Low voltage operation of plasma focus.
Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A
2010-08-01
Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.
Design and Construction of a Dense Plasma Focus Device
1976-10-01
This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1977-01-01
The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.
1985-06-01
Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Harries, W. L.
1978-01-01
A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.
Development of TPF-1 plasma focus for education
NASA Astrophysics Data System (ADS)
Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.
2017-09-01
The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.
Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Hirose, A.; Xiao, C.
2018-01-01
A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.
Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. K.; Ngoi, S. K.; Yap, S. L.
The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito
2015-08-31
Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akel, M., E-mail: pscientific2@aec.org.sy; Alsheikh Salo, S.; Ismael, Sh.
2014-07-15
Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in themore » graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.« less
An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator
1988-11-01
The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to
Current Interruption and Particle Beam Generation by a Plasma Focus.
1982-11-30
Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions...results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a...strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milanese, Maria Magdalena; CONICET - 7000 Tandil
2006-12-04
This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less
Results of ultra compact plasma focus operating in repetitive burst-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, R.; Shyam, A.; Verma, R.
2014-07-01
The results of a miniature plasma focus are being presented in this paper which is operated with energy less than or equal to 150 Joules. The miniature plasma focus is driven by a small capacitor bank and the peak current delivered in the focus is 75kA. The deuterium gas is filled with a pressure range of 5-7 mbar inside the plasma focus chamber. The quartz glass is used for generating initial surface breakdown at 4-5 kV discharge which is a typical value for low-voltage plasma focus discharges. The repetitive operation of the device is achieved by a combination of amore » simple and high power (5 kW) power supply with the synchronized triggering of the capacitor bank at the time of isolation between supply and the capacitor bank. As the plasma focus chamber volume is very low, in order to achieve reduced after-shot contamination effects, the gas pressure inside the plasma focus is maintained by continuous pumping which is disallowed at the time of shorts rather having a sealed type plasma focus assembly. The results of such scheme are also discussed in the paper. The diameter of cathode is 25mm and anode diameter is 8-12 mm and both of them are made of stainless steel. The length of anode and gas pressure is adjusted in such a way that the pinching occurs at the time of occurrence of the peak of current. It enhances the neutron emission from the device. The time-of-flight diagnostic is used to distinguish neutron and X-ray emission from the plasma focus. The device can serve the purpose of being a portable and compact repetitive neutron source for various applications as the flux of the radiation is comparable with the bigger devices of same type. The modeling results of plasma focus are also compared with experimental results to give a broader picture of the device. (author)« less
X-Ray Production in Defense Plasma Focus.
1980-03-01
This program investigated the operation of plasma focus (PF) devices at high voltage. Discharge formation, energy transfer, and X-ray emission were...produced electron beam phenomena: The model predicted that a neon plasma would radiate 1 percent of the stored energy. The construction of a 120-kV (108 kJ) plasma focus system is described. (Author)
Operational Characteristics of a High Voltage Dense Plasma Focus.
1985-11-01
A high voltage dense plasma focus powered by a single-stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120...kV, energy--20 kJ, short-circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The...about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and
Radiation Production by Charged Particle Beams Ejected from a Plasma Focus.
1981-02-01
The scope of this investigation concerns the development of a pulsed radiation source using the charged particle beam ejected from a plasma focus device...satellite components for radiation hardening and survivability. The plasma focus is operated in a modified geometry such that electron bursts which...a radiation facility. The plasma focus , identified as the Mark IV, is nominally rated at 34 kJ with a capacitance of 168 micro F at 20 kV. The
Production of fissioning uranium plasma to approximate gas-core reactor conditions
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.
1974-01-01
The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José
2014-12-15
The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{supmore » 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.« less
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1981-11-30
particle beams generated in a plasma focus with the current flowing in the circuit just before the radial collapse of the pinch, IMB. The results show...the implications for the application of the plasma focus as an opening switch are discussed. (Author)
1984-03-01
POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related
A plasma microlens for ultrashort high power lasers
NASA Astrophysics Data System (ADS)
Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.
2009-07-01
We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.
NASA Astrophysics Data System (ADS)
Patil, S. D.; Takale, M. V.
2014-06-01
Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.
Electromagnetic Effects in the Near Field Plume Exhaust of a Micro-Pulsed Plasma Thruster
2002-06-12
plasma focus is developed at a few millimeters from the thruster exit plane at the axis. This plasma focus exists during the entire pulse, but the plasma density in the focus decreases from about 2x10(exp 22)/cu m at the beginning of the pulse down to 0.3x10(exp 22)/cu m at 5 microsec.
The focusing effect in backward Raman amplification in plasma
NASA Astrophysics Data System (ADS)
Li, Zhaoli; Peng, Hao; Zuo, Yanlei; Su, Jingxin; Yang, Suhui
2018-04-01
In this paper, the focusing effect on backward Raman amplification in plasma is investigated. A fluid model, used to simulate the backward Raman amplification and including the relativistic, ponderomotive, and thermal self-focusing and the mutual-focusing effect simultaneously, is proposed and investigated. The focusing effect is shown to severely distort the profile of the seed when the seed intensity was as high as 10 17 W/cm2. Reducing the plasma density can relax the focusing effect, but at the cost of decreasing the amplification efficiency. Changing the profile of the seed has a limited effect on mitigating the focusing effect. A Gaussian profile of the pump and a defocusing shape of the plasma density seem to be an effective way to mitigate the focusing effect without decreasing the amplification efficiency.
Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Floyd, Bertram M.
2017-01-01
We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.
Note: Repetitive operation of the capacitor bank of the low-voltage miniature plasma focus at 50 Hz.
Shukla, Rohit; Shyam, Anurag
2013-10-01
We have already reported the low-voltage operation of a plasma focus describing the operation of plasma focus at 4.2 kV which proposes possibility of making a repetitive system using compact driving source. Another recent article describes that the same capacitor-bank can drive the plasma focus for a measured ~5 × 10(4) neutrons per shot at 5 kV and 59 kA current. In the present work, repetitive operation of the capacitor-bank of plasma focus is done and that too is being reported at a very high repetition rate of 50 Hz using very simple scheme of charging and triggering the bank. The bank is continuously discharged to burst duration of 20 s in this configuration admeasuring a thousand shots.
Ti film deposition process of a plasma focus: Study by an experimental design
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.
2017-10-01
The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2014-12-01
Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.
X-ray Emission from the Interaction of a Macroscopic Particle with a Dense Plasma Focus.
1976-10-01
Recently the interest in dense plasma focus has greatly increased because of the possibility of developing the device into an intense, pulsed...using a macroscopic particle to interact with a plasma focus . A theoretical study was carried out to predict the relative amount of X-ray increase
2005-10-06
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD
Plasma lens experiments at the Final Focus Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, B.; Chattopadhyay, S.; Chen, P.
1993-04-01
We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less
Uranium plasma emission at gas-core reaction conditions
NASA Technical Reports Server (NTRS)
Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.
1976-01-01
The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Investigation of Plasma Focus in Coaxial Accelerator with Pre-Ionization of Gas,
appears that when the accelerating current beyond the end of the central electrodes has sufficiently high levels a plasma focus is formed which is...obtained from an investigation of the main properties of the plasma focus in a system with a pre-ionized gas, achieved by means of an inductive electrical field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatil-phy@rediffmail.com; Takale, M. V.
2014-06-15
Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.
Supersonic, subsonic and stationary filaments in the plasma focus
NASA Astrophysics Data System (ADS)
Nikulin, V. Ya; Startsev, S. A.; Tsybenko, S. P.
2017-10-01
Filaments in the plasma focus were investigated using a model of plasma with the London current. These structures involve a forward current that flows along the surface of a tangential discontinuity and reverse induction currents in the surrounding plasma, including those that flow over the surface of discontinuity, where the magnetic field reverses its direction. Supersonic filaments demonstrated the capture of plasma by the London current, and in subsonic and stationary filaments, the London current expelled the plasma.
Focused electron and ion beam systems
Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan
2004-07-27
An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing
NASA Astrophysics Data System (ADS)
Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren
2017-03-01
The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.
This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...
2017-12-27
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
NASA Astrophysics Data System (ADS)
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.
2017-12-01
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport
NASA Astrophysics Data System (ADS)
Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.
2017-10-01
Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.
A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.
Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma
NASA Astrophysics Data System (ADS)
Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan
2018-01-01
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164
NASA Astrophysics Data System (ADS)
Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan
2017-07-01
This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.
About an Extreme Achievable Current in Plasma Focus Installation of Mather Type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulin, V. Ya.; Polukhin, S. N.; Vikhrev, V. V.
A computer simulation and analytical analysis of the discharge process in Plasma Focus has shown that there is an upper limit to the current which can be achieved in Plasma Focus installation of Mather type by only increasing the capacity of the condenser bank. The maximum current achieved for various plasma focus installations of 1 MJ level is discussed. For example, for the PF-1000 (IFPiLM) and 1 MJ Frascati PF, the maximum current is near 2 MA. Thus, the commonly used method of increasing the energy of the PF installation by increasing of the capacity has no merit. Alternative optionsmore » in order to increase the current are discussed.« less
Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch
1993-11-10
plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-06-15
Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1975-01-01
The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.
Relativistic laser channeling in plasmas for fast ignition
NASA Astrophysics Data System (ADS)
Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.
2007-12-01
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.
Beam deviation method as a diagnostic tool for the plasma focus.
Schmidt, H; Rückle, B
1978-04-15
The application of an optical method for density measurements in cylindrical plasmas is described. The angular deviation of a probing light beam sent through a plasma is proportional to the maximum of the density in the plasma column. The deviation does not depend on the plasma dimensions; however, it is influenced to a certain degree by the density profile. The method is successfully applied to the investigation of a dense plasma focus with a time resolution of 2 nsec and a spatial resolution (in axial direction) of 2 mm.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Nanostructure iron-silicon thin film deposition using plasma focus device
NASA Astrophysics Data System (ADS)
Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.
2013-03-01
The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample
System for the production of plasma
Bakken, George S.
1978-01-01
The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.
Electrostatic plasma lens for focusing negatively charged particle beams.
Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M
2012-02-01
We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.
1979-11-01
plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity
Investigation of Plasma Facing Components in Plasma Focus Operation
NASA Astrophysics Data System (ADS)
Roshan, M. V.; Babazadeh, A. R.; Kiai, S. M. Sadat; Habibi, H.; Mamarzadeh, M.
2007-09-01
Both aspects of the plasma-wall interactions, counter effect of plasma and materials, have been considered in our experiments. The AEOI plasma focus, Dena, has Filippov-type electrodes. The experimental results verify that neutron production increases using tungsten as an anode insert material, compared to the copper one. The experiments show decrement of the hardness of Aluminum targets outward the sides, from 135 to 78 in Vickers scale. The sputtering yield is about 0.0065 for deuteron energy of 50 keV.
Dynamics of a Focussed Discharge.
This report describes theoretical and experimental investigations on the dynamics of a dense plasma focus . The characteristics of the focus in terms...also described. The results of a preliminary theoretical investigation of the heating of a dense plasma focus by a laser is given.
Optical Pumping of High Power Lasers with an Array of Plasma Pinches.
1986-04-01
Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF
Opening Switch Research on a Dense Plasma Focus.
Several experiments were performed to enhance power coupling to the load by placing the load electrode opposite the muzzle end of the Dense Plasma ... Focus plasma gun. The impaler concept, whereby the current sheath is run into a knife edge insulator, was tested in two configurations. However, the
Counter-facing plasma guns for efficient extreme ultra-violet plasma light source
NASA Astrophysics Data System (ADS)
Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko
2013-11-01
A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-11-15
The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front inmore » cold quantum plasmas.« less
Fission and activation of uranium by fusion-plasma neutrons
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.; Mcfarland, D. R.
1978-01-01
Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.
Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio
2006-12-04
It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less
Intense Excitation Source of Blue-Green Laser.
1985-10-15
plasma focus (DPF) can produce intense uv photons (200-300nm) which match the absorption spectra of both near uv and blue green dye lasers (300-400nm...existing blue green dye laser. On the other hand the dense- plasma focus (DPF) with new optical coupling has been designed and constructed. For the...optimization of the DPF device as the uv pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as
A Plasma Ultraviolet Source for Short Wavelength Lasers.
1986-03-10
A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than
Research on Short Duration Pulsed Radiation Sources.
correlate soft X-ray spots with the hard radiation in a 1 kJ plasma focus showed that field structures leading to the appearance of soft X-ray spots...are always present in this plasma focus . These field structures represent m = 0 plasma instabilities and do have a direct influence upon the observed neutron emission. (Author)
Plasma focus sources: Supplement to the Neutron Resonance Radiography Workshop proceedings
NASA Astrophysics Data System (ADS)
Nardi, Vittorio; Brzosko, Jan
1989-01-01
Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, Y (sub n), and the rate of neutron emission, Y (sub n), of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W (sub 0). Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y (sub n). The FDE-induced redistribution of the plasma current increases Y (sub n) by a factor approximate to or greater than 5 to 10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W (sub 0) = 6 kJ, and voltage, V (sub 0) = 16.5 kV provides Y (sub n) congruent to 4 x 10 to the 9th D-D neutrons/shot (pure D2 filling) and Y (sub n) = 4 x 10 to the 11th D-T neutrons/shot (filling is 50 pct deuterium and 50 pct tritium). The FDE-induced increase of Y (sub n) for fixed values of (W sub 0, V sub 0), the observed scaling law Y (sub n) proportional to W (sub 0) squared for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (10 to the 14th n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution.
Neutron angular distribution in a plasma focus obtained using nuclear track detectors.
Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G
2002-01-01
The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.
NASA Astrophysics Data System (ADS)
Khan, M. Z.; Yap, S. L.; Wong, C. S.
2014-01-01
Radiation emission in a 2.2 kJ Mather-type plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. At optimum condition, radiation emission from the system is found to be strongly influenced in hollow anode and filling gas pressure. Maximum X-ray yield in 4π sr has been obtained in case of hollow anode in argon gas medium due to interaction of electron beam. Results indicate that an appropriate design of anode can enhance radiation emission by more intense interaction of expected electron beam with hollow anode. The outcome is helpful to design a plasma focus with enhanced X-ray generation with improved shot-to-shot reproducibility in plasma focus device.
NASA Astrophysics Data System (ADS)
Bashutin, O. A.; Savelov, A. S.; Sidorov, P. P.
2017-12-01
Mechanical and thermal impact of the plasma focus discharge on structural elements of diagnostic windows of the PFM-72m discharge installation are calculated. The absence of critical impact at early discharge stages and during the first 300 ns after the "plasma focus" formation is shown. The possibility of shock impact on the surface of diagnostic windows at later times, which may result in their substantial deformation and destruction, is demonstrated.
Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams
1987-07-30
The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines
Plasma X-Ray Sources for Lithography
1980-05-12
in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.
NASA Astrophysics Data System (ADS)
Wang, Ying; Chen, Anmin; Wang, Qiuyun; Sui, Laizhi; Ke, Da; Cao, Sheng; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing
2018-03-01
In this study, the influence of distance between the focusing lens and target surface on the plasma temperature of copper induced by a Nd:YAG laser was investigated in the atmosphere. The plasma temperature was calculated by using the Cu (I) lines (510.55 nm, 515.32 nm, and 521.82 nm). The Cu (I) lines were recorded under different lens-to-sample distances and laser pulse energies (15.8 mJ, 27.0 mJ, 43.4 mJ, 59.2 mJ, and 76.8 mJ). The results indicated that the plasma temperature depended strongly on the distance between the focusing lens and target surface. With the increase in the distance, the plasma temperature firstly rose, and then dropped. This could be attributed to the interaction between the tailing of the nanosecond laser pulse and the front portion of the plasma plume, the plasma shielding effect, and the expanding of the plasma. In addition, there was an interesting phenomenon that the plasma temperature and the emission intensity were not completely consistent with the change of the lens-to-sample distance. It is hoped that our research will provide a deeper insight into the underlying physical processes.
NASA Astrophysics Data System (ADS)
Miremad, Seyed Milad; Shirani Bidabadi, Babak
2018-04-01
The effect of the anode's insert material of a plasma focus device on the properties of X-ray emission zone was studied. Inserts were fabricated out of six different materials including aluminum, copper, zinc, tin, tungsten, and lead to cover a wide range of atomic numbers. For each anode's insert material at different gas pressures and different voltages, the shape of X-ray emission zone was recorded by three pinhole cameras, which were installed on sidewall and roof of the chamber of plasma focus device. The results indicated that by changing the gas pressure and the charge voltage of capacitor, the X-ray source of plasma focus emerges with different forms as a concentrated column or conical shape with sharp or cloudy edges. These structures are in the form of a combination of plasma emission and anode-tip emission with different intensities. These observations indicate that the material of the anode-tip especially affects the structure of X-ray emission zone.
A system for a multiframing interferometry and its application to a plasma focus experiment.
Hirano, K; Shimoda, K; Emori, S
1979-10-01
A four-framing Mach-Zehnder interferometer system which has variable intervals from frame to frame is developed. TEA N(2) lasers that are operated with atmospheric-pressure N(2) gas are employed as light sources. Applicability of the system is demonstrated for a rapidly changing plasma in the plasma focus discharge.
1992-02-01
Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.
Opening Switch Research on a Plasma Focus VI.
1988-02-26
Sausage Instability in the Plasma Focus In this section the classical Kruskal- Schwarzschild 3 theory for the sausage mode is applied to the pinch phase...on 1) the shape of the pinch, 2) axial flow of plasma, and 3) self-generated magnetic fields are also presented. The Kruskal- Schwarzschild Theory The...classical mhd theory for the m=O mode in a plasma supported by a magnetic field against gravity; this is the well-known Kruskal- Schwarzschild
PMT-scintillator system set up for D-D neutron TOF measurements in INTI plasma focus device
NASA Astrophysics Data System (ADS)
Damideh, V.; Saw, S. H.; Sadighzadeh, A.; Ali, J.; Rawat, R. S.; Lee, P.; Lee, S.
2017-03-01
This paper summarizes a Photomultiplier-Scintillator diagnostic system for use in our plasma focus experiments at the Center for Plasma Research INTI IU. The system features an anode-grounded high pulse linearity voltage divider and uses NE102A plastic scintillators. It has detected D-D neutrons in INTI plasma focus device with clear and high signal to noise ratio. Neutron TOF of 120 ns has been measured from the time difference between hard x-ray pulse peak and neutron peak time over a flight path of 2.6±0.01 m; giving energy of 2.5±0.1 MeV for these side-on neutrons.
Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.
Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E
2010-10-01
Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.
Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.
Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.
Experimental characterization of active plasma lensing for electron beams
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marocchino, A.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2017-03-01
The active plasma lens represents a compact and affordable tool with radially symmetric focusing and field gradients up to several kT/m. In order to be used as a focusing device, its effects on the particle beam distribution must be well characterized. Here, we present the experimental results obtained by focusing an high-brightness electron beam by means of a 3 cm-long discharge-capillary pre-filled with Hydrogen gas. We achieved minimum spot sizes of 24 μ m (rms) showing that, during plasma lensing, the beam emittance increases due to nonlinearities in the focusing field. The results have been cross-checked with numerical simulations, showing an excellent agreement.
Dynamics of the plasma current sheath in plasma focus discharges in different gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.
2016-12-15
The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.
NASA Astrophysics Data System (ADS)
Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.
2018-05-01
In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.
Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-10-15
By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi
2016-01-15
The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device
NASA Astrophysics Data System (ADS)
Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.
2013-04-01
Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.
The effect of standing acoustic waves on the formation of laser-induced air plasmas.
Craig, Stephanie M; Brownell, Kara; O'Leary, Brendon; Malfitano, Christopher; Kelley, Jude A
2013-03-01
The expected location of an air plasma produced by a focused YAG laser pulse has been found to be influenced by the acoustics of the surrounding environment. In open air, the expected location of a laser-induced air plasma is centered close to the focal point of the lens focusing the laser beam. When confining the same beam coaxially along the interior of a quartz tube, the expected location of the air plasma shifts away from the focal point, toward the focusing lens, in a region of less laser fluence. This shift is caused by an interaction between standing acoustic waves (formed from sound waves produced by previous laser-induced plasmas) and the impinging laser pulse. Standing acoustic waves in a tube produce areas (antinodes) of slightly higher and slightly lower pressure than ambient atmospheric conditions, that in turn have a noticeable affect on the probability of creating an air plasma at a given location. This leads to two observed phenomena: Increased probability of air plasma formation before the optical focal point is reached, and the formation of distinct (separate) air plasmas at the antinodes themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir
2015-10-15
The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show thatmore » the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.« less
Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.
2016-03-21
We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less
Effects of admixture gas on the production of (18)F radioisotope in plasma focus devices.
Talaei, Ahmad; Sadat Kiai, S M; Zaeem, A A
2010-12-01
In this article, the effect of admixture gas on the heating and cooling of pinched plasma directly related to the enhancement or reduction of (18)F production through the (16)O((3)He, p)(18)F is considered in the plasma focus devices. It is shown that by controlling the velocity of added Oxygen particles mixed with the working helium gas into the plasma focus chamber, one can increase the current and decrease the confinement time (plasma heating) or vice verse (plasma cooling). The highest level of nuclear activities of (18)F was found around 16% of the Oxygen admixture participation and was about 0.35 MBq in the conditions of 20 kJ, 0.1 Hz and after 2 min operating of Dena PF. However, in the same condition, but for the frequency of 1 Hz, the level of activity increased up to 3.4 MBq. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2011-03-01
Relatively long-lived spheroidal structures coincident with the neutron emission phase have been observed in frozen deuterium fiber Z-pinch and some plasma focus devices. Existence of energetic ion-trapping mechanism in plasma focus has also been inferred from experimental data. It has been conjectured that these are related phenomena. This paper applies Turner's theory [L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986)] of relaxation of a Hall magnetofluid to construct a model of these structures and ion-trapping mechanism. Turner's solution modified for a finite-length plasma is used to obtain expressions for the magnetic field, velocity, and equilibrium pressure fields and is shown to represent an entity which is simultaneously a fluid vortex, a force-free magnetic field, a confined finite-pressure plasma, a charged object, and a trapped energetic ion beam. Characteristic features expected from diagnostic experiments are evaluated and shown to resemble experimental observations.
Self-sustained focusing of high-density streaming plasma
NASA Astrophysics Data System (ADS)
Bugaev, A.; Dobrovolskiy, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Naiko, I.; Oks, E.
2017-01-01
We describe our observations of the transport through an electrostatic plasma lens of a wide-aperture, high-current, low energy, metal-ion plasma flow produced by a cathodic arc discharge. The lens input aperture was 80 mm, the length of the lens was 140 mm, and there were three electrostatic ring electrodes located in a magnetic field formed by permanent magnets. The lens outer electrodes were grounded and the central electrode was biased up to -3 kV. The plasma was a copper plasma with directed (streaming) ion energy 20-40 eV, and the equivalent ion current was up to several amperes depending on the potential applied to the central lens electrode. We find that when the central lens electrode is electrically floating, the current density of the plasma flow at the lens focus increases by up to 40%-50%, a result that is in good agreement with a theoretical treatment based on plasma-optical principles of magnetic insulation of electrons and equipotentialization along magnetic field lines. When the central lens electrode is biased negatively, an on-axis stream of energetic electrons is formed, which can also provide a mechanism for focusing of the plasma flow. Optical emission spectra under these conditions show an increase in intensity of lines corresponding to both copper atoms and singly charged copper ions, indicating the presence of fast electrons within the lens volume. These energetic electrons, as well as accumulating on-axis and providing ion focusing, can also assist in reducing the microdroplet component in the dense, low-temperature, metal plasma.
Deuteron Beam Source Based on Mather Type Plasma Focus
NASA Astrophysics Data System (ADS)
Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.
2013-04-01
A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.
Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device
NASA Astrophysics Data System (ADS)
Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow
2014-03-01
The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target "Lead" due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.
Role of anode length in a mather-type plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, F.N.; Zakaullah, M.; Nisar, M.
In this paper, neutron emission from a 3 KJ Mather-type plasma focus is studied. Specifically, the behavior of system with the change in anode length is investigated. Anode lengths of high and low fluence anisotropy as well as for high neutron yield are identified. Experiment also suggest the possibility of ion beam generation leading to neutron production via beam-plasma interaction.
Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing
Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB
2000-03-13
A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.
NASA Astrophysics Data System (ADS)
Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.
2018-05-01
When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.
NASA Technical Reports Server (NTRS)
Cheng, D. Y.
1971-01-01
Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R
The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.
NASA Astrophysics Data System (ADS)
Grant, Daniel S.; Rawat, Rajdeep S.; Bazaka, Kateryna; Jacob, Mohan V.
2017-09-01
The high degree of crosslinking present in plasma polymerised thin films, coupled with their high molecular weight, imbues these films with properties similar to those of thermosetting polymers. For instance, such films tend to be relatively hard, insoluble, and to date have not exhibited plasticity when subjected to elevated temperatures. In this paper it is demonstrated that plasma polymers can, in fact, undergo plastic deformation in response to the application of extremely short-lived thermal treatment delivered by a dense plasma focus device, as evidenced by the evolution of bubble-like structures from the thin film. This finding suggests new avenues for texturing plasma thin films, and synthesising cavities that may find utility as thermal insulators or domains for material encapsulation.
Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams
van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...
2015-10-28
The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.
Current sheet collapse in a plasma focus.
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.
1972-01-01
Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.
NASA Astrophysics Data System (ADS)
Pathak, Nidhi; Kaur, Sukhdeep; Singh, Sukhmander
2018-05-01
In this paper, self-focusing/defocusing effects have been studied by taking into account the combined effect of ponder-motive and relativistic non linearity during the laser plasma interaction with density variation. The formulation is based on the numerical analysis of second order nonlinear differential equation for appropriate set of laser and plasma parameters by employing moment theory approach. We found that self-focusing increases with increasing the laser intensity and density variation. The results obtained are valuable in high harmonic generation, inertial confinement fusion and charge particle acceleration.
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.
2016-07-15
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less
Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch
Kuschel, S.; Hollatz, D.; Heinemann, T.; ...
2016-07-20
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less
Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses
Ooi, C. H. Raymond; Talib, Md. Ridzuan
2016-01-01
We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644
Plasma puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Choi, E. H.
1990-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.
Neutron production mechanism in a plasma focus.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Shomo, L. P.; Williams, M. D.; Hermansdorfer, H.
1971-01-01
The neutrons emitted by a plasma focus were analyzed by using a time-of-flight method. Flight paths as large as 80 m were used to obtain better than 10% energy resolution. The energy spectrum of neutrons from d-d reactions in the plasma focus shows a sharp onset with average maximum energies of 2.8 and 3.2 MeV in the radial and the axial directions, respectively. The average half-width of the energy spectrum was 270 keV with a shot-to-shot variation between 150 and 400 keV. Simultaneous measurements in the axial and radial directions showed no appreciable difference in the half-widths and thus indicated randomly oriented ion velocities in the plasma. A converging ion model is described which is found to be in agreement with the measured quantities.
Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.
Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R
2010-10-01
A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.
X-ray imaging crystal spectrometer for extended X-ray sources
Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.
2001-01-01
Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less
Absolute intensity of radiation emitted by uranium plasmas
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.
1975-01-01
The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.
Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com; Ling, Yap Seong; San, Wong Chiow
The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anodemore » with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.« less
Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.
Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten
2017-06-01
We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.
Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies
NASA Astrophysics Data System (ADS)
Song, Jiaojian; Guo, Jinjia; Tian, Ye; Lu, Yuan; Zheng, Ronger
2017-10-01
With the hope of applying LIBS to solid target detection in deep-sea, the influences of laser focus to sample distance (LFTSD) on the plasma characteristics were investigated using spectra-image approach with the laser energies at sub- and super- threshold irradiance of solution. The experimental results show that LFTSD is a critical parameter which can directly influence the plasma shapes, by changing the laser fluence on sample surface. The plasma is divided into two parts under pre-focus condition, while the plasma only forms at the surface of Cu target under de-focus condition. Moreover, the "seed electron" generated from Cu sample can reduce the breakdown threshold of the solution. By comparing the laser energy, it seems to be inefficient by using super-threshold energy due to the plasma shielding effect of the liquid. High quality spectra can be observed by using lower laser energy and longer gate delay (25 mJ and 1000 ns, in this work).
NASA Astrophysics Data System (ADS)
Singh, Arwinder; Heoh, Saw Sor; Sing, Lee
2017-03-01
In this paper, we use Lee's 5 phase model code to configure both the India Bhabha Atomic Research Center (BARC) Plasma focus machine operating in the pressure (P0) range from 1 Torr to 14 Torr as well as the Imperial College Plasma Focus Machine operating in the pressure (P0) range from 0.5 Torr to 6 Torr to compare the computational neutron yield to the experimental neutron yield as well as to obtain the relationship between axial speed va, radial shock speed vs, piston speed vp and pinch temperature with P0 for these machines.
Paul Ion Trap as a Diagnostic for Plasma Focus
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.
2010-02-01
The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.
NASA Astrophysics Data System (ADS)
Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.
The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.
2018-05-01
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
Triton burnup in plasma focus plasmas
NASA Astrophysics Data System (ADS)
Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi
1995-04-01
Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark
Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.
2D model of plasma current sheath propagation in a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil
2018-06-01
Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.
Evidence for gain on the C VI 182 A transition in a radiation-cooled selenium/Formvar plasma
NASA Technical Reports Server (NTRS)
Seely, J. F.; Brown, C. M.; Feldman, U.; Richardson, M.; Behring, W. E.
1985-01-01
Thin plastic foils coated with selenium have been irradiated using from 4 to 8 beams of the OMEGA laser in a line focus configuration. Spectra were recorded using a 3 meter spectrograph that viewed the plasma along the line focus. Based on a comparison of the intensities of the spectral lines from plasmas with lengths of 1.7, 3.4, 6.8, and 13.6 mm, the C VI n = 3 to 2 transition at 182 A was anomalously intense in the spectra from the longer plasmas. Calculations indicate that the carbon plasma was cooled by radiation from the highly-charged selenium plasma in a time that was smaller than the expansion time of the plasma. These plasma conditions are favorable for the occurrence of population inversions between the n = 2 and 3 levels of C VI resulting from recombination and cascading from higher levels. The measured gain coefficient for the C VI 182 A transition is 3/cm, and this corresponds to a gain-length product of 4 in the longest plasma.
Time-resolved characteristics of deuteron-beam generated by plasma focus discharge.
Lim, Lian-Kuang; Yap, Seong-Ling; Bradley, D A
2018-01-01
The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1-3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic.
Time-resolved characteristics of deuteron-beam generated by plasma focus discharge
Bradley, D. A.
2018-01-01
The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1–3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic. PMID:29309425
Laser Heating in a Dense Plasma Focus.
The report is divided in two parts. In the first part an account is given of the measurement of the momentum distribution of the deuterons ejected from a dense plasma focus . The results show the existence of a pronounced non-Maxwellian distribution and a small population of deuterons accelerated to the voltage of the condenser bank. In the second part theoretical calculation of laser heating establish the presence of large density gradient which probably accounts for the large currents detected in such plasmas. (Author)
Convex Curved Crystal Spectograph for Pulsed Plasma Sources.
The geometry of a convex curved crystal spectrograph as applied to pulsed plasma sources is presented. Also presented are data from the dense plasma focus with particular emphasis on the absolute intensity of line radiations.
Physics in Europe--A Data File of Selected Research.
1984-06-18
Negev Sapir Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 1025 CPBICF laser plasma soft x-ray refractometry France...CPBICF laser plasma Schlieren diagnostic France 623 CPBICF laser plasma self focusing numerics UK 1025 CPBICF laser plasma soft x-ray refractometry
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less
Application of an impedance matching transformer to a plasma focus.
Bures, B L; James, C; Krishnan, M; Adler, R
2011-10-01
A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
Foster, J.S. Jr.
1958-03-11
This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
Comparison of measured and computed radial trajectories of plasma focus devices UMDPF1 and UMDPF0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. H.; Yap, S. L., E-mail: yapsl@um.edu.my; Lim, L. K.
In published literature, there has been scant data on radial trajectory of the plasma focus and no comparison of computed with measured radial trajectory. This paper provides the first such comparative study. We compute the trajectories of the inward-moving radial shock and magnetic piston of UMDPF1 plasma focus and compare these with measured data taken from a streak photograph. The comparison shows agreement with the measured radial trajectory in terms of average speeds and general shape of trajectory. This paper also presents the measured trajectory of the radially compressing piston in another machine, the UMDPF0 plasma focus, confirming that themore » computed radial trajectory also shows similar general agreement. Features of divergence between the computed and measured trajectories, towards the end of the radial compression, are discussed. From the measured radial trajectories, an inference is made that the neutron yield mechanism could not be thermonuclear. A second inference is made regarding the speeds of axial post-pinch shocks, which are recently considered as a useful tool for damage testing of fusion-related wall materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polukhin, S. N., E-mail: snpol@lebedev.ru; Dzhamankulov, A. M.; Gurei, A. E.
The velocities of the plasma jets formed from Ne, N{sub 2}, Ar, and Xe gases in plasma focus facilities were determined by means of laser-optical shadowgraphy of the shock waves generated at the jet leading edge. In spite of the almost tenfold ratio between the atomic weights of these gases, the outflow velocities of the plasma jets formed in experiments with these gases differ by less than twice, in the range of (0.7–1.1) × 10{sup 7} cm/s under similar discharge conditions. The energies of the jet ions were found to vary from 0.7 keV for nitrogen to 4 keV formore » xenon.« less
Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration
NASA Astrophysics Data System (ADS)
Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee
2018-05-01
We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.
NASA Technical Reports Server (NTRS)
Aston, G.; Wilbur, P. J.
1981-01-01
The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
Coupling of laser energy into plasma channels
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-04-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.
2014-03-15
The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
Advances and challenges in the field of plasma polymer nanoparticles
Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847
Advances and challenges in the field of plasma polymer nanoparticles.
Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.
2017-01-01
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.
Enhanced target normal sheath acceleration based on the laser relativistic self-focusing
NASA Astrophysics Data System (ADS)
Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.
2014-06-01
The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.
Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion
NASA Astrophysics Data System (ADS)
Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.
1992-01-01
Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.
Focusing experiments in plasma coaxial railguns
NASA Astrophysics Data System (ADS)
Driga, M. D.; Cook, R. W.; Thelen, R. F.
1986-11-01
Results are reported from experiments on focusing of plasma fired from a coaxial electromagnetic gun (CEMG). The plasma used, obtained by exploding a metallic fuse at the gun breech, comprised metal vapor, metallic liquid droplets and small chunks of solid metal. An azimuthal current, and thereby an axial field, was introduced at the breech of the CEMG by a solenoid. Previous studies indicated that the field would cause vaporized metal to form into a self-stabilizing toroidal plasma. Test shots instrumented with Languir probes and pick-up coils did not reveal the presence of toroidal plasma rings. However, post-mortem of the 30 cm rail showed that only one-third of the 3 mg Al fuse metal remained in the bore. Further, a toroidal hole was punched in a diagnostic screen at the bore exit after one shot.
NASA Astrophysics Data System (ADS)
Borets-Pervak, I. Yu; Vorob'ev, V. S.
1990-08-01
An analysis is made of the influence of the statistical scatter of the size of thermally insulated microdefects and of their number in the focusing spot on the threshold energies of plasma formation by microsecond laser pulses interacting with metal surfaces. The coordinates of the laser pulse intensity and the surface density of the laser energy are used in constructing plasma formation regions corresponding to different numbers of microdefects within the focusing spot area; the same coordinates are used to represent laser pulses. Various threshold and nonthreshold plasma formation mechanisms are discussed. The sizes of microdefects and their statistical characteristics deduced from limited experimental data provide a consistent description of the characteristics of plasma formation near polished and nonpolished surfaces.
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1974-01-01
Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.
Laser Scattering from the Dense Plasma Focus.
plasma focus (DPF) illuminated by a pulse of laser light. Scattering was observable from 10 nanoseconds prior to arrival of the collapse on axis and for an additional 50 nanoseconds. The frequency spectrum is markedly asymmetric about the laser frequency, a feature which is inconsistent with spectral expectations based on thermal particle distributions even if particle drifts or waves excitations are included. A model is postulated which attributes the asymmetry to lateral displacement of scattering region from the axis of the focus. Analysis based on this model yields
NASA Astrophysics Data System (ADS)
Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.
2014-07-01
Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2018-01-01
This paper reports a simulation study on a focused microwave (frequency 9.4 GHz, pulse width 2.5 μs, and peak electric field 1.2 kV/cm) discharge in 200 Pa nitrogen. A one-dimensional (1D) fluid model is based on the wave equation for the microwave field propagating through the gas breakdown plasma, the continuity equations for electron, ion and neutral particle densities, and the energy balance equations for mean electron temperature, and nitrogen vibrational and translational temperatures. These equations are numerically solved in a self-consistent manner with a simplified plasma chemistry set, in which the reaction rates involving electrons are calculated from the electron energy distribution function (EEDF) using a two-term expansion method. The spatial and temporal characteristics of the focused microwave breakdown in nitrogen are demonstrated, which include the amplitude of the microwave electric field, and the densities and temperatures of the plasma components. The temporal evolution of the plasma electron density agrees reasonably well with that measured with a microwave interferometer. The spatial-temporal distributions of metastable states are discussed on the plasma chemistry and the character of mean electron temperature. The spatially integrated N2(C3) density shows similar trends with the measured temporal intensity of optical emission spectroscopy, except for a time delay of 100-300 ns. The quantitative discrepancies are explained in light of limitations of the 1D model with a two-term expansion of EEDF. The theoretical model is found to describe the gas breakdown plasma generated by focused microwave beams at least qualitatively.
Propagation velocities of laser-produced plasmas from copper wire targets and water droplets
NASA Technical Reports Server (NTRS)
Song, Kyo-Dong; Alexander, Dennis R.
1994-01-01
Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.
Filamentary structures in dense plasma focus: Current filaments or vortex filaments?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José
2014-07-15
Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments frommore » interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.« less
Production of hard X rays in a plasma focus
NASA Technical Reports Server (NTRS)
Newman, C. E.; Petrosian, V.
1975-01-01
A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Shengtai; Jungman, Gerard
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.
We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presencemore » of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.« less
The interaction of intense, ultra-short microwave beams with the plasma generated by gas ionization
NASA Astrophysics Data System (ADS)
Shafir, G.; Cao, Y.; Bliokh, Y.; Leopold, J. G.; Levko, D.; Rostov, V.; Gad, R.; Fisher, A.; Bernshtam, V.; Krasik, Ya. E.
2018-03-01
Results of the non-linear interaction of an extremely short (0.6 ns) high power (˜500 MW) X-band focused microwave beam with the plasma generated by gas ionization are presented. Within certain gas pressure ranges, specific to the gas type, the plasma density is considerably lower around the microwave beam axis than at its periphery, thus forming guiding channel through which the beam self-focuses. Outside these pressure ranges, either diffuse or streamer-like plasma is observed. We also observe high energy electrons (˜15 keV), accelerated by the very high-power microwaves. A simplified analytical model of this complicated dynamical system and particle-in-cell numerical simulations confirm the experimental results.
Studying the Generation Stage of a Plasma Jet in a Plasma Focus Discharge
NASA Astrophysics Data System (ADS)
Polukhin, S. N.; Gurei, A. E.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Kharrasov, A. M.
2017-12-01
A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is 1 mm, its electron density is more than 2 × 1019 cm-3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm-3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3-5 times and almost merges together with the leading edge of the shock wave.
Interferometry using subnanosecond pulses from TEA nitrogen lasers.
Schmidt, H; Salzmann, H; Strohwald, H
1975-09-01
The applicability of TEA nitrogen lasers emitting at 3371 A for high speed optical plasma interferometry of short lived plasmas is demonstrated. Interferograms of the dense phase of a 30-kJ plasma focus are obtained with an exposure time of less than 500 psec.
Preionization Techniques in a kJ-Scale Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea
2016-10-01
A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.
Advanced Design Concepts for Dense Plasma Focus Devices at LLNL
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea
2017-10-01
The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Krauz, V. I.; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.
2015-05-01
The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5-3 Torr in discharges with energies of 0.3-0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.
Working group report on beam plasmas, electronic propulsion, and active experiments using beams
NASA Technical Reports Server (NTRS)
Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.
1986-01-01
The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.
NASA Astrophysics Data System (ADS)
Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.
2017-03-01
The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.
ERIC Educational Resources Information Center
Najarian, Maya L.; Chinni, Rosemarie C.
2013-01-01
This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…
Preliminary characterization of a laser-generated plasma sheet
Keiter, P. A.; Malamud, G.; Trantham, M.; ...
2014-12-10
We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less
Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980
NASA Technical Reports Server (NTRS)
Aston, G.
1980-01-01
An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.; Camacho-Lopez, S.
2010-11-15
This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, {lambda}=532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 {mu}J, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher onmore » previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].« less
The inverse skin effect in the Z-pinch and plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usenko, P. L., E-mail: otd4@expd.vniief.ru; Gaganov, V. V.
The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.
Modelling of the internal dynamics and density in a tens of joules plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel
2012-01-15
Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.
Method and apparatus for reducing coherence of high-power laser beams
Moncur, Norman K.; Mayer, Frederick J.
1978-01-01
Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.
Uranium plasma radiates in the UV spectrum
NASA Technical Reports Server (NTRS)
Williams, M. D.
1973-01-01
Description of an experiment designed to produce and spectroscopically analyze a simulated gas core reactor plasma in the spectral range from 300 to 1300 A. The plasma was produced by focusing the radiation of a Q-spoiled ruby laser onto the flat surface of a pure U-238 specimen.
ION-STABILIZED ELECTRON INDUCTION ACCELERATOR
Finkelstein, D.
1960-03-22
A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.
NASA Astrophysics Data System (ADS)
Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo
2012-10-01
Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.
Space and time resolved emission of hard X-rays from a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.
Aerosol beam-focus laser-induced plasma spectrometer device
Cheng, Meng-Dawn
2002-01-01
An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.
Study on Ferroelectric Thick Film Insulator Sleeve On Plasma Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Gustavo; Silva, Patricio; Moreno, Jose
The effect of ferroelectric lead germanate Pb5Ge3O11 (PGO) thick film in the alumina insulator sleeve of the 400 Joule Mather-type plasma focus device, PF-400J is studied. The breakdown phase along the insulator is fundamental for the formation of a homogeneous and symmetric current sheath, that is essential for a good plasma pinching, high neutron yield and X-ray emissions. For over several hundreds of electrical discharges, the films show good mechanical and electric performance. From the beginning the operating system is highly reproducible, shot to shot, with a clear definition of the plasma pinch on the axis of discharge. The grademore » of influence of the electron emission from the ferroelectric is experimentally studied.« less
NASA Technical Reports Server (NTRS)
Bostick, W. H.; Nardi, V.
1985-01-01
Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.
NASA Astrophysics Data System (ADS)
Bostick, W. H.; Nardi, V.
1985-08-01
Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.
2010-10-01
A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.
Borthakur, T K; Talukdar, N; Neog, N K; Rao, C V S; Shyam, A
2011-10-01
A qualitative study on the performance of cylindrical vacuum photodiodes (VPDs) for x-ray detection in plasma focus device has been carried out. Various parameters of VPD such as electrode's diameter, electrode's separation, and its sensitivity are experimentally tested in plasma focus environment. For the first time it is found experimentally that the electrode-separation in the lateral direction of the two coaxial electrodes of cylindrical VPD also plays an important role to increase the efficiency of the detector. The efficiency is found to be highest for the detector with smaller cathode-anode lateral gap (1.5 mm) with smaller photo cathode diameter (10 mm). A comparison between our VPD with PIN (BPX-65) diode as an x-ray detector has also been made.
Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A
2011-08-01
The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.
Royère, C
1999-03-01
The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.
Operational characteristics of a high voltage dense plasma focus
NASA Astrophysics Data System (ADS)
Woodall, D. M.
1985-11-01
A high voltage dense plasma focus powered by a single stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120 kV, energy--20 kJ, short circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The outer electrode diameter is 10.16 cm. Rundown length is about 10 cm, corresponding to a bank quarter period of about 900 millohms ns. Rundown L is about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and related topics. Theoretical motivation for high voltage operation is presented. The design, construction and operation of this device are discussed in detail. Results and analysis of measurements obtained are presented. Device operation was investigated primarily at 80 kV (9 kJ), with a gas fill of about 1 torr H2, plus 3-5 percent A. The following diagnostics were used: gun voltage and current measurements; filtered, time resolved x ray PIN measurements of the pinch region; time integrated x ray pinhole photographs of the pinch region; fast frame visible light photographs of the sheath during rundown; and B probe measurements of the current sheath shortly before collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-05-15
The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less
Plasma Discharge Process in a Pulsed Diaphragm Discharge System
NASA Astrophysics Data System (ADS)
Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu
2014-12-01
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.
Helium microwave-induced plasmas for element specific detection in chromatography
NASA Astrophysics Data System (ADS)
Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.
1994-01-01
This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.
Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster
2014-06-01
Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of
Magnetospheric radio and plasma wave research - 1987-1990
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1991-01-01
This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.
A plasma lens for a linear collider final focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norem, J.; Cline, D.B.; Cole, B.
High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.
Ion acceleration in a plasma focus
NASA Technical Reports Server (NTRS)
Gary, S. P.
1974-01-01
The electric and magnetic fields associated with anomalous diffusion to the axis of a linear plasma discharge are used to compute representative ion trajectories. Substantial axial acceleration of the ions is demonstrated.
Plasma phenomena at magnetic neutral points
NASA Technical Reports Server (NTRS)
Sturrock, P. A.
1975-01-01
A model of the plasma focus is considered, in which large axial electric fields are induced by the imploding current sheet during the final few nanoseconds of the collapse phase. This field provides a mechanism for creation of a beam of electrons of highly suprathermal energies. For this beam, the bremsstrahlung radiation is calculated, which is expected either from electron-deuteron collisions in the focused plasma itself or from the beam as it reaches the walls of the device. Comparison with experimental results indicates that the walls are the more likely source of these hard X-rays and also find qualitative agreement of the expected angular distribution of X-rays with experiment.
Filamentation in the pinched column of the dense plasma focus
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-03-01
The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, K. N., E-mail: mitrkn@inbox.ru; Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru; Grabovski, E. V.
The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with amore » dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.« less
Plasma Metamaterials for Arbitrary Complex-Amplitude Wave Filters
2013-09-10
plasmas as reflectors , 4 absorbers, 4,5 and antennae 6 of electromagnetic waves. In contrast with the other materials in these devices, parameters...are controlled using launching antenna and high-power wave sources. One of the fundamental facts we have learned in microwave plasmas is that...metamaterials.” 29 In this report, we demonstrate the functional composites of plasmas and metamaterials, and the focusing point is verification of
Plasma based optical guiding of an amplitude-modulated electromagnetic beam
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2015-06-01
We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.
NASA Astrophysics Data System (ADS)
Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.
2014-08-01
This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.
Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.
2013-10-01
Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.
Effect of insulator sleeve material on the x-ray emission from a plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, S.; Badar, M. A.; Shafiq, M.
The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves suchmore » as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.« less
Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S
2018-06-02
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Dispersion and waves in bounded plasmas with subwavelength inhomogeneities: Genesis of MEFIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Sudeep
Bounded plasma exhibit many interesting behavior that are not found in plasmas of 'infinite' extent such as space and astrophysical plasmas. Our studies have revealed that the dispersion properties of waves in a bounded magnetoplasma deviates considerably from the predictions of the Clemmow-Mullaly-Allis (CMA) model, giving rise to new regimes of wave propagation and absorption. The anisotropy of the medium dictated by the length scales of plasma nonuniformity and magnetostatic field inhomogeneity lead to rotation of the polarization axis an effect similar to the Cotton-Mouton effect in a magneto-optic medium but with distinct differences due to wave induced resonances. Thismore » article highlights some of these interesting effects observed experimentally and corroborated with Monte Carlo simulations. One of the principal outcomes of this research is the genesis of a novel multielement focused ion beam (MEFIB) system that utilizes compact bounded plasmas in a minimum – B field to provide intense focused ion beams of a variety of elements for new research in nanoscience and technology.« less
Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death
NASA Astrophysics Data System (ADS)
Shimizu, Nobuyuki
2015-09-01
New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.
Summary Report on Controlled Thermonuclear Synthesis,
stellarator and the tokamak. Adiabatic magnetic traps are also briefly discussed, as well as the plasma focus . The paper is a very brief generalization of the current state of high-temperature plasma physics. (Author)
Calibration of a high harmonic spectrometer by laser induced plasma emission.
Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M
2009-08-17
We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America
Gamma ray measurements with photoconductive detectors using a dense plasma focus.
May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C
2014-11-01
Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.
Dynamics of ions generated by 2.3 kJ UNU/ICTP plasma focus device
NASA Astrophysics Data System (ADS)
Tangitsomboon, P.; Ngamrungroj, D.; Chandrema, E.; Mongkolnavin, R.
2017-09-01
UNU/ICTP Plasma Focus Device has been used as an ions source in many applications. In this paper, the full dynamic range of argon ions produced by the Plasma Focus Device from its initial phase through to beyond the focussing phase of the plasma is shown experimentally. The average speed of the ions is determined by measuring time taken for ions to reach different positions using magnetic probes and ion probes. Also, by adapting a well-established computational model that represents the dynamics of plasma in such device, it is also possible to determine the speed of these ions up to the point where the movement of the plasma sheath under the Lorentz force is completed. However, it was found that the speed determined by the computational model is higher in comparison with the values obtained experimentally at all different operating pressures. The ions’ speed found for operating pressure of 0.5 mbar, 1.0 mbar, 1.5 mbar and 2.0 mbar were 5.16 ± 0.04 cm/μs, 4.24 ± 0.04 cm/μs, 3.81 ± 0.03cm/μs and 3.16 ± 0.04 cm/μs respectively. These correspond to the ion energy of 551.38 ± 8.55 eV, 372.29 ± 7.02 eV, 300.61 ± 4.73 eV and 206.79 ± 5.24 eV.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Tavassoli, Seyed Hassan
2016-11-01
In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.
The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease.
Winkler, Anne M; Koepsell, Scott A
2015-11-01
The purpose of this review is to discuss the use of convalescent plasma for the treatment of emerging infectious diseases, focusing on the recent use for the treatment of Ebola virus disease (EVD). Ebola convalescent plasma has been used as a therapy for treatment of EVD during the 2014 West Africa epidemic. Several cases from the United States and Europe have been recently published, in addition to multiple ongoing clinical trials in the United States and West Africa. Even more recently, convalescent plasma has been used for treatment of individuals with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Although the first reports of successful treatment with passive immune therapy date back to the early 1900s, convalescent plasma has materialized as a possible therapy for patients who develop infection from one of the emerging infectious diseases such as EVD or MERS-CoV, although the efficacy of such therapy has yet to be proven in clinical trials.
Plasma separation from magnetic field lines in a magnetic nozzle
NASA Technical Reports Server (NTRS)
Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.
1993-01-01
This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.
Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.
Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M
2011-03-01
We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Subodh; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P.
Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yieldmore » of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.« less
Diagnostics of ion beam generated from a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Lim, L. K.; Ngoi, S. K.; Wong, C. S.; Yap, S. L.
2014-03-01
Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 1011 per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dergachev, A A; Kandidov, V P; Shlenov, S A
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
2001-03-19
Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on
Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment
NASA Astrophysics Data System (ADS)
Fridman, Alexander
2015-09-01
Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.
An Analytic Model for the Compression of Plasma Toroids
1990-10-01
chamber are only 18 cm apart in the formation section, and the total chamber length can be several meters. The concept is to form a confined plasma ring , and...Focusing of Magnetically Confined Plasma Rings ," Physical Review Letters, Vol. 61, No. 25, pp.2843-2846, 19 December 1988. 2. Turner, W. C., Goldenbaum, G
1993-02-01
currents can be reached by optimizing the electrode geometry and the charging circuit voltage and that the equivalent circuit modelling provides a realistic basis for analyzing plasma focus pinch dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Studies of ˜ps laser driven plasmas in line focus geometry
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Al-Hadithi, Y.; Dwivedi, L.; Behjat, A.; Demir, A.; Holden, M.; Krishnan, J.; Zhang, J.; Key, M. H.; Neely, D.; Norreys, P. A.; Lewis, C. L. S.; MacPhee, A. G.
1995-05-01
Measurements of X-ray emission along linear plasmas produced in short pulse (2-12 ps) experiments using the Rutherford Appleton Laboratory glass (1.06 μm) and KrF (0.268 μm) lasers are interpreted to provide information about the uniformity and lateral and axial energy transport of X-ray laser gain media. For fiber targets, the difficulties of achieving uniform irradiation and accurate plasma length measurements are illustrated and discussed. For slab targets, it is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for spot focus experiments.
Dose Measurements in a 20-J Repetitive Plasma Focus
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.; Mazandarani, A.
2018-02-01
In this article, the results of X-ray dose measurements executed using thermoluminescent dosimeters in experiments with a very small (20 J) repetitive plasma focus device named SORENA-1 are presented and analyzed. The working gas in these experiments was Argon. Also, pinch formation in experiments with this device has been observed. This device has been designed and constructed in Plasma and Nuclear Fusion Research School of Nuclear Science and Technology Research Institute of Iran. From these results, it is concluded that we can do experiments with this device using Ar as working gas all over the working days of year, and a good symmetry for measured dose around the device has been seen.
NASA Astrophysics Data System (ADS)
von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.
2013-09-01
Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.
Self-aligning concave relativistic plasma mirror with adjustable focus
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; Stark, David J.; Wang, Xiaoming; Zgadzaj, Rafal; Downer, M. C.
2017-01-01
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity ( 10 18 < I 0 < 10 19 W / cm 2 ) by near-normally incident ( 4 ° ), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective ( 0.6 - 0.8 ) and focus a significant fraction of reflected light to intensity as large as ˜ 10 I 0 at distance f as small as ˜ 25 μ m from the PM, provided that pre-pulses do not exceed 1014 W/cm2 prior to ˜ 20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusing results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲ L ≲ 3 μ m. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.
Preliminary Results Of A 600 Joules Small Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. H.; Yap, S. L.; Wong, C. S.
Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltagemore » across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.« less
Effect of nonlinear absorption on self focusing of short laser pulse in a plasma
NASA Astrophysics Data System (ADS)
Kumar, Ashok
2012-06-01
Paraxial theory of self focusing of short pulse laser in a plasma under transient and saturating effects of nonlinearity and nonlinear absorption is developed. The absorption is averaged over the cross-section of the beam and is different for different time segments of the pulse. The electron temperature includes cumulative effect of previous history of temporal profile of pulse intensity, however, the ambipolar diffusion is taken to be faster than the heating time. The relaxation effect causes self-distortion of the pulse temporal profile where as the nonlinear absorption weakens self focusing. For the pulses of duration comparable to the electron ion collision time, the front part of the pulse gets defocused where as the latter part undergoes periodic self focusing.
Study the Output Characteristics of a 90 kJ Filippove-Type Plasma Focus
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Talaei, A.; Adlparvar, S.; Zirak, A.; Elahi, M.; Safarian, A.; Farhangi, S.; Alhooie, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; Talaei, M.; KaKaei, S.; Sheibani, S.; Kashani, A.; Zahedi, F.
2010-08-01
The output characteristics of a Filippove-Type plasma focus "Dena" (288 μF, 25 kV, 90 kJ) is numerically investigated by considering the voltage, current, current derivative, and maximum current as a function of capacitor bank energy in the constant Argon gas pressure and compared to the experiment. It is shown that increase on the bank energy leads to the increment on the maximum current and decrement on the pinch time.
Multiple Compressions in the Middle Energy Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Ejiri, Y.; Ito, H.
This paper reports some of the results that are aimed to investigate the neutron emission from the middle energy Mather-type plasma focus. These results indicated that with increase the pressure, compression time is increase but there is not any direct relation between the compression time and neutron yield. Also it seems that multiple compression regimes is occurred in low pressure and single compression is appeared at higher pressure where is the favorable to neutron production.
NASA Astrophysics Data System (ADS)
Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.
2012-01-01
A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.
Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion
2012-09-21
including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup
NASA Astrophysics Data System (ADS)
Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk
2017-03-01
Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.
Apparatus For Metal/Inert-Gas Welding In Vacuum
NASA Technical Reports Server (NTRS)
Stocks, C. O.
1994-01-01
Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.
NASA Astrophysics Data System (ADS)
Dan'ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.
2017-04-01
This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.
Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma
NASA Astrophysics Data System (ADS)
Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian
2017-12-01
The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi
A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less
NASA Astrophysics Data System (ADS)
Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale
2016-10-01
Experiments have suggested that dense plasma focus (DPF) neutron yield increases with faster drivers [Decker NIMP 1986]. Using the particle-in-cell code LSP [Schmidt PRL 2012], we reproduce this trend in a kJ DPF [Ellsworth 2014], and demonstrate how driver rise time is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. Driver capacitance and voltage are varied to modify the current rise time, and anode length is adjusted so that run-in coincides with the peak current. We observe during run down that magnetohydrodynamic (MHD) instabilities of the sheath shed blobs of plasma that remain in the inter-electrode gap during run in. This trailing plasma later acts as a low-inductance restrike path that shunts current from the pinch during maximum compression. While the MHD growth rate increases slightly with driver speed, the shorter anode of the fast driver allows fewer e-foldings and hence reduces the trailing mass between electrodes. As a result, the fast driver postpones parasitic restrikes and maintains peak current through the pinch during maximum compression. The fast driver pinch therefore achieves best simultaneity between its ion beam and peak target density, which maximizes neutron production. Prepared by LLNL under Contract DE-AC52-07NA27344.
ERIC Educational Resources Information Center
Blechle, Joshua M.
2016-01-01
Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
NASA Astrophysics Data System (ADS)
Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.
2017-10-01
Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jingfeng; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Gao, Ruilin
2016-08-15
This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.
ION BEAM FOCUSING MEANS FOR CALUTRON
Backus, J.G.
1959-06-01
An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)
A source with a 10{sup 13} DT neutron yield on the basis of a spherical plasma focus chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavyalov, N. V.; Maslov, V. V.; Rumyantsev, V. G., E-mail: rumyantsev@expd.vniief.ru
2013-03-15
Results from preliminary experimental research of neutron emission generated by a spherical plasma focus chamber filled with an equal-component deuterium-tritium mixture are presented. At a maximum current amplitude in the discharge chamber of {approx}1.5 MA, neutron pulses with a full width at half-maximum of 75-80 ns and an integral yield of {approx}1.3 Multiplication-Sign 10{sup 13} DT neutrons have been recorded.
Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules
1998-05-22
consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced
Development of a plasma focus neutron source powered by an explosive magnetic generator
NASA Astrophysics Data System (ADS)
Ablesimov, V. E.; Andrianov, A. V.; Bazanov, A. A.; Glybin, A. M.; Dolin, Yu. N.; Drozdov, I. Yu.; Drozdov, Yu. M.; Duday, P. V.; Zimenkov, A. A.; Ivanov, V. A.; Ivanovskii, A. V.; Kalinychev, A. E.; Karpov, G. V.; Kraev, A. I.; Lomtev, S. S.; Nudikov, V. N.; Pak, S. V.; Pozdov, N. I.; Polyushko, S. M.; Rybakov, A. F.; Skobelev, A. N.; Turov, A. N.; Fevralev, A. Yu.
2015-01-01
This paper presents the results of laboratory and explosive experiments with a plasma focus discharge Mather-type chamber at a discharge current amplitude of 1.3-1.4 MA. It has been found that in laboratory experiments, the yield of a deuterium-deuterium neutrons reached 1011, and in an explosive experiment using the chamber filled with a deuterium-tritium gas mixture, the integral yield of a deuterium-tritium neutrons with an energy of 14 MeV was more than 1012 neutrons.
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
NASA Astrophysics Data System (ADS)
Dergachev, A. A.; Ionin, A. A.; Kandidov, V. P.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Shlenov, S. A.; Shustikova, A. P.
2014-12-01
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis.
Apparatus for generating quasi-free-space microwave-driven plasmas
NASA Astrophysics Data System (ADS)
Hoff, Brad W.; French, David M.; Reid, Remington R.; Lawrance, Julie E.; Lepell, P. David; Maestas, Sabrina S.
2016-03-01
An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ˜5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.
Apparatus for generating quasi-free-space microwave-driven plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, Brad W.; French, David M.; Reid, Remington R.
An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.
Apparatus for generating quasi-free-space microwave-driven plasmas.
Hoff, Brad W; French, David M; Reid, Remington R; Lawrance, Julie E; Lepell, P David; Maestas, Sabrina S
2016-03-01
An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less
Fully kinetic simulations of dense plasma focus Z-pinch devices.
Schmidt, A; Tang, V; Welch, D
2012-11-16
Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.
Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
Generation conditions of CW Diode Laser Sustained Plasma
NASA Astrophysics Data System (ADS)
Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro
2016-09-01
Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.
Megajoule Dense Plasma Focus Solid Target Experiments
NASA Astrophysics Data System (ADS)
Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.
2016-10-01
Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Liu, Ming-Ping; Liu, Bing-Bing; Liu, San-Qiu; Zhang, Fu-Yang; Liu, Jie
2013-08-01
Using a variational approach, the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated. The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included. The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF). The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength. The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.
Hard X-ray Detectability of Small-Scale Coronal Heating Events
NASA Astrophysics Data System (ADS)
Marsh, A.; Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Smith, D. M.; Hannah, I. G.
2016-12-01
The nanoflare heating theory predicts the ubiquitous presence of hot ( >5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare "storms" that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.
Hard X-ray Detectability of Small-Scale Coronal Heating Events
NASA Astrophysics Data System (ADS)
Marsh, Andrew; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Smith, David; Hannah, Iain
2016-05-01
The nanoflare heating theory predicts the ubiquitous presence of hot (~>5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare “storms” that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.
NASA Astrophysics Data System (ADS)
Bulanov, Stepan; Bagdasarov, Gennadiy; Bobrova, Nadezhda; Boldarev, Alexey; Olkhovskaya, Olga; Sasorov, Pavel; Gasilov, Vladimir; Barber, Samuel; Gonsalves, Anthony; Schroeder, Carl; van Tilborg, Jeroen; Esarey, Eric; Leemans, Wim; Levato, Tadzio; Margarone, Daniele; Korn, Georg; Kando, Masaki; Bulanov, Sergei
2017-10-01
A novel method for asymmetric focusing of electron beams is proposed. The scheme is based on the active lensing technique, which takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside a capillary discharge are described theoretically and modeled with dissipative MHD simulations to enable analysis of capillaries of oblong rectangle cross-sections implying that large aspect ratio rectangular capillaries can be used to form flat electron bunches. The effect of the capillary cross-section on the electron beam focusing properties were studied using the analytical methods and simulation- derived magnetic field map showing the range of the capillary discharge parameters required for producing the high quality flat electron beams.
Plasma Lens for Muon and Neutrino Beams
NASA Astrophysics Data System (ADS)
Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant
2008-04-01
The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.
Blaizot, Jean-Paul; Liao, Jinfeng; Mehtar-Tani, Yacine
2016-12-01
We analyze the interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma, using kinetic theory. Our main focus is the dynamics and equilibration of long wavelength modes.
1998-03-31
plasma focus discharges. Part of the tests summarized here address methods and means for achieving controlled variations of the current sheath (CS) structure via electrode geometry modifications. CS parameters are monitored with multiple magnetic probes in the case of cylindrical - and open-funnel electrode
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation
NASA Astrophysics Data System (ADS)
Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.
2017-08-01
Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.
Compact and tunable focusing device for plasma wakefield acceleration
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.
2018-03-01
Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.
Diagnostics of ion beam generated from a Mather type plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. K., E-mail: yapsl@um.edu.my; Ngoi, S. K., E-mail: yapsl@um.edu.my; Wong, C. S., E-mail: yapsl@um.edu.my
Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear trackmore » detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.« less
Perspectives on High-Energy-Density Physics
NASA Astrophysics Data System (ADS)
Drake, R. Paul
2008-11-01
Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare example in which simplicity emerges from the complexity present in the plasma state.
Interaction of laser radiation with plasma under the MG external magnetic field
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Maximov, A. V.; Betti, R.; Sawada, H.; Sentoku, Y.
2016-10-01
Strong magnetic fields play an important role in many physical processes relevant to astrophysical events and fusion research. Laser produced plasma in the MG external magnetic field was studied at the 1 MA pulsed power generator coupled with the laser operated in ns and ps regimes. Rod loads and coils under 1 MA current were used to produce a magnetic field of 2-3 MG. In one type of experiments, a 0.8 ns laser pulse was focused on the load surface with intensity of 3x1015 W/cm2. Laser diagnostics showed that the laser produced plasma expands in the transversal magnetic field and forms a thin plasma disc with a typical diameter of 3-7 mm and thickness of 0.2-0.4 mm. A magnetosonic-type wave was observed in the plasma disc and on the surface of the rod load. The plasma disc expands radially across the magnetic field with a velocity of the order of the magnetosonic velocity. Physical mechanisms involved in the formation of the plasma disc may be relevant to the generation of plasma loops in sun flares. Other experiments, with a 0.4 ps laser pulse were carried for investigation of the isochoric heating of plasma with fast electrons confined by the strong magnetic field. The laser beam was focused by the parabola mirror on a solid target in the magnetic field of the coil. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.
INPIStron switched pulsed power for dense plasma pinches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Ja H.
1993-01-01
The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubes, P.; Cikhardtova, B.; Cikhardt, J.
In this paper, we describe the influence of an Al wire of 270 μm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) andmore » associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when the uninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raspa, V.; Moreno, C.; Sigaut, L.
The effective spectrum of the hard x-ray output of a Mather-type tabletop plasma focus device was determined from attenuation data on metallic samples using commercial radiographic film coupled to a Gd{sub 2}O{sub 2}S:Tb phosphor intensifier screen. It was found that the radiation has relevant spectral components in the 40-150 keV range, with a single maximum around 60-80 keV. The radiation output allows for 50 ns resolution, good contrast, and introspective imaging of metallic objects even through metallic walls. A numerical estimation of the induced voltage on the focus during the compressional stage is briefly discussed.
High efficiency focus neutron generator
NASA Astrophysics Data System (ADS)
Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.
2017-12-01
In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.
Laboratory of plasma studies. Papers on high power particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This book contains paper on Exploding metal film active anode sources experiments on the Lion extractor Ion Diode; Long conductor time plasma opening switch experiments; and Focusing studies of an applied B{sub r} extraction diode on the Lion accelerator.
Characterisation of Plasma Filled Rod Pinch electron beam diode operation
NASA Astrophysics Data System (ADS)
MacDonald, James; Bland, Simon; Chittenden, Jeremy
2016-10-01
The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Gu, Zhenyu; Teng, Fuhua; Lu, Jianhai; Dong, Shibi; Miao, Xiaoping; Wu, Zhongbiao
2018-06-01
The degradation of xylene in the dielectric barrier discharge plasma and photocatalyst process was studied, focusing on the synergetic effect of UV rays from plasma process and external UV lamps on the decomposition of xylene. The results showed that xylene could be decomposed by the discharge process in plasma system, whereas the UV rays from plasma process was very weak. After adding TiO2, the removal efficiency of xylene and energy yield in plasma process were enhanced since energetic particles activated the catalysis of TiO2. The removal efficiency of xylene and energy field in plasma and photocatalyst process combined with external UV lamps were further enhanced attributed to the degradation effect of plasma, the catalysis of TiO2 activated by plasma, the photolysis of UV rays and the photocatalysis of photocatalyst. The synergetic effect of UV rays from external UV lamps was obvious.
Kinematic Mechanism of Plasma Electron Hole Transverse Instability
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.
2018-05-01
It is shown through multidimensional particle-in-cell simulations that at least in Maxwellian background plasmas the long-wavelength transverse instability of plasma electron holes is caused not by the previously proposed focusing of trapped particles but instead by kinematic jetting of marginally passing electrons. The mechanism is explained and heuristic analytic estimates obtained which agree with the growth rates and transverse wave numbers observed in the simulations.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J. F.; Tasooji, A.
1985-01-01
This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.
Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.
2018-06-01
In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.
Molecular formation in the stagnation region of colliding laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.
2016-10-27
The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less
Compact Torus plasma ring accelerator: a new type driver for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.
1986-08-22
We discuss the acceleration of magnetically-confined plasma rings to provide a driver for ICF. The acceleration of plasma rings is predicted to be efficient and following focusing, to generate ion-bombardment power in the range 10/sup 15/ to 10/sup 16/ W/cm/sup 2/ at a total deposition energy of multimegajoules. The simplicity of plasma ring accelerator suggests that a 5 MJ (on target) driver would cost in the range 1 to 5 $/joule. First experimental tests of the accelerator are described.
Review of microscopic plasma processes of occurring during refilling of the plasmasphere
NASA Technical Reports Server (NTRS)
Singh, N.; Torr, D. G.
1988-01-01
Refilling of the plasmashere after geomagnetic storms involves both macroscopic and microscopic plasma processes. The latter types of processes facilitate the refilling by trapping the plasma in the flux tube and by thermalizing the interhemispheric flow. A review of studies on microscopic processes is presented. The primary focus in this review is on the processes when the density is low and the plasma is collisionless. The discussion includes electrostatic shock formation, pitch angle scatterring extended ion heating and localized ion heating in the equatorial region.
Production and Characterization of Femtosecond-Laser-Induced Air Plasma
2008-03-01
thereby eliminating the acoustic reflections. As advertised , the plasma spark was now visible to the goggled eye with the room lights on, marking a...focusing mirrors instead of achromatic lenses. This change would eliminate chromatic aberrations, although curved mirrors do introduce astigmatism into the
Generation and focusing of pulsed intense ion beams: Final report, 1 July 1987--30 September 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammer, D.A.; Kusse, B.R.; Sudan, R.N.
1989-08-03
This paper discusses the following experiments: ion diode experiments at 0.5 /times/ 10/sup 12/ W on the LION accelerator; spectroscopic studies of ion diodes; ion beam-plasma channel transport research; and plasma opening switch experiments.
Nonlinear Absorption and Heating of Dense Plasmas.
plasma focus both illuminated by a high intensity CO2 laser. Results indicate the previously noted increases in absorption due to the inclusion of the nonlinear saturation mechanism. The previously obtained increases in absorption with increasing density scale height and decreasing temperatures are also recovered. The
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
NASA Astrophysics Data System (ADS)
van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.
2018-05-01
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Tilborg, J.; Barber, S. K.; Benedetti, C.
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
van Tilborg, J.; Barber, S. K.; Benedetti, C.; ...
2018-03-13
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less
Development of the dense plasma focus for short-pulse applications
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.
2017-01-01
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.
NASA Astrophysics Data System (ADS)
Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander
2016-05-01
We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.
NASA Astrophysics Data System (ADS)
Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong
2015-08-01
The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.
2017-08-01
In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jian; Wei, Wenfu; Li, Xingwen
2013-04-22
We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag modelmore » was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.« less
Dense plasma focus (DPF) accelerated non radio isotopic radiological source
Rusnak, Brian; Tang, Vincent
2017-01-31
A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.
Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B
2014-01-01
We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.
Study of IEMP Effects on IC Operational Amplifier Circuits
1975-12-10
plasma focus to study their IEMP responses with and without superposition of TREE responses. The 30-kJ plasma focus device produced photons primarily in the 8- to 100-keV range with pulse widths typically in the range of 10 to 15 nsec. Pulses of electrons were also deposited on the external leads of the operational amplifiers to determine the characteristic responses. These units were operated in circuits with closed-loop gains ranging from 5 to 100. During direct irradiation of the operational amplifiers, it was found that the IEMP responses (caused
Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications
Joslin, Jessica M.; McCall, James R.; Bzdek, Justin P.; Johnson, Derek C.; Hybertson, Brooks M.
2017-01-01
Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment. PMID:28428835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wen-shuai; Cai, Hong-bo, E-mail: Cai-hongbo@iapcm.ac.cn; HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871
A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition.more » Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.« less
NASA Astrophysics Data System (ADS)
Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.
2017-05-01
This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.
Propagation distance-resolved characteristics of filament-induced copper plasma
Ghebregziabher, Isaac; Hartig, Kyle C.; Jovanovic, Igor
2016-03-02
Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Lastly, optimal line emissionmore » is measured near the geometric focus of the lens used to produce the filament.« less
A computer model of solar panel-plasma interactions
NASA Technical Reports Server (NTRS)
Cooke, D. L.; Freeman, J. W.
1980-01-01
High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.
Revision of the criterion to avoid electron heating during laser aided plasma diagnostics (LAPD)
NASA Astrophysics Data System (ADS)
Carbone, E. A. D.; Palomares, J. M.; Hübner, S.; Iordanova, E.; van der Mullen, J. J. A. M.
2012-01-01
A criterion is given for the laser fluency (in J/m2) such that, when satisfied, disturbance of the plasma by the laser is avoided. This criterion accounts for laser heating of the electron gas intermediated by electron-ion (ei) and electron-atom (ea) interactions. The first heating mechanism is well known and was extensively dealt with in the past. The second is often overlooked but of importance for plasmas of low degree of ionization. It is especially important for cold atmospheric plasmas, plasmas that nowadays stand in the focus of attention. The new criterion, based on the concerted action of both ei and ea interactions is validated by Thomson scattering experiments performed on four different plasmas.
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Anan'ev, S. S.; Voitenko, D. A.; Krauz, V. I.; Astapenko, G. I.; Markoliya, A. I.; Myalton, V. V.
2017-09-01
The results of experiments aimed at investigating axial plasma flows forming during the compression of a current-plasma sheath are presented. These experiments were carried out at the KPF-4-PHOENIX plasma-focus installation, as part of a program of laboratory simulations of astrophysical jets. The plasma flows were generated in a discharge when the chamber was filled with the working gas (argon) at initial pressures of 0.5-2 Torr. Experimental data obtained using a magnetic probe and optical diagnostics are compared. The data obtained can be used to determine the location of trapped magnetic field relative to regions of intense optical glow in the plasma flow.
High Power Hydrogen Injector with Beam Focusing for Plasma Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.
2005-01-15
High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increasemore » its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.« less
Simulations of a dense plasma focus on a high impedance generator
NASA Astrophysics Data System (ADS)
Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander
2017-10-01
We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
Multi ion beam and hard x-ray emissions were detected in a high inductance (more than 100 nH) Mather type plasma focus (PF) device at different filling gas pressures and charging voltages. The signal analysis was performed through the current trace, as it is the fundamental signal from which all of the phenomena in a PF device can be extracted. Two different fitting processes were carried out according to Lee's computational (snow-plow) model. In the first process, only plasma dynamics and classical (Spitzer) resistances were considered as energy consumer parameters for plasma. This led to an unsuccessful fitting and did notmore » answer the energy transfer mechanism into plasma. A second fitting process was considered through the addition of anomalous resistance, which provided the best fit. Anomalous resistance was the source of long decrease in current trace, and multi dips and multi peaks of high voltage probe. Multi-peak features were interpreted considering the second fitting process along with the mechanisms for ion beam production and hard x-ray emission. To show the important role of the anomalous resistance, the duration of the current drop was discussed.« less
Mini-conference on helicon plasma sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E.; Keesee, A. M.; Boswell, R. W.
2008-05-15
The first two sessions of this mini-conference focused attention on two areas of helicon source research: The conditions for optimal helicon source performance and the origins of energetic electrons and ions in helicon source plasmas. The final mini-conference session reviewed novel applications of helicon sources, such as mixed plasma source systems and toroidal helicon sources. The session format was designed to stimulate debate and discussion, with considerable time available for extended discussion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhanlong; College of Physics, Jilin University, Changchun 130012; Shan Xiaoning
2012-07-09
The current paper investigates stimulated Raman scattering (SRS) when laser-induced plasma is formed in heavy water by focusing an intense pulsed 532 nm Nd:YAG laser beam at room temperature. An unexpected low-frequency SRS line attributed to the lattice translational modes of ice-VII (D{sub 2}O) is observed. The pressure of the plasma shockwave is estimated using low-frequency SRS line shift.
Characterization of Low Pressure Cold Plasma in the Cleaning of Contaminated Surfaces
NASA Technical Reports Server (NTRS)
Lanz, Devin Garrett; Hintze, Paul E.
2016-01-01
The characterization of low pressure cold plasma is a broad topic which would benefit many different applications involving such plasma. The characterization described in this paper focuses on cold plasma used as a medium in cleaning and disinfection applications. Optical Emission Spectroscopy (OES) and Mass Spectrometry (MS) are the two analytical methods used in this paper to characterize the plasma. OES analyzes molecules in the plasma phase by displaying the light emitted by the plasma molecules on a graph of wavelength vs. intensity. OES was most useful in identifying species which may interact with other molecules in the plasma, such as atomic oxygen or hydroxide radicals. Extracting useful data from the MS is done by filtering out the peaks generated by expected molecules and looking for peaks caused by foreign ones leaving the plasma chamber. This paper describes the efforts at setting up and testing these methods in order to accurately and effectively characterize the plasma.
Plasma focus ion beam-scaling laws
NASA Astrophysics Data System (ADS)
Saw, S. H.
2014-08-01
Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.
Palm top plasma focus device as a portable pulsed neutron source.
Rout, R K; Niranjan, Ram; Mishra, P; Srivastava, R; Rawool, A M; Kaushik, T C; Gupta, Satish C
2013-06-01
Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10(4) neutrons∕pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of (3)He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.
Palm top plasma focus device as a portable pulsed neutron source
NASA Astrophysics Data System (ADS)
Rout, R. K.; Niranjan, Ram; Mishra, P.; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.
2013-06-01
Development of a palm top plasma focus device generating (5.2 ± 0.8) × 104 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.
Heger, A; Janisch, S; Pock, K; Römisch, J
2016-10-01
The solvent/detergent treatment enables effective and robust inactivation of all lipid-enveloped viruses, but also inactivates partly sensitive plasma proteins such as protein S. The aim of this study was to investigate the thrombin generation capacity of octaplasLG ® , in particular focusing on the function of protein S in thrombin generation assay and the impact of assay settings. Sixteen octaplasLG ® batches and 32 units of single donor fresh frozen plasma (FFP) were investigated. For protein S, both functional activity and free antigen levels were measured. Thrombin generation assay was performed using two fluorogenic tests with different triggers. Finally, rotational thromboelastometry was performed. Mean protein S levels were lower in octaplasLG ® , but a wider range of values was found for FFP. Clotting parameters and thrombin generation capacities overlapped between the two plasma groups as demonstrated using both thrombin generation assays and different triggers. Spiking studies with protein S-depleted plasma, human purified protein S or antibodies against protein S confirmed a correlation between protein S and thrombin generation capacity under specific assay conditions, especially in an assay with low tissue factor concentration. Correlation between protein S and thrombin generation capacity was demonstrated in the TGA. Due to higher variability in protein S content in the FFP group, overlapping haemostatic potentials of the two plasma groups were found. © 2016 International Society of Blood Transfusion.
Effect of Neoangiogenesis Using Micro-spot Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Tsutsui, Chihiro; Komachi, Toshifumi; Kishimoto, Takumi; Hirata, Takamichi; Mori, Akira
2012-10-01
Using an in vitro model, we investigated the effect of the atmospheric pressure plasma irradiation to NIH3T3 and porcine aortic endothelial cells. In the plasma exposure experiment using cell proliferation was inhibited in proportion to processing time. However, it was found that this inhibitory effect was suppressed by plasma irradiation and cells are rather on an increase trend. And, in comparison with the cell growth curve for the He gas flow group, the curve for the plasma irradiation group was shifted to the left. We investigated expression analysis in the subsequent experiment with focus on factors related to angiogenesis, it was found that the transient overexpression of VEGF are observed in 24 h from the plasma irradiation. This proliferative effect is likely related to several growth factor releases due to plasma-induced reactive ion/radical interaction.
Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo
2018-09-01
This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.
NASA Astrophysics Data System (ADS)
Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto
2017-10-01
The hard x-ray free electron laser has proven to be a valuable tool for high energy density (HED) physics as it is able to produce well-characterized samples of HED matter at exactly solid density and homogeneous temperatures. However, if the x-ray pulses are focused to sub-micron spot sizes, where peak intensities can exceed 1020 W/cm2, the plasmas driven by sources of non-thermal photoelectrons and Auger electrons can be highly dynamic and so cannot be modeled by atomic kinetics or fluid codes. We apply the 2D/3D particle-in-cell code, PICLS-which has been extended with numerous physics models to enable the simulation of XFEL-driven plasmas-to the modeling of such dynamic plasmas driven by nano-focused XFEL pulses in solid iron targets. In the case of the smallest focal spot investigated of just 100 nm in diameter, keV plasmas induce strong radial E-fields that accelerate keV ions radially as well as sheath fields that accelerate surface ions to hundreds of keV. The heated spot, which is initially larger than the laser spot due to the kinetic nature of the fast Auger electrons, expands as ion and electron waves propagate radially, leaving a low density region along the laser axis. This research was supported by the US DOE-OFES under Grant No. DE-SC0008827, the DOE-NNSA under Grant No. DE-NA0002075, and the JSPS KAKENHI under Grant No. JP15K21767.
Self-aligning concave relativistic plasma mirror with adjustable focus
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; ...
2017-01-04
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity (10 180<10 19W/cm 2) by near-normally incident (4°), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective (0.6–0.8) and focus a significant fraction of reflected light to intensity as large as ~10I0 at distance f as small as ~25 μm from the PM, provided that pre-pulses do not exceed 10 14 W/cm 2 prior to ~20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusingmore » results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲L ≲ 3 μm. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.« less
Hexapole-selected supersonic beams of reactive radicals: CF3, SiF3, SH, CH, and C2H
NASA Astrophysics Data System (ADS)
Weibel, Michael A.; Hain, Toby D.; Curtiss, Thomas J.
1998-02-01
A supersonic corona discharge source was used to produce molecular beams of plasma particles. Neutral, polar components of the plasma mixture were selectively focused by an electrostatic hexapole, thereby "simplifying" the chemical and rotational state composition of the beam. Careful choice of a radical precursor, combined with control of discharge and hexapole voltage allowed the production of pure beams of CF3, SiF3, and SH (purity typically better than 90%), with no noticeable signal arising from undissociated precursor, ions, or other radicals. Focused beams from a hydrocarbon plasma contained a radical mixture of predominantly CH and C2H. Radical beams were characterized by rotationally and translationally cold temperatures (typically TR<20 K and TS<20 K, respectively) and high intensities (typically 1011-1012cm-2 s-1). Simulated focusing spectra using classical trajectory calculations showed generally good agreement with the experimental data, leading to the first experimental measurement of the permanent electric dipole moment of SiF3 (μ=1.2±0.1 D).
Study of the thermal effect on silicon surface induced by ion beam from plasma focus device
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ahmad, M.; Al-Hawat, Sh.; Akel, M.
2017-04-01
Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.
Preliminary Studies of Ions Emission in a Small Plasma Focus Device of Hundreds of Joules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Jose; Pavez, Cristian; Soto, Leopoldo
2009-01-21
Ion beam emission in plasma focus (PF) discharges was originally investigated to explain the strong forward anisotropy observed in the neutron. Several properties of PF emitted deuteron beams have been measured, including their angular distributions and energy spectra in devices operating with energies from 1 kJ to 1 MJ. At present there is a growing interest in the development of very small PF devices operating under 1 kJ. As part of the characterization program of the very low energy PF devices (<1 kJ) developed at the Chilean Nuclear Energy Commission, the charges particle emission in hydrogen (H{sub 2}) and mixturemore » (H{sub 2}+%Ar) are being studied. In order to obtain an estimation of the ions energy spectrum and ionization grade, by using time of flight method, a graphite collector system operating in the bias ion collector mode was constructed and it is being used. Preliminary results of the ion beams measurements in different experimental conditions, at a plasma focus device of 400 joules (PF-400 J) are presented.« less
Towards manipulating relativistic laser pulses with micro-tube plasma lenses
Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.
2016-01-01
Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥1023 Wcm−2 could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities. PMID:26979657
Orthobiologics and platelet rich plasma
Dhillon, Mandeep S; Behera, Prateek; Patel, Sandeep; Shetty, Vijay
2014-01-01
Orthobiologics have evolved to the extent that they significantly influence modern orthopedic surgical practice. A better understanding of the role of various growth factors and cells in the process of tendon healing, ligament repair, cartilage regeneration and bone formation has stimulated focused research in many chronic musculoskeletal ailments. Investigators have published results of laboratory as well as clinical studies, using orthobiologics like platelet rich plasma, stem cells, autologous conditioned serum etc., with variable results. However, a clear consensus over the best orthobiologic substance and the method of preparation and usage of these substances is lacking. Much of the confusion is due to the fact that studies ranging from RCTs to case reports present variable results, and the interpretations are wide-ranging. We have reviewed the available orthobiologics related data with a focus on platelet rich plasma in orthopedic conditions. PMID:24600055
Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip C; Majeski, Richard
2004-04-16
The results presented here demonstrate that the Paul trap simulator experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s=omega(2)(p)(0)/2omega(2)(q)
Revisiting the Landau fluid closure.
NASA Astrophysics Data System (ADS)
Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.
2017-12-01
Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.
Channel optimization of high-intensity laser beams in millimeter-scale plasmas.
Ceurvorst, L; Savin, A; Ratan, N; Kasim, M F; Sadler, J; Norreys, P A; Habara, H; Tanaka, K A; Zhang, S; Wei, M S; Ivancic, S; Froula, D H; Theobald, W
2018-04-01
Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>10^{18}W/cm^{2}) kilojoule laser pulses through large density scale length (∼390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.
Ionization effects and linear stability in a coaxial plasma device
NASA Astrophysics Data System (ADS)
Kurt, Erol; Kurt, Hilal; Bayhan, Ulku
2009-03-01
A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.
The HelCat Helicon-Cathode Device at UNM
NASA Astrophysics Data System (ADS)
Cyrin, Bricette; Watts, Christopher; Gilmore, Mark; Hayes, Tiffany; Kelly, Ralph; Leach, Christopher; Lynn, Alan; Sanchez, Andrew; Xie, Shuangwei; Yan, Lincan; Zhang, Yue
2009-11-01
The HelCat helicon-cathode device is a dual-source linear plasma device for investigating a wide variety of basic plasma phenomena. HelCat is 4 m long, 50 cm diameter, with axial magnetic field < 2.2 kG. An RF helicon source is at one end of the device, and a thermionic BaO-Ni cathode is at the other end. Current research topics include the relationship of turbulence to sheared plasma flows, deterministic chaos, Alfv'en wave propagation and damping, and merging plasma interaction. We present an overview of the ongoing research, and focus on recent results of merging helicon and cathode plasma. We will present some really cool movies.
Channel optimization of high-intensity laser beams in millimeter-scale plasmas
NASA Astrophysics Data System (ADS)
Ceurvorst, L.; Savin, A.; Ratan, N.; Kasim, M. F.; Sadler, J.; Norreys, P. A.; Habara, H.; Tanaka, K. A.; Zhang, S.; Wei, M. S.; Ivancic, S.; Froula, D. H.; Theobald, W.
2018-04-01
Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>1018W/cm 2 ) kilojoule laser pulses through large density scale length (˜390 -570 μ m ) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.
Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer.
Sadowski, M J; Czaus, K; Malinowski, K; Skladnik-Sadowska, E; Zebrowski, J
2009-05-01
The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.
Ras plasma membrane signalling platforms
2005-01-01
The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1976-01-01
The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.
A High-Order Transport Scheme for Collisional-Radiative and Nonequilibrium Plasma
2009-02-06
of change of the temperature is obtained, ∂E ∂T ∂T ∂t = ∂ ∂x ( κs ∂T ∂x ) (7.6) Assuming a one- dimensional discretization on a uniformly- spaced ...oscillations nor a quantitative analysis of the multi- dimensional shock structure has been provided to date. This dissertation builds upon previous...high-enthalpy nonequilibrium plasmas and is the focus of much of this work. The plasma is described as
Sher, Mark H.; Macklin, John J.; Harris, Stephen E.
1989-09-26
A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.
A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)
The heating of a plasma by a laser is studied, assuming the classical inverse bremsstrahlung mechanism for transfer of energy from laser photons to electron thermal energy. Emphasis is given to CO2 laser heating of the dense plasma focus (DPF) device. Particular attention is paid to the contribution of impurities to the radiation output of the DPF. A steady-state CORONA model is discussed and used to generate a computer program, CORONA, which calculates species densities as a function of electron temperature. (Author)
Laboratory simulation of energetic flows of magnetospheric planetary plasma
NASA Astrophysics Data System (ADS)
Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.
2017-01-01
Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.
Characteristics of plasma-puff trigger for a inverse-pinch plasma switch
NASA Technical Reports Server (NTRS)
Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.
Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Peñano, Joseph; Sprangle, Phillip; Zigler, Arie
2008-04-01
The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed.
Constraining hot plasma in a non-flaring solar active region with FOXSI hard X-ray observations
NASA Astrophysics Data System (ADS)
Ishikawa, Shin-nosuke; Glesener, Lindsay; Christe, Steven; Ishibashi, Kazunori; Brooks, David H.; Williams, David R.; Shimojo, Masumi; Sako, Nobuharu; Krucker, Säm
2014-12-01
We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT, and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emission from a smaller population of plasma above 8 MK. This is contradicted by FOXSI observations that significantly constrain emission above 8 MK. This suggests that the Hinode DEM analysis has larger uncertainties at higher temperatures and that > 8 MK plasma above an emission measure of 3 × 1044 cm-3 is excluded in this active region.
Small plasma focus as neutron pulsed source for nuclides identification
NASA Astrophysics Data System (ADS)
Milanese, M.; Niedbalski, J.; Moroso, R.; Barbaglia, M.; Mayer, R.; Castillo, F.; Guichón, S.
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus.
1980-05-15
plasma focus discharge in deuterium as an extension of our previous work on scaling laws of x-ray and neutron production. The structure of dense plasmoids which emit MeV ions has been recorded by ion imaging with pinhole camera and contact print techniques. The plasmoids are generated in the same region in which particle beams, neutron and x-ray emission reach a maximum of intensity. Sharply defined boundaries of the ion-beam source and of plasmoids have been obtained by ion track etching on plastic material
Description and Operation of the Mark 1B Plasma Focus Radiation Facility,
plasma focus facility (Mk 1B) at The Aerospace Corporation produces x-ray fluences that are applicable to most radiation testing problems (e.g., integrated circuits or transistors). Although the facility has only one beryllium window for exposing 1.6-cm-dia samples to doses of 25 to 45 krad (Si) per shot, three more windows could be added and the additional samples exposed simultaneously. The facility is experiencing switch problems and is presently averaging 50 shots per week--15 shots per day for 3 or 4 days. The results of a comprehensive switch analysis should
plasma focus . A generalized beam-target model is assumed where (1) high-energy deuterons have angular distributions consistent with a crossed-field acceleration mechanism, and (2) these energetic deuterons undergo fusion collisions primarily with stationary target ions. Energy distributions of ions proportional to 1/(E sub d) cubed in the range from 50 to as high as 600 keV give computed results agreeing with many experimental observations at laboratory angles of 0, 90, and 180 deg. These ion-energy distributions can account for a 50- to 100-fold increase in neutron yeild
Small plasma focus as neutron pulsed source for nuclides identification.
Milanese, M; Niedbalski, J; Moroso, R; Barbaglia, M; Mayer, R; Castillo, F; Guichón, S
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
Králík, M; Krása, J; Velyhan, A; Scholz, M; Ivanova-Stanik, I M; Bienkowska, B; Miklaszewski, R; Schmidt, H; Řezáč, K; Klír, D; Kravárik, J; Kubeš, P
2010-11-01
The spectra of neutrons outside the plasma focus device PF-1000 with an upper energy limit of ≈1 MJ was measured using a Bonner spheres spectrometer in which the active detector of thermal neutrons was replaced by nine thermoluminescent chips. As an a priori spectrum for the unfolding procedure, the spectrum calculated by means of the Monte Carlo method with a simplified model of the discharge chamber was selected. Differences between unfolded and calculated spectra are discussed with respect to properties of the discharge vessel and the laboratory layout.
Pinch current limitation effect in plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai
The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.
Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens
NASA Astrophysics Data System (ADS)
Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.
2018-04-01
Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2018-01-01
Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas are investigated in the presence of various laser intensities and linear density and temperature ramps. Considering the ponderomotive force and using the momentum transfer and energy equations, the nonlinear electron density is derived. Taking into account the paraxial approximation and nonlinear electron density, a nonlinear differential equation, governing the focusing and defocusing of the laser beam, is obtained. Results show that in the absence of ramps the laser beam is focused between a minimum and a maximum value of laser intensity. For a certain value of laser intensity and initial electron density, the self-focusing process occurs in a temperature range which reaches its maximum at turning point temperature. However, the laser beam is converged in a narrow range for various amounts of initial electron density. It is indicated that the σ2 parameter and its sign can affect the self-focusing process for different values of laser intensity, initial temperature, and initial density. Finally, it is found that although the electron density ramp-down diverges the laser beam, electron density ramp-up improves the self-focusing process.
Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp
2016-06-15
To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less
Extreme plasma states in laser-governed vacuum breakdown.
Efimenko, Evgeny S; Bashinov, Aleksei V; Bastrakov, Sergei I; Gonoskov, Arkady A; Muraviev, Alexander A; Meyerov, Iosif B; Kim, Arkady V; Sergeev, Alexander M
2018-02-05
Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3 , which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
Production of dense plasmas in a hypocycloidal pinch apparatus
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1977-01-01
A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Raman Amplification with a Flying Focus
NASA Astrophysics Data System (ADS)
Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.
2018-01-01
We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.
Raman Amplification with a Flying Focus
Turnbull, D.; Bucht, S.; Davies, A.; ...
2018-01-12
Here, we propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus" - a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v=-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just about the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that thismore » will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.« less
DBR laser with nondynamic plasma grating formed by focused ion beam implanted dopants
NASA Technical Reports Server (NTRS)
Boenke, Myra M.; Wu, M. C.; Wang, Shyh; Clark, William M., Jr.; Stevens, Eugene H.
1989-01-01
A static plasma grating has been demonstrated experimentally (Wu et al., 1988) in a large-optical-cavity focused-ion-beam-distributed-Bragg-reflector (FIB-DBR) GaAlAs/GaAs laser diode. The grating is formed by implanting stripes of dopants with a focused ion beam. The dopants ionize to form periodic fluctuations in the carrier concentration which, through the Kramers-Kronig relations, form an index grating. A model of the grating strength for optimizaton of the laser design is developed and presented. The computed results show that the coupling coefficient k can be increased by more than an order of magnitude over the 15/cm experimentally. Therefore, FIB-DBR or FIB-distributed-feedback (DFB) lasers with performance comparable to that of conventional DBR (or DFB) lasers can be expected.
CO2 Pulsed Laser Damage Mechanism and Plasma Effects (Focused Beam)
1986-12-01
sensitive detection methods or large amounts of bombardment have to be used. For the energy ranges and materials associated with 14 nuclear fusion (this...F^ Introduction to Plasma Physics and Controlled Fussion , v 1, 2nd edition. Plenum Press, 1984. 20. Naval Postgraduate School Report NPS-61-82-002
Overview of Advanced Space Propulsion Activities in the Space Environmental Effects Team at MSFC
NASA Technical Reports Server (NTRS)
Edwards, David; Carruth, Ralph; Vaughn, Jason; Schneider, Todd; Kamenetzky, Rachel; Gray, Perry
2000-01-01
Exploration of our solar system, and beyond, requires spacecraft velocities beyond our current technological level. Technologies addressing this limitation are numerous. The Space Environmental Effects (SEE) Team at the Marshall Space Flight Center (MSFC) is focused on three discipline areas of advanced propulsion; Tethers, Beamed Energy, and Plasma. This presentation will give an overview of advanced propulsion related activities in the Space Environmental Effects Team at MSFC. Advancements in the application of tethers for spacecraft propulsion were made while developing the Propulsive Small Expendable Deployer System (ProSEDS). New tether materials were developed to meet the specifications of the ProSEDS mission and new techniques had to be developed to test and characterize these tethers. Plasma contactors were developed, tested and modified to meet new requirements. Follow-on activities in tether propulsion include the Air-SEDS activity. Beamed energy activities initiated with an experimental investigation to quantify the momentum transfer subsequent to high power, 5J, ablative laser interaction with materials. The next step with this experimental investigation is to quantify non-ablative photon momentum transfer. This step was started last year and will be used to characterize the efficiency of solar sail materials before and after exposure to Space Environmental Effects (SEE). Our focus with plasma, for propulsion, concentrates on optimizing energy deposition into a magnetically confined plasma and integration of measurement techniques for determining plasma parameters. Plasma confinement is accomplished with the Marshall Magnetic Mirror (M3) device. Initial energy coupling experiments will consist of injecting a 50 amp electron beam into a target plasma. Measurements of plasma temperature and density will be used to determine the effect of changes in magnetic field structure, beam current, and gas species. Experimental observations will be compared to predictions from computer modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Johannes, E-mail: thomas@tp1.uni-duesseldorf.de; Pronold, Jari; Pukhov, Alexander
2016-05-15
We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys.more » Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.« less
Development of the dense plasma focus for short-pulse applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, N.; Blasco, M.; Breeding, K.
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less
Self-Channelling of a Short Laser Pulse at Relativistic Intensity in Near Critical Underdense Plasma
NASA Astrophysics Data System (ADS)
Willi, O.; Borghesi, M.; MacKinnon, A. J.; Barringer, L.; Gaillard, R.; Meyer, C.; Gizzi, L.; Pukhov, A.; Meyer-Ter-Vehn, J.
1996-11-01
Self channelling of a picosecond pulse at relativistic intensities has been observed in near critical underdense plasmas. The plasma was preformed by laser heating of a thin film. The interaction pulse (1-3 ps duration, 1.054 μm) was focused onto the plasma at irradiances above 5 × 10^18 W/cm^2. Self-channelling of the pulse was detected via second harmonic and optical probe measurements. Intense, localised 2ω emission suggests the formation of channel structures of less than 5 μm in diameter, extending for several Rayleigh lengths. The temporal evolution of the electron density profile across the channel was measured via interferometry with picosecond temporal resolution. PIC code simulations, performed for the conditions of the experiment, predict the formation of similar channel structures. In this model, in addition to relativistic and ponderomotive self-focusing mechanisms, pinching by large self-generated magnetic fields also contributes to the single channel formation. Measurements of magnetic fields were also performed that seem to be consistent with the computational model.
Development of the dense plasma focus for short-pulse applications
Bennett, N.; Blasco, M.; Breeding, K.; ...
2017-01-05
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less
On-shot characterization of single plasma mirror temporal contrast improvement
NASA Astrophysics Data System (ADS)
Obst, L.; Metzkes-Ng, J.; Bock, S.; Cochran, G. E.; Cowan, T. E.; Oksenhendler, T.; Poole, P. L.; Prencipe, I.; Rehwald, M.; Rödel, C.; Schlenvoigt, H.-P.; Schramm, U.; Schumacher, D. W.; Ziegler, T.; Zeil, K.
2018-05-01
We report on the setup and commissioning of a compact recollimating single plasma mirror (PM) for temporal contrast enhancement at the Draco 150 TW laser during laser-proton acceleration experiments. The temporal contrast with and without PM is characterized single-shot by means of self-referenced spectral interferometry with extended time excursion at unprecedented dynamic and temporal range. This allows for the first single-shot measurement of the PM trigger point, which is interesting for the quantitative investigation of the complex pre-plasma formation process at the surface of the target used for proton acceleration. As a demonstration of high contrast laser plasma interaction we present proton acceleration results with ultra-thin liquid crystal targets of ∼ 1 μm down to 10 nm thickness. Focus scans of different target thicknesses show that highest proton energies are reached for the thinnest targets at best focus. This indicates that the contrast enhancement is effective such that the acceleration process is not limited by target pre-expansion induced by laser light preceding the main laser pulse.
Breakthrough in 4π ion emission mechanism understanding in plasma focus devices.
Sohrabi, Mehdi; Zarinshad, Arefe; Habibi, Morteza
2016-12-12
Ion emission angular distribution mechanisms in plasma focus devices (PFD) have not yet been well developed and understood being due to the lack of an efficient wide-angle ion distribution image detection system to characterize a PFD space in detail. Present belief is that the acceleration of ions points from "anode top" upwards in forward direction within a small solid angle. A breakthrough is reported in this study, by mega-size position-sensitive polycarbonate ion image detection systems invented, on discovery of 4π ion emission from the "anode top" in a PFD space after plasma pinch instability and radial run-away of ions from the "anode cathodes array" during axial acceleration of plasma sheaths before the radial phase. These two ion emission source mechanisms behave respectively as a "Point Ion Source" and a "Line Ion Source" forming "Ion Cathode Shadows" on mega-size detectors. We believe that the inventions and discoveries made here will open new horizons for advanced ion emission studies towards better mechanisms understanding and in particular will promote efficient applications of PFDs in medicine, science and technology.
The effects of pre-ionization on the impurity and x-ray level in a dense plasma focus device
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; Salar Elahi, A.; Ghoranneviss, M.
2017-02-01
In this study, the effects of pre-ionization on the reduction of the impurities and non-uniformities, the increased stability of the pinch plasma, the enhancement of the total hard x-ray yield, the plasmoid x-ray yield, and the current sheath dynamics of the argon gas at different pressures in a Mather type plasma focus device were investigated. For this purpose, different shunt resistors together with two x-ray detectors were used, and the data gathered from the x-ray signals showed that the optimum shunt resistor could cause the maximum total hard and plasmoid hard x-ray emissions. Moreover, in order to calculate the average speed of the current sheath, two axial magnetic probes were used. It was revealed that the pre-ionization could increase the whole range of the emitted x-rays and produce a more uniform current sheath layer, which moved faster, and this technique could lead to the reduction of the impurities, creating a more stabilized pinched plasma, which was capable of emitting more x-rays than the usual case without using pre-ionization.
The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.
2017-06-01
Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.
Modelling of Argon Cold Atmospheric Plasmas for Biomedical Applications
NASA Astrophysics Data System (ADS)
Atanasova, M.; Benova, E.; Degrez, G.; van der Mullen, J. A. M.
2018-02-01
Plasmas for biomedical applications are one of the newest fields of plasma utilization. Especially high is the interest toward plasma usage in medicine. Promising results are achieved in blood coagulation, wound healing, treatment of some forms of cancer, diabetic complications, etc. However, the investigations of the biomedical applications from biological and medical viewpoint are much more advanced than the studies on the dynamics of the plasma. In this work we aim to address some specific challenges in the field of plasma modelling, arising from biomedical applications - what are the plasma reactive species’ and electrical fields’ spatial distributions as well as their production mechanisms; what are the fluxes and energies of the various components of the plasma delivers to the treated surfaces; what is the gas flow pattern? The focus is on two devices, namely the capacitive coupled plasma jet and the microwave surface wave sustained discharge. The devices are representatives of the so called cold atmospheric plasmas (CAPs). These are discharges characterized by low gas temperature - less than 40°C at the point of application - and non-equilibrium chemistry.
Plasma Transfusion: History, Current Realities, and Novel Improvements.
Watson, Justin J J; Pati, Shibani; Schreiber, Martin A
2016-11-01
Traumatic hemorrhage is the leading cause of preventable death after trauma. Early transfusion of plasma and balanced transfusion have been shown to optimize survival, mitigate the acute coagulopathy of trauma, and restore the endothelial glycocalyx. There are a myriad of plasma formulations available worldwide, including fresh frozen plasma, thawed plasma, liquid plasma, plasma frozen within 24 h, and lyophilized plasma (LP). Significant equipoise exists in the literature regarding the optimal plasma formulation. LP is a freeze-dried formulation that was originally developed in the 1930s and used by the American and British military in World War II. It was subsequently discontinued due to risk of disease transmission from pooled donors. Recently, there has been a significant amount of research focusing on optimizing reconstitution of LP. Findings show that sterile water buffered with ascorbic acid results in decreased blood loss with suppression of systemic inflammation. We are now beginning to realize the creation of a plasma-derived formulation that rapidly produces the associated benefits without logistical or safety constraints. This review will highlight the history of plasma, detail the various types of plasma formulations currently available, their pathophysiological effects, impacts of storage on coagulation factors in vitro and in vivo, novel concepts, and future directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Chan; Mori, W.
2013-10-21
This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasksmore » listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.« less
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Hamilton, Christopher; Santiago, Miguel; Kreuzer, Christian; Shah, Rahul; Fernandez, Juan; Los Alamos National Laboratory Team; Ludwig-Maximilian-University Team
2015-11-01
Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~ TV/m) and magnetic (~ 104 Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~ 5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak energy increases twofold. These results pave the way for next generation compact accelerators suitable for applications. For example, 400 MeV (33.3 MeV/nucleon) carbon-ion beam with narrow energy spread required for ion fast ignition could be generated using PW-class lasers.
Palm top plasma focus device as a portable pulsed neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, R. K.; Niranjan, Ram; Srivastava, R.
2013-06-15
Development of a palm top plasma focus device generating (5.2 {+-} 0.8) Multiplication-Sign 10{sup 4} neutrons/pulse into 4{pi} steradians with a pulse width of 15 {+-} 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is ofmore » 2 {mu}F capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 {mu}F, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of {sup 3}He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.« less
[Research on cells ablation characters by laser plasma].
Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen
2012-08-01
The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan’ko, S. A.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Krauz, V. I.
2015-11-15
Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measuredmore » soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.« less
Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma
NASA Astrophysics Data System (ADS)
Salamin, Yousef I.
2017-10-01
Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-07-01
The paper concerns important differences in the evolution of plasma column structures during the production of fusion neutrons in the first and subsequent neutron pulses, as observed for plasma-focus discharges performed with the deuterium filling. The first neutron pulse, of a more isotropic distribution, is usually produced during the formation of the first big plasmoid. The next neutron pulses can be generated by the fast deuterons moving dominantly in the downstream direction, at the instants of a disruption of the pinch constriction, when other plasmoids are formed during the constriction evolution. In both cases, the fusion neutrons are produced by a beam-target mechanism, and the acceleration of fast electron- and deuteron-beams can be interpreted by transformation and decay of the magnetic field associated with a filamentary structure of the current flow in the plasmoid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.K.
A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less
Investigation of the ion beam emission from a pulsed power plasma device
NASA Astrophysics Data System (ADS)
Henríquez, A.; Bhuyan, H.; Favre, M.; Retamal, M. J.; Volkmann, U.; Wyndham, E.; Chuaqui, H.
2014-05-01
Plasma Focus (PF) devices are well known as ion beam sources with characteristic energy among the hundreds of keV to tens of MeV. The information on ion beam energy, ion distribution and composition is essential from the viewpoint of understanding fundamental physics behind their production and acceleration and also their applications in various fields, such as surface properties modification, ion implantation, thin film deposition, semiconductor doping and ion assisted coating. An investigation from a low energy, 1.8 kJ 160 kA, Mather type plasma focus device operating with nitrogen using CR-39 detectors was conducted to study the emission of ions at different angular positions. Tracks on CR-39 detectors at different angular positions reveal the existence of angular ion anisotropy. The results obtained are comparable with the time integrated measurements using FC. Preliminary results of this work are presented.
Thermal imaging of plasma with a phased array antenna in QUEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Kishore, E-mail: mishra@triam.kyushu-u.ac.jp; Nagata, K.; Akimoto, R.
2014-11-15
A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversionmore » region and its position is successfully reconstructed using phase array technique which is done in post processing.« less
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro
2016-03-01
Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.
Acceleration and focusing of plasma flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griswold, Martin Elias
The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, producemore » plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel approach to reducing plume divergence by using a PL located in the plume of the thruster to focus ions after they were ionized and accelerated. Finally we further improve thruster operation by suppressing a prominent low frequency oscillation in the thruster known as the rotating spoke. The suppression leads to decreased electron transport and more control over the operating conditions in the thruster.« less
Searching for U-235m produced by Nuclear Excitation by Electronic Transition
NASA Astrophysics Data System (ADS)
Chodash, Perry; Norman, Eric; Burke, Jason; Wilks, Scott; Casperson, Robert
2014-09-01
Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The laser was focused on small samples of both depleted uranium and highly enriched uranium. The plasma conditions created by the intense laser pulse were varied by changing the spot size of the laser on the target. The resulting plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. First results will be presented. Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The laser was focused on small samples of both depleted uranium and highly enriched uranium. The plasma conditions created by the intense laser pulse were varied by changing the spot size of the laser on the target. The resulting plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. First results will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The U.S. DHS, UC Berkeley, the NNIS fellowship and the NSSC further supported this work.
Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime
NASA Astrophysics Data System (ADS)
Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.
2018-02-01
Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.
Blood safety--a focus on plasma derivatives in Mainland China.
Zhu, Y M
2007-01-01
Plasma derivative production in Mainland China can be encapsulated by two figures: 50 years of history and 5000 tons of annually processed source plasma. Demands for albumin, immunoglobulinin and main clotting factors can barely be met, despite a relatively low average usage among China's population of 1.3 billion. The tragedy of contamination among plasma donors in Henan province in the early 1990's has left shadows on the safety of the plasma derivative industry. However, during the last ten years the Chinese government has made great strides forward. The regulation of the entire operation has been strengthened, from law and standard setting and upholding to stricter licensing regulations for plasma centers and fractionators. Public concerns in blood safety are gradually being relieved, and confidence is returning. Nevertheless, the plasma donors and hemophilia patients infected a decade ago by infected blood or plasma products represent a set of severe social and medical problems that the government and society must still deal with.
Numerical band structure calculations of plasma metamaterials
NASA Astrophysics Data System (ADS)
Pederson, Dylan; Kourtzanidis, Konstantinos; Raja, Laxminarayan
2015-09-01
Metamaterials (MM) are materials engineered to display negative macroscopic permittivity and permeability. These materials allow for designed control over electromagnetic energy flow, especially at frequencies where natural materials do not interact. Plasmas have recently found application in MM as a negative permittivity component. The permittivity of a plasma depends on its electron density, which can be controlled by an applied field. This means that plasmas can be used in MM to actively control the transmission or reflection of incident waves. This work focuses on a plasma MM geometry in which microplasmas are generated in perforations in a metal plate. We characterizethis material by its band structure, which describes its interaction with incident waves. The plasma-EM interactions are obtained by coupling Maxwell's equations to a simplified plasma momentum equation. A plasma density profile is prescribed, and its effect on the band structure is investigated. The band structure calculations are typically done for static structures, whereas our current density responds to the incident waves. The resulting band structures are compared with experimental results.
The dynamics of a surface plasma generated by an independent source in the field of laser emission
NASA Astrophysics Data System (ADS)
Kovalev, A. S.; Popov, A. M.; Seleznev, B. V.; Feoktistov, V. A.
1986-09-01
A study is made of the evolution of a plasma formation generated by a high-power short pulse of an Nd laser on a metal surface, with the relatively weak emission of a CO2 laser focused on the surface. The thresholds of a sustained breakdown plasma are measured as a function of the plasma-generating pulse energy. The dynamics of plasma front propagation along the target surface and in the direction opposite to the laser beam direction is investigated. It is shown that the use of an additional laser with an energy less than that of the CO2 laser by 2-3 orders of magnitude makes it possible to generate a surface plasma capable of absorbing and transferring to the target a significantly greater fraction of the CO2 laser energy.
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Discontinuous model with semi analytical sheath interface for radio frequency plasma
NASA Astrophysics Data System (ADS)
Miyashita, Masaru
2016-09-01
Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.
NASA Astrophysics Data System (ADS)
Wang, Mian
This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.
1996-01-01
Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development of turbulence and the formation of coherent structures, particle and heat transport, plasma based charged particle acceleration by intense electrostatic waves that are created by powerful short laser beams, etc. Specifically, the review talks presented the general picture of the subject matter at hand and the underlying physics, whereas the remaining topical talks and the posters described the present state-of-the-art in the field. Instead of presenting the technical details, the speakers kept a good balance in injecting both the physics and the mathematical techniques to their audience. It was noted that despite the diversity of the physical problems, the mathematical equations governing particular phenomena and their solutions remain somewhat similar. Most contributions from the Trieste meeting appear in the form of a collection of articles in this Topical Issue of Physica Scripta, which will be distributed to all the delegates. We are grateful to the ICTP director Professor M A Virasoro and the deputy director Professor L Bertocchi for their generous support and warm hospitality at the ICTP. Thanks are also due to Professor G Denardo of the ICTP and Professor M H A Hassan of the Third World Academy of Sciences (TWAS, ICTP) for their constant and wholehearted support in our endeavours. We would like to express our gratitude to the ICTP and the Commission of the European Union (through the HCM networks on Dusty Plasmas and Nonlinear Phenomena in the Microphysics of Collisionless Plasmas) for providing partial financial support to our activities at Trieste. Finally, our cordial thanks are extended to the speakers and the attendees for their contributions which resulted in the success of this workshop. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the ICTP. The excellent work of MS Ave Lusenti is gratefully acknowledged.
Electromagnetic simulation of helicon plasma antennas for their electrostatic shield design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakos, Yorgos, E-mail: y.stratakos@gmail.com; Zeniou, Angelos, E-mail: a.zeniou@inn.demokritos.gr; Gogolides, Evangelos, E-mail: e.gogolides@inn.demokritos.gr
A detailed electromagnetic parametric analysis of the helicon antenna (half Nagoya type) is shown at 13.56 MHz using a CST Microwave Studio 2012. The antenna is used to excite plasma inside a dielectric cylinder similar to a commercial reactor. Instead of focusing on the plasma state, the authors focus on the penetration and the three dimensional distribution of electric fields through the dielectric wall. Our aim is to reduce capacitive coupling which produces unwanted longitudinal and radial electric fields. Comparison of the helicon antenna electromagnetic performance under diverse boundary conditions shows that one is allowed to use vacuum simulations without plasmamore » present in the cylinder, or approximate the plasma as a column of gyrotropic material with a tensor dielectric permittivity and with a sheath of a few millimeters in order to qualitatively predict the electric field distribution, thus avoiding a full plasma simulation. This way the analysis of the full problem is much faster and allows an optimal shield design. A detailed study of various shields shows that one can reduce the radial and axial fields by more than 1 order of magnitude compared to the unshielded antenna, while the azimuthal field is reduced only by a factor of 2. Optimal shield design in terms of pitch and spacing of openings is determined. Finally, an experimental proof of concept of the effect of shielding on reduced wall sputtering is provided, by monitoring the roughness created during oxygen plasma etching of an organic polymer.« less
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Ramos-Moore, E.; Soto, L.
2015-09-01
A table top plasma focus device operating at hundreds of joules was used to simulate an equivalent damage factor than the obtained on the divertor in tokamak experiments. Using the ejected plasma produced after the pinch disruptions, the effects on tungsten targets from 50 cumulative plasma shocks with power fluxes per shot between 2.6 and 9200 kW cm-2 and with a duration time in the order of tens of nanoseconds (damage factor in the order of 100-103 (W cm-2)s1/2) were studied. Morphological analysis shows an increasing appearance of cracked surfaces with holes, fissures and defects, suggesting a potential progression of stress effects and a fast heat load that melts the surface, ending in thermal contractions that recrystallize the surface of the target. A structural analysis demonstrates a compressive stress development and suggests that part of the energy is released in the melting of the surface in case of a plasma shock with a power flux of 9.2 MW cm-2, 75 ns duration pulse, 2.5 × 103 (W cm-2)s1/2 damage factor. How to increase the damage factor by one order of magnitude up to the expected value from type I ELMs on the ITER divertor, i.e. 104 (W cm-2)s1/2 is discussed.
Plasma studies of a linear magnetron operating in the range from DC to HiPIMS
NASA Astrophysics Data System (ADS)
Anders, André; Yang, Yuchen
2018-01-01
Plasma properties of magnetrons have been extensively studied in the past with the focus on small, research-style magnetrons with planar disk targets. In this contribution, we report on plasma diagnostics of a linear magnetron because the linear geometry is widely used in industry and, more importantly here, it provides the unique opportunity to align a linear racetrack section with a streak camera's entrance slit. This allows us to follow the evolution of plasma instabilities, i.e., localized ionization zones or spokes, as they travel along the racetrack. This report greatly extends our more limited and focused study on the structure and velocity of spokes [Anders and Yang, Appl. Phys. Lett. 111, 064103 (2017)]. Following recent plasma potential measurements [Panjan and Anders, J. Appl. Phys. 121, 063302 (2017)], we interpret optical emission information with localized electron heating. We confirm that for low direct current operation, spokes move in the -E ×B direction, and in the opposite direction in the high current mode. Streak images indicate slower spoke velocities near corners compared to spoke velocities in the straight sections of the racetrack. Spoke splitting and merging are observed supporting the interpretation that spoke motion represents a phase velocity of the region of greatest ionization and is not a motion of plasma. Fast camera investigations are supplemented by measurements of the energy distribution functions of ions emitted from the straight and curved regions of the racetrack, showing notable and reproducible differences.
Trajectories of high energy electrons in a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.
Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser
NASA Astrophysics Data System (ADS)
Minami, Yasuo; Kurihara, Takayuki; Yamaguchi, Keita; Nakajima, Makoto; Suemoto, Tohru
2013-04-01
We have generated and detected a longitudinally polarized (Z-polarized) terahertz (THz) wave by focusing a conically propagating THz beam generated from a plasma filament induced by a femtosecond laser pulse. In the experiment, we observed a radially polarized field in a collimated region and Z-polarized field at focus in the time domain. The maximum value of the Z-polarized THz electric field reached 1.0 kV/cm. It was also quantitatively discussed about the Z-polarized field and the radial field at the focal point. We expect this technique to find application in THz time domain spectroscopy.
Space-resolved measurements of neutrons and ions emitted by a plasma focus
NASA Astrophysics Data System (ADS)
Jaeger, U.
1980-05-01
Space-resolved measurements of neutrons and of accelerated charged particles emitted by a plasma focus device are presented. The neutron source was measured with one and two dimensional paraffin collimators. The spatial resolution is 5 mn along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron scattering, absorption, and nuclear reactions were taken into account. Part of the neutron measurement was carried out together with time and space resolved measurements of the electron density to study possible correlations between n sub e and y sub n.
Compression and neutron and ion beams emission mechanisms within a plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Mohanty, S. R.; Nakada, Y.
This paper reports some results of investigations of the neutron emission from middle energy Mather-type plasma focus. Multiple compressions were observed, and it seems that multiple compression regimes can occur at low pressure, while single compression appeared at higher pressure, which is favorable for neutron production. The multiple compression mechanism can be attributed to the (m=0 type) instability. The m=0 type instability is a necessary condition for fusion activity and x-ray production, but is not sufficient by itself. Accompanying the multiple compressions, multiple deuteron and neutron pulses were detected, which implies that there are different kinds of acceleration mechanisms.
NASA Astrophysics Data System (ADS)
Andola, Sanjay; Niranjan, Ram; Shaikh, A. M.; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.
2013-02-01
Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2±0.3) ×109 neutrons per pulse produced by D-D fusion reaction with a pulse width of 50±5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.
NASA Astrophysics Data System (ADS)
Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.
2014-06-01
In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.
Tomographic diagnostics of nonthermal plasmas
NASA Astrophysics Data System (ADS)
Denisova, Natalia
2009-10-01
In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.
Assessment of image quality in x-ray radiography imaging using a small plasma focus device
NASA Astrophysics Data System (ADS)
Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.
2014-08-01
This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.
A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson
2009-12-01
Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.
Development of a High Resolution X-ray Spectrometer on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.
2017-10-01
A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of <20 ps. A third cylindrical crystal focuses the entire He α to He β spectrum onto an image plate for a time-integrated spectrum to correlate the two streaked signals. The instrument was absolutely calibrated by the x-ray group at the Princeton Plasma Physics Laboratory using a micro-focus x-ray source. Detailed calibration procedures, including source and spectrum alignment, energy calibration, crystal performance evaluation, and measurement of the resolving power and the integrated reflectivity will be presented. Initial NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, Eric J.; Yousefi, Hamid R.
2014-10-15
Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less
Measurement of the effective energy of pulsed X-rays emitted from a Mather-type plasma focus device.
Miremad, Seyed Milad; Shirani Bidabadi, Babak
2017-07-01
The current study examined the effective energy of pulsed x-rays emitted from a Mather-type plasma focus device with copper anodes at an energy range of 2-3kJ using x-ray transmission radiography. Aluminum filters of different thicknesses and dental x-ray film were used. When air gas was used at a constant voltage of 21kV at 0.3, 0.6, 0.9 and 1.2 mbar, the effective energy of pulsed the x-ray was 10.9, 10.7, 17.3 and 15.8keV, respectively. At 0.6 mbar of air, as the operating voltage increased to 19, 21 and 23kV, the effective energy of the x-ray radiation was 10.6, 10.7 and 12.4keV, respectively. Comprehensive investigation of the characteristics of x-ray emission from plasma focus devices makes it feasible to use this device as an intensive x-ray generator for medical and industrial purposes. The present study is a part of a program which is planned to realize these applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films
NASA Astrophysics Data System (ADS)
Ahmad, Syed Muhammad; Hussain, Tousif; Ahmad, Riaz; Siddiqui, Jamil; Ali, Dilawar
2018-01-01
In a quest to identify more economic routes for synthesis of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, dense plasma focus device was used with multiple plasma focus shots. Structural, bonding between composite films, surface morphological, compositional and hardness properties of MAS thin films were investigated by using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) analysis and Vickers micro hardness test respectively. In XRD graph, the presence of MgAl2O4 diffraction peaks in crystallographic orientations (222), (400) and (622) pointed out the successful formation of polycrystalline thin films of MgAl2O4 with face centered cubic structure. The FTIR spectrums showed a major common transmittance band at 697.95 cm-1 which belongs to MgAl2O4. SEM micrographs illustrated a mesh type, granular and multi layers microstructures with significant melting effects. EDX spectrum confirmed the existence of magnesium, oxygen and aluminum in MAS films. A common increasing behavior in micro-hardness of composite MgAl2O4 films by increasing number of plasma focus shots was found.
Current sheath behavior and its velocity enhancement in a low energy Mather-type plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamir, F. M.; Behbahani, R. A.
The dynamics of the plasma sheath layer and its velocity enhancement have been studied in a low energy (4.9 kJ) Mather-type plasma focus device. Experiments were performed to study the effect of the Lorentz force variation on the current sheath expansion and movement, as well as the existence of traction between all parts of the sheath layer. Two different shape of anodes (cylindrical and step) along with an axial magnetic probe were used to investigate the effects of various experimental conditions, namely different charging voltages and gas pressures. In order to explore the upper limit of the current sheath velocity,more » a comparison has been made between the experimental data gathered by the probe and the Lee's computational model. The limitations governing the enhancement of the current sheath velocity that can lead to the deterioration of a good focusing phenomenon were also investigated. The increase of the current sheath velocity due to the usage of the step anode on ion generation and hard x-ray emissions have been demonstrated by means of an ion collector and a hard x-ray detector.« less
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
NASA Astrophysics Data System (ADS)
Sigeneger, F.; Becker, M. M.; Foest, R.; Loffhagen, D.
2016-09-01
The gas flow and plasma in a miniaturized non-thermal atmospheric pressure plasma jet for plasma enhanced chemical vapour deposition has been investigated by means of hydrodynamic modelling. The investigation focuses on the interplay between the plasma generation in the active zone where the power is supplied by an rf voltage to the filaments, the transport of active plasma particles due to the gas flow into the effluent, their reactions with the thin film precursor molecules and the transport of precursor fragments towards the substrate. The main features of the spatially two-dimensional model used are given. The results of the numerical modelling show that most active particles of the argon plasma are mainly confined within the active volume in the outer capillary of the plasma jet, with the exception of molecular argon ions which are transported remarkably into the effluent together with slow electrons. A simplified model of the precursor kinetics yields radial profiles of precursor fragment fluxes onto the substrate, which agree qualitatively with the measured profiles of thin films obtained by static film deposition experiments.
The use of platelet-rich plasma for the treatment of osteoarthritis.
Jayabalan, Prakash; Hagerty, Sarah; Cortazzo, Megan Helen
2014-09-01
Osteoarthritis (OA) is the most common cause of disability in the United States. With an aging population, its incidence is only likely to rise. Articular cartilage has a poor capacity to heal. The advent of regenerative medicine has heralded a new approach to early treatment of degenerative conditions such as osteoarthritis by focusing on regenerating damaged tissue rather than focusing on replacement. Platelet-rich plasma (PRP) is one such treatment that has received much recent attention and has been used particularly for tendon healing. Recent studies have focused on assessing its use on degenerative conditions such as OA. In this article, we review the evidence for the pathologic basis for the use of PRP in OA and also the clinical outcomes pertaining to its use. Finally, we also consider reasons for the inconsistent clinical success pertaining to its use.
Short-wavelength ablation of polymers in the high-fluence regime
NASA Astrophysics Data System (ADS)
Liberatore, Chiara; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Juha, Libor; Vyšín, Ludek; Rocca, Jorge J.; Endo, Akira; Mocek, Tomas
2014-05-01
Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm-2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique.
Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.
1998-01-01
High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.
Staging of laser-plasma accelerators
Steinke, S.; van Tilborg, J.; Benedetti, C.; ...
2016-05-02
We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller thanmore » the transverse wake size at the entrance of the second stage. Furthermore, this permitted electron beam trapping, verified by a 100 MeV energy gain.« less
Method and apparatus for charged particle propagation
Hershcovitch, A.
1996-11-26
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.
Three-dimensional modeling of the plasma arc in arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; Tsai, H. L.; Hu, J.
2008-11-15
Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less
Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2018-06-01
The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.
Studying Electromagnetic Beam Instabilities in Laser Plasmas for Alfvénic Parallel Shock Formation
NASA Astrophysics Data System (ADS)
Dorst, R. S.; Heuer, P. V.; Weidl, M. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Winske, D.; Niemann, C.
2017-10-01
We present measurements of the collisionless interaction between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP is created by focusing a high energy laser on a target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting super-Alfvénic (MA = 5) ablated material moves parallel to the background magnetic field (300 G) through 12m (80 δ i) of the LAPD, interacting with the ambient Helium plasma (ni = 9 ×1012 cm-3) through electromagnetic beam instabilities. The debris is characterized by Langmuir probes and a time-resolved fluorescence monochromator. Waves in the magnetic field produced by the instabilities are diagnosed by an array of 3-axis `bdot' magnetic field probes. Measurements are compared to hybrid simulations of both the experiment and of parallel shocks.
Plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Venable, Demetrius D.; Lee, Ja H.; Choi, Eun H.; Kim, Y. K.; Kim, J. H.; Nguyen, D. X.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(sub opt) less than 450 Torr for He and N2. For Argon 20 mTorr is less than P(sub opt) is less than 5 Torr. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z = 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z = 100 ohms.
Plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Han, K. S.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(opt) less than 450 Torr for He and N2. For Argon 120 mTorr less than P(opt) less than 5 Torr for argon. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z equals 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z equals 100 ohms.
Reflectometric measurement of plasma imaging and applications
NASA Astrophysics Data System (ADS)
Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.
2012-01-01
Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.
1992-01-01
We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.
Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Spann, James F.
2010-01-01
In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K.; Okuda, S.; Hatayama, A.
2013-01-14
To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.
Matching network for RF plasma source
Pickard, Daniel S.; Leung, Ka-Ngo
2007-11-20
A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.
Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.
Zhang, H-S; Komvopoulos, K
2008-07-01
Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.
MacLennan, Sheila
2016-01-01
A symposium on plasma for direct clinical use was held in September 2015 by the European directorate for the quality of medicines and healthcare (EDQM) in order to consider changes to the Council of Europe guide to the preparation, use and quality assurance of blood components monographs on plasma components. The programme reviewed use of plasma in various settings, novel components, adverse reactions, manufacturing and quality monitoring issues. The main requirement identified was that plasma should be made available to support early transfusion in the trauma/massive haemorrhage setting. Further guidance on component manufacturing and reviewing of quality monitoring requirements will also be addressed. A working group has been established to review component monographs and other advice in the guide relating to plasma components, with the aim of providing optimal components to support clinical management of patients requiring plasma. Crown Copyright © 2016. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing
2018-05-01
Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-01-01
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-02-23
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.
The development and stability of non-thermal plasma in space
NASA Astrophysics Data System (ADS)
Kasper, Justin
2017-10-01
This talk will review our understanding of non-thermal ion and electron velocity distribution functions (VDFs) in space plasma, with a focus on pressure anisotropy and unequal temperatures in the solar wind and corona. Under typical solar wind plasma conditions, which are common for a range of astrophysical plasmas, relaxation processes such as Coulomb collisions are sufficiently slow compared to interactions between particles and electromagnetic fluctuations that ion and electron VDFs can depart significantly from the classical Maxwell-Boltzmann distribution and maintain these non-thermal features for times greater than the dynamical scales of the system. These non-thermal properties of the plasma are very important as they can significantly modify aspects of the plasma such as heat flux, susceptibility to kinetic instabilities, and interaction with waves and turbulence. Major open questions in the field will be reviewed, along with current and planned observational capabilities of instruments on spacecraft such as Wind and the upcoming Parker Solar Probe, with an eye to potential crossover with laboratory plasma experiments.
Apparatus and process for deposition of hard carbon films
Nyaiesh, Ali R.; Garwin, Edward L.
1989-01-01
A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.
ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.
Isono, Erika; Kalinowska, Kamila
2017-12-01
To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of beams in a plasma channel due to beam break up
NASA Astrophysics Data System (ADS)
Penn, Gregory; Lehe, Remi; Vay, Jean-Luc; Schroeder, Carl; Esarey, Eric
2016-10-01
We study the dynamics of beam break-up (BBU) of an accelerated electron beam in a plasma channel. Particle-in-cell simulations using the codes WARP and FBPIC are presented and interpreted in terms of theoretical calculations for the plasma-induced fields and the evolution of the instability. We focus on cylindrical channels for simplicity, and other geometries are considered to better understand the impact of BBU on electron beams undergoing laser-plasma wake field acceleration. We compare our findings with other published results. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources
Kublak, G.D.; Richardson, M.C.
1996-11-19
Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.
Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources
Kublak, Glenn D.; Richardson, Martin C. (CREOL
1996-01-01
Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.
Apparatus and process for deposition of hard carbon films
Nyaiesh, Ali R.; Garwin, Edward L.
1989-01-03
A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.
Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.
Noll, R; Haas, C R; Weikl, B; Herziger, G
1986-03-01
Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.
Breakthrough in 4π ion emission mechanism understanding in plasma focus devices
Sohrabi, Mehdi; Zarinshad, Arefe; Habibi, Morteza
2016-01-01
Ion emission angular distribution mechanisms in plasma focus devices (PFD) have not yet been well developed and understood being due to the lack of an efficient wide-angle ion distribution image detection system to characterize a PFD space in detail. Present belief is that the acceleration of ions points from “anode top” upwards in forward direction within a small solid angle. A breakthrough is reported in this study, by mega-size position-sensitive polycarbonate ion image detection systems invented, on discovery of 4π ion emission from the “anode top” in a PFD space after plasma pinch instability and radial run-away of ions from the “anode cathodes array” during axial acceleration of plasma sheaths before the radial phase. These two ion emission source mechanisms behave respectively as a “Point Ion Source” and a “Line Ion Source” forming “Ion Cathode Shadows” on mega-size detectors. We believe that the inventions and discoveries made here will open new horizons for advanced ion emission studies towards better mechanisms understanding and in particular will promote efficient applications of PFDs in medicine, science and technology. PMID:27941832
New longitudinal mode and compression of pair ions in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehsan, Zahida; Imran, Muhammad, E-mail: imransindhu@hotmail.com; Tsintsadze, N. L.
Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density ofmore » pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.« less
Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle
NASA Astrophysics Data System (ADS)
Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.
2017-03-01
The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.
Compact torus accelerator as a driver for ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, M.T.; Meier, W.R.; Morse, E.C.
1986-01-01
The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ.more » This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10/sup 9/ cm/s, and a mass of 4.42 ..mu..g. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver.« less
Liquid-Phase Electrical Discharges: Fundamental Mechanisms and Applications
NASA Astrophysics Data System (ADS)
Franclemont, Joshua
The increased demand in alternative energy in recent decades has generated significant interest in cleaner fuel sources including hydrogen and syngas (hydrogen and carbon monoxide). Hydrogen and syngas are both primarily produced through the steam reforming of hydrocarbons, specifically natural gas. Although other processes are known, the cheapest source of these fuels is currently through the heating of natural gas in the presence of steam and a catalyst. However, due to the emissions associated with the steam reforming of natural gas and the lack of low cost, efficient, and reliable onboard hydrogen storage technologies for fuel cell powered vehicles, attention has been focused on plasma-assisted reforming of hydrocarbons. Plasma processes can be implemented onboard and are able to directly reform liquid hydrocarbons and alcohols without external heating or catalysts. In addition to hydrogen and syngas, the plasma-assisted reforming of hydrocarbons and alcohols offers other desirable products such as C2 gases (ethane, ethylene, and acetylene), methanol and ethanol. The primary goal of this study is to investigate the fundamental chemical reactions occurring during plasma-assisted reforming of liquid hydrocarbons and alcohols using streamer-like pulsed electrical discharges. Due to the relatively unexplored field of chemical reactions in liquid plasmas, the focus of this study is on elucidating chemical pathways responsible for the formation of hydrogen, syngas, and other products during the direct reforming of liquid methanol, glycerol, and pentane as model species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toi, K.; Ogawa, K.; Isobe, M.
2011-01-01
Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs thatmore » exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.« less
Shen, Yang; Wang, Guixue; Chen, Liang; Li, Hao; Yu, Ping; Bai, Mengjun; Zhang, Qin; Lee, James; Yu, Qingsong
2009-11-01
Plasma nanocoated films with trimethylsilane-oxygen monomers showed outstanding biocompatibility in our previous studies. In this study, endothelialization on biomedical nitinol alloy surfaces was systematically investigated. Our study focuses on elucidating the effects of surface micropatternings with micropores and microgrooves combined with plasma nanocoating. Plasma nanocoatings with controlled thickness between 40 and 50 nm were deposited onto micropatterned nitinol surface in a direct current plasma reactor. Bovine aortic endothelial cells were cultured in vitro on these nitinol samples for 1, 3 and 5 days. It was found that rougher surfaces could enhance cell adhesion compared with the smoother surfaces; the surfaces patterned with micropores showed much more endothelialization than microgrooved surface after a 3 days culture. The cell culture results also showed that plasma nanocoatings significantly further increased cell proliferation and cell adhesion on the micropatterned nitinol surfaces, as compared with non-plasma nanocoated surface of nitinol samples. The surface micropatternings combined with plasma nanocoatings could improve the cell adhesion and accelerate surface endothelialization after implantation of intravascular stents, which is expected to reduce in-stent restenosis.
Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions.
Andia, Isabel; Abate, Michele
2018-04-01
Current research on common musculoskeletal problems, including osteoarticular conditions, tendinopathies, and muscle injuries, focuses on regenerative translational medicine. Platelet-rich plasma therapies have emerged as a potential approach to enhance tissue repair and regeneration. Platelet-rich plasma application aims to provide supraphysiological concentrations of platelets and optionally leukocytes at injured/pathological tissues mimicking the initial stages of healing. However, the efficacy of platelet-rich plasma is controversial in chronic diseases because patients' outcomes show partial improvements. Platelet-rich plasma can be customized to specific conditions by selecting the most appropriate formulation and timing for application or by combining platelet-rich plasma with synergistic or complementary treatments. To achieve this goal, researchers should identify and enhance the main mechanisms of healing. In this review, the interactions between platelet-rich plasma and healing mechanisms were addressed and research opportunities for customized treatment modalities were outlined. The development of combinational platelet-rich plasma treatments that can be used safely and effectively to manipulate healing mechanisms would be valuable and would provide insights into the processes involved in physiological healing and pathological failure.
NASA Astrophysics Data System (ADS)
Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao
2018-02-01
The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.
Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas
NASA Astrophysics Data System (ADS)
Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro
2013-09-01
Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.
NASA Astrophysics Data System (ADS)
Neyts, Erik C.; Yusupov, Maksudbek; Verlackt, Christof C.; Bogaerts, Annemie
2014-07-01
Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficult—if not impossible—to obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasma-biomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
Electron effects in the Neutralized Transport Experiment (NTX)
NASA Astrophysics Data System (ADS)
Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.
2005-05-01
The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.
The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data
NASA Astrophysics Data System (ADS)
Kushner, Mark J.
2015-09-01
Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.
Direct micromachining of quartz glass plates using pulsed laser plasma soft x-rays
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Miyamoto, Hisao; Kenmotsu, Youichi; Murakami, Kouichi; Niino, Hiroyuki
2005-03-01
We have investigated direct micromachining of quartz glass, using pulsed laser plasma soft x-rays (LPSXs) having a potential capability of nanomachining because the diffraction limit is ˜10nm. The LPSX's were generated by irradiation of a Ta target with 532nm laser light from a conventional Q switched Nd :YAG laser at 700mJ/pulse. In order to achieve a sufficient power density of LPSX's beyond the ablation threshold, we developed an ellipsoidal mirror to obtain efficient focusing of LPSXs at around 10nm. It was found that quartz glass plates are smoothly ablated at 45nm/shot using the focused and pulsed LPSX's.
Ideal form of optical plasma lenses
NASA Astrophysics Data System (ADS)
Gordon, D. F.; Stamm, A. B.; Hafizi, B.; Johnson, L. A.; Kaganovich, D.; Hubbard, R. F.; Richardson, A. S.; Zhigunov, D.
2018-06-01
The canonical form of an optical plasma lens is a parabolic density channel. This form suffers from spherical aberrations, among others. Spherical aberration is partially corrected by adding a quartic term to the radial density profile. Ideal forms which lead to perfect focusing or imaging are obtained. The fields at the focus of a strong lens are computed with high accuracy and efficiency using a combination of eikonal and full Maxwell descriptions of the radiation propagation. The calculations are performed using a new computer propagation code, SeaRay, which is designed to transition between various solution methods as the beam propagates through different spatial regions. The calculations produce the full Maxwell vector fields in the focal region.
Conceptual achievement of 1GBq activity in a Plasma Focus driven system.
Tabbakh, Farshid; Sadat Kiai, Seyed Mahmood; Pashaei, Mohammad
2017-11-01
This is an approach to evaluate the radioisotope production by means of typical dense plasma focus devices. The production rate of the appropriate positron emitters, F-18, N-13 and O-15 has been studied. The beam-target mechanism was simulated by GEANT4 Monte Carlo tool using QGSP_BIC and QGSP_INCLXX physic models as comparison. The results for positron emitters have been evaluated by reported experimental data and found conformity between simulations and experimental reports that leads to using this code as a reliable tool in optimizing the DPF driven systems for achieving to 1GBq activity of produced radioisotope. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andola, Sanjay; Niranjan, Ram; Rout, R. K.
Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.
Mather-type dense plasma focus as a new optical pump for short-wavelength high-power lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, J.J.; Kim, K.
For the first time, a Mather-type dense plasma focus (MDPF) is successfully operated as an optical pump for lasers. Rhodamine-6G dye is optically pumped using the MDPF fluorescence, producing a laser pulse 1 ..mu..s in duration and more than 50 kW in output power. No optimization is attempted either of the laser cavity or of the lasing medium concentration and volume. A brief description of the experimental setup is presented, along with a summary and discussion of the results. The advantages of the present optical pump source and, in particular, their implications for the pumping of short-wavelength lasers are discussed.
Design of Z-Pinch and Dense Plasma Focus Powered Vehicles
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo;
2011-01-01
Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubes, P.; Cikhardt, J.; Klir, D.
2015-05-15
The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures insidemore » the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.« less
Controlling multiple plasma channels created by a high-power femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Kosareva, O. G.; Luo, Q.
2005-10-01
Femtosecond light filaments are comparatively long regions of the spatially and temporally localized radiation zones, which generate free electrons in the medium. At high pulse peak power multiple filaments are produced leading to stochastic plasma channels (Mlejnek et al.: PRL 83, 2938 (1999)). In both atmospheric long-distance propagation (Sprangle et al., PRE 66, 046418 (2002), Kasparian et al, Science 301, 61 (2003)) and focusing the radiation into condensed matter important issues are production of elongated plasma channels, as well as high conversion efficiency to the white light. We control stochastic plasma channels by changing the initial beam size or shape. The result is the increase in the plasma density and white light signal. Control by regular small-scale perturbations allows us to suppress atmospheric turbulence in air and create an array of well-arranged filaments in fused silica.
Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...
2017-04-27
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
Investigation Of Plasma Critical Surface Rippling By Harmonics Generation In Laser Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racz, E.; Foeldes, I. B.; Szatmari, S.
2006-01-15
Experiments were carried out by a tightly focused, prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). Intense 2{omega}, 3{omega} and near threshold 4{omega} were generated in laser plasmas on solid surfaces for p- and s-polarized 1.5{center_dot}1017 W/cm2 radiation intensity. Directionality and polarization properties were investigated depending on the laser intensity and polarization. The observations showed diffuse propagation of harmonics for intensities above 1016 W/cm2 and the polarization of harmonics was mixed for the highest intensities. The explanation of these results is surface rippling of the plasma critical surface because of the Rayleigh-Taylor instability, whichmore » is an intrinsic consequence of the unstable balance between light pressure and plasma expansion.« less
Electrostatic shock structures in dissipative multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Elkamash, I. S.; Kourakis, I.
2018-06-01
A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.
RF plasma modeling of the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.
2013-02-01
This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweben, S. J.; Terry, J. L.; Stotler, D. P.
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
Varying Radii of On-Axis Anode Hollows For kJ-Class Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Shaw, Brian; Chapman, Steven; Falabella, Steven; Pankin, Alexei; Liu, Jason; Link, Anthony; Schmidt, Andréa
2017-10-01
A dense plasma focus (DPF) is a compact plasma gun that produces high energy ion beams, up to several MeV, through strong potential gradients. Motivated by particle-in-cell simulations, we have tried a series of hollow anodes on our kJ-class DPF. Each anode has varying hollow sizes, and has been studied to optimize ion beam production in Helium, reduce anode sputter, and increase neutron yields in deuterium. We diagnose the rate at which electrode material is ablated and deposited onto nearby surfaces. This is of interest in the case of solid targets, which perform poorly in the presence of sputter. We have found that the larger the hollow radius produces more energetic ion beams, higher neutron yield, and sputter less than a flat top anode. A complete comparison is presented. This work was prepared by LLNL under Contract DE-AC52-07NA27344 and supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.
NASA Astrophysics Data System (ADS)
Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.
2015-03-01
The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.
Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, V., E-mail: arora@rrcat.gov.in; Chakera, J. A.; Naik, P. A.
2015-07-31
X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available formore » time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in
2014-09-15
Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservationmore » laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.« less
XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets
NASA Astrophysics Data System (ADS)
Barte, Ellie Floyd; Lokasani, Ragava; Proska, Jan; Stolcova, Lucie; Maguire, Oisin; Kos, Domagoj; Sheridan, Paul; O'Reilly, Fergal; Sokell, Emma; McCormack, Tom; O'Sullivan, Gerry; Dunne, Padraig; Limpouch, Jiri
2017-05-01
Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.
Preliminary results on the production of short-lived radioisotopes with a Plasma Focus device.
Angeli, E; Tartari, A; Frignani, M; Mostacci, D; Rocchi, F; Sumini, M
2005-01-01
An experimental campaign was conducted to assess the feasibility of short-lived radioisotope (SLR) production within the pulsed discharges of a Plasma Focus (PF) device. This so-called "endogenous production" technique rests on the exploitation of nuclear reactions for the creation of SLR directly within the plasma, rather than on irradiating an external target. Until now only one research group has published data relevant to PF endogenous production of SLR, and the data seem to confirm that the PF has the capability to breed SLR. The campaign demonstrated production of (15)O, (17)F and (13)N from the (14)N(d,n)(15)O, (12)C(d,n)(13)N and (16)O(d,n)(17)F reactions. A 7kJ, 17kV Mather-type PF was operated with natural nitrogen, oxygen, CO(2) and deuterium in the vacuum chamber. Results to date confirm that, with a PF of this type, up to 1microCi of SLRs per discharge can be obtained.
ALEGRA-HEDP simulations of the dense plasma focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flicker, Dawn G.; Kueny, Christopher S.; Rose, David V.
We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from themore » beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrario, Lorenzo, E-mail: lorenzo.ferrario@polimi.it; Little, Justin M., E-mail: jml@princeton.edu; Choueiri, Edgar Y., E-mail: choueiri@princeton.edu
The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application ofmore » the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.« less
Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target
NASA Astrophysics Data System (ADS)
Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen
2010-03-01
A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.
Plasma Diagnostics: Use and Justification in an Industrial Environment
NASA Astrophysics Data System (ADS)
Loewenhardt, Peter
1998-10-01
The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.
Microwave produced plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, A. K.; Edwards, W. F.; Held, E. D.
2010-11-01
A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens
We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found whichmore » realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser interaction with solid matter, such as ion acceleration [5,6] and high harmonic generation on surfaces [7]. Therefore, the laser pulse is weekly focused onto a substrate. The main pulse generates a plasma and is reflected at the critical surface, whereas the low intensity pre-pulse (mainly the Amplified Spontaneous Emission pedestal) will be transmitted through the substrate before the mirror has been triggered. Several publications [3,4] demonstrate a conservation of the spatial beam quality and a reflectivity of about 70 %. The drawback of this technique is the limited repetition rate since for every shot a fresh surface has to be provided. In the past years several novel approaches for high repetition rate plasma mirrors have been developed [2, 8]. Nevertheless, for the staged accelerator scheme a second important requirement has to be considered. Since the electron beam has to propagate through the mirror, the thickness of the substrate has to be as thin as possible to reduce the distortion of the electron beam. A tape of only several micrometer thickness can overcome these disadvantages. It can be used with a sufficient repetition rate while it allows the electron beam to propagate through with a minimum of scattering.« less
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2017-11-01
This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.
NASA Astrophysics Data System (ADS)
Hye Ji, Sang; Ki, Se Hoon; Kang, Min Ho; Choi, Jin Sung; Park, Yeunsoo; Oh, Jaesung; Kim, Seong Bong; Yoo, Suk Jae; Choi, Eun Ha; Park, Gyungsoon
2018-04-01
Despite the accumulating data on the effect of plasma on seed germination, mechanisms of plasma action need more extensive research. In a previous study, we observed that high voltage nanosecond pulsed plasma enhanced the germination of spinach seeds and subsequent seedling growth. As a follow-up study, we investigated the physico-chemical, biochemical, and molecular changes in seed after plasma treatment, focusing on the early germination stage, to elucidate mechanism(s) for the stimulating effects of plasma on seed germination. The primary radicle protruded from seeds exposed to high voltage nanosecond pulsed plasma (one shot) slightly faster than the control seeds. The hydrophilicity of the seed surface significantly increased after treatment with high voltage nanosecond pulsed plasma (one shot). However, a very subtle increase in water uptake by plasma treated seeds was observed. Raman and FTIR spectroscopy analyses on chloroform extract of seed coats demonstrated no significant chemical etching on the surface of plasma treated seeds. This may be related to no dramatic increase in water absorption by seeds. The level of GA hormone and starch hydrolysis inside the plasma treated seeds was significantly elevated within 24 h. Taken together, our results suggest that high voltage nanosecond pulsed plasma may not only enhance hydrophilicity of the seed surface but also stimulate biochemical and molecular processes inside seed, leading to enhanced embryonic development.
Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams
NASA Astrophysics Data System (ADS)
Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie
2013-10-01
Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program
Synthesis of composite TiN/Ni3N/a-Si3N4 thin films using the plasma focus device
NASA Astrophysics Data System (ADS)
Adeel Umar, Zeshan; Ahmad, Riaz; Khan, Ijaz Ahmad; Hussain, Tousif; Hussnain, Ali; Khalid, Nida; Awais, Ali; Ali, T.
2013-12-01
Composite films of TiN/Ni3N/a-Si3N4 were synthesized using the Mather-type plasma focus device with varying numbers of focus deposition shots (5, 15, and 25) at 0° and 10° angular positions. The composition and structural analysis of these films were analyzed by using Rutherford backscattering (RBS) and X-ray diffraction (XRD). Scanning electron microscope and atomic force microscope were used to study the surface morphology of films. XRD patterns confirm the formation of composite TiN/Ni3N/a-Si3N4 films. The crystallite size of TiN (200) plane is 11 and 22 nm, respectively, at 0° and 10° angular positions for same 25 focus deposition shots. Impurity levels and thickness were measured using RBS. Scanning electron microscopy results show the formation of net-like structures for multiple focus shots (5, 15, and 25) at angular positions of 0° and 10°. The average surface roughness of the deposited films increases with increasing focus shots. The roughness of the film decreases at higher angle 10° and the films obtained are smoother as compared with the films deposited at 0° angular positions.
Propagation of intense short laser pulses in the atmosphere.
Sprangle, P; Peñano, J R; Hafizi, B
2002-10-01
The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.
Channel optimization of high-intensity laser beams in millimeter-scale plasmas
Ceurvorst, L.; Savin, A.; Ratan, N.; ...
2018-04-20
Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (> 10 18 W/cm 2) kilojoule laser pulses through large density scale length (~ 390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse’s focal location and intensity as well as the plasma’s temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities as expected. However, contrary to previous large scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer duration equivalents. To conclude, this new observation has manymore » implications for future laser-plasma research in the relativistic regime.« less
Graphene nanoribbons: Relevance of etching process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.
2015-05-14
Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less
Channel optimization of high-intensity laser beams in millimeter-scale plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceurvorst, L.; Savin, A.; Ratan, N.
Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (> 10 18 W/cm 2) kilojoule laser pulses through large density scale length (~ 390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse’s focal location and intensity as well as the plasma’s temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities as expected. However, contrary to previous large scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer duration equivalents. To conclude, this new observation has manymore » implications for future laser-plasma research in the relativistic regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.
2014-11-15
Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less
Diagnostics of cathode material loss in cutting plasma torch
NASA Astrophysics Data System (ADS)
Gruber, J.; Šonský, J.; Hlína, J.
2014-07-01
A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.
Global problems in magnetospheric plasma physics and prospects for their solution
NASA Technical Reports Server (NTRS)
Roederer, J. G.
1977-01-01
Selected problems in magnetospheric plasma physics are critically reviewed. The discussion is restricted to questions that are 'global' in nature (i.e., involve the magnetosphere as a whole) and that are beyond the stage of systematic survey or isolated study requirements. Only low-energy particle aspects are discussed. The article focuses on the following subjects: (1) the effect of the interplanetary magnetic field on the topography, topology, and stability of the magnetospheric boundary; (2) solar-wind plasma entry into the magnetosphere; (3) plasma storage and release mechanisms in the magnetospheric tail; and (4) magnetic-field-aligned currents and magnetosphere-ionosphere interactions. A brief discussion of the prospects for the solution of these problems during and after the International Magnetospheric Study is given.
Short-Pulse Laser-Matter Computational Workshop Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Town, R; Tabak, M
For three days at the end of August 2004, 55 plasma scientists met at the Four Points by Sheraton in Pleasanton to discuss some of the critical issues associated with the computational aspects of the interaction of short-pulse high-intensity lasers with matter. The workshop was organized around the following six key areas: (1) Laser propagation/interaction through various density plasmas: micro scale; (2) Anomalous electron transport effects: From micro to meso scale; (3) Electron transport through plasmas: From meso to macro scale; (4) Ion beam generation, transport, and focusing; (5) ''Atomic-scale'' electron and proton stopping powers; and (6) K{alpha} diagnostics.
Physics of Self-Field-Dominated Plasmas.
1995-03-31
plasma focus machines (APF) for different optimal levels of discharge feeding energy W, in particular for APF-20O (W <or = 200 kJ) and APF-50 (W <or= 50 kJ). The function of these APF systems was to determine, along with the data of smaller machines, the scaling laws of the emission (fluence) of ion and ion cluster beams as a function of W, ejected from the self field dominated plasma of the APF pinch. Typical ion spectra from a Thomson (parabola) spectrometer in the 80 deg direction from the electrode/pinch axis are also included
NASA Astrophysics Data System (ADS)
Kousal, J.; Kolpaková, A.; Shelemin, A.; Kudrna, P.; Tichý, M.; Kylián, O.; Hanuš, J.; Choukourov, A.; Biederman, H.
2017-10-01
Gas aggregation sources are nowadays rather widely used in the research community for producing nanoparticles. However, the direct diagnostics of conditions inside the source are relatively scarce. In this work, we focused on monitoring the plasma parameters and the composition of the gas during the production of the TiOx nanoparticles. We studied the role of oxygen in the aggregation process and the influence of the presence of the particles on the plasma. The construction of the source allowed us to make a 2D map of the plasma parameters inside the source.
Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe
NASA Astrophysics Data System (ADS)
Mance, Diana; Wiese, Ruben; Kewitz, Thorben; Kersten, Holger
2018-05-01
Atmospheric pressure plasma jets (APPJs) are a promising tool in medicine with extensive possibilities of utilization. For a safe and therapeutically effective application of APPJs, it is necessary to know in detail the physical processes in plasma as well as possible hazards. In this paper, we focus on plasma thermal energy transferred to the substrate, i.e. to a passive thermal probe acting as substrate dummy. Specifically, we examined the dependence of transferred energy on the distance from the plasma source outlet, on the gas flow rate, and on the length of the visible plasma plume. The plasma plume is the plasma carried by the gas flow from the outlet of the source into the ambient air. The results show the distance between the plasma-generating device and the substrate to be the most important determinant of the transferred thermal energy, among the three examined variables. Most importantly for the end-user, the results also show this relation to be non-linear. To describe this relation, we chose a model based on a Boltzmann type of sigmoid function. Based on the results of our modelling and visual inspection of the plasma, we provide sort of a user guide for the adjustment of a suitable energy flux on the (bio) substrate.
Nanoparticle formation in a low pressure argon/aniline RF plasma
NASA Astrophysics Data System (ADS)
Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.
2018-01-01
The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.
NASA Astrophysics Data System (ADS)
Chapman, B. E.
2017-10-01
MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.
Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Ratcliffe, Alicia C.
2018-01-01
The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the main Maxwellian distribution (the bump-on-the-tail distribution function). For a range of parameters in these non-Maxwellian distributions, we compute the current collection to the probes. We compare the distribution function that was assumed a priori with the distribution function one would infer when applying standard triple probe theory to analyze the collected currents. For the assumed class of non-Maxwellian distribution functions this serves to illustrate the effect a non-Maxwellian plasma would have on results interpreted using the equilibrium triple probe current collection theory, allowing us to state the magnitudes of these deviations as a function of the assumed distribution function properties.
EDITORIAL: Focus on Plasma Medicine
NASA Astrophysics Data System (ADS)
Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.
2009-11-01
'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture M K Singh, A Ogino and M Nagatsu Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma H J Lee, C H Shon, Y S Kim, S Kim, G C Kim and M G Kong The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air A Helmke, D Hoffmeister, N Mertens, S Emmert, J Schuette and W Vioel Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet D L Bayliss, J L Walsh, G Shama, F Iza and M G Kong The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging René Pompl, Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W Stark, Takuya Urayama, Shuitsu Fujii and Gregor Eugen Morfill Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure Mi Hee Lee, Bong Joo Park, Soo Chang Jin, Dohyun Kim, Inho Han, Jungsung Kim, Soon O Hyun, Kie-Hyung Chung and Jong-Chul Park Cell permeabilization using a non-thermal plasma M Leduc, D Guay, R L Leask and S Coulombe Physical and biological mechanisms of direct plasma interaction with living tissue Danil Dobrynin, Gregory Fridman, Gary Friedman and Alexander Fridman Nosocomial infections-a new approach towards preventive medicine using plasmas G E Morfill, T Shimizu, B Steffes and H-U Schmidt Generation and transport mechanisms of chemical species by a post-discharge flow for inactivation of bacteria Takehiko Sato, Shiroh Ochiai and Takuya Urayama Low pressure plasma discharges for the sterilization and decontamination of surfaces F Rossi, O Kylián, H Rauscher, M Hasiwa and D Gilliland Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding S P Kuo, O Tarasenko, J Chang, S Popovic, C Y Chen, H W Fan, A Scott, M Lahiani, P Alusta, J D Drake and M Nikolic A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine QY Nie, Z Cao, C S Ren, D Z Wang and M G Kong A novel plasma source for sterilization of living tissues E Martines, M Zuin, R Cavazzana, E Gazza, G Serianni, S Spagnolo, M Spolaore, A Leonardi, V Deligianni, P Brun, M Aragona, I Castagliuolo and P Brun Designing plasmas for chronic wound disinfection T Nosenko, T Shimizu and G E Morfill Plasma medicine: an introductory review M G Kong, G Kroesen, G Morfill, T Nosenko, T Shimizu, J van Dijk and J L Zimmermann
Development of hybrid computer plasma models for different pressure regimes
NASA Astrophysics Data System (ADS)
Hromadka, Jakub; Ibehej, Tomas; Hrach, Rudolf
2016-09-01
With increased performance of contemporary computers during last decades numerical simulations became a very powerful tool applicable also in plasma physics research. Plasma is generally an ensemble of mutually interacting particles that is out of the thermodynamic equilibrium and for this reason fluid computer plasma models give results with only limited accuracy. On the other hand, much more precise particle models are often limited only on 2D problems because of their huge demands on the computer resources. Our contribution is devoted to hybrid modelling techniques that combine advantages of both modelling techniques mentioned above, particularly to their so-called iterative version. The study is focused on mutual relations between fluid and particle models that are demonstrated on the calculations of sheath structures of low temperature argon plasma near a cylindrical Langmuir probe for medium and higher pressures. Results of a simple iterative hybrid plasma computer model are also given. The authors acknowledge the support of the Grant Agency of Charles University in Prague (project 220215).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ctibor, Pavel; Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz; Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6
Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-raymore » diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.« less
Spatiotemporal dynamics of Gaussian laser pulse in a multi ions plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Milani, M. R., E-mail: mrj.milani@gmail.com
Spatiotemporal evolutions of Gaussian laser pulse propagating through a plasma with multiple charged ions are studied, taking into account the ponderomotive nonlinearity. Coupled differential equations for beam width and pulse length parameters are established and numerically solved using paraxial ray approximation. In one-dimensional geometry, effects of laser and plasma parameters such as laser intensity, plasma density, and temperature on the longitudinal pulse compression and the laser intensity distribution are analyzed for plasmas with singly and doubly charged ions. The results demonstrate that self-compression occurs in a laser intensity range with a turning point intensity in which the self-compression process hasmore » its strongest extent. The results also show that the multiply ionized ions have different effect on the pulse compression above and below turning point intensity. Finally, three-dimensional geometry is used to analyze the simultaneous evolution of both self-focusing and self-compression of Gaussian laser pulse in such plasmas.« less
NASA Astrophysics Data System (ADS)
Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg
1994-06-01
The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.