SB) of hydrogen, deuterium, and tritium lines (H-lines) is an important diagnostic tool for many applications. The most "user-friendly" are semiclassical theories of the SB of H-lines: their results can be expressed analytically in a relatively simple form for any H-line. The simplest semiclassical theory is the so-called Conventional Theory (CT), which is frequently referred to as Griem's theory. While by now there are several significantly more advanced semiclassical "non-CT" theories of the SB, Griem's CT is still used by a number of groups performing laboratory experiments or astrophysical observations for the comparison with their experimental or observational results. In the present study we engage unexplored capabilities of the CT for creating analytically a more accurate CT. First, we take into account that the perturbing electrons actually do not move as free particles: rather they move in a dipole potential V=·r/r3, where r is the radius-vector of the perturbing electrons and is the mean value of the radius vector of the atomic electron. Second, Griem's definition of the so-called Weisskopf radius was not quite accurate. Third, in his book of year 1974, Griem suggested changing so-called strong collision constant without changing the Weisskopf radius, while in reality the choices of the Weisskopf radius and of the strong collision constant are interrelated. We show that the above refinements of the CT increase the electron broadening - especially for warm dense plasmas emitting H-lines. By comparison with benchmark experiments concerning the Hα line we demonstrate that the effect of the ion dynamics (neglected in any CT) might be slightly smaller than previously thought, while the effect of the acceleration of perturbing electrons by the ion field in the vicinity of the radiating atom (neglected in any CT) might be greater than previously thought.

  2. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Infrared VLT Observations Identify Hidden Galaxies in the Early Universe Working with the ESO Very Large Telescope (VLT) at the Paranal Observatory , a group of European astronomers [1] has just obtained one of the deepest looks into the distant Universe ever made by an optical telescope. These observations were carried out in the near-infrared spectral region and are part of an attempt to locate very distant galaxies that have so far escaped detection in the visual bands. The first results are very promising and some concentrations of galaxies at very large distances were uncovered. Some early galaxies may be in hiding Current theories hypothesize that more than 80% of all stars ever formed were assembled in galaxies during the latter half of the elapsed lifetime of the Universe, i.e., during the past 7-8 billion years. However, doubts have arisen about these ideas. There are now observational indications that a significant number of those galaxies that formed during the first 20% of the age of the Universe, i.e. within about 3 billion years after the Big Bang, may not be visible to optical telescopes. In some cases, we do not see them, because their light is obscured by dust. Other distant galaxies may escape detection by optical telescopes because star formation in them has ceased and their light is mainly emitted in the red and infrared spectral bands. This is because, while very young galaxies mostly contain hot and blue stars, older galaxies have substantial numbers of cool and red stars. They are then dominated by an older, "evolved" stellar population that is cooler and redder. The large cosmic velocities of these galaxies further enhance this effect by causing their light to be "redshifted" towards longer wavelengths, i.e. into the near-infrared spectral region. Observations in the infrared needed Within the present programme, long exposures in near-infrared wavebands were made with the Infrared Spectrometer And Array Camera (ISAAC) , mounted on ANTU , the

  3. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain

  4. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1–6 s versus 4–8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of

  5. New Insight into the Cosmic Renaissance Epoch

    NASA Astrophysics Data System (ADS)

    2003-08-01

    VLT Discovers a Group of Early Inhabitants and Find Signs of Many More [1] Summary Using the ESO Very Large Telescope (VLT) , two astronomers from Germany and the UK [2] have discovered some of the most distant galaxies ever seen . They are located about 12,600 million light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to traverse this huge distance. We therefore observe those galaxies as they were at a time when the Universe was very young, less than about 10% of its present age . At this time, the Universe was emerging from a long period known as the "Dark Ages" , entering the luminous "Cosmic Renaissance" epoch. Unlike previous studies which resulted in the discovery of a few, widely dispersed galaxies at this early epoch, the present study found at least six remote citizens within a small sky area, less than five per cent the size of the full moon! This allowed understanding the evolution of these galaxies and how they affect the state of the Universe in its youth. In particular, the astronomers conclude on the basis of their unique data that there were considerably fewer luminous galaxies in the Universe at this early stage than 500 million years later. There must therefore be many less luminous galaxies in the region of space that they studied, too faint to be detected in this study. It must be those still unidentified galaxies that emit the majority of the energetic photons needed to ionise the hydrogen in the Universe at that particularly epoch. PR Photo 25a/03 : Colour-composite of the sky field with the distant galaxies. PR Photo 25b/03 : Close-Up images of some of the most distant galaxies known in the Universe. PR Photo 25c/03 : Spectra of these galaxies. From the Big Bang to the Cosmic Renaissance Nowadays, the Universe is pervaded by energetic ultraviolet radiation, produced by quasars and hot stars. The short-wavelength photons liberate electrons from the hydrogen atoms that make up the

  6. Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab

    NASA Astrophysics Data System (ADS)

    Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.

    2010-10-01

    The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth δa when δa≪L, in agreement with previous authors. Furthermore, for δa≫L, the heating is shown to decay with 1/δa3. The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.

  7. Hamiltonian theory of the ion cyclotron minority heating dynamics in tokamak plasmas

    SciTech Connect

    Becoulet, A.; Gambier, D.J.; Samain, A. )

    1991-01-01

    The question of heating a tokamak plasma by means of electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is considered in the perspective of large rf powers and in the low collisionality regime. In such a case, the quasilinear theory (QLT) is validated by the Hamiltonian dynamics of the wave--particle interaction which exceeds the threshold of the intrinsic stochasticity. The Hamiltonian dynamics is represented by the evolution of a set of three canonical action angle variables well adapted to the tokamak magnetic configuration. This approach allows derivation of the rf diffusion coefficient with very few assumptions. The distribution function of the resonant ions is written as a Fokker--Planck equation but the emphasis is put on the QL diffusion instead of on the usual diffusion induced by collisions. The Fokker--Planck equation is then given a variational form from which a solution is derived in the form of a semianalytical trial function of three parameters: the percentage of resonant particles contained in the tail, an isotropic width {Delta}{ital T}, and an anisotropic width {Delta}{ital P}. This solution is successfully tested against real experimental observations. It is shown that in the case of the JET tokamak (Plasma Phys. Controlled Fusion {bold 30}, 1467 (1988)) the distribution function is influenced by adiabatic barriers which in turn limit the Hamiltonian stochasticity domain within energy values typically in the MeV range. Consequently and for a given ICRF power, the tail energy excursion is lower and its concentration higher than that from a bounce-averaged prediction. This may actually be an advantage for machines like JET (Plasma Phys. Controlled Fusion {bold 30}, 1467 (1988)) considering the energy range required to simulate the {alpha}-particle behavior in a relevant fusion reactor.

  8. Water Formation During the Epoch of First Metal Enrichment

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel; Loeb, Abraham

    2015-05-01

    We demonstrate that high abundances of water vapor could have existed in extremely low metallicity (10-3 solar) partially shielded gas during the epoch of first metal enrichment of the interstellar medium of galaxies at high redshifts.

  9. Sub-Daily Earth Rotation During Epoch '92

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Ibanez-Meier, R.; Dickey, J. O.; Lichten, S. M.; Herring, T. A.

    1994-01-01

    Earth rotation data were obtained with GPS during the EPOCH '92 campaign in the summer of 1992. About 10 days of data were acquired from 25 globally distributed stations and a constellation of 17 GPS satellites.

  10. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    SciTech Connect

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-05-09

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow.

  11. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    NASA Astrophysics Data System (ADS)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-05-01

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow.

  12. Theory of Generation of Alfvenic Non-Propagating Electromagnetic Plasma Structures and Acceleration of Charged Particles in Cosmic Plasmas

    NASA Astrophysics Data System (ADS)

    Song, Yan; Lysak, Robert

    2015-04-01

    In Earth's auroral acceleration regions, the nonlinear interaction of incident and reflected Alfven wave packets can collectively create non-propagating electromagnetic plasma structures, such as the Transverse Alfvenic Double Layer (TA-DL) and Charge Hole (TA-CH). These structures, such as TA-DL, encompass localized strong electrostatic electric fields, nested in low density cavities and surrounded by a local dynamo. Such structures constitute powerful high energy particle accelerators causing auroral particle acceleration and creating both Alfvenic and quasi-static discrete auroras. Similar electromagnetic plasma structures should also be generated by Alfvenic interaction in other inhomogenous cosmic plasma regions, and would constitute effective high energy particle accelerators.

  13. BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH

    SciTech Connect

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-20

    We have obtained photometry and spectroscopy of 433 z ≤ 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω {sub m} = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the L{sub m} -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, L{sub m} , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter ''metric plane'' relation using α and σ together gives the best prediction of L{sub m} , with 0.21 mag residuals. The distribution of projected spatial offsets, r{sub x} of BCGs from the X-ray-defined cluster center is a steep γ = –2.33 power law over 1 < r{sub x} < 10{sup 3} kpc. The median offset is ∼10 kpc, but ∼15% of the BCGs have r{sub x} > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV {sub 1}|/σ {sub c} follows an exponential distribution with scale length 0.39 ± 0.03. Both L{sub m} and α increase with σ {sub c}. The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L{sub m} . Likewise, residuals from the metric plane

  14. [Demographic transition at the epoch of industrialization].

    PubMed

    Billig, W

    1984-01-01

    The relationship between the early stages of industrialization and population factors in the United Kingdom, France, and the United States is analyzed from a Marxist perspective. The author attempts to associate successive phases of industrialization with phases of the demographic transition. He concludes that no comprehensive general theory concerning this relationship has been established. (summary in ENG, RUS) PMID:12266382

  15. Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Zelenyi, L. M.; Malova, H. V.; Sharma, A. S.

    2000-06-01

    A self-consistent theory of thin current sheets, where the magnetic field line tension is balanced by the ion inertia rather than by the pressure gradient, is presented. Assuming that ions are the main current carriers and their dynamics is quasi-adiabatic, the Maxwell-Vlasov equations are reduced to the nonlocal analogue of the Grad-Shafranov equation using a new set of integrals of motion, namely, the particle energy and the sheet invariant of the quasi-adiabatic motion. It is shown that for a drifting Maxwellian distribution of ions outside the sheet the equilibrium equation can be reduced in the limits of strong and weak anisotropy to universal equations that determine families of equilibria with similar profiles of the magnetic field. In the region Bn/B0>1) the self-consistent current sheet equilibrium may also exist with no indications of the catastrophe reported earlier by Burkhart et al. [1992a]. On the contrary, it is found that in this limit the magnetic field profiles again become similar to each other with the characteristic thickness ~ρ0. The profiles of plasma and current densities as well as the components of the pressure tensor are calculated for arbitrary ion anisotropy outside the sheet. It is shown that the thin current sheet for the equilibrium considered here is usually embedded into a much thicker plasma sheet. Moreover, in the case of weak anisotropy the perturbation of the plasma density inside the sheet is shown to be proportional to the parameter vD/vT, and as a result the electrostatic effects should be small, consistent with observations. This model of the thin current sheet

  16. Transport coefficients of Quark-Gluon Plasma in a Kinetic Theory approach

    NASA Astrophysics Data System (ADS)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-07-01

    One of the main results of heavy ions collision at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s = 1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green- Kubo relations give us an exact expression to compute these coefficients. We computed shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigated different cases of particles, for one component system (gluon matter), interacting via isotropic or anisotropic cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. Another transport coefficient of interest is the electric conductivity σel which determines the response of QGP to the electromagnetic fields present in the early stage of the collision. We study the σel dependence on microscopic details of interaction and we find also in this case that Relaxation Time Approximation is a good approximation only for isotropic cross-section.

  17. Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab

    SciTech Connect

    Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.

    2010-10-15

    The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth {delta}{sub a} when {delta}{sub a}<>L, the heating is shown to decay with 1/{delta}{sub a}{sup 3}. The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.

  18. Modified gravity and the radiation dominated epoch

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Sculthorpe, Gregory I.

    2013-02-01

    In this paper we consider scalar-tensor theories, allowing for both conformal and disformal couplings to a fluid with a general equation of state. We derive the effective coupling for both background cosmology and for perturbations in that fluid. As an application we consider the scalar degree of freedom to be coupled to baryons and study the dynamics of the tightly coupled photon-baryon fluid in the early Universe. We derive an expression for the effective speed of sound, which differs from its value in General Relativity. We apply our findings to the μ-distortion of the cosmic microwave background radiation, which depends on the effective sound-speed of the photon-baryon fluid, and show that the predictions differ from General Relativity. Thus, the μ-distortion provides further information about gravity in the very early Universe well before decoupling.

  19. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    PubMed

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  20. Theory and models of material erosion and lifetime during plasma instabilities in a tokamak environment.

    SciTech Connect

    Hassanein, A.; Konkashbaev, I.

    1999-11-08

    Surface and structural damage to plasma-facing components (PFCs) due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface damage consists of vaporization, spallation, and liquid splatter of metallic materials. Structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. To evaluate the lifetimes of plasma-facing materials and nearby components and to predict the various forms of damage that they experience, comprehensive models (contained in the HEIGHTS computer simulation package) are developed, integrated self-consistently, and enhanced. Splashing mechanisms such as bubble boiling and various liquid magnetohydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials are being examined. The design requirements and implications of plasma-facing and nearby components are discussed, along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  1. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    SciTech Connect

    Almeida, P. G. C.; Benilov, M. S.

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  2. Declinations in the Almagest: accuracy, epoch, and observers

    NASA Astrophysics Data System (ADS)

    Brandt, John C.; Zimmer, Peter; Jones, Patricia B.

    2014-11-01

    Almagest declinations attributed to Timocharis, Aristyllos, Hipparchus, and Ptolemy are investigated through comparisons of the reported declinations with the declinations computed from modern positions translated to the earlier epochs. Consistent results indicate an observational accuracy of ≈ 0.1° and epochs of: Timocharis, c. 298 BC; Aristyllos, c. 256 BC, and Hipparchus, c. 128 BC.The ≈ 42-year difference between Aristyllos and Timocharis is confirmed to be statistically significant. The declinations attributed to Ptolemy were likely two distinct groups—observations taken c. AD 57 and observations taken c. AD 128. The later observations could have been taken by Ptolemy himself.

  3. The Anthropocene: a new epoch of geological time?

    PubMed

    Zalasiewicz, Jan; Williams, Mark; Haywood, Alan; Ellis, Michael

    2011-03-13

    Anthropogenic changes to the Earth's climate, land, oceans and biosphere are now so great and so rapid that the concept of a new geological epoch defined by the action of humans, the Anthropocene, is widely and seriously debated. Questions of the scale, magnitude and significance of this environmental change, particularly in the context of the Earth's geological history, provide the basis for this Theme Issue. The Anthropocene, on current evidence, seems to show global change consistent with the suggestion that an epoch-scale boundary has been crossed within the last two centuries.

  4. Deformed matter bounce with dark energy epoch

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.

  5. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  6. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials

    NASA Astrophysics Data System (ADS)

    Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf

    2013-03-01

    Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather

  7. Antenna-plasma coupling theory for ICRF heating of large tokamaks

    SciTech Connect

    Ram, A.; Bers, A.

    1982-03-01

    The coupling characteristics of antenna structure are studied by analyzing a model where a thin current sheet is placed between a fully conducting wall and a sheet of anisotropic conductivity representing the screen. The inhomogeneous plasma in the shadow of the limiter is assumed to extend from the screen onwards away from the antenna. The excitation of the fields inside the plasma are found by analyzing the radiation properties of this current sheet antenna. We assume that the current distribution of the antenna is given and that the fields excited inside the plasma are absorbed in a single pass. In all experiments to-date the cross-sectional plasmas are relatively small so that the rf conductor is a half-loop around the plasma in the poloidal direction. However, for reactor size plasmas this cannot be done and the antenna dimensions will be small compared to the plasma cross-sections. We, thus, assume an antenna of finite poloidal and toroidal extent with dimensions small compared to the plasma minor radius. We further approximate the coupling geometry by a slab model. The x-axis is taken to be along the plasma inhomogeneity, the y-axis along the poloidal direction and the x-axis along the toroidal magnetic field.

  8. The Utility of Shorter Epochs in Direct Motion Monitoring

    ERIC Educational Resources Information Center

    Dorsey, Karen; Herrin, Jeph; Krumholz, Harlan; Irwin, Melinda

    2009-01-01

    This cross-sectional study using direct motion monitoring evaluated whether short epochs increased estimates of moderate or vigorous physical activity (MPA or VPA) and enhanced differences in daily VPA comparing overweight (OW) and nonoverweight (NOW) children. Seventy-seven children (ages 8-10 years) wore accelerometers for 7 days. We calculated…

  9. Sub-Daily Polar Motion During Epoch '92 with GPS

    NASA Technical Reports Server (NTRS)

    Ibanez-Meier, R.; Freedman, A. P.; Lichten, S. M.; Lindqwister, U. J.; Gross, R. S.; Herring, T. A.

    1994-01-01

    Data from a worldwide Global Positioning System (GPS) tracking network spanning six days during the EPOCH '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes. The resulting polar motion time series is compared with estimates derived from very long baseline interferometry (VLBI) observations.

  10. Plasma physics. Proceedings. 7th Latin American Workshop on Plasma Physics (VII LAWPP 97), Caracas (Venezuela), 20 - 31 Jan 1997.

    NASA Astrophysics Data System (ADS)

    Martín, P.; Puerta, J.

    The following topics were dealt with: general plasma theory, plasma confinement, shock waves and instabilities in plasma, plasma spectroscopy, astrophysical and space plasmas, pulse power experiments, plasma processing.

  11. 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas (Varenna, Italy, 27-31 August 2012)

    NASA Astrophysics Data System (ADS)

    Gabet, Xavier; Sauter, Olivier

    2013-07-01

    The 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas was very fruitful. A broad variety of topics was addressed, covering turbulence, magnetohydrodynamics (MHD), edge physics, and radio frequency (RF) wave heating. Moreover, the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, some of them triggered by the construction of ITER and JT-60SA. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may refer to, for instance, the choice of plasma facing components or the design of control systems. Another characteristic of these workshops is the interplay between various domains of plasma physics. For instance, MHD modes are currently investigated with gyrokinetic codes, kinetic effects are included in MHD stability analysis more and more, and turbulence is now accounted for in wave propagation problems. This is proof of cross-fertilization and is certainly a healthy sign for our community. Finally, introducing some novelty in the programme does not prevent from us respecting old traditions. As usual, many presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne Workshop, which was respected again this year. The quality and size of the scientific output from this workshop is shown in this special issue of Plasma Physics and Controlled Fusion; a further 26 papers have already appeared in Journal of Physics: Conference Series in December 2012. We hope the readers will enjoy this special issue, and find therein knowledge and inspiration.

  12. The big contradiction between the perturbation theory and the chaotic state. A detailed mathematical analysis indicates when the plasma is stable or unstable

    NASA Astrophysics Data System (ADS)

    Xaplanteris, C. L.; Xaplanteris, S. C.

    2016-05-01

    In the present manuscript enough observations and interpretations of three issues of Plasma Physics are presented. The first issue is linked to the common experimental confirmation of plasma waves which appear to be repeated in a standard way while there are also cases where plasma waves change to an unstable state or even to chaotic state. The second issue is associated with a mathematical analysis of the movement of a charged particle using the perturbation theory; which could be used as a guide for new researchers on similar issues. Finally, the suitability and applicability of the perturbation theory or the chaotic theory is presented. Although this study could be conducted on many plasma phenomena (e.g. plasma diffusion) or plasma quantities (e.g. plasma conductivity), here it was decided this study to be conducted on plasma waves and particularly on drift waves. This was because of the significance of waves on the plasmatic state and especially their negative impact on the thermonuclear fusion, but also due to the long-time experience of the plasma laboratory of Demokritos on drift waves.

  13. Application of relativistic coupled cluster linear response theory to helium-like ions embedded in plasma environment

    NASA Astrophysics Data System (ADS)

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Sinha Mahapatra, Uttam; Mukherjee, P. K.

    2011-08-01

    Ionization potential and low lying 1S0\\longrightarrow1P1 excitation energies (EE) of highly stripped He-like ions C4 +, Al11 +, and Ar16 + embedded in plasma environment are calculated for the first time using the state-of-the-art coupled cluster (CC)-based linear response theory (LRT) with the four-component relativistic spinors and compared with available experimental data from laser plasma experiments. Debye's screening model is used to estimate the effect of plasma on the ions within the relativistic and non-relativistic framework. The transition energies computed at the CCLRT level using the Debye model agree well with experiment and with other available theoretical data. To our knowledge, no prior CCLRT calculations within the Dirac-Fock framework are available for these systems. Our calculated transition energies for helium-like ions are in accord with experiment; we trust that our predicted EE might be acceptably good for the systems considered. Our preliminary result indicates that CCLRT with the four-component relativistic spinors appears to be a valuable tool for studying the atomic systems where accurate treatments of correlation effects play a crucial role in shaping the spectral lines of ions subjected to plasma environment.

  14. Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. I. Electron theory

    SciTech Connect

    Ramos, J. J.

    2010-08-15

    A closed theoretical model to describe slow, macroscopic plasma processes in a fusion-relevant collisionality regime is set forward. This formulation is a hybrid one, with fluid conservation equations for particle number, momentum and energy, and drift-kinetic closures. Intended for realistic application to the core of a high-temperature tokamak plasma, the proposed approach is unconventional in that the ion collisionality is ordered lower than in the ion banana regime of neoclassical theory. The present first part of a two-article series concerns the electron system, which is still equivalent to one based on neoclassical electron banana orderings. This system is derived such that it ensures the precise compatibility among the complementary fluid and drift-kinetic equations, and the rigorous treatment of the electric field and the Fokker-Planck-Landau collision operators. As an illustrative application, the special limit of an axisymmetric equilibrium is worked out in detail.

  15. Stress and coping in HIV-positive former plasma/blood donors in China: a test of cognitive appraisal theory.

    PubMed

    Meade, Christina S; Wang, Jianping; Lin, Xiuyun; Wu, Hao; Poppen, Paul J

    2010-04-01

    Throughout the 1990s, many villagers in rural China were infected with HIV through commercial plasma/blood donation. These former plasma/blood donors (FPDs) experienced many HIV-related stressors. This study tested a cognitive appraisal model of stress and coping in a sample of HIV-positive adult FPDs. Participants (N = 207) from multiple villages completed a battery of questionnaires assessing HIV-related stress, HIV symptoms, cognitive appraisal, coping behaviors, and psychological distress. Participants reported high levels of HIV-related stress, depression, and anxiety. In a structural equation model, greater HIV-related stress, HIV symptoms, and threat appraisal were directly associated with psychological distress. HIV-related stress was also indirectly associated with psychological distress through threat appraisal. In a second model, coping was found to mediate the relationship between challenge appraisal and psychological distress. Results support the utility of cognitive appraisal theory. Stress management interventions targeting HIV-positive FPDs in China are indicated.

  16. Modified theory of secondary electron emission from spherical particles and its effect on dust charging in complex plasma

    SciTech Connect

    Misra, Shikha; Mishra, S. K.; Sodha, M. S.

    2013-01-15

    The authors have modified Chow's theory of secondary electron emission (SEE) to take account of the fact that the path length of a primary electron in a spherical particle varies between zero to the diameter or x{sub m} the penetration depth depending on the distance of the path from the centre of the particle. Further by including this modified expression for SEE efficiency, the charging kinetics of spherical grains in a Maxwellian plasma has been developed; it is based on charge balance over dust particles and number balance of electrons and ionic species. It is seen that this effect is more pronounced for smaller particles and higher plasma temperatures. Desirable experimental work has also been discussed.

  17. Electron-ion energy partition when a charged particle slows in a plasma: theory.

    PubMed

    Brown, Lowell S; Preston, Dean L; Singleton, Robert L

    2012-07-01

    The preceding paper [Brown, Preston, and Singleton Jr., Phys. Rev. E 86, 016406 (2012)] presented precise results for the partition of the initial energy E(0) of a fast particle into the ions and electrons--E(I)/E(0) and E(e)/E(0)--when the fast particle slows in a plasma whose ion and electron temperatures may differ. As emphasized in that paper, this is an important problem because nuclear fusion reactions, such as those that occur in an inertial confinement fusion capsule, involve ion temperatures that run away from the electron temperatures. As also noted in the preceding paper, a precise evaluation entails the use of a well-defined Fokker-Planck equation for the phase-space evolution of initially fast projectile particles. When the plasma has differing ion and electron temperatures, the projectiles must slow into a "schizophrenic" final ensemble of particles that has neither the electron nor the ion temperature. This is not a simple Maxwell-Boltzmann distribution since the electrons are not in thermal equilibrium with the ions. Thus, detailed calculations are required for the solution of the problem. These we provide here for a weakly to moderately coupled plasma. The Fokker-Planck equation holds to first subleading order in the dimensionless plasma coupling constant, which translates to computing to order n ln n (leading) and n (subleading) in the plasma density n. The energy partitions for a background plasma in thermal equilibrium have been previously computed, but the order n terms have not been calculated, only estimated. The "schizophrenic" final ensemble of slowed particles gives a new mechanism to bring the electron and ion temperatures together. The rate at which this new mechanism brings the electrons and ions in the plasma into thermal equilibrium will be computed. PMID:23005550

  18. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    PubMed

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  19. On zero frequency magnetic fluctuations in plasmas

    SciTech Connect

    Tajima, T.; Cable, S. . Inst. for Fusion Studies); Kulsrud, R.M. . Dept. of Astrophysical Sciences)

    1992-01-01

    A plasma sustains fluctuations of electromagnetic fields and particle density even in a thermal equilibrium and such fluctuations have a large zero frequency peak. The level of fluctuations in the plasma for a given wavelength and frequency of electromagnetic fields is calculated through the fluctuation-dissipation theorem. The frequency spectrum shows that the energy contained in this peak is complementary to the energy lost'' by the plasma cutoff effect. The level of the zero (or nearly zero) frequency magnetic is computed as {l angle}B{sup 2}{r angle}{sup 0}/ 8{pi} = 1/2{pi}{sup 3}T({omega}{sub p}/c){sup 3}, where T and {omega}{sub p} are the temperature and plasma frequency. The relation between the nonradiative and radiative fluctuations is elucidated. Both a simple collision model and a kinetic theoretic treatment are presented with essentially the same results. The size of the fluctuations is {lambda} {approximately} (c/{omega}{sub p})({eta}/{omega}){sup {1/2}}, where {eta} and {omega} are the collision frequency and the (nearly zero) frequency of magnetic fields oscillations. Perhaps the most dramatic application of the present theory, however, is to the cosmological plasma of early epoch. Implications of these magnetic fields in the early Universe are discussed. Quantum mechanical calculations are also carried out for degenerate plasmas.

  20. On zero frequency magnetic fluctuations in plasmas

    SciTech Connect

    Tajima, T.; Cable, S.; Kulsrud, R.M.

    1992-01-01

    A plasma sustains fluctuations of electromagnetic fields and particle density even in a thermal equilibrium and such fluctuations have a large zero frequency peak. The level of fluctuations in the plasma for a given wavelength and frequency of electromagnetic fields is calculated through the fluctuation-dissipation theorem. The frequency spectrum shows that the energy contained in this peak is complementary to the energy ``lost`` by the plasma cutoff effect. The level of the zero (or nearly zero) frequency magnetic is computed as {l_angle}B{sup 2}{r_angle}{sup 0}/ 8{pi} = 1/2{pi}{sup 3}T({omega}{sub p}/c){sup 3}, where T and {omega}{sub p} are the temperature and plasma frequency. The relation between the nonradiative and radiative fluctuations is elucidated. Both a simple collision model and a kinetic theoretic treatment are presented with essentially the same results. The size of the fluctuations is {lambda} {approximately} (c/{omega}{sub p})({eta}/{omega}){sup {1/2}}, where {eta} and {omega} are the collision frequency and the (nearly zero) frequency of magnetic fields oscillations. Perhaps the most dramatic application of the present theory, however, is to the cosmological plasma of early epoch. Implications of these magnetic fields in the early Universe are discussed. Quantum mechanical calculations are also carried out for degenerate plasmas.

  1. Kinetic theory of current and density drift instabilities with weak charged-neutral collisions. [in space plasmas

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1984-01-01

    This paper describes the linear kinetic theory of electrostatic instabilities driven by a density gradient drift and a magnetic-field-aligned current in a plasma with weak charged neutral collisions. The configuration is that of a uniform magnetic field B, a weak, uniform density gradient in the x direction and a weak, uniform electric field in the z direction. Collisions are represented by the BGK model. The transition from the (kinetic) universal density drift instability to the (fluidlike) current convective instability is studied in detail, and the short wavelength properties of the latter mode are investigated.

  2. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  3. Phase-space description of plasma waves. Part 1. Linear theory

    NASA Astrophysics Data System (ADS)

    Biro, T.; Rönnmark, K.

    1992-06-01

    We develop an (r, k) phase-space description of waves in plasmas by introducing Gaussian window functions to separate short-scale oscillations from long-scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation in an inhomogeneous and time-varying background plasma, we first discuss the proper form of the current response function. In analogy with the particle distribution function f(v, r, t), we introduce a wave density N(k, r, t) on phase space. This function is proved to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible.

  4. Electromagnetic fluctuations in magnetized plasmas II: Extension of the theory for parallel wave vectors

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Ganz, A.; Kolberg, U.; Yoon, P. H.

    2015-10-01

    Starting from the recently derived general expressions for the electromagnetic fluctuation spectra (electric and magnetic field) from uncorrelated plasma particles in plasmas with an uniform magnetic field, the case of strictly parallel ( k ⊥ = 0 ) oriented wave vectors with the respect to the uniform magnetic field direction is investigated. To derive fluctuation spectra valid in the entire complex frequency plane, the relevant dispersion functions and form factors are analytically continued to negative values of the imaginary part of the frequency for arbitrary gyrotropic plasma particle distribution functions. The generalized fluctuation-dissipation theorems for non-collective fluctuations in isotropic equal-temperature thermal distribution functions for general complex values of the frequency of the fluctuations with parallel wave vectors are derived.

  5. Theory and observation of a dynamically evolving negative ion plasma. [in F region

    NASA Technical Reports Server (NTRS)

    Mendillo, M.; Forbes, J.

    1982-01-01

    The study described here examines the full range of negative-ion chemistry in the upper ionosphere by using current reaction rate data to investigate the many chemical paths SF6-type injections might take in an F region environment. Special attention is given to the conditions required to create heavy negative ions that persist long enough to affect the dynamical properties of the F region. The ambipolar diffusion characteristics of a three-component plasma are described, and estimates are given of the incoherent scatter spectra obtained from such a plasma. Model calculations using a first-order chemical code are defined and tested in order to investigate the actual types of negative-ion plasma capable of being created under nighttime conditions.

  6. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality

    SciTech Connect

    Krommes, J.A.

    2000-01-18

    Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified.

  7. Theory of coherent transition radiation generated at a plasma-vacuum interface

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  8. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  9. Theory of a Stationary Current-Free Double Layer in a Collisionless Plasma

    SciTech Connect

    Ahedo, Eduardo; Martinez Sanchez, Manuel

    2009-09-25

    Current-free double layers can develop in a collisionless, inertia-controlled plasma with two electron populations, expanding in a convergent-divergent nozzle. The double layer characteristics depend on whether they develop at the nozzle divergent side, convergent side, or throat. The divergent-geometry double layer describes faithfully the Hairapetian-Stenzel experiment [Phys. Rev. Lett. 65, 175 (1990)], whereas the two other types correspond with those studied in self-similar expansions and wall-collection models of similar plasmas.

  10. Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas

    SciTech Connect

    Hussain, Azhar; Stefan, Martin; Brodin, Gert

    2014-03-15

    We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.

  11. Linear theory of electron cyclotron instability of electromagnetic waves in a magnetoactive plasma waveguide

    SciTech Connect

    Zaginaylov, G. I.; Shcherbinin, V. I.; Schuenemann, K.

    2007-08-15

    The linear stage of electron cyclotron instability of quasi-TE modes in a waveguide filled with a magnetoactive plasma is studied using a kinetic approach. The dispersion relation of the instability is derived analytically. It is shown that the presence of the plasma can reduce both the linear instability growth rate and the instability region; in this case, the maximum of the growth rate is displaced toward lower frequencies. The results obtained are compared with the available experimental observations. They can be useful for optimizing the operating regimes of high-power continuous-wave gyrotrons.

  12. Electrodynamics of the Plasma Environment Induced around Spacecraft in Low Earth Orbit: Three-Dimensional Theory and Numerical Modeling.

    NASA Astrophysics Data System (ADS)

    Gatsonis, Nikolaos Achilleas

    A study is presented of the electrodynamic interactions within the plasma environment induced around spacecraft in Low Earth Orbit. A fully three-dimensional theory and a computational model is developed for an artificial plasma cloud created by spacecraft with the potential of releasing neutrals and/or plasma into the ambient ionosphere. A fluid model for the plasma transport is derived. The forces included in the momentum balance are due to electric fields, pressure, gravity, drag due to collisions and perturbative inertia terms. The Flux Corrected Transport (FCT) scheme is used for the numerical solution of the hyperbolic continuity equations. This approach limits the artificial dissipation or dispersion arising in the numerical solution. The 3D -FCT algorithm, and the stability characteristics of the high and low order schemes used in the FCT are discussed. The equation for the electrostatic potential is a three-dimensional nonself-adjoint elliptic equation with highly dissimilar coefficients. The numerical solution of the resulting large, sparse, asymmetric system of equations is discussed. Initial time numerical simulations are performed. A water-bag plasma cloud model is used to demonstrate the current coupling process. For neutral densities higher than the ambient the plasma cloud develops a transverse drift of the order of the orbital velocity. Simulations of typical spacecraft operations are performed and the created water plasma cloud is studied. It is shown that the flow of neutrals is in the free molecular regime. The effects of altitude of the release, orientation of the thrust vector with regard to the magnetic field, and latitude are considered. It is shown that a large water ion cloud is formed with densities of the order of the ambient oxygen ions. The ultraviolet radiation emission is shown to modify the signature of the spacecraft. The model predicts qualitatively most of the observations. Quantitatively predictions are within the measured

  13. Adiabatic theory of the linear hose instability of a relativistic electron beam propagating in resistive plasma

    SciTech Connect

    O'Brien, K.J.

    1985-01-01

    It is demonstrated that the cold Vlasov beam, the circle-limit of the warm Vlasov beam, the spread-mass model, and the energy-group model of a relativistic electron beam undergoing linear hose instability, are all formally equivalent. Therefore, the circle-orbit beam is the natural starting point for a higher order theory. Introducing the next order in non-circularity the author makes contact with the adiabatic theory for warm beams. The adiabatic theory is founded upon the existence of transverse action invariants that remain sufficiently well-defined, despite the nonaxisymmetric potential and the coupling resonances driven by linear hose instability. The existence of action invariants enables the elimination of a fast variable, analogous to gyro-motion, called vortex-gyration. One problem with adiabatic beam theory is that coupling resonances between the degrees of freedom could destroy the adiabatic invariants upon which the theory rests. KAM theory is employed here to study the destruction of action invariants due to linear hose instability. Nonaxisymmetric adiabatic beams are defined to be those for which KAM tori exist in the transverse phase space. For hose deflections of the magnitude considered in linear theory, KAM tori persist, preventing the destruction of the invariants.

  14. Phase-space description of plasma waves: Linear and nonlinear theory

    NASA Astrophysics Data System (ADS)

    Biro, Thomas

    1992-11-01

    A (r,k) phase description of waves in plasmas is developed by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, the proper form of the current response function, is discussed. On the analogy of the particle distribution function f(v,r,t), a wave density N(k,r,t) is introduced on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows the damping or growth of wave density along rays to be described. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, a very general formula for the second order nonlinear current is obtained in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. Kinetic equations for weakly inhomogeneous and turbulent plasmas are derived, including the effects of inhomogeneous turbulence, wave convection and refraction.

  15. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Sazonkin, M. A.

    2010-11-01

    A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

  16. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

    SciTech Connect

    Dubinov, A. E. Sazonkin, M. A.

    2010-11-15

    A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

  17. Hollow cathode theory and experiment. I. Plasma characterization using fast miniature scanning probes

    SciTech Connect

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira; Mikellides, Ioannis G.

    2005-12-01

    A detailed study of the spatial variation of plasma density, temperature, and potential in hollow cathodes using miniature fast scanning probes has been undertaken in order to better understand the cathode operation and to provide benchmark data for the modeling of the cathode performance and life described in a companion paper. Profiles are obtained throughout the discharge and in the very high-density orifice region by pneumatically driven Langmuir probes, which are inserted directly into the hollow cathode orifice from either the upstream insert region inside the hollow cathode or from the downstream anode-plasma region. A fast transverse-scanning probe is also used to provide radial profiles of the cathode plume as a function of position from the cathode exit. The probes are extremely small to avoid perturbing the plasma; the ceramic tube insulator is 0.05 cm in diameter with a probe tip area of 0.002 cm{sup 2}. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage wave form to the probe as it is scanned through the plasma at speeds of up to 2 m/s to produce the profiles with a spatial resolution of about 0.05 cm. At discharge currents of 10-25 A from the 1.5-cm-diameter hollow cathode, the plasma density inside the cathode is found to exceed 10{sup 14} cm{sup -3}, with the peak density occurring upstream of the orifice. The plasma potentials on axis inside the cathode are found to be in the 10-20 V range with electron temperatures of 2-5 eV, depending on the discharge current and gas flow rate. A potential discontinuity or double layer of less than 10 V is observed in the orifice region, and under certain conditions appears in the bright 'plasma ball' in front of the cathode. This structure tends to change location and magnitude with discharge current, gas flow, and orifice size. A potential maximum proposed in the literature to exist in or near the cathode orifice is not observed. Instead, the plasma potential increases

  18. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    SciTech Connect

    Yoon, P. H. E-mail: rsch@tp4.rub.de; Schlickeiser, R. E-mail: rsch@tp4.rub.de; Kolberg, U. E-mail: rsch@tp4.rub.de

    2014-03-15

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n{sub e} are calculated as |δB|=√((δB){sup 2})=2.8(n{sub e}m{sub e}c{sup 2}){sup 1/2}g{sup 1/2}β{sub e}{sup 7/4} and |δE|=√((δE){sup 2})=3.2(n{sub e}m{sub e}c{sup 2}){sup 1/2}g{sup 1/3}β{sub e}{sup 2}, where g and β{sub e} denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10{sup −18}G and |δE|=2·10{sup −16}G result.

  19. From liquid crystal models to the guiding-center theory of magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Tronci, Cesare

    2016-08-01

    Upon combining Northrop's picture of charged particle motion with modern liquid crystal theories, this paper provides a new description of guiding center dynamics (to lowest order). This new perspective is based on a rotation gauge field (gyrogauge) that encodes rotations around the magnetic field. In liquid crystal theory, an analogue rotation field is used to encode the rotational state of rod-like molecules. Instead of resorting to sophisticated tools (e.g. Hamiltonian perturbation theory and Lie series expansions) that still remain essential in higher-order gyrokinetics, the present approach combines the WKB method with a simple kinematical ansatz, which is then replaced into the charged particle Lagrangian. The latter is eventually averaged over the gyrophase to produce the guiding-center equations. A crucial role is played by the vector potential for the gyrogauge field. A similar vector potential is related to liquid crystal defects and is known as wryness tensor in Eringen's micropolar theory.

  20. Microwave heating power distribution in electron-cyclotron resonance processing plasmas, experiment and theory

    SciTech Connect

    Douglass, S.R.; Eddy, C. Jr.; Lampe, M.; Joyce, G.; Slinker, S.; Weber, B.V.

    1995-12-31

    The authors are currently investigating the mechanisms of microwave power absorption in an ECR plasma. The microwave electric field is detected with an antenna at the end of a shielded co-ax cable, connected to a bolometer for power measurements. Initial measurements have been 1-D along the axis of the plasma chamber. Later, 3-D profiles will be made of the microwave heating power distribution. A comparison of the experimental results with the theoretical microwave absorption are presented. A ray tracing analysis of the propagating right hand wave are given, including both collisional and collisionless absorption. Mode conversion effects are studied to explain why most of the power is absorbed at the entry window, especially the L wave power.

  1. Microwave N{sub 2}-Ar plasma torch. II. Experiment and comparison with theory

    SciTech Connect

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.

    2011-01-15

    Spatially resolved emission spectroscopy techniques have been used to determine the gas temperature, the electron, and N{sub 2}{sup +} ion densities and the relative emission intensities of radiative species in a microwave (2.45 GHz) plasma torch driven by a surface wave. The experimental results have been analyzed in terms of a two-dimensional theoretical model based on a self-consistent treatment of particles kinetics, gas dynamics, and wave electrodynamics. The measured spatial variations in the various quantities agree well with the model predictions. The radially averaged gas temperature is around 3000 K and varies only slowly along the discharge zone of the source but it drops sharply down to about 400 K in the postdischarge. The experimental wave dispersion characteristics nearly follow the theoretical ones, thus confirming that this plasma source is driven by a surface wave.

  2. The development of a Krook model for nonlocal transport in laser produced plasmas I. Basic theory

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace; Colombant, Denis; Goncharov, Valeri

    2008-11-01

    We examine the Krook model as a means of quantifying the problem of nonlocal transport of electron energy in laser produced plasmas. The result is an expression for the nonlocal electron energy flux q. The roles of both flux limitation and preheat are clearly delineated. Furthermore, it develops a test for the validity of this model. This is a physics based ``first principles'' model that can be economically incorporated into a fluid simulation.

  3. The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace; Colombant, Denis; Goncharov, Valeri

    2008-08-01

    This paper examines the Krook model as a means of quantifying the problem of nonlocal transport of electron energy in laser produced plasmas. The result is an expression for the nonlocal electron energy flux q. The roles of both flux limitation and preheat are clearly delineated. Furthermore, it develops a test for the validity of this model. This is a physics based, "first principles" model that can be economically incorporated into a fluid simulation.

  4. Closure and transport theory for high-collisionality electron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.

    2013-04-01

    Systems of algebraic equations for a high-collisionality electron-ion plasma are constructed from the general moment equations with linearized collision operators [J.-Y. Ji and E. D. Held, Phys. Plasmas 13, 102103 (2006) and J.-Y. Ji and E. D. Held, Phys. Plasmas 15, 102101 (2008)]. A systematic geometric method is invented and applied to solve the system of equations to find closure and transport relations. It is known that some closure coefficients of Braginskii [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1] are in error up to 65% for some finite values of x (cyclotron frequency × electron-ion collision time) and have significant error in the large-x limit [E. M. Epperlein and M. G. Haines, Phys. Fluids 29, 1029 (1986)]. In this work, fitting formulas for electron coefficients are obtained from the 160 moment (Laguerre polynomial) solution, which converges with increasing moments for x ≤100 and from the asymptotic solution for large x-values. The new fitting formulas are practically exact (less than 1% error) for arbitrary x and Z (the ion charge number, checked up to Z = 100). The ion coefficients for equal electron and ion temperatures are moderately modified by including the ion-electron collision operator. When the ion temperature is higher than the electron temperature, the ion-electron collision and the temperature change terms in the moment equations must be kept. The ion coefficient formulas from 3 moment (Laguerre polynomial) calculations, precise to less than 0.4% error from the convergent values, are explicitly written.

  5. New Release of the BSM Epoch Photometry Database

    NASA Astrophysics Data System (ADS)

    Henden, A.

    2016-06-01

    (Abstract only) The Bright Star Monitor (BSM) Epoch Photometry Database (EPD) is a searchable catalog of all observations made by one of the AAVSO's five BSM systems. The newest release of this database contains some 100 million datasets, from both northern and southern hemispheres, taken over the last six years. These have been calibrated by both nightly visits to Landolt standard fields as well as through the use of the Tycho2 photometric catalog. The paper will describe how the observations were made, how to access the catalog, and the limitations to the photometric accuracy. Some examples of well-studied fields will be shown.

  6. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  7. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  8. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev’s Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    DOE PAGES

    Krommes, John A.

    2015-09-21

    In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical–dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric functionmore » $${\\mathcal{D}}$$. Dupree’s method of using$${\\mathcal{D}}$$to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance$C$and an infinitesimal response function$R$, which subsumes$${\\mathcal{D}}$$. An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov’s theorem to develop an$$\\boldsymbol{x}$$-space approach to the DIA that is complementary to the original$$\\boldsymbol{k}$$-space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier–Stokes equation, and an algorithm for determining the form of$${\\mathcal{D}}$$in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by$${\\mathcal{D}}$$). The role of$R$in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is

  9. Physics of the Intergalactic Medium During the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam

    A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas around them in the surrounding intergalactic medium (IGM) by photoionzing the gas during the "Epoch of Reionization" (EoR). This epoch likely spanned an extended stretch in cosmic time: ionized regions formed and grew around early generations of galaxies, gradually filling a larger and larger fraction of the volume of the universe. At some time—thus far uncertain, but within the first billion years or so after the big bang—essentially the entire volume of the universe became filled with ionized gas. The properties of the IGM provide valuable information regarding the formation time and nature of early galaxy populations, and many approaches for studying the first luminous sources are hence based on measurements of the surrounding intergalactic gas. The prospects for improved reionization-era observations of the IGM and early galaxy populations over the next decade are outstanding. Motivated by this, we review the current state of models of the IGM during reionization. We focus on a few key aspects of reionization-era phenomenology and describe: the redshift evolution of the volume-averaged ionization fraction, the properties of the sources and sinks of ionizing photons, along with models describing the spatial variations in the ionization fraction, the ultraviolet radiation field, the temperature of the IGM, and the gas density distribution.

  10. Moon-based Epoch of Reionization Imaging Telescope (MERIT)

    NASA Astrophysics Data System (ADS)

    Jones, D. L.; MacDowall, R. J.; Bale, S. D.; Demaio, L.; Kasper, J. C.; Weiler, K. W.

    2005-05-01

    Radio observations of emission and absorption from neutral Hydrogen during the Epoch of Reionization (EoR) can reveal how structure leading to the first stars, galaxies, and black holes formed in the intergalactic medium between redshifts of about 6 and at least 20. Ground-based low frequency radio arrays are under construction (LOFAR, PAST) or development (LWA, MWA) to detect and eventually image the EoR signal. The Moon-based Epoch of Reionization Imaging Telescope (MERIT) is a mission concept that is intended to extend ground-based observations of the EoR to the highest possible dynamic range and image fidelity. This can be accomplished by locating the MERIT array on the far side of the moon. The array is composed of 10-12 radial arms, each 1-2 km in length. Each arm has several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This provides a convenient way to deploy thousands of individual antennas, and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference, shielding (half the time) from strong solar radio emissions, and freedom from the corrupting influence of Earth's ionosphere. Various options for array deployment and data transmission to Earth will be described is this paper. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  11. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  12. Quasilinear theory of the ordinary-mode electron-cyclotron resonance in plasmas

    SciTech Connect

    Arunasalam, V.; Efthimion, P.C.; Hosea, J.C.; Hsuan, H.; Taylor, G.

    1983-11-01

    A coupled set of equations, one describing the time evolution of the ordinary-mode wave energy and the other describing the time evolution of the electron distribution function is presented. The wave damping is mainly determined by T/sub parallel/ while the radiative equilibrium is mainly an equipartition with T/sub perpendicular/. The time rate of change of T/sub perpendicular/, T/sub parallel/, particle (N/sub 0/), and current (J/sub parellel/) densities are examined for finite k/sub parallel/ electron-cyclotron-resonance heating of plasmas.

  13. Comment on 'Turbulent equipartition theory of toroidal momentum pinch' [Phys. Plasmas 15, 055902 (2008)

    SciTech Connect

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    2009-03-15

    The comment addresses questions raised on the derivation of the momentum pinch velocity due to the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. These concern the definition of the gradient, and the scaling with the density gradient length. It will be shown that the turbulent equipartition mechanism is included within the derivation using the Coriolis drift, with the density gradient scaling being the consequence of drift terms not considered in [T. S. Hahm et al., Phys. Plasmas 15, 055902 (2008)]. Finally the accuracy of the analytic models is assessed through a comparison with the full gyrokinetic solution.

  14. Kinetic theory and simulation of multi-species plasmas in tokamaks excited with ICRF microwaves

    SciTech Connect

    Kerbel, G.D.; McCoy, M.G.

    1984-12-21

    This paper presents a description of a bounce-averaged Fokker-Planck quasilinear model for the kinetic description of tokamak plasmas. The non-linear collision and quasilinear resonant diffusion operators are represented in a form conducive to numerical solution with specific attention to the treatment of the boundary layer separating trapped and passing orbit regions of velocity space. The numerical techniques employed are detailed in so far as they constitute significant departure from those used in the conventional uniform magnetic field case. Examples are given to illustrate the combined effects of collisional and resonant diffusion.

  15. Linear theory of low frequency magnetosonic instabilities in counterstreaming bi-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2015-09-01

    An effect of the bi-Maxwellian counterstreaming distribution function is analyzed with regard to the linear low frequency instabilities in magnetized homogeneous collisionless plasmas. New analytical marginal instability conditions for the firehose and the mirror modes have been obtained. Presence of counterstreams along the ambient magnetic field causes a huge effect on the instability conditions of those modes. The instability conditions very sensitively depend on the functional dependence of the counterstreaming parameter P. The theoretically predicted results might give a full potential explanation for the observed solar wind temperature anisotropy diagram in A- β∥ plane [S. D. Bale et al., Phys. Rev. Lett. 103, 211101 (2009)].

  16. Theory of the large-amplitude plane magnetoacoustic wave propagating transverse to the magnetic field in a hot collisionless plasma. [in astrophysical environments

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1979-01-01

    An exact solution of the kinetic and electromagnetic equations for a large-amplitude plane magnetoacoustic wave propagating transverse to the magnetic field in a hot collisionless plasma is presented. The solution gives simple relations among the magnetic-field strength, density, stress tensor, and plasma velocity, all of which are measurable in the interplanetary plasma. These relations are independent of the electron and ion velocity distributions, subject to certain restrictions on 'high-velocity tails.' The magnetic field of the wave is linearly polarized. The wave steepens to form a shock much as the analogous waves of MHD theory do.

  17. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  18. Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.; Citrin, J.; Baiocchi, B.; Casati, A.; Cottier, P.; Garbet, X.; Imbeaux, F.; Contributors, JET

    2016-01-01

    Nonlinear gyrokinetic codes allow for detailed understanding of tokamak core turbulent transport. However, their computational demand precludes their use for predictive profile modeling. An alternative approach is required to bridge the gap between theoretical understanding and prediction of experiments. A quasilinear gyrokinetic model, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), is demonstrated to be rapid enough to ease systematic interface with experiments. The derivation and approximation of this approach are reviewed. The quasilinear approximation is proven valid over a wide range of core plasma parameters. Examples of profile prediction using QuaLiKiz coupled to the CRONOS integrated modeling code (Artaud et al 2010 Nucl. Fusion 50 043001) are presented. QuaLiKiz is being coupled to other integrated modeling platforms such as ETS and JETTO. QuaLiKiz quasilinear gyrokinetic turbulent heat, particle and angular momentum fluxes are available to all users. It allows for extensive stand-alone interpretative analysis and for first principle based integrated predictive modeling.

  19. Superposed epoch analysis of CIRs at 0. 3 and 1. 0 AU: A comparative study

    SciTech Connect

    Richter, A.K.; Luttrell, A.H.

    1986-05-01

    Applying the superposed epoch analysis technique to 16 and to 31 well-defined, nonshock-associated stream-stream interaction regions observed by the Helios spacecraft in the distance ranges 0.3 to 0.4 AU and 0.9 to 1.0 AU, respectively, we obtain the average azimuthal variation in the solar wind density, velocity and temperature, in the magnetic field strength, and in the total proton plasma plus magnetic field pressure across CIRs at these two radial distances separately. For the radial evolution of these interaction regions we find by comparison: (1) due to compressional and rarefactional effects the amplitudes of all parameters in question taken along the leading as well as along the trailing part of the CIR are steadily increasing with the most pronounced increase in the pressure; (2) at the same time even the leading portion of the velocity profile steepens; (3) simultaneously, the positions in azimuth of the overall maximum values of the solar wind density and temperature, of the magnetic field strength and of the plasma plus magnetic field pressure are getting steadily lined up in longitude; (4) at the same time the leading portions of all profiles are steepening into discontinuous, shocklike structures. Thus, this analysis provides observational evidence for the following results obtained earlier from numerical simulation studies. Stream steepening does occur within 1 AU, and the probability of corotating shocks to form is, on average, much higher beyond than at or within 1 AU.

  20. MULTICOMPONENT THEORY OF BUOYANCY INSTABILITIES IN ASTROPHYSICAL PLASMA OBJECTS: THE CASE OF MAGNETIC FIELD PERPENDICULAR TO GRAVITY

    SciTech Connect

    Nekrasov, Anatoly K.; Shadmehri, Mohsen E-mail: mshadmehri@thphys.nuim.i

    2010-12-01

    We develop a general theory of buoyancy instabilities in the electron-ion plasma with the electron heat flux based not upon magnetohydrodynamic (MHD) equations, but using a multicomponent plasma approach in which the momentum equation is solved for each species. We investigate the geometry in which the background magnetic field is perpendicular to the gravity and stratification. General expressions for the perturbed velocities are given without any simplifications. Collisions between electrons and ions are taken into account in the momentum equations in a general form, permitting us to consider both weakly and strongly collisional objects. However, the electron heat flux is assumed to be directed along the magnetic field, which implies a weakly collisional case. Using simplifications justified for an investigation of buoyancy instabilities with electron thermal flux, we derive simple dispersion relations for both collisionless and collisional cases for arbitrary directions of the wave vector. Our dispersion relations considerably differ from that obtained in the MHD framework and conditions of instability are similar to Schwarzschild's criterion. This difference is connected with simplified assumptions used in the MHD analysis of buoyancy instabilities and with the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. The results obtained can be applied to clusters of galaxies and other astrophysical objects.

  1. Plasma pressure broadening for few-electron emitters including strong electron collisions within a quantum-statistical theory.

    PubMed

    Lorenzen, Sonja; Omar, Banaz; Zammit, Mark C; Fursa, Dmitry V; Bray, Igor

    2014-02-01

    To apply spectroscopy as a diagnostic tool for dense plasmas, a theoretical approach to pressure broadening is indispensable. Here, a quantum-statistical theory is used to calculate spectral line shapes of few-electron atoms. Ionic perturbers are treated quasistatically as well as dynamically via a frequency fluctuation model. Electronic perturbers are treated in the impact approximation. Strong electron-emitter collisions are consistently taken into account with an effective two-particle T-matrix approach. Convergent close-coupling calculations give scattering amplitudes including Debye screening for neutral emitters. For charged emitters, the effect of plasma screening is estimated. The electron densities considered reach up to n(e) = 10(27) m(-3). Temperatures are between T = 10(4) and 10(5) K. The results are compared with a dynamically screened Born approximation for Lyman lines of H and H-like Li as well as for the He 3889 Å line. For the last, a comprehensive comparison to simulations and experiments is given. For the H Lyman-α line, the width and shift are drastically reduced by the Debye screening. In the T-matrix approach, the line shape is notably changed due to the dependence on the magnetic quantum number of the emitter, whereas the difference between spin-scattering channels is negligible.

  2. Three dimensional theory of helix PASOTRON, a plasma-filled, backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Abu-Elfadl, Tamer Mostafa

    PASOTRONs (Plasma Assisted Slow wave Oscillator) are new high power Cherenkov sources, working without the heavy magnetic field solenoids. Instead of the strong magnetic field, electron transportation in these devices is provided by plasma ions, which compensate the self space charge forces of the beam. The absence of strong guiding magnetic field, gives the electrons the freedom to move transversely by the RF fields besides the usual axial motion in these type of devices. The transverse motion greatly alter the operation of the Cherenkov device. The field intensity of the synchronous space harmonic is concentrated around the SWS. So, transverse motion can be beneficial in electron wave interaction, as electrons experience this strong field as they move transversely towards the SWS. This stimulated interests in theoretical analysis of these devices. For symmetrical slow wave structures (SWS), i.e. corrugated waveguide, employed in traveling wave tubes (TWT) and backward wave oscillator (BWO), filled with plasma, it is shown in this study that the operation of these devices can be enhanced by adding a small magnetic field. The small magnetic field helps avoid interception, while maintaining the preferable transverse motion. A 3D "amplifier" model describing the steady state operation of the helix PASOTRON BWO is presented. The results showed that electrons injected inside the helix are those that contribute most to the device efficiency over those electrons injected outside the helix. It is also shown that by reducing the beam size, high efficiencies up to 55% can be achieved. Such high efficiency, which is unachievable in conventional BWOs driven by linear electron beams, can be explained by a favorable effect of the transverse motion of electrons. Temporal study of the helix PASOTRON BWO is also presented. It is shown that for zero reflection device, there was no automodulation oscillations. This is attributed to the 3D electron motion together with the 90° phase

  3. EDITORIAL: Theory of fusion plasmas: selected papers from the Joint Varenna-Lausanne International Workshop Theory of fusion plasmas: selected papers from the Joint Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2011-05-01

    The 2010 edition of the joint Varenna-Lausanne workshop on the theory of fusion plasmas was undoubtedly a great success. The programme encompasses a wide variety of topics, namely turbulence, MHD, edge physics and RF wave heating. The present PPCF issue is a collection of 19 outstanding papers, which cover these topics. It follows the publication of 22 refereed contributed papers in Journal of Physics: Conference Series 2010 260. There is no doubt that the production of articles was both abundant and of high scientific quality. This is why the Varenna-Lausanne meeting takes an important place in the landscape of conferences on fusion. Indeed this is the ideal forum for exchanging ideas on theory and modelling, and for substantiating the best results obtained in our field. The tradition of the meeting is to provide a forum for numerical modelling activities. This custom was clearly respected given the large fraction of papers in this special issue which address this subject. This feature reflects the revolution we have been living through for some years with the fast growth of high-performance computers. It also appears that analytical theory is flourishing. This is important for bringing new ideas and guidance to numerical simulations. Finally, code validation and comparison to experiments are well represented. We believe that this is good news given the complexity of the non-linear physics that is at stake in fusion devices. Another subject of satisfaction was the presence of many young scientists at the meeting. The encounter between young researchers and senior scientists is certainly a strong point of the Varenna-Lausanne conference. In conclusion, we anticipate a great success for this special issue of PPCF and we hope that the readers will find therein ideas and inspiration.

  4. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    SciTech Connect

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  5. Role of lipid-induced changes in plasma membrane in the biophysical shunt theory of psychopathology.

    PubMed

    Naisberg, Y; Weizman, A

    1997-04-01

    The existence of a lipid factor that either causes faulty lipid metabolism or directly contributes to the emergence of a biophysical shunt in neuronal membrane ionic flow propagation is proposed. The neuronal membrane contains a remarkable amount of phospholipids, glycolipids and cholesterol. It is assumed that, under certain unfavorable intrinsic states, the plasma membrane's lipid order and composition and, consequently, its cholesterol-to-phospholipid ratio, may change. This, in turn, may significantly modify membrane fluidity, altering the essential physical properties in the affected portions of the membrane and causing a disarray in the adjacent ion channels, leading to the establishment of a biophysical shunt in a loop-like operation, forming the basis for a variety of mental disorders. The present model offers a diet-induced lipid correction for the relief of psychopathological problems.

  6. Plasma Streaming and Explosive Events in the Solar Transition Region: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Tarbell, T.

    1999-05-01

    As shown by Tarbell et al. (ApJ, 514, L47, 1999 ) a sporadic excess of temperature and wide variety of plasma jets observed in the chromosphere and transition region overlying quiet sun regions may be explained by hydrodynamic cumulation resulted from the acoustic shocks generated by the reconnecting small scale network magnetic elements in the solar photosphere. Here we study magneto-hydrodynamic cumulation resulted from post-reconnection MHD shocks generated in complex magnetic field geometries typical to upper chromosphere and low corona. We present the results for the observed regularities obtained from simultaneous measurements taken by TRACE in chromospheric, transition region and coronal images and MDI on SOHO showing time series of high resolution magnetograms. We find that (1) All the essential features of the hydrodynamic cumulation remain in place: the MHD shocks driven by the post-reconnection sling-shot effect and self-focusing of these shocks lead to several well observed signatures of the energy release. (2) The evolution of generated flows depends on the geometry of intermittent magnetic fields and the height of jet formation. In regions of open magnetic structures plasma flows have tendency to accelerate and reach supersonic and super-Alfvenic velocities. Due to linear KH instability such flows may generate high frequency Alfven waves propagating along the magnetic structures. (3) In those regions where cumulative effects result in the predominant heating which is accompanied by generation of "moderate" (sub-Alfvenic) velocity jets, there are conditions when high velocity explosive events are driven. Our theoretical model shows that the explosive events proceeded by appearance of the bright transients are caused by the development of shear flow dissipative (nonlinear) instabilities. We also suggest that "non-bright"explosive events may be driven by rare effect of the cylindrical focusing of the MHD shocks (the Guderley's effect).

  7. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    SciTech Connect

    Zhang, J.; Peebles, W. A.; Crocker, N. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Zeng, L.; Hyatt, A. W.

    2013-10-15

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays a significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough B{sub T} (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret

  8. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Peebles, W. A.; Crocker, N. A.; Carter, T. A.; Doyle, E. J.; Hyatt, A. W.; Rhodes, T. L.; Wang, G.; Zeng, L.

    2013-10-01

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays a significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough BT (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret the

  9. Satellite- and Epoch Differenced Precise Point Positioning Based on a Regional Augmentation Network

    PubMed Central

    Li, Haojun; Chen, Junping; Wang, Jiexian; Wu, Bin

    2012-01-01

    Precise Point Positioning (PPP) has been demonstrated as a simple and effective approach for user positioning. The key issue in PPP is how to shorten convergence time and improve positioning efficiency. Recent researches mainly focus on the ambiguity resolution by correcting residual phase errors at a single station. The success of this approach (referred to hereafter as NORM-PPP) is subject to how rapidly one can fix wide-lane and narrow-lane ambiguities to achieve the first ambiguity-fixed solution. The convergence time of NORM-PPP is receiver type dependent, and normally takes 15–20 min. Different from the general algorithm and theory by which the float ambiguities are estimated and the integer ambiguities are fixed, we concentrate on a differential PPP approach: the satellite- and epoch differenced (SDED) approach. In general, the SDED approach eliminates receiver clocks and ambiguity parameters and thus avoids the complicated residual phase modeling procedure. As a further development of the SDED approach, we use a regional augmentation network to derive tropospheric delay and remaining un-modeled errors at user sites. By adding these corrections and applying the Robust estimation, the weak mathematic properties due to the ED operation is much improved. Implementing this new approach, we need only two epochs of data to achieve PPP positioning converging to centimeter-positioning accuracy. Using seven days of GPS data at six CORS stations in Shanghai, we demonstrate the success rate, defined as the case when three directions converging to desired positioning accuracy of 10 cm, reaches 100% when the interval between the two epochs is longer than 15 min. Comparing the results of 15 min' interval to that of 10 min', it is observed that the position RMS improves from 2.47, 3.95, 5.78 cm to 2.21, 3.93, 4.90 cm in the North, East and Up directions, respectively. Combining the SDED coordinates at the starting point and the ED relative coordinates thereafter, we

  10. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2015-10-01

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG-SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG-SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  11. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    SciTech Connect

    Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June

    2015-10-15

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  12. EMHD theory and observations of electron solitary waves in magnetotail plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Fei; Wang, Xiao-Gang; Sun, Wei-Jie; Xiao, Chi-Jie; Shi, Quan-Qi; Liu, Jiang; Pu, Zu-Yin

    2014-06-01

    A new approach of electron magnetohydrodynamics (EMHD) is developed by including the anisotropy of the electron pressure tensor to take Biermann battery effect into account. Based on the model, the dispersion relation of slow and fast electron magnetosonic modes are derived. A Korteweg-de Vries equation is then obtained from the wave equation to get a solution of one-dimensional slow-mode soliton. Furthermore, according to measurements of Cluster and Time History of Events and Macroscale Interactions during Substorms, we find a good agreement between the theory and observations of magnetic field depression and perpendicular pressure increase.

  13. Investigating the earliest epochs of the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Starkenburg

    2016-08-01

    Resolved stellar spectroscopy can obtain knowledge about chemical enrichment processes back to the earliest times, when the oldest stars were formed. In this contribution I will review the early (chemical) evolution of the Milky Way halo from an observational perspective. In particular, I will discuss our understanding of the origin of the peculiar abundance patterns in various subclasses of extremely metal-poor stars, taking into account new data from our abundance and radial velocity monitoring programs, and their implications for our understanding of the formation and early evolution of both the Milky Way halo and the satellite dwarf galaxies therein. I conclude by presenting the ``Pristine'' survey, a program on the Canada-France-Hawaii Telescope to study this intriguing epoch much more efficiently.

  14. Three epochs of EVN observations towards IRAS 23365+3604

    NASA Astrophysics Data System (ADS)

    Romero-Canizales, C.; Perez-Torres, M.; Alberdi, A.

    The European VLBI Network (EVN) provides us with the necessary sensitivity and angular resolution to study the nuclear and circumnuclear regions in Luminous and Ultraluminous Infrared Galaxies. The high Star Formation Rates (SFR) inferred for these galaxies implies both the presence of a high number of massive stars and a dense surrounding medium. Therefore, bright radio SNe are expected to occur. With the aim of estimating the SFR in ULIRGs by means of Core Collapse supernova (CCSN) detections, we started an observing campaign with the EVN on a small sample of the brightest and farthest ULIRGs in the local Universe. We present here our results from three epochs of quasi-simultaneous observations with the EVN at 6 and 18 cm towards one of the objects in our sample: IRAS 23365+3604.

  15. Doppler imaging of AR Lacertae at three epochs

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Neff, James E.; Linsky, Jeffrey L.; Rodono, Marcello

    1988-01-01

    Observations from IUE were used to study the structure of the lower chromosphere of AR Lacertae in the light of Mg II k. Sequences of LWR/P-HI images distributed around the binary period at three epochs were obtained. Discrete plage-like regions of enhanced Mg II surface flux in this system are identified. There are temporal variations in the Mg II flux on timescales of hours as well as substantial changes in chromospheric morphology on timescales of years. Even with the limited S/N attainable with the IUE, one can map the gross structures of active stellar atmospheres. With such information, one can begin to study the true 3-D structure of the atmospheres of late-type stars.

  16. Sub-Daily Earth Rotation during the Epoch '92 Campaign

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Ibanez-Meier, R.; Lichten, S. M.; Dickey, J. O.; Herring, T. A.

    1993-01-01

    Earth rotation measurements were obtained using Global Positioning System (GPS) data for 11 days during the Epoch '92 campaign in the Summer of 1992. Earth orientation was measured simultaneously with several very long baseline interferornetry (VLBI) networks. These data were processed to yield both GPS and VLBI estimates of UT1 with 3-hour time resolution, which were then compared and analyzed. The high frequency behavior of both data sets is similar, although drifts between the two series of approx.0,1 ms over 2-5 days are evident, Models for tidally induced UT1 variations and estimates of atmospheric angular momentum (AAM) at 6-hour intervals were also compared with the geodetic data, These studies indicate that most of the geodetic signal in the diurnal and semidiurnal frequency bands can be attributed to tidal processes, and that UT1 variations over a few days are mostly atmospheric in origin.

  17. Subdaily Earth rotation during the Epoch '92 campaign

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Ibanez-Meier, R.; Herring, T. A.; Lichten, S. M.; Dickey, J. O.

    1994-01-01

    Global Positioning System (GPS) data were used to estimate Earth rotation variations over an 11-day period during the Epoch '92 campaign in the summer of 1992. Earth orientation was measured simultaneously by several very long baseline interferometry (VLBI) networks. GPS and VLBI estimates of UT1 with 3-hour time resolution were then compared and analyzed. The high frequency behavior of both data sets is similar, although drifts between the two series of approximately 0.1 ms over 2-5 days are evident. The geodetic results were also compared with models for UT1 fluctuations at tidal periods and with estimates of atmospheric angular momentum made at 6-hour intervals. Most of the geodetic signal in the diurnal and semidiurnal frequency bands can be attributed to tidal processes, whereas UT1 variations over a few days are mostly atmospheric in origin.

  18. Primary Effusion Lymphoma: Is Dose-Adjusted-EPOCH Worthwhile Therapy?

    PubMed

    Jessamy, Kegan; Ojevwe, Fidelis O; Doobay, Ravi; Naous, Rana; Yu, John; Lemke, Sheila M

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare condition, which accounts for approximately 4% of all human immunodeficiency virus (HIV)-associated non-Hodgkin lymphomas. PEL has a predilection for body cavities and occurs in the pleural space, pericardium, and peritoneum. Without treatment, the median survival is approximately 2-3 months, and with chemotherapy, the median survival is approximately 6 months. We describe the case of a 47-year-old male with HIV and Kaposi's sarcoma who presented with complaints of abdominal pain and distension and was subsequently diagnosed with PEL. Despite limited clinical data being available, chemotherapy with dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (EPOCH) has proven to increase survival rates in patients with this condition. PMID:27462227

  19. Tomography of the Reionization Epoch with Multifrequency CMB Observations

    NASA Astrophysics Data System (ADS)

    Hernández-Monteagudo, Carlos; Verde, Licia; Jimenez, Raul

    2006-12-01

    We study the constraints that future multifrequency cosmic microwave background (CMB) experiments will be able to set on the metal enrichment history of the intergalactic medium at the epoch of reionization. We forecast the signal-to-noise ratio for the detection of the signal introduced into the CMB by resonant scattering off metals at the end of the cosmic dark ages. We take into account systematics associated with cross-channel calibration, errors in reconstruction of the point-spread function, and inaccurate foreground removal. We develop an algorithm to optimally extract the signal generated by metals during reionization and to accurately remove the contamination due to the thermal Sunyaev-Zel'dovich effect. Although demanding levels of foreground characterization and control of systematics are required, they are very distinct from those encountered in H I 21 cm studies and CMB polarization, and this fact encourages the study of resonant scattering off metals as an alternative way of conducting tomography of the reionization epoch. A realistic experiment, looking at clean regions of the sky, can detect changes of 3%-12% (95% confidence level) in the O III abundance (with respect to its solar value) in the redshift range z=12-22 for reionization redshift zre>10. However, for zre<10 one can only set upper limits on N II abundance increments of ~60% solar in the redshift range z=5.5-9 (95% c.l.). These constraints assume that cross-channel calibration is accurate to 1 part in 104, which constitutes the most critical technical requirement of this method but is still achievable with current technology.

  20. Pulsar electrodynamics: Relativistic kinetic theory of radiative plasmas--collective phenomena and their radiation

    SciTech Connect

    Costa, A. A. da; Diver, D. A.; Laing, E. W.; Stark, C. R.; Teodoro, L. F. A.

    2011-01-15

    The classical modeling of radiation by accelerated charged particles in pulsars predicts a cutoff in photon energy at around 25 GeV. While this is broadly consistent with observations, the classical treatment is not self-consistent, and cannot be extended to explain the rare high-energy detections of photons in the 100s of GeV range. In this paper we revisit the theoretical modeling of high-energy radiation processes in very strong electromagnetic fields, in the context of both single particles and collective plasmas. There are no classical constraints on this description. We find that there is indeed a critical energy of around 50 GeV that arises naturally in this self-consistent treatment, but rather than being a cutoff, this critical energy signals a transition from radiation that is classical to a quasiquantum description, in which the particle is able to radiate almost its total energy in a single event. This new modeling therefore places pulsar radiation processes on a more secure physical basis, and admits the possibility of the production of TeV photons in a self-consistent way.

  1. Correlation theory of a two-dimensional plasma turbulence with shear flow

    SciTech Connect

    Zhang, Y.Z.; Mahajan, S.M.

    1992-09-01

    When the ion sound effect is neglected, a wide class of electrostatic plasma turbulence can be modelled by a two-dimensional equation for the generalized exstrophy {Psi}, an inviscid constant of motion along the turbulent orbits. Under the assumption of a Gaussian stochastic electrostatic potential, an averaged Green's function method is used to rigorously derive equations for the N-particle correlation functions for a dissipative and sheared flow. This approach is equivalent to the cumulant expansion method used to study the Vlasov-Poisson system. For various cases of interest, appropriate equations are solved to obtain the absolute level as well as the detailed structure of the two-point correlation function C(r), and its Fourier transform, the exstrophy spectral function I(k). Uniformly valid analytical expressions are derived for the dissipative but shearless case resulting in a 'fluctuation-dissipation' theorem relating the total spectral intensity to classical viscosity. These self-consistent results show a strong logarithmic modification of the mixing length estimates for the turbulence levels.

  2. Correlation theory of a two-dimensional plasma turbulence with shear flow

    SciTech Connect

    Zhang, Y.Z.; Mahajan, S.M.

    1992-09-01

    When the ion sound effect is neglected, a wide class of electrostatic plasma turbulence can be modelled by a two-dimensional equation for the generalized exstrophy {Psi}, an inviscid constant of motion along the turbulent orbits. Under the assumption of a Gaussian stochastic electrostatic potential, an averaged Green`s function method is used to rigorously derive equations for the N-particle correlation functions for a dissipative and sheared flow. This approach is equivalent to the cumulant expansion method used to study the Vlasov-Poisson system. For various cases of interest, appropriate equations are solved to obtain the absolute level as well as the detailed structure of the two-point correlation function C(r), and its Fourier transform, the exstrophy spectral function I(k). Uniformly valid analytical expressions are derived for the dissipative but shearless case resulting in a `fluctuation-dissipation` theorem relating the total spectral intensity to classical viscosity. These self-consistent results show a strong logarithmic modification of the mixing length estimates for the turbulence levels.

  3. Introduction to statistical field theory: from a toy model to a one-component plasma

    NASA Astrophysics Data System (ADS)

    Frydel, Derek

    2015-11-01

    Working with a toy model whose partition function consists of a discrete summation, we introduce the statistical field theory methodology by transforming a partition function via a formal Gaussian integral relation (the Hubbard-Stratonovich transformation). We then consider Gaussian-type approximations, wherein correlational contributions enter as harmonic fluctuations around the saddle-point solution. This work focuses on how to arrive at a self-consistent, non-perturbative approximation without recourse to a standard variational construction based on the Gibbs-Bogolyubov-Feynman inequality that is inapplicable to a complex action. To address this problem, we propose a construction based on selective satisfaction of a set of exact relations generated by considering a dual representation of a partition function, in its original and transformed form.

  4. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev’s Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    SciTech Connect

    Krommes, John A.

    2015-09-21

    In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical–dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function${\\mathcal{D}}$. Dupree’s method of using${\\mathcal{D}}$to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance$C$and an infinitesimal response function$R$, which subsumes${\\mathcal{D}}$. An important example is the direct-interaction approximation (DIA). It is shown how to use

  5. Numerical study of chiral plasma instability within the classical statistical field theory approach

    NASA Astrophysics Data System (ADS)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  6. Epochs of intrusion-related copper mineralization in the Andes

    NASA Astrophysics Data System (ADS)

    Sillitoe, R. H.

    Seventy-four copper deposits and prospects related intimately to intrusive activity in the Andes have been dated radiometrically during the last 18 years by many different investigators, most of whom used the KAr method. The results are summarized and some of their local and regional implications are reviewed. A number of copper deposits, mainly of the porphyry type, were emplaced in, or near to, premineral volcanic sequences and (or) equigranular plutons. Such precursor volcanism lasted for as long as 9 Ma, and preceded mineralization by intervals of from less than 1 Ma to as much as 9 Ma. Precursor plutons were emplaced no more than 2 to 3 Ma prior to mineralization at several localities in Chile, but possibly as long as 10 to 30 Ma earlier in parts of Colombia and Peru. The time separating emplacement of progenitor stocks and hydrothermal alteration and accompanying copper mineralization, and the duration of alteration-mineralization sequences generally are both less than the analytical uncertainty of the KAr method. However, on the basis of a detailed study of the Julcani vein system in Peru and less clearcut evidence from elsewhere, it may be concluded that alteration and copper mineralization followed stock or dome emplacement by substantially less than 1 Ma and lasted for 0.5 to 2 Ma and, locally, possibly as long as 3 Ma. At several localities, post-mineral magmatic activity could not be separated by the KAr method from the preceding alteration-mineralization events. As many as nine epochs of copper mineralization, ranging in age from late Paleozoic to late Pliocene-Pleistocene, are recognizable in the central Andes of Chile, Peru, Bolivia, and Argentina, and at least four somewhat different epochs characterize the northern Andes of Colombia. Each epoch coincides with a discrete linear sub-belt, some of which extend for more than 2000 km along the length of the orogen. More than 90% of Andean copper resources, mainly as porphyry deposits, are

  7. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev’s Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    SciTech Connect

    Krommes, John A.

    2015-09-21

    In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical–dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function${\\mathcal{D}}$. Dupree’s method of using${\\mathcal{D}}$to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance$C$and an infinitesimal response function$R$, which subsumes${\\mathcal{D}}$. An important example is the direct-interaction approximation (DIA). It is shown how to use

  8. Accelerometry to Assess Preschooler's Free-Play: Issues with Count Thresholds and Epoch Durations

    ERIC Educational Resources Information Center

    Oliver, Melody; Schofield, Grant M.; Schluter, Philip J.

    2009-01-01

    This study examines the utility of current accelerometer threshold definitions and epoch durations for physical activity intensity classification in preschool-aged children. Using video footage of children engaged in active play, directly observed 1-sec epoch physical activity intensity scores were derived from a modified version of the Children's…

  9. GRB 150101B/ Swift J123205.1-105602: Second epoch Chandra observations

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Hjorth, J.; Tanvir, N. R.; van der Horst, A. J.

    2015-02-01

    We obtained a second epoch of observations of the very short GRB 150101B/ Swift J123205.1-105602 (Cummings et al. GCN 17267) with Chandra. Observations began on 10 Feb 2015, 39 days after the burst, and 32 days after the first epoch of observations.

  10. Plans for the Second Epoch of the Southern Proper-Motion Program

    NASA Astrophysics Data System (ADS)

    Lopez, C. E.; Lee, J. F.; van Altena, W.

    The first photographs for the Yale-San Juan Southern Proper Motion program with respect to faint galaxies were taken with the collaboration of Columbia University in 1965. The first epoch photography was essentially completed in 1974 and plans are now under way to begin the second epoch observations in 1986.

  11. Quasar feedback at the peak of the galaxy formation epoch

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael; Zakamska, Nadia; Liu, Guilin; Greene, Jenny; Strauss, Michael

    2014-08-01

    Feedback from accreting supermassive black holes is now a standard ingredient in galaxy formation models. It is seen as necessary for limiting the maximal masses of galaxies and for establishing the black- hole / bulge correlations. Using Gemini GMOS, we demonstrated that powerful ionized gas winds are a ubiquitous feature in luminous obscured z=0.5 quasars. We now propose to extend this discovery to the epoch of peak galaxy formation and quasar activity - to the era at which feedback was most prominent and the galaxy / black hole correlations were established. We request 4.5 hours of Gemini-NIFS LGS adaptive- optics observations of an extremely luminous moderately obscured quasar at z=2.3 to map the morphology and kinematics of the ionized gas and to determine whether it exhibits the signs of black hole feedback in the form of an unbound ionized gas outflow. We will observe H(beta) and [OIII](lambda)5007Ain the H-band and H(alpha) and [NII](lambda)(lambda)6548,6583Ain the K-band on sub-galactic and galaxy-wide scales (spatial resolution 0.8 kpc, field of view 24 kpc). Obscured quasars likely constitute the majority of the quasar population and may represent the relatively early enshrouded phase of the black hole growth; thus, luminous obscured quasars are the most likely sites of quasar feedback, in agreement with our findings at low redshift.

  12. Stable warm tropical climate through the Eocene Epoch

    NASA Astrophysics Data System (ADS)

    Pearson, Paul N.; van Dongen, Bart E.; Nicholas, Christopher J.; Pancost, Richard D.; Schouten, Stefan; Singano, Joyce M.; Wade, Bridget S.

    2007-03-01

    Earth's climate cooled from a period of extreme warmth in the early Eocene Epoch (ca. 50 Ma) to the early Oligocene (ca. 33 Ma), when a large ice cap first appeared on Antarctica. Evidence from the planktonic foraminifer oxygen isotope record in deep-sea cores has suggested that tropical sea-surface temperatures declined by 5-10 degrees over this interval, eventually becoming much cooler than modern temperatures. Here we present paleotemperature estimates from foraminifer isotopes and the membrane lipids of marine Crenarcheota from new drill cores in Tanzania that indicate a warm and generally stable tropical climate over this period. We reinterpret the previously published isotope records in the light of comparative textural analysis of the deep-sea foraminifer shells, which shows that in contrast to the Tanzanian material, they have been diagenetically recrystallized. We suggest that increasingly severe alteration of the deep-sea plankton shells through the Eocene produced a diagenetic overprint on their oxygen isotope ratios that imparts the false appearance of a tropical sea-surface cooling trend. This implies that the long-term Eocene climatic cooling trend occurred mainly at the poles and had little effect at lower latitudes.

  13. Exploring a Massive Starburst in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Marrone, Daniel; Aravena, M.; Chapman, S.; De Breuck, C.; Gonzalez, A.; Hezavehe, S.; Litke, K.; Ma, J.; Malkan, M.; Spilker, J.; Stalder, B.; Stark, D.; Strandet, M.; Tang, M.; Vieira, J.; Weiss, A.; Welikala, N.

    2016-08-01

    We request deep multi-band imaging of a unique dusty galaxy in the Epoch of Reionization (EoR), selected via its millimeter-wavelength dust emission in the 2500-square-degree South Pole Telescope survey. Spectroscopically confirmed to lie at z=6.900, this galaxy has a large dust mass and is likely one of the most rapidly star-forming objects in the EoR. Using Gemini-S, we have identified z-band emission from this object that could be UV continuum emission at z=6.9 or from a foreground lens. Interpretation of this object, and a complete understanding of its meaning for the census of star formation in the EoR, requires that we establish the presence or absence of gravitational lensing. The dust mass observed in this source is also unexpectedly large for its era, and measurements of the assembled stellar population, through the UV-continuum slope and restframe optical color, will help characterize the stellar mass and dust properties in this very early galaxy, the most spectacular galaxy yet discovered by the SPT.

  14. The “Anthropocene” epoch: Scientific decision or political statement?

    USGS Publications Warehouse

    Finney, Stanley C.; Edwards, Lucy E.

    2016-01-01

    The proposal for the “Anthropocene” epoch as a formal unit of the geologic time scale has received extensive attention in scientific and public media. However, most articles on the Anthropocene misrepresent the nature of the units of the International Chronostratigraphic Chart, which is produced by the International Commission on Stratigraphy (ICS) and serves as the basis for the geologic time scale. The stratigraphic record of the Anthropocene is minimal, especially with its recently proposed beginning in 1945; it is that of a human lifespan, and that definition relegates considerable anthropogenic change to a “pre-Anthropocene.” The utility of the Anthropocene requires careful consideration by its various potential users. Its concept is fundamentally different from the chronostratigraphic units that are established by ICS in that the documentation and study of the human impact on the Earth system are based more on direct human observation than on a stratigraphic record. The drive to officially recognize the Anthropocene may, in fact, be political rather than scientific.

  15. Large Scale Structure in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton; Mould, Jeremy; Cooke, Jeffrey; Wyithe, Stuart; Lidman, Christopher; Trenti, Michele; Abbott, Tim; Kunder, Andrea; Barone-Nugent, Robert; Tescari, Edoardo; Katsianis, Antonios

    2014-02-01

    We propose to capitalize on the high red sensitivity and large field of view of DECam to detect the brightest and rarest galaxies at z=6-7. Our 2012 results show the signature of large scale structure with wavenumber of order 0.1 inverse Mpc in line with expectations of primordial non-gaussianity. But the signal to noise in one deep field from two nights' data is insufficient for a robust conclusion. Ten nights' data will do the job. These data will also constrain the galaxy contribution to reionization by enabling a tighter constraint on the full galaxy luminosity function, including the faint end. The observations will be executed with a cadence and depth that will enable the detection of super-luminous supernovae at z=6-7. Super-luminous supernovae are a recently observed class of supernovae that are 10-100x more luminous than typical supernovae. This class includes pair- instability supernovae that are a rare, third type of supernova explosion in which only 3 events are known. The proposed observations will greatly extend the current reach of supernovae research, examining their occurrence rate and properties near the epoch of reionization.

  16. Phase-compensated averaging for analyzing electroencephalography and magnetoencephalography epochs.

    PubMed

    Matani, Ayumu; Naruse, Yasushi; Terazono, Yasushi; Iwasaki, Taro; Fujimaki, Norio; Murata, Tsutomu

    2010-05-01

    Stimulus-locked averaging for electroencephalography and/or megnetoencephalography (EEG/MEG) epochs cancels out ongoing spontaneous activities by treating them as noise. However, such spontaneous activities are the object of interest for EEG/MEG researchers who study phase-related phenomena, e.g., long-distance synchronization, phase-reset, and event-related synchronization/desynchronization (ERD/ERS). We propose a complex-weighted averaging method, called phase-compensated averaging, to investigate phase-related phenomena. In this method, any EEG/MEG channel is used as a trigger for averaging by setting the instantaneous phases at the trigger timings to 0 so that cross-channel averages are obtained. First, we evaluated the fundamental characteristics of this method by performing simulations. The results showed that this method could selectively average ongoing spontaneous activity phase-locked in each channel; that is, it evaluates the directional phase-synchronizing relationship between channels. We then analyzed flash evoked potentials. This method clarified the directional phase-synchronizing relationship from the frontal to occipital channels and recovered another piece of information, perhaps regarding the sequence of experiments, which is lost when using only conventional averaging. This method can also be used to reconstruct EEG/MEG time series to visualize long-distance synchronization and phase-reset directly, and on the basis of the potentials, ERS/ERD can be explained as a side effect of phase-reset. PMID:20172813

  17. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    SciTech Connect

    Atrio-Barandela, F.; Kashlinsky, A. E-mail: Alexander.Kashlinsky@nasa.gov

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  18. Probing the Epoch of Pre-reionization by Cross-correlating Cosmic Microwave and Infrared Background Anisotropies

    NASA Astrophysics Data System (ADS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-12-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ~5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ~ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ~= 0.05) and the temperature of the IGM (up to ~104 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  19. Atlas Basemaps in Web 2.0 Epoch

    NASA Astrophysics Data System (ADS)

    Chabaniuk, V.; Dyshlyk, O.

    2016-06-01

    The authors have analyzed their experience of the production of various Electronic Atlases (EA) and Atlas Information Systems (AtIS) of so-called "classical type". These EA/AtIS have been implemented in the past decade in the Web 1.0 architecture (e.g., National Atlas of Ukraine, Atlas of radioactive contamination of Ukraine, and others). One of the main distinguishing features of these atlases was their static nature - the end user could not change the content of EA/AtIS. Base maps are very important element of any EA/AtIS. In classical type EA/AtIS they were static datasets, which consisted of two parts: the topographic data of a fixed scale and data of the administrative-territorial division of Ukraine. It is important to note that the technique of topographic data production was based on the use of direct channels of topographic entity observation (such as aerial photography) for the selected scale. Changes in the information technology of the past half-decade are characterized by the advent of the "Web 2.0 epoch". Due to this, in cartography appeared such phenomena as, for example, "neo-cartography" and various mapping platforms like OpenStreetMap. These changes have forced developers of EA/AtIS to use new atlas basemaps. Our approach is described in the article. The phenomenon of neo-cartography and/or Web 2.0 cartography are analysed by authors using previously developed Conceptual framework of EA/AtIS. This framework logically explains the cartographic phenomena relations of three formations: Web 1.0, Web 1.0x1.0 and Web 2.0. Atlas basemaps of the Web 2.0 epoch are integrated information systems. We use several ways to integrate separate atlas basemaps into the information system - by building: weak integrated information system, structured system and meta-system. This integrated information system consists of several basemaps and falls under the definition of "big data". In real projects it is already used the basemaps of three strata: Conceptual

  20. Seeking the epoch of maximum luminosity for dusty quasars

    SciTech Connect

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine E-mail: dweedman@isc.astro.cornell.edu

    2014-08-01

    Infrared luminosities νL{sub ν}(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 10{sup 46.6} erg s{sup –1} for all 2 epoch when quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL{sub ν}(0.25 μm), have the largest values of the ratio νL{sub ν}(0.25 μm)/νL{sub ν}(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  1. A dusty, normal galaxy in the epoch of reionization.

    PubMed

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-19

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

  2. Estimating Asteroid Thermal Inertia from Multi-epoch Observations

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Emery, Joshua P.

    2014-11-01

    Granular material, or regolith, is observed to be ubiquitous on asteroid surfaces. To date, two feasible mechanisms of regolith generation have been proposed: recurrent impacts and thermal fracturing. By combining thermal infrared observations and a thermophysical model (TPM), the thermal inertia of an asteroid surface can be used to infer its physical properties, including the average regolith grain size. With the regolith properties of a large population of diverse asteroids (i.e. different spectral class, size, rotation period etc.), information regarding the details of regolith generation can be inferred.Traditional thermal inertia determination methods use a TPM with a previously derived asteroid shape model and spin axis for constraining the observed surface temperature distribution. TPMs invoke the heat diffusion equation to calculate surface temperatures for a rotating asteroid. An asteroid spin axis provide the boundary condition needed to calculate the surface energy balance in a TPM. However the limited amount of objects with a shape model and thermal infrared observations inhibit the number of thermal inertias that can potentially be calculated. Here, a technique using WISE (12 & 22 μm) observations taken before or after opposition is employed to derive thermal inertias of asteroids without using a shape model. By gathering thermal infrared data at multiple viewing geometries the temperature distribution, thus thermal inertia, is constrained.We first demonstrate the validity of this method on objects with a previously determined shape model and spin axis from the DAMIT website. Our analyses show that not knowing an asteroid’s shape does not significantly affect the resulting thermal inertia estimates. Additionally, we apply our TPM to WISE multi-epoch thermal observations to place estimates for the thermal inertia for more than 100 objects. The set of objects used samples many sizes, spectral classes and rotation periods, which may be important

  3. Seeking the Epoch of Maximum Luminosity for Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-08-01

    Infrared luminosities νL ν(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 ~ 3 with maximum luminosity νL ν(7.8 μm) >~ 1047 erg s-1 luminosity functions show one quasar Gpc-3 having νL ν(7.8 μm) > 1046.6 erg s-1 for all 2 epoch when quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν(0.25 μm), have the largest values of the ratio νL ν(0.25 μm)/νL ν(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define "obscured" quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ~ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ~ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  4. On the Detection of Spectral Ripples from the Recombination Epoch

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2015-09-01

    Photons emitted during cosmological hydrogen (500≲ z≲ 1600) and helium recombination (1600≲ z≲ 3500 for He ii \\to He i, 5000≲ z≲ 8000 for He iii \\to He ii) are predicted to appear as broad, weak spectral distortions of the cosmic microwave background. We present a feasibility study for a ground-based detection of these recombination lines, which would uniquely probe astrophysical cosmology beyond the last scattering surface and provide observational constraints on the thermal history of the universe. We find that including sufficient signal spectral structure and maximizing signal-to-noise ratio, an octave band in the 2-6 GHz window is optimal; in this band the predicted signal appears as an additive quasi-sinusoidal component with amplitude about 8 nK embedded in a sky spectrum some nine orders of magnitude brighter. We discuss algorithms to detect these tiny spectral fluctuations in the sky spectrum by foreground modeling and introduce a maximally smooth function capable of describing the foreground spectrum and distinguishing the signal of interest. We conclude that detection is in principle feasible in realistic observing times provided that radio frequency interference and instrument bandpass calibration are controlled in this band at the required level; using Bayesian tests and mock data, we show that 90% confidence detection is possible with an array of 128 radiometers observing for 255 days of effective integration time. We propose APSERa—Array of Precision Spectrometers for the Epoch of Recombination—a dedicated radio telescope to detect these recombination lines.

  5. The epoch of reionization in the Rh = ct universe

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Fatuzzo, Marco

    2016-03-01

    The measured properties of the epoch of reionization (EoR) show that reionization probably began around z ˜ 12-15 and ended by z = 6. In addition, a careful analysis of the fluctuations in the cosmic microwave background indicate a scattering optical depth τ ˜ 0.066 ± 0.012 through the EoR. In the context of Λ cold dark matter, galaxies at intermediate redshifts and dwarf galaxies at higher redshifts now appear to be the principal sources of UV ionizing radiation, but only for an inferred (ionizing) escape fraction fion ˜ 0.2, which is in tension with other observations that suggest a value as small as ˜0.05. In this paper, we examine how reionization might have progressed in the alternative Friedmann-Robertson Walker cosmology known as the Rh = ct universe, and determine the value of fion required with this different rate of expansion. We find that Rh = ct accounts quite well for the currently known properties of the EoR, as long as its fractional baryon density falls within the reasonable range 0.026 ≲ Ωb ≲ 0.037. This model can also fit the EoR data with fion ˜ 0.05, but only if the Lyman continuum photon production is highly efficient and Ωb ˜ 0.037. These results are still preliminary, however, given their reliance on a particular form of the star formation rate density, which is still uncertain at very high redshifts. It will also be helpful to reconsider the EoR in Rh = ct when complete structure formation models become available.

  6. A dusty, normal galaxy in the epoch of reionization.

    PubMed

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-19

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7. PMID:25731171

  7. The Galaxy UV Luminosity Function before the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mason, Charlotte A.; Trenti, Michele; Treu, Tommaso

    2015-11-01

    We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass-dependent, but redshift-independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at z > 10 (lookback time ≲500 Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations (0 ≲ z ≲ 10). The significant drop in luminosity density of currently detectable galaxies beyond z ˜ 8 is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth τ ={0.056}-0.010+0.007, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at z={7.84}-0.98+0.65. In addition, our model naturally produces smoothly rising star formation histories for galaxies with L ≲ L* in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at z > 10 we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope (α ˜ -3.5 at z ˜ 16). Finally, we construct forecasts for surveys with James Webb Space Telescope (JWST) and Wide-field Infrared Survey Telescope (WFIRST) and predict that galaxies out to z ˜ 14 will be observed. Galaxies at z > 15 will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.

  8. Trajectory of the cosmic plasma through the quark matter phase diagram

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2016-02-01

    Experimental studies of the quark-gluon plasma (QGP) focus on two, in practice distinct, regimes: one in which the baryonic chemical potential μB is essentially zero, the other in which it is of the same order of magnitude as the temperature. The cosmic QGP which dominates the early universe after reheating is normally assumed to be of the first kind, but recently it has been suggested that it might well be of the second: this is the case in the theory of "little inflation." If that is so, then it becomes a pressing issue to fix the trajectory of the Universe, as it cools, through the quark matter phase diagram: in particular, one wishes to know where in that diagram the plasma epoch ends, so that the initial conditions of the hadronic epoch can be determined. Here we combine various tools from strongly coupled QGP theory (the latest lattice results, together with gauge-gravity duality) in order to constrain that trajectory, assuming that little inflation did occur.

  9. Recent Developments in Reconnection Theory: the Plasmoid Instability, Self-Generated Turbulence, and Implications for Laboratory and Space Plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Amitava

    2015-11-01

    In recent years, new developments in reconnection theory have challenged classical nonlinear reconnection models. One of these developments is the so-called plasmoid instability of thin current sheets that grows at super-Alfvenic growth rates. Within the resistive MHD model, this instability alters qualitatively the predictions of the Sweet-Parker model, leading to a new nonlinear regime of fast reconnection in which the reconnection rate itself becomes independent of S. This regime has also been seen in Hall MHD as well as fully kinetic simulations, and thus appears to be a universal feature of thin current sheet dynamics, including applications to reconnection forced by the solar wind in the heliosphere and spontaneously unstable sawtooth oscillations in tokamaks. Plasmoids, which can grow by coalescence to large sizes, provide a powerful mechanism for coupling between global and kinetic scales as well as an efficient accelerator of particles to high energies. In two dimensions, the plasmoids are characterized by power-law distribution functions followed by exponential tails. In three dimensions, the instability produces self-generated and strongly anisotropic turbulence in which the reconnection rate for the mean-fields remain approximately at the two-dimensional value, but the energy spectra deviate significantly from anisotropic strong MHD turbulence phenomenology. A new phase diagram of fast reconnection has been proposed, guiding the design of future experiments in magnetically confined and high-energy-density plasmas, and have important implications for explorations of the reconnection layer in the recently launched Magnetospheric Multiscale (MMS) mission. This research is supported by DOE, NASA, and NSF.

  10. Nonlinear frequency shift of electrostatic waves in general collisionless plasma: Unifying theory of fluid and kinetic nonlinearities

    SciTech Connect

    Liu, Chang; Dodin, Ilya Y.

    2015-08-15

    The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.

  11. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Rodriguez, L.; Janvier, M.

    2016-08-01

    Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims: The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods: We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results: We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions: The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.

  12. Organic Chemostratigraphic Markers Characteristic of the (Informally Designated) Anthropocene Epoch

    NASA Astrophysics Data System (ADS)

    Kruge, M. A.

    2008-12-01

    Recognizing the tremendous collective impact of humans on the environment in the industrial age, the proposed designation of the current time period as the Anthropocene Epoch has considerable merit. One of the signature activities during this time continues to be the intensive extraction, processing, and combustion of fossil fuels. While fossil fuels themselves are naturally-occurring, they are most often millions of years old and associated with deeply buried strata. They may be found at the surface, for example, as natural oil seeps or coal seam outcrops, but these are relatively rare occurrences. Fossil fuels and their myriad by- products become the source of distinctive organic chemostratigraphic marker compounds for the Anthropocene when they occur out of their original geological context, i.e., as widespread contaminants in sediments and soils. These persistent compounds have high long-term preservation potential, particularly when deposited under low oxygen conditions. Fossil fuels can occur as environmental contaminants in raw form (e.g., crude petroleum spilled during transport) or as manufactured products (e.g., diesel oil from a leaking storage facility, coal tar from a manufactured gas plant, plastic waste in a landfill, pesticides from petroleum feedstock in agricultural soils). Distinctive assemblages of hydrocarbon marker compounds including acyclic isoprenoids, hopanes, and steranes can be readily detected by gas chromatography/mass spectrometric analysis of surface sediments and soils. Polycyclic aromatic hydrocarbons (PAHs), along with sulfur-, oxygen-, and nitrogen-containing aromatic compounds, are also characteristic of fossil fuels and are readily detectable as well. More widespread is the airfall deposition of fossil fuel combustion products from vehicular, domestic and industrial sources. These occur in higher concentrations in large urban centers, but are also detected in remote areas. Parent (nonmethylated) PAHs such as phenanthrene

  13. Discovery of a Giant Lya Emitter Near the Reionization Epoch

    SciTech Connect

    Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M.J.; Okamura, Sadanori; Hayashi, Masao; Cirasuolo, Michele; Dressler, Alan; Iye, Masanori; Jarvis, Matt.J.

    2008-08-01

    We report the discovery of a giant Ly{alpha} emitter (LAE) with a Spitzer/IRAC counterpart near the reionization epoch at z = 6.595. The giant LAE is found from the extensive 1 deg{sup 2} Subaru narrow-band survey for z = 6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrow-band object with L(Ly{alpha}) = 3.9 {+-} 0.2 x 10{sup 43} erg s{sup -1} in our survey volume of 10{sup 6} Mpc{sup 3}, but also a spatially extended Ly{alpha} nebula with the largest isophotal area whose major axis is at least {approx_equal} 3-inches. This object is more likely to be a large Ly{alpha} nebula with a size of {approx}> 17-kpc than to be a strongly-lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v{sub FWHM} = 251 {+-} 21 km s{sup -1}, and that the line-center velocity changes by {approx_equal} 60 km s{sup -1} in a 10-kpc range. The stellar mass and star-formation rate are estimated to be 0.9-5.0 x 10{sup 10}M{sub {circle_dot}} and > 34 M{sub {circle_dot}}yr{sup -1}, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of inter-galactic medium.

  14. Second Epoch Hubble Space Telescope Imaging of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.; Patnaude, Daniel; Raymond, John C.; Reynolds, Stephen P.; Williams, Brian J.

    2015-01-01

    We have obtained new HST/WFC3 images of Kepler's supernova remnant in H-alpha (F656N) and [N II] (F658N) emission line filters. The bright radiative shocks in dense clumps are detected in both filters, while non-radiative shocks are seen as faint filaments only in the H-alpha image. Most of these Balmer filaments lie around the periphery of the remnant where the blast wave encounters partially neutral interstellar gas. We compare the new images with HST/ACS images taken nearly 10 years previously, and find that these filaments tracing the forward shock have moved 0.6"-0.9" between the two epochs. Assuming a distance of 4 kpc to the remnant, these proper motions correspond to shock velocities of 1160-1740 km/s, which are consistent with the published values, 1550-2000 km/s (e.g. Blair et al. 1991, ApJ 366, 484). We also find a few Balmer filaments with highly non-radial proper motions. In one particularly interesting case in the projected interior of the remnant, SE of the center, the shock appears to have wrapped around a sharp density enhancement and moved about 0.3" in the period between the observations.The images allow us to study the evolution of the shock around an ejecta knot, which is punching through the remnant boundary in the northwest. The forward shock, visible as an arcuate Balmer filament, has moved about 1". At the trailing edges, the system of radiative knots formed by Rayleigh-Taylor instabilities have undergone significant changes - some knots have disappeared, new ones have appeared, and many have changed in brightness. Elsewhere in the remnant we find changes in the relative intensities of many small, bright knots over the 10 year baseline, indicating the short radiative lifetimes of these features.This work has been supported in part by grant HST-GO-12885 to the Universities Space Research Association.

  15. Intracluster Supernovae in the Multi-epoch Nearby Cluster Survey

    NASA Astrophysics Data System (ADS)

    Sand, David J.; Graham, Melissa L.; Bildfell, Chris; Foley, Ryan J.; Pritchet, Chris; Zaritsky, Dennis; Hoekstra, Henk; Just, Dennis W.; Herbert-Fort, Stéphane; Sivanandam, Suresh

    2011-03-01

    The Multi-Epoch Nearby Cluster Survey has discovered 23 cluster Type Ia supernovae (SNe Ia) in the 58 X-ray-selected galaxy clusters (0.05 lsimzlsim 0.15) surveyed. Four of our SN Ia events have no host galaxy on close inspection, and are likely intracluster SNe. Although one of the candidates, Abell399_3_14_0, appears to be associated in projection with the outskirts of a nearby red sequence galaxy, its velocity offset of ~1000 km s-1 indicates that it is unbound and therefore an intracluster SN. Another of our candidates, Abell85_6_08_0, has a spectrum consistent with an SN1991bg-like object, suggesting that at least some portion of intracluster stars belong to an old stellar population. Deep image stacks at the location of the candidate intracluster SNe put upper limits on the luminosities of faint hosts, with Mr >~ -13.0 mag and Mg >~ -12.5 mag in all cases. For such limits, the fraction of the cluster luminosity in faint dwarfs below our detection limit is lsim0.1%, assuming a standard cluster luminosity function. All four events occurred within ~600 kpc of the cluster center (projected), as defined by the position of the brightest cluster galaxy, and are more centrally concentrated than the cluster SN Ia population as a whole. After accounting for several observational biases that make intracluster SNe easier to discover and spectroscopically confirm, we calculate an intracluster stellar mass fraction of 0.16+0.13 -0.09 (68% confidence limit) for all objects within R 200. If we assume that the intracluster stellar population is exclusively old, and the cluster galaxies themselves have a mix of stellar ages, we derive an upper limit on the intracluster stellar mass fraction of <0.47 (84% one-sided confidence limit). When combined with the intragroup SNe results of McGee & Balogh, we confirm the declining intracluster stellar mass fraction as a function of halo mass reported by Gonzalez and collaborators.

  16. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  17. A comparison of weak-turbulence and particle-in-cell simulations of weak electron-beam plasma interaction

    NASA Astrophysics Data System (ADS)

    Ratcliffe, H.; Brady, C. S.; Che Rozenan, M. B.; Nakariakov, V. M.

    2014-12-01

    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular, ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper, we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit, the results agree well, but for increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. Additionally, we establish lower limits on the number of simulation particles needed to accurately reproduce the electron and wave distributions in their saturated states and to reproduce their intermediate states and time evolution. These results should be taken into consideration in, for example, simulations of plasma wave generation in the solar corona of Type III solar radio bursts from the corona to the solar wind and in weak turbulence investigations of ion-acoustic lines in the ionosphere.

  18. A comparison of weak-turbulence and particle-in-cell simulations of weak electron-beam plasma interaction

    SciTech Connect

    Ratcliffe, H. Brady, C. S.; Che Rozenan, M. B.; Nakariakov, V. M.

    2014-12-15

    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular, ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper, we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit, the results agree well, but for increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. Additionally, we establish lower limits on the number of simulation particles needed to accurately reproduce the electron and wave distributions in their saturated states and to reproduce their intermediate states and time evolution. These results should be taken into consideration in, for example, simulations of plasma wave generation in the solar corona of Type III solar radio bursts from the corona to the solar wind and in weak turbulence investigations of ion-acoustic lines in the ionosphere.

  19. Simultaneous single epoch satellite clock modelling in Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Thongtan, Thayathip

    In order to obtain high quality positions from navigation satellites, range errors have to be identified and either modelled or estimated. This thesis focuses on satellite clock errors, which are needed to be known because satellite clocks are not perfectly synchronised with navigation system time. A new approach, invented at UCL, for the simultaneous estimation, in a single epoch, of all satellite clock offsets within a Global Navigation Satellite System (GNSS) from range data collected at a large number of globally distributed ground stations is presented. The method was originally tested using only data from a limited number of GPS satellites and ground stations. In this work a total of 50 globally distributed stations and the whole GPS constellation are used in order to investigate more fully the capabilities of the method, in terms of both accuracy and reliability. A number of different estimation models have been tested. These include those with different weighting schemes, those with and without tropospheric bias parameters and those that include assumptions regarding prior knowledge of satellite orbits. In all cases conclusions have been drawn based on formal error propagation theory. Accuracy has been assessed largely through the sizes of the predicted satellite clock standard deviations and, in the case of simultaneously estimating satellite positions, their error ellipsoids. Both internal and external reliability have been assessed as these are important contributors to integrity, something that is essential for many practical applications. It has been found that the accuracy and reliability of satellite clock offsets are functions of the number of known ground station clocks and distance from them, quality of orbits and quality of range measurement. Also the introduction of tropospheric zenith delay parameters into the model reduces both accuracy and reliability by amounts depending on satellite elevation angles. (Abstract shortened by UMI.)

  20. The pulsar B2224+65 and its jets: a two epoch X-ray analysis

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wang, Q. D.

    2010-10-01

    We present an X-ray morphological and spectroscopic study of the pulsar B2224+65 and its apparent jet-like X-ray features based on two epoch Chandra observations. The main X-ray feature, which shows a large directional offset from the ram-pressure confined pulsar wind nebula (Guitar nebula), is broader in apparent width and shows evidence for spectral hardening (at 95 per cent confidence) in the second epoch compared to the first. Furthermore, the sharp leading edge of the feature is found to have a proper motion consistent with that of the pulsar (~180 mas yr-1). The combined data set also provides evidence for the presence of a counter feature, albeit substantially fainter and shorter than the main one. Additional spectral trends along the major and minor axes of the feature are only marginally detected in the two epoch data, including softening counter to the direction of proper motion. Possible explanations for the X-ray features include diffuse energetic particles being confined by an organized ambient magnetic field as well as a simple ballistic jet interpretation; however, the former may have difficulty in explaining observed spectral trends between epochs and along the feature's major axis, whereas the latter may struggle to elucidate its linearity. Given the low counting statistics available in the two epoch observations, it remains difficult to determine a physical production scenario for these enigmatic X-ray emitting features with any certainty.

  1. Rydberg gas theory of a glow discharge plasma: II. Electrode kinetics (probe theory) and the thermal rate constant for Symmetrical charge transfer involving Rydberg atoms of Ar.

    PubMed

    Mason, Rod S

    2010-04-21

    A steady state chemical kinetic model is developed to describe the conduction of electrical current between two probes, of relatively large surface area, immersed in a fast flowing plasma by the mechanism of charge transfer through a gas of Rydberg atoms. It correctly predicts the shape of current-voltage profiles which are similar to those of Langmuir, or floating double probe measurements. The difference is that the plateau current at the probe reflects the transport limited ion current at the cathodic electrode, even when the probe is being scanned in the anodic region. The sharp gradient leading up to the plateau of the I-V curve is associated with the field dependence of the efficiency of Rydberg atom ionisation, not the electron temperature. This approach gives a good qualitative explanation of experimental behaviour over a wide range of probe bias voltages and includes the occurrence of electron impact ionisation at the anode. It also gives a value for the thermal rate coefficient of symmetrical charge transfer between Rydberg atoms of Ar (8.2 x 10(-7) molecule(-1) cm(3) s(-1), at 313 K; plasma density approximately = 10(10) atoms cm(-3), total pressure = 2.7 mbar).

  2. Theory and Simulation of Quasilinear Transport from External Magnetic Field Perturbations in a DIII-D Plasma

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Ferraro, N. M.

    2013-10-01

    The linear response profiles for the 3D perturbed magnetic fields, currents, ion velocities, plasma density, pressures, electric potential due to external resonant magnetic field perturbations (RMP) are obtained from the collisional two-fluid M3DC1 code. A newly developed RMPtran code computes the resulting quasilinear E × B and magnetic radial transport flows in all channels: ion and electron particle and energy, as well as toroidal angular momentum (TAM). The relative mix of ambipolar E × B and non-ambipolar magnetic particle transport and resulting J × B torque is of particular interest. Surprisingly much of the core RMP island J × B torque braking plasma rotation is returned to accelerate the plasma edge. Our main focus is on delineating the mechanisms for the RMP density pump-out where the radial convection of TAM is competitive with the magnetic braking of plasma rotation. Enhancement of the two-fluid crossfield resistivity, heat diffusivity, and viscosity represents the effects of turbulence on the low-n RMP transport. High-n turbulent transport is to be taken from the TGLF transport model. Supported by the US Department of Energy under DE-FG02-95ER54309.

  3. A comparison of magnetic field measurements and a plasma-based proxy to infer EMIC wave distributions at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Blum, L. W.; MacDonald, E.; Gary, S. P.; Thomsen, M. F.; Green, J. C.; Spence, H. E.

    2009-12-01

    There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. Using LANL Magnetospheric Plasma Analyzer (MPA) data from geosynchronous orbit, in conjunction with linear theory, we have developed a proxy for enhanced EMIC waves (Blum et al., 2009). We compare this proxy to in situ wave measurements from GOES high-resolution magnetometer data, and examine the presence of these waves as a function of both local time and storm epoch time. This enables broader understanding of the powerful applications of using plasma data to infer wave distributions in space.

  4. Effect of electron emission on the charge and shielding of a dust grain in a plasma: A continuum theory

    SciTech Connect

    D'yachkov, L. G. Khrapak, A. G.; Khrapak, S. A.

    2008-01-15

    The continuum approximation is used to analyze the effect of electron emission from the surface of a spherical dust grain immersed in a plasma on the grain charge by assuming negligible ionization and recombination in the disturbed plasma region around the grain. A parameter is introduced that quantifies the emission intensity regardless of the emission mechanism (secondary, photoelectric, or thermionic emission). An analytical expression for the grain charge Z{sub d} is derived, and a criterion for change in the charge sign is obtained. The case of thermionic emission is examined in some detail. It is shown that the long-distance asymptotic behavior of the grain potential follows the Coulomb law with a negative effective charge Z{sub eff}, regardless of the sign of Z{sub d}. Thus, the potential changes sign and has a minimum if Z{sub d} > 0, which implies that attraction is possible between positively charged dust grains.

  5. Theory and simulation of quasilinear transport from external magnetic field perturbations in a DIII-D plasma

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Ferraro, N. M.

    2015-04-01

    The linear response profiles for the 3D perturbed magnetic fields, currents, ion velocities, plasma density, pressures, and electric potential from low-n external resonant magnetic field perturbations (RMPs) are obtained from the collisional two-fluid M3D-C1 code [N. M. Ferraro and S. C. Jardin, J. Comput. Phys. 228, 7742 (2009)]. A newly developed post-processing RMPtran code computes the resulting quasilinear E×B and magnetic (J×B) radial transport flows with respect to the unperturbed flux surfaces in all channels. RMPtran simulations focus on ion (center of mass) particle and transient non-ambipolar current flows, as well as the toroidal angular momentum flow. The paper attempts to delineate the RMP transport mechanisms that might be responsible for the RMP density pump-out seen in DIII-D [M. A. Mahdavi and J. L. Luxon, Fusion Sci. Technol. 48, 2 (2005)]. Experimentally, the starting high toroidal rotation does not brake to a significantly lower rotation after the pump-out suggesting that convective and E×B transport mechanisms dominate. The direct J×B torque from the transient non-ambipolar radial current expected to accelerate plasma rotation is shown to cancel much of the Maxwell stress J×B torque expected to brake the plasma rotation. The dominant E×B Reynolds stress accelerates rotation at the top of the pedestal while braking rotation further down the pedestal.

  6. Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow

    SciTech Connect

    Haerendel, G.; Eccles, J.V.; Cakir, S. )

    1992-02-01

    Companion papers in this series present (1) the role of equatorial E region postsunset ionosphere, (2) the origin of horizontal plasma shear flow in the postsunset equatorial ionosphere (this paper), (3) the Colored Bubbles experiments results, and (4) computer simulations of artificial initiation of plasma density depletions (bubbles) in the equatorial ionosphere. Within this paper, equations describing the time evolution of the equatorial ionosphere are developed using flux tube integrated and flux tube weighted quantities which model the chemistry, dynamics, and electrodynamics of the equatorial ionosphere. The resulting two-dimensional set of equations can be used to investigate equatorial ionosphere. The resulting two-dimensional set of equations can be used to investigate equatorial electric fields neglecting small-scale phenomena ({lambda} < 1 km). An immediate result derived from the integrated current equations is an equation describing the physics of the shear in the horizontal flow of the equatorial plasma during the evening hours. The profile of the horizontal flow has three important contributing terms relating to the neutral wind dynamo, Hall conduction, and the equatorial electrojet current divergence. Using a one-dimensional model of the velocity shear equation and the integrated ionosphere transport equations, a time history of the development of the shear feature during postsunset hours is presented. The one-dimensional model results are compared to the velocity shear measurements from the Colored Bubbles experiments.

  7. Fundamentals of Plasma Physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul M.

    2008-07-01

    Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.

  8. The Corporate University's Role in Managing an Epoch in Learning Organisation Innovation

    ERIC Educational Resources Information Center

    Dealtry, Richard

    2006-01-01

    Purpose: The purpose of this paper is to set the scene for some radical epochal thinking about the approach and future strategic directions in the management of organisational learning, following the author's earlier editorial theme concerning the need for exploration and innovation in organisational learning management.…

  9. Effects of Formation Epoch Distribution on X-Ray Luminosity and Temperature Functions of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Enoki, Motohiro; Takahara, Fumio; Fujita, Yutaka

    2001-07-01

    We investigate statistical properties of galaxy clusters in the context of a hierarchical clustering scenario, taking into account their formation epoch distribution; this study is motivated by the recent finding by Fujita and Takahara that X-ray clusters form a fundamental plane in which the mass and the formation epoch are regarded as two independent parameters. Using the formalism that discriminates between major mergers and accretion, the epoch of a cluster formation is identified with that of the last major merger. Since tiny mass accretion following formation does not much affect the core structure of clusters, the properties of X-ray emission from clusters are determined by the total mass and density at their formation time. Under these assumptions, we calculate X-ray luminosity and temperature functions of galaxy clusters. We find that the behavior of the luminosity function differs from the model that does not take into account formation epoch distribution; the behavior of the temperature function, however, is not much different. In our model, the luminosity function is shifted to a higher luminosity and shows no significant evolution up to z~1, independent of cosmological models. The clusters are populated on the temperature-luminosity plane, with a finite dispersion. Since the simple scaling model in which the gas temperature is equal to the virial temperature fails to reproduce the observed luminosity-temperature relation, we also consider a model that takes into account the effects of preheating. The preheating model reproduces the observations much more accurately.

  10. The Influence of Epoch Length on Physical Activity Patterns Varies by Child's Activity Level

    ERIC Educational Resources Information Center

    Nettlefold, Lindsay; Naylor, P. J.; Warburton, Darren E. R.; Bredin, Shannon S. D.; Race, Douglas; McKay, Heather A.

    2016-01-01

    Purpose: Patterns of physical activity (PA) and sedentary time, including volume of bouted activity, are important health indicators. However, the effect of accelerometer epoch length on measurement of these patterns and associations with health outcomes in children remain unknown. Method: We measured activity patterns in 308 children (52% girls,…

  11. Examining Initial Sleep Onset in Primary Insomnia: A Case-Control Study Using 4-Second Epochs

    PubMed Central

    Moul, Douglas E.; Germain, Anne; Cashmere, J. David; Quigley, Michael; Miewald, Jean M.; Buysse, Daniel J.

    2007-01-01

    Study Objectives: To explore the sleep onset process in primary insomnia patients, new rules for scoring 4-second epochs were implemented to score sleep and artifacts during initial sleep onset. Conventional scorings in 20-second and 60-second epochs were also obtained. Methods: The start of the initial 60-second epoch of stage 1 was used to define “time zero” (t0). Sleep onset periods from 11 patients and 11 individually age- and sex-matched controls spanned from 5 minutes before t0 through 29 minutes after t0. Using the new rules, the periods were scored blind to group assignment. This t0 time-referenced the data analysis to one plausible midpoint in the sleep onset process. In parallel, latencies were time-referenced from good night time. Results: Reliability in scoring sleep and artifacts was adequate (kappa = 0.68 & 0.63, respectively, p <0.001). Group differences in sleep latencies were marginal in 60-second and 20-second scoring but significant with a definition of 4-second sleep latency. Patients had more 4-second epochs scored as awake (Mantel-Haenszel χ2 = 271, d.f. = 1, p <0.001) and containing artifact (M-H χ2 = 143, p <0.001). Patients took longer to achieve 30 continuous 4-second epochs of NREM sleep (Breslow χ2 = 4.03, d.f. = 1, p = 0.045) after t0. Patients accumulated sleep more slowly with all 3 scoring rules after t0. A slower rate of accumulating sleep after t0 was detected only with the 4-second scoring (p = 0.047). Conclusions: Evidence was present for momentary state-switching instabilities in the patients during the initial sleep onset process. Using rules for scoring small epochs may reveal such instabilities more readily than traditional scoring methods. Citation: Moul DE; Germain A; Cashmere D; Quigley M; Miewald JM; Buysse DJ. Examining initial sleep onset in primary insomnia: a case-control study using 4-second epochs. J Clin Sleep Med 2007;3(5):479-488. PMID:17803011

  12. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-06-01

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. The solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.

  13. Nanodusty plasma chemistry: a mechanistic and variational transition state theory study of the initial steps of silyl anion-silane and silylene anion-silane polymerization reactions.

    PubMed

    Bao, Junwei Lucas; Seal, Prasenjit; Truhlar, Donald G

    2015-06-28

    The growth of nanodusty particles, which is critical in plasma chemistry, physics, and engineering. The aim of the present work is to understand the detailed reaction mechanisms of early steps in this growth. The polymerization of neutral silane with the silylene or silyl anion, which eliminates molecular hydrogen with the formation of their higher homologues, governs the silicon hydride clustering in nanodusty plasma chemistry. The detailed mechanisms of these important polymerization reactions in terms of elementary reactions have not been proposed yet. In the present work, we investigated the initial steps of these polymerization reactions, i.e., the SiH4 + Si2H4(-)/Si2H5(-) reactions, and we propose a three-step mechanism, which is also applicable to the following polymerization steps. CM5 charges of all the silicon-containing species were computed in order to analyze the character of the species in the proposed reaction mechanisms. We also calculated thermal rate constant of each step using multi-structural canonical variational transition state theory (MS-CVT) with the small-curvature tunneling (SCT) approximation, based on the minimum energy path computed using M08-HX/MG3S electronic structure method.

  14. STAR FORMATION IN ORION'S L1630 CLOUD: AN INFRARED AND MULTI-EPOCH X-RAY STUDY

    SciTech Connect

    Principe, David A.; Kastner, J. H.; Richmond, Michael; Grosso, Nicolas; Hamaguchi, Kenji

    2014-07-01

    X-ray emission is characteristic of young stellar objects (YSOs) and is known to be highly variable. We investigate, via an infrared and multi-epoch X-ray study of the L1630 dark cloud, whether and how X-ray variability in YSOs is related to protostellar evolutionary state. We have analyzed 11 Chandra X-Ray Observatory observations, obtained over the course of four years and totaling ∼240 ks exposure time, targeting the eruptive Class I YSO V1647 Ori in L1630. We used Two Micron All Sky Survey and Spitzer data to identify and classify IR counterparts to L1630 X-ray sources and identified a total of 52 X-ray-emitting YSOs with IR counterparts, including four Class I sources and one Class 0/I source. We have detected cool (<3 MK) plasma, possibly indicative of accretion shocks, in three classical T Tauri stars. A subsample of 27 X-ray-emitting YSOs were covered by 9 of the 11 Chandra observations targeting V1647 Ori and the vicinity. For these 27 YSOs, we have constructed X-ray light curves spanning approximately four years. These light curves highlight the variable nature of pre-main-sequence X-ray-emitting young stars; many of the L1630 YSOs vary by orders of magnitude in count rate between observations. We discuss possible scenarios to explain apparent trends between various X-ray spectral properties, X-ray variance, and YSO classification.

  15. Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks

    SciTech Connect

    Stacey, W. M.; Bae, C.

    2015-06-15

    A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.

  16. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Annual report, November 16, 1991--November 15, 1992

    SciTech Connect

    Scharer, J.E.

    1992-12-31

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  17. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    SciTech Connect

    Borovsky, Joseph E; Denton, Michael H

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  18. Plasma Physics: An Introductory Course

    NASA Astrophysics Data System (ADS)

    Dendy, R. O.

    1995-03-01

    Preface; Introduction R. O. Dendy; 1. Plasma particle dynamics R. J. Hastie; 2. Plasma kinetic theory J. A. Elliott; 3. Waves in plasmas J. P. Doughtery; 4. Magnetohydrodynamics K. I. Hopcraft; 5. Turbulence in fluids and fusion plasmas F. A. Haas; 6. Finite-dimensional dynamics and chaos T. J. Mullin; 7. Computational plasma physics J. W. Eastwood; 8. Tokomak experiments D. C. Robinson and M. R. O'Brien; 9. Magnetospheric plasmas: Part I Basic processes in the solar system D. A. Bryant; Part II Microprocesses R. L. Bingham; 10. Solar plasmas R. A. Hood; 11. Gravitational plasmas J. J. Binney; 12. Laser plasmas A. R. Bell; 13. Industrial plasmas P. C. Johnson; 14. Transport in magnetically confined plasmas T. E. Stringer; 15. Radio-frequency plasma heating R. A. Cairns; 16. Boundary plasmas G. McCracken; 17. How to build a tokomak T. N. Todd; 18. Survey of fusion plasma physics R. S. Pease; Index.

  19. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    SciTech Connect

    Tsytovich, Vadim; Gusein-zade, Namik; Ignatov, Alexander

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  20. Energy Dissipation of Energetic Electrons in the Inhomogeneous Intergalactic Medium during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Kaurov, Alexander A.

    2016-06-01

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes, we take into account the inverse Compton (IC) scattering of the electrons on the cosmic microwave background photons, which is the dominant channel of energy loss for electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between hydrogen and helium ionizations depends on the initial energy of an electron; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of the atomic cross-section becomes important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

  1. THE EFFECTS OF POLARIZED FOREGROUNDS ON 21 cm EPOCH OF REIONIZATION POWER SPECTRUM MEASUREMENTS

    SciTech Connect

    Moore, David F.; Aguirre, James E.; Parsons, Aaron R.; Pober, Jonathan C.; Jacobs, Daniel C.

    2013-06-01

    Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using the delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.

  2. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  3. THE EPOCH OF ASSEMBLY OF TWO GALAXY GROUPS: A COMPARATIVE STUDY

    SciTech Connect

    Nichols, Matthew; Bland-Hawthorn, Joss

    2013-10-01

    Nearby galaxy groups of comparable mass to the Local Group show global variations that reflect differences in their evolutionary history. Satellite galaxies in groups have higher levels of gas deficiency as the distance to their host decreases. The well established gas-deficiency profile of the Local Group reflects an epoch of assembly starting at z ∼< 10. We investigate whether this gas-deficiency profile can be used to determine the epoch of assembly for other nearby groups. We choose the M81 group as this has the most complete inventory, both in terms of membership and multi-wavelength observations. We expand our earlier evolutionary model of satellite dwarf galaxies to not only confirm this result for the Local Group but also show that the more gas-rich M81 group is likely to have assembled at a later time (z ∼< 1-3) than the Local Group.

  4. Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements

    NASA Astrophysics Data System (ADS)

    Deeg, H. J.

    2015-06-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.

  5. Dose-Adjusted EPOCH-Rituximab Therapy in Primary Mediastinal B-Cell Lymphoma

    PubMed Central

    Dunleavy, Kieron; Pittaluga, Stefania; Maeda, Lauren S.; Advani, Ranjana; Chen, Clara C.; Hessler, Julie; Steinberg, Seth M.; Grant, Cliona; Wright, George; Varma, Gaurav; Staudt, Louis M.; Jaffe, Elaine S.; Wilson, Wyndham H.

    2015-01-01

    BACKGROUND Primary mediastinal B-cell lymphoma is a distinct subtype of diffuse large-B-cell lymphoma that is closely related to nodular sclerosing Hodgkin’s lymphoma. Patients are usually young and present with large mediastinal masses. There is no standard treatment, but the inadequacy of immunochemotherapy alone has resulted in routine consolidation with mediastinal radiotherapy, which has potentially serious late effects. We aimed to develop a strategy that improves the rate of cure and obviates the need for radiotherapy. METHODS We conducted a single-group, phase 2, prospective study of infusional dose-adjusted etoposide, doxorubicin, and cyclophosphamide with vincristine, prednisone, and rituximab (DA-EPOCH-R) and filgrastim without radiotherapy in 51 patients with untreated primary mediastinal B-cell lymphoma. We used results from a retrospective study of DA-EPOCH-R from another center to independently verify the outcomes. RESULTS The patients had a median age of 30 years (range, 19 to 52) and a median tumor diameter of 11 cm; 59% were women. During a median of 5 years of follow-up, the event-free survival rate was 93%, and the overall survival rate was 97%. Among the 16 patients who were involved in the retrospective analysis at another center, over a median of 3 years of follow-up, the event-free survival rate was 100%, and no patients received radiotherapy. No late morbidity or cardiac toxic effects were found in any patients. After follow-up ranging from 10 months to 14 years, all but 2 of the 51 patients (4%) who received DA-EPOCH-R alone were in complete remission. The 2 remaining patients received radiotherapy and were disease-free at follow-up. CONCLUSIONS Therapy with DA-EPOCH-R obviated the need for radiotherapy in patients with primary mediastinal B-cell lymphoma. (Funded by the National Cancer Institute; ClinicalTrials.gov number, NCT00001337.) PMID:23574119

  6. Observations and Analysis of Three Field RR Lyrae Stars Selected Using Single-epoch SDSS Data

    NASA Astrophysics Data System (ADS)

    Powell, W. L., Jr.; Jameson, S. N.; De lee, N.; Wilhelm, R. J.

    2015-08-01

    We present the results of our Johnson B and V observations of three RR Lyrae candidate stars that we identified as likely variable stars using SDSS data. The stars were selected based upon a single epoch of photometry and spectroscopy. The stars were observed at McDonald Observatory to obtain full light curves. We present full light curves, measured periods, and amplitudes, as well as the results of our Fourier analysis of the light curves.

  7. Fossil wood from the Miocene and Oligocene epoch: chemistry and morphology.

    PubMed

    Bardet, Michel; Pournou, Anastasia

    2015-01-01

    Fossil wood is the naturally preserved remain of the secondary xylem of plants that lived before the Holocene epoch. Typically, fossil wood is preserved as coalified or petrified and rarely as mummified tissue. The process of fossilization is very complex and it is still unknown why in the same fossil record, wood can be found in different fossilisation forms. In 2007, a fossil forest was found in the Bükkábrány open-pit coal mine in Hungary. The non-petrified forest is estimated to be 7 million years old (Miocene epoch) and its trees were found standing in an upright position. This fossil assemblage is exceptionally rare because wood has been preserved as soft waterlogged tissue. This study aimed to investigate this remarkable way of fossil wood preservation, by examining its chemistry with (13)C CPMAS NMR and its morphology with light and electron microscopy. For comparison reasons, a petrified wood trunk from the Oligocene epoch (30 Myr) found in 2001 at Porrentruy region in Switzerland and two fresh wood samples of the modern equivalents of the Miocene sample were also examined. The results obtained showed that the outstanding preservation state of the Miocene fossil is not owed to petrification or coalification. Mummification is a potential mechanism that could explain Bükkábrány trunks' condition, however this fossilisation process is not well studied and therefore this hypothesis needs to be further investigated. PMID:25294390

  8. Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Sagdeev, R.; Milikh, G.

    2011-01-01

    The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.

  9. The Time Evolution of HH 1 from Four Epochs of HST Images

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Reipurth, B.; Esquivel, A.; Bally, J.

    2016-05-01

    We present an analysis of four epochs of Hα and [S ii] λλ 6716/6731 Hubble Space Telescope (HST) images of HH 1. For determining proper motions, we explore a new method based on the analysis of spatially degraded images obtained convolving the images with wavelet functions of chosen widths. With this procedure, we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities, and spatial distribution of the line emission. We find that over the last two decades HH 1 shows a clear acceleration. Also, the Hα and [S ii] intensities first dropped and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O iii] λ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O iii]/Hα ratio.

  10. A 2 epoch proper motion catalogue from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Leigh; Lucas, Phil; Burningham, Ben; Jones, Hugh; Pinfield, David; Smart, Ricky; Andrei, Alexandre

    2013-04-01

    The UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 square degrees at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J band observations, with epoch baselines ranging from 2 to 7 years. We present a proper motion catalogue for the 1500 square degrees of the 2 epoch LAS data, which includes some 800,000 sources with motions detected above the 5σ level. We developed a bespoke proper motion pipeline which applies a source-unique second order polynomial transformation to UKIDSS array coordinates of each source to counter potential local non-uniformity in the focal plane. Our catalogue agrees well with the proper motion data supplied in the current WFCAM Science Archive (WSA) DR9 catalogue where there is overlap, and in various optical catalogues, but it benefits from some improvements. One improvement is that we provide absolute proper motions, using LAS galaxies for the relative to absolute correction. Also, by using unique, local, 2nd order polynomial tranformations, as opposed to the linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by their pipeline.

  11. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  12. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-01-01

    The auroral motions and geomagnetic changes the characterize the substorm's expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  13. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-05-01

    The auroral motions and geomagnetic changes the characterize the substorm`s expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  14. FLUID DYNAMICS OF STELLAR JETS IN REAL TIME: THIRD EPOCH HUBBLE SPACE TELESCOPE IMAGES OF HH 1, HH 34, AND HH 47

    SciTech Connect

    Hartigan, P.; Frank, A.; Foster, J. M.; Rosen, P. A.; Wilde, B. H.; Douglas, M.; Coker, R. F.; Blue, B. E.; Hansen, J. F.

    2011-07-20

    We present new, third-epoch Hubble Space Telescope H{alpha} and [S II] images of three Herbig-Haro (HH) jets (HH 1 and 2, HH 34, and HH 47) and compare the new images with those from previous epochs. The high spatial resolution, coupled with a time series whose cadence is of order both the hydrodynamic and radiative cooling timescales of the flow, allows us to follow the hydrodynamic/magnetohydrodynamic evolution of an astrophysical plasma system in which ionization and radiative cooling play significant roles. Cooling zones behind the shocks are resolved, so it is possible to identify which way material flows through a given shock wave. The images show that heterogeneity is paramount in these jets, with clumps dominating the morphologies of both bow shocks and their Mach disks. This clumpiness exists on scales smaller than the jet widths and determines the behavior of many of the features in the jets. Evidence also exists for considerable shear as jets interact with their surrounding molecular clouds, and in several cases we observe shock waves as they form and fade where material emerges from the source and as it proceeds along the beam of the jet. Fine structure within two extended bow shocks may result from Mach stems that form at the intersection points of oblique shocks within these clumpy objects. Taken together, these observations represent the most significant foray thus far into the time domain for stellar jets, and comprise one of the richest data sets in existence for comparing the behavior of a complex astrophysical plasma flow with numerical simulations and laboratory experiments.

  15. Experimental challenge to nucleosynthesis in core-collapse supernovae - Very early epoch of type II SNe -

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, T.; Kahl, D. M.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Chen, A.; Cherubini, S.; Choi, S. H.; Hahn, I. S.; He, J. J.; Khiem, Le H.; Lee, C. S.; Kwon, Y. K.; Wanajo, S.; Janka, H.-T.

    2013-05-01

    Nucleosynthesis is one of the keys in studying the mechanism of core-collapse supernovae, which is an interesting challenge for modern science. The νp-process, which is similar to an explosive hydrogen burning process, has been proposed as the most probable process in the very early epoch of type II supernovae. Here, we discuss our experimental efforts for the νp-process, the first extensive direct measurements of the (α,p) reactions on bottle-neck proto-rich nuclei in light mass regions. Other challenges for the νp-process study are also discussed.

  16. Joint US/UK Epoch World Magnetic Model 1995. Technical report

    SciTech Connect

    Quinn, J.M.; Coleman, R.J.; Shiel, D.L.

    1995-04-01

    This report contains a detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained during the course of the 1995 Epoch World Magnetic Modeling effort. This report also contains the GEOMAG algorithm and describes its uses and limitations. Charts derived from the WMM-95 model and the GEOMAG algorithm for both the main geomagnetic field components and their secular variations are presented on Mercator and polar stereographic projections. Additionally, the numerical values of the main geomagnetic field components and their secular variations are tabulated on a 5-degree worldwide grid.

  17. Lithographed spectrometers for tomographic line mapping of the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    O'Brient, R.; Bock, J. J.; Bradford, C. M.; Crites, A.; Duan, R.; Hailey-Dunsheath, S.; Hunacek, J.; LeDuc, R.; Shirokoff, E.; Staniszewski, Z.; Turner, A.; Zemcov, M.

    2014-08-01

    The Tomographic Ionized carbon Mapping Experiment (TIME) is a multi-phased experiment that will topographically map [CII] emission from the Epoch of Reionization. We are developing lithographed spectrometers that couple to TES bolometers in anticipation of the second generation instrument. Our design intentionally mirrors many features of the parallel SuperSpec project, inductively coupling power from a trunk-line microstrip onto half-wave resonators. The resonators couple to a rat-race hybrids that feeds TES bolometers. Our 25 channel prototype shows spectrally positioned lines roughly matching design with a receiver optical efficiency of 15-20%, a level that is dominated by loss in components outside the spectrometer.

  18. The First Billion Years: The Growth of Galaxies in the Reionization Epoch

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth

    2015-08-01

    Detection and measurement of the earliest galaxies in the first billion years only became possible after the Hubble Space Telescope was updated in 2009 with the infrared WFC3/IR camera during Shuttle servicing mission SM4. The first billion years is a fascinating epoch, not just because of the earliest galaxies known from about 450 Myr after the Big Bang, but also because it encompasses the reionization epoch that peaked around z~9, as Planck has recently shown, and ended around redshift z~6 at 900 Myr. Before 2009 just a handful of galaxies were known in the reionization epoch at z>6. But within the last 5 years, with the first HUDF09 survey, the HUDF12, CANDELS and numerous other surveys on the GOODS and CANDELS fields, as well as detections from the cluster lensing programs like CLASH and the Frontier Fields, the number of galaxies at redshifts 7-10 has exploded, with some 700 galaxies being found and characterized. The first billion years was a period of extraordinary growth in the galaxy population with rapid growth in the star formation rate density and global mass density in galaxies. Spitzer observations in the infrared of these Hubble fields are establishing masses as well as giving insights into the nature and timescales of star formation from the very powerful emission lines being revealed by the Spitzer IRAC data. I will discuss what we understand about the growth of galaxies in this epoch from the insights gained from remarkable deep fields like the XDF, as well as the wide-area GOODS/CANDELS fields, the detection of unexpectedly luminous galaxies at redshifts 8-10, the impact of early galaxies on reionization, confirmation of a number of galaxies at z~7-8 from ground-based spectroscopic measurements, and the indications of a change in the growth of the star formation rate around 500 Myr. The first billion years was a time of dramatic growth and change in the early galaxy population.

  19. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas.

    PubMed

    Culfa, O; Tallents, G J; Rossall, A K; Wagenaars, E; Ridgers, C P; Murphy, C D; Dance, R J; Gray, R J; McKenna, P; Brown, C D R; James, S F; Hoarty, D J; Booth, N; Robinson, A P L; Lancaster, K L; Pikuz, S A; Faenov, A Ya; Kampfer, T; Schulze, K S; Uschmann, I; Woolsey, N C

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μm). PMID:27176413

  20. The optical variability of SDSS quasars from multi-epoch spectroscopy. I. Results from 60 quasars with ≥ six-epoch spectra

    SciTech Connect

    Guo, Hengxiao; Gu, Minfeng E-mail: gumf@shao.ac.cn

    2014-09-01

    In a sample of 60 quasars selected from the Sloan Digital Sky Survey with at least six-epoch spectroscopy, we investigate the variability of emission lines and continuum luminosity at various aspects. A strong anti-correlation between the variability and continuum luminosity at 2500 Å is found for the sample, which is consistent with previous works. In individual sources, we find that half of the sample objects follow the trend of being bluer when brighter, while the remaining half follow the redder-when-brighter (RWB) trend. Although the mechanism for RWB is unclear, the effects of host galaxy contribution due to seeing variations cannot be completely ruled out. As expected from the photoionization model, the positive correlations between the broad emission line and continuum luminosity are found in most individual sources, as well as for the whole sample. We confirm the Baldwin effect in most individual objects and the whole sample, while a negative Baldwin effect is also found in several quasars, which can be at least partly (if not all) due to the host galaxy contamination. We find positive correlations between the broad emission line luminosity and line width in most individual quasars, as well as the whole sample, implying a line base that is more variable than the line core.

  1. The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications

    NASA Astrophysics Data System (ADS)

    Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  2. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik Alexander; Capak, Peter; Carilli, Christopher; Walter, Fabian

    2015-08-01

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the material that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We will discuss the most recent progress in studies of gas-rich galaxies out to the highest redshifts through detailed investigations with the most powerful facilities across the electromagnetic spectrum, with a particular focus on new observations obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large (sub-) Millimeter Array (ALMA). These studies cover a broad range in galaxy properties, and provide a detailed comparison of the physical conditions in massive, dust-obscured starburst galaxies and star-forming active galactic nuclei hosts within the first billion years of cosmic time. Facilitating the impressive sensitivity of ALMA, this investigation also includes the first direct, systematic study of the star-forming interstellar medium, gas dynamics, and dust obscuration in (much less luminous and massive) "typical" galaxies at such early epochs. These new results show that "typical" z>5 galaxies are significantly metal-enriched, but not heavily dust-obscured, consistent with a decreasing contribution of dust-obscured star formation to the star formation history of the universe towards the earliest cosmic epochs.

  3. Study of the star catalogue (epoch AD 1396.0) recorded in ancient Korean astronomical almanac

    NASA Astrophysics Data System (ADS)

    Jeon, Junhyeok; Lee, Yong Bok; Lee, Yong-Sam

    2015-11-01

    The study of old star catalogues provides important astrometric data. Most of the researches based on the old star catalogues were manuscript published in Europe and from Arabic/Islam. However, the old star catalogues published in East Asia did not get attention. Therefore, among the East Asian star catalogues we focus on a particular catalogue recorded in a Korean almanac. Its catalogue contains 277 stars that are positioned in a region within 10° of the ecliptic plane. The stars in the catalogue were identified using the modern Hipparcos catalogue. We identified 274 among 277 stars, which is a rate of 98.9 per cent. The catalogue records the epoch of the stars' positions as AD 1396.0. However, by using all of the identified stars we found that the initial epoch of the catalogue is AD 1363.1 ± 3.2. In conclusion, the star catalogue was compiled and edited from various older star catalogues. We assume a correlation with the Almagest by Ptolemaios. This study presents newly analysed results from the historically important astronomical data discovered in East Asia. Therefore, this star catalogue will become important data for comparison with the star catalogues published in Europe and from Arabic/Islam.

  4. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  5. Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.

    2016-11-01

    We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model-dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to the foregrounds is maximized. We identify a target field-dependent region, in k-space, of intrinsic foreground power spectral contamination at low k⊥ and k∥ and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates of the EoR power spectrum; biased results will be obtained from methodologies that ignore their covariance. Using simulated observations with frequency-dependent uv-coverage and primary beam, with the former derived for the Hydrogen Epoch of Reionization Array in 37-antenna and 331-antenna configuration, we recover instrumental power spectra consistent with their intrinsic counterparts. We discuss the implications of these results for optimal strategies for unbiased estimation of the EoR power spectrum.

  6. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; MacMahon, Dave; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; Manley, Jason; Walbrugh, William P.; Stefan, Irina I.

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  7. Signals from the epoch of cosmological recombination (Karl Schwarzschild Award Lecture 2008)

    NASA Astrophysics Data System (ADS)

    Sunyaev, R. A.; Chluba, J.

    2009-07-01

    The physical ingredients to describe the epoch of cosmological recombination are amazingly simple and well-understood. This fact allows us to take into account a very large variety of physical processes, still finding potentially measurable consequences for the energy spectrum and temperature anisotropies of the Cosmic Microwave Background (CMB). In this contribution we provide a short historical overview in connection with the cosmological recombination epoch and its connection to the CMB. Also we highlight some of the detailed physics that were studied over the past few years in the context of the cosmological recombination of hydrogen and helium. The impact of these considerations is two-fold: The associated release of photons during this epoch leads to interesting and unique deviations of the Cosmic Microwave Background (CMB) energy spectrum from a perfect blackbody, which, in particular at decimeter wavelength and the Wien part of the CMB spectrum, may become observable in the near future. Despite the fact that the abundance of helium is rather small, it still contributes a sizeable amount of photons to the full recombination spectrum, leading to additional distinct spectral features. Observing the spectral distortions from the epochs of hydrogen and helium recombination, in principle would provide an additional way to determine some of the key parameters of the Universe (e.g. the specific entropy, the CMB monopole temperature and the pre-stellar abundance of helium). Also it permits us to confront our detailed understanding of the recombination process with direct observational evidence. In this contribution we illustrate how the theoretical spectral template of the cosmological recombination spectrum may be utilized for this purpose. We also show that because hydrogen and helium recombine at very different epochs it is possible to address questions related to the thermal history of our Universe. In particular the cosmological recombination radiation may

  8. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  9. Research in solar plasma theory

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1992-01-01

    The main thrust and significance of our research results are presented. The topics covered include: (1) coronal structure and dynamics; (2) coronal heating; (3) filament formation; and (4) flare energy release.

  10. Environmental Profile of a Community's Health (EPOCH): An Instrument to Measure Environmental Determinants of Cardiovascular Health in Five Countries

    PubMed Central

    Chow, Clara K.; Lock, Karen; Madhavan, Manisha; Corsi, Daniel J.; Gilmore, Anna B.; Subramanian, S. V.; Li, Wei; Swaminathan, Sumathi; Lopez-Jaramillo, Patricio; Avezum, Alvaro; Lear, Scott A.; Dagenais, Gilles; Teo, Koon; McKee, Martin; Yusuf, Salim

    2010-01-01

    Background The environment in which people live is known to be important in influencing diet, physical activity, smoking, psychosocial and other risk factors for cardiovascular (CV) disease. However no instrument exists that evaluates communities for these multiple environmental factors and is suitable for use across different communities, regions and countries. This report describes the design and reliability of an instrument to measure environmental determinants of CV risk factors. Method/Principal Findings The Environmental Profile of Community Health (EPOCH) instrument comprises two parts: (I) an assessment of the physical environment, and (II) an interviewer-administered questionnaire to collect residents' perceptions of their community. We examined the inter-rater reliability amongst 3 observers from each region of the direct observation component of the instrument (EPOCH I) in 93 rural and urban communities in 5 countries (Canada, Colombia, Brazil, China and India). Data collection using the EPOCH instrument was feasible in all communities. Reliability of the instrument was excellent (Intraclass Correlation Coefficient - ICC>0.75) for 24 of 38 items and fair to good (ICC 0.4–0.75) for 14 of 38 items. Conclusion This report shows data collection with the EPOCH instrument is feasible and direct observation of community measures reliable. The EPOCH instrument will enable further research on environmental determinants of health for population studies from a broad range of settings. PMID:21170320

  11. Light-cone anisotropy in the 21 cm signal from the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Zawada, Karolina; Semelin, Benoît; Vonlanthen, Patrick; Baek, Sunghye; Revaz, Yves

    2014-04-01

    Using a suite of detailed numerical simulations, we estimate the level of anisotropy generated by the time evolution along the light cone of the 21 cm signal from the epoch of reionization. Our simulations include the physics necessary to model the signal during both the late emission regime and the early absorption regime, namely X-ray and Lyman band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight. We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light-cone anisotropy is visible only on large scales (100 comoving Mpc). However, the detailed behaviour is different. We find that, at three different epochs, the amplitudes of the correlations along and perpendicular to the line of sight differ from each other, indicating anisotropy. We show that these three epochs are associated with three events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman α coupling in regions around the sources. We find that a 20 × 20 deg2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 Mpc (comoving) scale, we show that the light-cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the Square Kilometre Array, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the Low-Frequency Array for radio astronomy, it is likely that only one anisotropy episode (ionized bubble overlap) will fall in the observing frequency range. This episode will be detectable only if sample

  12. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch.

    PubMed

    Inoue, Akio K; Tamura, Yoichi; Matsuo, Hiroshi; Mawatari, Ken; Shimizu, Ikkoh; Shibuya, Takatoshi; Ota, Kazuaki; Yoshida, Naoki; Zackrisson, Erik; Kashikawa, Nobunari; Kohno, Kotaro; Umehata, Hideki; Hatsukade, Bunyo; Iye, Masanori; Matsuda, Yuichi; Okamoto, Takashi; Yamaguchi, Yuki

    2016-06-24

    The physical properties and elemental abundances of the interstellar medium in galaxies during cosmic reionization are important for understanding the role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter Array detection of an oxygen emission line at a wavelength of 88 micrometers from a galaxy at an epoch about 700 million years after the Big Bang. The oxygen abundance of this galaxy is estimated at about one-tenth that of the Sun. The nondetection of far-infrared continuum emission indicates a deficiency of interstellar dust in the galaxy. A carbon emission line at a wavelength of 158 micrometers is also not detected, implying an unusually small amount of neutral gas. These properties might allow ionizing photons to escape into the intergalactic medium. PMID:27312046

  13. The influence of Indian Ocean atmospheric circulation on Warm Pool hydroclimate during the Holocene epoch

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.; Oppo, D. W.; Legrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-10-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  14. Lyman horizons in the early phases of the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Vonlanthen, P.; Semelin, B.

    2011-12-01

    It has been shown that the radial profile of the Lyman-α flux around light sources emitting in the Lyman band during the early phases of the epoch of reionization is characterized by a series of step-like discontinuities. This property originates in the fact that the neutral intergalactic medium is optically thick at the frequencies of all the Lyman-series lines. We show that, through unsaturated Wouthuysen-Field coupling, these spherical discontinuities are also present in the redshifted 21 cm signal of neutral hydrogen. We use realistic 3D numerical simulations with full radiative transfer calculation in the first five Lyman lines in order to study the properties of these discontinuities and the possibility for detection with the future Square Kilometre Array. Although challenging, these observations could provide a diagnostic tool to disentangle the cosmological signal and residuals from imperfect foreground removal.

  15. Direct detection of projectile relics from the end of the lunar basin-forming epoch.

    PubMed

    Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A

    2012-06-15

    The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch. PMID:22604725

  16. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  17. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  18. Commissioning and Science Forecasts for the Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron; HERA Collaboration

    2016-01-01

    The HERA is a low-frequency radio interferometer aiming to make precise measurements of the power spectrum of fluctuations in 21cm emission from the Epoch of Reionization at z=13—6. This project was recently awarded development funding under the 2014 cycle of the National Science Foundation's Mid-Scale Innovations Program (MSIP). We present initial results from the commissioning and testing of the 19-element HERA prototype in South Africa, including measurements of the performance of HERA's 14-m dish and feed via reflectometry, beam mapping, and on-sky commissioning tests. We then forecast the science results that HERA will deliver once it reaches its full size of 352 elements. These forecasts include constraints on the 21cm power spectrum, the impact of these constraints on parametrized models of ionization, and their relevance to cosmological models. Construction of HERA-352 is pending the outcome of the 2016 NSF MSIP cycle.

  19. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch

    NASA Astrophysics Data System (ADS)

    Inoue, Akio K.; Tamura, Yoichi; Matsuo, Hiroshi; Mawatari, Ken; Shimizu, Ikkoh; Shibuya, Takatoshi; Ota, Kazuaki; Yoshida, Naoki; Zackrisson, Erik; Kashikawa, Nobunari; Kohno, Kotaro; Umehata, Hideki; Hatsukade, Bunyo; Iye, Masanori; Matsuda, Yuichi; Okamoto, Takashi; Yamaguchi, Yuki

    2016-06-01

    The physical properties and elemental abundances of the interstellar medium in galaxies during cosmic reionization are important for understanding the role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter Array detection of an oxygen emission line at a wavelength of 88 micrometers from a galaxy at an epoch about 700 million years after the Big Bang. The oxygen abundance of this galaxy is estimated at about one-tenth that of the Sun. The nondetection of far-infrared continuum emission indicates a deficiency of interstellar dust in the galaxy. A carbon emission line at a wavelength of 158 micrometers is also not detected, implying an unusually small amount of neutral gas. These properties might allow ionizing photons to escape into the intergalactic medium.

  20. Comparison of the Brunhes epoch geomagnetic secular variation recorded in the volcanic and sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. P.; Khokhlov, A. V.; Sycheva, N. K.

    2014-03-01

    The results of numerical modeling of the geomagnetic secular variation by the method of the Giant Gaussian Process (GGP) are presented and compared with the information derived from the presentday databases for paleointensity. The variances of the positions of the virtual geomagnetic pole (VGP) calculated from the synthetic and experimental data (Brunhes epoch, effusive rocks) are nearly similar, which supports the validity of the theoretical model. The average value of the virtual axial geomagnetic dipole (VADM) calculated from the PINT world database on paleointensity and the Sint-2000 model is lower than VADM calculated by the GGP model; at the same time, the estimates based on the archaeomagnetic data give the VADM value slightly above the model prediction. The largest difference is observed in the variances of VADM, which is for all the three databases noticeably higher than the value calculated from the GGP model. Most probably, this is due to the contribution of the neglected measurement errors of VADM.

  1. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; Grogin, Norman; Koekemoer, Anton; Peth, Michael A.; Cohen, Seth; Budavari, Tamas; Ferreras, Ignacio; Gronwall, Caryl; Haiman, Zoltan; Meurer, Gernhardt; Straughn, Amber N.

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  2. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch.

    PubMed

    Inoue, Akio K; Tamura, Yoichi; Matsuo, Hiroshi; Mawatari, Ken; Shimizu, Ikkoh; Shibuya, Takatoshi; Ota, Kazuaki; Yoshida, Naoki; Zackrisson, Erik; Kashikawa, Nobunari; Kohno, Kotaro; Umehata, Hideki; Hatsukade, Bunyo; Iye, Masanori; Matsuda, Yuichi; Okamoto, Takashi; Yamaguchi, Yuki

    2016-06-24

    The physical properties and elemental abundances of the interstellar medium in galaxies during cosmic reionization are important for understanding the role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter Array detection of an oxygen emission line at a wavelength of 88 micrometers from a galaxy at an epoch about 700 million years after the Big Bang. The oxygen abundance of this galaxy is estimated at about one-tenth that of the Sun. The nondetection of far-infrared continuum emission indicates a deficiency of interstellar dust in the galaxy. A carbon emission line at a wavelength of 158 micrometers is also not detected, implying an unusually small amount of neutral gas. These properties might allow ionizing photons to escape into the intergalactic medium.

  3. Persistent warmth across the Benguela upwelling system during the Pliocene epoch

    NASA Astrophysics Data System (ADS)

    Rosell-Melé, Antoni; Martínez-Garcia, Alfredo; McClymont, Erin L.

    2014-01-01

    A feature of Pliocene climate is the occurrence of “permanent El Niño-like” or “El Padre” conditions in the Pacific Ocean. From the analysis of sediment cores in the modern northern Benguela upwelling, we show that the mean oceanographic state off Southwest Africa during the warm Pliocene epoch was also analogous to that of a persistent Benguela “El Niño”. At present these events occur when massive southward flows of warm and nutrient-poor waters extend along the coasts of Angola and Namibia, with dramatic effects on regional marine ecosystems and rainfall. We propose that the persistent warmth across the Pliocene in the Benguela upwelling ended synchronously with the narrowing of the Indonesian seaway, and the early intensification of the Northern Hemisphere Glaciations around 3.0-3.5 Ma. The emergence of obliquity-related cycles in the Benguela sea surface temperatures (SST) after 3 Ma highlights the development of strengthened links to high latitude orbital forcing. The subsequent evolution of the Benguela upwelling system was characterized by the progressive intensification of the meridional SST gradients, and the emergence of the 100 ky cycle, until the modern mean conditions were set at the end of the Mid Pleistocene transition, around 0.6 Ma. These findings support the notion that the interplay of changes in the depth of the global thermocline, atmospheric circulation and tectonics preconditioned the climate system for the end of the warm Pliocene epoch and the subsequent intensification of the ice ages.

  4. A Flux Scale for Southern Hemisphere 21 cm Epoch of Reionization Experiments

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki; Bowman, Judd; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; Gugliucci, Nicole E.; Klima, Pat; MacMahon, Dave H. E.; Manley, Jason R.; Moore, David F.; Pober, Jonathan C.; Stefan, Irina I.; Walbrugh, William P.

    2013-10-01

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from -46° to -40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of -0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  5. Tracing the Reionization Epoch with ALMA: [C II] Emission in z ˜ 7 Galaxies

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Carniani, S.; Castellano, M.; Fontana, A.; Maiolino, R.; Guaita, L.; Vanzella, E.; Grazian, A.; Santini, P.; Yan, H.; Cristiani, S.; Conselice, C.; Giavalisco, M.; Hathi, N.; Koekemoer, A.

    2016-09-01

    We present new results on [C ii]158 μ {{m}} emission from four galaxies in the reionization epoch. These galaxies were previously confirmed to be at redshifts between 6.6 and 7.15 from the presence of the Lyα emission line in their spectra. The Lyα emission line is redshifted by 100-200 km s-1 compared to the systemic redshift given by the [C ii] line. These velocity offsets are smaller than what is observed in z˜ 3 Lyman break galaxies (LBGs) with similar UV luminosities and emission line properties. Smaller velocity shifts reduce the visibility of Lyα and hence somewhat alleviate the need for a very neutral intergalactic medium at z˜ 7 to explain the drop in the fraction of Lyα emitters observed at this epoch. The galaxies show [C ii] emission with L[C ii] = 0.6 - 1.6× {10}8{L}⊙ : these luminosities place them consistently below the star formation rate (SFR)-L[C ii] relation observed for low-redshift star-forming and metal-poor galaxies and also below z = 5.5 LBGs with similar SFRs. We argue that previous undetections of [C ii] in z˜ 7 galaxies with similar or smaller SFRs are due to selection effects: previous targets were mostly strong Lyα emitters and therefore probably metal-poor systems, while our galaxies are more representative of the general high-redshift star-forming population.

  6. Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Katus, Roxanne M.; Liemohn, Michael W.; Gallagher, Dennis L.; Ridley, Aaron; Zou, Shasha

    2013-01-01

    Abstract<p label="1">The relative contribution of storm-time ring current development by convection driven by either potential or inductive electric fields has remained an unresolved question in geospace research. Studies have been published supporting each side of this debate, including views that ring current buildup is entirely one or the other. This study presents new insights into the relative roles of these storm main phase processes. We perform a superposed <span class="hlt">epoch</span> study of 97 intense (DstMin < -100 nT) and 91 moderate (-50 nT > DstMin > -100 nT) storms using OMNI solar wind and ground-based data. Instead of using a single reference time for the superpositioning of the events, we choose four reference times and expand or contract each phase of every event to the average length of this phase, creating a normalized timeline for the superposed <span class="hlt">epoch</span> analysis. Using the bootstrap method, we statistically demonstrate that timeline normalization results in better reproduction of average storm dynamics than conventional methods. Examination of the Dst reveals an inflection point in the intense storm group consistent with two-step main phase development, which is supported by results for the southward interplanetary magnetic field and various ground-based magnetic indices. This two-step main-phase process is not seen in the moderate storm timeline and data sets. It is determined that the first step of Dst development is due to potential convective drift, during which an initial ring current is formed. The negative feedback of this hot ion population begins to limit further ring current growth. The second step of the main phase, however, is found to be a more even mix of potential and inductive convection. It is hypothesized that this is necessary to achieve intense storm Dst levels because the substorm dipolarizations are effective at breaking through the negative feedback barrier of the existing inner magnetospheric hot ion pressure peak.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22486485','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22486485"><span id="translatedtitle"><span class="hlt">Plasma</span> heating power dissipation in low temperature hydrogen <span class="hlt">plasmas</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Komppula, J. Tarvainen, O.</p> <p>2015-10-15</p> <p>A theoretical framework for power dissipation in low temperature <span class="hlt">plasmas</span> in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to <span class="hlt">plasma</span> parameters, e.g., electron temperature and density. The <span class="hlt">theory</span> is applied to low temperature atomic and molecular hydrogen laboratory <span class="hlt">plasmas</span> for which the <span class="hlt">plasma</span> heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AnGeo..32...99M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AnGeo..32...99M"><span id="translatedtitle">Statistical visualization of the Earth's magnetotail and the implied mechanism of substorm triggering based on superposed-<span class="hlt">epoch</span> analysis of THEMIS data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Machida, S.; Miyashita, Y.; Ieda, A.; Nosé, M.; Angelopoulos, V.; McFadden, J. P.</p> <p>2014-02-01</p> <p>To investigate the physical mechanism responsible for substorm triggering, we performed a superposed-<span class="hlt">epoch</span> analysis using <span class="hlt">plasma</span> and magnetic-field data from THEMIS probes. Substorm onset timing was determined based on auroral breakups detected by all-sky imagers at the THEMIS ground-based observatories. We found earthward flows associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (RE), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. Moreover, a northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17 RE. This variation indicates that local dipolarization occurs. Interestingly, in the region earthwards of X = -18 RE, earthward flows in the central <span class="hlt">plasma</span> sheet (CPS) reduced significantly approximately 3 min before substorm onset, which was followed by a weakening of dawn-/duskward <span class="hlt">plasma</span>-sheet boundary-layer flows (subject to a 1 min time lag). Subsequently, approximately 1 min before substorm onset, earthward flows in the CPS were enhanced again and at the onset, tailward flows started at around X = -20 RE. Following substorm onset, an increase in the northward magnetic field caused by dipolarization was found in the near-Earth region. Synthesizing these results, we confirm our previous results based on GEOTAIL data, which implied that significant variations start earlier than both current disruption and magnetic reconnection, at approximately 4 min before substorm onset roughly halfway between the two regions of interest; i.e. in the catapult current sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10187183','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10187183"><span id="translatedtitle"><span class="hlt">Plasma</span> model for charging damage</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Vella, M.C.; Lukaszek, W.; Current, M.I.; Tripsas, N.H.</p> <p>1994-07-01</p> <p>The mechanism responsible for charging damage is treated as beam/<span class="hlt">plasma</span> driven differences in local floating potentials on the process surface. A cold <span class="hlt">plasma</span> flood is shown to limit these potential differences. Beam/<span class="hlt">plasma</span> J-V characteristics obtained with CHARM2 in a high current implanter are fit with the <span class="hlt">theory</span>. With flood OFF, the fit corresponds to <span class="hlt">plasma</span> buildup over the target surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-08-08/pdf/2013-19167.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-08-08/pdf/2013-19167.pdf"><span id="translatedtitle">78 FR 48421 - Publication of North American Datum of 1983 (2011) <span class="hlt">Epoch</span> 2010.00, North American Datum of 1983...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-08-08</p> <p>..., 54 FR 25318, June 14, 1989). DATES: Individuals or organizations wishing to submit comments on the...) <span class="hlt">Epoch</span> 2010.00 AGENCY: National Geodetic Survey (NGS), National Ocean Service (NOS), National Oceanic and... Geodetic Survey (NGS) has finalized the publication of new realizations of three geodetic references...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25596693','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25596693"><span id="translatedtitle">[A case of primary mediastinal (Thymic) B-cell lymphoma successfully treated with the DA-<span class="hlt">EPOCH</span>-R Regimen].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Higashide, Yukiko; Hayashi, Toshiaki; Hirayama, Daisuke; Wagatsuma, Kohei; Aoki, Yuka; Maruyama, Yumiko; Ikeda, Hiroshi; Ishida, Tadao; Shinomura, Yasuhisa</p> <p>2015-01-01</p> <p>Primary mediastinal (thymic) B-cell lymphoma (PMBL) is resistant to treatment when compared with diffuse large B-cell lymphoma (DLBCL). Moreover, the optimal first -line treatment of PMBL has not yet been determined. Herein, we report a case of PMBL that was successfully treated with the dose adjusted (DA) etoposide, prednisolone, vincristine, doxorubicin, and cyclophosphamide with rituximab (<span class="hlt">EPOCH</span>-R) regimen. A-29-year-old woman was referred to our hospital with an anterior mediastinal tumor. Eight months before admission, she had visited a clinic for pain in the chest and back, but no abnormalities were found. Subsequently, her chest pain got worse, and she went to another clinic, where she was detected with an anterior mediastinal tumor and was referred to our hospital. Tumor biopsy with a thoracoscope was performed, and a diagnosis of PMBL was made. The tumor diameter was 90 mm, with invasion to the lungs and superior vena cava. The tumor had a clinical stage of IEA, and the International Prognostic Index (IPI) was low risk. She was treated with the DA-<span class="hlt">EPOCH</span>-R regimen for 8 courses, and a complete response was achieved. A recent retrospective study of DA-<span class="hlt">EPOCH</span>-R treatment without radiotherapy for PMBL was recently published. It showed that the event-free survival rate was 93% and the overall survival rate was 97% during a median 5-year follow-up. Thus, DA-<span class="hlt">EPOCH</span>-R may be a potential standard treatment for PMBL. PMID:25596693</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016R%26QE...59...22S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016R%26QE...59...22S"><span id="translatedtitle">Model of the Dynamics of <span class="hlt">Plasma</span>-Wave Channels in Magnetized <span class="hlt">Plasmas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shirokov, E. A.; Chugunov, Yu. V.</p> <p>2016-06-01</p> <p>We analyze the dynamics of the <span class="hlt">plasma</span>-wave channels excited in magnetized <span class="hlt">plasmas</span> in the whistler frequency range. A linear <span class="hlt">theory</span> of excitation of a <span class="hlt">plasma</span> waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and <span class="hlt">plasma</span> density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in <span class="hlt">plasmas</span> are found on the basis of the linear <span class="hlt">theory</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001SoPh..204..265D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001SoPh..204..265D"><span id="translatedtitle">Prediction in Real Time of the 2000 July 14 Heliospheric Shock Wave and its Companions During the `Bastille' <span class="hlt">Epoch</span>*</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dryer, M.; Fry, C. D.; Sun, W.; Deehr, C.; Smith, Z.; Akasofu, S.-I.; Andrews, M. D.</p> <p>2001-12-01</p> <p>Prediction of solar-generated disturbances and their three-dimensional propagation through interplanetary space continues to present a vitally important operational space weather forecasting objective. This paper presents the first successful real-time prediction of a series of major heliospheric shock waves at Earth, including the one from the 14 July 2000 (`Bastille Day') flare. An ensemble of three models and their predictions were distributed to a world-wide group of interested scientists as part of an informal Internet space weather forecast research program. Two of the models, STOA (Shock Time of Arrival) and ISPM (Interplanetary Shock Propagation Model), presently in operation by the US Air Force Weather Agency, provided predictions of shock arrival time (SAT) that were, respectively, 0.5 hours after and 3.7 hours before the observed arrival. The third model, HAFv.2 (Hakamada Akasofu Fry version 2.0) predicted a time 0.3 hours after the observed shock arrival time (14:37 UT, 15 July 2000). Of primary interest to this study is the third model, firstly in terms of its capability of propagating shocks through non-uniform solar wind conditions, and secondly, in terms of its ability to integrate multiple solar events and display them graphically along with the background solar wind. This latter capability was brought to bear on ten real-time-reported flares, some with CMEs (coronal mass ejections) that took place as companions to the Bastille flare during the period 7 15 July 2000. Some limited statistics are given regarding the three models' shock arrival prediction capability at Earth, as an extension of our earlier studies with this three model ensemble in the prediction of SAT. HAFv.2, however, was able to describe not only the ten events and their interaction as measured at Earth, but also at the spacecraft NEAR (orbiting the asteroid, Eros, at 1.8 AU), and CASSINI (en route, at 4.0 AU, to Saturn). Several important points are noted: (1) this <span class="hlt">epoch</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22016305','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22016305"><span id="translatedtitle">THE LICK AGN MONITORING PROJECT: RECALIBRATING SINGLE-<span class="hlt">EPOCH</span> VIRIAL BLACK HOLE MASS ESTIMATES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Park, Daeseong; Woo, Jong-Hak; Treu, Tommaso; Bennert, Vardha N.; Barth, Aaron J.; Walsh, Jonelle; Bentz, Misty C.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor; Greene, Jenny E.; Malkan, Matthew A.</p> <p>2012-03-01</p> <p>We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-<span class="hlt">epoch</span> (SE) method, using homogeneous and high-quality multi-<span class="hlt">epoch</span> spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE H{beta} line width (full width at half-maximum intensity, FWHM{sub H{beta}} or dispersion, {sigma}{sub H{beta}}) and of the AGN continuum luminosity at 5100 A (L{sub 5100}). From the distribution of the 'virial products' ({proportional_to} FWHM{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100} or {sigma}{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100}) measured from SE spectra, we estimate the uncertainty due to the combined variability as {approx}0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be {approx}0.46 dex (factor of {approx}3). By comparing the H{beta} line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the H{beta} line is broader in the mean (and SE) spectra than in the rms spectra by {approx}0.1 dex (25%) for our sample with FWHM{sub H{beta}} <3000 km s{sup -1}. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the H{beta} line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoOD..54...60S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoOD..54...60S"><span id="translatedtitle">Zirconium-titanium placers of the Voronezh Anteclise: Types, <span class="hlt">epochs</span> and factors of formation, and forecast</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savko, A. D.; Zvonarev, A. E.; Ivanov, D. A.</p> <p>2012-02-01</p> <p>The early and late Frasnian, Barremian-Aptian, Cenomanian, early Santonian, early Campanian, and Oligocene-Miocene <span class="hlt">epochs</span> of the formation of various types of zirconium-titanium placers are distinguished in the Voronezh Anteclise. The factors of their formation are considered, and a forecast of prospecting has been made. Lower Frasnian sedimentary rocks occur in the southeast, where the placers are related to the ilmenite-bearing volcanosedimentary rocks of the Yastrebovo Sequence. The upper Frasnian productive quartz sand of the Petino Sequence occurs in the central part of the Voronezh Anteclise. The Barremian-Aptian productive quartz sand and kaolinite clay occur in the northern and northeastern parts of the anteclise (Ryazan and Lipetsk oblasts). The placers formed in the Cenomanian are known in the Tambov oblast in the northeast of the Voronezh Anteclise and are related to phosphate-bearing glauconite-quartz sand. The early Campanian phosphorite-glauconite-quartz formation is widespread in the northwest of the Voronezh Anteclise at the junction with the northeastern wall of the Dnieper-Donets Basin (Bryansk oblast). The Oligocene-Miocene <span class="hlt">epoch</span> was characterized by quartz sands abundant in the northwestern and south-western areas. The formation of zirconium-titanium placers is controlled by structural-tectonic, facies, volcanic, paleogeographic, stratigraphic, and evolutional factors. The indispensable condition for heavy mineral concentration is existence of positive forms of underwater topography. These are mostly structural elements of the third and fourth orders on the slopes of the Voronezh Anteclise at the boundaries of the adjacent negative structures. As concerns the facies factor, the occurrence of coastal and shallow-water marine facies with alternating and medium hydrodynamic activity and predominance of sand fractions 0.25-0.05 mm are criteria of elevated concentration of heavy minerals in sand. One of the conditions providing concentration of heavy</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22270792','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22270792"><span id="translatedtitle">A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm <span class="hlt">EPOCH</span> OF REIONIZATION EXPERIMENTS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Jacobs, Daniel C.; Bowman, Judd; Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E.; Gugliucci, Nicole E.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.</p> <p>2013-10-20</p> <p>We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the <span class="hlt">Epoch</span> of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the <span class="hlt">epoch</span> of reionization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011A%26A...532A..97V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011A%26A...532A..97V"><span id="translatedtitle">Distinctive rings in the 21 cm signal of the <span class="hlt">epoch</span> of reionization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vonlanthen, P.; Semelin, B.; Baek, S.; Revaz, Y.</p> <p>2011-08-01</p> <p>Context. It is predicted that sources emitting UV radiation in the Lyman band during the <span class="hlt">epoch</span> of reionization show a series of discontinuities in their Lyα flux radial profile as a consequence of the thickness of the Lyman-series lines in the primeval intergalactic medium. Through unsaturated Wouthuysen-Field coupling, these spherical discontinuities are also present in the 21 cm emission of the neutral IGM. Aims: We study the effects that these discontinuities have on the differential brightness temperature of the 21 cm signal of neutral hydrogen in a realistic setting that includes all other sources of fluctuations. We focus on the early phases of the <span class="hlt">epoch</span> of reionization, and we address the question of the detectability by the planned Square Kilometre Array (SKA). Such a detection would be of great interest because these structures could provide an unambiguous diagnostic tool for the cosmological origin of the signal that remains after the foreground cleaning procedure. These structures could also be used as a new type of standard rulers. Methods: We determine the differential brightness temperature of the 21 cm signal in the presence of inhomogeneous Wouthuysen-Field effect using simulations that include (hydro)dynamics as well as ionizing and Lyman lines 3D radiative transfer with the code LICORICE. We include radiative transfer for the higher-order Lyman-series lines and consider also the effect of backreaction from recoils and spin diffusivity on the Lyα resonance. Results: We find that the Lyman horizons are difficult to indentify using the power spectrum of the 21 cm signal but are clearly visible in the maps and radial profiles around the first sources of our simulations, if only for a limited time interval, typically Δz ≈ 2 at z ~ 13. Stacking the profiles of the different sources of the simulation at a given redshift results in extending this interval to Δz ≈ 4. When we take into account the implementation and design planned for the SKA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2257946R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2257946R"><span id="translatedtitle">A Monster At Any Other <span class="hlt">Epoch</span>: Are Intermediate Redshift ULIRGs the Progenitors of QSO Host Galaxies?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rothberg, Barry; Fischer, Jackie; Rodrigues, Myriam; Pirzkal, Nor</p> <p>2015-08-01</p> <p>There is a clear progression from merger-induced SF to QSO activity via Ultraluminous Infrared Galaxies (ULIRGs). While not all mergers are ULIRGs, multi-wavelength imaging confirms that all local ULIRGs are mergers. At 0.4 < z < 1.0, the star-formation rates, gas fractions, and masses are believed to be significantly higher than in the local universe (i.e. due to "Downsizing"). ULIRGs begin to dominate the SF activity in the Universe at z˜0.7, and at z>1 are responsible for ˜ 70% of the co-moving IR density. At these earlier <span class="hlt">epochs</span> ULIRGs contained more gas, formed stars faster, and their number density was much higher. At z>1 there are conflicting conclusions about ULIRGs. Many studies conclude they are massive star-forming galaxies, not major mergers nor AGN. Nearly all studies of ULIRGs at z > 0.4 have selected these systems via scaling observed 24μm or 170μm Spitzer fluxes to integrated 8-1000μm fluxes and inferring masses from scaling photometric fluxes or millimeter observations of CO gas emission. These methods often rely heavily on uncertain assumptions (e.g. gas conversions, SED fitting and templates). Instead, we have assembled a representative sample of "classically" selected ULIRGs (60 and 100μm IRAS fluxes and 12 and 25μm WISE fluxes) for 0.4 < z < 1.0 and obtained optical and near-IR imaging and spectroscopy from Hubble Space Telescope, Keck, and the Large Binocular Telescope. We use the same techniques for measuring the dynamical and BH masses of ULIRGs in the local Universe to measure these parameters in more distant systems. Unlike other methods, we directly measure the mass at an <span class="hlt">epoch</span> when galaxy formation and evolution appears to have changed dramatically from what we see today and compare these intermediate redshift ULIRGs with their counterparts in the local Universe. Our restframe optical and UV spectroscopy also allow us to directly probe gas-metallicities, outflows, and measure the properties of their stellar populations. Our</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/7072860','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/7072860"><span id="translatedtitle">MHD description of <span class="hlt">plasma</span>: handbook of <span class="hlt">plasma</span> physics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kulsrud, R.M.</p> <p>1980-10-01</p> <p>The basic sets of MHD equations for the description of a <span class="hlt">plasma</span> in various limits are derived and their usefulness and limits of validity are discussed. These limits are: the one fluid collisional <span class="hlt">plasma</span>, the two fluid collisional <span class="hlt">plasma</span>, the Chew-Goldberger Low formulation of the guiding center limit of a collisionless <span class="hlt">plasma</span> and the double-adiabatic limit. Conservation relations are derived from these sets and the mathematics of the concept of flux freezing is given. An example is given illustrating the differences between guiding center <span class="hlt">theory</span> and double adiabatic <span class="hlt">theory</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1473..108S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1473..108S"><span id="translatedtitle">Bianchi class A models in Sàez-Ballester's <span class="hlt">theory</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Socorro, J.; Espinoza-García, Abraham</p> <p>2012-08-01</p> <p>We apply the Sàez-Ballester (SB) <span class="hlt">theory</span> to Bianchi class A models, with a barotropic perfect fluid in a stiff matter <span class="hlt">epoch</span>. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22272793','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22272793"><span id="translatedtitle">Generalized Brans-Dicke <span class="hlt">theories</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>De Felice, Antonio; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp</p> <p>2010-07-01</p> <p>In Brans-Dicke <span class="hlt">theory</span> a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological <span class="hlt">epochs</span>. We extend this to more general modified gravitational <span class="hlt">theories</span> in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such <span class="hlt">theories</span>. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those <span class="hlt">theories</span> from the ΛCDM model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.460..417S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.460..417S"><span id="translatedtitle">Constraints on the star formation efficiency of galaxies during the <span class="hlt">epoch</span> of reionization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, G.; Furlanetto, S. R.</p> <p>2016-07-01</p> <p>Reionization is thought to have occurred in the redshift range of 6 < z < 9, which is now being probed by both deep galaxy surveys and CMB observations. Using halo abundance matching over the redshift range 5 < z < 8 and assuming smooth, continuous gas accretion, we develop a model for the star formation efficiency f⋆ of dark matter haloes at z > 6 that matches the measured galaxy luminosity functions at these redshifts. We find that f⋆ peaks at ˜30 per cent at halo masses M ˜ 1011-1012 M⊙, in qualitative agreement with its behaviour at lower redshifts. We then investigate the cosmic star formation histories and the corresponding models of reionization for a range of extrapolations to small halo masses. We use a variety of observations to further constrain the characteristics of the galaxy populations, including the escape fraction of UV photons. Our approach provides an empirically calibrated, physically motivated model for the properties of star-forming galaxies sourcing the <span class="hlt">epoch</span> of reionization. In the case where star formation in low-mass haloes is maximally efficient, an average escape fraction ˜0.1 can reproduce the optical depth reported by Planck, whereas inefficient star formation in these haloes requires either about twice as many UV photons to escape, or an escape fraction that increases towards higher redshifts. Our models also predict how future observations with James Webb Space Telescope can improve our understanding of these galaxy populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11586350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11586350"><span id="translatedtitle">Warm tropical sea surface temperatures in the Late Cretaceous and Eocene <span class="hlt">epochs</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pearson, P N; Ditchfield, P W; Singano, J; Harcourt-Brown, K G; Nicholas, C J; Olsson, R K; Shackleton, N J; Hall, M A</p> <p>2001-10-01</p> <p>Climate models with increased levels of carbon dioxide predict that global warming causes heating in the tropics, but investigations of ancient climates based on palaeodata have generally indicated cool tropical temperatures during supposed greenhouse episodes. For example, in the Late Cretaceous and Eocene <span class="hlt">epochs</span> there is abundant geological evidence for warm, mostly ice-free poles, but tropical sea surface temperatures are generally estimated to be only 15-23 degrees C, based on oxygen isotope palaeothermometry of surface-dwelling planktonic foraminifer shells. Here we question the validity of most such data on the grounds of poor preservation and diagenetic alteration. We present new data from exceptionally well preserved foraminifer shells extracted from impermeable clay-rich sediments, which indicate that for the intervals studied, tropical sea surface temperatures were at least 28-32 degrees C. These warm temperatures are more in line with our understanding of the geographical distributions of temperature-sensitive fossil organisms and the results of climate models with increased CO2 levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002DPS....34.3409N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002DPS....34.3409N"><span id="translatedtitle">On the latitudinal distribution of Titan's haze at the Voyager <span class="hlt">epoch</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Negrao, A.; Roos-Serote, M.; Rannou, P.; Rages, K.; McKay, C.</p> <p>2002-09-01</p> <p>In this work, we re-analyse a total of 10 high phase angle images of Titan (2 from Voyager 1 and 8 from Voyager 2). The images were acquired in different filters of the Voyager Imaging Sub System in 1980 - 1981. We apply a model, developed and used by Rannou etal. (1997) and Cabane etal. (1992), that calculates the vertical (1-D) distribution of haze particles and the I/F radial profiles as a function of a series of parameters. Two of these parameters, the haze particle production rate (P) and imaginary refractive index (xk), are used to obtain fits to the observed I/F profiles at different latitudes. Differerent from previous studies is that we consider all filters simultaneously, in an attempt to better fix the parameter values. We also include the filter response functions, not considered previously. The results show that P does not change significantly as a function of latitude, eventhough somewhat lower values are found at high northern latitudes. xk seems to increase towards southern latitudes. We will compare our results with GCM runs, that can give the haze distribution at the <span class="hlt">epoch</span> of the observations. Work financed by portuguese Foundation for Science and Tecnology (FCT), contract ESO/PRO/40157/2000</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22078338','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22078338"><span id="translatedtitle">MULTI-<span class="hlt">EPOCH</span> OBSERVATIONS OF THE RED WING EXCESS IN THE SPECTRUM OF 3C 279</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Punsly, Brian E-mail: brian.punsly@comdev-usa.com</p> <p>2013-01-10</p> <p>It has been previously determined that there is a highly significant correlation between the spectral index from 10 GHz to 1350 A and the amount of excess luminosity in the red wing of quasar C IV {lambda}1549 broad emission lines (BELs). Ostensibly, the prominence of the red excess is associated with the radio jet emission mechanism and is most pronounced for lines of sight close to the jet axis. Studying the scant significant differences in the UV spectra of radio-loud and radio-quiet quasars might provide vital clues to the origin of the unknown process that creates powerful relativistic jets that appear in only about 10% of quasars. In this study, the phenomenon is explored with multi-<span class="hlt">epoch</span> observations of the Mg II {lambda}2798 broad line in 3C 279 which has one of the largest known red wing excesses in a quasar spectrum. The amount of excess that is detected appears to be independent of all directly observed optical continuum, radio, or submillimeter properties (fluxes or polarizations). The only trend that occurs in this sparse data is: the stronger the BEL, the larger the fraction of flux that resides in the red wing. It is concluded that more monitoring is needed and spectropolarimetry with a large telescope is essential during low states to understand more.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721695','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721695"><span id="translatedtitle">GNSS Single Frequency, Single <span class="hlt">Epoch</span> Reliable Attitude Determination Method with Baseline Vector Constraint</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong</p> <p>2015-01-01</p> <p>For Global Navigation Satellite System (GNSS) single frequency, single <span class="hlt">epoch</span> attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great. PMID:26633413</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..773S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..773S"><span id="translatedtitle">Thermokarst, mantling and Late Amazonian <span class="hlt">Epoch</span> periglacial-revisions in the Argyre region, Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soare, R. J.; Baoini, D.; Conway, S. J.; Dohm, J. M.; Kargel, J. S.</p> <p>2015-10-01</p> <p>Thermokarst, mantling and Late Amazonian <span class="hlt">Epoch</span> periglacial-revisions in the Argyre region, Mars R.J. Soare(1), D. Baioni(2), S.J. Conway (3), J.M. Dohm(4)and J.S. Kargel (5)(1) Geography Department, Dawson College, Montreal, Canada H3Z 1A4 rsoare@dawsoncollege.qc.ca.(2) Dipartimento di Scienze della Terra,della Vita e Ambiente, Università di Urbino "Carlo Bo", Campus SOGESTA, 61029 Urbino (PU) Italy. (3) Department of Physical Sciences, Open University, Milton Keynes, United Kingdom, MK7 6AA. (4) The University Museum, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-, Japan.(5) Department of Hydrology & Water Resources, University of Arizona, Tucson, Arizona, USA 85719.1.Introduction Metre to decametre-deep depressions that are rimless, relatively flat-floored, polygonised and scallop-shaped have been widely observed in Utopia Planitia (UP) [e.g. 1-5] and Malea Planum (MP) [6-8]. Although there is some debate about whether the depressions formed by means of sublimation or evaporation, it is commonly believed that the terrain in which the depressions occur is ice-rich.Moreover, most workers assume that this "ice-richness" is derived of a bi-hemispheric, latitudinally-dependent and atmospherically-precipitated mantle that is metres thick [2,4,6-10].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25835299','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25835299"><span id="translatedtitle">Coarse initial orbit determination for a geostationary satellite using single-<span class="hlt">epoch</span> GPS measurements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Ghangho; Kim, Chongwon; Kee, Changdon</p> <p>2015-01-01</p> <p>A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-<span class="hlt">epoch</span> measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite's state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22140287','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22140287"><span id="translatedtitle">A LYMAN BREAK GALAXY IN THE <span class="hlt">EPOCH</span> OF REIONIZATION FROM HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Zheng Zhenya; Stern, Daniel; Dickinson, Mark; Pirzkal, Norbert; Grogin, Norman; Koekemoer, Anton; Peth, Michael A.; Spinrad, Hyron; Reddy, Naveen; Hathi, Nimish; Budavari, Tamas; Ferreras, Ignacio; Gardner, Jonathan P.; Gronwall, Caryl; Haiman, Zoltan; Kuemmel, Martin; Meurer, Gerhardt; and others</p> <p>2013-08-10</p> <p>We present observations of a luminous galaxy at z = 6.573-the end of the reionization <span class="hlt">epoch</span>-which has been spectroscopically confirmed twice. The first spectroscopic confirmation comes from slitless Hubble Space Telescope Advanced Camera for Surveys grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically), which show a dramatic continuum break in the spectrum at rest frame 1216 A. The second confirmation is done with Keck + DEIMOS. The continuum is not clearly detected with ground-based spectra, but high wavelength resolution enables the Ly{alpha} emission line profile to be determined. We compare the line profile to composite line profiles at z = 4.5. The Ly{alpha} line profile shows no signature of a damping wing attenuation, confirming that the intergalactic gas is ionized at z = 6.57. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms, even at redshifts where Ly{alpha} is too attenuated by the neutral intergalactic medium to be detectable using traditional spectroscopy from the ground.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22357136','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22357136"><span id="translatedtitle">Foreground contamination in Lyα intensity mapping during the <span class="hlt">epoch</span> of reionization</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Gong, Yan; Cooray, Asantha; Silva, Marta; Santos, Mario G.</p> <p>2014-04-10</p> <p>The intensity mapping of Lyα emission during the <span class="hlt">epoch</span> of reionization will be contaminated by foreground emission lines from lower redshifts. We calculate the mean intensity and the power spectrum of Lyα emission at z ∼ 7 and estimate the uncertainties according to the relevant astrophysical processes. We find that the low-redshift emission lines from 6563 Å Hα, 5007 Å [O III], and 3727 Å [O II] will be strong contaminants on the observed Lyα power spectrum. We make use of both the star formation rate and luminosity functions to estimate the mean intensity and power spectra of the three foreground lines at z ∼ 0.5 for Hα, z ∼ 0.9 for [O III], and z ∼ 1.6 for [O II], as they will contaminate the Lyα emission at z ∼ 7. The [O II] line is found to be the strongest. We analyze the masking of the bright survey pixels with a foreground line above some line intensity threshold as a way to reduce the contamination in an intensity mapping survey. We find that the foreground contamination can be neglected if we remove pixels with fluxes above 1.4 × 10{sup –20} W m{sup –2}.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22364015','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22364015"><span id="translatedtitle">THE DOMINANT <span class="hlt">EPOCH</span> OF STAR FORMATION IN THE MILKY WAY FORMED THE THICK DISK</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Snaith, Owain N.; Haywood, Misha; Di Matteo, Paola; Katz, David; Gómez, Ana; Lehnert, Matthew D.; Combes, Françoise</p> <p>2014-02-01</p> <p>We report the first robust measurement of the Milky Way star formation history using the imprint left on chemical abundances of long-lived stars. The formation of the Galactic thick disk occurs during an intense star formation phase between 9.0 (z ∼ 1.5) and 12.5 Gyr (z ∼ 4.5) ago and is followed by a dip (at z ∼ 1.1) lasting about 1 Gyr. Our results imply that the thick disk is as massive as the Milky Way's thin disk, suggesting a fundamental role of this component in the genesis of our Galaxy, something that had been largely unrecognized. This new picture implies that huge quantities of gas necessary to feed the building of the thick disk must have been present at these <span class="hlt">epochs</span>, in contradiction with the long-term infall assumed by chemical evolution models in the last two decades. These results allow us to fit the Milky Way within the emerging features of the evolution of disk galaxies in the early universe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22370486','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22370486"><span id="translatedtitle">Diverse properties of interstellar medium embedding gamma-ray bursts at the <span class="hlt">epoch</span> of reionization</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Cen, Renyue; Kimm, Taysun</p> <p>2014-10-10</p> <p>Analysis is performed on ultra-high-resolution large-scale cosmological radiation-hydrodynamic simulations to quantify, for the first time, the physical environment of long-duration gamma-ray bursts (GRBs) at the <span class="hlt">epoch</span> of reionization. We find that, on parsec scales, 13% of GRBs remain in high-density (≥10{sup 4} cm{sup –3}) low-temperature star-forming regions, whereas 87% of GRBs occur in low-density (∼10{sup –2.5} cm{sup –3}) high-temperature regions heated by supernovae. More importantly, the spectral properties of GRB afterglows, such as the neutral hydrogen column density, total hydrogen column density, dust column density, gas temperature, and metallicity of intervening absorbers, vary strongly from sight line to sight line. Although our model explains extant limited observationally inferred values with respect to circumburst density, metallicity, column density, and dust properties, a substantially larger sample of high-z GRB afterglows would be required to facilitate a statistically solid test of the model. Our findings indicate that any attempt to infer the physical properties (such as metallicity) of the interstellar medium (ISM) of the host galaxy based on a very small number (usually one) of sight lines would be precarious. Utilizing high-z GRBs to probe the ISM and intergalactic medium should be undertaken properly, taking into consideration the physical diversities of the ISM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IAUS..319..105R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IAUS..319..105R"><span id="translatedtitle">The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic <span class="hlt">Epochs</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.</p> <p></p> <p>Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these <span class="hlt">epochs</span> have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19930010622&hterms=Water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2528Water%2Bcycle%2529','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19930010622&hterms=Water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2528Water%2Bcycle%2529"><span id="translatedtitle">The Mars water cycle at other <span class="hlt">epochs</span>: Recent history of the polar caps and layered terrain</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.</p> <p>1992-01-01</p> <p>The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each <span class="hlt">epoch</span>, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21576774','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21576774"><span id="translatedtitle">FIVE NEW TRANSIT <span class="hlt">EPOCHS</span> OF THE EXOPLANET OGLE-TR-111b</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hoyer, S.; Rojo, P.; Lopez-Morales, M.; DIaz, R. F.; Chambers, J.; Minniti, D. E-mail: pato@das.uchile.cl E-mail: diaz@iap.fr E-mail: dante@astro.puc.cl</p> <p>2011-05-20</p> <p>We report five new transit <span class="hlt">epochs</span> of the extrasolar planet OGLE-TR-111b, observed in the v-HIGH and Bessell I bands with the FORS1 and FORS2 at the ESO Very Large Telescope between 2008 April and May. The new transits have been combined with all previously published transit data for this planet to provide a new transit timing variations (TTVs) analysis of its orbit. We find no TTVs with amplitudes larger than 1.5 minutes over a four-year observation time baseline, in agreement with the recent result by Adams et al. Dynamical simulations fully exclude the presence of additional planets in the system with masses greater than 1.3, 0.4, and 0.5 M{sub +} at the 3:2, 1:2, and 2:1 resonances, respectively. We also place an upper limit of about 30 M{sub +} on the mass of potential second planets in the region between the 3:2 and 1:2 mean-motion resonances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26633413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26633413"><span id="translatedtitle">GNSS Single Frequency, Single <span class="hlt">Epoch</span> Reliable Attitude Determination Method with Baseline Vector Constraint.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong</p> <p>2015-12-02</p> <p>For Global Navigation Satellite System (GNSS) single frequency, single <span class="hlt">epoch</span> attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM23B2565O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM23B2565O"><span id="translatedtitle">Superposed <span class="hlt">epoch</span> analysis of storm time response of the ionosphere-thermosphere (IT) system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, D. M.; Zesta, E.; Connor, H.; Su, Y. J.; Sutton, E. K.; Huang, C. Y.; Ober, D. M.; Delay, S. H.; Schuck, P. W.</p> <p>2015-12-01</p> <p>The thermosphere-ionosphere system response to energy input by Joule heating via Poynting flux and auroral precipitation is strongly intensified during times with high geomagnetic activity or during geomagnetic storms. The most dramatic thermospheric response is the intensification and upwelling of the thermospheric mass density. The neutral mass density is not only a key parameter to understanding the solar wind - IT coupling, but also plays an important role in understanding satellite orbital drag, which in turn impacts satellite position predictions. Results of numerical simulations and satellite observations (CHAMP and GRACE) have shown that the neutral mass density is rapidly intensified (within minutes) after the initial storm shock impact and also after the onset of storm main phase. This almost immediate response is typical of CME-driven storms in which the neutral density is enhanced first in the dayside polar cap and the intensification subsequently spreads out to all magnetic local time regions and lower latitude regions. We perform a superposed <span class="hlt">epoch</span> analysis using CHAMP and GRACE satellite data as well as DMSP data to study the spatial and temporal distribution of the measured Poynting flux and neutral density response during the main phase of storms of different intensity. We also examine the correlation characteristics between Poynting flux and neutral density response, in space and time during the storm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594023','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594023"><span id="translatedtitle">Neural correlates of rules and conflict in medial prefrontal cortex during decision and feedback <span class="hlt">epochs</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bissonette, Gregory B.; Roesch, Matthew R.</p> <p>2015-01-01</p> <p>The ability to properly adjust behavioral responses to cues in a changing environment is crucial for survival. Activity in the medial Prefrontal Cortex (mPFC) is thought to both represent rules to guide behavior as well as detect and resolve conflicts between rules in changing contingencies. However, while lesion and pharmacological studies have supported a crucial role for mPFC in this type of set-shifting, an understanding of how mPFC represents current rules or detects and resolves conflict between different rules is unclear. Here, we directly address the role of rat mPFC in shifting rule based behavioral strategies using a novel behavioral task designed to tease apart neural signatures of rules, conflict and direction. We demonstrate that activity of single neurons in rat mPFC represent distinct rules. Further, we show increased firing on high conflict trials in a separate population of mPFC neurons. Reduced firing in both populations of neurons was associated with poor performance. Moreover, activity in both populations increased and decreased firing during the outcome <span class="hlt">epoch</span> when reward was and was not delivered on correct and incorrect trials, respectively. In addition, outcome firing was modulated by the current rule and the degree of conflict associated with the previous decision. These results promote a greater understanding of the role that mPFC plays in switching between rules, signaling both rule and conflict to promote improved behavioral performance. PMID:26500516</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21460123','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21460123"><span id="translatedtitle">ARECIBO MULTI-<span class="hlt">EPOCH</span> H I ABSORPTION MEASUREMENTS AGAINST PULSARS: TINY-SCALE ATOMIC STRUCTURE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Stanimirovic, S.; Weisberg, J. M.; Pei, Z.; Tuttle, K.; Green, J. T.</p> <p>2010-09-01</p> <p>We present results from multi-<span class="hlt">epoch</span> neutral hydrogen (H I) absorption observations of six bright pulsars with the Arecibo telescope. Moving through the interstellar medium (ISM) with transverse velocities of 10-150 AU yr{sup -1}, these pulsars have swept across 1-200 AU over the course of our experiment, allowing us to probe the existence and properties of the tiny-scale atomic structure (TSAS) in the cold neutral medium (CNM). While most of the observed pulsars show no significant change in their H I absorption spectra, we have identified at least two clear TSAS-induced opacity variations in the direction of B1929+10. These observations require strong spatial inhomogeneities in either the TSAS clouds' physical properties themselves or else in the clouds' galactic distribution. While TSAS is occasionally detected on spatial scales down to 10 AU, it is too rare to be characterized by a spectrum of turbulent CNM fluctuations on scales of 10{sup 1}-10{sup 3} AU, as previously suggested by some work. In the direction of B1929+10, an apparent correlation between TSAS and interstellar clouds inside the warm Local Bubble (LB) indicates that TSAS may be tracing the fragmentation of the LB wall via hydrodynamic instabilities. While similar fragmentation events occur frequently throughout the ISM, the warm medium surrounding these cold cloudlets induces a natural selection effect wherein small TSAS clouds evaporate quickly and are rare, while large clouds survive longer and become a general property of the ISM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004ApJ...615....7M&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004ApJ...615....7M&link_type=ABSTRACT"><span id="translatedtitle">Toward <span class="hlt">Epoch</span> of Reionization Measurements with Wide-Field Radio Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales, Miguel F.; Hewitt, Jacqueline</p> <p>2004-11-01</p> <p>This paper explores the potential for statistical <span class="hlt">epoch</span> of reionization (EOR) measurements using wide-field radio observations. New developments in low-frequency radio instrumentation and signal processing allow very sensitive EOR measurements, and the analysis techniques enabled by these advances offer natural ways of separating the EOR signal from the residual foreground emission. This paper introduces the enabling technologies and proposes an analysis technique designed to make optimal use of the capabilities of next-generation low-frequency radio arrays. The observations we propose can directly observe the power spectrum of the EOR using relatively short observations and are significantly more sensitive than other techniques that have been discussed in the literature. For example, in the absence of foreground contamination the measurements we propose would produce five 3 σ power spectrum points in 100 hr of observation with only 4 MHz bandwidth with LOFAR for simple models of the high-redshift 21 cm emission. The challenge of residual foreground removal may be addressed by the symmetries in the three-dimensional (two spatial frequencies and radio frequency) radio interferometric data. These symmetries naturally separate the EOR signal from most classes of residual unsubtracted foreground contamination, including all foreground continuum sources and radio line emission from the Milky Way.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MeScT..27g5104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MeScT..27g5104C"><span id="translatedtitle">Performance improvement of GPS single frequency, single <span class="hlt">epoch</span> attitude determination with poor satellite visibility</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Wantong; Sun, Xingli</p> <p>2016-07-01</p> <p>Similar to global positioning system (GPS) positioning in urban canyons, a fast and successful attitude determination with limited satellite visibility is very significant. For land vehicles, the possible attitude candidates can be treated as a spherical zone with the center at the reference antenna and the baseline as the radius. This provides an important constraint, which can be exploited to improve the reliability of GPS single frequency and single <span class="hlt">epoch</span> attitude determination in the case of poor satellite reception. First, we fully integrate the spherical zone constraint into the estimation procedure of ambiguity resolution, but not in the validation procedure. Combining both the coordinate domain search and the ambiguity domain search, allows development of a global minimizer of the fixed ambiguity objective function. This scheme also improves the precision of the float ambiguity solution, thus avoiding the problem of search halting. The performance of the new ambiguity resolution method was analyzed by means of several experimental tests, using simulated as well as actual GPS data in urban environments. The experimental results showed that this new, proposed method can utilize a priori spherical zone knowledge to improve the reliability of ambiguity resolution in difficult environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007A%26A...474..365S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007A%26A...474..365S"><span id="translatedtitle">Lyman-alpha radiative transfer during the <span class="hlt">epoch</span> of reionization: contribution to 21-cm signal fluctuations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semelin, B.; Combes, F.; Baek, S.</p> <p>2007-11-01</p> <p>During the <span class="hlt">epoch</span> of reionization, Ly-α photons emitted by the first stars can couple the neutral hydrogen spin temperature to the kinetic gas temperature, providing an opportunity to observe the gas in emission or absorption in the 21-cm line. Given the bright foregrounds, it is particularly important to determine the fluctuation signature of the signal precisely, so as to be able to extract it by its correlation power. LICORICE is a Monte-Carlo radiative transfer code, coupled to the dynamics via an adaptative Tree-SPH code. We present here the Ly-α part of the implementation and validate it through three classical tests. Unlike previous works, we do not assume that P_α, the number of scatterings of Ly-α photons per atom per second, is proportional to the Ly-α background flux, but take the scatterings in the Ly-α line wings into account. The latter have the effect of steepening the radial profile of P_α around each source, and re-inforce the contrast of the fluctuations. In the particular geometry of cosmic filaments of baryonic matter, Ly-α photons are scattered out of the filament, and the large-scale structure of P_α is significantly anisotropic. This could have strong implications for the possible detection of the 21-cm signal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22086458','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22086458"><span id="translatedtitle">ARE OUTFLOWS BIASING SINGLE-<span class="hlt">EPOCH</span> C IV BLACK HOLE MASS ESTIMATES?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Denney, K. D.</p> <p>2012-11-01</p> <p>We use a combination of reverberation mapping data and single-<span class="hlt">epoch</span> (SE) spectra of the C IV emission line in a sample of both low- and high-redshift active galactic nuclei to investigate sources of the discrepancies between C IV- and H{beta}-based SE black hole (BH) mass estimates. We find that for all reverberation mapped sources, there is a component of the line profile that does not reverberate, and the velocity characteristics of this component vary from object to object. The differing strength and properties of this non-variable component are responsible for much of the scatter in C IV-based BH masses compared to H{beta} masses. The C IV mass bias introduced by this non-variable component is correlated with the shape of the C IV line, allowing us to make an empirical correction to the BH mass estimates. Using this correction and accounting for other sources of scatter, such as poor data quality and data inhomogeneity, reduces the scatter between the C IV and H{beta} masses in our sample by a factor of {approx}2, to only {approx}0.2 dex. We discuss the possibility that this non-variable C IV component originates in an orientation-dependent outflow from either the proposed broad-line region disk wind or the intermediate-line region, a high-velocity inner extension of the narrow-line region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RMxAC..44Q.145A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RMxAC..44Q.145A"><span id="translatedtitle">Multi-<span class="hlt">epoch</span> infrared spectroscopy of μ Centauri prior to outburst</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguayo, G.; Mennickent, R. E.; Otero, S.; Granada, A.</p> <p>2014-10-01</p> <p>We present 9 L-band spectra of the Be star μ Cen obtained with the VLT ISAAC distributed along 1 year during an <span class="hlt">epoch</span> of relative photometric quiescence prior to a Δ V= 0.4 mag outburst. Visual estimates for the V magnitude obtained during the last 13 years are also presented. The L-band region from 2.9 to 4.1 microns contains important diagnostic Hydrogen lines that are sensitive to changes in the optical depth conditions of the star envelope. We chose μ Centauri as our target due to its brightness and short recurrence time of relatively well documented outbursts in order to study the evolution of the Be star envelope along time including matter ejection episodes. We measured line strengths, line widths and constructed a line flux ratio diagram as the one made by Lenorzer et al. (2002). Despite the fact that we found the star into a quiescence period, we observe significant and monotonic changes in emission line strength of Bracket-α and Pfund-γ lines relative to Humphreys series. We interpret this variability as changes in the opacity of the circumstellar envelope, moving from an optically thin to an optically thick condition just prior to a major outburst.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5192P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5192P"><span id="translatedtitle">Deformation Parameters Determination From The GPS Permanent and <span class="hlt">Epoch</span> Observations In Poland.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfeil, M.; Jarosinski, M.</p> <p></p> <p>The paper presents preliminary results of deformation parameters calculation from GPS observations for Poland. From geological point of view, the study area covers complex structural junction comprises of the Precambrian East European craton, heav- ily tectonised Teisseyre-Tornquist zone, the Palaeozoic platform, and also of young thrust and fold belt of the Carpathians. Complicated tectonic evolution, together with thermal field differentiation cause rheological contrasts and mechanical heterogene- ity in the earth crust that are expected to affect recent geokinematics of this area. Locations of the GPS stations have been chosen in order to sample major tectonic units of Poland representatively. For several stations coordinates changes had been computed and on that base, deformation parameters have been determined. Quality of these parameters depends on a distance between sites, utilised for their evaluation. This paper presents examples of deformation parameters, computed for GPS perma- nent and <span class="hlt">epoch</span> observations, chosen from CERGOP, EXTENDED SAGET and EPN campaigns and supplemented by data from the EUREF network. Obtained deforma- tion have been compared with recent stress directions for the uppermost crust, as de- termined by mean of borehole breakout analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ApJ...733...53H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ApJ...733...53H"><span id="translatedtitle">Five New Transit <span class="hlt">Epochs</span> of the Exoplanet OGLE-TR-111b</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoyer, S.; Rojo, P.; López-Morales, M.; Díaz, R. F.; Chambers, J.; Minniti, D.</p> <p>2011-05-01</p> <p>We report five new transit <span class="hlt">epochs</span> of the extrasolar planet OGLE-TR-111b, observed in the v-HIGH and Bessell I bands with the FORS1 and FORS2 at the ESO Very Large Telescope between 2008 April and May. The new transits have been combined with all previously published transit data for this planet to provide a new transit timing variations (TTVs) analysis of its orbit. We find no TTVs with amplitudes larger than 1.5 minutes over a four-year observation time baseline, in agreement with the recent result by Adams et al. Dynamical simulations fully exclude the presence of additional planets in the system with masses greater than 1.3, 0.4, and 0.5 M ⊕ at the 3:2, 1:2, and 2:1 resonances, respectively. We also place an upper limit of about 30 M ⊕ on the mass of potential second planets in the region between the 3:2 and 1:2 mean-motion resonances. Based on observations made with ESO Telescopes at the Paranal Observatories under program ID 278.C-5022.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.462.4482A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.462.4482A"><span id="translatedtitle">Polarization leakage in <span class="hlt">epoch</span> of reionization windows - II. Primary beam model and direction-dependent calibration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.</p> <p>2016-11-01</p> <p>Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the <span class="hlt">epoch</span> of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, i.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014yCat..35660043K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014yCat..35660043K"><span id="translatedtitle">VizieR Online Data Catalog: <span class="hlt">EPOCH</span> Project. EROS-2 LMC periodic variables (Kim+, 2014)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, D.-W.; Protopapas, P.; Bailer-Jones, C. A. L.; Byun, Y.-I.; Chang, S.-W.; Marquette, J.-B.; Shin, M.-S.</p> <p>2014-03-01</p> <p>The <span class="hlt">EPOCH</span> (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In order to classify these variables, we first build a training set by compiling known variables in the Large Magellanic Could area from the OGLE and MACHO surveys. We crossmatch these variables with the EROS-2 sources and extract 22 variability features from 28,392 light curves of the corresponding EROS-2 sources. We then use Random Forests to classify the EROS-2 sources in the training set. We design the model to separate not only Delta Scuti stars, RR Lyraes, Cepheids, eclipsing binaries and long-period variables, the "superclasses", but also their subclasses, such as RRab, RRc, RRd and RRe for RR Lyraes, and similarly for the other variable types. We apply the trained model to the entire EROS-2 LMC database containing about 29 million sources and find 117,234 periodic variable candidates. Out of these 117,234 periodic variables, 55,285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 Delta Scuti stars, 6,607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34,562 eclipsing binaries and 11,394 long-period variables. (1 data file).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...786..142V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...786..142V"><span id="translatedtitle">H I Absorption from the <span class="hlt">Epoch</span> of Reionization and Primordial Magnetic Fields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasiliev, Evgenii O.; Sethi, Shiv K.</p> <p>2014-05-01</p> <p>We study the impact of primordial magnetic fields on the H I absorption from the <span class="hlt">epoch</span> of reionization. The presence of these fields results in two distinct effects: (1) the heating of the halos from the decay of the magnetic fields owing to ambipolar diffusion, and (2) an increase in the number of halos owing to additional matter fluctuations induced by magnetic fields. We analyze both of these effects and show that the latter is potentially observable because the number of halos along of line of sight can increase by many orders of magnitude. While this effect is not strongly dependent on the magnetic field strength in the range 0.3-0.6 nG, it is extremely sensitive to the magnetic field power spectral index for the near scale-free models. Therefore, the detection of such absorption features could be a sensitive probe of the primordial magnetic field and its power spectrum. We discuss the detectability of these features with the ongoing and future radio interferometers. In particular, we show that LOFAR might be able to detect these absorption features at z ~= 10 in less than 10 hr of integration if the flux of the background source is 400 mJy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SPIE.3978..258E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SPIE.3978..258E"><span id="translatedtitle">Analysis of short single rest/activation <span class="hlt">epoch</span> fMRI by self-organizing map neural network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter</p> <p>2000-04-01</p> <p>Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation <span class="hlt">epochs</span> with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation <span class="hlt">epoch</span> and demonstrated to differentiate between the conditions with less time points having only one rest and one activation <span class="hlt">epoch</span>. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an <span class="hlt">epoch</span> width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off <span class="hlt">epochs</span>. The results were also compared by using a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4777377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4777377"><span id="translatedtitle">Effects of Varying <span class="hlt">Epoch</span> Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Banda, Jorge A.; Haydel, K. Farish; Davila, Tania; Desai, Manisha; Haskell, William L.; Matheson, Donna; Robinson, Thomas N.</p> <p>2016-01-01</p> <p>Objective To examine the effects of accelerometer <span class="hlt">epoch</span> lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). Methods 268 7–11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4–7 days. Data were processed and analyzed at <span class="hlt">epoch</span> lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each <span class="hlt">epoch</span> length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different <span class="hlt">epoch</span> lengths, WT algorithms, and activity cut-points. Results WT minutes/day varied significantly by <span class="hlt">epoch</span> length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by <span class="hlt">epoch</span> length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by <span class="hlt">epoch</span> length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all <span class="hlt">epoch</span> lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). Conclusions The common practice of converting WT algorithms and activity cut-point definitions to match different <span class="hlt">epoch</span> lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different <span class="hlt">epoch</span> lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy. PMID:26938240</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/661635','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/661635"><span id="translatedtitle"><span class="hlt">Plasma</span> turbulence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Horton, W.; Hu, G.</p> <p>1998-07-01</p> <p>The origin of <span class="hlt">plasma</span> turbulence from currents and spatial gradients in <span class="hlt">plasmas</span> is described and shown to lead to the dominant transport mechanism in many <span class="hlt">plasma</span> regimes. A wide variety of turbulent transport mechanism exists in <span class="hlt">plasmas</span>. In this survey the authors summarize some of the universally observed <span class="hlt">plasma</span> transport rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22039400','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22039400"><span id="translatedtitle">COMPARING SINGLE-<span class="hlt">EPOCH</span> VIRIAL BLACK HOLE MASS ESTIMATORS FOR LUMINOUS QUASARS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Shen Yue; Liu Xin</p> <p>2012-07-10</p> <p>Single-<span class="hlt">epoch</span> virial black hole (BH) mass estimators utilizing broad emission lines have been routinely applied to high-redshift quasars to estimate their BH masses. Depending on the redshift, different line estimators (H{alpha}, H{beta}, Mg II {lambda}2798, C IV {lambda}1549) are often used with optical/near-infrared spectroscopy. Here, we use a homogeneous sample of 60 intermediate-redshift (z {approx} 1.5-2.2) Sloan Digital Sky Survey quasars with optical and near-infrared spectra covering C IV through H{alpha} to investigate the consistency between different single-<span class="hlt">epoch</span> virial BH mass estimators. We critically compare rest-frame UV line estimators (C IV {lambda}1549, C III] {lambda}1908, and Mg II {lambda}2798) with optical estimators (H{beta} and H{alpha}) in terms of correlations between line widths and between continuum/line luminosities, for the high-luminosity regime (L{sub 5100} > 10{sup 45.4} erg s{sup -1}) probed by our sample. The continuum luminosities of L{sub 1350} and L{sub 3000}, and the broad-line luminosities are well correlated with L{sub 5100}, reflecting the homogeneity of quasar spectra in the rest-frame UV-optical, among which L{sub 1350} and the line luminosities for C IV and C III] have the largest scatter in the correlation with L{sub 5100}. We found that the Mg II FWHM correlates well with the FWHMs of the Balmer lines and that the Mg II line estimator can be calibrated to yield consistent virial mass estimates with those based on the H{beta}/H{alpha} estimators, thus extending earlier results on less luminous objects. The C IV FWHM is poorly correlated with the Balmer line FWHMs, and the scatter between the C IV and H{beta} FWHMs consists of an irreducible part ({approx}0.12 dex), and a part that correlates with the blueshift of the C IV centroid relative to that of H{beta}, similar to earlier studies comparing C IV with Mg II. The C III] FWHM is found to correlate with the C IV FWHM, and hence is also poorly correlated with the H</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E..56A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E..56A"><span id="translatedtitle">Was the Sun especially active at the end of the late glacial <span class="hlt">epoch</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alekseeva, Liliya</p> <p></p> <p>In their pioneering work, the geophysicists A. Brekke and A. Egeland (1983) collected beliefs of different peoples, associated with northern lights. Our analyses of this collection show that these beliefs are mainly related to the mythological idea of ``abnormal'' deads (dead, childless old maids in Finnish beliefs; killed people; spirits dangerous to children). We find similar motifs in Slavic fairy tales about the ``Thrice-Nine Land,'' regarded as the other world in folkloric studies (in the Land where mobile and agitated warlike girls live, whose Head Girl is characterized by the words ``white snow, pretty light, the prettiest in the World,'' but whose name ``Mariya Morevna'' refers to the word ``mort''; where a river flows with its banks covered by human bones; where the witch Baba-Yaga dwells, being extremely dangerous for children). Moreover, it can be noted that similar narrative fabulous myths deal with the concept of auroral oval northern lights, since some specific features of the natural auroral forms are mentioned there, with their particular spatial orientations (to the North or West). This resembles the manner in which Ancient Greek myths describe the real properties of the heavenly phenomena in a mythological language. It is interesting that myths on the high-latitude northern lights spread even to the South of Europe (and, might be, to India and Iran). This fact can be understood in view of the following. It has been established that, during the late glacial <span class="hlt">epoch</span>, the environmental and cultural conditions were similar over the area from Pyrenean to the Ural Mountains; the pattern of hunters' settlements outlined the glacial sheet from the outside. Relics of the hunters' beliefs can now be found in Arctic, where the environment and lifestyle remain nearly unchanged. The ethnographer Yu.B. Simchenko (1976) has reconstructed the most archaic Arctic myths. According to them, the World of dead is associated with the world of ice governed by the ``Ice</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3152Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3152Y"><span id="translatedtitle">The Karangatian <span class="hlt">epoch</span> in the Neopleistocene history of the Black Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yanko-Hombach, Valentina; Motnenko, Irena</p> <p>2016-04-01</p> <p>Black Sea Quaternary history shows an alternation of transgressive and regressive stages that are related to global climate change and pronounced due to semi-isolation from the World Ocean. In warm <span class="hlt">epochs</span>, the Black Sea is connected to the Mediterranean Sea (i.e., World Ocean) via connecting seas and straits. In cold <span class="hlt">epochs</span>, it becomes isolated or connects to the Caspian Sea via the Manych outlet. During transgressions, sea level rises as does salinity. During regressions, when it drops below the Bosphorus sill, the basin transforms into an isolated lake. During transgressions, organisms migrate into the Black Sea from either the Mediterranean or Caspian. Such migrations affect assemblage structure and increase the number of species, especially in case of Mediterranean transgressions. During regressive stages, the number of species drops, and only holeuryhaline Mediterranean species can survive the lowering of salinity (Yanko-Hombach, 2007). The most powerful Mediterranean transgression in the Black Sea occurred during the Mikulino (MIS 5e) interglacial, corresponding to the central European Eemian interglacial; it is usually compared with the Alpine Riss-Würm interglacial. Clear traces of this transgression are preserved in coastal outcrops exposed in tectonically elevated terraces of the Kerch and Taman peninsulas, and Caucasus. They are also found in numerous cores and drill holes recovered from the Black Sea bottom. These traces contain numerous Mediterranean organisms (molluscs, foraminifera, ostracoda, etc.), many of which do not live in the Black Sea today. These sediments were first described by N.I. Andrusov (1925) on Cape Karangat, Kerch peninsula, in the early XX century. He called them "Tyrrenean" as they were similar to those in the "Tyrrenean" beds that form a coastal terrace in the Mediterranean. This similarity enabled him to conclude that the Mediterranean and Black Sea basins were connected to each other. Later, the "Tyrrenian" beds were renamed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19396145','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19396145"><span id="translatedtitle">A semi-aquatic Arctic mammalian carnivore from the Miocene <span class="hlt">epoch</span> and origin of Pinnipedia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rybczynski, Natalia; Dawson, Mary R; Tedford, Richard H</p> <p>2009-04-23</p> <p>Modern pinnipeds (seals, sea lions and the walrus) are semi-aquatic, generally marine carnivores the limbs of which have been modified into flippers. Recent phylogenetic studies using morphological and molecular evidence support pinniped monophyly, and suggest a sister relationship with ursoids (for example bears) or musteloids (the clade that includes skunks, badgers, weasels and otters). Although the position of pinnipeds within modern carnivores appears moderately well resolved, fossil evidence of the morphological steps leading from a terrestrial ancestor to the modern marine forms has been weak or contentious. The earliest well-represented fossil pinniped is Enaliarctos, a marine form with flippers, which had appeared on the northwestern shores of North America by the early Miocene <span class="hlt">epoch</span>. Here we report the discovery of a nearly complete skeleton of a new semi-aquatic carnivore from an early Miocene lake deposit in Nunavut, Canada, that represents a morphological link in early pinniped evolution. The new taxon retains a long tail and the proportions of its fore- and hindlimbs are more similar to those of modern terrestrial carnivores than to modern pinnipeds. Morphological traits indicative of semi-aquatic adaptation include a forelimb with a prominent deltopectoral ridge on the humerus, a posterodorsally expanded scapula, a pelvis with relatively short ilium, a shortened femur and flattened phalanges, suggestive of webbing. The new fossil shows evidence of pinniped affinities and similarities to the early Oligocene Amphicticeps from Asia and the late Oligocene and Miocene Potamotherium from Europe. The discovery suggests that the evolution of pinnipeds included a freshwater transitional phase, and may support the hypothesis that the Arctic was an early centre of pinniped evolution. PMID:19396145</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PASA...33...19T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PASA...33...19T"><span id="translatedtitle">Spectral Calibration Requirements of Radio Interferometers for <span class="hlt">Epoch</span> of Reionisation Science with the SKA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trott, Cathryn M.; Wayth, Randall B.</p> <p>2016-05-01</p> <p>Spectral features introduced by instrumental chromaticity of radio interferometers have the potential to negatively impact the ability to perform <span class="hlt">Epoch</span> of Reionisation and Cosmic Dawn (EoR/CD) science. We describe instrument calibration choices that influence the spectral characteristics of the science data, and assess their impact on EoR/CD statistical and tomographic experiments. Principally, we consider the intrinsic spectral response of the antennas, embedded within a complete frequency-dependent primary beam response, and instrument sampling. The analysis is applied to the proposed SKA1-Low EoR/CD experiments. We provide tolerances on the smoothness of the SKA station primary beam bandpass, to meet the scientific goals of statistical and tomographic (imaging) of EoR/CD programs. Two calibration strategies are tested: (1) fitting of each fine channel independently, and (2) fitting of an nth-order polynomial for each ~ 1 MHz coarse channel with (n+1)th-order residuals (n = 2, 3, 4). Strategy (1) leads to uncorrelated power in the 2D power spectrum proportional to the thermal noise power, thereby reducing the overall sensitivity. Strategy (2) leads to correlated residuals from the fitting, and residual signal power with (n+1)th-order curvature. For the residual power to be less than the thermal noise, the fractional amplitude of a fourth-order term in the bandpass across a single coarse channel must be < 2.5% (50 MHz), < 0.5% (150 MHz), < 0.8% (200 MHz). The tomographic experiment places constraints on phase residuals in the bandpass. We find that the root-mean-square variability over all stations of the change in phase across any fine channel (4.578 kHz) should not exceed 0.2 degrees.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21654802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21654802"><span id="translatedtitle">Irregular tropical glacier retreat over the Holocene <span class="hlt">epoch</span> driven by progressive warming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jomelli, Vincent; Khodri, Myriam; Favier, Vincent; Brunstein, Daniel; Ledru, Marie-Pierre; Wagnon, Patrick; Blard, Pierre-Henri; Sicart, Jean-Emmanuel; Braucher, Régis; Grancher, Delphine; Bourlès, Didier Louis; Braconnot, Pascale; Vuille, Mathias</p> <p>2011-06-08</p> <p>The causes and timing of tropical glacier fluctuations during the Holocene <span class="hlt">epoch</span> (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000 years (11 kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8 ± 0.9 to 8.5 ± 0.4 kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3 ± 0.8 °C cooler at 11 kyr ago and remained -2.1 ± 0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22365513','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22365513"><span id="translatedtitle">Multi-band, multi-<span class="hlt">epoch</span> observations of the transiting warm Jupiter WASP-80b</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Fukui, Akihiko; Kuroda, Daisuke; Kawashima, Yui; Ikoma, Masahiro; Kurosaki, Kenji; Narita, Norio; Nishiyama, Shogo; Takahashi, Yasuhiro H.; Nagayama, Shogo; Onitsuka, Masahiro; Baba, Haruka; Ryu, Tsuguru; Ita, Yoshifusa; Onozato, Hiroki; Hirano, Teruyuki; Kawauchi, Kiyoe; Hori, Yasunori; Nagayama, Takahiro; Tamura, Motohide; Kawai, Nobuyuki; and others</p> <p>2014-08-01</p> <p>WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-<span class="hlt">epoch</span> transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21300710','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21300710"><span id="translatedtitle">DISCOVERY OF A GIANT Ly{alpha} EMITTER NEAR THE REIONIZATION <span class="hlt">EPOCH</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ouchi, Masami; McCarthy, Patrick J.; Momcheva, Ivelina; Dressler, Alan; Ono, Yoshiaki; Shimasaku, Kazuhiro; Okamura, Sadanori; Hayashi, Masao; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; Farrah, Duncan; Kashikawa, Nobunari; Iye, Masanori; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M. J.; Cirasuolo, Michele</p> <p>2009-05-10</p> <p>We report the discovery of a giant Ly{alpha} emitter (LAE) with a Spitzer/Infrared Array Camera (IRAC) counterpart near the reionization <span class="hlt">epoch</span> at z = 6.595. The giant LAE is found from the extensive 1 deg{sup 2} Subaru narrowband survey for z = 6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrowband object with L(Ly{alpha}) = 3.9 {+-} 0.2 x 10{sup 43} erg s{sup -1} in our survey volume of 10{sup 6} Mpc{sup 3}, but also a spatially extended Ly{alpha} nebula with the largest isophotal area whose major axis is at least {approx_equal}3''. This object is more likely to be a large Ly{alpha} nebula with a size of {approx}>17 kpc than to be a strongly lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v {sub FWHM} = 251 {+-} 21 km s{sup -1}, and that the line-center velocity changes by {approx_equal}60 km s{sup -1} in a 10 kpc range. The stellar mass and star formation rate are estimated to be 0.9-5.0 x 10{sup 10} M {sub sun} and >34 M {sub sun} yr{sup -1}, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of intergalactic medium.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...763..132S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...763..132S"><span id="translatedtitle">Intensity Mapping of Lyα Emission during the <span class="hlt">Epoch</span> of Reionization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, Marta B.; Santos, Mario G.; Gong, Yan; Cooray, Asantha; Bock, James</p> <p>2013-02-01</p> <p>We calculate the absolute intensity and anisotropies of the Lyα radiation field present during the <span class="hlt">epoch</span> of reionization. We consider emission from both galaxies and the intergalactic medium (IGM) and take into account the main contributions to the production of Lyα photons: recombinations, collisions, continuum emission from galaxies, and scattering of Lyn photons in the IGM. We find that the emission from individual galaxies dominates over the IGM with a total Lyα intensity (times frequency) of about (1.43-3.57) × 10-8 erg s-1 cm-2 sr-1 at a redshift of 7. This intensity level is low, so it is unlikely that the Lyα background during reionization can be established by an experiment aiming at an absolute background light measurement. Instead, we consider Lyα intensity mapping with the aim of measuring the anisotropy power spectrum that has rms fluctuations at the level of 1 × 10-16 [erg s-1 cm-2 sr-1]2 at a few Mpc scales. These anisotropies could be measured with a spectrometer at near-IR wavelengths from 0.9 to 1.4 μm with fields in the order of 0.5 to 1 deg2. We recommend that existing ground-based programs using narrowband filters also pursue intensity fluctuations to study statistics on the spatial distribution of faint Lyα emitters. We also discuss the cross-correlation signal with 21 cm experiments that probe H I in the IGM during reionization. A dedicated sub-orbital or space-based Lyα intensity mapping experiment could provide a viable complimentary approach to probe reionization, when compared to 21 cm experiments, and is likely within experimental reach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.456.1936M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.456.1936M"><span id="translatedtitle">Statistics of the <span class="hlt">epoch</span> of reionization 21-cm signal - I. Power spectrum error-covariance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mondal, Rajesh; Bharadwaj, Somnath; Majumdar, Suman</p> <p>2016-02-01</p> <p>The non-Gaussian nature of the <span class="hlt">epoch</span> of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum P(k). We have used a large ensemble of seminumerical simulations and an analytical model to estimate the effect of this non-Gaussianity on the entire error-covariance matrix {C}ij. Our analytical model shows that {C}ij has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of P(k). The other is the trispectrum of the signal. Using the simulated 21-cm Signal Ensemble, an ensemble of the Randomized Signal and Ensembles of Gaussian Random Ensembles we have quantified the effect of the trispectrum on the error variance {C}ii. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the k range 0.3 ≤ k ≤ 1.0 Mpc-1, and can be even ˜200 times larger at k ˜ 5 Mpc-1. We also establish that the off-diagonal terms of {C}ij have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different k modes are not independent. We find a strong correlation between the errors at large k values (≥0.5 Mpc-1), and a weak correlation between the smallest and largest k values. There is also a small anticorrelation between the errors in the smallest and intermediate k values. These results are relevant for the k range that will be probed by the current and upcoming EoR 21-cm experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20182509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20182509"><span id="translatedtitle">Tropical cyclones and permanent El Niño in the early Pliocene <span class="hlt">epoch</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fedorov, Alexey V; Brierley, Christopher M; Emanuel, Kerry</p> <p>2010-02-25</p> <p>Tropical cyclones (also known as hurricanes and typhoons) are now believed to be an important component of the Earth's climate system. In particular, by vigorously mixing the upper ocean, they can affect the ocean's heat uptake, poleward heat transport, and hence global temperatures. Changes in the distribution and frequency of tropical cyclones could therefore become an important element of the climate response to global warming. A potential analogue to modern greenhouse conditions, the climate of the early Pliocene <span class="hlt">epoch</span> (approximately 5 to 3 million years ago) can provide important clues to this response. Here we describe a positive feedback between hurricanes and the upper-ocean circulation in the tropical Pacific Ocean that may have been essential for maintaining warm, El Niño-like conditions during the early Pliocene. This feedback is based on the ability of hurricanes to warm water parcels that travel towards the Equator at shallow depths and then resurface in the eastern equatorial Pacific as part of the ocean's wind-driven circulation. In the present climate, very few hurricane tracks intersect the parcel trajectories; consequently, there is little heat exchange between waters at such depths and the surface. More frequent and/or stronger hurricanes in the central Pacific imply greater heating of the parcels, warmer temperatures in the eastern equatorial Pacific, warmer tropics and, in turn, even more hurricanes. Using a downscaling hurricane model, we show dramatic shifts in the tropical cyclone distribution for the early Pliocene that favour this feedback. Further calculations with a coupled climate model support our conclusions. The proposed feedback should be relevant to past equable climates and potentially to contemporary climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21654802','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21654802"><span id="translatedtitle">Irregular tropical glacier retreat over the Holocene <span class="hlt">epoch</span> driven by progressive warming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jomelli, Vincent; Khodri, Myriam; Favier, Vincent; Brunstein, Daniel; Ledru, Marie-Pierre; Wagnon, Patrick; Blard, Pierre-Henri; Sicart, Jean-Emmanuel; Braucher, Régis; Grancher, Delphine; Bourlès, Didier Louis; Braconnot, Pascale; Vuille, Mathias</p> <p>2011-06-01</p> <p>The causes and timing of tropical glacier fluctuations during the Holocene <span class="hlt">epoch</span> (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000 years (11 kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8 ± 0.9 to 8.5 ± 0.4 kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3 ± 0.8 °C cooler at 11 kyr ago and remained -2.1 ± 0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics. PMID:21654802</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22004499','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22004499"><span id="translatedtitle">MULTI-<span class="hlt">EPOCH</span> OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R.; Lisse, C. M.; Boden, A. F.; Dodson-Robinson, S. E.; Salyk, C.; Wyatt, M. C.</p> <p>2011-12-10</p> <p>The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-<span class="hlt">epoch</span> photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...566A..43K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...566A..43K"><span id="translatedtitle">The <span class="hlt">EPOCH</span> Project. I. Periodic variable stars in the EROS-2 LMC database</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Dae-Won; Protopapas, Pavlos; Bailer-Jones, Coryn A. L.; Byun, Yong-Ik; Chang, Seo-Won; Marquette, Jean-Baptiste; Shin, Min-Su</p> <p>2014-06-01</p> <p>The <span class="hlt">EPOCH</span> (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only δ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 δ Scuti stars, 6607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. catalog of these EROS-2 LMC periodic variable stars is available at http://stardb.yonsei.ac.kr and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A43</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25043014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25043014"><span id="translatedtitle">A shift of thermokarst lakes from carbon sources to sinks during the Holocene <span class="hlt">epoch</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anthony, K M Walter; Zimov, S A; Grosse, G; Jones, M C; Anthony, P M; Chapin, F S; Finlay, J C; Mack, M C; Davydov, S; Frenzel, P; Frolking, S</p> <p>2014-07-24</p> <p>Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene <span class="hlt">epoch</span>. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...822...26G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...822...26G"><span id="translatedtitle">The Optical Variability of SDSS Quasars from Multi-<span class="hlt">epoch</span> Spectroscopy. II. Color Variation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Hengxiao; Gu, Minfeng</p> <p>2016-05-01</p> <p>We investigated the optical/ultraviolet (UV) color variations for a sample of 2169 quasars based on multi-<span class="hlt">epoch</span> spectroscopy in the Sloan Digital Sky Survey data releases seven (DR7) and nine (DR9). To correct the systematic difference between DR7 and DR9 due to the different instrumental setup, we produced a correction spectrum by using a sample of F-stars observed in both DR7 and DR9. The correction spectrum was then applied to quasars when comparing the spectra of DR7 with DR9. In each object, the color variation was explored by comparing the spectral index of the continuum power-law fit on the brightest spectrum with the faintest one, and also by the shape of their difference spectrum. In 1876 quasars with consistent color variations from two methods, we found that most sources (1755, ˜94%) show the bluer-when-brighter (BWB) trend, and the redder-when-brighter (RWB) trend is detected in only 121 objects (˜6%). The common BWB trend is supported by the composite spectrum constructed from bright spectra, which is bluer than that from faint spectra, and also by the blue composite difference spectrum. The correction spectrum is proven to be highly reliable by comparing the composite spectrum from corrected DR9 and original DR7 spectra. Assuming that the optical/UV variability is triggered by fluctuations, the RWB trend can likely be explained if the fluctuations occur first in the outer disk region, and the inner disk region has not yet fully responded when the fluctuations are being propagated inward. In contrast, the common BWB trend implies that the fluctuations likely more often happen first in the inner disk region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...814...27T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...814...27T"><span id="translatedtitle">The Effect of Interplanetary Scintillation on <span class="hlt">Epoch</span> of Reionization Power Spectra</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trott, Cathryn M.; Tingay, Steven J.</p> <p>2015-11-01</p> <p>Interplanetary Scintillation (IPS) induces intensity fluctuations in small angular size astronomical radio sources via the distortive effects of spatially and temporally varying electron density associated with outflows from the Sun. These radio sources are a potential foreground contaminant signal for redshifted HI emission from the <span class="hlt">Epoch</span> of Reionization (EoR) because they yield time-dependent flux density variations in bright extragalactic point sources. Contamination from foreground continuum sources complicates efforts to discriminate the cosmological signal from other sources in the sky. In IPS, at large angles from the Sun applicable to EoR observations, weak scattering induces spatially and temporally correlated fluctuations in the measured flux density of sources in the field, potentially affecting the detectability of the EoR signal by inducing non-static variations in the signal strength. In this work, we explore the impact of interplanetary weak scintillation on EoR power spectrum measurements, accounting for the instrumental spatial and temporal sampling. We use published power spectra of electron density fluctuations and parameters of EoR experiments to derive the IPS power spectrum in the wavenumber phase space of EoR power spectrum measurements. The contrast of IPS power to expected cosmological power is used as a metric to assess the impact of IPS. We show that IPS has a spectral structure different from power from foregrounds alone, but the additional leakage into the EoR observation parameter space is negligible under typical IPS conditions, unless data are used from deep within the foreground contamination region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25043014','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25043014"><span id="translatedtitle">A shift of thermokarst lakes from carbon sources to sinks during the Holocene <span class="hlt">epoch</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anthony, K M Walter; Zimov, S A; Grosse, G; Jones, M C; Anthony, P M; Chapin, F S; Finlay, J C; Mack, M C; Davydov, S; Frenzel, P; Frolking, S</p> <p>2014-07-24</p> <p>Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene <span class="hlt">epoch</span>. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......136B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......136B"><span id="translatedtitle">The Murchison Widefield Array 21cm <span class="hlt">Epoch</span> of Reionization Experiment: Design, Construction, and First Season Results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beardsley, Adam</p> <p></p> <p>The Cosmic Dark Ages and the <span class="hlt">Epoch</span> of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-σ upper limit on the EoR power spectrum of Δ^2(k)<1.25×10^4 mK^2 at cosmic scale k=0.236 h Mpc^{-1} and redshift z=6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........87B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........87B"><span id="translatedtitle">The Murchison Widefield Array 21cm <span class="hlt">Epoch</span> of Reionization Experiment: Design, Construction, and First Season Results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beardsley, Adam</p> <p></p> <p>The Cosmic Dark Ages and the <span class="hlt">Epoch</span> of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-sigma upper limit on the EoR power spectrum of Delta2(k) < 1.25 x 104 mK2 at cosmic scale k = 0.236 h Mpc-1 and redshift z = 6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/20182509','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/20182509"><span id="translatedtitle">Tropical cyclones and permanent El Niño in the early Pliocene <span class="hlt">epoch</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fedorov, Alexey V; Brierley, Christopher M; Emanuel, Kerry</p> <p>2010-02-25</p> <p>Tropical cyclones (also known as hurricanes and typhoons) are now believed to be an important component of the Earth's climate system. In particular, by vigorously mixing the upper ocean, they can affect the ocean's heat uptake, poleward heat transport, and hence global temperatures. Changes in the distribution and frequency of tropical cyclones could therefore become an important element of the climate response to global warming. A potential analogue to modern greenhouse conditions, the climate of the early Pliocene <span class="hlt">epoch</span> (approximately 5 to 3 million years ago) can provide important clues to this response. Here we describe a positive feedback between hurricanes and the upper-ocean circulation in the tropical Pacific Ocean that may have been essential for maintaining warm, El Niño-like conditions during the early Pliocene. This feedback is based on the ability of hurricanes to warm water parcels that travel towards the Equator at shallow depths and then resurface in the eastern equatorial Pacific as part of the ocean's wind-driven circulation. In the present climate, very few hurricane tracks intersect the parcel trajectories; consequently, there is little heat exchange between waters at such depths and the surface. More frequent and/or stronger hurricanes in the central Pacific imply greater heating of the parcels, warmer temperatures in the eastern equatorial Pacific, warmer tropics and, in turn, even more hurricanes. Using a downscaling hurricane model, we show dramatic shifts in the tropical cyclone distribution for the early Pliocene that favour this feedback. Further calculations with a coupled climate model support our conclusions. The proposed feedback should be relevant to past equable climates and potentially to contemporary climate change. PMID:20182509</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22370075','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22370075"><span id="translatedtitle">First-<span class="hlt">epoch</span> VLBA imaging of 20 new TeV blazars</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Piner, B. Glenn; Edwards, Philip G.</p> <p>2014-12-10</p> <p>We present Very Long Baseline Array (VLBA) images of 20 TeV blazars not previously well studied on the parsec scale. All 20 of these sources are high-frequency peaked BL Lac objects (HBLs). Observations were made between August and December of 2013 at a frequency of 8.4 GHz. These observations represent the first <span class="hlt">epoch</span> of a VLBA monitoring campaign on these blazars, and they significantly increase the fraction of TeV HBLs studied with high-resolution imaging. The peak very long baseline interferometry (VLBI) flux densities of these sources range from ∼10 to ∼100 mJy bm{sup –1}, and parsec-scale jet structure is detected in all sources. About half of the VLBI cores are resolved, with brightness temperature upper limits of a few times 10{sup 10} K, and we find that a brightness temperature of ∼2 × 10{sup 10} K is consistent with the VLBI data for all but one of the sources. Such brightness temperatures do not require any relativistic beaming to reduce the observed value below commonly invoked intrinsic limits; however, the lack of detection of counterjets does place a modest limit on the bulk Lorentz factor of γ ≳ 2. These data are thus consistent with a picture where weak-jet sources like the TeV HBLs develop significant velocity structures on parsec scales. We also extend consideration to the full sample of TeV HBLs by combining the new VLBI data with VLBI and gamma-ray data from the literature. By comparing measured VLBI and TeV fluxes to samples with intrinsically uncorrelated luminosities generated by Monte Carlo simulations, we find a marginally significant correlation between the VLBI and TeV fluxes for the full TeV HBL sample.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012MNRAS.425.2964Z&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012MNRAS.425.2964Z&link_type=ABSTRACT"><span id="translatedtitle">Imaging neutral hydrogen on large scales during the <span class="hlt">Epoch</span> of Reionization with LOFAR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaroubi, S.; de Bruyn, A. G.; Harker, G.; Thomas, R. M.; Labropolous, P.; Jelić, V.; Koopmans, L. V. E.; Brentjens, M. A.; Bernardi, G.; Ciardi, B.; Daiboo, S.; Kazemi, S.; Martinez-Rubi, O.; Mellema, G.; Offringa, A. R.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.</p> <p>2012-10-01</p> <p>The first generation of redshifted 21 cm detection experiments, carried out with arrays like Low Frequency Array (LOFAR), Murchison Widefield Array (MWA) and Giant Metrewave Telescope (GMRT), will have a very low signal-to-noise ratio (S/N) per resolution element (≲0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales, on the one hand, and the foregrounds effect on large scales, on the other hand, make direct imaging of the <span class="hlt">Epoch</span> of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical. Despite these hurdles, in this paper we argue that for many reionization scenarios low-resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the intergalactic medium, reflecting the clustering of the large-scale structure, which stays strong up to scales of ≈120 h-1 comoving Mpc (≈1°). The coherence of the emission on those scales allows us to reach sufficient S/N (≳3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (≈120 h-1 comoving Mpc) also argues for designing future EoR experiments, e.g. with Square Kilometre Array, with a field of view of at least 4°.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22521905','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22521905"><span id="translatedtitle">THE EFFECT OF INTERPLANETARY SCINTILLATION ON <span class="hlt">EPOCH</span> OF REIONIZATION POWER SPECTRA</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Trott, Cathryn M.; Tingay, Steven J.</p> <p>2015-11-20</p> <p>Interplanetary Scintillation (IPS) induces intensity fluctuations in small angular size astronomical radio sources via the distortive effects of spatially and temporally varying electron density associated with outflows from the Sun. These radio sources are a potential foreground contaminant signal for redshifted HI emission from the <span class="hlt">Epoch</span> of Reionization (EoR) because they yield time-dependent flux density variations in bright extragalactic point sources. Contamination from foreground continuum sources complicates efforts to discriminate the cosmological signal from other sources in the sky. In IPS, at large angles from the Sun applicable to EoR observations, weak scattering induces spatially and temporally correlated fluctuations in the measured flux density of sources in the field, potentially affecting the detectability of the EoR signal by inducing non-static variations in the signal strength. In this work, we explore the impact of interplanetary weak scintillation on EoR power spectrum measurements, accounting for the instrumental spatial and temporal sampling. We use published power spectra of electron density fluctuations and parameters of EoR experiments to derive the IPS power spectrum in the wavenumber phase space of EoR power spectrum measurements. The contrast of IPS power to expected cosmological power is used as a metric to assess the impact of IPS. We show that IPS has a spectral structure different from power from foregrounds alone, but the additional leakage into the EoR observation parameter space is negligible under typical IPS conditions, unless data are used from deep within the foreground contamination region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21301197','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21301197"><span id="translatedtitle">THE PRECISION ARRAY FOR PROBING THE <span class="hlt">EPOCH</span> OF RE-IONIZATION: EIGHT STATION RESULTS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Parsons, Aaron R.; Backer, Donald C.; Foster, Griffin S.; Wright, Melvyn C. H.; Bradley, Richard F.; Gugliucci, Nicole E.; Parashare, Chaitali R.; Benoit, Erin E.; Aguirre, James E.; Jacobs, Daniel C.; Carilli, Chris L.; Herne, David; Lynch, Mervyn J.; Manley, Jason R.; Werthimer, Daniel J.</p> <p>2010-04-15</p> <p>We are developing the Precision Array for Probing the <span class="hlt">Epoch</span> of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C {sub l}) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at l = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvD..90b3019L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvD..90b3019L"><span id="translatedtitle"><span class="hlt">Epoch</span> of reionization window. II. Statistical methods for foreground wedge reduction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Adrian; Parsons, Aaron R.; Trott, Cathryn M.</p> <p>2014-07-01</p> <p>For there to be a successful measurement of the 21 cm <span class="hlt">epoch</span> of reionization (EoR) power spectrum, it is crucial that strong foreground contaminants be robustly suppressed. These foregrounds come from a variety of sources (such as Galactic synchrotron emission and extragalactic point sources), but almost all share the property of being spectrally smooth and, when viewed through the chromatic response of an interferometer, occupy a signature "wedge" region in cylindrical k⊥k∥ Fourier space. The complement of the foreground wedge is termed the "EoR window" and is expected to be mostly foreground-free, allowing clean measurements of the power spectrum. This paper is a sequel to a previous paper that established a rigorous mathematical framework for describing the foreground wedge and the EoR window. Here, we use our framework to explore statistical methods by which the EoR window can be enlarged, thereby increasing the sensitivity of a power spectrum measurement. We adapt the Feldman-Kaiser-Peacock approximation (commonly used in galaxy surveys) for 21 cm cosmology and also compare the optimal quadratic estimator to simpler estimators that ignore covariances between different Fourier modes. The optimal quadratic estimator is found to suppress foregrounds by an extra factor of ˜105 in power at the peripheries of the EoR window, boosting the detection of the cosmological signal from 12σ to 50σ at the midpoint of reionization in our fiducial models. If numerical issues can be finessed, decorrelation techniques allow the EoR window to be further enlarged, enabling measurements to be made deep within the foreground wedge. These techniques do not assume that foreground is Gaussian distributed, and we additionally prove that a final round of foreground subtraction can be performed after decorrelation in a way that is guaranteed to have no cosmological signal loss.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70157138','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70157138"><span id="translatedtitle">A shift of thermokarst lakes from carbon sources to sinks during the Holocene <span class="hlt">epoch</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.</p> <p>2014-01-01</p> <p>Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene <span class="hlt">epoch</span>1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.456.2722K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.456.2722K"><span id="translatedtitle">Revealing the accretion disc corona in Mrk 335 with multi-<span class="hlt">epoch</span> X-ray spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keek, L.; Ballantyne, D. R.</p> <p>2016-03-01</p> <p>Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe Kα emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-<span class="hlt">epoch</span> spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ˜10 per cent of the Eddington limit, the compact and optically thick corona is located close to the inner disc, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disc surface. Furthermore, we find a soft excess that consists of two components. In addition to a contribution from reflection in low ionization states, a second component is present that traces the overall flux.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22011695','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22011695"><span id="translatedtitle">IMAGING THE <span class="hlt">EPOCH</span> OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Vedantham, Harish; Udaya Shankar, N.; Subrahmanyan, Ravi</p> <p>2012-02-01</p> <p>Tomography of redshifted 21 cm transition from neutral hydrogen using Fourier synthesis telescopes is a promising tool to study the <span class="hlt">Epoch</span> of Reionization (EoR). Limiting the confusion from Galactic and extragalactic foregrounds is critical to the success of these telescopes. The instrumental response or the point-spread function (PSF) of such telescopes is inherently three dimensional with frequency mapping to the line-of-sight (LOS) distance. EoR signals will necessarily have to be detected in data where continuum confusion persists; therefore, it is important that the PSF has acceptable frequency structure so that the residual foreground does not confuse the EoR signature. This paper aims to understand the three-dimensional PSF and foreground contamination in the same framework. We develop a formalism to estimate the foreground contamination along frequency, or equivalently LOS dimension, and establish a relationship between foreground contamination in the image plane and visibility weights on the Fourier plane. We identify two dominant sources of LOS foreground contamination-'PSF contamination' and 'gridding contamination'. We show that PSF contamination is localized in LOS wavenumber space, beyond which there potentially exists an 'EoR window' with negligible foreground contamination where we may focus our efforts to detect EoR. PSF contamination in this window may be substantially reduced by judicious choice of a frequency window function. Gridding and imaging algorithms create additional gridding contamination and we propose a new imaging algorithm using the Chirp Z Transform that significantly reduces this contamination. Finally, we demonstrate the analytical relationships and the merit of the new imaging algorithm for the case of imaging with the Murchison Widefield Array.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22351348','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22351348"><span id="translatedtitle">Statistical properties of multi-<span class="hlt">epoch</span> spectral variability of SDSS stripe 82 quasars</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kokubo, Mitsuru; Morokuma, Tomoki; Minezaki, Takeo; Doi, Mamoru; Kawaguchi, Toshihiro; Sameshima, Hiroaki; Koshida, Shintaro</p> <p>2014-03-01</p> <p>We investigate the UV-optical (longward of Lyα 1216 Å) spectral variability of nearly 9000 quasars (0 < z < 4) using multi-<span class="hlt">epoch</span> photometric data within the SDSS Stripe 82 region. The regression slope in the flux-flux space of a quasar light curve directly measures the color of the flux difference spectrum, then the spectral shape of the flux difference spectra can be derived by taking a careful look at the redshift dependence of the regression slopes. First, we confirm that the observed quasar spectrum becomes bluer when the quasar becomes brighter. We infer the spectral index of the composite difference spectrum as α{sub ν}{sup dif}∼+1/3 (in the form of f{sub ν}∝ν{sup α{sub ν}}), which is significantly bluer than that of the composite spectrum α{sub ν}{sup com}∼−0.5. We also show that the continuum variability cannot be explained by accretion disk models with varying mass accretion rates. Second, we examine the effects of broad emission line variability on the color-redshift space. The variability of the 'Small Blue Bump' is extensively discussed. We show that the low-ionization lines of Mg II and Fe II are less variable compared to Balmer emission lines and high-ionization lines, and the Balmer continuum is the dominant variable source around ∼3000 Å. These results are compared with previous studies, and the physical mechanisms of the variability of the continuum and emission lines are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22375829','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22375829"><span id="translatedtitle">Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence <span class="hlt">epoch</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Piattella, O.F.; Martins, D.L.A.; Casarini, L. E-mail: denilsonluizm@gmail.com</p> <p>2014-10-01</p> <p>We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the <span class="hlt">epoch</span> of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the <span class="hlt">epoch</span> considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/4336037','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/biblio/4336037"><span id="translatedtitle"><span class="hlt">PLASMA</span> GENERATOR</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Foster, J.S. Jr.</p> <p>1958-03-11</p> <p>This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a <span class="hlt">plasma</span>, substantially free from contamination with neutral gas particles. The <span class="hlt">plasma</span> generator of the present invention comprises a <span class="hlt">plasma</span> chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the <span class="hlt">plasma</span> in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated <span class="hlt">plasma</span> from the <span class="hlt">plasma</span> chamber.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...827....5J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...827....5J"><span id="translatedtitle">A Machine-learning Approach to Measuring the Escape of Ionizing Radiation from Galaxies in the Reionization <span class="hlt">Epoch</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Hannes; Zackrisson, Erik; Pelckmans, Kristiaan; Binggeli, Christian; Ausmees, Kristiina; Lundholm, Ulrika</p> <p>2016-08-01</p> <p>Recent observations of galaxies at z≳ 7, along with the low value of the electron scattering optical depth measured by the Planck mission, make galaxies plausible as dominant sources of ionizing photons during the <span class="hlt">epoch</span> of reionization. However, scenarios of galaxy-driven reionization hinge on the assumption that the average escape fraction of ionizing photons is significantly higher for galaxies in the reionization <span class="hlt">epoch</span> than in the local universe. The NIRSpec instrument on the James Webb Space Telescope (JWST) will enable spectroscopic observations of large samples of reionization-<span class="hlt">epoch</span> galaxies. While the leakage of ionizing photons will not be directly measurable from these spectra, the leakage is predicted to have an indirect effect on the spectral slope and the strength of nebular emission lines in the rest-frame ultraviolet and optical. Here, we apply a machine learning technique known as lasso regression on mock JWST/NIRSpec observations of simulated z = 7 galaxies in order to obtain a model that can predict the escape fraction from JWST/NIRSpec data. Barring systematic biases in the simulated spectra, our method is able to retrieve the escape fraction with a mean absolute error of {{Δ }}{f}{esc}≈ 0.12 for spectra with signal-to-noise ratio ≈ 5 at a rest-frame wavelength of 1500 Å for our fiducial simulation. This prediction accuracy represents a significant improvement over previous similar approaches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21269277','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21269277"><span id="translatedtitle">MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. V. MULTI-<span class="hlt">EPOCH</span> VLBA IMAGES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Lister, M. L.; Aller, H. D.; Aller, M. F. E-mail: haller@umich.edu</p> <p>2009-03-15</p> <p>We present images from a long-term program (MOJAVE: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observations consist of 2424 15 GHz Very Long Baseline Array (VLBA) images of a complete flux-density-limited sample of 135 AGNs above declination -20{sup 0}, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample-selection criteria are based on multi-<span class="hlt">epoch</span> parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well suited for statistical analysis and comparison with studies at other wavelengths. Our multi-<span class="hlt">epoch</span> and stacked-<span class="hlt">epoch</span> images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012plme.book.....L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012plme.book.....L"><span id="translatedtitle"><span class="hlt">Plasma</span> Medicine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.</p> <p>2012-05-01</p> <p>Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium <span class="hlt">Plasma</span>, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium <span class="hlt">plasmas</span> M. Kushner and M. Kong; 3. Non-equilibrium <span class="hlt">plasma</span> sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. <span class="hlt">Plasma</span> Biology and <span class="hlt">Plasma</span> Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. <span class="hlt">Plasma</span> decontamination of surfaces M. Kong and M. Laroussi; 8. <span class="hlt">Plasma</span> decontamination of gases and liquids A. Fridman; 9. <span class="hlt">Plasma</span>-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. <span class="hlt">Plasma</span>-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. <span class="hlt">Plasma</span> based wound healing G. Isbary, G. Morfill and W. Stolz; 12. <span class="hlt">Plasma</span> ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AAS...22323204K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AAS...22323204K"><span id="translatedtitle">Madison <span class="hlt">Plasma</span> Dynamo Experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kostadinova, Evdokiya; Forest, C.; Cooper, C.; Coquerel, M.</p> <p>2014-01-01</p> <p>The Madison <span class="hlt">Plasma</span> Dynamo Experiment (MPDX) is investigating the self-generation of magnetic fields and related processes in a large, weakly magnetized, fast flowing, and hot (conducting) <span class="hlt">plasma</span>. The dynamo re-creates conditions highly similar to many astrophysical <span class="hlt">plasmas</span>. Stars and other planets have dynamos, and so do galaxies and clusters of galaxies, which makes it extremely crucial for researchers in the field to carry out experiments in this previously uninvestigated <span class="hlt">plasma</span> regime, which will help for the development of a comprehensive <span class="hlt">theory</span> of how magnetic fields are generated in planets, the Sun and other stars. MPDX is a laboratory astrophysical experiment where 200,000-degree Fahrenheit <span class="hlt">plasma</span> is confined within a three-meter diameter spherical aluminum vacuum chamber with the help of multiple tracks of cusp magnets covering the inside shell. The dynamo utilizes six robotic insertion sweep probes that are programmed to find any point inside the sphere by given radial and angular coordinates. This innovative mechanical system allows us to take measurements of the state variables in key points in the <span class="hlt">plasma</span> flow and to better investigate its cosmic-like <span class="hlt">plasma</span> behavior. The probes are able to autonomously calculate coordinate transformations, move in a two dimensional plane, and return information about their relative position. This makes them an extremely useful, highly accurate, and easily controlled tool for <span class="hlt">plasma</span> analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21120533','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21120533"><span id="translatedtitle">The development of a Krook model for nonlocal transport in laser produced <span class="hlt">plasmas</span>. II. Application of the <span class="hlt">theory</span> and comparisons with other models</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Colombant, Denis; Manheimer, Wallace</p> <p>2008-08-15</p> <p>This paper incorporates the Krook model for nonlocal transport into a fluid simulation. It uses these fluid simulations to compare with Fokker-Planck simulations and also with a recent NRL NIKE [S. P. Obenschain et al., Phys. <span class="hlt">Plasmas</span> 3, 2098 (1996)] experiment. The paper also examines several other models for electron energy transport that have been used in laser fusion research. With regards to the comparison with Fokker-Planck simulation, the Krook model gives better agreement, especially in the time asymptotic limit. With regards to the NRL experiment, all models except one give reasonable agreement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..89j0301K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..89j0301K"><span id="translatedtitle">Road of warm dense noble metals to the <span class="hlt">plasma</span> state: Ab initio <span class="hlt">theory</span> of the ultrafast structural dynamics in warm dense matter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kabeer, Fairoja Cheenicode; Zijlstra, Eeuwe S.; Garcia, Martin E.</p> <p>2014-03-01</p> <p>Intense ultrashort extreme ultraviolet (XUV) pulses can be used to create warm dense matter in the laboratory, which then develops to a <span class="hlt">plasma</span> state. So far, however, it is unknown, whether this transition occurs via heat transfer from hot electrons to cold atoms or nonthermally due to a lattice instability. Here we computed the response of the phonon spectra of copper and silver to the presence of XUV-excited core holes and core holes together with very hot electrons. We found that the average interatomic bonds become stronger in the warm dense state. We discuss why these findings support the above-mentioned heat transfer scenario.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P13E..03I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P13E..03I"><span id="translatedtitle">Multiple <span class="hlt">Epochs</span> of Fluvial Denudation in a Changing Climate on Early Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irwin, R. P.</p> <p>2011-12-01</p> <p>Studies of degraded impact craters and valley networks have shown that Mars experienced a severe climate change around the end of the Noachian Period, but the decline in landscape denudation appears to be complex. Prolonged, ubiquitous Noachian crater degradation included smoothing of the crater rims and ejecta, wall backwasting, and infilling. Late Noachian valley networks are also widespread but more limited in many aspects of their development, suggesting relatively short-lived activity or arid conditions by terrestrial standards. Younger fluvial features that appear to have more limited spatial distributions may reflect later clement environments on some parts of the planet. However, distinguishing post-Noachian fluvial erosion is challenging, because it requires slopes such as volcanoes, tectonic scarps, crater rims, or airfall deposits that can be convincingly dated to the Hesperian or later. Moreover, the slope or contributing surface must have been large enough to generate erosive quantities of runoff. Several locations described in the literature meet these conditions. Most large alluvial fans occur in Late Noachian to Hesperian craters within the 15-30° south band. In Margaritifer Terra, recent studies show that large alluvial deposits significantly post-date Late Noachian valley networks. A speculative possible explanation involves seasonal precipitation (snowmelt, rain, or both) that generated more runoff in this latitude band than elsewhere, sometime during the Late Hesperian to Early Amazonian <span class="hlt">Epochs</span>. Gale crater crosscuts the Early Hesperian crustal dichotomy boundary scarp, but a valley network south of the crater appears to have reactivated sometime after the Gale impact and breached the crater rim. Late Noachian valley networks in Aeolis Mensae are hanging with respect to the boundary scarp but exhibit some later dissection and knickpoint propagation. Late fluvial activity in Valles Marineris and some Tharsis volcanoes has also been described, as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013A%26A...550A.136Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013A%26A...550A.136Y"><span id="translatedtitle">Initial deep LOFAR observations of <span class="hlt">epoch</span> of reionization windows. I. The north celestial pole</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yatawatta, S.; de Bruyn, A. G.; Brentjens, M. A.; Labropoulos, P.; Pandey, V. N.; Kazemi, S.; Zaroubi, S.; Koopmans, L. V. E.; Offringa, A. R.; Jelić, V.; Martinez Rubi, O.; Veligatla, V.; Wijnholds, S. J.; Brouw, W. N.; Bernardi, G.; Ciardi, B.; Daiboo, S.; Harker, G.; Mellema, G.; Schaye, J.; Thomas, R.; Vedantham, H.; Chapman, E.; Abdalla, F. B.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Bell, M. E.; Bell, M. R.; Bentum, M.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.; van de Brink, R. H.; Broderick, J. W.; Brüggen, M.; Conway, J.; de Gasperin, F.; de Geus, E.; Duscha, S.; Falcke, H.; Fallows, R. A.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J. M.; Gunst, A. W.; Hassall, T. E.; Hessels, J. W. T.; Hoeft, M.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Mann, G.; McKean, J. P.; Mevius, M.; Mol, J. D.; Munk, H.; Nijboer, R.; Noordam, J. E.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Sluman, J.; Smirnov, O.; Stappers, B.; Steinmetz, M.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wise, M.; Wucknitz, O.; Zarka, P.</p> <p>2013-02-01</p> <p>Aims: The aim of the LOFAR <span class="hlt">epoch</span> of reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21 cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. Methods: One of the prospective observing windows for the LOFAR EoR project will be centered at the north celestial pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. The data was processed using a dedicated processing pipeline which is an enhanced version of the standard LOFAR processing pipeline. Results: With about 3 nights, of 6 h each, effective integration we have achieved a noise level of about 100 μJy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 μJy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP. We present some details of the data processing challenges and how we solved them. Conclusions: Although many LOFAR stations were, at the time of the observations, in a still poorly calibrated state we have seen no artefacts in our images which would prevent us from producing deeper images in much longer integrations on the NCP window which are about to commence. The limitations present in our</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..267..174D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..267..174D"><span id="translatedtitle">Efficient spin sense determination of Flora-region asteroids via the <span class="hlt">epoch</span> method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dykhuis, Melissa J.; Molnar, Lawrence A.; Gates, Christopher J.; Gonzales, Joshua A.; Huffman, Jared J.; Maat, Aaron R.; Maat, Stacy L.; Marks, Matthew I.; Massey-Plantinga, Alyssa R.; McReynolds, Nathan D.; Schut, Jeremy A.; Stoep, Joshua P.; Stutzman, Andrew J.; Thomas, Brandon C.; Vander Tuig, George W.; Vriesema, Jess W.; Greenberg, Richard</p> <p>2016-03-01</p> <p>The Flora asteroid family's size and location on the inner edge of the main belt make it a likely source of NEOs and terrestrial planet impactors; however, reliable determination of Flora membership is inhibited by the family's age and the presence of a high density of background objects. Dykhuis et al. (Dykhuis et al. [2014]. Icarus 243, 111-128) identified the Flora family as the product of a 950-My-old collision dispersed in semimajor axis as a result of the Yarkovsky effect, and defined the family's membership and extent in orbital parameter space. The observed preponderance of prograde rotators at semimajor axes greater than that of (8) Flora is consistent with the predictions of the single-collision Yarkovsky dispersion model. Here we extend the available rotational property data for the Flora family via a survey of 21 Flora-region asteroids, using a time-efficient modification of the "<span class="hlt">epoch</span> method" to determine prograde/retrograde spin sense. Five of the survey asteroids are shown to be prograde; five are shown to be retrograde; six are shown to have spin axes in or near their orbital planes; and five represent other cases for which spin axis information was not determined. The high-semimajor axis component of the Flora family is found to have only prograde and in-plane rotators, consistent with model predictions of Yarkovsky dispersion. Moreover, we confirm a wide range of ecliptic latitudes of the spin axes among these prograde rotators, consistent with models of family evolution in which a significant fraction of the members are captured in spin-orbit resonance. Near the "center" of the family (near the semimajor axis location of (8) Flora), the spin directions are mixed, with a slight preference for retrograde rotators, placing constraints on the efficiency of YORP-cycle spin reorientation for the family. In addition to our spin sense survey, we also report new measurements of the Sloan colors of a number of large inner main belt asteroids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016tcp..book..195D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016tcp..book..195D"><span id="translatedtitle"><span class="hlt">Plasma</span> Modes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubin, D. H. E.</p> <p></p> <p>This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral <span class="hlt">plasma</span> in a Penning trap. Linearized fluid equations of motion are developed, assuming the <span class="hlt">plasma</span> is cold but collisionless, which allow derivation of the cold <span class="hlt">plasma</span> dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized <span class="hlt">plasma</span> waves in an infinite uniform <span class="hlt">plasma</span> are described. The effect of the <span class="hlt">plasma</span> surface in a bounded <span class="hlt">plasma</span> system is considered, and the properties of surface <span class="hlt">plasma</span> waves are characterized. The normal modes of a cylindrical <span class="hlt">plasma</span> column are discussed, and finally, modes of spheroidal <span class="hlt">plasmas</span>, and finite temperature effects on the modes, are briefly described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MolPh.113.2403C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MolPh.113.2403C"><span id="translatedtitle">Cooking strongly coupled <span class="hlt">plasmas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clérouin, Jean</p> <p>2015-09-01</p> <p>We present the orbital-free method for dense <span class="hlt">plasmas</span> which allows for efficient variable ionisation molecular dynamics. This approach is a literal application of density functional <span class="hlt">theory</span> where the use of orbitals is bypassed by a semi-classical estimation of the electron kinetic energy through the Thomas-Fermi <span class="hlt">theory</span>. Thanks to a coherent definition of ionisation, we evidence a particular regime in which the static structure no longer depends on the temperature: the Γ-plateau. With the help of the well-known Thomas-Fermi scaling laws, we derive the conditions required to obtain a <span class="hlt">plasma</span> at a given value of the coupling parameter and deduce useful fits. Static and dynamical properties are predicted as well as a a simple equation of state valid on the Γ-plateau. We show that the one component <span class="hlt">plasma</span> model can be helpful to describe the correlations in real systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1926.6017E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1926.6017E"><span id="translatedtitle">Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition During Current and Past Orbital <span class="hlt">Epochs</span> with the NASA Ames GCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emmett, J. A.; Murphy, J. R.</p> <p>2016-09-01</p> <p>The NASA Ames GCM will be used to quantify net annual polar deposition rates of water ice and dust on Mars during current and past orbital <span class="hlt">epochs</span> to investigate the formation history, structure, and stratigraphy of the polar layered terrains.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/153749','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/153749"><span id="translatedtitle">IEEE conference record -- abstracts: 1995 IEEE international conference on <span class="hlt">plasma</span> science</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p></p> <p>1995-12-31</p> <p>Topics covered at this meeting are: computational <span class="hlt">plasma</span> physics; slow wave devices; basic phenomena in fully ionized <span class="hlt">plasmas</span>; microwave-<span class="hlt">plasma</span> interactions; space <span class="hlt">plasmas</span>; fast wave devices; <span class="hlt">plasma</span> processing; <span class="hlt">plasma</span>, ion, and electron sources; vacuum microelectronics; basic phenomena in partially ionized gases; microwave systems; <span class="hlt">plasma</span> diagnostics; magnetic fusion <span class="hlt">theory</span>/experiment; fast opening switches; laser-produced <span class="hlt">plasmas</span>; dense <span class="hlt">plasma</span> focus; intense ion and electron beams; <span class="hlt">plasmas</span> for lighting; fast z-pinches and x-ray lasers; intense beam microwaves; ball lightning/spherical <span class="hlt">plasma</span> configuration; environmental <span class="hlt">plasma</span> science; EM and ETH launchers; and environmental/energy issues in <span class="hlt">plasma</span> science. Separate abstracts were prepared for most of the individual papers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/15013271','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/15013271"><span id="translatedtitle">Computer Modeling of a Fusion <span class="hlt">Plasma</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Cohen, B I</p> <p>2000-12-15</p> <p>Progress in the study of <span class="hlt">plasma</span> physics and controlled fusion has been profoundly influenced by dramatic increases in computing capability. Computational <span class="hlt">plasma</span> physics has become an equal partner with experiment and traditional <span class="hlt">theory</span>. This presentation illustrates some of the progress in computer modeling of <span class="hlt">plasma</span> physics and controlled fusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992A%26A...265..825T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992A%26A...265..825T"><span id="translatedtitle">A synthetic <span class="hlt">theory</span> for the perturbations of Titan on Hyperion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, D. B.</p> <p>1992-11-01</p> <p>A <span class="hlt">theory</span> for Hyperion is developed in which the perturbations by Titan have been developed synthetically. These perturbations were derived by fitting a sum of periodic terms to the numerical integration of Sinclair and Taylor (1985) extended to +/- 25 yr from the <span class="hlt">epoch</span> used, 1973.87. A <span class="hlt">theory</span> for Hyperion, constructed by adding the solar perturbations to the synthetic <span class="hlt">theory</span> and including expressions for the motion of the orbit plane, was, together with the <span class="hlt">theories</span> for the other major satellites of Saturn fitted to observations from 1967 to 1983.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009PhDT.......202P&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009PhDT.......202P&link_type=ABSTRACT"><span id="translatedtitle">Low-frequency interferometry: Design, calibration, and analysis towards detecting the <span class="hlt">epoch</span> of reionization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsons, Aaron Robert</p> <p></p> <p>Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the <span class="hlt">Epoch</span> of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJP..131..222B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJP..131..222B"><span id="translatedtitle">Modelling LARES temperature distribution and thermal drag II: Numerical computation of current-<span class="hlt">epoch</span> thermal forces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooks, Jason W.; Matzner, Richard</p> <p>2016-07-01</p> <p>The LARES satellite is a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relativistic Lense-Thirring effect. LARES consists of a solid tungsten alloy sphere, into which 92 fused-silica Cube Corner Reflectors (CCRs) are set in colatitude circles ("rows"). During its first four months in orbit it was observed to undergo an anomalous along-track orbital acceleration of approximately -0.4 pm/s2 (pm: = picometer). The first paper in this series (Eur. Phys. J. Plus 130, 206 (2015) - Paper I) computed the thermally induced along-track "thermal drag" on the LARES satellite during the first 126 days after launch. The results there suggest that the IR absorbance α and emissivity ɛ of the CCRs equal 0.60, a possible value for silica with slight surface contamination subjected to the space environment. Paper I computed an average thermal drag acceleration of -0.36 pm/s2 for a 120-day period starting with the 7th day after launch. The heating and the resultant along-track acceleration depend on the plane of the orbit, the sun position, and in particular on the occurrence of eclipses, all of which are functions of time. Thus we compute the thermal drag for specific days. The satellite is heated from two sources: sunlight and Earth's infrared (IR) radiation. Paper I worked in the fast-spin regime, where CCRs with the same colatitude can be taken to have the same temperature. Further, since all temperature variations (temporal or spatial) were small in this regime, Paper I linearized the Stefan-Boltzmann law and performed a Fourier series analysis. However, the spin rate of the satellite is expected currently ( ≈ day 1500) to be slow, of order ≈ 5 /orbit, so the "fast-spin equal-temperatures in a row" assumption is suspect. In this paper, which considers <span class="hlt">epochs</span> up to 1580 days after launch, we do not linearize and we use direct numerical integration instead of Fourier methods. In addition to the along-track drag, this code</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016yCat..51510154G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016yCat..51510154G"><span id="translatedtitle">VizieR Online Data Catalog: Second <span class="hlt">epoch</span> VLBA Calibrator Survey (VCS-II) (Gordon+, 2016)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, D.; Jacobs, C.; Beasley, A.; Peck, A.; Gaume, R.; Charlot, P.; Fey, A.; Ma, C.; Titov, O.; Boboltz, D.</p> <p>2016-07-01</p> <p>Six Very Long Baseline Array (VLBA) calibrator survey campaigns were run between 1994 and 2007 (VCS1, Beasley et al. 2002, cat. J/ApJS/141/13; VCS2, Fomalont et al. 2003, cat. J/AJ/126/2562; VCS3, Petrov et al. 2005, cat. J/AJ/129/1163; VCS4, Petrov et al. 2006, cat. J/AJ/131/1872; VCS5, Kovalev et al. 2007, cat. J/AJ/133/1236; VCS6, Petrov et al. 2008, cat. J/AJ/136/580) We report on the results of a second <span class="hlt">epoch</span> VLBA Calibrator Survey campaign (VCS-II) in which 2400 VCS sources were re-observed in the X and S bands. The VLBA S/X (S band~2.3GHz and X band~8.6GHz) dual frequency system was used. We used the VLBA RDBE/Mark5C system, which has 16 32MHz channels and records 2 Gbits/s using 2 bit sampling. Due to S-band filters below 2200MHz and above 2400MHz at most of the VLBA antennas, and a broad area of RFI from SiriusXM satellites (2320-2345MHz), only four channels could be deployed in the S band (2220.0, 2252.0, 2284.0, and 2348.0MHz). The other 12 channels were deployed in the X band (8460.0, 8492.0, 8524.0, 8556.0, 8620.0, 8652.0, 8716.0, 8748.0, 8812.0, 8844.0, 8876.0, and 8908.0MHz). We set a target of 300 sources per session, or 2400 total sources for the 8 VLBA sessions. We selected all sources from the Goddard Space Flight Center (GSFC) S/X astrometric/geodetic catalog (available at http://gemini.gsfc.nasa.gov/solutions/ or by following the links at http://lupus.gsfc.nasa.gov/) between -50° and +90° decl. that had been observed in only 1 or 2 sessions as of mid 2013. This amounted to ~2060 sources. To fill out the list, we added ~340 additional sources that had been observed but not detected in the original VCS1-6 analysis. The eight schedules were run between 2014 January and 2015 March (VCS-II-A/BG219A on 2014 01/04 10:04-01/05 10:02; VCS-II-B/BG219B1 on 2014 05/31 17:12-06/01 17:05; VCS-II-D/BG219D on 2014 06/09 09:13-06/10 09:10; VCS-II-C/BG219C on 2014 08/05 13:03-08/06 13:00; VCS-II-E/BG219E on 2014 08/09 00:00-08/09 23:55; VCS-II-F/BG219F on 2014</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AAS...22115404G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AAS...22115404G"><span id="translatedtitle">Multiple <span class="hlt">Epoch</span> Analysis of the Guitar Nebula and B2224+65 at Optical, X-Ray, and Radio Wavelengths</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gautam, Abhimat; Chatterjee, S.; Cordes, J. M.; Deller, A. T.; LAZIO, J.</p> <p>2013-01-01</p> <p>The Guitar Nebula is created by the interaction of the pulsar B2224+65 with the interstellar medium. We present multi-<span class="hlt">epoch</span> observations of the nebula with the Hubble Space Telescope (HST) and the Chandra X-Ray Observatory (CXO), along with preliminary astrometric observations of B2224+65 with the Very Long Baseline Array (VLBA). The Guitar Nebula was observed in H-alpha by HST with WFPC2 (1994, 2001) and ACS (2006). The tip of the nebula head has expanded along the proper motion vector of the pulsar. Meanwhile, the sides and back of the head appear to be confined, possibly due to a density gradient in the ISM. Observations with CXO ACIS reveal an X-ray jet whose tip is coincident with the location of the pulsar, but at an angle of ~118° from the proper motion vector with a length of ~2 arcmin. Using data from 2000 and 2006, we imaged the jet at 0.3--10 keV. We did not find significant differences in the jet location or morphology between the two <span class="hlt">epochs</span>, but our results are limited by the observation signal-to-noise ratio. PSR B2224+65 is one of the targets of PSRπ, an ongoing VLBA campaign to measure pulsar proper motions and parallaxes. When completed in 2013, PSRπ will provide both a distance and transverse velocity for PSR B2224+65 with very high precision. Based on a preliminary analysis of 5 <span class="hlt">epochs</span> already observed, we confirm that the proper motion of the nebula tip measured with HST matches the pulsar proper motion measured with the VLBA. This project was conducted at Cornell University’s Astronomy REU program, with funding provided by the NSF.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1056805','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1056805"><span id="translatedtitle">Optimization of the Configuration of Pixilated Detectors Based on the Sgabbib-Nyquist <span class="hlt">Theory</span> for the X-ray Spectroscopy of Hot Tokamak <span class="hlt">Plasmas</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>: E. Wang, P. Beiersdorfer, M. Bitter, L.F. Delgado-Apricio, K.W. Hill and N. Pablant</p> <p>2012-08-09</p> <p>This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist <span class="hlt">theory</span>, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1062545','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1062545"><span id="translatedtitle">Optimization of the Configuration of Pixilated Detectors Based on the Shannon-Nyquist <span class="hlt">Theory</span> for the X-Ray Spectroscopy of Hot Tokamak <span class="hlt">Plasmas</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>E. Wang, P. Beiersdorfer, M. Bitter, L.F. Delgado-Aprico, K.W. Hill and N. Pablant</p> <p>2012-06-13</p> <p>This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist <span class="hlt">theory</span>, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2525655','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2525655"><span id="translatedtitle"><span class="hlt">Epochal</span> changes in the association between malaria epidemics and El Niño in Sri Lanka</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zubair, Lareef; Galappaththy, Gawrie N; Yang, Hyemin; Chandimala, Janaki; Yahiya, Zeenas; Amerasinghe, Priyanie; Ward, Neil; Connor, Stephen J</p> <p>2008-01-01</p> <p>Background El Niño events were suggested as a potential predictor for malaria epidemics in Sri Lanka based on the coincidence of nine out of 16 epidemics with El Niño events from 1870 to 1945. Here the potential for the use of El Niño predictions to anticipate epidemics was examined using enhanced climatic and epidemiological data from 1870 to 2000. Methods The epidemics start years were identified by the National Malaria Control Programme and verified against epidemiological records for consistency. Monthly average rainfall climatologies were estimated for epidemic and non-epidemic years; as well El Niño, Neutral and La Niña climatic phases. The relationship between El Niño indices and epidemics was examined to identify '<span class="hlt">epochs</span>' of consistent association. The statistical significance of the association between El Niño and epidemics for different <span class="hlt">epochs</span> was characterized. The changes in the rainfall-El Niño relationships over the decade were examined using running windowed correlations. The anomalies in rainfall climatology during El Niño events for different <span class="hlt">epochs</span> were compared. Results The relationship between El Niño and epidemics from 1870 to 1927 was confirmed. The anomalies in monthly average rainfall during El Niño events resembled the anomalies in monthly average rainfall during epidemics during this period. However, the relationship between El Niño and epidemics broke down from 1928 to 1980. Of the three epidemics in these six decades, only one coincided with an El Niño. Not only did this relationship breakdown but epidemics were more likely to occur in periods with a La Niña tendency. After 1980, three of four epidemics coincided with El Niño. Conclusion The breakdown of the association between El Niño and epidemics after 1928 is likely due to an <span class="hlt">epochal</span> change in the El Niño-rainfall relationship in Sri Lanka around the 1930's. It is unlikely that this breakdown is due to the insecticide spraying programme that began in 1945 since the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21405235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21405235"><span id="translatedtitle">Autoresonant excitation of antiproton <span class="hlt">plasmas</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Carpenter, P T; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hurt, J L; Hydomako, R; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y</p> <p>2011-01-14</p> <p>We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton <span class="hlt">plasma</span> using a swept-frequency autoresonant drive. When the <span class="hlt">plasma</span> is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent <span class="hlt">theory</span>. In contrast, only a fraction of the antiprotons in a warm <span class="hlt">plasma</span> can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron <span class="hlt">plasma</span>, thereby initiating atomic recombination.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21532247','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21532247"><span id="translatedtitle">Autoresonant Excitation of Antiproton <span class="hlt">Plasmas</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Madsen, N.; Werf, D. P. van der; Carpenter, P. T.; Hurt, J. L.; Robicheaux, F.; Cesar, C. L.</p> <p>2011-01-14</p> <p>We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton <span class="hlt">plasma</span> using a swept-frequency autoresonant drive. When the <span class="hlt">plasma</span> is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent <span class="hlt">theory</span>. In contrast, only a fraction of the antiprotons in a warm <span class="hlt">plasma</span> can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron <span class="hlt">plasma</span>, thereby initiating atomic recombination.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvD..94d3515V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvD..94d3515V"><span id="translatedtitle">Sterile neutrino dark matter: Weak interactions in the strong coupling <span class="hlt">epoch</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venumadhav, Tejaswi; Cyr-Racine, Francis-Yan; Abazajian, Kevork N.; Hirata, Christopher M.</p> <p>2016-08-01</p> <p>We perform a detailed study of the weak interactions of standard model neutrinos with the primordial <span class="hlt">plasma</span> and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported x-ray signals that could be due to sterile neutrino decay, we consider 7 keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures T ≳100 MeV , where we study two significant effects of weakly charged species in the primordial <span class="hlt">plasma</span>: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree-level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at k ≃10 h Mpc-1 , that are relevant to galactic structure formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009APS..DMP.J6007R&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009APS..DMP.J6007R&link_type=ABSTRACT"><span id="translatedtitle">Rydberg atoms in ultracold <span class="hlt">plasmas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rolston, Steven</p> <p>2009-05-01</p> <p>Ultracold <span class="hlt">plasmas</span> are formed through the photoionization of laser-cooled atoms, or spontaneous ionization of a dense cloud of Rydberg atoms or now molecules[1]. Ultracold <span class="hlt">plasmas</span> are inherently metastable, as the ions and electrons would be in a lower energy state bound together as atoms. The dominant process of atom formation in these <span class="hlt">plasmas</span> is three-body recombination, a collision between two electrons and an ion that leads to the formation of a Rydberg atom. This collisional process is not only important in determining the lifetime and density of the <span class="hlt">plasma</span>, but is also critical in determining the time evolution of the temperature. The formation of the Rydberg atoms is accompanied by an increase in electron energy for the extra electron in the collision, and is a source of heating in these <span class="hlt">plasmas</span>. Classical three-body recombination <span class="hlt">theory</span> scales as T-9/2, and thus as a <span class="hlt">plasma</span> cools due to a process such as adiabatic expansion, recombination-induced heating turns on, limiting the temperature [2]. The Rydberg atoms formed live in the <span class="hlt">plasma</span> and contribute to the temperature dynamics, as collisions with <span class="hlt">plasma</span> electrons can change the principal quantum number of the Rydberg atom, driving it to more tightly bound states (a source of <span class="hlt">plasma</span> heating) or to higher states (a source of <span class="hlt">plasma</span> cooling). If the <span class="hlt">plasma</span> is cold and dense enough to be strongly coupled, classical three-body recombination <span class="hlt">theory</span> breaks down. Recent theoretical work [3] suggests that the rate limits as the <span class="hlt">plasma</span> gets strongly coupled. I will review the role of Rydberg atoms in ultracold <span class="hlt">plasmas</span> and prospects for probing Rydberg collisions in the strongly coupled environment. [4pt] [1] J. P. Morrison, et al., Phys. Rev. Lett. 101, 205005 (2008 [0pt] [2] R. S. Fletcher, X. Zhang, and S. L. Rolston, Phys. Rev. Lett. 99, 145001 (2007 [0pt] [3] T. Pohl, private communication.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26479196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26479196"><span id="translatedtitle">Influence mechanism of low-dose ionizing radiation on Escherichia coli DH5α population based on <span class="hlt">plasma</span> <span class="hlt">theory</span> and system dynamics simulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Yi; Hu, Dawei; Li, Liang; Jing, Zheng; Wei, Chuanfeng; Zhang, Lantao; Fu, Yuming; Liu, Hong</p> <p>2016-01-01</p> <p>It remains a mystery why the growth rate of bacteria is higher in low-dose ionizing radiation (LDIR) environment than that in normal environment. In this study, a hypothesis composed of environmental selection and competitive exclusion was firstly proposed from observed phenomena, experimental data and microbial ecology. Then a LDIR environment simulator (LDIRES) was built to cultivate a model organism of bacteria, Escherichia coli (E. coli) DH5α, the accurate response of bacterial population to ionizing radiation intensity variation was measured experimentally, and then the precise relative dosage of ionizing radiation E. coli DH5α population received was calculated by finite element analysis based on drift-diffusion equations of <span class="hlt">plasma</span>. Finally, a highly valid mathematical model expressing the relationship between E. coli DH5α population and LDIR intensity was developed by system dynamics based on hypotheses, experimental data and microbial ecology. Both experiment and simulation results clearly showed that the E. coli DH5α individuals with greater specific growth rate and lower substrate consumption coefficient would adapt and survive in LDIR environment and those without such adaptability were finally eliminated under the combined effects of ionizing radiation selection and competitive exclusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/515632','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/515632"><span id="translatedtitle">Transport processes in space <span class="hlt">plasmas</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Birn, J.; Elphic, R.C.; Feldman, W.C.</p> <p>1997-08-01</p> <p>This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study <span class="hlt">plasma</span> and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and <span class="hlt">plasma</span> structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, <span class="hlt">plasma</span> flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between <span class="hlt">plasma</span> and magnetic and electric fields in the regions where different <span class="hlt">plasma</span> populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic <span class="hlt">plasma</span> behavior, important for <span class="hlt">plasma</span> and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of <span class="hlt">plasma</span> and energy through characteristic boundaries takes place, and how the characteristic properties of the <span class="hlt">plasmas</span> and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of <span class="hlt">plasma</span> and field data obtained through space missions with <span class="hlt">theory</span> and computer simulations of the <span class="hlt">plasma</span> behavior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/7108795','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/7108795"><span id="translatedtitle">Waves and instabilities in <span class="hlt">plasmas</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Chen, L.</p> <p>1987-01-01</p> <p>The contents of this book are: <span class="hlt">Plasma</span> as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear <span class="hlt">Theory</span>; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic <span class="hlt">Theory</span> of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear <span class="hlt">Theory</span>; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030002753','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030002753"><span id="translatedtitle">Pulsed Electromagnetic Acceleration of <span class="hlt">Plasmas</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)</p> <p>2002-01-01</p> <p>A major shift in paradigm in driving pulsed <span class="hlt">plasma</span> thruster is necessary if the original goal of accelerating a <span class="hlt">plasma</span> sheet efficiently to high velocities as a <span class="hlt">plasma</span> "slug" is to be realized. Firstly, the <span class="hlt">plasma</span> interior needs to be highly collisional so that it can be dammed by the <span class="hlt">plasma</span> edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the <span class="hlt">plasma</span> edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the <span class="hlt">plasma</span>. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the <span class="hlt">plasma</span>, the region behind the <span class="hlt">plasma</span> needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three <span class="hlt">plasma</span> requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the <span class="hlt">plasma</span> during the course of the acceleration to the <span class="hlt">plasma</span> longitudinal dimension. The second parameter is the required Hall parameter of the edge <span class="hlt">plasma</span> region, and the third parameter the required Hall parameter of the region behind the <span class="hlt">plasma</span>. Experimental research is required to quantify the values of these design parameters. Based upon fundamental <span class="hlt">theory</span> of the transport processes in <span class="hlt">plasma</span>, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21454952','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21454952"><span id="translatedtitle">DISCOVERIES FROM A NEAR-INFRARED PROPER MOTION SURVEY USING MULTI-<span class="hlt">EPOCH</span> TWO MICRON ALL-SKY SURVEY DATA</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kirkpatrick, J. Davy; Cutri, Roc M.; Looper, Dagny L.; Burgasser, Adam J.; Schurr, Steven D.; Cushing, Michael C.; Cruz, Kelle L.; Sweet, Anne C.; Knapp, Gillian R.; Barman, Travis S.; Bochanski, John J.; Roellig, Thomas L.; McLean, Ian S.; McGovern, Mark R.; Rice, Emily L.</p> <p>2010-09-15</p> <p>We have conducted a 4030 deg{sup 2} near-infrared proper motion survey using multi-<span class="hlt">epoch</span> data from the Two Micron All-Sky Survey (2MASS). We find 2778 proper motion candidates, 647 of which are not listed in SIMBAD. After comparison to Digitized Sky Survey images, we find that 107 of our proper motion candidates lack counterparts at B, R, and I bands and are thus 2MASS-only detections. We present results of spectroscopic follow-up of 188 targets that include the infrared-only sources along with selected optical-counterpart sources with faint reduced proper motions or interesting colors. We also establish a set of near-infrared spectroscopic standards with which to anchor near-infrared classifications for our objects. Among the discoveries are six young field brown dwarfs, five 'red L' dwarfs, three L-type subdwarfs, twelve M-type subdwarfs, eight 'blue L' dwarfs, and several T dwarfs. We further refine the definitions of these exotic classes to aid future identification of similar objects. We examine their kinematics and find that both the 'blue L' and 'red L' dwarfs appear to be drawn from a relatively old population. This survey provides a glimpse of the kinds of research that will be possible through time-domain infrared projects such as the UKIDSS Large Area Survey, various VISTA surveys, and WISE, and also through z- or y-band enabled, multi-<span class="hlt">epoch</span> surveys such as Pan-STARRS and LSST.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.461.4151C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.461.4151C"><span id="translatedtitle">A high reliability survey of discrete <span class="hlt">Epoch</span> of Reionization foreground sources in the MWA EoR0 field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carroll, P. A.; Line, J.; Morales, M. F.; Barry, N.; Beardsley, A. P.; Hazelton, B. J.; Jacobs, D. C.; Pober, J. C.; Sullivan, I. S.; Webster, R. L.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, J. S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS.; Kratzenberg, E.; Lenc, E.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, S. K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.</p> <p>2016-10-01</p> <p>Detection of the <span class="hlt">epoch</span> of reionization H I signal requires a precise understanding of the intervening galaxies and AGN, both for instrumental calibration and foreground removal. We present a catalogue of 7394 extragalactic sources at 182 MHz detected in the RA = 0 field of the Murchison Widefield Array <span class="hlt">Epoch</span> of Reionization observation programme. Motivated by unprecedented requirements for precision and reliability we develop new methods for source finding and selection. We apply machine learning methods to self-consistently classify the relative reliability of 9490 source candidates. A subset of 7466 are selected based on reliability class and signal-to-noise ratio criteria. These are statistically cross-matched to four other radio surveys using both position and flux density information. We find 7369 sources to have confident matches, including 90 partially resolved sources that split into a total of 192 sub-components. An additional 25 unmatched sources are included as new radio detections. The catalogue sources have a median spectral index of -0.85. Spectral flattening is seen towards lower frequencies with a median of -0.71 predicted at 182 MHz. The astrometric error is 7 arcsec compared to a 2.3 arcmin beam FWHM. The resulting catalogue covers ˜1400 deg2 and is complete to approximately 80 mJy within half beam power. This provides the most reliable discrete source sky model available to date in the MWA EoR0 field for precision foreground subtraction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016ApJ...825....9T&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016ApJ...825....9T&link_type=ABSTRACT"><span id="translatedtitle">Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen <span class="hlt">Epoch</span> of Reionization Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana</p> <p>2016-07-01</p> <p>Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the <span class="hlt">Epoch</span> of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen <span class="hlt">Epoch</span> of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc‑1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3205631','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3205631"><span id="translatedtitle">Mitochondrial DNA Detects a Complex Evolutionary History with Pleistocene <span class="hlt">Epoch</span> Divergence for the Neotropical Malaria Vector Anopheles nuneztovari Sensu Lato</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scarpassa, Vera Margarete; Conn, Jan E.</p> <p>2011-01-01</p> <p>Cryptic species and lineages characterize Anopheles nuneztovari s.l. Gabaldón, an important malaria vector in South America. We investigated the phylogeographic structure across the range of this species with cytochrome oxidase subunit I (COI) mitochondrial DNA sequences to estimate the number of clades and levels of divergence. Bayesian and maximum-likelihood phylogenetic analyses detected four groups distributed in two major monophyletic clades (I and II). Samples from the Amazon Basin were clustered in clade I, as were subclades II-A and II-B, whereas those from Bolivia/Colombia/Venezuela were restricted to one basal subclade (II-C). These data, together with a statistical parsimony network, confirm results of previous studies that An. nuneztovari is a species complex consisting of at least two cryptic taxa, one occurring in Colombia and Venezuela and the another occurring in the Amazon Basin. These data also suggest that additional incipient species may exist in the Amazon Basin. Divergence time and expansion tests suggested that these groups separated and expanded in the Pleistocene <span class="hlt">Epoch</span>. In addition, the COI sequences clearly separated An. nuneztovari s.l. from the closely related species An. dunhami Causey, and three new records are reported for An. dunhami in Amazonian Brazil. These findings are relevant for vector control programs in areas where both species occur. Our analyses support dynamic geologic and landscape changes in northern South America, and infer particularly active divergence during the Pleistocene <span class="hlt">Epoch</span> for New World anophelines. PMID:22049039</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ApJ...672...33H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ApJ...672...33H"><span id="translatedtitle">Oxygen Pumping. II. Probing the Inhomogeneous Metal Enrichment at the <span class="hlt">Epoch</span> of Reionization with High-Frequency CMB Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernández-Monteagudo, Carlos; Haiman, Zoltán; Verde, Licia; Jimenez, Raul</p> <p>2008-01-01</p> <p>At the <span class="hlt">epoch</span> of reionization, when the high-redshift intergalactic medium (IGM) is being enriched with metals, the 63.2 μm fine-structure line of O I is pumped by the ~1300 Å soft UV background and introduces a spectral distortion in the cosmic microwave background (CMB). Here we use a toy model for the spatial distribution of neutral oxygen in which metal bubbles surround dark matter halos, and compute the fluctuations of this distortion and the angular power spectrum it imprints on the CMB. We discuss the dependence of the power spectrum on the velocity of the winds polluting the IGM with metals, the minimum mass of the halos producing these winds, and the cosmic <span class="hlt">epoch</span> when the O I pumping occurs. We find that, although the clustering signal of the CMB distortion is weak [(δy)rms <~ 10-7 roughly corresponding to a temperature anisotropy of ~1 nK], it may be reachable in deep integrations with high-sensitivity infrared detectors. Even without a detection, these instruments should be able to set useful constraints on the heavy-element enrichment history of the IGM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...825....9T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...825....9T"><span id="translatedtitle">Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen <span class="hlt">Epoch</span> of Reionization Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana</p> <p>2016-07-01</p> <p>Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the <span class="hlt">Epoch</span> of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen <span class="hlt">Epoch</span> of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc-1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="https://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="https://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.osti.gov/nle"><img src="https://www.osti.gov/images/footerimages/NLElogo31.png" alt="National Library of Energy" height="31" width="79"></a> <a href="http://www.science.gov"><img src="https://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="https://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> </body> </html>